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ABSTRACT: Mechanophores (mechanosensitive molecules) have been instrumental in the development of various force-
controlled release systems. However, the release of functional organic molecules is often the consequence of a secondary
(nonmechanical) process triggered by an initial bond scission. Here we present a new mechanophore, built around an
oxanorbornane-triazoline core, that is able to release a furan molecule following a force-promoted double retro-[4+2][3+2]
cycloaddition. We explored this unprecedented transformation experimentally (sonication) and computationally (DFT, CoGEF)
and found that the observed reactivity is controlled by the geometry of the adduct, as this reaction pathway is only accessible to the
endo-exo-cis isomer. These results further demonstrate the unique reactivity of molecules under tension and offer a new mechanism

for the force-controlled release of small molecules.

he mechanochemical release of cargo molecules offers

great promise for the development various controlled-
release applications." This can be achieved by using polymers
to actuate a mechanophore, the activation of which results in
the direct or indirect release of a cargo molecule.” The release
of functional organic molecules is often the result of a
nonmechanical secondary process (e.g, transesterification,
fragmentation) following an initial mechanochemical bond
scission (i.e., indirect).’ ® In contrast, direct release is so far
limited to simple molecules (e.g, N,) and ions,””"? though
more elaborate cargo can be released by flex-activation but at
the expense of efficiency.'”””"” In this context, we were
intrigued by the possibility of promoting the direct release of a
small molecule via a double retrocycloaddition that would
detach both actuating polymers from the cargo in a single
elongation event.

Here we show that a new mechanophore, built around an
oxanorbornane-triazoline core, can release a furan molecule,
“trapped” between an acrylate and an azide, via a double retro-
[4+2][3+2] cycloaddition (Figure 1). We found that this
unprecedented mechanochemical reactivity is controlled by the
geometry of the adduct,'®*™*” as the retro-[4+2][3+2] pathway
is only observed in the endo-exo-cis isomer, while the exo-exo-cis
isomer only dissociates via a retro-[3+2] cycloaddition. These
results provide new insight into the unique reactivity of
molecules under tension and offer a novel mechanism for the
direct release of small organic molecules.

Our new mechanophore was formed by sequential [4+2]
cycloaddition (Diels—Alder) between a furan ring and an
acrylate derivative, followed by a [3+2] cycloaddition
(Huisgen) between the resulting oxanorbornene and an
organic azide to form a triazoline ring (Figure 1b). As each
cycloaddition can produce both endo and exo adducts and the
triazoline ring can adopt a cis or trans orientation in relation to
the ester moiety, a total of 8 isomers can theoretically be
produced. In practice, only 4 isomers are isolated, as the [3+2]
cycloaddition always affords the exo isomer (the identity of the
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4 isomers was confirmed by XRD and NMR, see Figure 1c and
SI Section 8). As both trans isomers are mechanically inert (see
Figures S19 and S21), we decided to focus our investigation on
the endo-exo-cis and exo-exo-cis adducts (Figure 1a).

Chain-centered adducts were obtained by single electron
transfer living radical polymerization (SET-LRP)™ of methyl
acrylate (see SI Section 4), and their mechanical activation was
performed in acetonitrile at 5—10 °C, using high-intensity
ultrasound, until complete scission of the starting polymer was
confirmed by GPC (see Figure 2a,b and Figures S5—S8). 'H
NMR analysis of the sonicated sample confirms that the exo-
exo-cis isomer undergoes a retro-[3+2] cycloaddition, as
evidenced by the shifting of the peaks of the benzylic azide
(a, b, ¢, Figure 2c-v) and the emergence of the diagnostic
signals pertaining to the olefinic (I, m, Figure 2c-vi) and
bridging (k, n, Figure 2c-vi) protons of the exo-oxanorbornene
unit in the postsonication samples (Figure 2c-vii).

The picture is more complicated for the endo-exo-cis isomer,
as several signals crowd the olefinic region of the
postsonication '"H NMR spectrum (6.5—5.9 ppm, Figure 2c-
ii). The dominant signals can be attributed to an acrylate
moiety, identified by the diagnostic pattern of the terminal
olefin (j, h, i, Figure 2c-iii), while the minor peaks can be
matched with the olefinic (e, f, Figure 2c-iv) and bridging (d, g,
Figure 2c-iv) protons of the endo-oxanorbornene unit. The
presence of these two products (along with the formation of
the benzylic azide) indicates that two retrocycloaddition
processes are taking place (in a ~2:1 ratio; Figure 2b) during
the mechanical activation of the endo-exo-cis isomer. The
formation of the endo-oxanorbornene unit is indicative of a
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Figure 1. Furan release via force-promoted retro-[4+2][3+2]-
cycloaddition. (a) Mechanical activation of endo-exo-cis and exo-exo-
cis adducts. Red arrows indicate the direction of the force. (b)
Assembly of the adducts by sequential [4+2] and [3+2] cyclo-
additions. (c) Solid-state structure (XRD) of endo-exo-cis and exo-exo-

retro-[3+2] cycloaddition, while the presence of the acrylate
suggests that the adduct undergoes a double retro-[4+2][3+2]
cycloaddition with concomitant release of furan (confirmed by
"H NMR, see Figure S25).

Since the exo-exo-cis adduct only dissociates via a retro-
[3+2] pathway and both endo- and exo-oxanorbornene adducts
are stable under sonication conditions (see Figures 23, S24),
it is likely that the divergent dissociation pathways of the endo-
exo-cis adduct are a consequence of the initial bond cleavage
occurring at either C—N bond ¢ or C—C bond a (Figure 3a),
the former leading to the formation of the endo-oxanorbornene
adduct, and the latter triggering the cascade leading to the
release of furan (Figure 3e). The simulated elongation of a
model of the endo-exo-cis adduct offers some insight into the
dissociation process (Figure 3a—d). The elongation profile of
this model (Figure 3a), obtained from CoGEF calculations™
(DFT wB97X-D/6-31G*), reveals that the initial scission of
C—C bond a (iii, Figure 3a,b), connecting the ester to the rest
of the adduct (F,,, = 4.9 nN), is quickly followed by the
collapse of the resulting intermediate (iv, Figure 3a,b), which
releases a molecule of furan and regenerates the terminal
acrylate and benzylic azide groups (Figure 3e). The CoGEF
calculation suggests a sequential polar mechanism for this
process (see SI Section 9.2), and such a mechanism has been
previously hypothesized for similar retrocycloadditions.*”*'
However, as the CoOGEF method does not account for dynamic
or thermal effects, which can play a significant role in the
dissociation and selectivity mechanisms of mechano-
phores,””**™% a different mechanism cannot be excluded.
Indeed, even though bond a is predicted to cleave
preferentially, the elongation of bond c¢ is substantial at E_,,
(Figure 3a—c), which explains the formation of endo-
oxanorbornene as a minor product. The presence of the
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Figure 2. (a) Mechanical activation of chain-centered endo-exo-cis and exo-exo-cis mechanophores. Conditions: US (20 kHz, 13.0 W/cm?, 1 s ON/1
s OFF), CH;CN, 5—10 °C, 240 min. (b) Structural and activation parameters of the sonicated polymers. “Determined by integrating protons ¢, f or
1, m against the aromatic peaks of the intact mechanophore. *Determined by integrating proton h, i, and j against the aromatic peaks of the intact
mechanophore. (c) Partial '"H NMR (500 MHz, acetone-dg, 298 K, 1024 scans) spectra of the endo-exo-cis adduct before (i) and after (ii)
sonication and of the exo-exo-cis adduct before (viii) and after (vii) sonication, along with reference compounds P-S14b (iii), P-S14 (iv), P-S5 (v),
and P-S15 (vi).
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Figure 3. Computational investigation of dissociation of the endo-exo-
cis adduct. (a) Evolution of energy upon simulated elongation
(CoGEF, DFT wB97X-D/6-31G*) of a model of the endo-exo-cis
mechanophore. (b) Equilibrium geometries at Eq (i), By (ii), after
the first bond scission (iii), and after furan release (iv). (c) Elongation
of bonds a, b, and ¢, upon simulated elongation of the same model.
(d) Comparison of the opening of angle & during the simulated
elongation of models of the endo-exo-cis and exo-exo-cis adducts. (e)
Possible dissociation mechanism.

endo-exo-cis adduct, where the ester moiety is anti to the
bridging oxygen of the oxanorbornane core (Figure 1c). Upon
elongation, this ester progressively aligns with the rest of the
structure (ii; Figure 3b). This induces a substantial amount of
torsional stress, which can be visualized by the opening of
angle a (Figure 3d), that enhances the coupling at bond a.
This lever-arm effect’® is not observed in the exo-exo-cis
isomer, as the syn orientation of the ester (Figure 1c) allows
this adduct to adopt an extended conformation without
developing such torsional deformation (see Figure 3d and
Figure S37).

In conclusion, we have described a new mechanophore that
can undergo a double retro-[4+2][3+2] cycloaddition in a
single elongation event. This unprecedented dissociation
process leads to the release of a small molecule (furan). We
anticipate that this new mechanophore should provide a useful
platform for the release of more complex molecules and that
this mechanism should be amenable to alternative mechano-
phore architectures. These results further demonstrate the
unique reactivity of molecules under tension and offer a new
mechanism for the force-controlled release of small molecules.
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