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Abstract. This paper introduces ESBMC v7.3, the latest Efficient SMT-
Based Context-Bounded Model Checker version, which now incorporates
a new clang-based C++ front-end. While the previous CPROVER-based
front-end served well for handling C++03 programs, it encountered
challenges keeping up with the evolving C++ language. As new language
and library features were added in each C++ version, the limitations
of the old front-end became apparent, leading to difficult-to-maintain
code. Consequently, modern C++ programs were challenging to verify. To
overcome this obstacle, we redeveloped the front-end, opting for a more
robust approach using clang. The new front-end efficiently traverses the
Abstract Syntax Tree (AST) in-memory using clang APIs and transforms
each AST node into ESBMC’s Intermediate Representation. Through
extensive experimentation, our results demonstrate that ESBMC v7.3
with the new front-end significantly reduces parse and conversion errors,
enabling successful verification of a wide range of C++ programs, thereby
outperforming previous ESBMC versions.

Keywords: Formal Methods · Model Checking · Software Verification

1 Introduction

C++ is one of the most popular programming languages used to build high-
performance and real-time systems, such as operating systems, banking systems,
communication systems, and embedded systems [1,2]. However, memory safety
issues remain a major source of security vulnerabilities in C++ programs [3].
Fan et al. [4] created a dataset of C/C++ vulnerabilities by mining the Common
Vulnerabilities and Exposures (CVE) database [5] and the associated open-
source projects on GitHub, then curated the issues based on Common Weakness
Enumeration (CWE) [6]. According to their findings, two out of the top three
vulnerabilities are caused by memory safety issues: Improper Restriction of
Operations within the Bounds of a Memory Buffer (CWE-119) and Out-of-
bounds Read (CWE-125) [4].

The limitation of software testing resides in the user inputs [7]. Only a limited
number of execution paths may be tested since test cases involve human inputs
in the form of concrete values [8]. Unlike testing, formal verification techniques
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can be used more systematically to reason about a program, although they suffer
from the state-space explosion problem [9]. There is an increasing adoption of
formal verification techniques for C programs in the industry, e.g., Amazon has
been using model-checking techniques to prove the correctness of their C-based
systems in Amazon Web Services (AWS); this has positively impacted their code
quality, as evidenced by the increased rate of bugs found and fixed [10].

Formal verification of C++ programs is more challenging than C programs
due to the sophisticated features, such as the STL (Standard Template Libraries)
containers, templates, exception handling, and object-oriented programming
(OOP) paradigm [1]. The existing state-of-the-art verification tools for C++
programs only have limited feature support [11]. For ESBMC, Ramalho et al. [12]
and Monteiro et al. [11] initiated the support for C++ program verification. Since
then, ESBMC has undergone heavy development.

This research presents a significant improvement to ESBMC’s C++ verifi-
cation capabilities by introducing a new clang-based frontend. Particularly, the
original contributions of this work are as follows:

– Complete Redesign: ESBMC’s C++ frontend has undergone a complete
overhaul and now relies on clang [13]. By leveraging Clang’s parsing and
semantic analysis capabilities [14,15], we check the input program’s Abstract
Syntax Tree (AST) using a production-quality compiler. This eliminates the
need for static analysis logic and ensures enhanced accuracy and efficiency.

– Object Models Details: We provide comprehensive insights into the object
models used to achieve seamless conversion of C++ polymorphism code
to ESBMC’s Intermediate Representation (IR). This improvement allows
ESBMC to handle C++ growth and its variants like CUDA [16].

– Simplified Type Checking for Templates: The new clang-based frontend
greatly simplifies type checking for templates, streamlining ESBMC’s ability
to adapt to C++ advancements. Furthermore, this enhancement facilitates
the incorporation of C++ variants like CUDA.

By introducing these advancements, our work significantly enhances ESBMC’s
C++ verification capabilities, paving the way for more robust and efficient
verification of C++ programs and their variants.

2 Background

ESBMC’s verification for C++03 programs reaches its maturity in version v2.1,
presented by Monteiro et al. [11]. ESBMC v2.1 provides a first-order logic-based
framework that formalizes a wide range of C++ core languages, verifying the
input C++ programs by encoding them into SMT formulas. Since C++ Standard
Template Libraries (STL) contain optimized assembly code not verifiable using
ESBMC, ESBMC v2.1 tackled this problem using a collection of C++ operational
models (OM) to replace the STL included in the input program. The OMs are
abstract representations mimicking the structure of the STL, adding pre- and
post-conditions to all STL APIs [17]. Combining these approaches, ESBMC v2.1
outperformed other state-of-the-art tools evaluated over a large set of benchmarks,
comprising 1513 test cases [11]. Nonetheless, ESBMC v2.1 employs a Flex and
Bison-based frontend from CBMC [18], which leads to hard-to-main code and
can hardly evolve to support modern C++11 features.
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Limitations of the old C++ frontend The version of ESBMC in Monteiro
et al. [11] uses an outdated CPROVER-based frontend [18] with the following
limitations.

1. For the type-checking phase, ESBMC could not provide meaningful warnings
or error messages.

2. It is inefficient at generating a body for default implicit non-trivial methods
in a class, such as C++ copy constructors or copy assignment operators

3. The parser of the old front-end needs to be manually updated to cover the
essential C++ semantic rules [19], which leads to hard-to-maintain code to
keep up with the C++ evolution.

4. The old front-end contains excessive data structures and procedures auxiliary
to scope resolution and function type checking.

5. The type checker [19] of the old frontend only works with a CPROVER-based
parse tree and supports up to C++03 standard [20]. We find adapting it to
the new C++ language and library features difficult.

6. The old front-end uses a speculative approach to guess the arguments for a
template specialization and a map to associate the template parameters to
their instantiated values, which leads to hard-to-maintain and hard-to-debug
code in the case of recursive templates. Additionally, owing to its limited
static analysis, the old front-end could not provide any early warning when
there is a circular dependency on the templates.

These limitations combine to a point where the old front-end is too laborious
to maintain and extend for formal verification of modern C++ programs. We
propose the clang-based approach to convert an input C++ program to ESBMC’s
IR to overcome these limitations.

3 Model Checking C++ Programs using Clang AST

Figure 1 illustrates ESBMC’s verification pipeline for C++ programs. The new
clang-cpp frontend type-checks and converts the input C++ program (along with
the corresponding OMs) into the GOTO program representation [21,22]. Then
the GOTO program will be symbolically executed to generate the SSA form of
the program, thus generating a set of logical formulas consisting of the constraints
and properties. An SMT solver is used to check the satisfiability of the formulas,
giving a verdict VERFICATION SUCCESSFUL if no property violation is found
up the bound k or a counterexample in case of property violation.

3.1 Polymorphism

The traditional approach for achieving polymorphism makes use of virtual function
tables (also known as vtables) and virtual pointers (known as vptrs). While the
clang AST, to the best of our knowledge, does not include information about
virtual tables or virtual pointers of a class, it nonetheless provides users with
enough information to enable them to create their vtables and vptrs. In the new
clang-based C++ frontend, we reimplemented the vtable and vptr construction
mechanism following a similar approach from ESBMC v2.1, but with significant
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Fig. 1: ESBMC architecture for C++ verification. The grey block represents the
new clang-based C++ front-end integrated into ESBMC v7.3.

1 class Bird {
2 public:
3 virtual int doit(void) { return 21; }
4 };
5

6 class Penguin: public Bird {
7 public:
8 int doit(void) override { return 42; }
9 };

10 int main(){
11 Bird *p = new Penguin();
12 assert(p->doit() == 42);
13 delete p;
14 return 0;
15 }

Fig. 2: Example of C++ classes with virtual functions.

simplifications based on the information provided in the clang AST. Figure 2
illustrates an example of C++ polymorphism.

Figure 3 illustrates the object models for the Bird and Penguin classes. The
new front-end adds one or more vptrs to each class. The vptrs will be initialized
in the class constructors, which set each vptr pointing to the desired vtable. The
child class contains an additional pointer pointing to a vtable with a thunk to the
overriding function. The thunk redirects the call to the corresponding overriding
function. In the case of multiple inheritances, the child class would have multiple
vtprs “inherited” from multiple base classes. The new front-end can also manage
a virtual inheritance, such as the diamond problem, which avoids duplicating
vptrs, referring to the same virtual table in an inheritance hierarchy. Line 2-4 in
Figure 4a illustrates the dynamic dispatch is achieved using the vptr calling the
thunk, which in turn calls the desired overriding function in Figure 4b Line 9-11.
Note that the override specifier is a C++11 extension that the old front-end
could not support.
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virtual_table::Bird@Bird

.doit(Bird*)=&tag.Bird::doit(Bird*)

Bird
Bird@Bird: vptr

Penguin
Bird@Penguin: vptr

Penguin@Penguin: vptr

virtual_table::Bird@Penguin

.doit(Bird*)=&thunk::Penguin::doit(Bird*)

virtual_table::Penguin@Penguin

.doit(Penguin*)=&tag.Penguin::doit(Penguin*)

Fig. 3: Object models for Bird and Penguin classes

1 int return_value ;
2 return_value =
3 ∗p−>Bird@Penguin
4 −>do i t (p)
5 assert ( return_value == 42)

(a) GOTO program of the dynamic
dispatch in Line 12 of Figure 2.

1 thunk : : Penguin : : do i t ( Bird ∗ ) :
2 int return_value ;
3 return_value =
4 Penguin : : do i t (
5 ( Penguin ∗) t h i s )
6 RETURN: return_value
7 END_FUNCTION
8
9 Penguin : : do i t ( Penguin ∗ ) :

10 RETURN: 42
11 END_FUNCTION

(b) thunk redirecting the call to the
overriding function.

Fig. 4: GOTO conversions of the overriding methods and dynamic dispatch.

3.2 Template

Template is a key feature in C++, allowing type to be passed as a parameter. The
template allows STL containers and generic algorithms to work with different C++
data types [23,24]. The old front-end in ESBMC v2.1 implements the template
specialization based on Siek et al. [25,11]. However, it produces a “CONVERSION
ERROR” for the test case illustrated in Figure 5a. This benchmark is based on
the Friend18 example from the GCC test suite [26], which was added for Bug
10158 on GCC Bugzilla [27]. ESBMC v7.3 successfully verified this benchmark
and found the assertion’s property violation in Figure 5a. The verification result
is illustrated in Figure 5b. The example in Figure 5a contains a C++20 extension.
The foo function is defined in struct X, but gets called using an unqualified
name with explicit template arguments in main. ESBMC v2.1 failed to verify
it due to the “CONVERSION ERROR symbol “‘foo’ not found”. We also tried
this example with CBMC 5.88.1 [28], which aborted during type-checking, and
cppcheck v2.11.1 [29], which did not give any verification verdict.
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1 #include <cassert>
2 template <int N> struct X
3 {
4 template <int M>
5 friend int foo(X const &)
6 {
7 return N * 10000 + M;
8 }
9 };

10 X<1234> bring;
11

12 int main() {
13 assert(
14 foo<5678> (bring)
15 !=12345678);
16 }

(a) Example of C++ class template

1 Vio lated property :
2 f i l e tmp2 . cpp
3 l i n e 13 column 3
4 func t i on main
5 a s s e r t i o n
6 foo <5678>( br ing )!=12345678
7 return_value !=12345678
8
9 VERIFICATION FAILED

(b) Verdict for the template exam-
ple

Fig. 5: ESBMC verified the Friend18 example from the GCC test suite. [26]

4 Experimental Evaluation

We used some benchmarks from Monteiro et al. [11] to evaluate ESBMC v7.3.
These benchmarks were used to assess ESBMC v2.1. Still, we excluded the other
two verifiers (LLBMC [30] and DIVINE [31]) for the following reasons: (1) they
have been already evaluated by Monteiro et al. [11] and ESBMC v2.1 was found
outperforming them; (2) to our best knowledge and effort, we were unable to
get a working version of them. The last version of LLBMC was released in 2013,
and its download link is currently broken. The last commit to DIVINE’s mirror
repository on GitHub dated back to Mar 2021, and DIVINE failed to build.

We did not evaluate the test cases (TCs) that depend on the operational
models (OMs) in each benchmark. We only ran the TCs for core C++ language
features because the OMs for the new clang-based C++ front-end are still under
development, e.g., exception handling support. Otherwise, running test cases for
sure to fail would be pointless due to a feature still being developed. Hence each
benchmark is a subset of the original benchmark, which only comprises TCs for
verifying core C++ language features. There are 399 benchmarks in total over 6
sub-benchmarks. The cpp-sub contains example programs from the book C++
How to Program [32]. The inheritance and polymorphism sub-benchmarks are
extracted from [11]. There are three sub-benchmarks for template specialization
- cbmc-sub comes from the CBMC regressions [33]; gcc-template-tests-sub were
extracted from the GCC template test suite [26]; template-sub is also from
benchmarks used in [11]. cpp-sub contains programs with mixed use of various
C++ language features combined with inheritance, polymorphism, and templates.

4.1 Objectives and Setup

Our evaluation framework is based on Python’s unittest [34]. For each TC
in the test suite, we check whether the verification verdict reported by each



ESBMC v7.3: Model Checking C++ Programs using Clang AST 7

tool matches the expected outcome. TC passes when the tool reports a verdict
of “VERIFICATION SUCCESSFUL” on a program without any violation of
properties or reports “VERIFICATION FAILED” on an unsafe program that
violates a property. Such properties include arithmetic overflows, array out-of-
bounds, memory issues, or assertion failures. Our evaluation aims to answer the
following experimental questions:

EQ1 : (soundness) Can ESBMC give more correct verification results and a
higher pass rate than its previous versions?

EQ2 : (performance) How long does ESBMC v7.3 take to verify C++ programs?
EQ3 : (completeness) Does the tool complete the future work specified by

Monteiro et al. [11]?

The experiment was set up in Ubuntu 20.04 with 32GB RAM on an 8-core
Intel CPU. The dataset, scripts, and logs are publicly available in Zenodo [35].
The accumulative verification time represents the CPU time elapsed for each tool
finishing all sub-benchmarks.

4.2 Results

Table 1 shows our experimental results. With a higher pass rate than ESBMC v2.1
over 5 out of 6 sub-benchmarks, ESBMC v7.3 successfully verified all benchmarks
and passed all test cases, confirming EQ1. As for ESBMC v2.1, the failed TCs
in cpp-sub are due to parsing or conversion errors, meaning the previous tool
version is unable to properly type-check the input programs, probably due to
the weak parser, as described in Section 2. The failed TCs in inheritance and
polymorphism-sub contain a common feature of dynamically casting a pointer of
a child class with a base class containing virtual methods. ESBMC v2.1 could
not handle this type of casting, giving conversion errors.

ESBMC v2.1 has limited support for C++ templates, matching our expecta-
tions as reported by Monteiro et al. [11]. The failed test cases in cbmc-template-sub
are the results of ESBMC v2.1 not able to handle the default template type
parameter or explicit template specialization combined with C++ typedef speci-
fier. The low pass rate of ESBMC v2.1 on gcc-template-tests-sub indicates that
the old version cannot verify test cases used by an industrial compiler. EQ3 is
affirmed through the experiment, as none of these problems persist in ESBMC
v7.3. Since one of the test cases in cpp-sub timed out against ESBMC v2.1 after
900 seconds, the actual verification time has been rectified to 149s; otherwise,
the cumulative verification time would be 1049s. As for the performance EQ2,
ESBMC v7.3 could verify all sub-benchmarks in 128s, faster than its previous
version, which affirms EQ2.

Overall, we have enhanced the template support in ESBMC v7.3, which
completed the future work by Monteiro et al. [11]. In comparison to its previous
version, ESBMC v7.3 can provide more accurate results faster.

4.3 Threats to Validity

While developing the new C++ frontend, we found that the clang AST does
not fully describe the correct order of constructors or destructors to be called in
the most derived class in a complex hierarchical inheritance graph, e.g., crossed
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Table 1: Experimental results showing the pass rate for each sub-benchmark and
accumulative verification time.

Sub-Benchmarks ESBMC-v2.1 pass rate ESBMC-v7.3 pass rate
cpp-sub 91% 100%

inheritance-sub 79% 100%
polymorphism-sub 87% 100%
cbmc-template-sub 92% 100%

gcc-template-tests-sub 39% 100%
template-sub 100% 100%

Total verification Time 149.94s 128.796s

diamond hierarchy. We documented it under an umbrella issue, which is currently
in our backlog [36] on ESBMC GitHub repository [37]. We might need to use an
additional data structure to keep track of the most derived class and implement
an algorithm to recursively describe the correct order of base initialization or
destruction in the class inheritance graph, which remains an open challenge.

5 Conclusion and Future Work

We present a new clang-based front-end that converts in-memory clang AST to
ESBMC’s IR. In our evaluation of ESBMC v7.3, we compared it to ESBMC
v2.1, specifically focusing on a subset of benchmarks to cover core C++ language
features. The results demonstrate significant progress with ESBMC v7.3, as it
successfully parses real-world C++ programs, including those from the GCC test
suite. Notably, it significantly reduces the number of conversion and parse errors
compared to the previous version, showcasing improved performance over the
sub-benchmarks for core language features.

While ESBMC effectively mimics the semantics of APIs of the STL libraries
using the OMs from ESBMC v2.1, we recognize the need for continuous im-
provement. As we endeavor to verify modern C++ programs, these OMs require
regular review and updates to align with the C++ standard used in the input
program. Accurate OMs are essential, as any approximation may lead to incorrect
encoding and invalidate the verification results. To further enhance our front-end
coverage and reduce the number of OMs we maintain, our future work will focus
on handling more C++ libraries.

Additionally, we aim to integrate various checkers, such as cppcheck [29],
into our testing framework to facilitate future evaluations. Our previous success
verifying a commercial C++ telecommunication application using ESBMC v2.1
has inspired further goals [38,11]. With ESBMC v7.3 and beyond, we plan to
verify the C++ interpreter in OpenJDK as part of the Soteria project [39]
and contribute to benchmarks for the International Competition on Software
Verification (SV-COMP) [40].
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A Memory Consumption

In addition to the pass rate and verification time in Table 1, we also assessed each
tool’s memory usage. Table 2 shows the cumulative maximum RSS (Resident Set
Size) for each benchmark using each tool under evaluation. Our metrics collection
approach is based on Python’s resource module 1, subprocess module 2 and unit
test framework [34].

Memory metrics collection approach The unit test framework encapsulates
a benchmark in a test suite that launches a sub-process for each test case and
waits for it to finish. We obtain the maximum RSS for each test case sub-process
that has been terminated. In each row of Table 2, the cumulative maximum
RSS for a benchmark is calculated by summing the maximum RSS for each
sub-process. The final row, Total memory, totals the amount of memory used
by each tool to perform each benchmark.

Table 2: Experimental results showing the cumulative maximum RSS (Resident
Set Size) for each sub-benchmarks.

Sub-Benchmarks ESBMC-v2.1 ESBMC-v7.3
cpp-sub 31477 MB 19385 MB

inheritance-sub 231 MB 845 MB
polymorphism-sub 722 MB 2373 MB
cbmc-template-sub 650 MB 2295 MB

gcc-template-tests-sub 395 MB 1387 MB
template-sub 207 MB 727 MB

Total memory 33682 MB 27012 MB

Compared to ESBMC v2.1, ESBMC v7.3 can verify more test cases and
uses less memory. The lower memory usage of v2.1 than v7.3 is due to lower
pass rates for the benchmarks, mainly because of v2.1’s inadequacy to handle
C++ templates. Many TCs failed due to CONVERSION ERROR in ESBMC’s
front-end and never even reached the solver in ESBMC’s backend. As a result,
no verification effort was made for those TCs and hence less memory was used.

B Performance Using Different SMT Solvers

ESBMC supports multiple SMT solvers in the back-end, such as Z3 [41], Bitwu-
zla [42], Boolector [43], MathSAT [44], CVC4 [45], and Yices [46]. We also
evaluated ESBMC v7.3 with various solvers over the same set of benchmarks.
Table 3 shows the pass rates and total verification time for ESBMC v7.3 using
different solvers, and Table 4 shows the memory consumption for the same
1 https://docs.python.org/3/library/resource.html
2 https://docs.python.org/3/library/subprocess.html

https://docs.python.org/3/library/resource.html
https://docs.python.org/3/library/subprocess.html
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experimental set-up using the same metrics collection approach explained in
Appendix A.

Overall, ESBMC v7.3 with Boolector is the fastest configuration that also
consumes the minimum amount of memory to verify all benchmarks. Among the
other solvers, the memory consumption of ESBMC v7.3 with Bitwuzla comes near
the Boolector configuration. This is probably because Bitwuzla is an extended
forked Boolector [42]. We also found that MathSAT tends to use more memory
for timed-out test cases, as ESBMC v7.3 with MathSAT failed only one TC in
the cppsub benchmark due to timeout but uses more memory than the other
configurations.

Table 3: Experimental results showing the pass rate and total verification time
for ESBMC using different solvers.

Sub-Benchmarks Boolector CVC4 MathSAT Yices Z3 Bitwuzla
cpp-sub 100% 99% 99% 100% 100% 100%

inheritance-sub 100% 93% 100% 100% 100% 100%
polymorphism-sub 100% 100% 100% 100% 100% 100%
cbmc-template-sub 100% 97% 100% 100% 100% 100%

gcc-template-tests-sub 100% 96% 100% 100% 100% 100%
template-sub 100% 92% 100% 100% 100% 100%

Total verification Time 128.796s 637.988s 131.934s 182.327s 162.848s 152.442

Table 4: Experimental results showing the memory usage for ESBMC using
different solvers.

Sub-Benchmarks Boolector CVC4 MathSAT Yices Z3 Bitwuzla
cpp-sub 19385 MB 63757 MB 153326 MB 27983 MB 35758 MB 19455 MB

inheritance-sub 845 MB 950 MB 940 MB 847 MB 946 MB 855 MB
polymorphism-sub 2373 MB 2657 MB 2632 MB 2320 MB 2596 MB 2387 MB
cbmc-template-sub 2295 MB 2558 MB 2449 MB 2308 MB 2457 MB 2299 MB

gcc-template-tests-sub 1387 MB 1559 MB 1480 MB 1401 MB 1497 MB 1395 MB
template-sub 727 MB 800 MB 781 MB 730 MB 774 MB 733 MB

Total memory 27012 MB 72281 MB 161608 MB 35589 MB 44028 MB 27124 MB

C Planning for Future work

ESBMC v2.1 mimics the semantics of the APIs of C++ STL libraries using a set of
operational models (OMs). The C++ front-end of ESBMC has been completely
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rewritten, and the back-end has also undergone significant development and
evolution since v2.1 was published in [11], therefore it is questionable whether
those OMs still work. We believe that it is essential to evaluate both ESBMC
v2.1 and v7.3 with the existing OMs over the C++ library benchmarks from [11].
Table 5 provides a summary of the pass rates.

As shown in Table 5, the OMs of ESBMC v2.1 give a fairly good pass rate
of 80% and more in most of the benchmarks, except for STL algorithm, list,
multiset and vector, where the pass rate is below 50%. In ESBMC, there are a
total of 63 C++ OMs representing the most frequently used STL libraries. 41 out
of 63 OMs have been enabled with the new clang C++ front-end. The remaining
OMs are still being fixed. As we continue to enable more OMs, the progress is
tracked and publicly available for viewing on ESBMC’s wiki page OM Workload
Estimate and Tracking 3.

Table 5: Pass rates of OM-dependent benchmarks for C++ STL libraries.

Benchmarks ESBMC-v2.1 pass rate ESBMC post-v7.3 pass rate
string 99% 0%
stream 89% 33%

algorithm 42% 0%
deque 95% 0%

list 53% 0%
map 83% 0%

multimap 89% 0%
multiset 74% 0%

priority_queue 100% 0%
set 83% 0%

stack 86% 0%
vector 22% 0%

try_catch 88% 0%

3 https://github.com/esbmc/esbmc/wiki/OM-Workload-Estimate-and-Tracking

https://github.com/esbmc/esbmc/wiki/OM-Workload-Estimate-and-Tracking
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