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STAR-TM: STructure Aware Reconstruction of
Textured Mesh from Single Image

Tong Wu, Lin Gao∗, Ling-Xiao Zhang, Yu-Kun Lai, and Hao Zhang.

Abstract—We present a novel method for single-view 3D reconstruction of textured meshes, with a focus to address the primary

challenge surrounding texture inference and transfer. Our key observation is that learning textured reconstruction in a structure-aware

and globally consistent manner is effective in handling the severe ill-posedness of the texturing problem and significant variations in

object pose and texture details. Specifically, we perform structured mesh reconstruction, via a retrieval-and-assembly approach, to

produce a set of genus-zero parts parameterized by deformable boxes and endowed with semantic information. For texturing, we first

transfer visible colors from the input image onto the unified UV texture space of the deformable boxes. Then we combine a learned

transformer model for per-part texture completion with a global consistency loss to optimize inter-part texture consistency. Our texture

completion model operates in a VQ-VAE embedding space and is trained end-to-end, with the transformer training enhanced with

retrieved texture instances to improve texture completion performance amid significant occlusion. Extensive experiments demonstrate

higher-quality textured mesh reconstruction obtained by our method over state-of-the-art alternatives, both quantitatively and

qualitatively, as reflected by a better recovery of texture coherence and details.

Index Terms—Structure-aware single-view 3D reconstruction, textured meshes, texture completion, transformer.

✦

1 INTRODUCTION

S INGLE-VIEW 3D reconstruction has been one of the most
classical problems in computer graphics and geometric

deep learning. Up to now, most efforts have been devoted
to geometry recovery [1], [2], [3], [4], [5], [6], [7], with more
recent attempts aimed at improving the reconstruction of
topological [8], [9] and surface details [10]. In comparison,
there have been conspicuously few works [11], [12], [13],
[14] on the single-view reconstruction of textured 3D shapes,
despite the ubiquity of textured models in computer graph-
ics.

Existing methods for learning textured shape recon-
structions are all limited in terms of the shape topolo-
gies or texture details they can handle. In an earlier
work, Im2Avatar [11] learns to reconstruct a voxel model
and predict a color per voxel. But their voxelization is
low-resolution, due to cost constraints, and is unable to
represent high-frequency textures. Both the Differentiable
Interpolation-Based Render (DIB-R) [13] and Soft Rasterizer
(SoftRas) [14] employ deformable mesh templates and rely
on neural rendering to set up the supervision signals. How-
ever, their template meshes are restricted to having sphere
topology, with each corresponding to a single texture im-

• ∗ Corresponding Author is Lin Gao (gaolin@ict.ac.cn).
• Tong Wu, Lin Gao, and Ling-Xiao Zhang are with the Beijing Key Labora-

tory of Mobile Computing and Pervasive Device, Institute of Computing
Technology, Chinese Academy of Sciences. Tong Wu, Lin Gao, and Ling-
Xiao Zhang are also with University of Chinese Academy of Sciences,
Beijing, China.
E-mail: {wutong19s, gaolin, zhanglingxiao}@ict.ac.cn

• Yu-Kun Lai is with School of Computer Science & Informatics, Cardiff
University, UK.
E-mail: LaiY4@cardiff.ac.uk

• Hao Zhang is with School of Computing Science, Simon Fraser Univer-
sity, Canada.
E-mail: haoz@sfu.ca

• Project page: http://geometrylearning.com/STAR-TM/

age. Flexible shape topologies can be naturally attained via
implicit functions, as in Differentiable Volume Rendering
(DVR) [12], which can be trained to predict both signed
distances and color values. However, both the 3D shapes
and textures reconstructed by DVR tend to be “blurry”,
due to significant variations in the training data, as well
as sparse sampling during training to avoid high costs.
Another common limitation shared by the above methods
is that they all treat a 3D shape and its texture modeling as a
whole, without accounting for the shape’s part structure and
its impact on texture inference during reconstruction.

Figure 1. Single-view reconstruction of textured meshes by our
structure-aware method, STAR-TM. Top: three input images, with the
third one taken “in the wild”. Bottom: reconstructed meshes in two views,
with insets revealing the parts retrieved and assembled into the outputs.
Note that the car wheels do not appear in the input image, but are well
“hallucinated” by our learned transformer model for texture completion.

In this paper, we present a novel approach for single-
view 3D reconstruction of textured meshes to address afore-
mentioned challenges including topology variations and
blurry textures. Our approach is data-driven since single-
view reconstruction is an ill-posed problem and the ill-
posedness becomes even more severe for texture inference
and transfer. More importantly, our data-driven reconstruc-
tion framework is structure-aware and globally consistent, to
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Figure 2. Overall pipeline of our method. Given a single image I as input, it predicts an initial mesh Minit , then retrieves a set of shape parts with
a fixed UV parameterization to assemble a structured mesh MA. An intrinsic image decomposition network removes lighting effects from the input
image I . Texture is then transferred from the input image to the visible regions of MA, at the proper pose. A texture completion network, based on
a transformer, is trained to finally complete missing textures to obtain a fully textured mesh. Note that the table base in the green frame is composed
of several deformed boxes.

effectively handle both the ill-posedness of the texturing
problem and the significant variations in object pose and
texture details from input images. Our main motivation
is that there is generally less texture variation across an
object part than over an entire object, and shape semantics,
e.g., symmetry, can further help facilitate the inference and
completion of unseen textures.

Given a single input image of a textured object with
arbitrary topology, we perform structured mesh reconstruc-
tion, by first predicting a genus-0 mesh using Pixel2Mesh [5]
and then performing a retrieval-and-assembly approach that
utilizes a dataset of segmented 3D objects with consis-
tent semantic labels. The output mesh consists of a set of
genus-zero parts parameterized by deformable boxes and
endowed with semantic information. For texturing, we first
“unproject” the input textures by transferring visible colors
from the input image onto the unified UV texture space of
the deformable boxes. Then we combine a learned trans-
former model for per-part texture completion with a global
consistency loss to optimize inter-part texture consistency.
Specifically, the loss enforces parts belonging to the same
semantic group (e.g., all the legs of a chair) to be textured
consistently. The overall pipeline is shown in Figure 2.

We have opted to design a transformer [15] for texture
completion since it excels at long-range predictions. After
the unprojection, there may be large gaps between textured
regions on a reconstructed object part due to significant
occlusion of the captured object. Our texture completion
model operates in an embedding space and is trained end-to-
end, with the transformer training enhanced with retrieved
texture instances to improve texture completion amid sig-
nificant gaps. The embedding space is constructed via a
vector quantization variational autoencoder, specifically a
VQ-VAE [16] (Vector-Quantized Variational Autoencoder),
which has demonstrated success in learning and generating
textured mesh parts with high-frequency details and less
blurriness [17], compared to conventional VAEs.

To our knowledge, our method represents the first part-
wise approach for single-view textured mesh reconstruction.
Our main technical contribution lies in the texture predic-
tion module that integrates the transformer model with
a global consistency loss to encourage inter-part texture
consistency in the reconstruction task. As shown in Figs. 1
and 8, our method works well under the synthetic setting
and is applicable to input images “in the wild”. Extensive
experiments demonstrate higher-quality textured mesh re-

construction obtained by our method, over state-of-the-art
alternatives including DIB-R and DVR, both quantitatively
and qualitatively, as reflected by a better recovery of texture
coherence and details. We also compare our texture comple-
tion transformer, which is trained with VQ-VAE encodings,
with recent image completion networks [18], [19], including
a transformer model which operates in texture space [18].

2 RELATED WORK

There has been substantial literature on single-view 3D
reconstruction which produces a variety of outputs includ-
ing point clouds (e.g., [1], [20], [21]), voxels (e.g., [3], [4]),
implicit fields (e.g., [6], [7], [8], [10], [22], [23]), and meshes.
Our coverage in this section shall focus on single-view mesh
reconstruction, with more emphasis on structured recon-
structions. In addition, we discuss related works on learning
textured representations, recent image completion works
that are most relevant to our method, as well as the language
transformer which inspired our texture completion module.

Single-view mesh reconstruction. Early work by Xu et
al. [24] retrieves and deforms a 3D mesh from a dataset, in
a structure-preserving manner, to match the silhouette of
the captured object. This was followed by Shen et al. [25] to
allow parts from different shapes to be retrieved and assem-
bled. Most learning-based methods designed to reconstruct
a single mesh also rely on deformable mesh templates [13],
[14], [26], [27], [28], [29], while in AtlasNet, Groueix et al. [2]
decompose a mesh surface into multiple patches and learn
a mapping from 2D images to a latent mesh representation
for single-view reconstruction. We adopt Pixel2Mesh [5] in
our first reconstruction stage. This method learns to deform
a mesh template in a coarse-to-fine manner to improve the
reconstruction of geometric details.

There have been relatively few works on single-view
reconstruction of structured meshes. Im2Struct [30] learns to
reconstruct an organized arrangement of oriented bounding
boxes from an input image, using the generative recur-
sive autoencoders developed by Li et al. in GRASS [31].
GSIR [32] not only predicts oriented bounding boxes from
input images but also estimates more detailed geometry by
inpainting reconstructed shapes’ spherical maps similar to
GenRe [33]. BSP-Net [34] learns a set of planes that can
best reconstruct a set of training 3D shapes via binary space
partitioning, followed by union and merging. Structured
single-view reconstruction is possible by utilizing plane
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correspondences to propagate semantic labels manually
provided to one shape. Uy et al. [35] reconstruct struc-
tural meshes from 2D images by hierarchically retrieving
and deforming shape parts, in a joint learning framework,
from the PartNet [36] dataset, which contains fine-grained,
hierarchical part annotations. StructureNet [37] and LSD-
StructureNet [38] encode shapes into a latent space with
recursive geometry and structure encoders and reconstruct
structured shapes by learning a mapping network from the
input image to its learned latent space. Structural shape
reconstruction is also studied in [39], [40].

Learning textured shape representations. Aside from
DIB-R [13], Im2Avatar [11] and DVR [12] discussed in
Section 1 , TextureFields (TF) [41] reduces the cost of voxel-
based representations by learning to implicitly map shape
geometry and texture into a high-dimensional latent space.
However, TF focused on novel view synthesis from image,
point, or depth inputs, rather than single-view reconstruc-
tion. There are also works based on implicit representations
focusing on reconstructing textured shapes from RGB-D
scans for human bodies [42], [43] and scenes [44], [45]. Other
works [46], [47] study how to reconstruct textures for a given
mesh. Pavllo et al. [48], [49] develop GAN-based generative
models for textured meshes, also by deforming a single
mesh template and predicting mesh vertex displacements
and textures in a latent space. However, a single template
mesh is unable to represent shapes with arbitrary topolo-
gies and a single UV image is limited by its resolution
and expressiveness to generate or reconstruct high-quality
and detailed textures. To boost the quality of reconstructed
textured meshes, ViewGen [50], UMR [51], and Unicorn [52]
introduce semantic consistency loss, cycle consistency loss,
and neighborhood consistency loss to the training process.

Built on the autoencoder framework of SDM-Net [53],
TM-Net [17] represents the first learned model for struc-
tured textured meshes in the form of multiple UV-
parameterized deformable boxes. While exhibiting promis-
ing results on textured mesh autoencoding and generative
tasks, TM-Net was not adapted for single-view reconstruc-
tion.

Image completion. Existing literature on image comple-
tion and inpainting is rich, e.g., [54], [55], [56], [57]. We
only discuss two recent works that are closely related to
our texture completion network. In CTSDG, Guo et al. [19]
divide the problem into structure completion and texture
completion, and develop two encoder-decoder networks to
predict complete structures and textures simultaneously. A
feature fusion and contextual feature aggregation module is
then applied to refine the result. With the success of vision
transformers, the Image Completion Transformer (ICT) by
Wan et al. [18] first downsamples an incomplete image to a
low-resolution patch (e.g., 32× 32) and trains a transformer
to predict the corresponding complete patch. This is fol-
lowed by a guided upsampling network to restore the input
image resolution. We observe that the completion results by
ICT tend to exhibit blurriness and artifacts, likely due to
the loss of information during downsampling which is un-
recoverable by the upsampling. In contrast, our transformer
model operates on a VQ-VAE embedding space which leads
to better performance in retaining and recovering texture
details, as we demonstrate in Section 4.

Figure 3. Two results showing that the cropping process operating
in image space and utilizing the background turns a genus-0 mesh
predicted by Pixel2Mesh into a high-genus point cloud (PC): (c) and
(f).

Retrieval-enhanced language models. Recently, large
pre-trained models such as GPT-2 [58] have achieved im-
pressive feat on many natural language processing (NLP)
tasks. At the same time, retrieval-enhanced language mod-
els [59], [60], [61], [62], [63] have gained further atten-
tion as they learn to search and retrieve training data
related to a given test input to better utilize the priors in
the training dataset. Our transformer design follows the
retrieval-enhanced approach developed in RETRO [64], an
NLP model which decomposes sentences into chunks and
searches nearest neighbors for each chunk to obtain fine-
grained retrieval results. It also introduced a chunked cross
attention module to fuse each chunk and its corresponding
nearest neighbors.

3 METHOD

To present our single-view textured mesh reconstruction, we
first show how we reconstruct a structured mesh, which
provides the unified UV mapping for texture recovery. In
the following section, we describe our learning approach to
obtain high-quality textures for the mesh.

3.1 Geometry Reconstruction

For geometry reconstruction, we first adopt Pixel2Mesh [5]
to predict an initial mesh Minit from the input image I .

Topology recovery. It should be noted that the Minit

produced by Pixel2Mesh is a genus-0 ellipsoid in the camera
coordinates. Following the setting of DISN [8] and D2IM-
Net [10], we assume that the camera intrinsic parameters
K are known. To support arbitrary topology, we project
sampled points Minit to the image plane using the intrinsic
parameters K and remove those points whose projections
lie in the background area of the input image I . This
“cropping” step would turn Minit into a point cloud Pcrop

to allow the reconstructed meshes to have a non-zero genus.
Fig. 3 shows two such examples.

Structured mesh construction. To attain geometry qual-
ity, we take a retrieval-and-assembly approach by utilizing
high-quality 3D shapes from existing datasets in a part-wise
manner.

To retrieve shapes in the dataset, we need to put the
predicted mesh Minit which is in the camera coordinates
into the same coordinates as the shapes in the dataset. To
estimate the extrinsic parameters that represent the trans-
formation between these two coordinates, we first rotate the
cropped point cloud Pcrop sampled from the predicted mesh
Minit to make its oriented bounding box’s faces parallel to
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XY , XZ , and Y Z planes and translate its center to the
origin. Then we rotate Pcrop along the three axes to find
the transformation that minimizes the Chamfer distance
between the cropped point cloud Pcrop and shapes in the
dataset. In this way, we estimate the extrinsic parameters
and transform the cropped point cloud to the same coordi-
nates as the shapes in the dataset. In the estimation process,
we found that randomly sampling 100 shapes from the
training set is sufficient to estimate a good transformation.
For the detailed algorithm of the camera extrinsics estima-
tion process, please refer to the supplementary material.
After transforming the cropped point cloud into the same
coordinates with shapes in the dataset, we further scale and
translate each shape in the dataset to make sure it fits into
the bounding box of the cropped point cloud and perform
the Iterative-Closest-Point algorithm [65] to align shapes in
the training dataset with the cropped point cloud before
retrieval and assembly.

With the predicted mesh Minit providing 3D informa-
tion, the input image I providing 2D information, the esti-
mated extrinsic parameters, as well as the already known
intrinsic parameters K , we perform retrieval and assembly
at the part level by maximizing the 2D similarity between
the input image and the assembled shape’s projection and
the 3D similarity between the predicted mesh Minit and
the assembled shape following [25] to obtain an assembled
mesh MA from a dataset, where consistent semantic infor-
mation is defined and each shape part is approximated by a
deformable box [53]. As a result, the assembled shape MA is
composed of multiple deformed template boxes that have a
unified UV texture space. For more details of the retrieval-
and-assembly process, please refer to the supplementary
material.

Structured mesh alignment. For the accurate texture
unprojection, we would align the reconstructed mesh MA

with the input image I in both global and local parts
manners. Then the visible texture is unprojected from the
input image I to the mesh surface of MA. Finally, a texture
completion network with a retrieval-enhanced module and
global consistency loss is trained to complete the unseen
area in the UV parameterization space. To alleviate mis-
alignments between the mesh MA and the input image I ,
we propose to first optimize the global transformation of
the assembled shape MA via a soft neural renderer [14]. Let
Tg denote the global transformation for the mesh MA to be
optimized and Is is the silhouette of the input image. The
global optimization process can be formulated as:

Lg = LIOU (P (Tg ×MA,K), Is), (1)

where P represents the neural render and × denotes matrix
product. LIOU is the Intersection-Over-Union(IOU) loss in
DIB-R [13] defined as:

LIOU = 1− ∥Is ⊙ I
′

s∥1
∥Is + I

′

s − Is ⊙ I
′

s∥1
(2)

where I
′

s is the silhouette of the assembled mesh MA.
The global alignment cannot ensure that each shape

part is aligned to the input image. Further, we use
a similar optimization strategy to optimize the trans-
formation for each shape part in MA. Let T i

l denote

the local transformations for the i -th shape part M i
A in

the mesh MA as the optimization target. We minimize
the following loss to optimize the local transformations:

Ll =

∑

i

viLIOU

(

P
(

T i
l × T̂g ×M i

A,K
)

, Is

)

+

λsym

∑

j∈sym(i)

Lcd

(

ref
(

T i
l × T̂g ×M i

A, nj , dj

)

, T
j
l
× T̂g ×M

j
A

)

(3)

where T̂g denotes the optimized global transformation, vi
denotes the visibility of the i -th part. vi = 1 if the ratio
of visible vertices not blocked by other parts to visible
vertices is over 0.5. sym(i) is a set of symmetry parts’
indices for the i -th part, Lcd stands for the Chamfer dis-
tance operator. nj and dj are the normal vector and offset
of the reflection plane between the i -th part and the j -
th part. ref (·, ·, ·) is the reflection function and defined
as: ref(p, n, d) = p − 2p·n+d

∥n∥2 n. λsym controls the relative

importance of the second term and is set to 0.5 in our
experiment. We iterate 20 times with a learning rate 10−2

for both global optimization and local optimization. After
transformation optimization, the location of each shape part
is adjusted to make its projection better fit the input image.

Motivation. The reasons why we choose to recon-
struct structured meshes in a retrieval-and-assembly man-
ner based on Pixel2Mesh instead of predicting from a latent
representation, e.g., through TM-Net [17], are three-fold.
Firstly, meshes predicted from latent representations are
usually smooth in terms of geometry. By retrieving and
assembling the training data, we can produce 3D reconstruc-
tions with fine geometry details. Secondly, our retrieval-and-
assembly approach transforms the reconstructed mesh into a
structural representation consisting of several genus-0 parts
with a fixed texture mapping to facilitate texture reconstruc-
tion. Finally, the projection of the mesh reconstructed by
Pixel2Mesh is well aligned to the input image, allowing for
accurate texture un-projection from the input image to the
mesh surface.

3.2 Texture Reconstruction

Before reconstructing texture, we remove the shadow from
the input image and extract the albedo component us-
ing the recently proposed intrinsic image decomposition
method [66]. Then we unproject texture from the input
image I onto each shape part’s surface and then to its UV
space. To obtain a fully textured mesh, we need to fill the
missing texture, which poses several challenges:

• First, texture images often contain high-frequency
details, which are hard to be encoded or generated.

• Second, visible areas are quite limited due to occlu-
sions, and missing pixels can be spatially far from
those visible pixels in the UV texture space.

• Last but not least, reconstructed textures should be
consistent or compatible in the same semantic group.
For example, the four legs of a chair are expected to
have the same texture.

To solve the above problems, we first apply a vector quan-
tization (VQ) based texture encoding network inspired by
TM-Net [17] to encode texture details. With the texture
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Figure 4. The architecture of our texture completion network. Our texture completion network takes several incomplete textures S0 , . . . ,Sg−1 in the
same semantic group as input and encodes them into discrete codes s0 , . . . , sg−1 . Our retrieval-enhanced module searches for the two nearest
neighbors sn1 , sn2 for these discrete codes from the training set, which goes through a cross-attention module and a transformer decoder together
with the discrete codes to predict the discrete codes of complete textures t ′0 , . . . , t

′

g−1 . At last the pre-trained vector quantization decoder decodes

the predicted discrete codes into complete textures T
′

0 , . . . ,T
′

g−1 for these parts. Our model minimizes the difference between predicted complete
textures and ground truth and the perceptual differences between predicted complete images of different parts via a global consistency loss.

encoding network embedding textures into a code vector,
the problem is turned to completing texture images in the
vector quantization embedding space. To model the long-
range relation between missing pixels and visible pixels,
it is natural to adopt the transformer here as it is good at
learning relationships between elements in a long sequence.

In addition, we apply a retrieval-enhanced module to
search in the dataset for information related to the given
incomplete texture to better use the knowledge prior in the
training set and get complete textures with high quality.
To promote texture consistency among different parts, the
relationship between different parts in the same semantic
group is taken into account with a global consistency loss to
minimize perceptual differences among different parts.

Texture encoding. Let S denote the incomplete texture
of a shape part and T denote the corresponding ground
truth texture for the part; see Section 4 under “Data” for an
explanation of how we prepare these textures. As texture
images usually contain repetitive patterns, we first train a
vector quantization (VQ) based network to encode them.
This network consists of an encoder EncVQ , a codebook
storing representative features, and a decoder DecVQ .

The encoder first encodes the texture image S into a
continuous feature map se , which passes through VQ to
map each feature vector in se to its nearest neighbor e in the
codebook to obtain a discrete feature map sq . To capture the
data distribution in the training set, the codebook is updated
during training as in [16]. The decoder then decodes the
discrete feature map sq to reconstruct the texture image S ′.

After the texture encoding network is trained, we use
the pre-trained encoder EncVQ to encode the incomplete
texture S and the corresponding ground truth T into their
discrete codes s = EncVQ(S ) and t = EncVQ(T ), in which
each element stores an entry to the codebook. So we convert
the texture completion problem into translating the discrete
code s of the incomplete texture to the discrete code t of the
ground truth texture.

Retrieval-enhanced texture completion. As unseen pix-
els on the incomplete texture can be spatially far from
visible ones, it is natural to adopt a transformer network
here for texture completion which can better capture the

relationships between elements in a long sequence or with
long-range dependencies. Our texture completion network
is illustrated in Fig. 4. Further, we observe that incomplete
texture can have a large unseen area or is even totally
invisible. To boost the completion quality, we propose a
retrieval-enhanced module [64] to make better use of the
training set prior. Given the discrete code s of an incom-
plete texture, the module retrieves two nearest neighbors
sn1 and sn2 from the training set in the discrete code
space. We then project the incomplete texture’s discrete
code s , sn1 , and sn2 into feature vectors via a learnable
embedding and add extra positional embeddings [15] onto
it to form the intermediate feature representations E , En1 ,
and En2 in d dimensions. The positional embedding is
extracted by a positional encoding module PE defined as:

PE(p) = (sin(20πp), cos(20πp), ..., sin(2L−1
πp), cos(2L−1

πp))
(4)

The positional encoding module PE takes each element
p in a feature vector as input and outputs its positional
embedding feature. Then a cross-attention module takes
E ,En1 and En2 as query, key, and value respectively to
fuse them together. The retrieval-enhanced module can be
formulated as:

headi = softmax

(

EW
Q
i (En1W

K
i )T√

d

)

(

En2W
V
i

)

,

RE(E,En1, En2) = [head1; ...;headh]W
O, 1 ≤ i ≤ h,

(5)

where h represents the number of heads, WQ
i , WK

i , and
W

V
i are three linear projection layers. WO is also a learn-

able fully connected layer, which aggregates the outputs
from different heads. The cross-attention module learns to
find which values in E ,En1 and En2 are most relevant
to the incomplete texture’s discrete code and deserve the
largest attention coefficients.

Globally consistent texture completion. It is common
that shape parts in the same semantic group share the
same or similar texture patterns, for example, textures for
different legs in a chair are usually the same, which re-
minds us that invisible areas for shape parts in the same



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, JULY 2022 6

semantic group should be filled simultaneously instead
of individually. Hence we introduce a global consistency
loss in the completion network to ensure the consistency
between inpainted results of different parts in the same
semantic group. Let s0 , . . . , sg−1 be discrete codes of g

incomplete textures in the same semantic group. Then we
use the retrieval-enhanced module to search for the two
closest neighbors in the discrete code space for this semantic
group via a weighted sum of distances to these parts where
weights are defined by the number of visible pixels in
incomplete textures for different parts. The texture com-
pletion network then takes s0 , . . . , sg−1 and the two near-
est neighbors as input to predict complete discrete codes

t
′

0 , . . . , t
′

g−1 . These complete discrete codes are decoded
by the Vector Quantization network to generate complete

texture images T
′

0 , . . . ,T
′

g−1 , where T
′

i = DecVQ(t
′

i ) is the
complete texture for the i -th part. The global consistency

loss is defined as Lgc =
∑g−1

i=0

∑g−1

j=i+1
LPIPS(T

′

i , T
′

j ),
where LPIPS (·, ·) is the perceptual similarity operator [67].
Adopting perceptual loss here instead of using L1 or L2 loss
is because different parts in the same semantic group are not
guaranteed to have exactly the same textures so may not be
pixel-wise identical.

Overall, the texture completion network minimizes the
loss:

Lcompletion = Limage + λ1LCE + λ2Lgc

=

g−1
∑

i=0

||T ′

i − Ti||1 + λ1CE(t′i, ti) + λ2Lgc

(6)

where ti and Ti are the ground truth discrete code and
texture for the i -th part in the group. The first term stands
for the mean L1 loss and CE (·, ·) stands for the cross
entropy loss. λ1 and λ2 control the relative importance of
each loss term. Note that since we know which pixel is
invisible in the incomplete image S and which element is
unknown in discrete code s by downsampling the input
visibility mask, we only calculate losses in invisible areas in
Eqn. 6.

Network architecture. The input image to our vector
quantization network is downsampled four times by the
encoder EncVQ and converted into an intermediate feature
map of size 24×32×256. The feature map then goes through
quantization and is transformed into the quantized feature
map. Finally, the decoder DecVQ decodes the quantized
feature map to reconstruct the input image. The detailed
network architecture is depicted in the supplementary ma-
terial.

The architectural detail of our texture completion trans-
former network is shown on the right of Fig. 4. The input
sequence first goes through a retrieval-enhanced module
that finds the two closest neighbors from the training
dataset. Then the input sequence and its two neighbors go
through a multi-head attention module to turn into a fused
feature. After that, the fused feature is fed into a 4-layer self-
attention block, a normalization layer, and a fully connected
layer and converted to the output.

4 RESULTS AND EVALUATIONS

We first introduce the data we used in our experiments
and how we generate ground truth textures and incomplete

Table 1
Semantic labels for each object category used in our retrieval and
assembly procedure. The inset figures provide one example per
category with color matching between labels and object parts.

Category Semantic Labels Example

Car ‘bodywork’, ‘chassis’

Chair
‘head’, ‘back’, ‘arm’,

‘base’, ‘seat’

Plane
‘fuselage’, ‘wings’,

‘tails’, ‘power system’

Table ‘tabletop’, ‘table base’

textures for training the texture completion network. Then
we present our implementation details including time and
hyper-parameters we use. We also give a brief introduction
of baseline methods and metrics we use in quantitative and
qualitative experiments. Finally, we will present the results
of comparisons and ablation studies.

Data. We perform experiments on the four largest object
categories in the ShapeNet dataset [68]: chairs, tables, cars,
and planes, as they provide ample texture data to train
our texture completion network. Segmentation information
for chairs and tables are from PartNet [36], while for cars
and planes, we use semantic labels from SDM-Net [53].
Table 1 summarizes the semantic labels used to retrieve
and assemble shapes by our method STAR-TM. Each object
category is randomly divided into training and test sets,
with a ratio of 4:1.

To provide the ground truth textures, we non-rigidly
deform a template box with a fixed UV parameterization
to each semantic part and project vertices on the box to
the ShapeNet mesh to obtain vertex colors following TM-
Net [17]. For incomplete textures, we follow Choy et al. [3]
to render shapes from 36 different viewpoints and output
images of size 1024×1024 with corresponding intrinsic and
extrinsic parameters. By projecting deformed boxes onto the
image plane, we get partial textures from the rendered im-
ages for each deformed box. Both the ground truth texture
and incomplete texture for a single part are of size 256×192.

Implementation details. When training the texture en-
coding network, we set the codebook size to 1024× 256
and the discrete code is of size 24× 32 and flattened to
be a sequence of length 768. For the texture completion
transformer network, we set λ1 to 0.1 and λ2 to 0.1 in all our
experiments. For the texture encoding network, we train for
20 epochs using Adam [69] with learning rate 4.5×10−5 and
10 images per batch. The transformer network is trained for
30 epochs and also optimized using Adam, the batch size is
set to 2 and the learning rate is set to 9× 10−6. We train the
network on four V100 GPUs and the whole training process
takes about a week for a typical category like table.

Evaluation metrics. To evaluate the quality of the recon-
structed textured meshes, we render the meshes into the
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image space and compare the rendered results by different
methods with the corresponding ground truth. For this
comparison, we adopt three well-known metrics: structure
similarity image metric (SSIM) [70], peak signal-to-noise ra-
tio (PSNR), and Learned Perceptual Image Patch Similarity
(LPIPS) [67]. For texture completion evaluation, we compare
the inpainted texture images with the corresponding com-
plete images under these three metrics. In addition, we also
compare the mesh geometries in the 3D object space using
the symmetric Chamfer Distance (CD).

Baselines. For the single-view textured mesh reconstruc-
tion task, we compare our method with DIB-R [13], Uni-
corn [52] (mesh-based), PixelNeRF [71] (implicit representa-
tion based), and DVR [12] (implicit representation based).
In addition, to prove the effectiveness of the proposed
texture completion network for single-view reconstruction,
we replace it with current state-of-the-art image completion
methods, Image Completion Transformer (ICT) [18] and
CTSDG [19] to form two other baselines denoted as ICT
and CTSDG.

4.1 Reconstruction results and comparisons

We show single-view textured mesh reconstructions of dif-
ferent object categories and compare them with state-of-the-
art methods including DIB-R [13], Unicorn [52], PixelNeRF
(PN) [71], DVR [12], TM-Net [17], as well as two recent im-
age completion baselines, CTSDG [19] and ICT [18], which
also reconstruct shape geometry via retrieval and assembly
from shapes parts. From the qualitative comparisons shown
in Fig. 5, it can be seen that the results of DIB-R [13] and
Unicorn [52] may have wrong shape topology compared to
the inputs as its geometry/topology is constrained by the
template deformation. The results of PN [71] have correct
topology but their textures are blurry since it fails to accu-
rately reconstruct the density values in its volumetric rep-
resentation from a single image. DVR [12] can reconstruct
correct topology and is able to extract an explicit surface,
but it fails to reconstruct the texture details due to its sparse
sampling during training to reduce computational cost. Two
other image completion baselines ICT [18] and CTSDG [19]
do not take the relationship between different parts into
account and may fail to produce plausible complete texture
images or are unable to reach texture consistency between
different parts. In comparison, our method, STAR-TM, is
able to recover the shape geometry more faithfully with
higher-quality texture.

We also compare geometry reconstruction results with
the retrieval and deformation approach [35] in Fig. 6. Uy et
al. [35] perform shape-level retrieval in its latent space and
later deform the retrieved shape at the part level to adjust its
parts’ locations and scales to reconstruct the mesh from the
input image. However, its shape-level retrieval may output
a very different shape from the input image.

Reconstruction quality of the textured meshes is first
evaluated by comparing multi-view rendering results to
the ground truth renderings using the three image quality
metrics SSIM, PSNR, and LPIPS. The comparison results
are shown in Table 2. Overall our method outperforms
the other methods in all three metrics and over all four
object categories. In addition, Table 3 compares the methods

Table 2
Quantitative comparisons with DIB-R [13], PixelNeRF (PN) [71],

Unicorn [52], DVR [12], CTSDG [19], and ICT [18] on SSIM, PSNR,
and LPIPS metrics.

Metrics Category

Methods

DIB-R PN Unicorn DVR TM-Net CTSDG ICT Ours

SSIM ↑

Car 0.701 0.852 0.726 0.681 0.682 0.731 0.739 0.831

Chair 0.696 0.854 0.745 0.721 0.675 0.860 0.847 0.886

Plane 0.884 0.915 0.854 0.912 0.881 0.924 0.921 0.934

Table 0.787 0.918 0.793 0.897 0.791 0.899 0.905 0.926

PSNR ↑

Car 21.811 23.691 22.616 20.095 20.303 22.212 22.234 24.216

Chair 20.512 23.843 22.491 22.144 19.821 24.281 23.466 25.348

Plane 24.329 28.562 23.868 28.235 24.705 28.887 28.672 29.196

Table 22.736 28.584 22.974 26.838 23.013 27.719 27.925 28.956

LPIPS ↓

Car 0.292 0.182 0.264 0.298 0.294 0.247 0.239 0.177

Chair 0.295 0.176 0.256 0.260 0.321 0.174 0.188 0.154

Plane 0.157 0.143 0.151 0.144 0.164 0.139 0.141 0.127

Table 0.225 0.141 0.187 0.151 0.211 0.149 0.147 0.137

Table 3
Quantitative comparison of geometric reconstruction quality. Note that

Uy et al. [35] do not contain the car or plane category.

Metrics Methods

Category

Car Chair Plane Table

CD ↓

Pixel2Mesh [5] 0.273 0.340 0.198 0.383

DIB-R [13] 0.362 0.503 0.386 0.569

Unicorn [52] 0.268 0.328 0.245 0.344

Uy et al. [35] — 0.589 — 0.654

DVR [12] 0.311 0.405 0.297 0.428

TM-Net [17] 0.542 0.656 0.431 0.745

Ours 0.258 0.316 0.178 0.312

in terms of geometric quality of the mesh reconstructions,
using CD. Again, our method comes on top.

Next, we evaluate this method on the texture completion
task. Two comparison methods ICT [18] and CTSDG [19]
are re-trained on the same texture datasets. We show the
qualitative comparison results of texture completion with
these two methods in Fig. 7. It can be found that ICT [18] and
CTSDG [19] fail to produce texture details (the first row) or
output plausible images (the second row) while our method
completes the textures with high quality. We also report in
SSIM, PSNR, and LPIPS metrics by comparing inpainted
textures produced by different methods with corresponding
ground truth in Table 4. The results show that STAR-TM
outperforms the two baselines.

Finally, we show in Fig. 8 reconstruction results from
images in the wild, where the backgrounds are removed
using U2Net [72] and the segmented object in the image is
then scaled and translated to the center of an input image of
size 1024×1024. Additional reconstruction and texture com-
pletion results can be found in the supplementary material.

4.2 Ablation studies

In this subsection, we conduct experiments to validate some
of our design choices and present ablation studies on several
important modules in our reconstruction pipeline.

Structured mesh alignment. First, we optimize shapes’
transformations globally and locally to make the projection
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Figure 5. Qualitative comparison between textured shape reconstruction by DIB-R, Unicorn, PixelNeRF (PN), DVR, TM-Net, CTSDG, ICT, and
our method STAR-TM. We show reconstructed textured meshes from a novel viewpoint, for examples from all four object categories. Note that PN
outputs 2D renderings from different viewpoints instead of reconstructing explicit geometry, while CTSDG and ICT use the same geometry as our
method. More reconstruction results can be found in the supplementary material.

of the assembled shape better align with the input im-
age. Fig. 9 shows the qualitative comparison between with
and without transformation optimization. We also perform
quantitative comparisons in Table 5. It indicates that the
structured mesh alignment can alleviate wrong unprojection
from the input image to the reconstructed mesh, leading
to better textures on reconstructed textured meshes and
superior quantitative results.

Intrinsic image decomposition. To reduce lighting ef-
fects from the environment, we pass the input image
through an intrinsic image decomposition network [66].

This network aims to remove lighting effects from the
input image and extract its albedo component. We show
albedo maps of both synthetic images and realistic images
predicted by the intrinsic image decomposition network in
Fig. 10. It can be seen that the network can well remove
lighting effects from the image and preserve texture details
under both synthetic and real-world settings.

Qualitative comparisons of with and without intrinsic
image decomposition are shown in Fig. 11. We also evaluate
how the intrinsic image decomposition network influences
the reconstructed textured meshes by comparing rendered
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Figure 6. Geometry reconstruction results compared with the retrieval
and deformation method Uy et al. [35].

Figure 7. Texture completion results by ICT [18], CTSDG [19], and
our method. Both ICT and CTSDG may fail or are unable to generate
texture details while our method can produce meaningful results with
texture details. We use gray color to denote unseen areas. More texture
completion results can be found in the supplementary material.

images of the reconstructed textured meshes with that of
the ground truth mesh using SSIM metric on the table
category. The result in Table 6 shows that the quality of
reconstructed textured meshes decreases after removing the
intrinsic image decomposition network.

Texture encoding network. Compared to conven-
tional VAE (variational autoencoder), VQVAE (vector
quantization-based autoencoder) can better capture texture
details. Here, we show qualitative results of textures recon-
structed by recent NVAE [73] and our vector quantization-

Table 4
Quantitative comparison with CTSDG [19] and ICT [18] on texture

completion task using SSIM, PSNR, LPIPS, and FID metrics.

Metrics Methods

Category

Car Chair Plane Table

SSIM ↑

CTSDG 0.697 0.702 0.681 0.741

ICT 0.689 0.685 0.672 0.698

Ours 0.749 0.823 0.724 0.851

PSNR ↑

CTSDG 21.759 22.073 20.453 22.438

ICT 21.625 21.512 20.176 21.977

Ours 22.594 23.317 22.299 23.956

LPIPS ↓

CTSDG 0.279 0.272 0.293 0.233

ICT 0.281 0.291 0.296 0.278

Ours 0.215 0.206 0.237 0.182

FID ↓

CTSDG 45.601 44.784 46.432 40.085

ICT 48.962 48.917 49.641 45.051

Ours 39.125 38.172 40.572 37.729

Table 5
Quantitative comparison between with structured mesh alignment (w/

alignment) and without structured mesh alignment(w/o alignment)
using SSIM, PSNR, and LPIPS metrics on rendered images.

Metrics Settings
Category

Car Chair Plane Table

SSIM ↑
w/o alignment 0.815 0.853 0.913 0.908

w/ alignment 0.831 0.886 0.934 0.926

PSNR ↑
w/o alignment 23.752 24.396 28.534 27.453

w/ alignment 24.216 25.348 29.196 28.956

LPIPS ↓
w/o alignment 0.190 0.163 0.131 0.150

w/ alignment 0.177 0.154 0.127 0.137

Table 6
Quantitative comparison between with intrinsic image decomposition

network (w/ IID) and without intrinsic image decomposition network(w/o
IID) using SSIM metric on rendered images of the table category.

Metric w/ IID w/o IID

SSIM on rendered images ↑ 0.926 0.898

based texture encoding network in Fig. 12. we also com-
pare them using SSIM, PSNR, and LPIPS metrics on recon-
structed textures in Table 7. Both qualitative and quantita-
tive results show that the vector quantization-based autoen-
coder can reconstruct textures with higher fidelity compared
to the variational autoencoder (VAE).

Loss functions. As mentioned in Section 3.2, textures
reconstructed for different parts are generally not the same,
hence LPIPS loss is adopted instead of L1 or L2 loss to
ensure the consistency between different parts. We evaluate
this design choice in Table 8 by comparing the SSIM metric
between incomplete textures and complete textures pro-
duced by different loss functions. It can be seen that LPIPS
loss indeed leads to the best image completion performance
over L1 and L2.

Loss weights. We evaluate loss weights λ1 and λ2 from
Equation 6 measured with the SSIM metric in the texture
completion task on the chair category. For the hyperpa-



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, JULY 2022 10

Figure 8. Textured mesh reconstruction from images in the wild by our method. The input image is shown on the left in each pair. We show more
reconstruction results from real images in the supplementary material.

Figure 9. Ablation study of the geometry alignment module. The struc-
tured alignment module can encourage better texture unprojection and
texture reconstruction. Holes are simulated using the alpha channel of
the texture as in TM-Net [17].

Figure 10. Predicted albedo maps by our intrinsic image decomposition
network. Images in the first row are synthetic while in the second row
input images are real internet photos so there are no ground truth albedo
maps for them.

Figure 11. Qualitative comparisons of reconstructed textured meshes
between with and without the intrinsic image decomposition network
(IID). When IID is not applied, the texture of the reconstructed textured
meshes may contain shadows or reflections.

rameter λ1 , we fix λ2 to 0.1 and conduct an experiment
on how its value influences the SSIM score between the
predicted complete texture and the corresponding ground
truth texture. As shown in Table 9, the completion network

Figure 12. Texture reconstruction results by NVAE [73] and our method,
which shows that our method can reconstruct texture details more
faithfully.

Table 7
Quantitative comparison with NVAE [73] using SSIM, PSNR, and,

LPIPS metrics on reconstructed textures.

Metrics Methods
Category

Car Chair Plane Table

SSIM ↑
NVAE 0.802 0.862 0.783 0.880

Ours 0.889 0.919 0.895 0.923

PSNR ↑
NVAE 21.095 26.805 20.623 28.148

Ours 27.826 32.979 26.323 35.136

LPIPS ↓
NVAE 0.131 0.114 0.165 0.072

Ours 0.093 0.057 0.109 0.049

Table 8
Quantitative comparisons using different loss functions with the SSIM

metric on textures of the table category.

Loss Function L1 L2 LPIPS

SSIM on textures ↑ 0.802 0.794 0.851

Table 9
Quantitative comparisons using different λ1 with the SSIM metric on

the chair category.

λ1 0.05 0.1 0.5 1 2

SSIM on textures ↑ 0.804 0.823 0.808 0.791 0.785

reaches its best performance when λ1 is set to 0.1. Then we
fixed λ1 to 0.1 and performed an ablation study on Table 10.
The results in Table 10 show that λ2 = 0.1 gives the best
performance.

Retrieval-enhanced module. To make better use of the
texture prior knowledge from the database, we introduce
a retrieval-enhanced module into our image completion
network. This module fuses features of the incomplete tex-



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, JULY 2022 11

Table 10
Quantitative comparisons using different λ2 using the SSIM metric on

the chair category.

λ2 0.05 0.1 0.5 1 2

SSIM on textures ↑ 0.812 0.823 0.796 0.782 0.759

Figure 13. Comparison between with and without (w/o) the retrieval-
enhanced (RE) module. We use gray color to represent unseen areas.
It can be seen that completed textures may contain artifacts when RE is
not applied.

Table 11
Quantitative comparison of with and without the retrieval-enhanced(RE)

module using SSIM, PSNR, LPIPS, and FID metrics on completed
textures.

Metrics Settings
Category

Car Chair Plane Table

SSIM ↑
w/o 0.657 0.764 0.682 0.789

w/ RE 0.749 0.823 0.724 0.851

PSNR ↑
w/o 19.785 21.080 22.104 21.664

w/ RE 22.594 23.317 22.299 23.956

LPIPS ↓
w/o 0.251 0.249 0.263 0.223

w/ RE 0.215 0.206 0.237 0.182

FID ↓
w/o 42.292 42.611 31.849 41.240

w/ RE 39.125 38.172 40.572 37.729

ture with features of the two nearest complete textures. We
evaluate how this module influences texture completion in
Fig. 13 and Table 11. It can be seen that completion results
contain fewer artifacts and reach a higher image quality
when we apply the retrieval-enhanced module.

Global consistency loss. While training the texture com-
pletion network, we take the relationship among different
parts in the same semantic group into account and penalize
the differences of perceptual features. We remove this loss
from the completion network and complete each texture im-
age individually for textures in the car’s ‘bodywork’ group,
chair’s ‘chair base’ group, plane’s ‘power system’, and ta-
ble’s ‘table base’ group and compare the reconstructed tex-
tured shapes’ quality with those produced by the pipeline
with global consistency loss in Fig. 14. The results show
that the parts in reconstructed shapes may have completely
different textures if we do not utilize the relationship among
different parts in the same semantic group. We also evaluate
this loss function quantitatively by calculating SSIM, PSNR,
and LPIPS metrics on rendered images of reconstructed
textured shapes in Table 12. All metrics see a performance
drop when the global consistency loss is abandoned.

5 CONCLUSION, DISCUSSION, AND FUTURE WORK

In this paper, we propose a part-wise single-view textured
mesh reconstruction method. We first reconstruct structured

Figure 14. Comparisons of with and without global consistency loss
Lgc. It can be seen that the reconstructed textured shapes may have
inconsistent textures without the global consistency loss Lgc.

Table 12
Quantitative comparison of with and without global consistency loss
Lgc using SSIM, PSNR, and LPIPS metrics on rendered images.

Metrics Settings
Category

Car Chair Plane Table

SSIM ↑
w/o Lgc 0.779 0.802 0.890 0.828

w/ Lgc 0.831 0.886 0.934 0.926

PSNR ↑
w/o Lgc 19.418 21.797 24.833 22.153

w/ Lgc 24.216 25.348 29.196 28.956

LPIPS ↓
w/o Lgc 0.252 0.185 0.174 0.186

w/ Lgc 0.177 0.154 0.127 0.137

meshes by retrieving and assembling deformed boxes from
the existing database given the single view reconstructed
meshes. Then visible textures from the input image are
unprojected to the structured mesh with the unified UV tex-
ture space, resulting in multiple incomplete texture images
in the UV space for these deformed boxes. After that, we
propose the retrieval-enhanced image completion network
to complete the missing areas on the UV space for texture re-
covery. A global consistency loss is introduced in the texture
completion process to enforce the reconstructed textured
shapes to have consistent textures. This method is able to
reconstruct meshes with high-quality textures from single-
view images and outperforms the state-of-the-art methods
in the quantitative and qualitative evaluations.

Our approach has the following limitations: Firstly, it
is hard to apply our method to transparent objects like
mirrors, see (a-b) in Fig. 15. Secondly, even though we
introduced a structured alignment module, it can not ensure
perfect unprojection, and misalignment between the shape
and the input image may still occur, which can cause texture
distortions or texture of a semantic part being unprojected
to another part, see (c-d) in Fig. 15.

For future exploration, currently our structured mesh
alignment cannot ensure perfect texture unprojection, it is
possible to introduce a part-level understanding of the input
image and apply non-rigid deformation on the recovered
mesh to improve the performance. In addition, compared
with previous convolutional models [12], [13], [51], [52] that
predict geometry and texture from images with or with-
out 3D supervision, our method can reconstruct textured
meshes with higher quality but requires a segmented 3D
shape dataset for textured mesh reconstruction. How to
reduce the data requirement for textured mesh geometry
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Figure 15. Some failure cases. (a-b): Our method is unable to handle
input with transparent objects like windscreens. Textures that belong
to objects inside the car are mapped to the car body. (c-d): Local
misalignment may still occur, which can cause unexpected unporojected
textures. Wheel textures are unprojected to the car body.

reconstruction is also a promising future direction. We also
plan to adopt a hybrid geometry representation including
both implicit fields with flexible topology and deformable
templates which have good texture parameterization similar
to NeuralParts [40] to jointly learn geometry and texture
prediction with a differentiable neural renderer supervising
rendered images of reconstructed textured meshes. Finally,
We would like to build the connection between textured
meshes with current neural radiance fields [74] to recon-
struct shapes at the scene level.
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