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Discrete locally finite full groups of Cantor set homeomorphisms

Alejandra Garrido and Colin D. Reid

Abstract

This work is motivated by the problem of finding locally compact group topologies for piecewise
full groups (a.k.a. topological full groups). We determine that any piecewise full group that
is locally compact in the compact-open topology on the group of self-homeomorphisms of the
Cantor set must be uniformly discrete, in a precise sense that we introduce here. Uniformly
discrete groups of self-homeomorphisms of the Cantor set are in particular countable, locally
finite, residually finite and discrete in the compact-open topology. The resulting piecewise full
groups form a subclass of the ample groups introduced by Krieger. We determine the structure of
these groups by means of their Bratteli diagrams and associated dimension ranges (K0 groups).
We show through an example that not all uniformly discrete piecewise full groups are subgroups
of the ‘obvious’ ones, namely piecewise full groups of finite groups.

1. Introduction

During the last few years, group theorists have become increasingly interested in groups of
homeomorphisms of the Cantor set, as sources of new finitely generated infinite simple groups
(for example, [11, 16, 18]). The groups in question consist of homeomorphisms of the Cantor
set that can be pieced together from finitely many partial homeomorphisms between clopen
subsets. For this reason, we call them piecewise full groups. We avoid the more common term
‘topological full group’ as it could be confusing in the context of discussing topological groups,
where the word ‘topological’ plays a very different role.

In the developing theory of totally disconnected locally compact groups, there is also reason
to search for and study simple groups [3, 4], especially those that are compactly generated and
non-discrete, and so piecewise full groups are a natural place to search. Indeed, some of the
well-known examples of this kind, Neretin’s groups of almost automorphisms of locally finite
trees, can be naturally expressed as piecewise full groups [12, 19].

In searching for totally disconnected locally compact groups among piecewise full groups the
first question that one faces is, which topology should the group be given? Since the group
Homeo(X) of all self-homeomorphisms of the Cantor set X is a well-known topological group
(the typical topology is the compact-open topology, see Section 2), one’s first thought might be
to study piecewise full groups with the induced topology from Homeo(X). Those familiar with
Neretin’s group know [8] that this group is not locally compact for the compact-open topology
in Homeo(X). Indeed, we show here (Corollary 2.5) that any piecewise full group that is locally
compact for the compact-open topology of Homeo(X) must be uniformly discrete — there is
a clopen partition of X each of whose parts is visited at most once by each group orbit. These
groups are a special type of what Krieger called an ample group in [14]: that is, they are
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countable piecewise full subgroups of Homeo(X), such that the group is locally finite (that is,
every finite subset is contained in a finite subgroup) and such that the fixed-point set of every
element is clopen. We give in Proposition 3.1 a description of these groups as direct limits of
finite direct sums of symmetric groups. Such groups have been studied before, notably in [6,
10, 15] (in the latter two the summands are alternating groups).

There are examples showing that not all ample groups are uniformly discrete. Indeed, ample
groups have been previously studied as sources of simple groups, whereas (see Proposition 2.6)
all uniformly discrete ample groups are residually finite (the intersection of all finite-index
subgroups is trivial). This shows how far from our initial objective the compact-open topology
brings us. Our second main result, Theorem 3.2, is a characterisation of the uniformly discrete
groups among these ample groups. This is done via Bratteli diagrams, which is a well known
and clear way to encode direct limits of structures that decompose as direct sums. Since
Bratteli diagrams provide a convenient dictionary between ample groups and their associated
dimension ranges (or K0 groups with unit), we also translate in Corollary 3.6 the Bratteli
diagram condition to one on the dimension range. The fact that uniformly discrete ample
groups are residually finite can also be gleaned from the structure of their Bratteli diagrams
(Proposition 3.5).

Finally, we consider how uniformly discrete ample groups arise. Obvious examples are
piecewise full groups of finite groups, and we are able in Propositions 4.1 and 4.2 to distinguish
these among all uniformly discrete ample groups both from the topological dynamics on the
Cantor set and from their associated Bratteli diagrams. Less obvious examples of uniformly
discrete ample groups are afforded by stabilisers of piecewise full groups of finite groups.
Example 4.4 is a uniformly discrete ample group that cannot arise in this way. We leave
open the following question:

Question. Which uniformly discrete ample groups arise as subgroups of piecewise full
groups of finite groups? Can they be distinguished by their Bratteli diagrams?

As noted above, uniformly discrete ample groups are residually finite, which is a group-
theoretic property. However, uniform discreteness is not preserved by group isomorphism.
Section 5 is devoted to a straightforward example of a group with two different actions on
the Cantor set, one uniformly discrete, the other not.

The original question of which topology to put on piecewise full groups to make them locally
compact and totally disconnected is addressed in the forthcoming paper [9]. Showing the
necessity of the approach taken there was in fact the motivation for the present paper.

2. First properties of uniformly discrete groups

2.1. Notation

Throughout, X denotes the Cantor set. The group Homeo(X) of self-homeomorphisms of X is
a Polish (separable and completely metrisable) group when endowed with the compact-open
topology, whose sub-basic open sets have the form

{f ∈ Homeo(X) | f(K) ⊆ O},

where K ⊆ X is compact and O ⊆ X is open. This topology is the coarsest one on Homeo(X)
that makes the action of Homeo(X) on X jointly continuous; that is, such that the map
Homeo(X) ×X → X, (h, x) �→ h(x) is continuous for the product topology on Homeo(X) ×
X (see [13, p. 224]). Because X is compact and metrisable, the compact-open topology is
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equivalent to the also commonly used topology of uniform convergence, whose basic open
sets have the form

N (f, ε) = {g ∈ Homeo(X) | sup
x∈X

d(f(x), g(x)) < ε},

where f ∈ Homeo(X), ε > 0 and d is any (fixed) compatible metric on X (see [13, p. 230] or
[17, § 46]).

The set of clopen subsets of X ordered by inclusion forms a Boolean algebra, which is in
fact the unique (up to isomorphism) countably infinite, atomless Boolean algebra, denoted as
B here. The set of ultrafilters of B (equivalently, homomorphisms to the two-element Boolean
algebra) is a compact, perfect and totally disconnected space (and so homeomorphic to X)
when topologised so that the set of ultrafilters containing b ∈ B is a basic open, for each
b ∈ B. This is simply Stone’s representation theorem, which says that, starting from X and
performing these two operations yields a naturally homeomorphic copy of X (see [2, IV.4]). In
particular, Homeo(X) is isomorphic to Aut(B). It is not too hard to show (see, for example, [1,
Theorem 2.3(d)]) that the compact-open topology on Homeo(X) (equivalently, the topology
of uniform convergence) then corresponds to the permutation topology or topology of
pointwise convergence on Aut(B), whose basic identity neighbourhoods are subgroups of
the form

Stab(F) = {g ∈ Aut(B) | g(b) = b for all b ∈ F} where F ⊂ B is finite.

In what follows we will identify Homeo(X) and Aut(B) as groups, and use whichever of
these two equivalent points of view seems most convenient. Given a finite subalgebra A of B,
we write at(A) for the set of atoms of A, that is, the minimal nonzero elements. Note that
every finite Boolean algebra is generated by its atoms.

Definition 2.1. Given a group G � Homeo(X) and a G-invariant subalgebra A of B, the
piecewise full group FA(G) of G with respect to A consists of all homeomorphisms g ∈
Homeo(X) for which there is a finite clopen partition X = U1 � · · · � Un of X with U1, . . . , Un ∈
A and g1, . . . , gn ∈ G such that g �Ui

= gi �Ui
for i = 1, . . . , n. If A = B, we simply write F(G) :=

FA(G) and call F(G) the piecewise full group of G (as a subgroup of Homeo(X)).
A group G � Homeo(X) is called piecewise full if F(G) = G. Note that for any subgroup

G of Homeo(X), we have F(F(G)) = F(G), so F(G) is piecewise full.

The piecewise full group is known elsewhere in the literature as the topological full group.
We avoid this name as we will discuss topological groups, and the two different uses of
‘topological’ here could be confusing.

2.2. Uniformly discrete groups

Our motivating problem is finding appropriate topologies to impose on a piecewise full subgroup
of Homeo(X) that make it locally compact and non-discrete. The most obvious choice is the
subspace topology in Homeo(X), and we have already seen that the compact-open topology
on the latter is the coarsest one that makes the action on X continuous. We shall presently
see (Corollary 2.5) that this choice of topology forces piecewise full groups to be discrete in a
strong sense, which we call uniformly discrete.

Definition 2.2. A group G � Homeo(X) is uniformly discrete if there exists a clopen
partition P of X such that |Gx ∩ U | � 1 for every x ∈ X and U ∈ P.
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Suppose that G is a subgroup of Homeo(X) equipped with the compact-open topology. Given
a finite set F of clopen subsets of X, write

G(F) := G ∩ Stab(F) = {g ∈ G | g(C) = C for all C ∈ F}.
Note that as F ranges over the clopen partitions of X, the subgroups G(F) form a base of
clopen neighbourhoods of the identity in G.

Lemma 2.3. Let G � Homeo(X) be equipped with the compact-open topology and let P
be a clopen partition of X.

(i) G is uniformly discrete with respect to P if and only if F(G) is.
(ii) If G is uniformly discrete with respect to P, then G is discrete: indeed, G(P) is trivial.

Proof. Part (i) follows immediately from the observation that G and F(G) have the same
orbits on X. For part (ii), we see that if G is uniformly discrete with respect to P, then all
orbits of G(P) must be singletons, ensuring G(P) = {1}. �

In general, discrete subgroups of Homeo(X), even finite subgroups, need not be uniformly
discrete (see Example 2.9). However, the properties are equivalent in the context of piecewise
full groups, and indeed they are the only way G(P) can be compact.

Theorem 2.4. Let G � Homeo(X) be a piecewise full group equipped with the compact-
open topology and let P be a clopen partition of X. Then the following are equivalent:

(i) G(P) is compact;
(ii) G is uniformly discrete with respect to P;
(iii) G(P) is trivial.

Proof. Firstly observe that a compact subgroup of Homeo(X) must have finite orbits on
clopen subsets of X. To wit, the stabiliser of a clopen subset is open and, since it and its cosets
form an open cover of the group, there can only be finitely many cosets; the orbit-stabiliser
theorem then yields the claim.

We prove (i) ⇒ (ii) via the contrapositive. Suppose that G is not uniformly discrete with
respect to P; that is, there is x ∈ U ∈ P and g ∈ G such that g(x) ∈ U \ {x}. Since g is a
homeomorphism and X is totally disconnected, there is a neighbourhood Ux of x such that
Ux ∩ g(Ux) = ∅ and Ux, g(Ux) ⊆ U . Pick x1 ∈ Ux \ {x} and a clopen neighbourhood Ux1 � x1

such that x �∈ Ux1 . Since G is piecewise full, it contains an element g1 such that

g1 =

⎧⎪⎨
⎪⎩

g on Ux1

g−1 on gUx1

id elsewhere
.

Note that g1(Ux) = g(Ux1) � (Ux \ Ux1) and g1 ∈ G(P). Repeat the argument inductively to
find a sequence (gn)n of elements of G(P) supported on a decreasing sequence (Uxn

)n of
clopen subsets of Ux and such that gn(Ux) = g(Uxn

) � (Ux \ Uxn
). This produces infinitely

many clopen subsets of X in the GF -orbit of Ux, meaning that G(P) cannot be compact.
Lemma 2.3(ii) already shows that (ii) implies (iii), and clearly (iii) implies (i). �

Since the subgroups G(P) as P ranges over the clopen partitions of X form a base of
neighbourhoods of the identity in G, we have the following corollary.
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Corollary 2.5. Let G � Homeo(X) be a piecewise full group equipped with the compact-
open topology. Then the following are equivalent:

(i) G is locally compact;
(ii) G is uniformly discrete;
(iii) G is discrete.

Proof. Each of the three conditions (i)–(iii) is equivalent to the statement that there exists
a clopen partition P, such that the same-numbered condition of Theorem 2.4 holds. The
equivalence of (i)–(iii) is then clear. �

Uniformly discrete groups are very far from being simple. In fact, they are residually finite,
because they act on X with finite orbits.

Lemma 2.6. Let Y be a set and let G � Sym(Y ). If all orbits of G on Y are finite, then G
is residually finite.

Proof. For each y ∈ Y , the pointwise fixator Fix(Gy) of the G-orbit Gy of y is a normal
subgroup of finite index in G. Given any non-trivial g ∈ G, there is some y ∈ Y such that
gy �= y, so g /∈ Fix(Gy). �

We shall presently see that being uniformly discrete imposes some algebraic conditions on
a group. However, uniform discreteness is a dynamical condition: it passes to subgroups but
is not preserved by group isomorphisms. An example showing this is given in Section 5, where
the same group is shown to have two faithful actions on the Cantor set, one uniformly discrete,
the other not. Indeed, the second action is obtained as a quotient of the first one, showing just
how delicate the dynamical condition can be.

A further property of uniformly discrete piecewise full groups is that they are ample† in the
sense introduced by Krieger [14]. We paraphrase the definition.

Definition 2.7. A subgroup G � Homeo(X) is ample if it is piecewise full, locally finite,
countable, and for every g ∈ G, the set of fixed points Fix(g) is clopen in X.

Proposition 2.8. Let G � Homeo(X) be uniformly discrete. Then F(G) is ample.

Proof. Let G � Homeo(X) and suppose that G is uniformly discrete with respect to P.
Note (Lemma 2.3(i)) that F(G) is also uniformly discrete and has the same orbits on X as G.
From now on we assume G = F(G).

Let a ∈ X/G be a G-orbit on X and let σa : G → Sym(a) be the action of G on a. The orbits
of G on X form a partition of X, and G � Homeo(X), so the homomorphism

G →
∏

a∈X/G

Sym(a), g �→ (σa(g))a

is injective. Since G is uniformly discrete, each G-orbit a contains at most one point from each
part of P and therefore Sym(a) can be identified with a canonical subgroup of Sym(P). This
gives an embedding of G into the Cartesian product Γ :=

∏
X/G Sym(P).

Therefore G is locally finite if Γ is, which follows from a well-known argument: Take n ∈ N and
g1, . . . , gn ∈ Γ. For each a ∈ X/G, denote by πa the projection of Γ onto the ath copy of Sym(P).

†Presumably Krieger chose the word ‘ample’ because they are particular cases of the topological analogue of
‘full groups’ introduced by Dye in the context of ergodic theory.
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There are |P|! possible values of πa(gi) for each i ∈ 1, . . . , n and therefore m = (|P|!)n possible
values for the n-tuple (πa(g1), . . . , πa(gn)) as a ranges over all X/G. For each j ∈ {1, . . . ,m},
denote by Hj the subgroup of Sym(P) generated by the jth such n-tuple. Then 〈g1, . . . , gn〉
embeds in the finite direct product H1 × · · · ×Hm and is therefore finite, as required.

To show that G is countable, we use the fact that it is locally finite and hence a union of
finite subgroups. Let H < G be a finite subgroup of G and suppose that P = {U1, . . . , Un}.
Since H is finite, the Boolean subalgebra of B generated by {hUi : h ∈ H, i = 1, . . . , n} is finite
and H-invariant. Its atoms form a clopen partition Q which refines P and which is preserved
by H. Indeed, H acts faithfully on the partition Q: if h stabilises each part of Q, then it also
stabilises each part of P and the uniform discreteness of G implies that h must be trivial. In
fact, uniform discreteness and the fact that Q refines P imply that the setwise stabiliser of
V ∈ Q coincides with its pointwise stabiliser. We conclude that every finite subgroup of G acts
faithfully as a permutation group on some finite refinement Q of P. There are finitely many
possibilities for such permutation groups and fixed Q and countably many possibilities for Q.
Therefore G must be countable.

It remains to show, given g ∈ G, that Fix(g) is clopen. In fact we need only show that Fix(g)
is open; the fact that Fix(g) is closed follows from the fact that g is a homeomorphism. Suppose
that g ∈ G fixes a point x ∈ X and let U be a clopen neighbourhood of x which is entirely
contained in some part of P. Since x is fixed by g, the intersection Vx := gU ∩ U is a non-empty
clopen subset of X. Given any y ∈ Vx \ {x}, there exists z ∈ U \ {x} such that y = gz. Since G
is uniformly discrete and y, z ∈ U are in the same part of P, we must have y = z. Thus g fixes
the clopen neighbourhood Vx of x. We therefore obtain that Fix(g) =

⋃
x∈Fix(g) Vx is open, as

required. �

In particular, uniformly discrete groups are locally finite and residually finite, which makes
them LERF, a.k.a. subgroup separable (every finitely generated subgroup is the intersection
of finite-index subgroups that contain it).

The converse of Proposition 2.8 is not true, since not every ample group is uniformly discrete.
For example, the direct union lim−→n

Sym(2n) of symmetric groups on levels of the rooted binary
tree is an ample group but is not uniformly discrete, since each point of the boundary of the
tree has an infinite orbit. For those familiar with Thompson’s group V , this is the subgroup
consisting of those elements of V that preserve the standard probability measure on the Cantor
set, or equivalently (if V is defined in terms of piecewise linear transformations of the unit
interval) the subgroup of elements of V in which every segment has slope 1.

Moreover, the following example shows that an ample group can have uniformly bounded
orbits on the Cantor set, without being uniformly discrete.

Example 2.9. Consider the Cantor set X obtained as right-infinite words over the alphabet
{0, 1}. For each n � 0, denote by gn the homeomorphism of X that exchanges the prefixes 1n00
and 1n01, leaving the rest of X fixed pointwise (where 1n denotes the word of length n all of
whose letters are 1). Let g∞ be the homeomorphism of X that exchanges the prefixes 1n00
and 1n01 for all n � 0. Let G1 = 〈g∞〉 and let G2 = F(〈gn, n ∈ N〉). Then G1 and G2 have the
same orbits, all of which have size at most 2. The group G1 is finite but F(G1) is not ample,
since its set of fixed points is the singleton {1∞}, which is not open. On the other hand, G2 is
ample. Neither G1 nor G2 is uniformly discrete: in both cases, any partition of X must have a
part containing all words starting with 1n for some n ∈ N and we see that two such points lie
in the same orbit of Gi for i = 1, 2.

On the other hand, given a finite group F of homeomorphisms in which the elements have
clopen fixed points, there is a uniformly discrete invariant partition P for the action of F ;
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that is, F permutes P in such a way that the setwise stabiliser of each part coincides with its
pointwise stabiliser. The argument is taken from the proof of [14, Lemma 2.1]:

Lemma 2.10. Let F be a finite subgroup of Homeo(X) such that Fix(f) is clopen for all
f ∈ F . Then there is an F -invariant partition P of X such that the setwise stabiliser in F of
each part coincides with its pointwise stabiliser.

Proof. Given f ∈ F of order n and a divisor p of n, denote by Ap(f) the set of points in X
whose f -orbit has size exactly p; in other words,

Ap(f) = Fix(fp) \
⋃

q<p,q|p
Fix(fq),

which makes it plain that Ap(f) is clopen. Each Ap(f) can be partitioned further into clopen
subsets Ap,i(f) for i = 0, . . . , p− 1 such that f(Ap,i(f)) = Ap,i+1(f) modulo p, for each i. Thus
we obtain a partition of

X =
⊔

p|n,i∈Z/pZ

Ap,i(f).

Denote by B(f) the Boolean subalgebra generated by the above partition. The atoms of the
Boolean subalgebra generated by {hB(f) : h, f ∈ F} form a clopen partition P of X that is
F -invariant. If a part U of P is preserved by some f ∈ F , then U is contained in some Ap,i(f)
and we have U ⊆ Ap,i+1(f) ∩Ap,i(f) �= ∅. This can only occur if p = 1, that is, if U ⊆ Fix(f).
Thus the setwise stabiliser in F of each part of P coincides with its pointwise stabiliser. �

We will investigate further the connection between finite groups and uniformly discrete ample
groups in Section 4.

3. Uniformly discrete groups among ample groups

We now address the issue of distinguishing uniformly discrete groups among ample groups and
describing their structure as locally finite groups. We start by giving an algebraic description,
by adapting an argument from [14, Lemma 2.1].

Given a Boolean subalgebra A of B, call a group G � Homeo(X) (∼= Aut(B)) piecewise full
on A if it leaves A invariant and G = FA(G).

Proposition 3.1 See [14, Lemma 2.1]. Let G � Homeo(X) ∼= Aut(B) be an ample group.
Given any decomposition of G =

⋃
n∈N

Hn as a direct union of finite subgroups Hn, there exist
finite subgroups Gn � G and finite subalgebras Bn � B such that for each n ∈ N:

(i) Gn � Hn,
(ii) Bn is Hn-invariant,
(iii) Gn is piecewise full on Bn and the setwise stabiliser in Gn of any atom of Bn coincides

with the pointwise stabiliser,
(iv) Gn =

⊕mn

i=1 Sym(Oi) where the Oi range over the Hn-orbits on at(Bn),
(v) the embeddings Gn ↪→ Gn+1 are block-diagonal: for each Hn-orbit O, the factor Sym(O)

embeds diagonally in
⊕s

j=1 Sym(Oj) �
⊕

i∈I Sym(Qi) where I ⊆ {1, . . . ,mn+1}. Each
Oj is a Hn-orbit on at(Bn+1), permutation-isomorphic to O; in turn, each Oj

is contained in some Hn+1-orbit Qi, inducing the natural embedding Sym(Oj) �
Sym(Qi).
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Moreover, if G is uniformly discrete with respect to the clopen partition P = {U1, . . . , Uk},
then Gn and Bn can be found such that at(Bn) is a refinement of P and each Oi consists of at
most k atoms, each in a different part of P .

Proof. We can assume H0 = {1}. We proceed inductively, starting with G0 = {1} and B0 =
{X, ∅}. If G is uniformly discrete, fix a clopen partition P = {U1, . . . , Uk} of X with respect
to which G is uniformly discrete.

Suppose that suitable Gn and Bn have been found. By Lemma 2.10 there is an Hn+1-
invariant partition Pn+1, such that for each part, the setwise stabiliser in Hn+1 coincides with
the pointwise stabiliser. If G is uniformly discrete, we also choose Pn+1 to be a refinement of
P . Take Bn+1 to be the Boolean algebra generated by Pn+1 and all Hn+1-translates of Bn. By
construction, at(Bn+1) is an Hn+1-invariant clopen partition of X that refines both Pn+1 and
at(Bn) (and also P if G is uniformly discrete). This implies that the setwise stabiliser in Hn+1

of an atom of Bn+1 must in fact be its pointwise stabiliser.
Since G is piecewise full on X, in particular it contains Gn+1 := FBn+1(Hn+1). The group

Gn+1 is finite and inherits from Hn+1 the property that the setwise stabiliser of an atom of
Bn+1 is its pointwise stabiliser.

To see the fourth item, consider the orbits O1, . . . ,Omn+1 of Hn+1 on at(Bn+1). Given such
an orbit Oi, and some h ∈ Hn+1 taking V ∈ Oi to another element W ∈ Oi, the piecewise full
group Gn+1 contains the ‘transposition’

g(x) =

⎧⎪⎨
⎪⎩

h(x), if x ∈ V,

h−1(x), if x ∈ W = h(V ),
x, else

which only swaps V and W . Thus Gn+1 contains Sym(Oi) for each (Hn+1)-orbit Oi and,
since these orbits are disjoint, Gn+1 �

⊕mn+1
i=1 Sym(Oi). The fact that Gn+1 is generated by

its subgroups Sym(Oi) for 1 � i � mn+1, then follows from the construction of Bn+1 and Gn+1

in terms of Hn+1. If G is uniformly discrete, each orbit consists of at most k atoms, since each
one must be in a different part of P .

Let us now see why the embeddings are block-diagonal. Let O be an Hn-orbit on at(Bn)
(it is also a Gn-orbit). Then O consists of atoms A1, . . . , Ar of Bn (in the uniformly discrete
case, each Ai is contained in a different part of P , so after relabelling we may assume that
Ai ⊆ Ui, 1 � i � r � k). Say Ai = hiA1 for hi ∈ Hn. In turn, each Ai is a join of a subset
{Ai,1, . . . , Ai,s} ⊆ at(Bn+1), and since at(Bn+1) is Hn-invariant, we can label these atoms so
that Ai,j = hiA1,j . In particular, s does not depend on i and Ai,j is in the same Hn+1-orbit as
A1,j for all i and j. Denote by Oj the Hn-orbit of Ai,j for 1 � j � s and 1 � i � r.

By (iii), the setwise stabiliser of each Ai in Sym(O) � Gn is equal to its point stabiliser.
This is clearly also true for the subsets Ai,j . Indeed, we see that the stabiliser of Ai in Sym(O)
is the same as the stabiliser of Ai,j in Sym(O) for 1 � j � s. Thus for each 1 � j � s, the
action of Sym(O) on Oj is permutationally equivalent to its action on O. At the same time,
Sym(O) clearly fixes pointwise any atom of Bn+1 outside of

⋃s
j=1 Oj , showing that Sym(O) is

embedded in
⊕s

j=1 Sym(Oj) as a diagonal subgroup.
Now, each Oj is contained in some Hn+1-orbit Qj on at(Bn+1). If G is uniformly discrete

and 1 � j < j′ � s, then Oj and O′
j must be in different Hn+1-orbits, since they are in

different parts of P , yielding the embedding Sym(O) ↪→ ⊕s
j=1 Sym(Oj) �

⊕s
j=1 Sym(Qj) �⊕mn+1

j=1 Sym(Qj).
If G is not uniformly discrete, then several Oj may lie in a single Hn+1-orbit on at(Bn+1).

Suppose that Oj and Oj′ lie in the same Hn+1-orbit, Qj . Then the induced embedding
Sym(O) ↪→ Sym(Oj) ⊕ Sym(Oj′) � Sym(Qj) is diagonal in the sense that Sym(O) embeds
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diagonally into Sym(Oj) ⊕ Sym(Oj′) with isomorphic actions, and this is preserved by the
natural embedding into the larger Sym(Qj). �

Thus ample groups and, in particular, uniformly discrete piecewise full groups, are direct
limits of direct products of symmetric groups. These groups, and versions with alternating
groups instead of symmetric groups, have been studied in [6, 10 15], respectively. However,
the focus there is on simple groups, as seems to be the case with much of the literature on
direct limits of symmetric or alternating groups (see references in cited items).

In the rest of this section, we translate the above description into the language of Bratteli
diagrams and then dimension ranges and use it to distinguish uniformly discrete groups within
the class of ample groups.

3.1. Bratteli diagrams

Bratteli diagrams are graphs that provide an intermediate (and usually easy to describe) step
between ample groups and the algebraic invariant encoding the orbit system — the dimension
range, as considered in [14], which we shall only deal with briefly here. These objects are
very familiar to operator algebraists and scholars of Cantor dynamics, as they can be used to
classify AF (approximately finite-dimensional) C∗-algebras and the dynamical systems that
can be associated to them. A further advantage of considering Bratteli diagrams is that the
uniform discreteness condition has a natural combinatorial translation in the diagram.

For the benefit of the uninitiated, and to set notation, we recall how to take this intermediate
step from an ample group and, in Section 3.2, how to obtain the dimension range of the ample
group from it. Much of the notation and terminology here follows that used in [15].

Suppose that G � Aut(B) is an ample group with G =
⋃

n∈N
Gn and B =

⋃
n∈N

Bn where Gn

is finite and piecewise full on the finite subalgebra Bn � B (as established in Proposition 3.1);
G0 is trivial and B0 is the 2-element Boolean algebra, corresponding to the clopen subsets
X and ∅. To this situation we associate the following N-graded graphs B̃ = (Ṽ , Ẽ, s, r) and
B = (V,E, s, r, d):

• Ṽ =
⊔

n∈N
Ṽn where Ṽn = at(Bn).

• Ẽ =
⊔

n�1 Ẽn where Ẽn consists of edges that represent containment of atoms, determined
by source s : Ẽn → Ṽn−1 and range r : Ẽn → Ṽn maps. That is, if the atom corresponding
to ṽn is contained in that corresponding to ṽn−1, there is a unique edge ẽn ∈ Ẽn such that
s(ẽn) = ṽn−1 and r(ẽn) = ṽn.

• For each n, denote by πn : Ṽn → Vn the quotient of Ṽn by the induced action of Gn, coming
from that on Bn. Since Gn also acts on Bn+1, the map πn induces a quotient map on the
edges πn+1 : Ẽn+1 → En+1 where πn+1(ẽ) = πn+1(f̃) if and only if πn(s(e)) = πn(s(f))
and πn(r(e)) = πn(r(f)). By abuse of notation, this last πn is the orbit quotient map of
Gn on Ṽn+1.

• For each n and v ∈ Vn, denote by d(v) the size of π−1
n (v) (that is, the number of atoms of

Bn in the Gn-orbit corresponding to v).

The graph B is the Bratteli diagram associated to (G =
⋃

n Gn,B =
⋃

n Bn), while B̃ is the
extended Bratteli diagram associated to the same pair.

Figure 1 shows an example of the first few levels of a Bratteli diagram and its corresponding
extended Bratteli diagram. Note that edges are directed and therefore so are paths: a path
will always go from smaller Vm or Ṽm to larger Vn or Ṽn. Note also that, since the atoms of
Bn are disjoint, no atom of Bn+1 can be contained in two different atoms of Bn; in particular,
B̃ is a tree and each ultrafilter of B is uniquely given by an infinite path (ṽ0, ṽ1, ṽ2, ṽ3, . . . ) in
B̃. Stone correspondence and the fact that B =

⋃
n∈N

Bn then yield a bijective correspondence
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Figure 1. First levels of a Bratteli diagram and its corresponding extended Bratteli diagram.

between the infinite paths in B̃ and the points of X. The topology on the set of infinite paths
whose base consists of all paths starting from each vertex ṽ coincides with the topology on X.

Notice that if we are just given a Bratteli diagram B = (V,E, s, r, d), we can obtain its
corresponding extended Bratteli diagram by choosing sets Ṽn of size

∑
v∈Vn

d(v), surjec-
tions πn : Ṽn → Vn and Ẽn+1 = {(ṽn, en+1) ∈ Ṽn × En+1 | s(e) = πn(ṽn)}. Assuming, as we do
throughout the paper, that d(v) =

∑
v=r(e) d(s(e)) for all v ∈ V \ {v0}, there is a bijection,

which can be taken to be a range map, r : Ẽn+1 → Ṽn+1, such that r((ṽn, en+1)) = ṽn+1 implies
that r(e) = πn+1(ṽn+1).

One then obtains an ample group acting on the space of infinite paths of B̃ as follows: for each
n ∈ N, put Gn =

⊕
v∈Vn

Sym(π−1
n (v)) and let it act also on Ẽn+1 by acting on the first entry

of (ṽn, en+1). Since the range map r : Ẽn+1 → Ṽn+1 is an embedding, it induces an embedding
Gn ↪→ Gn+1. The direct limit G = lim−→N

Gn =
⋃

N
Gn is an ample group of homeomorphisms of

the infinite paths of B̃ (which is homeomorphic to X if d(v) � 1 for every v ∈ V ).
Proposition 3.1 implies that, taking the Bratteli diagram associated to the decomposition

G =
⋃

N
Gn, B =

⋃
N
Bn given there, and then taking the ample group of that Bratteli diagram

as described above returns G, with the same decomposition G =
⋃

N
Gn, B =

⋃
N
Bn.

There is a natural notion of equivalence between Bratteli diagrams, called telescoping.
Given a Bratteli diagram B = (V,E, s, r, d) and a strictly increasing sequence (mn)n of natural
numbers, the telescoping of B along this sequence is the graph B′ = (V ′, E′, s, r, d′) where V ′ =⋃

n(V ′
n = Vmn

), d′ is the restriction of d to V ′ and E′
n consists of all paths e1e2 . . . emn−mn−1

in B starting at Vmn−1 and ending at Vmn
. The source of such a path is s(e1) and its range

r(emn−mn−1). We will consider Bratteli diagrams up to the equivalence relation generated
by telescoping.

If G � Homeo(X) is an ample group, taking different decompositions G =
⋃
Gn =

⋃
Hn,

B =
⋃Bn =

⋃ Cn produces equivalent Bratteli diagrams, because for each n ∈ N we have Bn �
Cmn

� Bkmn
and Gn � Hmn

� Gkmn
for some sequences mn and kmn

. The space of infinite
paths of each extended Bratteli diagram naturally corresponds to X and the induced dynamical
systems all coincide.

Similarly, if B′ is a telescoping of B, then their associated ample groups coincide, since one
is a direct limit of a subsequence of groups of the other one.
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Theorem 3.2. Let G � Homeo(X) be an ample group with associated Bratteli diagram
B = (V,E). Then G is uniformly discrete if and only if there is a telescoping B′ = (V ′, E′) of
B such that B′ \ (V ′

0 ∪ E′
1) is a multitree (that is, there are no multiple directed paths between

any pair of vertices v, u ∈ V ′ \ V0).

Proof. Without loss of generality, we can assume that the Bratteli diagram B is obtained
from the decomposition G =

⋃
n Gn, B =

⋃
n Bn as in Proposition 3.1.

Suppose first that G is uniformly discrete and that X =
⊔k

i=1 Ui is a partition witnessing
this. Note that there is some n such that the atoms of Bn form a refinement of X =

⊔k
i=1 Ui.

Telescope the diagram if necessary to assume that n = 1.
Suppose that there are two paths in B between v ∈ Vm and u ∈ Vl for l > m � 1. This means

that there is a vertex ṽm ∈ π−1
m (v) and distinct vertices ṽl, ũl ∈ π−1

l (u) such that the clopens
corresponding to ṽl and ũl are contained in the clopen corresponding to ṽm. By choice of m,
the clopen corresponding to ṽm is contained in some part Ui, and therefore so are the clopens
corresponding to ṽl and ũl. But G is uniformly discrete with respect to U1, . . . , Uk, so ṽl and
ũl cannot lie in the same Gl-orbit, a contradiction.

Conversely, suppose that the Bratteli diagram B associated to G =
⋃

n Gn,B =
⋃

n Bn has
no multiple paths, excluding the root. The space X of infinite paths of B̃ has a natural topology
whose basic clopens are the sets P (ṽ) of infinite paths starting at ṽ as ṽ ranges through Ṽ . Then
X =

⊔
ṽ∈Ṽ1

P (ṽ) is a clopen partition of X. To see that it is a partition of uniform discreteness,
take some x ∈ X, which is a member of P (ṽ) for some ṽ ∈ Ṽ1. Suppose that there is some g ∈ G
with gx ∈ P (ṽ). Then g ∈ Gn for some n, so x ∈ P (ṽn) and gx ∈ P (ũn) for some ṽn, ũn ∈ Ṽn

such that πn(ũn) = πn(ṽn) = vn. Since there is only one path in B from π1(ṽ) to vn, we have
ũn = ṽn. By the same argument, for all n′ � n there is ṽn′ ∈ Ṽn′ such that {x, gx} ⊆ P (ṽn′).
Hence gx = x and |Gx ∩ P (ṽ)| = 1, as required. �

The above condition on the Bratteli diagram also shows that uniformly discrete ample groups
are residually finite and that their corresponding dimension range (and also AF C∗-algebra)
are residually finite-dimensional (for every non-trivial element there is a finite-dimensional
quotient in which it has non-trivial image). We only give a detailed proof for the case of groups
(in essence reproving Lemma 2.6). The same argument works for dimension ranges and AF-
algebras, using the well-known 1-1 correspondence between order ideals of dimension ranges,
ideals of AF-algebras [5, IV.5.1], and ideals of the corresponding Bratteli diagram [5, III.4.2].

Definition 3.3. Let B be a Bratteli diagram (not an extended Bratteli diagram). A subset
S of V (B) is an ideal of B if it satisfies both of the following:

(i) If v = s(e) ∈ V (B) belongs to S and w = r(e) then w ∈ S.
(ii) Given v ∈ V (B), if w = r(e) ∈ S for all e ∈ E(B) such that s(e) = v then v ∈ S.

In the case of ample groups, not all normal subgroups correspond to ideals in the Bratteli dia-
gram, but the following lemma will suffice (compare the analogous [5, III.4.4] for AF-algebras).

Lemma 3.4. Let G be an ample group with associated Bratteli diagram B. For every ideal
S of B there is a normal subgroup N �G, such that the quotient G/N has the form

G/N = lim−→
n∈N

⊕
v∈Vn\S

Sym(π−1(v)).

Proof. Let S be an ideal of B and write S̃ for the preimage of S in the extended Bratelli
diagram B̃. The first condition in the definition of an ideal ensures that B̃ \ S̃ is a subtree of B̃
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containing the root. Let Y be the subspace of X corresponding to the infinite paths in B̃ \ S̃,
or equivalently, the infinite paths in B̃ that do not pass through S̃. Because on each level n,
the set Ṽn ∩ S̃ is a union of Gn-orbits, we see that Y is a closed G-invariant subspace. We can
therefore restrict the usual action of G on X to obtain an action on Y with some kernel N .

From the Bratelli diagram, we see that G/N acts as the direct limit

lim−→
n∈N

⊕

Gṽ⊆Ṽn\S̃
Sym(Gṽ) = lim−→

n∈N

⊕
v∈Vn\S

Sym(π−1(v)),

where in the first sum we have one summand for each G-orbit on Ṽn \ S̃. �

Proposition 3.5. If G is a uniformly discrete ample group, then G is residually finite.

Proof. Let B be a Bratteli diagram associated to the action of G on the Cantor set X.
Assume without loss of generality, using Theorem 3.2, that B \ (V0 ∪ E1) is a multitree and let
G = lim−→(Gn =

⊕
v∈Vn

Sym(π−1(v))) be the associated decomposition of G.
Let g ∈ G be a non-trivial element. Then g ∈ Gn for some n and has non-trivial projection

onto some summand Sym(π−1(v)) with v ∈ Vn. Let γ be some infinite directed path in B
starting from v and denote by C the subgraph of B spanned by γ and all directed paths from
the root to any vertex of γ. Note that, by the multitree condition, there is at most one such
path going through each u ∈ V1. Since G is piecewise full, it is infinite, so there are infinitely
many infinite directed paths in B (not necessarily starting at the root) that are not in C.

The definition of C guarantees that V (B \ C) is an ideal: (i) if e ∈ E(B) is such that s(u) ∈
V (B \ C), then no path starting from r(u) can end on γ, so r(u) ∈ V (B \ C); (ii) given u ∈
V (B), if w = r(e) ∈ V (B \ C) for all e ∈ E(B) such that s(e) = u, then no path starting from
u can end on γ, so u ∈ V (B \ C).

By Lemma 3.4, there is a normal subgroup N of G such that

G/N ∼= lim−→
⊕

u∈C∩Vn

Sym(π−1(u)).

Note that, as B \ (V0 ∪ E1) is a multitree, {d(u) = |π−1(u)| : u ∈ C} is finite, with maximum k
say. Thus G/N ∼= Sym(k) is finite. The fact that the projection of g onto the direct summand
Sym(π−1(v)) ↪→ Sym(k) is non-trivial implies that g has non-trivial image in G/N . �

The above, and the condition in Theorem 3.2 is to be contrasted with the condition for
simplicity of a Bratteli diagram: for every infinite path γ in the Bratteli diagram and every
vertex u, there is a path starting at u and ending at some vertex in γ. It is not hard to show
(see [15, Proposition 5.2]) that a Bratteli diagram is simple if and only if its associated ample
group acts minimally (all orbits are dense) on X. Again, this is in stark contrast to the action
of a uniformly discrete group.

The ample group G associated to a simple Bratteli diagram as we have defined that it is
not necessarily simple. Indeed, Lemma 3.4 does not account for all normal subgroups, because
the normal subgroup obtained by taking alternating groups instead of symmetric groups in the
direct limit decomposition of G does not appear as an ideal of B. However, it can be shown
[15, Theorem 3.1] that, apart from degenerate cases, an ample group of this alternating form
is simple if and only its associated Bratteli diagram is simple.

3.2. Dimension ranges or K0 groups

This subsection is a translation of the results in Subsection 3.1 to dimension ranges.
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The dimension range of an ample group is an algebraic invariant associated to it in [14],
which classifies ample groups up to conjugation in Homeo(X) ([14, Corollary 3.6]). It is directly
inspired by Elliott’s dimension group of an AF-algebra (which is in fact the scaled K0 group
of the algebra, an ordered abelian group, with some extra information — the scale) that he
shows classifies these C∗-algebras [7][5, IV.4].

In [14], a unit system is defined to be a pair (A, G), where A is a subalgebra of B and G is
a countable locally finite subgroup of Homeo(X) that is piecewise full on A and acts faithfully
on A, and such that for all g ∈ G, the fixed-point set of every element of G is an element of
A. The dimension range of an ample group G =

⋃
n∈N

Gn,B =
⋃

n∈N
Bn is constructed by first

constructing dimension ranges for the finite unit systems (Bn, Gn) as follows. Start with the
set Bn/Gn of G-orbits on Bn and form the Z-module generated by Bn/Gn, with a relation
w − v − u for u, v, w ∈ Bn/Gn whenever there exist disjoint ṽ ∈ v and ũ ∈ u such that ṽ � ũ ∈
w. Performing the Grothendieck group construction on this monoid then gives an abelian group
Bn|Gn. Moreover, the inclusion order on Bn is inherited by Bn|Gn and preserved by addition,
turning Bn|Gn into an ordered abelian group. Indeed, as an ordered abelian group, Bn|Gn

is isomorphic to (Z|Vn|,Z|Vn|
+ ) where Z

|Vn|
+ is the submonoid of non-negative elements of the

group. Since Gn,Bn are finite, every element of Bn|Gn is a sum of the Gn-orbits of Bn-atoms
it contains. This corresponds to K0 of the system (Bn, Gn). The extra information that we
need is the tuple (d(v))v∈at(Bn) consisting of the number d(v) of elements in the Gn-orbit of
v ∈ at(Bn). This is known as the scale Γn of (Bn, Gn) and the triple (Bn|Gn, (Bn|Gn)+,Γn)
is the dimension range of (Bn, Gn). To put it simply, the dimension range of (Bn, Gn) is
isomorphic to (Z|Vn|,Z|Vn|

+ , {(iv)v∈Vn
: 0 � iv � d(v)}).

The inclusion (Bn, Gn) � (Bn+1, Gn+1) induces a morphism of dimension ranges which is
completely described by a |at(Bn)/Gn|-by-|at(Bn+1)/Gn+1| matrix whose (i, j) entry is the
number of atoms of the orbit vj ∈ at(Bn+1)/Gn+1 that are contained in vi ∈ at(Bn)/Gn. In
other words, passing to the Bratteli diagram corresponding to G =

⋃
n∈N

Gn,B =
⋃

n∈N
Bn,

the matrix just described is the adjacency matrix between Vn and Vn+1.
We can therefore define the dimension range of (B, G) as the direct limit of dimension ranges

(Bn|Gn, (Bn|Gn)+,Γn) with the morphisms described above.
Of course, one could start with a Bratteli diagram and build its corresponding ample group,

the orbits of which would yield a dimension range.
With the Bratteli diagram dictionary at our disposal, Theorem 3.2 easily yields a

characterisation of the dimension ranges of ample groups that are uniformly discrete.

Corollary 3.6. Let G =
⋃

n∈N
Gn,B =

⋃
n∈N

Bn be an ample group with dimension range
lim−→(Bn|Gn, (Bn|Gn)+,Γn). Then G is uniformly discrete if and only if the matrices describing
all but finitely many of the morphisms in the direct limit have only 1s and 0s as entries.

The analogue of Lemma 3.4 is a combination of III.4.2, III.4.4 and IV.5.1 of [5] and is well
known. An order ideal of a partially ordered group (Γ,Γ+) is a subgroup Δ � Γ such that,
denoting Δ+ := Δ ∩ Γ+, we have that Δ = Δ+ − Δ+ and if 0 < γ < δ for some γ ∈ Γ and
δ ∈ Δ+, then γ ∈ Δ.

Lemma 3.7. The ideals of a Bratteli diagram B associated to an ample group G are in 1-1
correspondence with the order ideals of the dimension range of G.

An analogous argument to Proposition 3.5 shows that dimension ranges of uniformly discrete
ample groups are residually finitely generated (every non-trivial element has non-trivial
image in a finitely generated quotient).
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4. Not every uniformly discrete ample group arises from a finite group

The most obvious examples of uniformly discrete piecewise full groups are obtained as piecewise
full groups of finite homeomorphism groups, necessarily acting in a uniformly discrete way.
Given a finite group F , there are several equivalent ways to characterise when F(F ) is uniformly
discrete.

Proposition 4.1. Let F � Homeo(X) be finite and let G = F(F ). The following are
equivalent:

(i) F is uniformly discrete;
(ii) G is uniformly discrete;
(iii) G is ample;
(iv) for every f ∈ F , the set Fix(f) of fixed points of f is a clopen subset of X;
(v) F acts on some clopen partition P of X such that the setwise stabiliser of each part

coincides with its pointwise stabiliser.

Proof. (i) and (ii) are equivalent by Lemma 2.3(i) and (ii) implies (iii) by Proposition 2.8.
Clearly (iii) implies (iv), and (iv) implies (v) by Lemma 2.10. It is immediate that an action
of F on P as in (v) makes the action of F on X uniformly discrete with respect to P, so (v)
implies (i). �

Accordingly, we say that a group G < Homeo(X) is ample of finite origin if G = F(F )
for a finite group and G is ample (equivalently, G is uniformly discrete).

Not all uniformly discrete ample groups are of finite origin. Here are criteria to distinguish
ample groups of finite origin from other uniformly discrete piecewise full groups.

Proposition 4.2. Suppose that G � Homeo(X) is uniformly discrete and piecewise full.
The following are equivalent.

(i) G is ample of finite origin.
(ii) Given a Bratteli diagram B = (V,E) associated to G, there exists N ∈ N such that

d(v) = d(u) for every v ∈ VN and every vertex u ∈ V on a directed path starting at v.
(iii) For every clopen subset U of X, the union

⋃
g∈G g(U) of translates of U by G is clopen.

Proof. (i) ⇒ (ii): Let G = F(F ) for some finite F < Homeo(X) ∼= Aut(B) acting uniformly
discretely. Appealing to Theorem 3.2, let B = (V,E) be the Bratteli diagram associated to
some decomposition G =

⋃
n∈N

Gn,B =
⋃

n∈N
Bn, chosen so that B \ (V0 ∪ E1) is a multitree.

By Proposition 4.1, there is some clopen partition P of X on which F acts in such a way
that the setwise stabiliser of a part coincides with the part’s pointwise stabiliser. Because
B =

⋃
n∈N

Bn, there is some N ∈ N such that at(BN ) is a refinement of P. In particular, F acts
on at(BN ) and therefore also on at(Bm) for every m � N . This means that the vertices in Vm

are the F -orbits (=Gm-orbits) on at(Bm) for each m � N .
Suppose for a contradiction that d(u) > d(v) for some v ∈ VN and descendant u ∈ Vm of v

with m � N . In other words (and abusing notation) there is some ṽN ∈ at(BN ) which contains
some w̃m ∈ at(Bm) such that the F -orbit of w̃m is larger than the F -orbit of ṽN . Because F
preserves the Boolean subalgebras BN and Bm, the extra elements in the orbit of w̃m must be
contained in the orbit of ṽN , but this means that there are at least two paths between v and
w, contradicting the uniform discreteness criterion.

(ii) ⇒ (iii): Suppose that (V,E) is the Bratteli diagram associated to some decomposition
G =

⋃
n∈N

Gn,B =
⋃

n∈N
Bn and let U be a clopen subset of X. Then U is the union of some

atoms of Bn, which correspond to vertices of Ṽn in the extended Bratteli diagram. Taking a
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larger n if necessary, assume that n � N from the statement in (ii) and consider some ṽn ∈ Ṽn

corresponding to an atom contained in U . Then, by the assumption in (ii), for each m � n, the
Gn-orbit of ṽn has the same size as the Gm-orbit of w̃m where w̃m ∈ Ṽm is a descendant of ṽn.
This implies that ⋃

w̃m�ṽn

⋃
g∈Gm

g(w̃m) =
⋃

g∈Gm

g(ṽn) =
⋃

g∈Gn

g(ṽn)

for all m � n. Therefore
⋃

g∈G g(ṽn) =
⋃

g∈Gn
g(ṽn). The latter set is in B as it is a finite

union of elements of B. Since U is the disjoint union of (finitely many) atoms ṽn, we have
that

⋃
g∈G g(U) is the union of finitely many clopen sets (elements of B) and is therefore itself

clopen too.
(iii) ⇒ (i): Suppose that for every clopen U , the union

⋃
g∈G g(U) of all its translates by

G is clopen. Let P = {U1, . . . , Uk} be a partition witnessing the uniform discreteness of G. By
Proposition 2.8, the group G is locally finite and can be written as a directed union G =

⋃
N
Gn

of finite subgroups Gn which act faithfully on a refinement An of P.
Then {⋃g∈Gn

g(Ui) : n ∈ N} forms an open cover of
⋃

g∈G g(Ui), which we have assumed to
be a clopen subset of X, and therefore compact. This means that for each i there is some
Ni ∈ N such that ⋃

g∈GNi

g(Ui) =
⋃

g∈Gm

g(Ui) =
⋃
g∈G

g(Ui)

for all m � Ni. In particular, there is N = max{Ni : i = 1, . . . , k} such that
⋃

g∈GN
g(Ui) =⋃

g∈G g(Ui) for every i ∈ {1, . . . , k}.
We claim that G is the piecewise full group of GN . Let g ∈ G =

⋃
n∈N

Gn, and let n ∈ N be
smallest such that g ∈ Gn. If n � N , there is nothing to show, so suppose that n > N . Let PN =
{V1, . . . , VkN

} be the refinement of P on which GN acts faithfully, and Pn = {W1, . . . ,WKN
}

the refinement of PN on which Gn acts faithfully. For each i ∈ {1, . . . , k} we have assumed
that g(Ui) ⊆

⋃
h∈GN

h(Ui). Suppose that the parts of Pn, respectively, PN , contained in Ui are
labelled by in ⊆ {1, . . . , kn}, respectively, iN ⊆ {1, . . . , kN}. Then

g(Ui) =
⊔
j∈in

g(Wj) ⊆
⋃

h∈GN

h(Ui) =
⋃

h∈GN

⊔
l∈iN

h(Vl).

Since g preserves An, and GN preserves AN and An refines AN , for each j ∈ in, there is
some hj ∈ GN and l ∈ iN such that g(Wj) ⊆ hj(Vl). Because both Wj and Vl are contained
in Ui, the uniform discreteness of the G-action with respect to P implies that Wj ⊆ Vl and
g �Wj

= hj �Wj
. Repeating the argument for each Ui yields that for each Wj ∈ Pn there exists

hj ∈ GN such that g �Wj
= hj �Wj

, as required. �

It is now easy to see that not all uniformly discrete ample groups are of finite origin. We
note the following special case, which is also illustrated by the group G in Section 5 below.

Corollary 4.3. Let F < Homeo(X) be a finite group acting uniformly discretely, let x ∈ X
and let G be the stabiliser of x in F(F ); suppose that G �= F(F ). Then G is uniformly discrete
and ample, but it is not of the form F(H) for any finite group of homeomorphisms H.

Proof. Since G is a subgroup of F(F ), it is uniformly discrete; by construction G is also
piecewise full, hence ample by Proposition 2.8. Since G �= F(F ), there exists f ∈ F such that
fx �= x. By continuity there is a clopen neighbourhood U of x such that U and fU are disjoint.
We then see that

U ∩
⋃
g∈G

g(f(U)) = U \ {x},
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Figure 2 (colour online). The homeomorphism h exchanges the clopens below the vertices
circled in red on the left with those with corresponding red number on the right.

so
⋃

g∈G g(f(U)) is not closed, and thus G does not satisfy condition (iii) of Proposition 4.2.
Hence G cannot be of the form G = F(H) for any finite H < Homeo(X). �

One might wonder at this point whether all uniformly discrete ample groups arise as
subgroups of piecewise full groups of finite groups. In fact, they do not all arise in this way; to
explain why not, a more involved example is needed.

Example 4.4. For simplicity and concreteness, we will focus on a particular example, which
can be easily generalised. As in Example 2.9, we consider X as the boundary of the infinite
binary rooted tree and more specifically as the infinite words in the alphabet {0, 1}. Let

Y1 := {01n0∞ : n ∈ N} = {0∞, 010∞, 0110∞, . . . } ⊂ 0X = {0w : w ∈ X}
and Y2 = {1∞} ⊂ 1X. Then 0X \ Y1 and 1X \ Y2 are both noncompact Cantor sets and
therefore homeomorphic. There are many possible homeomorphisms; we consider one, h, that
induces a bijection of clopen subsets of X, described thus: enumerate the ‘obvious’ clopen
subsets cn of X1 \ Y1, by short-lex order and ignoring those that are contained in one that has
already been enumerated

c1 = 001X, c2 = 0001X, c3 = 0101X, c4 = 041X, c5 = 01001X,

c6 = 01101X, c7 = 051X, c8 = 01031X, c9 = 011001X, c10 = 01301X, . . .

The homeomorphism h exchanges each clopen cn with 1n0X, for n � 1 in some way (which
way exactly does not matter); see Figure 2.

This homeomorphism obviously cannot be extended to all of X. However, we can take the
group G generated by homeomorphisms hU of the form

hU (x) =

⎧⎪⎨
⎪⎩

h(x) if x ∈ U

h−1(x) if x ∈ h(U)
x otherwise

,

where U ranges over the compact open subsets of 0X \ Y1. By construction, G is piecewise full
and uniformly discrete (take 0X, 1X as a partition of uniform discreteness).

Suppose that G � F(F ) for some finite F < Homeo(X). We will arrive at a contradiction by
showing that 1∞ must be taken to the points of Y1, which cannot be achieved using only the
finitely many elements from F .
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Since G is piecewise full, there are elements gn ∈ G such that gn swaps only cn and 1n0X
and fixes the rest of X, for n � 1. Take a subsequence (gnm

)m ⊂ (gn)n such that cnm
⊆ 0m1X

for m � 2. As G � F(F ), each gnm
is a gluing of finitely many restrictions of elements of F .

That is, there is a finite partition 0m1X =
⊔rm

i=1 Unmi
of 0m1X into clopen sets such that

gnm
|Unmi

= fnmi
|Unmi

for some elements fnmi
∈ F . As F is finite and (nm)m is infinite, some

element, say f1 ∈ F , must appear infinitely often among the fnmi
. The union of clopens Unmi

corresponding to f1 in the above setting has 0∞ as its only boundary point, so f1(0∞) must
be the only boundary point of the union of f1(Unmi

) = gnm
(Unmi

) ⊂ 1nm0X. So f1(0∞) = 1∞.
Repeat this procedure for 01l0mX, l,m � 1 to obtain that fl(01l0∞) = 1∞.

Now, F is finite so there must be some repetition among the fl; that is, fl = fk for some
l �= k, which means that fl(01l0∞) = fl(01k0∞) = 1∞, contradicting the assumption that fl is
a homeomorphism of X.

Question 4.5. Which uniformly discrete piecewise full groups arise as subgroups of ample
groups of finite origin? Can they be distinguished by their Bratteli diagrams?

5. Example: isomorphic groups, non-isomorphic dynamical systems

We present an illustrative example of two different ample actions of the same group, one
uniformly discrete, the other not.

Let In be all n-digit strings over the alphabet {0, 1}, except for the all-1 string 1n (so
|In| = 2n − 1); let Γn be the elementary abelian group

⊕
i∈In

〈gi〉, where each generator gi
has order 2. The group we are interested in is the direct limit Γ = lim−→n�1

Γn, with diagonal
embeddings: Γn embeds in Γn+1 by setting gi = gi0 + gi1 for all i ∈ In.

We consider two different embeddings α, β : Γ → Homeo(X) that give two different ample
groups G = α(Γ) and H = β(Γ), as follows. Firstly consider X as the boundary of the infinite
binary rooted tree, thought of as the Cayley graph of the free monoid {0, 1}∗. In other words,
we think of X as the set {0, 1}N of (right) infinite words over the alphabet {0, 1}. The Boolean
algebra B of clopen subsets of X then has a standard decomposition B =

⋃
n Bn, where Bn is

the subalgebra with atoms {wX : |w| = n}.
Let G be the stabiliser of the point 1∞ ∈ X in F(C2) where C2 acts on X by swapping

the first letter of every infinite word. Observe that G and F(C2) are uniformly discrete with

Figure 3 (colour online). Action of G on first few levels of {0, 1}∗. The embeddings are

colour-coded: .
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Figure 4 (colour online). Action of H on first few levels of {0, 1}∗. The embeddings are

colour-coded: .

Figure 5. First levels of Bratteli diagrams of G.

respect to the partition 0X � 1X. Define α : Γ → G by letting α(gi) swap 0iw and 1iw for all
w ∈ {0, 1}N. Figure 3 shows the first few levels of this action.

We define β on the generators gi as follows: suppose i = 1m0j for some m � 0 and some
(possibly empty) finite string j. Then β(gi) swaps 1m00jw and 1m01jw for all w ∈ {0, 1}N.

For m � 0, let hm be the homeomorphism of X swapping 1m00w and 1m01w for every
w ∈ {0, 1}N. This time, we see that β(Γn) is the piecewise full group of 〈hm | 0 � m � n〉
acting on Bn+2, and consequently H = β(Γ) is the piecewise full group of 〈hm : m � 0〉 acting
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Figure 6. First levels of Bratteli diagrams of H.

on X. Also, H = F(〈f〉) where f = h0h1h2 · · · is a homeomorphism of order 2 swapping 1m00w
and 1m01w for every w ∈ {0, 1}N and every m ∈ N. The action on the first few levels is shown
in Figure 4.

We see that G and H are not conjugate in Homeo(X), for two reasons. Firstly, G has two
fixed points, namely 01∞ and 1∞, while H only has one, namely 1∞. Secondly, G is uniformly
discrete, while H is not, by Proposition 4.1, using that H = F(〈f〉).

As should be expected (cf. [14, 3.6]), the Bratteli diagrams and dimension ranges associated
to the different actions G,H of Γ are different. Let us see them explicitly.

For both G and H, we telescope the standard decomposition B =
⋃

n Bn by removing the
level B1. Because we have skipped the first level of the tree, the extended Bratteli diagrams
corresponding to (G,B) and (H,B) both have 2n+1 vertices at level n, organised into 2n − 1
orbits of size 2 and two orbits of size 1.

For the action of G, 0u and 1u are in the same orbit for all u ∈ {0, 1}n−1 \ {1n−1}, while
01n−1 and 1n are in orbits by themselves. This pattern repeats at all levels, from which it can
be seen that there are no multiple paths in the Bratteli diagram. Figure 5 shows the first few
levels of the Bratteli diagrams of this action.

For the action of H, the orbits of size 1 are 1n0 and 1n1 while 1m00w and 1m01w are in the
same orbit, where m + |w| = n− 1 and w ∈ {0, 1}n−1−m. The pattern here also repeats at all
levels, and we in fact have multiple paths between infinitely many pairs of vertices. The first
few levels of the Bratteli diagrams of this action are shown in Figure 6. Notice the multiple
edges at each level.
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On the other hand, the figures give us a clue as to what precisely is the difference between G
and H. Identifying the two top-most all-1s infinite paths in the Bratteli diagram in Figure 5,
we obtain a graph isomorphic to that in Figure 6.

Indeed, the action of H is a quotient of that of G. Let X ′ be the quotient X/{01∞ ∼ 1∞}
obtained by identifying the fixed points of G � Homeo(X). The action of G on X can naturally
be pushed forward to an action of G on X ′; explicitly, the image of this action is F(〈h′

m | m �
0〉) where h′

m ∈ Homeo(X ′) acts by swapping 01m0w and 11m0w for w ∈ {0, 1}N. This action
is topologically conjugate to that of H via the homeomorphism θ : X → X ′ defined by

θ(1∞) = {01∞, 1∞}, θ(1m0δw) = δ1m0w, for all m � 0, δ ∈ {0, 1}, w ∈ {0, 1}N.
Indeed,

θ(hm(1m0δw)) = θ(1m0δw) = δ1m0w = h′
m(δ1m0w) = h′

m(θ(1m0δw))

for all m � 0 and w ∈ {0, 1}N where δ denotes the opposite value of δ = 0, 1. Therefore θ is a
conjugation from (X,F(〈hm〉)) to (X ′,F(〈h′

m〉)).
This illustrates how one can obtain an action that is not uniformly discrete as a quotient of

a uniformly discrete action.
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