
The University of Manchester Research

VeRe: Verification Guided Synthesis for Repairing Deep
Neural Networks

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Ma, J., Yang, P., Wang, J., Sun, Y., Huang, C-C., & Wang, Z. (in press). VeRe: Verification Guided Synthesis for
Repairing Deep Neural Networks. In 46th International Conference on Software Engineering (ICSE 2024)

Published in:
46th International Conference on Software Engineering (ICSE 2024)

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:27. Sep. 2023

https://research.manchester.ac.uk/en/publications/d43767c7-200e-441c-b731-703477b37750

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

VeRe: Verification Guided Synthesis for Repairing Deep Neural
Networks

Anonymous Author(s)∗

ABSTRACT

Neural network repair aims to fix the ‘bugs’1 of neural networks
by modifying the model’s architecture or parameters. However,
due to the data-driven nature of neural networks, it is difficult to
explain the relationship between the internal neurons and erro-
neous behaviors, making further repair challenging. While several
work exists to identify responsible neurons based on gradient or
causality analysis, their effectiveness heavily rely on the quality of
available ‘bugged’ data and multiple heuristics in layer or neuron
selection. In this work, we address the issue utilizing the power
of formal verification (in particular for neural networks). Specifi-
cally, we propose VeRe, a verification-guided neural network repair
framework that performs fault localization based on linear relax-
ation to symbolically calculate the repair significance of neurons
and furthermore optimize the parameters of problematic neurons
to repair erroneous behaviors. We evaluated VeRe on various repair
tasks, and our experimental results show that VeRe can efficiently
and effectively repair all neural networks without degrading the
model’s performance. For the task of removing backdoors, VeRe
successfully reduces attack success rate from 98.47% to 0.38% on
average, while causing an average performance drop of 0.9%. For
the task of repairing safety properties, VeRe successfully repairs
all the 36 tasks and achieves 99.87% generalization on average.
ACM Reference Format:

Anonymous Author(s). 2023. VeRe: Verification Guided Synthesis for Repair-
ing Deep Neural Networks. In Proceedings of 46th International Conference
on Software Engineering (ICSE 2024). ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Over the past decade, deep neural networks (DNNs) have brought
about breakthroughs in many areas such as computer vision [3],
natural language processing [9, 19], and speech recognition [75].
However, the adoption of DNNs in safety-critical domains has been
slow due to concerns about their dependability. For instance, adver-
saries can manipulate the input data in a way that is imperceptible
to humans but can cause the model to make incorrect decisions.
Such vulnerability leads to serious safety concerns in applications
such as autonomous vehicles [8] and medical diagnosis [74]. While
DNNs are promising to revolutionize safety-critical domains (to
1We use ‘bugs’ to denote different kinds of inputs that could trigger an error in the
model’s output.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE 2024, April 2024, Lisbon, Portugal
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

some extent) as well, it is yet crucial to ensure that the DNNmodels
are developed and deployed with safety and reliability requirements
in mind so as to fully realize their potential.

The repair of DNNs refers to the activity of fixing the ‘bugs’ of a
neural network by modifying its architecture or parameters. Such
bugs can arise from multiple sources which have been extensively
studied in different communities including training errors [11], ad-
versarial attacks [14, 28], backdoor attacks [48] and distribution
drift [68, 82]. To counter these potential risks, periodical and ef-
ficient repair of DNNs is essential in DNN deployment to ensure
their performance and reliability in practice. Classical methods
in machine learning for DNN repair include adversarial training
[25, 26, 70], input sanitization, fine-tuning, transfer learning [17, 85],
data augmentation [49, 58, 86], etc. However, these methods are
highly data-driven, which often have poor performance when the
available ‘bugged’ data is scarce or of low quality. To address the
issue, neuron-level error localization and fixing methods have been
recently proposed in the software engineering community for more
effective and efficient DNN repair. For example, Arachne [64] uses
gradients and activation values to identify problematic neurons,
and then utilizes the differential evolution algorithm to generate
patches that can repair the neural network model. RM [32], on
the other hand, estimates the impact of neurons on both positive
and negative samples by leveraging gradients. When repairing the
neural network, RM fine-tunes neurons that have greater impact.
CARE [67] incorporates a causal model to analyze the cause-and-
effect relationship between neurons and inaccurate behavior, and
utilizes the Particle Swarm Optimization (PSO) algorithm to gener-
ate neuron-level patches for repairing the model.

As for neuron-level DNN repair, the fundamental technical chal-
lenge is how to understand the behavior of large amount of neurons
in the DNNs on the data samples (especially when they exhibit er-
roneous behaviors), and furthermore how to locate a small number
of responsible neurons for fixing. While previous gradient-based or
causality-based approaches are effective in some cases, they are in
general statistics-based and thus heavily rely on the availability of
massive data samples for larger DNNs to be effective (e.g., for CARE
[67], 20 000 samples are needed to achieve 94.70% generalization
for fully-connected model on ACAS Xu dataset). This can be prob-
lematic for scenarios when the data owner does not want to share
much data for the repair task, or data collection is too expensive
and there are simply not enough faulty data2. Besides, the different
kinds of heuristics in terms of layer or neuron selection hinder
their easy adoption over a wide range of neural network repair
tasks. Formal verification uses mathematical methods to rigorously
prove whether a system or software meets its intended specifica-
tion under all possible scenarios [7]. Several common verification
techniques like [22, 26, 39, 40, 44, 57, 62, 63] have been adapted
for DNNs to model or abstract their behaviors and furthermore

2while VeRe is shown to be effective in presence of both massive or scarce data.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2024, April 2024, Lisbon, Portugal Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Figure 1: Framework of VeRe

verify them against safety properties [51] and others [14, 31]. In
particular, a sound abstraction of a DNN model can be effectively
used to characterize how the DNN’s behavior would change upon
applying perturbation on the input. The implication is that, DNN
verification is naturally connected with neuron-level DNN repair
which essentially requires to measure the significance of a neuron
(either before or after the repair) on the model’s erroneous behavior
by applying perturbation on a neuron and observe the model’s output
change. If a small perturbation on a neuron leads to a large output
change, such a neuron is considered more responsible for the error.
One step further, repairing the neuron (ruling out the errors) can be
formalized as an optimization problem to search for the parameters
minimizing the output change upon perturbation on those respon-
sible neurons. Notice that unlike some existing works [49, 87] that
use a loss function for optimization in the repair step, our method
does not ‘over-learn’ the samples that have been correctly classified,
thus avoiding the overfitting problem (details later).

To realize the above idea, we propose VeRe (Verification Guided
Synthesis for Repairing Deep Neural Networks), a novel verifi-
cation guided synthesis framework for repairing the violation of
safety properties and backdoor attacks in DNNs. VeRe follows the
classical procedure of neuron-level error localization and error fix-
ing while both steps are guided by reachability analysis in the form
of linear approximation provided by formal verification. The linear
approximation can soundly measure how significant the repair of
a neuron contributes to fixing the behavior of negative samples
and provide the target behavior as guidance in the fixing step. Fig.
1 shows the details. Technically, we employ the verification tool
CROWN [83] to establish a linear approximation of the activation
of a neuron in a fully connected layer, and figure out the target
behavior of this activation via the linear approximation after this
layer. The repair significance of this neuron for the current negative
sample is the maximum improvement of the difference between the
scores of the correct and the misled classification of this sample,
and its total repair significance is the sum of that for each negative
sample. By sorting the repair significance, we decide the order of
repair from the highest to the lowest. The target behavior, along
with the positive samples, is used for guiding the fixing of this
neuron by constructing an optimization problem looking for repair
that enforces the neuron behavior into the target with the small-
est turbulence on positive samples. The procedure of such error
localization and error fixing is conducted iteratively until all the
negative samples are successfully repaired or the number of itera-
tions reaches a threshold. In this workflow, formal verification plays
an important role in abstracting behaviors of DNNs and neurons,
measuring the repair significance of each neuron, and calculating
the target behavior as repair guidance.

In summary, we make the following contributions:
• We propose VeRe, a novel verification guided synthesis

framework to precisely locate and efficiently fix the erro-
neous neurons.

• We demonstrate the effectiveness of VeRe in two popu-
lar repair tasks, namely violation of safety properties and
backdoor attacks.

• We extensively evaluate VeRe on six popular datasets (in-
cluding Imagenet) and on various neural network architec-
tures. The results show that VeRe significantly outperforms
state-of-the-art neuron-level repair methods in terms of
effectiveness and efficiency while introducing negligible
effect on the model’s original performance.

• We release VeRe as an open-source toolkit together with all
the experimental datasets [1] to benchmark future research.

2 BACKGROUND

Deep neural network. In this work, we focus on DNNs for classi-
fication tasks. A DNN is a function 𝑓 : R𝑚 → R𝑛 which assigns a
high-dimensional input 𝒙 ∈ R𝑚 to an output 𝑓 (𝒙) ∈ R𝑛 . A classifi-
cation DNN chooses the dimension with the highest score as the
classification result, i.e., its classification behavior can be described
as 𝐶𝑓 (𝒙) = argmax1≤𝑖≤𝑛 𝑓 (𝒙)𝑖 . A DNN usually contains multiple
hidden layers, such as convolutional layers, pooling layers, activa-
tion layers, etc., and the behavior of a DNN 𝑓 is the composition
of the functions between layers sequentially from the first layer
(input layer) to the last (output layer), i.e., 𝑓 = 𝑓𝑙−1 ◦ · · · ◦ 𝑓1, where
𝑙 is the total number of layers in 𝑓 , and 𝑓𝑖 is the function from
the 𝑖-th layer to the next. In particular, we use 𝑓 𝑖 to denote the
subnetwork from the 𝑖th layer (as the input layer) to the output
layer of the neural network 𝑓 , i.e., 𝑓 𝑖 = 𝑓𝑙−1 ◦ · · · ◦ 𝑓𝑖 , and ℎ𝑖 to
denote the subnetwork from the input layer to the 𝑖th layer (as the
output layer), i.e., ℎ𝑖 = 𝑓𝑖−1 ◦ · · · ◦ 𝑓1. The output of each neuron,
except those in the input layer, is obtained by the corresponding
transformation of the relevant nodes in the previous layer, usually
in the form of the composition of an affine transformation and a
non-linear activation function. Formally, for a hidden neuron 𝑗 in
layer 𝑖 , its output ℎ𝑖 𝑗 with respect to input 𝒙 can be calculated as:

ℎ𝑖 𝑗 (𝒙) = 𝜎 (𝒘𝑖 𝑗 · ℎ𝑖−1 (𝒙) + 𝑏𝑖 𝑗) (1)

with the activation function 𝜎 , the in-weights𝒘𝑖 𝑗 , and the bias 𝑏𝑖 𝑗 .

Safety properties and backdoor attacks. Safety properties refer
to those describing that bad things never happen. In the setting
of DNNs, a safety property requires that a DNN should behave
correctly in a given input set. The property violation rate (VR) of a
safety property measures how much the property is violated in the
input space w.r.t. a pre-defined probability measure P.

Definition 2.1. Let 𝑓 : R𝑚 → R𝑛 be a DNN, 𝑋 ⊆ R𝑚 an input
set, and 𝑃 ⊆ R𝑛 an output property. A safety property is a tuple
𝜑 = (𝑓 , 𝑋, 𝑃), and it holds iff for any 𝒙 ∈ 𝑋 , 𝑓 (𝒙) ∈ 𝑃 . The property
violation rate (VR) of a safety property 𝜑 = (𝑓 , 𝑋, 𝑃) is defined as
VR(𝜑) = P(𝑓 (𝒙) ∉ 𝑃 | 𝒙 ∈ 𝑋).

Backdoor attacks occur when an attacker implants a hidden
trigger in the DNN that can be activated to cause it tomake incorrect
predictions. This trigger may be added with access to the training

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

VeRe: Verification Guided Synthesis for Repairing Deep Neural Networks ICSE 2024, April 2024, Lisbon, Portugal

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

data or model architecture. Similarly, the attack success rate (SR)
of a backdoor attack reflects its effectiveness.

Definition 2.2. Let 𝑓 : R𝑚 → R𝑛 be a backdoored DNN, and
𝑋 ⊆ R𝑚 an input set with the trigger. The attack success rate (SR)
on 𝑋 is defined as SR(𝑓 , 𝑋) = P(𝐶𝑓 (𝒙) = 𝑡 | 𝒙 ∈ 𝑋), where 𝑡 is the
target label of backdoor.

Linear relaxation. Linear relaxation, also called linear approxima-
tion, is an important technique in the field of formal verification of
DNNs. It can establish linear bounds between layers and compute
provable reachability analysis on output neurons, which is widely
used in neural network verification and certified adversarial defense
[52, 88]. Here we briefly introduce how CROWN conducts linear
relaxation. The key to linear relaxation is to over-approximate
the behavior of non-linear activation functions with two affine
functions as lower/upper bound. In CROWN, linear relaxation is
designed in a symbolic way, so that the linear bound can propa-
gate. For example, a ReLU activation 𝑧′ = ReLU(𝑧) with 𝑧 ∈ [𝑙, 𝑢]
(𝑙 < 0 < 𝑢) can be linearly relaxed to 𝑢𝑧

𝑢−𝑙 ≤ 𝑧
′ ≤ 𝑢 (𝑧−𝑙)

𝑢−𝑙 , and the
numerical lower bound of 𝑧′ can be obtained by substituting 𝑧 in the
term 𝑢𝑧

𝑢−𝑙 with its affine lower bound, and iteratively substituting
each new variable with one of its affine bounds according to its
coefficient, until all the variables in the term are input variables.
In this way, given a region Δ ⊆ R𝑚 , usually in the form of a high-
dimensional interval, a DNN 𝑓 can be linearly relaxed to its lower
bound 𝑔Lower (𝒙) = 𝒘T𝒙 + 𝒃 and upper bound 𝑔Upper (𝒙) = 𝒘T𝒙 + 𝒃
satisfying

𝑔Lower (𝒙) ≤ 𝑓 (𝒙) ≤ 𝑔Upper (𝒙),∀𝒙 ∈ Δ. (2)

Problem formulation. Our neural network repair problem can be
formally defined as follows:

Given a classification DNN 𝑓 : R𝑚 → R𝑛 with a set
of inputs 𝐷 ⊆ R𝑚 , partitioned into the misclassi-
fied 𝐷m and the correctly classified 𝐷c, we need to
synthesize a repaired DNN 𝑓 ′, which differs from
𝑓 only in the weights and biases, so that the erro-
neous behaviors in𝐷m are fixed asmuch as possible
while the accuracy of the model is maintained.

Remark that the training data are unavailable throughout the repair.
The limited samples in 𝐷 for repair are collected through adding
backdoor trigger or sampling, which is the case in real-world testing
scenarios.

3 VERIFICATION GUIDED REPAIR SYNTHESIS

In this section, we present VeRe, a novel verification based re-
pair approach for neural networks. An overview is presented in
Fig. 1. VeRe has two interleaving pieces, i.e., fault localization
and repair synthesis. In fault localization, we propose a metric to
quantify the significance of repairing a neuron. We refine the neu-
ron range of neurons and perform linear relaxation on the network
within each subinterval. Based on the metric and approximate re-
sults, we can identify the neurons that will be repaired. The results
of linear relaxation in the previous stage can provide guidance for
neuron repair so that neurons are repaired and behave normally.

The overall algorithm of VeRe is shown in Alg. 1. We can see
that VeRe works in an iterative way. In each round of repair (an

Algorithm 1 VeRe
Input: DNN 𝑓 , set of inputs including the misclassified inputs and the

correctly classified inputs 𝐷 = 𝐷m ∪ 𝐷c, to-be-repaired layer 𝑖 , and
maximum number of iterations 𝑅.

Output: A repaired model 𝑓 ′ .
1: function VeRe(𝑓 , 𝐷m, 𝐷c, 𝑖, 𝑅)
2: 𝑓 ∗ ← 𝑓 , 𝑓 ′ ← 𝑓 , iteration← 0
3: while iteration < 𝑅 do

4: iteration← iteration + 1
5: for neuron 𝑗 in layer 𝑖 do
6: I𝑖,𝑗 ←

[
−^ · max𝒙∈𝐷 |ℎ𝑖 𝑗 (𝒙) |, ^ · max𝒙∈𝐷 |ℎ𝑖 𝑗 (𝒙) |

]
⊲ ℎ𝑖 𝑗 is the value of neuron 𝑗 in layer 𝑖 in the current 𝑓 ′

7: 𝑗∗, 𝑔𝑖,𝑗∗ ← FaultLocalization(𝑓 ′, 𝑖, 𝐷m, (I𝑖,𝑗) 𝑗) ⊲ Alg. 2
8: 𝑓 ′ ← RepairSynthesis(𝑓 ′, 𝐷m, 𝐷c, 𝑗

∗, 𝑔𝑖,𝑗∗) ⊲ Alg. 3
9: if SR(𝑓 ′, 𝐷m) = 0 then

10: return 𝑓 ′ ⊲ VR(·, 𝐷) instead for safety properties
11: if Acc(𝑓 ′, 𝐷) − SR(𝑓 ′, 𝐷m) > Acc(𝑓 ∗, 𝐷) − SR(𝑓 ∗, 𝐷m) then
12: 𝑓 ∗ ← 𝑓 ′ ⊲ Acc(𝑓 , 𝐷) : the accuracy of 𝑓 on 𝐷
13: return 𝑓 ∗

iteration of the while loop in Line 3), we fix exactly one neuron
by fault localization and repair synthesis (Line 7–8). After that, we
evaluate the new DNN with the available data and record the best
model at this stage in 𝑓 ∗, according to both SR/VR and accuracy
(Line 11–12). The procedure terminates when all the misclassified
data are successfully repaired, outputting this successfully repaired
model 𝑓 ′ (Line 9–10), or it reaches a preset number of rounds
𝑅 and outputs the best model ever 𝑓 ∗ (Line 13). Note that VeRe
only repairs one neuron after a round of fault localization. This
is to accommodate the capacity and scalability of existing DNN
verification methods as the underlying repair engine of VeRe.

3.1 Fault Localization

While deep neural networks have a large number of neurons, the
malicious behaviours of a DNN are often dominated by a relatively
small class of neurons [15, 29, 48, 73]. Therefore, VeRe starts with
localizing these faulty neurons to be repaired.

We assume that, for neuron 𝑗 in layer 𝑖 of a DNN 𝑓 , its behavior
is expected to be in an interval I𝑖, 𝑗 , which we call the neuron
range of 𝑗 . In practice, the interval I𝑖, 𝑗 can be obtained according to
its behaviors on the samples, i.e., [min𝒙∈𝐷 ℎ𝑖 𝑗 (𝒙),max𝒙∈𝐷 ℎ𝑖 𝑗 (𝒙)].
Since the samples are limited, it should be suspected whether this
interval is representative. Here we use a parameter ^ ≥ 1 to scale
this interval asI𝑖, 𝑗 =

[
−^ ·max𝒙∈𝐷 |ℎ𝑖 𝑗 (𝒙) |, ^ ·max𝒙∈𝐷 |ℎ𝑖 𝑗 (𝒙) |

]
.

The interval I𝑖, 𝑗 is calculated at the beginning of each iteration, as
shown in Line 5–6 of Alg. 1. Here, we allow I𝑖, 𝑗 to cover the values
out of the range of the activation 𝜎 , e.g., negative values which
exceeds the range of ReLU. This will bring us more freedom for
repairing the model, so that a better repair effect may be achieved.

In this work, we perform fault localization by quantifying the
benefits of repairing a neuron. Specifically, we define a new metric
named Repair Significance for this purpose.

Definition 1 (Repair Significance). Given a neural network 𝑓
and a misclassified sample 𝒙 , the Repair Significance for the neuron 𝑗
in layer 𝑖 with its neuron range I𝑖, 𝑗 is

𝑅𝑖, 𝑗 (𝒙) = max
𝑣∈I𝑖,𝑗

𝑓 𝑖𝒙 (ℎ𝑖 (𝒙) [𝑗 ← 𝑣]) − 𝑓 𝑖𝒙 (ℎ𝑖 (𝒙)), (3)

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ICSE 2024, April 2024, Lisbon, Portugal Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Algorithm 2 Fault localization
Input: DNN 𝑓 , set 𝐷m of misclassified inputs, and neuron ranges I𝑖,𝑗 for

all the neurons 𝑗 in layer 𝑖 .
Output: The candidate neuron index 𝑗∗ and the lower bound 𝑔𝑖,𝑗∗ .
1: function FaultLocalization(𝑓 , 𝑖, 𝐷m, (I𝑖,𝑗) 𝑗)
2: for 𝒙 ∈ 𝐷m do

3: for neuron 𝑗 in layer 𝑖 do
4: Split I𝑖,𝑗 into 𝐾 intervals (I𝑖,𝑗,𝑘)𝐾𝑘=1 evenly
5: for 𝑘 ← 1 to 𝐾 do

6: 𝑔𝑖,𝑗,𝑘 ← CROWN(𝑓 𝑖𝒙 , I𝑖,𝑗,𝑘)
7: 𝑔𝑖,𝑗 ←

∑𝐾
𝑘=1 𝑔𝑖,𝑗,𝑘 · II𝑖,𝑗,𝑘 ⊲ II : indicator function on I

8: 𝑅𝑖,𝑗 (𝒙) ← max
𝑘=1,...,𝐾
𝑣∈I𝑖,𝑗,𝑘

𝑔𝑖,𝑗 (𝑣) − 𝑓 𝑖𝒙 (ℎ𝑖 (𝒙))

9: 𝑅𝑖,𝑗 (𝒙) ←
𝑅𝑖,𝑗 (𝒙)

max𝑗 𝑅𝑖,𝑗 (𝒙)
⊲ Normalization

10: for neuron 𝑗 in layer 𝑖 do
11: 𝑅𝑖,𝑗 ←

∑
𝒙∈𝐷m 𝑅𝑖,𝑗 (𝒙)

12: 𝑗∗ ← argmax𝑗 𝑅𝑖,𝑗
13: return 𝑗∗, 𝑔𝑖,𝑗∗

where 𝑓 𝑖𝒙 is the difference between the scores of the correct classification
label and its output classification label. w.r.t 𝒙 in the output of 𝑓 𝑖 , and
ℎ𝑖 (𝒙) [𝑗 ← 𝑣] is obtained from ℎ𝑖 (𝒙) by substituting the 𝑗 th entry of
ℎ𝑖 (𝑥) with the real value 𝑣 .

Given a misclassified sample 𝒙 , we have 𝑓 𝑖𝒙 (ℎ𝑖 (𝒙)) < 0. If there
exists 𝑣 ∈ I𝑖, 𝑗 such that 𝑓 𝑖𝒙 (ℎ𝑖 (𝒙) [𝑗 ← 𝑣]) is positive, the mis-
classified input can be correctly classified after the neuron is re-
paired. Intuitively, 𝑅𝑖, 𝑗 (𝒙) measures the maximum effect that can be
achieved on correctly classifying 𝒙 if the best patching is conducted
on neuron 𝑗 . For the misclassified sample set𝐷𝑚 , the corresponding
Repair Significance can be calculated by summing 𝑅𝑖, 𝑗 (𝒙) of each
sample, i.e., 𝑅𝑖, 𝑗 =

∑
𝒙∈𝐷m 𝑅𝑖, 𝑗 (𝒙).

Note that solving 𝑣 for a given sample 𝒙 to maximize 𝑅𝑖, 𝑗 (𝒙) in
Eq. (3) is a non-convex optimization problem, which is hard to solve.
To obtain an estimation of 𝑅𝑖, 𝑗 (𝒙), we employ the verification tool
CROWN to conduct a linear approximation to 𝑓 𝑖𝒙 (ℎ𝑖 (𝒙) [𝑗 ← 𝑣])
in Eq. (3) for 𝑣 ∈ I𝑖, 𝑗 . Specifically, we perform linear relaxation
and bound propagation on the sub-network 𝑓 𝑖 . Unlike general
verification tasks, we apply perturbations (i.e., repairs) to hidden
neurons instead of input neurons. Given the sub-network 𝑓 𝑖 and
an input ℎ𝑖 (𝒙) with the perturbation 𝑣 ∈ I𝑖, 𝑗 on its 𝑗th coordinate,
we perform linear relaxation with CROWN. By propagating the
upper and lower bounds layer by layer, we finally obtain a lower
bound of 𝑓 𝑖 in the form of 𝑔𝑖, 𝑗 (𝑣) = 𝑤𝑣 + 𝑏, which satisfies

∀𝑣 ∈ I𝑖, 𝑗 𝑔𝑖, 𝑗 (𝑣) ≤ 𝑓 𝑖𝒙 (ℎ𝑖 (𝒙) [𝑗 ← 𝑣])).
Note that the sub-network 𝑓 𝑖 may still be a multi-layer neural

network. Namely, it is likely to be highly non-linear, which leads to
a linear relaxation of low precision. To reduce loss of precision in
linear relaxation, we further split the neuron range evenly into 𝐾
intervals as I𝑖, 𝑗 =

⋃𝐾
𝑘=1 I𝑖, 𝑗,𝑘 , and the linear relaxation is applied

to each of these intervals. Then, the lower bound 𝑔𝑖, 𝑗 in the form of
a piecewise-linear function, affine on each I𝑖, 𝑗,𝑘 , is obtained, with
which the Repair Significance can be estimated more accurately as

𝑅𝑖, 𝑗 (𝒙) = max
𝑘=1,...,𝐾
𝑣∈I𝑖,𝑗,𝑘

𝑔𝑖, 𝑗 (𝑣) − 𝑓 𝑖𝒙 (ℎ𝑖 (𝒙)) . (4)

Figure 2: The target interval in the two cases.

We emphasize that, formal verification is a suitable way to efficiently
obtain a sound estimation of𝑅𝑖, 𝑗 (𝒙), i.e.,𝑅𝑖, 𝑗 (𝒙) ≤ 𝑅𝑖, 𝑗 (𝒙), and their
difference converges to 0 as 𝐾 →∞. As a sound estimation, 𝑅𝑖, 𝑗 (𝒙)
measures the Repair Significance in a conservative manner, which
would contribute to high stability in the repair effectiveness.

Alg. 2 shows the details of the fault localization phase. The
procedure is consistent with what we have described above. In
particular, considering that all the misclassified samples enjoy a
coordinate position, we add a normalization after we obtain 𝑅𝑖, 𝑗 (𝒙)
for all the neurons 𝑗 . Namely, for each 𝒙 ∈ 𝐷m, the 𝑅𝑖, 𝑗 (𝒙) of
the neuron that achieves the maximum Repair Significance will
be mapped to 1, and the others are linearly scaled (Line 9). The
estimation of the total Repair Significance for neuron 𝑗 is the sum
of 𝑅𝑖, 𝑗 (𝒙) over 𝒙 ∈ 𝐷m, and we find the neuron with the largest
total Repair Significance estimation as the candidate neuron, on
which repair will be synthesized in this iteration. We also save the
linear relaxation 𝑔𝑖, 𝑗∗ as the guidance of repair synthesis.

3.2 Repair Synthesis

Next, we present how VeRe repairs the candidate neuron 𝑗∗ in an
iteration. Given a misclassified sample 𝒙 and a candidate neuron
𝑗∗, there are two challenges to be addressed:
(C1) How to find the ideal interval for 𝑗∗ to repair a misclassified

sample 𝒙 . An ideal interval should be able to effectively
alleviate the wrong behavior of the DNN on 𝒙 without
affecting the original performance of the network.

(C2) How to modify the weights on the neuron 𝑗∗ so that its
activation value on 𝒙 lies within the ideal interval.

To address (C1), we utilize the results of fault localization to
infer the target activation value for the candidate neuron. For a
misclassified sample 𝒙 ∈ 𝐷m, a target interval 𝑠∗𝑖, 𝑗∗ (𝒙) ∈ (I𝑖, 𝑗∗,𝑘)

𝐾
𝑘=1

is ideal, if it satisfies the following two conditions:
(1) The linear lower bound 𝑔𝑖, 𝑗∗ is always positive on 𝑠∗𝑖, 𝑗∗ (𝒙);
(2) The activation value after repair is the closest to the original.

The first condition implies that the error must be successfully re-
moved, if the neuron 𝑗∗ behaves within the ideal interval 𝑠∗

𝑖, 𝑗∗ (𝒙).
The second condition is to minimize the change in the value of
the neuron so that the original performance of the network can be
mostly preserved. Denote by d(𝛼,I) = min𝑣∈I |𝑟 − 𝑣 | the distance
between 𝑟 ∈ R and an interval I. Then, the ideal interval 𝑠∗

𝑖, 𝑗∗ (𝒙)
can be assigned as any element in

arg min
I𝑖,𝑗∗,𝑘 ∈𝑇

d(ℎ𝑖, 𝑗∗ (𝒙),I𝑖, 𝑗∗,𝑘).

where 𝑇 = {I𝑖, 𝑗∗,𝑘 | ∀𝑣 ∈ I𝑖, 𝑗∗,𝑘 𝑔𝑖, 𝑗∗ (𝑣) > 0} is the set of all the
intervals satisfying the condition (1). Fig. 2(a) shows intuitively
where the ideal interval is. Additionally, a situation may occur that

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

VeRe: Verification Guided Synthesis for Repairing Deep Neural Networks ICSE 2024, April 2024, Lisbon, Portugal

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Algorithm 3 Repair synthesis
Input: DNN 𝑓 , set of inputs including the misclassified inputs and the

correctly classified inputs 𝐷 = 𝐷m ∪𝐷c, candidate neuron 𝑗∗ in layer
𝑖 , and the linear lower bound 𝑔𝑖,𝑗∗ on I𝑖,𝑗∗ .

Output: The repaired DNN 𝑓 ′ as the repair synthesis for 𝑗∗
1: function RepairSynthesis(𝑓 , 𝐷m, 𝐷c, 𝑗

∗, 𝑔𝑖,𝑗∗)
2: for 𝒙 ∈ 𝐷m do

3: Ideal← False,𝑇 ← ∅
4: for 𝑘 ← 1 to 𝐾 do

5: if min𝑣∈I𝑖,𝑗∗,𝑘 𝑔𝑖,𝑗∗ (𝑣) > 0 then
6: Ideal← True,𝑇 ← 𝑇 ∪ {I𝑖,𝑗∗,𝑘 }
7: if Ideal = True then

8: 𝑘∗ ← argmin𝑘 :I𝑖,𝑗∗,𝑘 ∈𝑇 d(ℎ𝑖 𝑗 (𝒙), I𝑖,𝑗∗,𝑘)
9: 𝑠∗

𝑖,𝑗∗ (𝒙) ← I𝑖,𝑗∗,𝑘∗
10: else

11: 𝑣∗ ← argmax𝑣∈I𝑖,𝑗∗ 𝑔𝑖,𝑗∗ (𝑣)
12: 𝑠∗

𝑖,𝑗∗ (𝒙) ← [𝑣
∗, 𝑣∗]

13: L ← Lc + Lm according to Eq. (5) and Eq. (6)
14: �̃�𝑖,𝑗∗ ← 𝒘𝑖,𝑗∗ , 𝑏𝑖,𝑗∗ ← 𝑏𝑖,𝑗∗ , 𝛼 ← 1, 𝛽 ← 0 ⊲ Initialization
15: (�̃�∗

𝑖,𝑗∗ , 𝑏
∗
𝑖,𝑗∗ , 𝛼

∗, 𝛽∗) ← Adam(�̃�𝑖,𝑗∗ , 𝑏𝑖,𝑗∗ , 𝛼, 𝛽 ; min L)
16: 𝒘𝑖,𝑗∗ ← �̃�∗

𝑖,𝑗∗ , 𝑏𝑖,𝑗∗ ← 𝑏∗
𝑖,𝑗∗ ⊲ In-weights

17: 𝒃 𝑗∗,𝑖+1 ← 𝒃 𝑗∗,𝑖+1 + 𝛽∗𝒘𝑗∗,𝑖+1, 𝒘𝑗∗,𝑖+1 ← 𝛼∗𝒘𝑗∗,𝑖+1 ⊲ Out-weights
18: return the current DNN 𝑓 ′

the condition (1) does not hold for any I𝑖, 𝑗∗,𝑘 . In this case, we sim-
ply choose the endpoint (of some interval I𝑖, 𝑗∗,𝑘) that produces
the largest 𝑔𝑖, 𝑗∗ (𝑣) as the target, as shown in Fig. 2(b). For consis-
tency, we consider the target value to be a single point interval
𝑠∗
𝑖, 𝑗∗ (𝒙) = [𝑣

∗, 𝑣∗], where 𝑣∗ = argmax𝑣∈I𝑖,𝑗∗ 𝑔𝑖, 𝑗∗ (𝑣). In Line 2–12
of Alg. 3, we show the procedure of calculating the target interval
𝑠∗
𝑖, 𝑗∗ (𝒙), where a Boolean variable “Ideal” marks whether the con-
dition (1) holds. The interval with the largest 𝑔𝑖, 𝑗 (𝑣) may not be
the ideal interval. Therefore, we propose two strategies for select-
ing intervals: If we want the best repair effects, we should choose
the interval with the maximum 𝑔𝑖, 𝑗 (𝑣); if we want to balance the
preservation of the model’s original performance and the repair
effects, we can choose the ideal interval. In this work, we select the
ideal interval to better protect model performance in the backdoor
removal scenario, and the interval with the maximum 𝑔𝑖, 𝑗 (𝑣) for
safety property violation repair.

Here the linear lower bound 𝑔𝑖, 𝑗∗ obtained by formal verification
again helps extract the target interval of the neuron 𝑗∗ for every
misclassified sample. Due to the soundness of formal verification,
for a certain input 𝑥 ∈ 𝐷m, it is sufficient to infer its correct label
with its ideal interval of the neuron 𝑗∗ (if the ideal interval exists).
Thus, we intend to adjust the weights associated with the neuron
𝑗∗ so that for as many samples 𝑥 ∈ 𝐷m as possible, the values of
the neuron will fall within their ideal intervals, respectively. This
is exactly what (C2) does.

To address (C2), we consider which weights on the neuron 𝑗∗
are to be modified. For a poisoned backdoor model, the behavior
of a candidate neuron on a misclassified sample may include both
the backdoored behavior and the function for correctly classifying
a certain class. This phenomenon inspires us that, neuron-level
patches like scaling or adding a bias to the value of the candidate

neuron, which is popular among existing methods like [67], may
not effectively remove all backdoor behaviors while preserving orig-
inal performance of the model. Therefore, we repair the candidate
neuron 𝑗∗ by modifying its in-weights and out-weights. We use a
mini-network 𝑓mini to substitute the candidate neuron 𝑗∗, including
its in-weights and out-weights, in the current DNN. It contains the
same number of parameters �̃�𝑖, 𝑗∗ and 𝑏𝑖, 𝑗∗ as the in-weights and
the bias of 𝑗∗, and two extra parameters 𝛼 and 𝛽 for out-weight
modification. It receives the output of the (𝑖 − 1)th layer ℎ𝑖−1 as
input, and outputs the repaired behavior of 𝑗∗ as

𝑓mini (ℎ𝑖−1) = 𝛼 · 𝜎 (�̃�T
𝑖, 𝑗∗ · ℎ

𝑖−1 + 𝑏𝑖, 𝑗∗) + 𝛽. (5)

We remark that, through the additional linear transformation with
parameters 𝛼 and 𝛽 , the output of this mini-network can exceed the
range of the activation function 𝜎 , which can solve the problem that
the ideal interval may be outside the output range of the activation
function. Themini-network 𝑓mini, as the repair of 𝑗∗, will not change
the original structure of the DNN, because we can construct an
equivalent DNN without change in structure. Specifically, the out-
weights of 𝑗∗ are all scaled with 𝛼 , and the biases are shifted with
the multiplication of 𝛽 and the original corresponding out-weight,
as shown in Line 16–17 of Alg. 3.

Next, we design a loss function as L = Lc + Lm to optimize the
weights of mini-network 𝑓mini, where

Lc =
1
|𝐷c |

∑︁
𝒙∈𝐷c

(𝑓mini (ℎ𝑖−1 (𝒙)) − ℎ𝑖 (𝒙))2 ,

Lm =
1
|𝐷m |

∑︁
𝒙∈𝐷m

(d(𝑓mini (ℎ𝑖−1 (𝒙)), 𝑠∗𝑖, 𝑗∗ (𝒙)))
2 .

(6)

Intuitively, Lc enforces the output of 𝑓mini for the correctly classi-
fied samples to be similar to the output of the original neuron. For
those misclassified, we use Lm to guide the output of 𝑓mini to move
towards the ideal intervals. Specifically, when the output of 𝑓mini
for ℎ𝑖−1 (𝒙) is already within the ideal interval, the corresponding
loss function is 0, so that no further changes for repair 𝒙 are made
to 𝑓mini. Unlike the typical loss function that focuses on the output
of the whole DNN, L directly measures the distance between the
output of 𝑓𝑚𝑖𝑛𝑖 and the ideal interval. Thus enabling a more effec-
tive correction of its erroneous behaviors and the candidate neuron
will not ‘over-learn’ samples that have been correctly classified,
avoiding overfitting and effectively correcting incorrect behavior.
We use the the gradient descent algorithm to optimize the weight
of 𝑓mini. Specifically, we choose Adam [41] as the optimizer.

To further improve the efficiency, we divide the available misclas-
sified data into several batches. In each round, we randomly select
a batch of data to perform fault localization and neuron repair.

4 EVALUATION

In this section, we conduct a set of experiments to evaluate VeRe.
We report the experiment results for answering the following five
research questions.
RQ1: Can VeRe repair a DNN more effectively and efficiently

compared with the state-of-the-art?
RQ2: How does the number of samples and iterations influence

the performance of VeRe?
RQ3: What role does interval splitting play in VeRe?

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2024, April 2024, Lisbon, Portugal Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Datasets Model Train Repair Generalization
clean poisoned clean poisoned

MNIST CNN 60 000 1 000 1 000 5 000 5 000
CIFAR10 VGG13 50 000 1 000 1 000 5 000 5 000
SVHN VGG13 73 257 1 000 1 000 13 016 13 016
GTSRB VGG11 39 200 1 000 1 000 6 300 6 300
Imagenette VGG16 9 469 200 100 1 962 1 962

Table 1: Number of the records in the datasets.

RQ4: How coupled is the repair process with the specific locali-
sation and vice versa?

RQ5: Is VeRe scalable to high dimensional input and DNNs with
other activation functions?

4.1 Experiment Setup

We apply VeRe to two repair tasks: 1) removing backdoor and 2)
correcting safety property violation. In total, we evaluate VeRe
with 5 baselines, 2 backdoor attack methods, and 46 models across
6 datasets. We run all the experiments 5 times and report the mean
results.

4.1.1 Removing backdoor. Two popular backdoor attacks, Bad-
Nets [29] and Blend [16], are used in the experiment. For BadNets
attack, a random noise square measuring 5 × 5 pixels is placed in
the lower right corner of the image as the trigger. For Blend attack,
we generate a trigger pattern by sampling pixel values from a uni-
form distribution in the range [0, 255], and then attach the trigger
𝒕 to the sample 𝒙 according to the injection strategy of Blend, i.e.,
𝛾 · 𝒕 + (1 − 𝛾) · 𝒙 , where we set the ratio 𝛾 to be 0.2.

There are five datasets: MNIST [43], CIFAR-10 [42], SVHN [54],
GTSRB [66] and ImageNette [33]. The original training sets are only
used to train the poisoned neural networks. We divide the original
test set into two parts: the Repair set 𝐷r and the Generalization
set 𝐷g. Subsequently, we inject malicious triggers into the repair
set and the generalization set to generate the poisoned sets 𝐷r and
𝐷g, respectively. We randomly select 1 000 clean samples and 1 000
poisoned samples from𝐷r and𝐷r as the available data, respectively.
We use 𝐷g and 𝐷g to evaluate model’s generalization ability. Im-
agenette is a subset of ImageNet that consists of ten categories.
Due to the relatively small size of the dataset, we establish slightly
smaller repair set and test sets. The numbers of data in these sets,
as well as the DNN models and their architectures for each dataset,
are shown in Table 1.

4.1.2 Correcting safety property violation. We evaluate VeRe over
36 ACAS Xu [36, 37] networks. Each network in ACAS Xu consists
of six hidden layers, each with 50 ReLU neurons. As reported in
[20], 34 models violate Property-2, 1 model violates Property-7, and
1 model violates Property-8, resulting in 36 repairing tasks.

We sample 10 000 non-violating samples and 10 000 counterex-
amples as the Repair set 𝐷𝑟 , and use independent 10 000 counterex-
amples as the Generalization set 𝐷g. We utilize a drawdown set to
assess the extent to which the original performance of the repaired
model is affected. Specifically, we select 3 properties3 (including
the property to be repaired) for each model, and sample 5 000 non-
violating instances from the state space of each properties. Finally,
we generate a drawdown set of size 15 000 for each model.

3We select the property (2, 7, 8) for 𝑁1,9 , (2, 3, 8) for 𝑁2,9 and (2, 3, 7) for the others.

4.1.3 Baselines and metrics. We implement and compare 3 state-of-
the-art (SOTA) methods with our method to evaluate their perfor-
mance on backdoor removal, including AI-Lancet[89], CARE[67]
and RM[32]. We configure each baseline according to the best per-
formance settings reported in its respective paper. Specifically, AI-
Lancet proposed an optimization method for trigger restoration to
obtain poisoned samples. In order to ensure fairness, we skip this
step and provide real triggers directly. We formulate the accuracy
(Acc) and the attack success rate (ASR) of a DNN under backdoor
attack as follows:

Acc =
∑
𝑥 ∈𝐷g [𝐶𝑓 ′ (𝒙)=ℓ𝒙]

|𝐷g | and ASR =

∑
𝑥 ∈𝐷g [𝐶𝑓 ′ (𝒙)=𝑡]

|𝐷g |
,

where ℓ𝒙 is the true label of 𝒙 , 𝑡 is the target label of the backdoor,
and [·] is the Iverson bracket that takes the value 1 if the statement
is true and 0 otherwise. We further define the defense success rate
(DSR) for repairing a backdoored model as DSR = 1 − ASR. Note
that the Acc and the DSR are evaluated on Generalization set.

For the task of fixing safety property violation, we compare VeRe
with CARE, PRDNN and REASSURE [24]. For a repaired model 𝑓 ′,
the repair success rate (RSR), generalization and the drawdown can
be computed as follows:

RSR =

∑
𝑥 ∈𝐷r [𝐶𝑓 ′ (𝒙) ∈𝑃]

|𝐷r | , Generalization =

∑
𝑥 ∈𝐷g [𝐶𝑓 ′ (𝒙) ∈𝑃]

|𝐷g | ,

Drawdown = 1
3

∑︁
𝜑∈Ψ

∑
𝑥 ∈𝐷𝜑 [𝐶𝑓 ′ (𝑥) ∈𝑃𝜑]

|𝐷𝜑 | ,

where 𝑃 is the output set of the safety property to be repaired. The
set Ψ represents the properties we select for evaluating drawdown.

4.2 Comparison with Baselines

Correcting Safety Property Violation.We first compare VeRe
with CARE and PRDNN for correcting the violation of safety prop-
erties, and the results are shown in Table 2. PRDNN constructs a
provable repair, thereby achieving a 100% RSR on the Repair set.
VeRe also achieves high RSR (≥ 99.8%), while CARE achieves an
average RSR of 94.89%. In terms of generalization, all tools show im-
pressive performance, while VeRe achieves the best generalization,
at 99.87%. For 28 out of 36 models, VeRe achieves 100% generaliza-
tion, which means that after repair, the models satisfy their safety
properties on all original counterexamples in the generalization
sets. As a comparison, CARE and PRDNN have an average gen-
eralization of 94.70% and 95.15%, respectively. Additionally, VeRe
demonstrate better performance on the drawdown set, with an aver-
age drawdown of 15.26% for the 36 repaired models, whereas CARE
and PRDNN display drawdown of 19.53% and 19.48% respectively.

For this repairing task, both PRDNN and our method demon-
strate a significant efficiency advantage. PRDNN converts the re-
pairing task to a linear programming problem and thus achieves
the least time cost. VeRe is capable of repairing most of the models
within 6 seconds, which is 20 times faster than CARE on average.
REASSURE is another provable repair baseline. Due to its signifi-
cant time cost, we cannot directly add it to our experiments with
exactly the same setup. Thus we set 4 scenarios with fewer samples.
REASSURE’s generalization increases as the number of samples
increases, while VeRe is always better. REASSURE achieves better

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

VeRe: Verification Guided Synthesis for Repairing Deep Neural Networks ICSE 2024, April 2024, Lisbon, Portugal

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Model RSR on repair set/% Generalization/% Drawdown/% Time/s
CARE PRDNN Ours CARE PRDNN Ours CARE PRDNN Ours CARE PRDNN Ours

N1,9(𝜑7) 100.00 100.00 100.00 99.98 100.00 100.00 0.01 0.00 0.00 123.31 3.36 5.30
N2,1(𝜑2) 100.00 100.00 100.00 100.00 97.40 100.00 0.03 0.63 0.02 143.97 3.51 4.59
N2,2 85.56 100.00 100.00 84.88 98.35 100.00 33.33 29.90 0.06 179.79 2.93 3.67
N2,3 100.00 100.00 100.00 100.00 99.44 100.00 0.14 0.71 1.17 170.01 1.98 5.93
N2,4 62.68 100.00 100.00 61.38 99.78 100.00 0.37 33.35 33.33 135.64 2.25 1.06

N2,5 77.57 100.00 100.00 76.81 99.21 99.94 33.33 33.33 33.33 166.40 2.89 25.06
N2,6 88.04 100.00 100.00 87.88 99.48 100.00 33.33 33.33 33.33 156.60 3.33 3.65
N2,7 80.93 100.00 100.00 80.16 99.26 100.00 33.33 7.41 0.00 172.03 4.05 1.35

N2,8 100.00 100.00 100.00 100.00 97.50 100.00 33.33 12.15 0.00 122.89 3.27 0.94

N2,9 100.00 100.00 100.00 100.00 0.05 100.00 0.00 33.33 33.13 155.72 3.88 1.36

N2,9(𝜑8) 99.29 100.00 99.95 99.31 98.37 99.94 0.00 0.00 0.22 168.18 23.61 8.56

N3,1 100.00 100.00 100.00 100.00 97.71 100.00 0.00 0.20 0.09 175.54 5.15 9.07
N3,2 100.00 100.00 100.00 100.00 99.54 100.00 33.34 5.12 0.48 102.52 2.10 1.19

N3,4 81.77 100.00 100.00 81.72 99.46 100.00 33.33 33.35 33.33 136.38 2.15 1.11

N3,5 95.74 100.00 100.00 96.12 97.52 100.00 0.43 31.07 18.50 226.59 2.56 1.94

N3,6 100.00 100.00 100.00 100.00 98.67 100.00 0.00 33.59 33.33 135.61 3.96 2.09

N3,7 96.44 100.00 100.00 96.56 91.74 100.00 0.00 33.39 33.33 238.51 3.27 1.28

N3,8 96.32 100.00 100.00 96.23 99.05 100.00 33.33 33.35 33.33 153.69 3.13 1.13

N3,9 99.96 100.00 99.64 99.91 95.88 99.63 33.33 33.41 0.15 281.20 3.42 36.73
N4,1 100.00 100.00 100.00 99.99 98.42 100.00 32.41 0.00 31.11 96.74 2.75 1.67

N4,3 99.75 100.00 99.98 99.70 99.35 99.95 7.76 0.11 0.36 94.69 2.20 18.15
N4,4 88.28 100.00 100.00 88.04 98.72 100.00 33.35 0.05 0.05 158.29 2.18 0.96

N4,5 99.88 100.00 100.00 99.86 99.72 100.00 0.00 0.29 0.00 123.66 4.10 1.12

N4,6 89.47 100.00 100.00 86.65 97.66 100.00 33.34 33.57 33.38 233.75 4.45 4.37

N4,7 99.99 100.00 100.00 99.99 98.79 100.00 33.33 33.33 33.33 124.65 3.89 1.10

N4,8 98.29 100.00 100.00 98.13 99.47 99.96 33.33 33.51 22.24 150.24 3.13 3.56
N4,9 100.00 100.00 100.00 100.00 94.37 100.00 33.33 30.97 0.00 119.46 3.69 1.05

N5,1 100.00 100.00 100.00 100.00 92.38 100.00 1.32 0.05 0.01 161.68 2.36 1.97

N5,2 100.00 100.00 100.00 100.00 92.06 100.00 33.33 32.99 28.15 111.40 3.28 1.18

N5,3 100.00 100.00 96.35 100.00 97.03 96.22 0.13 0.16 0.11 169.06 2.87 20.42
N5,4 100.00 100.00 100.00 100.00 95.98 100.00 26.67 33.36 35.10 94.87 2.13 1.86

N5,5 100.00 100.00 99.97 99.96 97.12 99.96 33.34 21.75 0.27 108.32 2.68 7.67
N5,6 100.00 100.00 99.96 99.98 99.12 99.95 33.34 33.39 33.37 128.95 3.89 6.42
N5,7 100.00 100.00 100.00 100.00 99.29 100.00 0.42 0.04 0.03 101.49 4.23 7.82
N5,8 100.00 100.00 100.00 100.00 99.46 100.00 33.34 26.66 33.33 114.56 3.26 1.97

N5,9 76.22 100.00 100.00 75.89 98.15 100.00 33.33 33.26 0.00 177.99 3.91 3.69

Avg 94.89 100.00 99.88 94.70 95.15 99.87 19.53 19.48 15.26 150.40 3.77 5.58

Table 2: Results of repairing violation of safety properties

Attack Dataset Before CARE AI-Lancet RM Ours
Acc ASR Acc DSR Time Acc DSR Time Acc DSR Time Acc DSR Time

BadNets

MNIST 99.70 99.02 99.68 99.89 393.63 99.68 99.98 140.16 95.93 99.84 2.19 99.27 99.83 108.40
SVHN 93.30 99.95 84.94 99.66 709.32 81.90 97.31 2344.00 81.65 98.94 5.27 92.12 99.90 88.97
CIFAR-10 82.46 99.97 77.48 99.50 920.17 80.15 99.48 1713.90 71.69 99.66 17.89 81.63 99.85 101.88
GTSRB 90.87 98.91 58.60 99.82 558.58 75.49 96.92 2182.00 83.14 99.74 7.08 90.32 99.96 57.56
AVG 91.58 99.46 80.18 99.72 645.43 84.30 98.42 1595.00 83.10 99.55 8.11 90.84 99.89 89.20

Blend

MNIST 99.72 99.97 92.80 99.93 990.24 86.82 97.28 652.80 95.01 99.58 3.64 99.11 99.97 62.76
SVHN 91.23 96.45 83.08 83.31 2041.70 80.97 94.69 3859.80 84.03 99.62 6.09 91.09 99.43 233.61
CIFAR-10 84.08 94.72 69.03 99.74 728.17 69.86 98.52 1958.00 62.05 86.42 18.89 81.30 98.96 309.20
GTSRB 91.35 98.79 62.48 99.56 2017.71 84.94 98.86 2771.47 64.99 99.69 9.30 90.64 99.09 463.95
AVG 91.60 97.48 76.85 95.63 1444.46 80.65 97.34 2310.51 76.52 96.33 9.48 90.54 99.36 267.38

Table 3: Results of backdoor removal, where we mark the overall best values bold.

drawdown than VeRe in one scenario, while VeRe performs better
in the others. Kindly refer to [1] for more detailed results.
Backdoor Removal. For the backdoor removal task, the results
of VeRe and the three baselines are presented in Table 3. All the
methods achieve decent repair results on the MNIST, due to its
simplicity. For more complex dataset, RM and CARE suffer from
catastrophic forgetting, leading to a significant decrease in accuracy.
AI-Lancet has less damage to model performance, but still results
in a 2.31% to 15.38% accuracy decrease. Comparatively, VeRe has
an Acc drop of 0.14% to 2.78%, which indicates that the original
performance of the models has not been significantly affected.

In terms of defense success rate, our method achieves over 98%
for all tasks, with the lowest being 98.96%. In comparison, the
best-performing baseline, AI-Lancet, has an average DSR of 97.88%.
When specifically considering the Blend attacks on CIFAR-10 and
SVHN, both CARE and RM slightly outperform VeRe’s in terms of
defense success rate (by less than 1%). However, it is important to
note that both CARE and RM methods significantly decrease the
model accuracy, with CARE causing a decrease of 25.05% and RM
causing a decrease of 7.2%. In contrast, our method only results in a
minimal decrease in model accuracy of less than 1%. These results
highlight the superiority of our method, as it not only achieves a
higher defense success rate compared to the best-performing base-
line, but it also minimizes the negative impact on model accuracy.

RM achieves the lowest time cost among all scenarios because it
selectively fine-tunes only the problematic weights based on the
gradient. In comparison, VeRe takes an average of 89.20 seconds
and 267.38 seconds to remove backdoors under BadNets and Blend,
respectively. On the other hand, CARE, which is based on particle
swarm optimization, takes more than five times longer than our
method on average. Additionally, AI-Lancet requires conducting an
ablation experiment to determine the problematic weights, resulting
in a larger time cost.
Answer to RQ1: VeRe is a more effective method for safety
violation repairing and backdoor removal, with higher general-
ization/defense success rate, lower drawdown/accuracy drop,
and comparable efficiency.

4.3 Monotonicity w.r.t. the number of samples

and rounds

In this section, we study how does VeRe perform on repairing
DNNs with different number of available samples and how does
the repair effect change after each round of repair.

For safety violation repairing, we consider four different sample
size configurations: 500 positive samples and {500, 200, 100, 50} neg-
ative samples, respectively. We evaluate the performance of VeRe
under varying amounts of available samples, and the experimental

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ICSE 2024, April 2024, Lisbon, Portugal Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Model 500+500 500+200 500+100 500+50
D % G % D % G % D % G % D % G %

N1,9(𝜑7) 0.00 100.00 0.00 99.89 0.00 99.46 0.00 98.99
N2,1(𝜑2) 0.07 100.00 0.06 99.95 0.06 99.82 0.08 97.71
N2,2 11.80 100.00 2.59 100.00 0.93 99.36 0.35 98.02
N2,3 1.32 100.00 1.11 100.00 0.96 100.00 0.00 100.00
N2,4 33.33 100.00 33.33 100.00 33.33 100.00 33.33 100.00
N2,5 33.33 100.00 33.33 100.00 33.33 100.00 33.33 100.00
N2,6 33.33 100.00 33.33 100.00 33.33 100.00 33.33 100.00
N2,7 22.22 99.96 25.74 99.94 11.63 99.88 14.39 99.77
N2,8 0.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00
N2,9 33.13 100.00 33.06 99.93 33.05 99.89 33.02 99.74
N2,9(𝜑8) 0.00 99.98 0.00 99.98 0.00 99.98 0.00 99.97
N3,1 0.05 100.00 0.03 99.98 0.02 99.85 0.07 99.78
N3,2 0.51 99.37 0.55 98.56 0.58 96.44 0.56 93.53
N3,4 33.33 100.00 33.33 100.00 33.33 100.00 33.34 100.00
N3,5 33.33 99.95 33.33 99.99 33.33 99.74 33.33 98.94
N3,6 33.33 100.00 33.33 99.98 33.33 99.96 33.33 99.99
N3,7 33.33 99.90 33.33 99.79 33.33 99.79 33.33 99.66
N3,8 33.33 100.00 33.33 100.00 33.33 99.99 33.33 99.99
N3,9 0.05 95.77 0.06 91.51 0.03 87.27 0.02 79.01
N4,1 32.56 100.00 32.03 100.00 31.48 100.00 31.22 100.00
N4,3 0.38 99.95 0.27 99.57 0.24 98.97 0.29 97.45
N4,4 0.03 100.00 0.04 99.93 0.03 99.68 0.03 98.95
N4,5 0.00 99.97 0.00 99.91 0.00 99.82 0.00 99.79
N4,6 33.36 100.00 33.36 100.00 18.09 100.00 0.00 99.98
N4,7 33.33 100.00 33.33 100.00 33.33 100.00 33.33 99.71
N4,8 33.35 99.88 33.35 99.85 33.35 99.53 33.35 98.75
N4,9 33.33 100.00 33.33 100.00 33.33 99.96 33.33 99.79
N5,1 33.33 100.00 0.05 100.00 1.15 100.00 2.59 100.00
N5,2 33.26 100.00 33.06 100.00 32.75 100.00 32.88 99.94
N5,3 0.04 100.00 0.06 99.84 0.09 99.60 0.10 89.19
N5,4 10.18 99.97 6.71 99.71 4.84 99.64 2.89 96.98
N5,5 0.41 96.31 0.32 89.31 0.41 82.70 0.34 65.59
N5,6 33.36 99.92 33.36 99.91 33.36 99.91 33.37 99.89
N5,7 0.00 99.97 0.06 99.53 0.06 99.42 0.06 98.08
N5,8 33.33 100.00 33.33 100.00 33.33 99.64 33.33 98.51
N5,9 0.00 100.00 0.00 99.99 0.00 99.99 0.00 99.98
Avg 17.95 99.75 16.74 99.36 15.83 98.90 15.34 97.44
Table 4: Safety property repair. D: Drawdown (%), G: Generalization (%)

results are presented in Table 4. VeRe effectively repairs models
even with limited samples. Specifically, with access to 500 coun-
terexamples, the minimum RSR of our method is 99.75% and 23
models achieve 100% generalization. We further reduce the number
of available negative samples. The average RSR of VeRe remains
above 98.9% in scenarios with 500+200 and 500+100 samples. In
fact, even in scenarios where data is extremely limited, our method
achieves an average generalization of 97.44%. In comparison, when
the data size is 10 000+10 000, CARE and PRDNN only achieve a
generalization of 94.70% and 95.15%, respectively. We find that as
the number of available negative samples increases, the drawdown
after repair with VeRe slightly increases. This is reasonable because
repairing more counterexamples samples usually leads to making
more significant modifications to the DNN.

Subsequently, we impose constraints on the number of samples
available in the backdoor removal scenario. Specifically, we fix the
number of available clean samples at 1 000 and vary the number of
poisoned samples among {1 000, 500, 200, 100, 50}. The results are
shown in Table 5. VeRe successfully repairs poisoned models on
all datasets with BadNets attacks while maintaining models’ origi-
nal performance . The CIFAR-10 dataset has the largest decrease
in performance, ranging from 0.54% to 2.25%. Additionally, VeRe
remains effective even with a small amount of available poisoned
data, with DSR of the repaired models exceeding 98% in all scenar-
ios. In comparison, AI-Lancet performs the most stably among all
baselines, but causes over 10% model performance decline in the
SVHN and GTSRB datasets. CARE heavily depends on the quantity
of poisoned samples, and struggles to remove the backdoors stably
when the number of poisoned samples is limited (with DSR of 39%
on CIFAR-10 and 40% on SVHN). RM, which is based on fine-tuning,
cannot maintain the original performance of the model and results
in over 5% performance decline in almost all scenarios.

/ // /

/ /

Figure 3: Repair effect after each round.

For Blend attacks, the performance of all baselines is not stable:
AI-Lancet can not maintain original performance in any scenario;
CARE suffers catastrophic forgetting on the CIFAR-10 and GTSRB
datasets, leading to a significant performance decrease. Moreover,
CARE is ineffective in removing backdoors on the SVHN dataset,
even with 1000 available poisoned samples, resulting in a DSR of
less than 90%. RM also exhibits this phenomenon on the CIFAR-10
dataset. Comparatively, Our method protects the original perfor-
mance of the model in all scenarios, with the largest decrease being
2.78%. Furthermore, VeRe demonstrates stable repair ability in sce-
narios with limited data, with the DSR of the repaired models being
above 95% except on GTSRB with only 50 available samples. The
results in Table 5 confirm that VeRe indeed makes more efficient
use of poisoned samples by symbolic analysis. When the number
of poisoned samples is reduced from 1 000 to 50, the repair effect of
VeRe only decreases by 1% to 7%, demonstrating the superior effec-
tiveness of VeRe in data scarcity scenarios compared to baselines.

To investigate how our method performs after each round of
repair, we record the performance of the model (including gener-
alization performance) after each round. The experimental results
are shown in the Fig. 3. We find that DSR can be improved to vary-
ing degrees after each round of repair, with negligible effects on
the original performance, which also shows that the neurons and
intervals we locate are indeed useful.
Answer to RQ2: Even in situations where data availability
is restricted, VeRe can still efficiently and effectively remove
erroneous behaviors while preserving models’ original perfor-
mance. Compared to alternative approaches, VeRe can make
better use of the available data by symbolic analysis.

4.4 Effect of Interval Splitting

Recall that we split the neuron rangeI𝑖 𝑗 into𝐾 disjoint sub-intervals
to reduce the approximation error. In this experiment, we study the
effect of interval spliting. We maintain the same settings as section
4.2 and record the changes in the Acc and DSR of the repaired model
under scenarios with different number of subintervals. The results
are shown in the Fig. 4. We find that more fine-splited interval
can better preserve the original performance of the model on the
CIFAR-10 and SVHN dataset under badnets attacks. Compared to
not spliting intervals, dividing the intervals can bring an accuracy
improvement of 1.67% to 8.23%.

For the SVHN dataset under blend attacks, dividing the intervals
does not bring significant accuracy improvement. Therefore, we
further investigate whether the repaired neurons play an important
role in correctly classifying a certain sample category. We record

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

VeRe: Verification Guided Synthesis for Repairing Deep Neural Networks ICSE 2024, April 2024, Lisbon, Portugal

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Method Sample
BadNets Blend

MNIST CIFAR-10 SVHN GTSRB MNIST CIFAR-10 SVHN GTSRB
Acc DSR Acc DSR Acc DSR Acc DSR Acc DSR Acc DSR Acc DSR Acc DSR

Ours
1000+50 99.16 99.07 80.21 99.63 92.18 98.22 89.17 99.71 99.61 99.56 82.12 96.09 91.11 97.82 89.57 92.14
1000+100 99.22 99.30 81.92 99.77 92.98 99.07 90.07 99.86 99.63 99.87 81.76 96.51 91.16 97.94 89.59 95.09
1000+200 99.18 99.72 81.74 99.84 92.81 99.47 90.29 99.90 99.42 99.90 81.93 97.88 91.16 98.49 90.45 97.80
1000+500 99.29 99.79 81.54 99.84 92.80 99.76 90.30 99.95 99.31 99.95 81.78 98.89 91.14 99.28 90.42 98.92
1000+1000 99.27 99.83 81.63 99.85 92.12 99.90 90.32 99.96 99.11 99.97 81.30 98.96 91.09 99.43 90.64 99.09

AI-Lancet
1000+50 99.70 97.90 81.01 96.49 82.45 95.73 76.43 93.30 86.94 95.36 70.86 96.58 81.22 91.33 85.35 92.18
1000+100 99.65 99.26 80.81 98.30 82.25 95.97 73.54 95.49 87.04 95.47 71.84 96.68 81.05 92.01 84.70 95.10
1000+200 99.65 99.74 80.48 98.89 82.10 96.50 75.64 96.41 87.25 95.76 71.24 97.30 81.16 92.50 84.37 97.09
1000+500 99.66 99.95 80.58 99.25 82.05 96.82 75.76 96.67 87.04 96.07 70.80 97.99 81.08 94.39 84.44 98.05
1000+1000 99.68 99.89 80.15 99.48 81.90 97.31 75.49 96.92 86.82 97.28 69.86 98.52 80.97 94.69 84.94 98.86

CARE
1000+50 99.70 97.83 80.60 39.16 91.49 40.00 58.86 99.58 95.45 78.78 74.27 82.39 91.09 6.66 67.38 81.60
1000+100 99.70 98.90 78.83 79.01 90.72 59.99 56.47 99.72 96.39 79.40 69.02 99.52 90.77 12.26 61.94 97.86
1000+200 99.70 99.43 78.28 98.99 89.35 79.95 54.45 99.80 93.98 98.18 69.21 99.60 87.03 38.99 62.09 98.60
1000+500 99.68 99.66 77.83 99.24 88.96 99.54 55.16 99.80 93.76 99.36 70.15 99.64 84.60 74.79 63.16 99.54
1000+1000 99.68 99.89 77.48 99.50 84.94 99.66 58.60 99.82 93.54 99.79 69.03 99.74 83.08 83.31 62.48 99.56

RM
1000+50 97.16 99.09 79.98 88.16 61.34 97.80 78.53 92.74 83.65 92.70 65.48 31.63 66.37 92.43 60.30 92.74
1000+100 96.01 99.67 78.10 91.46 68.47 98.09 79.83 95.83 84.19 93.50 65.32 40.78 66.81 93.32 66.41 96.62
1000+200 93.59 99.93 75.67 94.77 78.79 98.08 78.82 96.44 81.78 95.83 64.28 56.87 77.58 96.95 56.57 98.46
1000+500 92.45 99.94 73.45 99.50 82.35 98.84 80.24 99.17 92.48 99.04 62.80 76.70 82.64 99.17 57.12 98.99
1000+1000 95.93 99.84 71.69 99.66 81.65 98.94 83.14 99.74 95.01 99.58 62.05 86.42 84.03 99.62 64.99 99.69

Table 5: Results of backdoor removal with limited samples, where an Acc value in color blue means that the the drop in accuracy after repair is less than 5%, and a

DSR greater than 99% is highlighted in color green.

/ // /

Figure 4: Effect of interval splitting and its association to frozen neuron.

the repaired neurons and freeze them in the original network. Then
we compare the classification performance of the frozen model
with the original model. As shown in Figure 4, the frozen repaired
neurons do not significantly degrade the model’s performance on
the SVHN dataset under blend attacks. This indicates that these
neurons may not be responsible for correctly classifying certain
categories, and thus, splitting such intervals do not lead to a sig-
nificant increase in accuracy. In the other three scenarios, freezing
the repaired neurons results in serious misclassification of certain
categories, indicating that these neurons are responsible for both
target class classification and normal category classification. There-
fore, more fine-split interval can help find more ideal intervals for
these neurons to protect model performance while removing the
backdoor. This phenomenon matches our intuition: interval split-
ting is particularly useful if the candidate neuron exposes a complex
mixture of erroneous and correct behavior. Additionally, we find that
interval splitting can improve DSR in certain scenarios, resulting in
performance gains of 8.68% in Blend-CIFAR-10 scenario and 4.78%
in BadNets-SVHN scenario. This is because the linear relaxation
without interval refinement may result in significant approximation
errors, leading to mis-localization of the ideal repair interval.

Answer to RQ3: Interval splitting can reduce approximation
errors, find more suitable ideal intervals, and thus more ef-
fectively repair models while preserving their original perfor-
mance, which is especially the case for neurons with complex
behaviors, i.e., a mixture of erroneous and correct behaviors.

4.5 The coupling between the two steps

VeRe consists of two steps, i.e., fault localization and repair synthe-
sis. In this section, we study how the coupling between localiza-
tion step and the repair step. We replace our repair process with
other repair methods. Specifically, we use particle swarm optimiza-
tion method from CARE, RM’s fine-tune and optimization with
regularization[30] as three baselines. We denote the replaced base-
lines as PSO*, RM*, and Reg* respectively. We show the results in
Table 6. Kindly refer to [1] for more detailed results.

Under the BadNets attack, most baselines can protect the original
performance of the model except for the PSO*. Among them, Reg*
performs best, with an average Acc drop of 1.07%. Our method also
protects the model performance well, with a drop of 1.54%. For
improving DSR, VeRe performs best, with a repaired average DSR
of 99.74%. In comparison, the best-performing RM* in the baselines
can only improve DSR to 96.06%. Reg* overfits severely when the
number of available samples is limited (even if regularization is
used to prevent overfitting), and it obtains 99.70% Acc and 100.00%
DSR on the repair set but performs poorly on the generalization set.
As a comparison, the loss function in our repair method does not
promote the candidate neuron to over-learn samples that have been
correctly classified, avoiding overfitting and effectively correcting
erroneous behavior. For the Blend attack, no baseline can increase
DSR while maintaining Acc. PSO* improve DSR to nearly 100.00%,
but Acc drops severely (more than 20%). RM* and Reg* suffer from
catastrophic forgetting and overfitting, respectively.

In addition, we find that compared to RM, RM* can more effec-
tively increase DSR while maintaining the same level of Acc. This
indicates that the verification-based fault localization has found
more appropriate candidate neuron for repair. The effect of PSO*
is at the same level as CARE: it cannot protect the original per-
formance of the model and cannot effectively remove backdoor in

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ICSE 2024, April 2024, Lisbon, Portugal Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Sample Method
BadNets Blend

Repair set Generalization set Repair set Generalization set
Acc DSR Acc drop DSR Acc DSR Acc drop DSR

1k+1k

CARE 76.23 99.69 77.48 4.98 99.50 67.90 99.90 69.03 15.05 99.84
RM 77.56 99.86 71.69 10.77 99.66 68.04 94.77 62.05 22.03 86.42
PSO* 68.10 100.00 67.68 14.78 100.00 58.00 100.00 58.60 25.48 99.98
RM* 82.96 99.69 80.06 2.40 98.22 65.76 99.96 64.55 19.53 96.17
Reg* 98.12 99.91 81.76 0.70 97.16 81.36 99.78 67.81 16.27 96.22
Ours 79.50 100.00 81.63 0.83 99.85 81.48 99.60 81.30 2.78 98.96

1k+50

CARE 80.12 40.00 80.60 1.86 39.16 77.44 85.84 74.27 9.81 82.39
RM 79.50 90.41 79.98 2.48 88.16 66.04 39.76 65.48 18.60 31.63
PSO* 70.36 80.00 70.48 11.98 80.01 58.30 100.00 59.30 24.78 99.96
RM* 79.08 100.00 78.69 3.77 93.91 60.38 100.00 60.70 23.38 92.00
Reg* 99.70 100.00 81.02 1.44 88.97 99.84 95.57 75.78 8.30 89.20
Ours 78.60 100.00 80.21 2.25 99.63 81.28 100.00 82.12 1.96 96.09

Table 6: Combining with other repair methods on CIFAR-10.

Method BadNets Blend
Acc DSR Time Acc DSR Time

Before 83.23 0.68 - 83.54 1.87 -
CARE 82.87 2.30 3530.29 66.39 61.53 7807.44
CARE* 83.28 2.32 4476.89 57.18 100.00 13747.97
AI-Lancet - - - - - -
RM 74.30 84.27 7.15 63.32 63.75 9.81
Ours 81.38 98.68 122.61 78.93 96.24 207.32

Table 7: Backdoor removal results on Imagenette dataset.

some scenarios, which indicates that simple combination of our
localization method with other repair methods may not work well.
Answer to RQ4: Our fault localization step and repair step are
highly coupled. Compared to simply combining our localization
method with other repair methods, VeRe remove erroneous
behaviors more effectively while protecting the performance
of the model. In addition, our verification-based localization
method locate more accurate than gradient-based method.

4.6 Scalability

To investigate the scalability of VeRe we conduct a backdoor re-
moval experiment on the Imagenette dataset of high dimensional
images of 224×224 pixels. The results are presented in the Table 7.
Note that due to the unstable performance of CARE, we use “CARE"
in the table to represent the average results from multiple experi-
ments, while “CARE*" represents the best performance observed in
multiple experiments. Unfortunately, we are unable to reproduce
the performance of AI-Lancet in this scenario, as it requires running
three network models simultaneously, resulting in out of memory.

According to the Table 7, CARE is unable to repair the network
under BadNets attack, and the DSR after repair is 2.30%. The DSR
of RM is 84.27%, while the model accuracy decreases by 8.93%. In
comparison, our method can increase the DSR to over 98% while
slightly sacrificing accuracy (less than 3%). Under Blend attack,
CARE improves DSR to 100.00% (only one in ten experiments),
but suffers from catastrophic forgetting. In addition, the time over-
head of CARE is unacceptable, while VeRe effectively improves the
model’s defense success rate at an acceptable time overhead.

To study whether VeRe generalizes to networks with other acti-
vation functions, we replace the ReLU units in each neural network
with the Sigmoid activation function. Following setups in Section
4.1, we conduct a set of experiments on the CIFAR-10 and the SVHN
datasets with the BadNets and the Blend attacks. Overall, VeRe can
achieve an average DSR of 96.59%, while Acc decreases by up to
1.11%. The average time overhead of VeRe is 688.11s. Kindly refer
to [1] for detailed results.
Answer to RQ5: VeRe is scalable to high-dimensional input
and promising for other activation functions. Compared to
other baselines, it improves DSR more effectively, while pre-
serving the model’s original performance.

5 RELATEDWORK

DNN repair. There have been many attempts on neural network
repair. Some works use heuristic algorithms such as particle swarm
optimization, differential evolution, etc. DeepRepair [86] and few-
shot guided mix [58] augment available negative samples to ob-
tain new training data. Tian et al. [69] enhance available data by
adding real-world environmental effects such as fogs to samples.
To construct a provable repair, several repair methods like NNRe-
pair, PRDNN, REASSURE [24] and ART [47] have employed formal
verification techniques including constraint solving and abstract
interpretation. However, the way and the purpose of employing
formal verification in VeRe are quite different, which provides
guidance for fault localization and target intervals for repair syn-
thesis, and no provable guarantee is demanded. As have been stated,
fault localization and target intervals obtained by CROWN in VeRe
directly and significantly reflects the repair significance of each
neuron and how to repair a candidate neuron, and such guidance
is conservative due to the soundness of formal verification, which
is beneficial for the stability of the repair effects. In the future, we
plan to incorporate more program synthesis techniques [18] into
VeRe for repairing DNNs.

DNN verification. In 2010, the first DNN verification algorithm
based on partition refinement was proposed in [57]. In the past
decade, numerous formal verification techniques have been pro-
posed for verifying DNNs, primarily including constraint solv-
ing [10, 22, 27, 35, 39, 40, 46, 53], abstract interpretation [26, 44, 61–
63, 84], linear relaxation [6, 38, 56, 78, 83], global optimisation [21,
59, 60], CEGAR [2, 23, 55], reduction to two-player games [79, 81],
and star-set abstraction [71, 72]. These methods provide prov-
able estimates of DNN robustness. Besides, statistical methods like
[4, 5, 12, 13, 34, 45, 50, 76, 77, 80] are more efficient and scalable for
complex DNN structures, where quantitative robustness is provable
at a certain confidence level. In VeRe, we employ CROWN [83] as
the verification engine for repair synthesis, whilst other tools like
ERAN [65], Fast-lin [78], DeepSymbol [44] are also adoptable.

6 CONCLUSION

We propose VeRe, a novel verification guided synthesis framework
for repairing DNNs. VeRe performs linear relaxation on fully con-
nected layer to localize problematic neurons and provide the target
interval for repair, which guides us to construct an optimization
problem for the optimal repair. We conduct an empirical evaluation
using five image classification datasets and one safety property
dataset. The experimental results show that VeRe can repair var-
ious models efficiently and effectively, while preserving original
performance of the model. We have to claim that VeRe still has
some limitations. Since it relies on a verification engine for fault
localization and repair synthesis, VeRe only repairs the properties
that can be formally specified, and currently it cannot repair vio-
lation of fairness. The weight modification in the repair synthesis
only works for fully-connected layers, and we lack a repair strategy
for more structures like convolutional layers. As for future works,
we are eager to explore how VeRe is used for fairness repair, and
design the repair strategy for convolutional layers.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

VeRe: Verification Guided Synthesis for Repairing Deep Neural Networks ICSE 2024, April 2024, Lisbon, Portugal

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

REFERENCES

[1] Anonymous. 2023. VERE. https://github.com/nninjn/VeRe
[2] Pranav Ashok, Vahid Hashemi, Jan Kretínský, and Stefanie Mohr. 2020. DeepAb-

stract: Neural Network Abstraction for Accelerating Verification. In ATVA 2020
(Lecture Notes in Computer Science, Vol. 12302). Springer, 92–107.

[3] Maryam Badar, Muhammad Haris, and Anam Fatima. 2020. Application of deep
learning for retinal image analysis: A review. Computer Science Review 35 (2020),
100203.

[4] Teodora Baluta, Zheng Leong Chua, Kuldeep S Meel, and Prateek Saxena. 2021.
Scalable quantitative verification for deep neural networks. In ICSE 2021. IEEE,
Madrid, Spain, 312–323.

[5] Teodora Baluta, Shiqi Shen, Shweta Shinde, Kuldeep S. Meel, and Prateek Saxena.
2019. Quantitative Verification of Neural Networks and Its Security Applications.
In CCS 2019, November 11-15, 2019. ACM, London, UK, 1249–1264.

[6] Ben Batten, Panagiotis Kouvaros, Alessio Lomuscio, and Yang Zheng. 2021.
Efficient neural network verification via layer-based semidefinite relaxations
and linear cuts. IJCAI.

[7] Per Bjesse. 2005. What is formal verification? ACM SIGDA Newsletter 35, 24
(2005), 1–es.

[8] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai
Zhang, et al. 2016. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316 (2016).

[9] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[10] Rudy Bunel, P Mudigonda, Ilker Turkaslan, P Torr, Jingyue Lu, and Pushmeet
Kohli. 2020. Branch and bound for piecewise linear neural network verification.
Journal of Machine Learning Research 21, 2020 (2020).

[11] Gabriel Cadamuro, Ran Gilad-Bachrach, and Xiaojin Zhu. 2016. Debugging
machine learning models. In ICML Workshop on Reliable Machine Learning in the
Wild, Vol. 103.

[12] Luca Cardelli, Marta Kwiatkowska, Luca Laurenti, Nicola Paoletti, Andrea Patane,
and MatthewWicker. 2019. Statistical Guarantees for the Robustness of Bayesian
Neural Networks. In IJCAI 2019, August 10-16, 2019, Sarit Kraus (Ed.). ijcai.org,
Macao, China, 5693–5700.

[13] Luca Cardelli, Marta Kwiatkowska, Luca Laurenti, and Andrea Patane. 2019.
Robustness Guarantees for Bayesian Inference with Gaussian Processes. In AAAI
2019, January 27 - February 1, 2019. AAAI Press, Honolulu, Hawaii, USA, 7759–
7768.

[14] Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness
of neural networks. In 2017 ieee symposium on security and privacy (sp). Ieee,
39–57.

[15] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin
Edwards, Taesung Lee, Ian Molloy, and Biplav Srivastava. 2018. Detecting back-
door attacks on deep neural networks by activation clustering. arXiv:1811.03728
(2018).

[16] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. 2017. Targeted
backdoor attacks on deep learning systems using data poisoning. arXiv preprint
arXiv:1712.05526 (2017).

[17] Wenyuan Dai, Ou Jin, Gui-Rong Xue, Qiang Yang, and Yong Yu. 2009. Eigen-
transfer: a unified framework for transfer learning. In Proceedings of the 26th
Annual International Conference on Machine Learning. 193–200.

[18] Cristina David and Daniel Kroening. 2017. Program synthesis: challenges and
opportunities. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences 375, 2104 (2017), 20150403.

[19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805 (2018).

[20] Guoliang Dong, Jun Sun, Xingen Wang, Xinyu Wang, and Ting Dai. 2021. To-
wards repairing neural networks correctly. In 2021 IEEE 21st International Con-
ference on Software Quality, Reliability and Security (QRS). IEEE, 714–725.

[21] Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. 2018.
Output Range Analysis for Deep Feedforward Neural Networks. In NFM 2018
(Lecture Notes in Computer Science, Vol. 10811), Aaron Dutle, César A. Muñoz,
and Anthony Narkawicz (Eds.). Springer, Newport News, VA, USA, 121–138.

[22] Rüdiger Ehlers. 2017. Formal Verification of Piece-Wise Linear Feed-Forward
Neural Networks. In ATVA 2017. Springer, Pune, India, 269–286.

[23] Yizhak Yisrael Elboher, Justin Gottschlich, and Guy Katz. 2020. An Abstraction-
Based Framework for Neural Network Verification. In CAV 2020 (Lecture Notes in
Computer Science, Vol. 12224), Shuvendu K. Lahiri and ChaoWang (Eds.). Springer,
Los Angeles, CA, USA, 43–65.

[24] Feisi Fu and Wenchao Li. 2022. Sound and Complete Neural Network Repair
with Minimality and Locality Guarantees. In The Tenth International Conference
on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenRe-
view.net. https://openreview.net/forum?id=xS8AMYiEav3

[25] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo
Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky. 2016.
Domain-adversarial training of neural networks. The journal of machine learning
research 17, 1 (2016), 2096–2030.

[26] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat
Chaudhuri, and Martin Vechev. 2018. Ai2: Safety and robustness certification of
neural networks with abstract interpretation. In 2018 IEEE symposium on security
and privacy (SP). IEEE, 3–18.

[27] Sumathi Gokulanathan, Alexander Feldsher, Adi Malca, Clark Barrett, and Guy
Katz. 2020. Simplifying neural networks using formal verification. In NASA
Formal Methods: 12th International Symposium, NFM 2020, Moffett Field, CA, USA,
May 11–15, 2020, Proceedings 12. Springer, 85–93.

[28] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

[29] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. 2019. Badnets:
Evaluating backdooring attacks on deep neural networks. IEEE Access 7 (2019),
47230–47244.

[30] Dario Guidotti, Luca Pulina, and Armando Tacchella. 2020. Never 2.0: Learning,
verification and repair of deep neural networks. arXiv preprint arXiv:2011.09933
(2020).

[31] Dan Hendrycks and Thomas Dietterich. 2019. Benchmarking neural net-
work robustness to common corruptions and perturbations. arXiv preprint
arXiv:1903.12261 (2019).

[32] Patrick Henriksen, Francesco Leofante, and Alessio Lomuscio. 2022. Repairing
misclassifications in neural networks using limited data. In Proceedings of the
37th ACM/SIGAPP Symposium on Applied Computing. 1031–1038.

[33] Jeremy Howard. 2019. The Imagenette dataset. https://github.com/fastai/
imagenette

[34] Pei Huang, Yuting Yang, Minghao Liu, Fuqi Jia, Feifei Ma, and Jian Zhang. 2021.
𝜖-weakened Robustness of Deep Neural Networks. CoRR abs/2110.15764 (2021).
arXiv:2110.15764

[35] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. 2017. Safety Veri-
fication of Deep Neural Networks. In CAV 2017. Springer, Heidelberg, Germany,
3–29.

[36] Kyle D Julian, Mykel J Kochenderfer, and Michael P Owen. 2019. Deep neu-
ral network compression for aircraft collision avoidance systems. Journal of
Guidance, Control, and Dynamics 42, 3 (2019), 598–608.

[37] Kyle D Julian, Jessica Lopez, Jeffrey S Brush, Michael P Owen, and Mykel J
Kochenderfer. 2016. Policy compression for aircraft collision avoidance systems.
In 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC). IEEE, 1–10.

[38] Kyle D Julian, Shivam Sharma, Jean-Baptiste Jeannin, and Mykel J Kochenderfer.
2019. Verifying aircraft collision avoidance neural networks through linear
approximations of safe regions. arXiv preprint arXiv:1903.00762 (2019).

[39] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer.
2017. Reluplex: An efficient SMT solver for verifying deep neural networks. In
Computer Aided Verification: 29th International Conference, CAV 2017, Heidelberg,
Germany, July 24-28, 2017, Proceedings, Part I 30. Springer, 97–117.

[40] Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus,
Rachel Lim, Parth Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljic,
David L. Dill, Mykel J. Kochenderfer, and Clark W. Barrett. 2019. The Marabou
Framework for Verification and Analysis of Deep Neural Networks. In CAV 2019
(Lecture Notes in Computer Science, Vol. 11561), Isil Dillig and Serdar Tasiran (Eds.).
Springer, New York City, NY, USA, 443–452.

[41] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[42] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learningmultiple layers of features
from tiny images. (2009).

[43] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[44] Jianlin Li, Jiangchao Liu, Pengfei Yang, Liqian Chen, Xiaowei Huang, and Li-
jun Zhang. 2019. Analyzing deep neural networks with symbolic propagation:
Towards higher precision and faster verification. In Static Analysis: 26th Interna-
tional Symposium, SAS 2019, Porto, Portugal, October 8–11, 2019, Proceedings 26.
Springer, 296–319.

[45] Renjue Li, Pengfei Yang, Cheng-Chao Huang, Youcheng Sun, Bai Xue, and Lijun
Zhang. 2022. Towards Practical Robustness Analysis for DNNs based on PAC-
Model Learning. In 44th IEEE/ACM 44th International Conference on Software
Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022. ACM, 2189–2201.
https://doi.org/10.1145/3510003.3510143

[46] Wang Lin, Zhengfeng Yang, Xin Chen, Qingye Zhao, Xiangkun Li, Zhiming
Liu, and Jifeng He. 2019. Robustness verification of classification deep neural
networks via linear programming. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 11418–11427.

[47] Xuankang Lin, He Zhu, Roopsha Samanta, and Suresh Jagannathan. 2020. ART:
abstraction refinement-guided training for provably correct neural networks.
In # PLACEHOLDER_PARENT_METADATA_VALUE#, Vol. 1. TU Wien Academic
Press, 148–157.

11

https://github.com/nninjn/VeRe
https://openreview.net/forum?id=xS8AMYiEav3
https://github.com/fastai/imagenette
https://github.com/fastai/imagenette
https://arxiv.org/abs/2110.15764
https://doi.org/10.1145/3510003.3510143

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

ICSE 2024, April 2024, Lisbon, Portugal Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

[48] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang
Wang, and Xiangyu Zhang. 2018. Trojaning Attack on Neural Networks. In
NDSS.

[49] Shiqing Ma, Yingqi Liu, Wen-Chuan Lee, Xiangyu Zhang, and Ananth Grama.
2018. MODE: automated neural network model debugging via state differential
analysis and input selection. In Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. 175–186.

[50] Ravi Mangal, Aditya V. Nori, and Alessandro Orso. 2019. Robustness of neural
networks: a probabilistic and practical approach. In ICSE (NIER) 2019, Montreal,
QC, Canada, May 29-31, 2019. IEEE / ACM, Montreal, QC, Canada, 93–96.

[51] Mark Huasong Meng, Guangdong Bai, Sin Gee Teo, Zhe Hou, Yan Xiao, Yun Lin,
and Jin Song Dong. 2022. Adversarial robustness of deep neural networks: A
survey from a formal verification perspective. IEEE Transactions on Dependable
and Secure Computing (2022).

[52] Matthew Mirman, Timon Gehr, and Martin Vechev. 2018. Differentiable abstract
interpretation for provably robust neural networks. In International Conference
on Machine Learning. PMLR, 3578–3586.

[53] Nina Narodytska, Shiva Kasiviswanathan, Leonid Ryzhyk, Mooly Sagiv, and
Toby Walsh. 2018. Verifying properties of binarized deep neural networks. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32.

[54] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and An-
drew Y Ng. 2011. Reading digits in natural images with unsupervised feature
learning. (2011).

[55] Matan Ostrovsky, Clark W. Barrett, and Guy Katz. 2022. An Abstraction-
Refinement Approach to Verifying Convolutional Neural Networks. InAutomated
Technology for Verification and Analysis - 20th International Symposium, ATVA
2022, Virtual Event, October 25-28, 2022, Proceedings (Lecture Notes in Computer
Science, Vol. 13505). Springer, 391–396.

[56] Brandon Paulsen, Jingbo Wang, and Chao Wang. 2020. Reludiff: Differential
verification of deep neural networks. In Proceedings of the ACM/IEEE 42nd Inter-
national Conference on Software Engineering. 714–726.

[57] Luca Pulina and Armando Tacchella. 2012. Challenging SMT solvers to verify
neural networks. Ai Communications 25, 2 (2012), 117–135.

[58] Xuhong Ren, Bing Yu, Hua Qi, Felix Juefei-Xu, Zhuo Li, Wanli Xue, Lei Ma,
and Jianjun Zhao. 2020. Few-shot guided mix for dnn repairing. In 2020 IEEE
International Conference on Software Maintenance and Evolution (ICSME). IEEE,
717–721.

[59] Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska. 2018. Reachability
Analysis of Deep Neural Networks with Provable Guarantees. In IJCAI 2018.
ijcai.org, Stockholm, Sweden, 2651–2659.

[60] Wenjie Ruan, Min Wu, Youcheng Sun, Xiaowei Huang, Daniel Kroening, and
Marta Kwiatkowska. 2019. Global Robustness Evaluation of Deep Neural Net-
works with Provable Guarantees for the Hamming Distance. In IJCAI 2019, Sarit
Kraus (Ed.). ijcai.org, Macao, China, 5944–5952.

[61] Gagandeep Singh, Rupanshu Ganvir, Markus Püschel, and Martin T. Vechev. 2019.
Beyond the Single Neuron Convex Barrier for Neural Network Certification. In
NeurIPS 2019. 15072–15083.

[62] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin
Vechev. 2018. Fast and effective robustness certification. Advances in neural
information processing systems 31 (2018).

[63] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. 2019. An
abstract domain for certifying neural networks. Proceedings of the ACM on
Programming Languages 3, POPL (2019), 1–30.

[64] Jeongju Sohn, Sungmin Kang, and Shin Yoo. 2022. Arachne: Search Based
Repair of Deep Neural Networks. ACM Transactions on Software Engineering and
Methodology (2022).

[65] ETH Zurich SRI Lab, Department of Computer Science. 2020. ETH Robustness
Analyzer for Neural Networks (ERAN). https://github.com/eth-sri/eran

[66] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. 2012. Man
vs. computer: Benchmarking machine learning algorithms for traffic sign recog-
nition. Neural networks 32 (2012), 323–332.

[67] Bing Sun, Jun Sun, Long H Pham, and Jie Shi. 2022. Causality-based neural
network repair. In Proceedings of the 44th International Conference on Software
Engineering. 338–349.

[68] Youcheng Sun, Xiaowei Huang, Daniel Kroening, James Sharp, Matthew Hill,
and Rob Ashmore. 2018. Testing deep neural networks. arXiv preprint
arXiv:1803.04792 (2018).

[69] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. Deeptest: Automated
testing of deep-neural-network-driven autonomous cars. In Proceedings of the
40th international conference on software engineering. 303–314.

[70] Florian Tramer and Dan Boneh. 2019. Adversarial training and robustness for
multiple perturbations. Advances in neural information processing systems 32
(2019).

[71] Hoang-Dung Tran, Stanley Bak, Weiming Xiang, and Taylor T. Johnson. 2020.
Verification of Deep Convolutional Neural Networks Using ImageStars. In CAV
2020 (Lecture Notes in Computer Science, Vol. 12224), Shuvendu K. Lahiri and Chao
Wang (Eds.). Springer, Los Angeles, CA, USA, 18–42.

[72] Hoang-Dung Tran, Diego Manzanas Lopez, Patrick Musau, Xiaodong Yang,
Luan Viet Nguyen, Weiming Xiang, and Taylor T. Johnson. 2019. Star-Based
Reachability Analysis of Deep Neural Networks. In FM 2019 (Lecture Notes in
Computer Science, Vol. 11800), Maurice H. ter Beek, Annabelle McIver, and José N.
Oliveira (Eds.). Springer, Porto, Portugal, 670–686.

[73] Muhammad Usman, Divya Gopinath, Youcheng Sun, and Corina S Păsăreanu.
2022. Rule-Based Runtime Mitigation Against Poison Attacks on Neural Net-
works. In Runtime Verification. Springer, 67–84.

[74] Sandra Vieira, Walter HL Pinaya, and Andrea Mechelli. 2017. Using deep learn-
ing to investigate the neuroimaging correlates of psychiatric and neurological
disorders: Methods and applications. Neuroscience & Biobehavioral Reviews 74
(2017), 58–75.

[75] Yisen Wang, Xuejiao Deng, Songbai Pu, and Zhiheng Huang. 2017. Residual
convolutional CTC networks for automatic speech recognition. arXiv preprint
arXiv:1702.07793 (2017).

[76] Stefan Webb, Tom Rainforth, Yee Whye Teh, and M. Pawan Kumar. 2019. A
Statistical Approach to Assessing Neural Network Robustness. In ICLR 2019.
OpenReview.net, New Orleans, LA, USA.

[77] Lily Weng, Pin-Yu Chen, Lam M. Nguyen, Mark S. Squillante, Akhilan Boopathy,
Ivan V. Oseledets, and Luca Daniel. 2019. PROVEN: Verifying Robustness of
Neural Networks with a Probabilistic Approach. In ICML 2019, 9-15 June 2019
(Proceedings of Machine Learning Research, Vol. 97). PMLR, Long Beach, California,
USA, 6727–6736.

[78] Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca
Daniel, Duane S. Boning, and Inderjit S. Dhillon. 2018. Towards Fast Computation
of Certified Robustness for ReLU Networks. In ICML 2018 (Proceedings of Machine
Learning Research, Vol. 80), Jennifer G. Dy and Andreas Krause (Eds.). PMLR,
Stockholm, Sweden, 5273–5282.

[79] MatthewWicker, Xiaowei Huang, andMarta Kwiatkowska. 2018. Feature-Guided
Black-Box Safety Testing of Deep Neural Networks. In TACAS 2018 (Lecture Notes
in Computer Science, Vol. 10805), Dirk Beyer andMarieke Huisman (Eds.). Springer,
Thessaloniki, Greece, 408–426.

[80] Matthew Wicker, Luca Laurenti, Andrea Patane, and Marta Kwiatkowska. 2020.
Probabilistic Safety for Bayesian Neural Networks. In UAI 2020, August 3-6, 2020
(Proceedings of Machine Learning Research, Vol. 124), Ryan P. Adams and Vibhav
Gogate (Eds.). AUAI Press, virtual online, 1198–1207.

[81] Min Wu, Matthew Wicker, Wenjie Ruan, Xiaowei Huang, and Marta
Kwiatkowska. 2020. A game-based approximate verification of deep neural
networks with provable guarantees. Theor. Comput. Sci. 807 (2020), 298–329.

[82] RuihanWu, Chuan Guo, Yi Su, and Kilian QWeinberger. 2021. Online adaptation
to label distribution shift. Advances in Neural Information Processing Systems 34
(2021), 11340–11351.

[83] Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-Wei Chang, Minlie
Huang, Bhavya Kailkhura, Xue Lin, and Cho-Jui Hsieh. 2020. Automatic pertur-
bation analysis for scalable certified robustness and beyond. Advances in Neural
Information Processing Systems 33 (2020), 1129–1141.

[84] Pengfei Yang, Renjue Li, Jianlin Li, Cheng-Chao Huang, Jingyi Wang, Jun Sun,
Bai Xue, and Lijun Zhang. 2021. Improving Neural Network Verification through
Spurious Region Guided Refinement. In TACAS 2021 (Lecture Notes in Computer
Science, Vol. 12651). Springer, 389–408.

[85] Wei Ying, Yu Zhang, Junzhou Huang, and Qiang Yang. 2018. Transfer learning
via learning to transfer. In International conference on machine learning. PMLR,
5085–5094.

[86] Bing Yu, Hua Qi, Qing Guo, Felix Juefei-Xu, Xiaofei Xie, Lei Ma, and Jianjun
Zhao. 2021. Deeprepair: Style-guided repairing for deep neural networks in the
real-world operational environment. IEEE Transactions on Reliability 71, 4 (2021),
1401–1416.

[87] Hao Zhang and WK Chan. 2019. Apricot: A weight-adaptation approach to
fixing deep learning models. In 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 376–387.

[88] Huan Zhang, Hongge Chen, Chaowei Xiao, Sven Gowal, Robert Stanforth, Bo Li,
Duane Boning, and Cho-Jui Hsieh. 2019. Towards stable and efficient training of
verifiably robust neural networks. arXiv preprint arXiv:1906.06316 (2019).

[89] Yue Zhao, Hong Zhu, Kai Chen, and Shengzhi Zhang. 2021. Ai-lancet: Locating
error-inducing neurons to optimize neural networks. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security. 141–158.

12

https://github.com/eth-sri/eran

	Abstract
	1 Introduction
	2 Background
	3 Verification Guided Repair Synthesis
	3.1 Fault Localization
	3.2 Repair Synthesis

	4 Evaluation
	4.1 Experiment Setup
	4.2 Comparison with Baselines
	4.3 Monotonicity w.r.t. the number of samples and rounds
	4.4 Effect of Interval Splitting
	4.5 The coupling between the two steps
	4.6 Scalability

	5 Related Work
	6 CONCLUSION
	References

