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VeRe: Verification Guided Synthesis for Repairing Deep Neural
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Anonymous Author(s)∗

ABSTRACT

Neural network repair aims to fix the ‘bugs’1 of neural networks
by modifying the model’s architecture or parameters. However,
due to the data-driven nature of neural networks, it is difficult to
explain the relationship between the internal neurons and erro-
neous behaviors, making further repair challenging. While several
work exists to identify responsible neurons based on gradient or
causality analysis, their effectiveness heavily rely on the quality of
available ‘bugged’ data and multiple heuristics in layer or neuron
selection. In this work, we address the issue utilizing the power
of formal verification (in particular for neural networks). Specifi-
cally, we propose VeRe, a verification-guided neural network repair
framework that performs fault localization based on linear relax-
ation to symbolically calculate the repair significance of neurons
and furthermore optimize the parameters of problematic neurons
to repair erroneous behaviors. We evaluated VeRe on various repair
tasks, and our experimental results show that VeRe can efficiently
and effectively repair all neural networks without degrading the
model’s performance. For the task of removing backdoors, VeRe
successfully reduces attack success rate from 98.47% to 0.38% on
average, while causing an average performance drop of 0.9%. For
the task of repairing safety properties, VeRe successfully repairs
all the 36 tasks and achieves 99.87% generalization on average.
ACM Reference Format:

Anonymous Author(s). 2023. VeRe: Verification Guided Synthesis for Repair-
ing Deep Neural Networks. In Proceedings of 46th International Conference
on Software Engineering (ICSE 2024). ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Over the past decade, deep neural networks (DNNs) have brought
about breakthroughs in many areas such as computer vision [3],
natural language processing [9, 19], and speech recognition [75].
However, the adoption of DNNs in safety-critical domains has been
slow due to concerns about their dependability. For instance, adver-
saries can manipulate the input data in a way that is imperceptible
to humans but can cause the model to make incorrect decisions.
Such vulnerability leads to serious safety concerns in applications
such as autonomous vehicles [8] and medical diagnosis [74]. While
DNNs are promising to revolutionize safety-critical domains (to
1We use ‘bugs’ to denote different kinds of inputs that could trigger an error in the
model’s output.
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some extent) as well, it is yet crucial to ensure that the DNNmodels
are developed and deployed with safety and reliability requirements
in mind so as to fully realize their potential.

The repair of DNNs refers to the activity of fixing the ‘bugs’ of a
neural network by modifying its architecture or parameters. Such
bugs can arise from multiple sources which have been extensively
studied in different communities including training errors [11], ad-
versarial attacks [14, 28], backdoor attacks [48] and distribution
drift [68, 82]. To counter these potential risks, periodical and ef-
ficient repair of DNNs is essential in DNN deployment to ensure
their performance and reliability in practice. Classical methods
in machine learning for DNN repair include adversarial training
[25, 26, 70], input sanitization, fine-tuning, transfer learning [17, 85],
data augmentation [49, 58, 86], etc. However, these methods are
highly data-driven, which often have poor performance when the
available ‘bugged’ data is scarce or of low quality. To address the
issue, neuron-level error localization and fixing methods have been
recently proposed in the software engineering community for more
effective and efficient DNN repair. For example, Arachne [64] uses
gradients and activation values to identify problematic neurons,
and then utilizes the differential evolution algorithm to generate
patches that can repair the neural network model. RM [32], on
the other hand, estimates the impact of neurons on both positive
and negative samples by leveraging gradients. When repairing the
neural network, RM fine-tunes neurons that have greater impact.
CARE [67] incorporates a causal model to analyze the cause-and-
effect relationship between neurons and inaccurate behavior, and
utilizes the Particle Swarm Optimization (PSO) algorithm to gener-
ate neuron-level patches for repairing the model.

As for neuron-level DNN repair, the fundamental technical chal-
lenge is how to understand the behavior of large amount of neurons
in the DNNs on the data samples (especially when they exhibit er-
roneous behaviors), and furthermore how to locate a small number
of responsible neurons for fixing. While previous gradient-based or
causality-based approaches are effective in some cases, they are in
general statistics-based and thus heavily rely on the availability of
massive data samples for larger DNNs to be effective (e.g., for CARE
[67], 20 000 samples are needed to achieve 94.70% generalization
for fully-connected model on ACAS Xu dataset). This can be prob-
lematic for scenarios when the data owner does not want to share
much data for the repair task, or data collection is too expensive
and there are simply not enough faulty data2. Besides, the different
kinds of heuristics in terms of layer or neuron selection hinder
their easy adoption over a wide range of neural network repair
tasks. Formal verification uses mathematical methods to rigorously
prove whether a system or software meets its intended specifica-
tion under all possible scenarios [7]. Several common verification
techniques like [22, 26, 39, 40, 44, 57, 62, 63] have been adapted
for DNNs to model or abstract their behaviors and furthermore

2while VeRe is shown to be effective in presence of both massive or scarce data.
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Figure 1: Framework of VeRe

verify them against safety properties [51] and others [14, 31]. In
particular, a sound abstraction of a DNN model can be effectively
used to characterize how the DNN’s behavior would change upon
applying perturbation on the input. The implication is that, DNN
verification is naturally connected with neuron-level DNN repair
which essentially requires to measure the significance of a neuron
(either before or after the repair) on the model’s erroneous behavior
by applying perturbation on a neuron and observe the model’s output
change. If a small perturbation on a neuron leads to a large output
change, such a neuron is considered more responsible for the error.
One step further, repairing the neuron (ruling out the errors) can be
formalized as an optimization problem to search for the parameters
minimizing the output change upon perturbation on those respon-
sible neurons. Notice that unlike some existing works [49, 87] that
use a loss function for optimization in the repair step, our method
does not ‘over-learn’ the samples that have been correctly classified,
thus avoiding the overfitting problem (details later).

To realize the above idea, we propose VeRe (Verification Guided
Synthesis for Repairing Deep Neural Networks), a novel verifi-
cation guided synthesis framework for repairing the violation of
safety properties and backdoor attacks in DNNs. VeRe follows the
classical procedure of neuron-level error localization and error fix-
ing while both steps are guided by reachability analysis in the form
of linear approximation provided by formal verification. The linear
approximation can soundly measure how significant the repair of
a neuron contributes to fixing the behavior of negative samples
and provide the target behavior as guidance in the fixing step. Fig.
1 shows the details. Technically, we employ the verification tool
CROWN [83] to establish a linear approximation of the activation
of a neuron in a fully connected layer, and figure out the target
behavior of this activation via the linear approximation after this
layer. The repair significance of this neuron for the current negative
sample is the maximum improvement of the difference between the
scores of the correct and the misled classification of this sample,
and its total repair significance is the sum of that for each negative
sample. By sorting the repair significance, we decide the order of
repair from the highest to the lowest. The target behavior, along
with the positive samples, is used for guiding the fixing of this
neuron by constructing an optimization problem looking for repair
that enforces the neuron behavior into the target with the small-
est turbulence on positive samples. The procedure of such error
localization and error fixing is conducted iteratively until all the
negative samples are successfully repaired or the number of itera-
tions reaches a threshold. In this workflow, formal verification plays
an important role in abstracting behaviors of DNNs and neurons,
measuring the repair significance of each neuron, and calculating
the target behavior as repair guidance.

In summary, we make the following contributions:
• We propose VeRe, a novel verification guided synthesis

framework to precisely locate and efficiently fix the erro-
neous neurons.

• We demonstrate the effectiveness of VeRe in two popu-
lar repair tasks, namely violation of safety properties and
backdoor attacks.

• We extensively evaluate VeRe on six popular datasets (in-
cluding Imagenet) and on various neural network architec-
tures. The results show that VeRe significantly outperforms
state-of-the-art neuron-level repair methods in terms of
effectiveness and efficiency while introducing negligible
effect on the model’s original performance.

• We release VeRe as an open-source toolkit together with all
the experimental datasets [1] to benchmark future research.

2 BACKGROUND

Deep neural network. In this work, we focus on DNNs for classi-
fication tasks. A DNN is a function 𝑓 : R𝑚 → R𝑛 which assigns a
high-dimensional input 𝒙 ∈ R𝑚 to an output 𝑓 (𝒙) ∈ R𝑛 . A classifi-
cation DNN chooses the dimension with the highest score as the
classification result, i.e., its classification behavior can be described
as 𝐶𝑓 (𝒙) = argmax1≤𝑖≤𝑛 𝑓 (𝒙)𝑖 . A DNN usually contains multiple
hidden layers, such as convolutional layers, pooling layers, activa-
tion layers, etc., and the behavior of a DNN 𝑓 is the composition
of the functions between layers sequentially from the first layer
(input layer) to the last (output layer), i.e., 𝑓 = 𝑓𝑙−1 ◦ · · · ◦ 𝑓1, where
𝑙 is the total number of layers in 𝑓 , and 𝑓𝑖 is the function from
the 𝑖-th layer to the next. In particular, we use 𝑓 𝑖 to denote the
subnetwork from the 𝑖th layer (as the input layer) to the output
layer of the neural network 𝑓 , i.e., 𝑓 𝑖 = 𝑓𝑙−1 ◦ · · · ◦ 𝑓𝑖 , and ℎ𝑖 to
denote the subnetwork from the input layer to the 𝑖th layer (as the
output layer), i.e., ℎ𝑖 = 𝑓𝑖−1 ◦ · · · ◦ 𝑓1. The output of each neuron,
except those in the input layer, is obtained by the corresponding
transformation of the relevant nodes in the previous layer, usually
in the form of the composition of an affine transformation and a
non-linear activation function. Formally, for a hidden neuron 𝑗 in
layer 𝑖 , its output ℎ𝑖 𝑗 with respect to input 𝒙 can be calculated as:

ℎ𝑖 𝑗 (𝒙) = 𝜎 (𝒘𝑖 𝑗 · ℎ𝑖−1 (𝒙) + 𝑏𝑖 𝑗 ) (1)

with the activation function 𝜎 , the in-weights𝒘𝑖 𝑗 , and the bias 𝑏𝑖 𝑗 .

Safety properties and backdoor attacks. Safety properties refer
to those describing that bad things never happen. In the setting
of DNNs, a safety property requires that a DNN should behave
correctly in a given input set. The property violation rate (VR) of a
safety property measures how much the property is violated in the
input space w.r.t. a pre-defined probability measure P.

Definition 2.1. Let 𝑓 : R𝑚 → R𝑛 be a DNN, 𝑋 ⊆ R𝑚 an input
set, and 𝑃 ⊆ R𝑛 an output property. A safety property is a tuple
𝜑 = (𝑓 , 𝑋, 𝑃), and it holds iff for any 𝒙 ∈ 𝑋 , 𝑓 (𝒙) ∈ 𝑃 . The property
violation rate (VR) of a safety property 𝜑 = (𝑓 , 𝑋, 𝑃) is defined as
VR(𝜑) = P(𝑓 (𝒙) ∉ 𝑃 | 𝒙 ∈ 𝑋 ).

Backdoor attacks occur when an attacker implants a hidden
trigger in the DNN that can be activated to cause it tomake incorrect
predictions. This trigger may be added with access to the training

2
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data or model architecture. Similarly, the attack success rate (SR)
of a backdoor attack reflects its effectiveness.

Definition 2.2. Let 𝑓 : R𝑚 → R𝑛 be a backdoored DNN, and
𝑋 ⊆ R𝑚 an input set with the trigger. The attack success rate (SR)
on 𝑋 is defined as SR(𝑓 , 𝑋 ) = P(𝐶𝑓 (𝒙) = 𝑡 | 𝒙 ∈ 𝑋 ), where 𝑡 is the
target label of backdoor.

Linear relaxation. Linear relaxation, also called linear approxima-
tion, is an important technique in the field of formal verification of
DNNs. It can establish linear bounds between layers and compute
provable reachability analysis on output neurons, which is widely
used in neural network verification and certified adversarial defense
[52, 88]. Here we briefly introduce how CROWN conducts linear
relaxation. The key to linear relaxation is to over-approximate
the behavior of non-linear activation functions with two affine
functions as lower/upper bound. In CROWN, linear relaxation is
designed in a symbolic way, so that the linear bound can propa-
gate. For example, a ReLU activation 𝑧′ = ReLU(𝑧) with 𝑧 ∈ [𝑙, 𝑢]
(𝑙 < 0 < 𝑢) can be linearly relaxed to 𝑢𝑧

𝑢−𝑙 ≤ 𝑧
′ ≤ 𝑢 (𝑧−𝑙 )

𝑢−𝑙 , and the
numerical lower bound of 𝑧′ can be obtained by substituting 𝑧 in the
term 𝑢𝑧

𝑢−𝑙 with its affine lower bound, and iteratively substituting
each new variable with one of its affine bounds according to its
coefficient, until all the variables in the term are input variables.
In this way, given a region Δ ⊆ R𝑚 , usually in the form of a high-
dimensional interval, a DNN 𝑓 can be linearly relaxed to its lower
bound 𝑔Lower (𝒙) = 𝒘T𝒙 + 𝒃 and upper bound 𝑔Upper (𝒙) = 𝒘T𝒙 + 𝒃
satisfying

𝑔Lower (𝒙) ≤ 𝑓 (𝒙) ≤ 𝑔Upper (𝒙),∀𝒙 ∈ Δ. (2)

Problem formulation. Our neural network repair problem can be
formally defined as follows:

Given a classification DNN 𝑓 : R𝑚 → R𝑛 with a set
of inputs 𝐷 ⊆ R𝑚 , partitioned into the misclassi-
fied 𝐷m and the correctly classified 𝐷c, we need to
synthesize a repaired DNN 𝑓 ′, which differs from
𝑓 only in the weights and biases, so that the erro-
neous behaviors in𝐷m are fixed asmuch as possible
while the accuracy of the model is maintained.

Remark that the training data are unavailable throughout the repair.
The limited samples in 𝐷 for repair are collected through adding
backdoor trigger or sampling, which is the case in real-world testing
scenarios.

3 VERIFICATION GUIDED REPAIR SYNTHESIS

In this section, we present VeRe, a novel verification based re-
pair approach for neural networks. An overview is presented in
Fig. 1. VeRe has two interleaving pieces, i.e., fault localization
and repair synthesis. In fault localization, we propose a metric to
quantify the significance of repairing a neuron. We refine the neu-
ron range of neurons and perform linear relaxation on the network
within each subinterval. Based on the metric and approximate re-
sults, we can identify the neurons that will be repaired. The results
of linear relaxation in the previous stage can provide guidance for
neuron repair so that neurons are repaired and behave normally.

The overall algorithm of VeRe is shown in Alg. 1. We can see
that VeRe works in an iterative way. In each round of repair (an

Algorithm 1 VeRe
Input: DNN 𝑓 , set of inputs including the misclassified inputs and the

correctly classified inputs 𝐷 = 𝐷m ∪ 𝐷c, to-be-repaired layer 𝑖 , and
maximum number of iterations 𝑅.

Output: A repaired model 𝑓 ′ .
1: function VeRe(𝑓 , 𝐷m, 𝐷c, 𝑖, 𝑅)
2: 𝑓 ∗ ← 𝑓 , 𝑓 ′ ← 𝑓 , iteration← 0
3: while iteration < 𝑅 do

4: iteration← iteration + 1
5: for neuron 𝑗 in layer 𝑖 do
6: I𝑖,𝑗 ←

[
−^ · max𝒙∈𝐷 |ℎ𝑖 𝑗 (𝒙 ) |, ^ · max𝒙∈𝐷 |ℎ𝑖 𝑗 (𝒙 ) |

]
⊲ ℎ𝑖 𝑗 is the value of neuron 𝑗 in layer 𝑖 in the current 𝑓 ′

7: 𝑗∗, 𝑔𝑖,𝑗∗ ← FaultLocalization(𝑓 ′, 𝑖, 𝐷m, (I𝑖,𝑗 ) 𝑗 ) ⊲ Alg. 2
8: 𝑓 ′ ← RepairSynthesis(𝑓 ′, 𝐷m, 𝐷c, 𝑗

∗, 𝑔𝑖,𝑗∗ ) ⊲ Alg. 3
9: if SR(𝑓 ′, 𝐷m ) = 0 then

10: return 𝑓 ′ ⊲ VR( ·, 𝐷 ) instead for safety properties
11: if Acc(𝑓 ′, 𝐷 ) − SR(𝑓 ′, 𝐷m ) > Acc(𝑓 ∗, 𝐷 ) − SR(𝑓 ∗, 𝐷m ) then
12: 𝑓 ∗ ← 𝑓 ′ ⊲ Acc(𝑓 , 𝐷 ) : the accuracy of 𝑓 on 𝐷
13: return 𝑓 ∗

iteration of the while loop in Line 3), we fix exactly one neuron
by fault localization and repair synthesis (Line 7–8). After that, we
evaluate the new DNN with the available data and record the best
model at this stage in 𝑓 ∗, according to both SR/VR and accuracy
(Line 11–12). The procedure terminates when all the misclassified
data are successfully repaired, outputting this successfully repaired
model 𝑓 ′ (Line 9–10), or it reaches a preset number of rounds
𝑅 and outputs the best model ever 𝑓 ∗ (Line 13). Note that VeRe
only repairs one neuron after a round of fault localization. This
is to accommodate the capacity and scalability of existing DNN
verification methods as the underlying repair engine of VeRe.

3.1 Fault Localization

While deep neural networks have a large number of neurons, the
malicious behaviours of a DNN are often dominated by a relatively
small class of neurons [15, 29, 48, 73]. Therefore, VeRe starts with
localizing these faulty neurons to be repaired.

We assume that, for neuron 𝑗 in layer 𝑖 of a DNN 𝑓 , its behavior
is expected to be in an interval I𝑖, 𝑗 , which we call the neuron
range of 𝑗 . In practice, the interval I𝑖, 𝑗 can be obtained according to
its behaviors on the samples, i.e., [min𝒙∈𝐷 ℎ𝑖 𝑗 (𝒙),max𝒙∈𝐷 ℎ𝑖 𝑗 (𝒙)].
Since the samples are limited, it should be suspected whether this
interval is representative. Here we use a parameter ^ ≥ 1 to scale
this interval asI𝑖, 𝑗 =

[
−^ ·max𝒙∈𝐷 |ℎ𝑖 𝑗 (𝒙) |, ^ ·max𝒙∈𝐷 |ℎ𝑖 𝑗 (𝒙) |

]
.

The interval I𝑖, 𝑗 is calculated at the beginning of each iteration, as
shown in Line 5–6 of Alg. 1. Here, we allow I𝑖, 𝑗 to cover the values
out of the range of the activation 𝜎 , e.g., negative values which
exceeds the range of ReLU. This will bring us more freedom for
repairing the model, so that a better repair effect may be achieved.

In this work, we perform fault localization by quantifying the
benefits of repairing a neuron. Specifically, we define a new metric
named Repair Significance for this purpose.

Definition 1 (Repair Significance). Given a neural network 𝑓
and a misclassified sample 𝒙 , the Repair Significance for the neuron 𝑗
in layer 𝑖 with its neuron range I𝑖, 𝑗 is

𝑅𝑖, 𝑗 (𝒙) = max
𝑣∈I𝑖,𝑗

𝑓 𝑖𝒙 (ℎ𝑖 (𝒙) [ 𝑗 ← 𝑣]) − 𝑓 𝑖𝒙 (ℎ𝑖 (𝒙)), (3)

3
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Algorithm 2 Fault localization
Input: DNN 𝑓 , set 𝐷m of misclassified inputs, and neuron ranges I𝑖,𝑗 for

all the neurons 𝑗 in layer 𝑖 .
Output: The candidate neuron index 𝑗∗ and the lower bound 𝑔𝑖,𝑗∗ .
1: function FaultLocalization(𝑓 , 𝑖, 𝐷m, (I𝑖,𝑗 ) 𝑗 )
2: for 𝒙 ∈ 𝐷m do

3: for neuron 𝑗 in layer 𝑖 do
4: Split I𝑖,𝑗 into 𝐾 intervals (I𝑖,𝑗,𝑘 )𝐾𝑘=1 evenly
5: for 𝑘 ← 1 to 𝐾 do

6: 𝑔𝑖,𝑗,𝑘 ← CROWN(𝑓 𝑖𝒙 , I𝑖,𝑗,𝑘 )
7: 𝑔𝑖,𝑗 ←

∑𝐾
𝑘=1 𝑔𝑖,𝑗,𝑘 · II𝑖,𝑗,𝑘 ⊲ II : indicator function on I

8: 𝑅𝑖,𝑗 (𝒙 ) ← max
𝑘=1,...,𝐾
𝑣∈I𝑖,𝑗,𝑘

𝑔𝑖,𝑗 (𝑣) − 𝑓 𝑖𝒙 (ℎ𝑖 (𝒙 ) )

9: 𝑅𝑖,𝑗 (𝒙 ) ←
𝑅𝑖,𝑗 (𝒙 )

max𝑗 𝑅𝑖,𝑗 (𝒙 )
⊲ Normalization

10: for neuron 𝑗 in layer 𝑖 do
11: 𝑅𝑖,𝑗 ←

∑
𝒙∈𝐷m 𝑅𝑖,𝑗 (𝒙 )

12: 𝑗∗ ← argmax𝑗 𝑅𝑖,𝑗
13: return 𝑗∗, 𝑔𝑖,𝑗∗

where 𝑓 𝑖𝒙 is the difference between the scores of the correct classification
label and its output classification label. w.r.t 𝒙 in the output of 𝑓 𝑖 , and
ℎ𝑖 (𝒙) [ 𝑗 ← 𝑣] is obtained from ℎ𝑖 (𝒙) by substituting the 𝑗 th entry of
ℎ𝑖 (𝑥) with the real value 𝑣 .

Given a misclassified sample 𝒙 , we have 𝑓 𝑖𝒙 (ℎ𝑖 (𝒙)) < 0. If there
exists 𝑣 ∈ I𝑖, 𝑗 such that 𝑓 𝑖𝒙 (ℎ𝑖 (𝒙) [ 𝑗 ← 𝑣]) is positive, the mis-
classified input can be correctly classified after the neuron is re-
paired. Intuitively, 𝑅𝑖, 𝑗 (𝒙) measures the maximum effect that can be
achieved on correctly classifying 𝒙 if the best patching is conducted
on neuron 𝑗 . For the misclassified sample set𝐷𝑚 , the corresponding
Repair Significance can be calculated by summing 𝑅𝑖, 𝑗 (𝒙) of each
sample, i.e., 𝑅𝑖, 𝑗 =

∑
𝒙∈𝐷m 𝑅𝑖, 𝑗 (𝒙).

Note that solving 𝑣 for a given sample 𝒙 to maximize 𝑅𝑖, 𝑗 (𝒙) in
Eq. (3) is a non-convex optimization problem, which is hard to solve.
To obtain an estimation of 𝑅𝑖, 𝑗 (𝒙), we employ the verification tool
CROWN to conduct a linear approximation to 𝑓 𝑖𝒙 (ℎ𝑖 (𝒙) [ 𝑗 ← 𝑣])
in Eq. (3) for 𝑣 ∈ I𝑖, 𝑗 . Specifically, we perform linear relaxation
and bound propagation on the sub-network 𝑓 𝑖 . Unlike general
verification tasks, we apply perturbations (i.e., repairs) to hidden
neurons instead of input neurons. Given the sub-network 𝑓 𝑖 and
an input ℎ𝑖 (𝒙) with the perturbation 𝑣 ∈ I𝑖, 𝑗 on its 𝑗th coordinate,
we perform linear relaxation with CROWN. By propagating the
upper and lower bounds layer by layer, we finally obtain a lower
bound of 𝑓 𝑖 in the form of 𝑔𝑖, 𝑗 (𝑣) = 𝑤𝑣 + 𝑏, which satisfies

∀𝑣 ∈ I𝑖, 𝑗 𝑔𝑖, 𝑗 (𝑣) ≤ 𝑓 𝑖𝒙 (ℎ𝑖 (𝒙) [ 𝑗 ← 𝑣])).
Note that the sub-network 𝑓 𝑖 may still be a multi-layer neural

network. Namely, it is likely to be highly non-linear, which leads to
a linear relaxation of low precision. To reduce loss of precision in
linear relaxation, we further split the neuron range evenly into 𝐾
intervals as I𝑖, 𝑗 =

⋃𝐾
𝑘=1 I𝑖, 𝑗,𝑘 , and the linear relaxation is applied

to each of these intervals. Then, the lower bound 𝑔𝑖, 𝑗 in the form of
a piecewise-linear function, affine on each I𝑖, 𝑗,𝑘 , is obtained, with
which the Repair Significance can be estimated more accurately as

𝑅𝑖, 𝑗 (𝒙) = max
𝑘=1,...,𝐾
𝑣∈I𝑖,𝑗,𝑘

𝑔𝑖, 𝑗 (𝑣) − 𝑓 𝑖𝒙 (ℎ𝑖 (𝒙)) . (4)

Figure 2: The target interval in the two cases.

We emphasize that, formal verification is a suitable way to efficiently
obtain a sound estimation of𝑅𝑖, 𝑗 (𝒙), i.e.,𝑅𝑖, 𝑗 (𝒙) ≤ 𝑅𝑖, 𝑗 (𝒙), and their
difference converges to 0 as 𝐾 →∞. As a sound estimation, 𝑅𝑖, 𝑗 (𝒙)
measures the Repair Significance in a conservative manner, which
would contribute to high stability in the repair effectiveness.

Alg. 2 shows the details of the fault localization phase. The
procedure is consistent with what we have described above. In
particular, considering that all the misclassified samples enjoy a
coordinate position, we add a normalization after we obtain 𝑅𝑖, 𝑗 (𝒙)
for all the neurons 𝑗 . Namely, for each 𝒙 ∈ 𝐷m, the 𝑅𝑖, 𝑗 (𝒙) of
the neuron that achieves the maximum Repair Significance will
be mapped to 1, and the others are linearly scaled (Line 9). The
estimation of the total Repair Significance for neuron 𝑗 is the sum
of 𝑅𝑖, 𝑗 (𝒙) over 𝒙 ∈ 𝐷m, and we find the neuron with the largest
total Repair Significance estimation as the candidate neuron, on
which repair will be synthesized in this iteration. We also save the
linear relaxation 𝑔𝑖, 𝑗∗ as the guidance of repair synthesis.

3.2 Repair Synthesis

Next, we present how VeRe repairs the candidate neuron 𝑗∗ in an
iteration. Given a misclassified sample 𝒙 and a candidate neuron
𝑗∗, there are two challenges to be addressed:
(C1) How to find the ideal interval for 𝑗∗ to repair a misclassified

sample 𝒙 . An ideal interval should be able to effectively
alleviate the wrong behavior of the DNN on 𝒙 without
affecting the original performance of the network.

(C2) How to modify the weights on the neuron 𝑗∗ so that its
activation value on 𝒙 lies within the ideal interval.

To address (C1), we utilize the results of fault localization to
infer the target activation value for the candidate neuron. For a
misclassified sample 𝒙 ∈ 𝐷m, a target interval 𝑠∗𝑖, 𝑗∗ (𝒙) ∈ (I𝑖, 𝑗∗,𝑘 )

𝐾
𝑘=1

is ideal, if it satisfies the following two conditions:
(1) The linear lower bound 𝑔𝑖, 𝑗∗ is always positive on 𝑠∗𝑖, 𝑗∗ (𝒙);
(2) The activation value after repair is the closest to the original.

The first condition implies that the error must be successfully re-
moved, if the neuron 𝑗∗ behaves within the ideal interval 𝑠∗

𝑖, 𝑗∗ (𝒙).
The second condition is to minimize the change in the value of
the neuron so that the original performance of the network can be
mostly preserved. Denote by d(𝛼,I) = min𝑣∈I |𝑟 − 𝑣 | the distance
between 𝑟 ∈ R and an interval I. Then, the ideal interval 𝑠∗

𝑖, 𝑗∗ (𝒙)
can be assigned as any element in

arg min
I𝑖,𝑗∗,𝑘 ∈𝑇

d(ℎ𝑖, 𝑗∗ (𝒙),I𝑖, 𝑗∗,𝑘 ).

where 𝑇 = {I𝑖, 𝑗∗,𝑘 | ∀𝑣 ∈ I𝑖, 𝑗∗,𝑘 𝑔𝑖, 𝑗∗ (𝑣) > 0} is the set of all the
intervals satisfying the condition (1). Fig. 2(a) shows intuitively
where the ideal interval is. Additionally, a situation may occur that
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Algorithm 3 Repair synthesis
Input: DNN 𝑓 , set of inputs including the misclassified inputs and the

correctly classified inputs 𝐷 = 𝐷m ∪𝐷c, candidate neuron 𝑗∗ in layer
𝑖 , and the linear lower bound 𝑔𝑖,𝑗∗ on I𝑖,𝑗∗ .

Output: The repaired DNN 𝑓 ′ as the repair synthesis for 𝑗∗
1: function RepairSynthesis(𝑓 , 𝐷m, 𝐷c, 𝑗

∗, 𝑔𝑖,𝑗∗ )
2: for 𝒙 ∈ 𝐷m do

3: Ideal← False,𝑇 ← ∅
4: for 𝑘 ← 1 to 𝐾 do

5: if min𝑣∈I𝑖,𝑗∗,𝑘 𝑔𝑖,𝑗∗ (𝑣) > 0 then
6: Ideal← True,𝑇 ← 𝑇 ∪ {I𝑖,𝑗∗,𝑘 }
7: if Ideal = True then

8: 𝑘∗ ← argmin𝑘 :I𝑖,𝑗∗,𝑘 ∈𝑇 d(ℎ𝑖 𝑗 (𝒙 ), I𝑖,𝑗∗,𝑘 )
9: 𝑠∗

𝑖,𝑗∗ (𝒙 ) ← I𝑖,𝑗∗,𝑘∗
10: else

11: 𝑣∗ ← argmax𝑣∈I𝑖,𝑗∗ 𝑔𝑖,𝑗∗ (𝑣)
12: 𝑠∗

𝑖,𝑗∗ (𝒙 ) ← [𝑣
∗, 𝑣∗ ]

13: L ← Lc + Lm according to Eq. (5) and Eq. (6)
14: �̃�𝑖,𝑗∗ ← 𝒘𝑖,𝑗∗ , 𝑏𝑖,𝑗∗ ← 𝑏𝑖,𝑗∗ , 𝛼 ← 1, 𝛽 ← 0 ⊲ Initialization
15: (�̃�∗

𝑖,𝑗∗ , 𝑏
∗
𝑖,𝑗∗ , 𝛼

∗, 𝛽∗ ) ← Adam(�̃�𝑖,𝑗∗ , 𝑏𝑖,𝑗∗ , 𝛼, 𝛽 ; min L)
16: 𝒘𝑖,𝑗∗ ← �̃�∗

𝑖,𝑗∗ , 𝑏𝑖,𝑗∗ ← 𝑏∗
𝑖,𝑗∗ ⊲ In-weights

17: 𝒃 𝑗∗,𝑖+1 ← 𝒃 𝑗∗,𝑖+1 + 𝛽∗𝒘𝑗∗,𝑖+1, 𝒘𝑗∗,𝑖+1 ← 𝛼∗𝒘𝑗∗,𝑖+1 ⊲ Out-weights
18: return the current DNN 𝑓 ′

the condition (1) does not hold for any I𝑖, 𝑗∗,𝑘 . In this case, we sim-
ply choose the endpoint (of some interval I𝑖, 𝑗∗,𝑘 ) that produces
the largest 𝑔𝑖, 𝑗∗ (𝑣) as the target, as shown in Fig. 2(b). For consis-
tency, we consider the target value to be a single point interval
𝑠∗
𝑖, 𝑗∗ (𝒙) = [𝑣

∗, 𝑣∗], where 𝑣∗ = argmax𝑣∈I𝑖,𝑗∗ 𝑔𝑖, 𝑗∗ (𝑣). In Line 2–12
of Alg. 3, we show the procedure of calculating the target interval
𝑠∗
𝑖, 𝑗∗ (𝒙), where a Boolean variable “Ideal” marks whether the con-
dition (1) holds. The interval with the largest 𝑔𝑖, 𝑗 (𝑣) may not be
the ideal interval. Therefore, we propose two strategies for select-
ing intervals: If we want the best repair effects, we should choose
the interval with the maximum 𝑔𝑖, 𝑗 (𝑣); if we want to balance the
preservation of the model’s original performance and the repair
effects, we can choose the ideal interval. In this work, we select the
ideal interval to better protect model performance in the backdoor
removal scenario, and the interval with the maximum 𝑔𝑖, 𝑗 (𝑣) for
safety property violation repair.

Here the linear lower bound 𝑔𝑖, 𝑗∗ obtained by formal verification
again helps extract the target interval of the neuron 𝑗∗ for every
misclassified sample. Due to the soundness of formal verification,
for a certain input 𝑥 ∈ 𝐷m, it is sufficient to infer its correct label
with its ideal interval of the neuron 𝑗∗ (if the ideal interval exists).
Thus, we intend to adjust the weights associated with the neuron
𝑗∗ so that for as many samples 𝑥 ∈ 𝐷m as possible, the values of
the neuron will fall within their ideal intervals, respectively. This
is exactly what (C2) does.

To address (C2), we consider which weights on the neuron 𝑗∗
are to be modified. For a poisoned backdoor model, the behavior
of a candidate neuron on a misclassified sample may include both
the backdoored behavior and the function for correctly classifying
a certain class. This phenomenon inspires us that, neuron-level
patches like scaling or adding a bias to the value of the candidate

neuron, which is popular among existing methods like [67], may
not effectively remove all backdoor behaviors while preserving orig-
inal performance of the model. Therefore, we repair the candidate
neuron 𝑗∗ by modifying its in-weights and out-weights. We use a
mini-network 𝑓mini to substitute the candidate neuron 𝑗∗, including
its in-weights and out-weights, in the current DNN. It contains the
same number of parameters �̃�𝑖, 𝑗∗ and 𝑏𝑖, 𝑗∗ as the in-weights and
the bias of 𝑗∗, and two extra parameters 𝛼 and 𝛽 for out-weight
modification. It receives the output of the (𝑖 − 1)th layer ℎ𝑖−1 as
input, and outputs the repaired behavior of 𝑗∗ as

𝑓mini (ℎ𝑖−1) = 𝛼 · 𝜎 (�̃�T
𝑖, 𝑗∗ · ℎ

𝑖−1 + 𝑏𝑖, 𝑗∗ ) + 𝛽. (5)

We remark that, through the additional linear transformation with
parameters 𝛼 and 𝛽 , the output of this mini-network can exceed the
range of the activation function 𝜎 , which can solve the problem that
the ideal interval may be outside the output range of the activation
function. Themini-network 𝑓mini, as the repair of 𝑗∗, will not change
the original structure of the DNN, because we can construct an
equivalent DNN without change in structure. Specifically, the out-
weights of 𝑗∗ are all scaled with 𝛼 , and the biases are shifted with
the multiplication of 𝛽 and the original corresponding out-weight,
as shown in Line 16–17 of Alg. 3.

Next, we design a loss function as L = Lc + Lm to optimize the
weights of mini-network 𝑓mini, where

Lc =
1
|𝐷c |

∑︁
𝒙∈𝐷c

(𝑓mini (ℎ𝑖−1 (𝒙)) − ℎ𝑖 (𝒙))2 ,

Lm =
1
|𝐷m |

∑︁
𝒙∈𝐷m

(d(𝑓mini (ℎ𝑖−1 (𝒙)), 𝑠∗𝑖, 𝑗∗ (𝒙)))
2 .

(6)

Intuitively, Lc enforces the output of 𝑓mini for the correctly classi-
fied samples to be similar to the output of the original neuron. For
those misclassified, we use Lm to guide the output of 𝑓mini to move
towards the ideal intervals. Specifically, when the output of 𝑓mini
for ℎ𝑖−1 (𝒙) is already within the ideal interval, the corresponding
loss function is 0, so that no further changes for repair 𝒙 are made
to 𝑓mini. Unlike the typical loss function that focuses on the output
of the whole DNN, L directly measures the distance between the
output of 𝑓𝑚𝑖𝑛𝑖 and the ideal interval. Thus enabling a more effec-
tive correction of its erroneous behaviors and the candidate neuron
will not ‘over-learn’ samples that have been correctly classified,
avoiding overfitting and effectively correcting incorrect behavior.
We use the the gradient descent algorithm to optimize the weight
of 𝑓mini. Specifically, we choose Adam [41] as the optimizer.

To further improve the efficiency, we divide the available misclas-
sified data into several batches. In each round, we randomly select
a batch of data to perform fault localization and neuron repair.

4 EVALUATION

In this section, we conduct a set of experiments to evaluate VeRe.
We report the experiment results for answering the following five
research questions.
RQ1: Can VeRe repair a DNN more effectively and efficiently

compared with the state-of-the-art?
RQ2: How does the number of samples and iterations influence

the performance of VeRe?
RQ3: What role does interval splitting play in VeRe?
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Datasets Model Train Repair Generalization
clean poisoned clean poisoned

MNIST CNN 60 000 1 000 1 000 5 000 5 000
CIFAR10 VGG13 50 000 1 000 1 000 5 000 5 000
SVHN VGG13 73 257 1 000 1 000 13 016 13 016
GTSRB VGG11 39 200 1 000 1 000 6 300 6 300
Imagenette VGG16 9 469 200 100 1 962 1 962

Table 1: Number of the records in the datasets.

RQ4: How coupled is the repair process with the specific locali-
sation and vice versa?

RQ5: Is VeRe scalable to high dimensional input and DNNs with
other activation functions?

4.1 Experiment Setup

We apply VeRe to two repair tasks: 1) removing backdoor and 2)
correcting safety property violation. In total, we evaluate VeRe
with 5 baselines, 2 backdoor attack methods, and 46 models across
6 datasets. We run all the experiments 5 times and report the mean
results.

4.1.1 Removing backdoor. Two popular backdoor attacks, Bad-
Nets [29] and Blend [16], are used in the experiment. For BadNets
attack, a random noise square measuring 5 × 5 pixels is placed in
the lower right corner of the image as the trigger. For Blend attack,
we generate a trigger pattern by sampling pixel values from a uni-
form distribution in the range [0, 255], and then attach the trigger
𝒕 to the sample 𝒙 according to the injection strategy of Blend, i.e.,
𝛾 · 𝒕 + (1 − 𝛾) · 𝒙 , where we set the ratio 𝛾 to be 0.2.

There are five datasets: MNIST [43], CIFAR-10 [42], SVHN [54],
GTSRB [66] and ImageNette [33]. The original training sets are only
used to train the poisoned neural networks. We divide the original
test set into two parts: the Repair set 𝐷r and the Generalization
set 𝐷g. Subsequently, we inject malicious triggers into the repair
set and the generalization set to generate the poisoned sets 𝐷r and
𝐷g, respectively. We randomly select 1 000 clean samples and 1 000
poisoned samples from𝐷r and𝐷r as the available data, respectively.
We use 𝐷g and 𝐷g to evaluate model’s generalization ability. Im-
agenette is a subset of ImageNet that consists of ten categories.
Due to the relatively small size of the dataset, we establish slightly
smaller repair set and test sets. The numbers of data in these sets,
as well as the DNN models and their architectures for each dataset,
are shown in Table 1.

4.1.2 Correcting safety property violation. We evaluate VeRe over
36 ACAS Xu [36, 37] networks. Each network in ACAS Xu consists
of six hidden layers, each with 50 ReLU neurons. As reported in
[20], 34 models violate Property-2, 1 model violates Property-7, and
1 model violates Property-8, resulting in 36 repairing tasks.

We sample 10 000 non-violating samples and 10 000 counterex-
amples as the Repair set 𝐷𝑟 , and use independent 10 000 counterex-
amples as the Generalization set 𝐷g. We utilize a drawdown set to
assess the extent to which the original performance of the repaired
model is affected. Specifically, we select 3 properties3 (including
the property to be repaired) for each model, and sample 5 000 non-
violating instances from the state space of each properties. Finally,
we generate a drawdown set of size 15 000 for each model.

3We select the property (2, 7, 8) for 𝑁1,9 , (2, 3, 8) for 𝑁2,9 and (2, 3, 7) for the others.

4.1.3 Baselines and metrics. We implement and compare 3 state-of-
the-art (SOTA) methods with our method to evaluate their perfor-
mance on backdoor removal, including AI-Lancet[89], CARE[67]
and RM[32]. We configure each baseline according to the best per-
formance settings reported in its respective paper. Specifically, AI-
Lancet proposed an optimization method for trigger restoration to
obtain poisoned samples. In order to ensure fairness, we skip this
step and provide real triggers directly. We formulate the accuracy
(Acc) and the attack success rate (ASR) of a DNN under backdoor
attack as follows:

Acc =
∑
𝑥 ∈𝐷g [𝐶𝑓 ′ (𝒙 )=ℓ𝒙 ]

|𝐷g | and ASR =

∑
𝑥 ∈𝐷g [𝐶𝑓 ′ (𝒙 )=𝑡 ]

|𝐷g |
,

where ℓ𝒙 is the true label of 𝒙 , 𝑡 is the target label of the backdoor,
and [·] is the Iverson bracket that takes the value 1 if the statement
is true and 0 otherwise. We further define the defense success rate
(DSR) for repairing a backdoored model as DSR = 1 − ASR. Note
that the Acc and the DSR are evaluated on Generalization set.

For the task of fixing safety property violation, we compare VeRe
with CARE, PRDNN and REASSURE [24]. For a repaired model 𝑓 ′,
the repair success rate (RSR), generalization and the drawdown can
be computed as follows:

RSR =

∑
𝑥 ∈𝐷r [𝐶𝑓 ′ (𝒙 ) ∈𝑃 ]

|𝐷r | , Generalization =

∑
𝑥 ∈𝐷g [𝐶𝑓 ′ (𝒙 ) ∈𝑃 ]

|𝐷g | ,

Drawdown = 1
3

∑︁
𝜑∈Ψ

∑
𝑥 ∈𝐷𝜑 [𝐶𝑓 ′ (𝑥 ) ∈𝑃𝜑 ]

|𝐷𝜑 | ,

where 𝑃 is the output set of the safety property to be repaired. The
set Ψ represents the properties we select for evaluating drawdown.

4.2 Comparison with Baselines

Correcting Safety Property Violation.We first compare VeRe
with CARE and PRDNN for correcting the violation of safety prop-
erties, and the results are shown in Table 2. PRDNN constructs a
provable repair, thereby achieving a 100% RSR on the Repair set.
VeRe also achieves high RSR (≥ 99.8%), while CARE achieves an
average RSR of 94.89%. In terms of generalization, all tools show im-
pressive performance, while VeRe achieves the best generalization,
at 99.87%. For 28 out of 36 models, VeRe achieves 100% generaliza-
tion, which means that after repair, the models satisfy their safety
properties on all original counterexamples in the generalization
sets. As a comparison, CARE and PRDNN have an average gen-
eralization of 94.70% and 95.15%, respectively. Additionally, VeRe
demonstrate better performance on the drawdown set, with an aver-
age drawdown of 15.26% for the 36 repaired models, whereas CARE
and PRDNN display drawdown of 19.53% and 19.48% respectively.

For this repairing task, both PRDNN and our method demon-
strate a significant efficiency advantage. PRDNN converts the re-
pairing task to a linear programming problem and thus achieves
the least time cost. VeRe is capable of repairing most of the models
within 6 seconds, which is 20 times faster than CARE on average.
REASSURE is another provable repair baseline. Due to its signifi-
cant time cost, we cannot directly add it to our experiments with
exactly the same setup. Thus we set 4 scenarios with fewer samples.
REASSURE’s generalization increases as the number of samples
increases, while VeRe is always better. REASSURE achieves better
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Model RSR on repair set/% Generalization/% Drawdown/% Time/s
CARE PRDNN Ours CARE PRDNN Ours CARE PRDNN Ours CARE PRDNN Ours

N1,9(𝜑7 ) 100.00 100.00 100.00 99.98 100.00 100.00 0.01 0.00 0.00 123.31 3.36 5.30
N2,1(𝜑2 ) 100.00 100.00 100.00 100.00 97.40 100.00 0.03 0.63 0.02 143.97 3.51 4.59
N2,2 85.56 100.00 100.00 84.88 98.35 100.00 33.33 29.90 0.06 179.79 2.93 3.67
N2,3 100.00 100.00 100.00 100.00 99.44 100.00 0.14 0.71 1.17 170.01 1.98 5.93
N2,4 62.68 100.00 100.00 61.38 99.78 100.00 0.37 33.35 33.33 135.64 2.25 1.06

N2,5 77.57 100.00 100.00 76.81 99.21 99.94 33.33 33.33 33.33 166.40 2.89 25.06
N2,6 88.04 100.00 100.00 87.88 99.48 100.00 33.33 33.33 33.33 156.60 3.33 3.65
N2,7 80.93 100.00 100.00 80.16 99.26 100.00 33.33 7.41 0.00 172.03 4.05 1.35

N2,8 100.00 100.00 100.00 100.00 97.50 100.00 33.33 12.15 0.00 122.89 3.27 0.94

N2,9 100.00 100.00 100.00 100.00 0.05 100.00 0.00 33.33 33.13 155.72 3.88 1.36

N2,9(𝜑8 ) 99.29 100.00 99.95 99.31 98.37 99.94 0.00 0.00 0.22 168.18 23.61 8.56

N3,1 100.00 100.00 100.00 100.00 97.71 100.00 0.00 0.20 0.09 175.54 5.15 9.07
N3,2 100.00 100.00 100.00 100.00 99.54 100.00 33.34 5.12 0.48 102.52 2.10 1.19

N3,4 81.77 100.00 100.00 81.72 99.46 100.00 33.33 33.35 33.33 136.38 2.15 1.11

N3,5 95.74 100.00 100.00 96.12 97.52 100.00 0.43 31.07 18.50 226.59 2.56 1.94

N3,6 100.00 100.00 100.00 100.00 98.67 100.00 0.00 33.59 33.33 135.61 3.96 2.09

N3,7 96.44 100.00 100.00 96.56 91.74 100.00 0.00 33.39 33.33 238.51 3.27 1.28

N3,8 96.32 100.00 100.00 96.23 99.05 100.00 33.33 33.35 33.33 153.69 3.13 1.13

N3,9 99.96 100.00 99.64 99.91 95.88 99.63 33.33 33.41 0.15 281.20 3.42 36.73
N4,1 100.00 100.00 100.00 99.99 98.42 100.00 32.41 0.00 31.11 96.74 2.75 1.67

N4,3 99.75 100.00 99.98 99.70 99.35 99.95 7.76 0.11 0.36 94.69 2.20 18.15
N4,4 88.28 100.00 100.00 88.04 98.72 100.00 33.35 0.05 0.05 158.29 2.18 0.96

N4,5 99.88 100.00 100.00 99.86 99.72 100.00 0.00 0.29 0.00 123.66 4.10 1.12

N4,6 89.47 100.00 100.00 86.65 97.66 100.00 33.34 33.57 33.38 233.75 4.45 4.37

N4,7 99.99 100.00 100.00 99.99 98.79 100.00 33.33 33.33 33.33 124.65 3.89 1.10

N4,8 98.29 100.00 100.00 98.13 99.47 99.96 33.33 33.51 22.24 150.24 3.13 3.56
N4,9 100.00 100.00 100.00 100.00 94.37 100.00 33.33 30.97 0.00 119.46 3.69 1.05

N5,1 100.00 100.00 100.00 100.00 92.38 100.00 1.32 0.05 0.01 161.68 2.36 1.97

N5,2 100.00 100.00 100.00 100.00 92.06 100.00 33.33 32.99 28.15 111.40 3.28 1.18

N5,3 100.00 100.00 96.35 100.00 97.03 96.22 0.13 0.16 0.11 169.06 2.87 20.42
N5,4 100.00 100.00 100.00 100.00 95.98 100.00 26.67 33.36 35.10 94.87 2.13 1.86

N5,5 100.00 100.00 99.97 99.96 97.12 99.96 33.34 21.75 0.27 108.32 2.68 7.67
N5,6 100.00 100.00 99.96 99.98 99.12 99.95 33.34 33.39 33.37 128.95 3.89 6.42
N5,7 100.00 100.00 100.00 100.00 99.29 100.00 0.42 0.04 0.03 101.49 4.23 7.82
N5,8 100.00 100.00 100.00 100.00 99.46 100.00 33.34 26.66 33.33 114.56 3.26 1.97

N5,9 76.22 100.00 100.00 75.89 98.15 100.00 33.33 33.26 0.00 177.99 3.91 3.69

Avg 94.89 100.00 99.88 94.70 95.15 99.87 19.53 19.48 15.26 150.40 3.77 5.58

Table 2: Results of repairing violation of safety properties

Attack Dataset Before CARE AI-Lancet RM Ours
Acc ASR Acc DSR Time Acc DSR Time Acc DSR Time Acc DSR Time

BadNets

MNIST 99.70 99.02 99.68 99.89 393.63 99.68 99.98 140.16 95.93 99.84 2.19 99.27 99.83 108.40
SVHN 93.30 99.95 84.94 99.66 709.32 81.90 97.31 2344.00 81.65 98.94 5.27 92.12 99.90 88.97
CIFAR-10 82.46 99.97 77.48 99.50 920.17 80.15 99.48 1713.90 71.69 99.66 17.89 81.63 99.85 101.88
GTSRB 90.87 98.91 58.60 99.82 558.58 75.49 96.92 2182.00 83.14 99.74 7.08 90.32 99.96 57.56
AVG 91.58 99.46 80.18 99.72 645.43 84.30 98.42 1595.00 83.10 99.55 8.11 90.84 99.89 89.20

Blend

MNIST 99.72 99.97 92.80 99.93 990.24 86.82 97.28 652.80 95.01 99.58 3.64 99.11 99.97 62.76
SVHN 91.23 96.45 83.08 83.31 2041.70 80.97 94.69 3859.80 84.03 99.62 6.09 91.09 99.43 233.61
CIFAR-10 84.08 94.72 69.03 99.74 728.17 69.86 98.52 1958.00 62.05 86.42 18.89 81.30 98.96 309.20
GTSRB 91.35 98.79 62.48 99.56 2017.71 84.94 98.86 2771.47 64.99 99.69 9.30 90.64 99.09 463.95
AVG 91.60 97.48 76.85 95.63 1444.46 80.65 97.34 2310.51 76.52 96.33 9.48 90.54 99.36 267.38

Table 3: Results of backdoor removal, where we mark the overall best values bold.

drawdown than VeRe in one scenario, while VeRe performs better
in the others. Kindly refer to [1] for more detailed results.
Backdoor Removal. For the backdoor removal task, the results
of VeRe and the three baselines are presented in Table 3. All the
methods achieve decent repair results on the MNIST, due to its
simplicity. For more complex dataset, RM and CARE suffer from
catastrophic forgetting, leading to a significant decrease in accuracy.
AI-Lancet has less damage to model performance, but still results
in a 2.31% to 15.38% accuracy decrease. Comparatively, VeRe has
an Acc drop of 0.14% to 2.78%, which indicates that the original
performance of the models has not been significantly affected.

In terms of defense success rate, our method achieves over 98%
for all tasks, with the lowest being 98.96%. In comparison, the
best-performing baseline, AI-Lancet, has an average DSR of 97.88%.
When specifically considering the Blend attacks on CIFAR-10 and
SVHN, both CARE and RM slightly outperform VeRe’s in terms of
defense success rate (by less than 1%). However, it is important to
note that both CARE and RM methods significantly decrease the
model accuracy, with CARE causing a decrease of 25.05% and RM
causing a decrease of 7.2%. In contrast, our method only results in a
minimal decrease in model accuracy of less than 1%. These results
highlight the superiority of our method, as it not only achieves a
higher defense success rate compared to the best-performing base-
line, but it also minimizes the negative impact on model accuracy.

RM achieves the lowest time cost among all scenarios because it
selectively fine-tunes only the problematic weights based on the
gradient. In comparison, VeRe takes an average of 89.20 seconds
and 267.38 seconds to remove backdoors under BadNets and Blend,
respectively. On the other hand, CARE, which is based on particle
swarm optimization, takes more than five times longer than our
method on average. Additionally, AI-Lancet requires conducting an
ablation experiment to determine the problematic weights, resulting
in a larger time cost.
Answer to RQ1: VeRe is a more effective method for safety
violation repairing and backdoor removal, with higher general-
ization/defense success rate, lower drawdown/accuracy drop,
and comparable efficiency.

4.3 Monotonicity w.r.t. the number of samples

and rounds

In this section, we study how does VeRe perform on repairing
DNNs with different number of available samples and how does
the repair effect change after each round of repair.

For safety violation repairing, we consider four different sample
size configurations: 500 positive samples and {500, 200, 100, 50} neg-
ative samples, respectively. We evaluate the performance of VeRe
under varying amounts of available samples, and the experimental
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Model 500+500 500+200 500+100 500+50
D % G % D % G % D % G % D % G %

N1,9(𝜑7 ) 0.00 100.00 0.00 99.89 0.00 99.46 0.00 98.99
N2,1(𝜑2 ) 0.07 100.00 0.06 99.95 0.06 99.82 0.08 97.71
N2,2 11.80 100.00 2.59 100.00 0.93 99.36 0.35 98.02
N2,3 1.32 100.00 1.11 100.00 0.96 100.00 0.00 100.00
N2,4 33.33 100.00 33.33 100.00 33.33 100.00 33.33 100.00
N2,5 33.33 100.00 33.33 100.00 33.33 100.00 33.33 100.00
N2,6 33.33 100.00 33.33 100.00 33.33 100.00 33.33 100.00
N2,7 22.22 99.96 25.74 99.94 11.63 99.88 14.39 99.77
N2,8 0.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00
N2,9 33.13 100.00 33.06 99.93 33.05 99.89 33.02 99.74
N2,9(𝜑8 ) 0.00 99.98 0.00 99.98 0.00 99.98 0.00 99.97
N3,1 0.05 100.00 0.03 99.98 0.02 99.85 0.07 99.78
N3,2 0.51 99.37 0.55 98.56 0.58 96.44 0.56 93.53
N3,4 33.33 100.00 33.33 100.00 33.33 100.00 33.34 100.00
N3,5 33.33 99.95 33.33 99.99 33.33 99.74 33.33 98.94
N3,6 33.33 100.00 33.33 99.98 33.33 99.96 33.33 99.99
N3,7 33.33 99.90 33.33 99.79 33.33 99.79 33.33 99.66
N3,8 33.33 100.00 33.33 100.00 33.33 99.99 33.33 99.99
N3,9 0.05 95.77 0.06 91.51 0.03 87.27 0.02 79.01
N4,1 32.56 100.00 32.03 100.00 31.48 100.00 31.22 100.00
N4,3 0.38 99.95 0.27 99.57 0.24 98.97 0.29 97.45
N4,4 0.03 100.00 0.04 99.93 0.03 99.68 0.03 98.95
N4,5 0.00 99.97 0.00 99.91 0.00 99.82 0.00 99.79
N4,6 33.36 100.00 33.36 100.00 18.09 100.00 0.00 99.98
N4,7 33.33 100.00 33.33 100.00 33.33 100.00 33.33 99.71
N4,8 33.35 99.88 33.35 99.85 33.35 99.53 33.35 98.75
N4,9 33.33 100.00 33.33 100.00 33.33 99.96 33.33 99.79
N5,1 33.33 100.00 0.05 100.00 1.15 100.00 2.59 100.00
N5,2 33.26 100.00 33.06 100.00 32.75 100.00 32.88 99.94
N5,3 0.04 100.00 0.06 99.84 0.09 99.60 0.10 89.19
N5,4 10.18 99.97 6.71 99.71 4.84 99.64 2.89 96.98
N5,5 0.41 96.31 0.32 89.31 0.41 82.70 0.34 65.59
N5,6 33.36 99.92 33.36 99.91 33.36 99.91 33.37 99.89
N5,7 0.00 99.97 0.06 99.53 0.06 99.42 0.06 98.08
N5,8 33.33 100.00 33.33 100.00 33.33 99.64 33.33 98.51
N5,9 0.00 100.00 0.00 99.99 0.00 99.99 0.00 99.98
Avg 17.95 99.75 16.74 99.36 15.83 98.90 15.34 97.44
Table 4: Safety property repair. D: Drawdown (%), G: Generalization (%)

results are presented in Table 4. VeRe effectively repairs models
even with limited samples. Specifically, with access to 500 coun-
terexamples, the minimum RSR of our method is 99.75% and 23
models achieve 100% generalization. We further reduce the number
of available negative samples. The average RSR of VeRe remains
above 98.9% in scenarios with 500+200 and 500+100 samples. In
fact, even in scenarios where data is extremely limited, our method
achieves an average generalization of 97.44%. In comparison, when
the data size is 10 000+10 000, CARE and PRDNN only achieve a
generalization of 94.70% and 95.15%, respectively. We find that as
the number of available negative samples increases, the drawdown
after repair with VeRe slightly increases. This is reasonable because
repairing more counterexamples samples usually leads to making
more significant modifications to the DNN.

Subsequently, we impose constraints on the number of samples
available in the backdoor removal scenario. Specifically, we fix the
number of available clean samples at 1 000 and vary the number of
poisoned samples among {1 000, 500, 200, 100, 50}. The results are
shown in Table 5. VeRe successfully repairs poisoned models on
all datasets with BadNets attacks while maintaining models’ origi-
nal performance . The CIFAR-10 dataset has the largest decrease
in performance, ranging from 0.54% to 2.25%. Additionally, VeRe
remains effective even with a small amount of available poisoned
data, with DSR of the repaired models exceeding 98% in all scenar-
ios. In comparison, AI-Lancet performs the most stably among all
baselines, but causes over 10% model performance decline in the
SVHN and GTSRB datasets. CARE heavily depends on the quantity
of poisoned samples, and struggles to remove the backdoors stably
when the number of poisoned samples is limited (with DSR of 39%
on CIFAR-10 and 40% on SVHN). RM, which is based on fine-tuning,
cannot maintain the original performance of the model and results
in over 5% performance decline in almost all scenarios.

/ // /

/ /

Figure 3: Repair effect after each round.

For Blend attacks, the performance of all baselines is not stable:
AI-Lancet can not maintain original performance in any scenario;
CARE suffers catastrophic forgetting on the CIFAR-10 and GTSRB
datasets, leading to a significant performance decrease. Moreover,
CARE is ineffective in removing backdoors on the SVHN dataset,
even with 1000 available poisoned samples, resulting in a DSR of
less than 90%. RM also exhibits this phenomenon on the CIFAR-10
dataset. Comparatively, Our method protects the original perfor-
mance of the model in all scenarios, with the largest decrease being
2.78%. Furthermore, VeRe demonstrates stable repair ability in sce-
narios with limited data, with the DSR of the repaired models being
above 95% except on GTSRB with only 50 available samples. The
results in Table 5 confirm that VeRe indeed makes more efficient
use of poisoned samples by symbolic analysis. When the number
of poisoned samples is reduced from 1 000 to 50, the repair effect of
VeRe only decreases by 1% to 7%, demonstrating the superior effec-
tiveness of VeRe in data scarcity scenarios compared to baselines.

To investigate how our method performs after each round of
repair, we record the performance of the model (including gener-
alization performance) after each round. The experimental results
are shown in the Fig. 3. We find that DSR can be improved to vary-
ing degrees after each round of repair, with negligible effects on
the original performance, which also shows that the neurons and
intervals we locate are indeed useful.
Answer to RQ2: Even in situations where data availability
is restricted, VeRe can still efficiently and effectively remove
erroneous behaviors while preserving models’ original perfor-
mance. Compared to alternative approaches, VeRe can make
better use of the available data by symbolic analysis.

4.4 Effect of Interval Splitting

Recall that we split the neuron rangeI𝑖 𝑗 into𝐾 disjoint sub-intervals
to reduce the approximation error. In this experiment, we study the
effect of interval spliting. We maintain the same settings as section
4.2 and record the changes in the Acc and DSR of the repaired model
under scenarios with different number of subintervals. The results
are shown in the Fig. 4. We find that more fine-splited interval
can better preserve the original performance of the model on the
CIFAR-10 and SVHN dataset under badnets attacks. Compared to
not spliting intervals, dividing the intervals can bring an accuracy
improvement of 1.67% to 8.23%.

For the SVHN dataset under blend attacks, dividing the intervals
does not bring significant accuracy improvement. Therefore, we
further investigate whether the repaired neurons play an important
role in correctly classifying a certain sample category. We record
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Method Sample
BadNets Blend

MNIST CIFAR-10 SVHN GTSRB MNIST CIFAR-10 SVHN GTSRB
Acc DSR Acc DSR Acc DSR Acc DSR Acc DSR Acc DSR Acc DSR Acc DSR

Ours
1000+50 99.16 99.07 80.21 99.63 92.18 98.22 89.17 99.71 99.61 99.56 82.12 96.09 91.11 97.82 89.57 92.14
1000+100 99.22 99.30 81.92 99.77 92.98 99.07 90.07 99.86 99.63 99.87 81.76 96.51 91.16 97.94 89.59 95.09
1000+200 99.18 99.72 81.74 99.84 92.81 99.47 90.29 99.90 99.42 99.90 81.93 97.88 91.16 98.49 90.45 97.80
1000+500 99.29 99.79 81.54 99.84 92.80 99.76 90.30 99.95 99.31 99.95 81.78 98.89 91.14 99.28 90.42 98.92
1000+1000 99.27 99.83 81.63 99.85 92.12 99.90 90.32 99.96 99.11 99.97 81.30 98.96 91.09 99.43 90.64 99.09

AI-Lancet
1000+50 99.70 97.90 81.01 96.49 82.45 95.73 76.43 93.30 86.94 95.36 70.86 96.58 81.22 91.33 85.35 92.18
1000+100 99.65 99.26 80.81 98.30 82.25 95.97 73.54 95.49 87.04 95.47 71.84 96.68 81.05 92.01 84.70 95.10
1000+200 99.65 99.74 80.48 98.89 82.10 96.50 75.64 96.41 87.25 95.76 71.24 97.30 81.16 92.50 84.37 97.09
1000+500 99.66 99.95 80.58 99.25 82.05 96.82 75.76 96.67 87.04 96.07 70.80 97.99 81.08 94.39 84.44 98.05
1000+1000 99.68 99.89 80.15 99.48 81.90 97.31 75.49 96.92 86.82 97.28 69.86 98.52 80.97 94.69 84.94 98.86

CARE
1000+50 99.70 97.83 80.60 39.16 91.49 40.00 58.86 99.58 95.45 78.78 74.27 82.39 91.09 6.66 67.38 81.60
1000+100 99.70 98.90 78.83 79.01 90.72 59.99 56.47 99.72 96.39 79.40 69.02 99.52 90.77 12.26 61.94 97.86
1000+200 99.70 99.43 78.28 98.99 89.35 79.95 54.45 99.80 93.98 98.18 69.21 99.60 87.03 38.99 62.09 98.60
1000+500 99.68 99.66 77.83 99.24 88.96 99.54 55.16 99.80 93.76 99.36 70.15 99.64 84.60 74.79 63.16 99.54
1000+1000 99.68 99.89 77.48 99.50 84.94 99.66 58.60 99.82 93.54 99.79 69.03 99.74 83.08 83.31 62.48 99.56

RM
1000+50 97.16 99.09 79.98 88.16 61.34 97.80 78.53 92.74 83.65 92.70 65.48 31.63 66.37 92.43 60.30 92.74
1000+100 96.01 99.67 78.10 91.46 68.47 98.09 79.83 95.83 84.19 93.50 65.32 40.78 66.81 93.32 66.41 96.62
1000+200 93.59 99.93 75.67 94.77 78.79 98.08 78.82 96.44 81.78 95.83 64.28 56.87 77.58 96.95 56.57 98.46
1000+500 92.45 99.94 73.45 99.50 82.35 98.84 80.24 99.17 92.48 99.04 62.80 76.70 82.64 99.17 57.12 98.99
1000+1000 95.93 99.84 71.69 99.66 81.65 98.94 83.14 99.74 95.01 99.58 62.05 86.42 84.03 99.62 64.99 99.69

Table 5: Results of backdoor removal with limited samples, where an Acc value in color blue means that the the drop in accuracy after repair is less than 5%, and a

DSR greater than 99% is highlighted in color green.

/ // /

Figure 4: Effect of interval splitting and its association to frozen neuron.

the repaired neurons and freeze them in the original network. Then
we compare the classification performance of the frozen model
with the original model. As shown in Figure 4, the frozen repaired
neurons do not significantly degrade the model’s performance on
the SVHN dataset under blend attacks. This indicates that these
neurons may not be responsible for correctly classifying certain
categories, and thus, splitting such intervals do not lead to a sig-
nificant increase in accuracy. In the other three scenarios, freezing
the repaired neurons results in serious misclassification of certain
categories, indicating that these neurons are responsible for both
target class classification and normal category classification. There-
fore, more fine-split interval can help find more ideal intervals for
these neurons to protect model performance while removing the
backdoor. This phenomenon matches our intuition: interval split-
ting is particularly useful if the candidate neuron exposes a complex
mixture of erroneous and correct behavior. Additionally, we find that
interval splitting can improve DSR in certain scenarios, resulting in
performance gains of 8.68% in Blend-CIFAR-10 scenario and 4.78%
in BadNets-SVHN scenario. This is because the linear relaxation
without interval refinement may result in significant approximation
errors, leading to mis-localization of the ideal repair interval.

Answer to RQ3: Interval splitting can reduce approximation
errors, find more suitable ideal intervals, and thus more ef-
fectively repair models while preserving their original perfor-
mance, which is especially the case for neurons with complex
behaviors, i.e., a mixture of erroneous and correct behaviors.

4.5 The coupling between the two steps

VeRe consists of two steps, i.e., fault localization and repair synthe-
sis. In this section, we study how the coupling between localiza-
tion step and the repair step. We replace our repair process with
other repair methods. Specifically, we use particle swarm optimiza-
tion method from CARE, RM’s fine-tune and optimization with
regularization[30] as three baselines. We denote the replaced base-
lines as PSO*, RM*, and Reg* respectively. We show the results in
Table 6. Kindly refer to [1] for more detailed results.

Under the BadNets attack, most baselines can protect the original
performance of the model except for the PSO*. Among them, Reg*
performs best, with an average Acc drop of 1.07%. Our method also
protects the model performance well, with a drop of 1.54%. For
improving DSR, VeRe performs best, with a repaired average DSR
of 99.74%. In comparison, the best-performing RM* in the baselines
can only improve DSR to 96.06%. Reg* overfits severely when the
number of available samples is limited (even if regularization is
used to prevent overfitting), and it obtains 99.70% Acc and 100.00%
DSR on the repair set but performs poorly on the generalization set.
As a comparison, the loss function in our repair method does not
promote the candidate neuron to over-learn samples that have been
correctly classified, avoiding overfitting and effectively correcting
erroneous behavior. For the Blend attack, no baseline can increase
DSR while maintaining Acc. PSO* improve DSR to nearly 100.00%,
but Acc drops severely (more than 20%). RM* and Reg* suffer from
catastrophic forgetting and overfitting, respectively.

In addition, we find that compared to RM, RM* can more effec-
tively increase DSR while maintaining the same level of Acc. This
indicates that the verification-based fault localization has found
more appropriate candidate neuron for repair. The effect of PSO*
is at the same level as CARE: it cannot protect the original per-
formance of the model and cannot effectively remove backdoor in
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Sample Method
BadNets Blend

Repair set Generalization set Repair set Generalization set
Acc DSR Acc drop DSR Acc DSR Acc drop DSR

1k+1k

CARE 76.23 99.69 77.48 4.98 99.50 67.90 99.90 69.03 15.05 99.84
RM 77.56 99.86 71.69 10.77 99.66 68.04 94.77 62.05 22.03 86.42
PSO* 68.10 100.00 67.68 14.78 100.00 58.00 100.00 58.60 25.48 99.98
RM* 82.96 99.69 80.06 2.40 98.22 65.76 99.96 64.55 19.53 96.17
Reg* 98.12 99.91 81.76 0.70 97.16 81.36 99.78 67.81 16.27 96.22
Ours 79.50 100.00 81.63 0.83 99.85 81.48 99.60 81.30 2.78 98.96

1k+50

CARE 80.12 40.00 80.60 1.86 39.16 77.44 85.84 74.27 9.81 82.39
RM 79.50 90.41 79.98 2.48 88.16 66.04 39.76 65.48 18.60 31.63
PSO* 70.36 80.00 70.48 11.98 80.01 58.30 100.00 59.30 24.78 99.96
RM* 79.08 100.00 78.69 3.77 93.91 60.38 100.00 60.70 23.38 92.00
Reg* 99.70 100.00 81.02 1.44 88.97 99.84 95.57 75.78 8.30 89.20
Ours 78.60 100.00 80.21 2.25 99.63 81.28 100.00 82.12 1.96 96.09

Table 6: Combining with other repair methods on CIFAR-10.

Method BadNets Blend
Acc DSR Time Acc DSR Time

Before 83.23 0.68 - 83.54 1.87 -
CARE 82.87 2.30 3530.29 66.39 61.53 7807.44
CARE* 83.28 2.32 4476.89 57.18 100.00 13747.97
AI-Lancet - - - - - -
RM 74.30 84.27 7.15 63.32 63.75 9.81
Ours 81.38 98.68 122.61 78.93 96.24 207.32

Table 7: Backdoor removal results on Imagenette dataset.

some scenarios, which indicates that simple combination of our
localization method with other repair methods may not work well.
Answer to RQ4: Our fault localization step and repair step are
highly coupled. Compared to simply combining our localization
method with other repair methods, VeRe remove erroneous
behaviors more effectively while protecting the performance
of the model. In addition, our verification-based localization
method locate more accurate than gradient-based method.

4.6 Scalability

To investigate the scalability of VeRe we conduct a backdoor re-
moval experiment on the Imagenette dataset of high dimensional
images of 224×224 pixels. The results are presented in the Table 7.
Note that due to the unstable performance of CARE, we use “CARE"
in the table to represent the average results from multiple experi-
ments, while “CARE*" represents the best performance observed in
multiple experiments. Unfortunately, we are unable to reproduce
the performance of AI-Lancet in this scenario, as it requires running
three network models simultaneously, resulting in out of memory.

According to the Table 7, CARE is unable to repair the network
under BadNets attack, and the DSR after repair is 2.30%. The DSR
of RM is 84.27%, while the model accuracy decreases by 8.93%. In
comparison, our method can increase the DSR to over 98% while
slightly sacrificing accuracy (less than 3%). Under Blend attack,
CARE improves DSR to 100.00% (only one in ten experiments),
but suffers from catastrophic forgetting. In addition, the time over-
head of CARE is unacceptable, while VeRe effectively improves the
model’s defense success rate at an acceptable time overhead.

To study whether VeRe generalizes to networks with other acti-
vation functions, we replace the ReLU units in each neural network
with the Sigmoid activation function. Following setups in Section
4.1, we conduct a set of experiments on the CIFAR-10 and the SVHN
datasets with the BadNets and the Blend attacks. Overall, VeRe can
achieve an average DSR of 96.59%, while Acc decreases by up to
1.11%. The average time overhead of VeRe is 688.11s. Kindly refer
to [1] for detailed results.
Answer to RQ5: VeRe is scalable to high-dimensional input
and promising for other activation functions. Compared to
other baselines, it improves DSR more effectively, while pre-
serving the model’s original performance.

5 RELATEDWORK

DNN repair. There have been many attempts on neural network
repair. Some works use heuristic algorithms such as particle swarm
optimization, differential evolution, etc. DeepRepair [86] and few-
shot guided mix [58] augment available negative samples to ob-
tain new training data. Tian et al. [69] enhance available data by
adding real-world environmental effects such as fogs to samples.
To construct a provable repair, several repair methods like NNRe-
pair, PRDNN, REASSURE [24] and ART [47] have employed formal
verification techniques including constraint solving and abstract
interpretation. However, the way and the purpose of employing
formal verification in VeRe are quite different, which provides
guidance for fault localization and target intervals for repair syn-
thesis, and no provable guarantee is demanded. As have been stated,
fault localization and target intervals obtained by CROWN in VeRe
directly and significantly reflects the repair significance of each
neuron and how to repair a candidate neuron, and such guidance
is conservative due to the soundness of formal verification, which
is beneficial for the stability of the repair effects. In the future, we
plan to incorporate more program synthesis techniques [18] into
VeRe for repairing DNNs.

DNN verification. In 2010, the first DNN verification algorithm
based on partition refinement was proposed in [57]. In the past
decade, numerous formal verification techniques have been pro-
posed for verifying DNNs, primarily including constraint solv-
ing [10, 22, 27, 35, 39, 40, 46, 53], abstract interpretation [26, 44, 61–
63, 84], linear relaxation [6, 38, 56, 78, 83], global optimisation [21,
59, 60], CEGAR [2, 23, 55], reduction to two-player games [79, 81],
and star-set abstraction [71, 72]. These methods provide prov-
able estimates of DNN robustness. Besides, statistical methods like
[4, 5, 12, 13, 34, 45, 50, 76, 77, 80] are more efficient and scalable for
complex DNN structures, where quantitative robustness is provable
at a certain confidence level. In VeRe, we employ CROWN [83] as
the verification engine for repair synthesis, whilst other tools like
ERAN [65], Fast-lin [78], DeepSymbol [44] are also adoptable.

6 CONCLUSION

We propose VeRe, a novel verification guided synthesis framework
for repairing DNNs. VeRe performs linear relaxation on fully con-
nected layer to localize problematic neurons and provide the target
interval for repair, which guides us to construct an optimization
problem for the optimal repair. We conduct an empirical evaluation
using five image classification datasets and one safety property
dataset. The experimental results show that VeRe can repair var-
ious models efficiently and effectively, while preserving original
performance of the model. We have to claim that VeRe still has
some limitations. Since it relies on a verification engine for fault
localization and repair synthesis, VeRe only repairs the properties
that can be formally specified, and currently it cannot repair vio-
lation of fairness. The weight modification in the repair synthesis
only works for fully-connected layers, and we lack a repair strategy
for more structures like convolutional layers. As for future works,
we are eager to explore how VeRe is used for fairness repair, and
design the repair strategy for convolutional layers.
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