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Preface

Figure 1: Illustration of nonparametric
kernel estimators of the regression
function.

Welcome

Welcome to the notes for Predictive Modeling. The course is part of
the MSc in Big Data Analytics from Carlos III University of Madrid.

The course is designed to have, roughly, one session per main
topic in the syllabus. The schedule is tight due to time constraints,
which will inevitably make the treatment of certain methods some-
how superficial. Nevertheless, the course will hopefully give you a
respectable panoramic view of different available statistical meth-
ods for predictive modeling. A broad view of the syllabus and its
planning is:

1. Introduction (first session)
2. Linear models I (first/second session)
3. Linear models II (second/third session)
4. Linear models III (third/fourth session)
5. Generalized linear models (fifth/sixth session)

https://www.uc3m.es/master/big-data
http://www.uc3m.es/
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6. Nonparametric regression (sixth/seventh session)

Some logistics for the development of the course follow:

• Office hours are described in the Aula Global (right panel).
• Questions and comments during lectures are most welcome.

Particularly if these are clarifications, comments, or alternative
perspectives that may help the rest of the class. So just go ahead
and fire!

• Detailed course evaluation guidelines can be found in the Aula
Global. Recall that participation in lessons is positively evalu-
ated.

Main references and credits

Several great reference books have been used for preparing these
notes. The following list presents the books that have been con-
sulted:

• Chacón and Duong (2018) (Section 6.1.4)
• DasGupta (2008) (Section 3.5.2)
• Durbán (2017) (Section 5.2.2)
• Fan and Gijbels (1996) (Sections 6.2, 6.2.3, and 6.2.4)
• Hastie et al. (2009) (Section 4.1)
• James et al. (2013) (Sections 2.2 – 2.7, 3.1, 3.5, and 3.6.3, 4.1)
• Kuhn and Johnson (2013) (Section 1.2)
• Li and Racine (2007) (Section 6.3)
• Loader (1999) (Section 6.5)
• McCullagh and Nelder (1983) (Sections 5.2 – 5.6)
• Peña (2002) (Sections 2.2 – 2.7, 3.5, and 5.2.1)
• Seber and Lee (2003) (Section 4.2)
• Seber (1984) (Section 4.3)
• Wand and Jones (1995) (Sections 6.1.2, 6.1.3, and 6.2.4)
• Wasserman (2004) (Sections 6.5)
• Wasserman (2006) (Sections 6.2.4)
• Wood (2006) (Sections 5.2.2 and 5.7)

These notes are possible due to the existence of the incredible
pieces of software by Xie (2016), Xie (2020), Allaire et al. (2020), Xie
and Allaire (2020), and R Core Team (2020). Also, certain hacks to
improve the design layout have been possible due to the outstand-
ing work of Úcar (2018). The icons used in the notes were designed
by madebyoliver, freepik, and roundicons from Flaticon.

Last but not least, the notes have benefited from contributions
from the following people:

• Ainara Apezteguía García (fixed a typo)
• Katherine Botz (performed a thorough proofreading of the

course materials, fixing a large number of typos)
• Jorge Caballero Cárdenas (fixed five typos)
• Antonio Carrera Maestro (fixed two bugs and three typos)

https://aulaglobal.uc3m.es
https://aulaglobal.uc3m.es
https://aulaglobal.uc3m.es
http://www.flaticon.com/authors/madebyoliver
http://www.flaticon.com/authors/freepik
http://www.flaticon.com/authors/roundicons
http://www.flaticon.com/
https://www.linkedin.com/in/ainara-apezteguia-garcia-62a084193/
https://www.linkedin.com/in/katherine-botz-a48355103
https://www.linkedin.com/in/jorge-caballero-c%C3%A1rdenas-a7bb35184/
https://www.linkedin.com/in/antonio-carrera-maestro-650b801b5/
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• Marcos José Castillo Estévez (fixed two typos)
• Luis Cerdán Pedraza (performed an outstanding proofreading of

the course materials fixing more than fifty typos and style issues)
• Frederik Chettouh (fixed a typo and two bugs)
• Gulnur Demir (fixed two typos)
• Andrés Escalante Ariza (fixed a typo)
• José Ángel Fernández (fixed several typos)
• Celia García Ramírez (fixed two bugs)
• Trinidad González Berzal (fixed a typo)
• David González González (fixed two typos)
• Antonio Marín Abril (fixed two bugs)
• Andrés Modet Álamo (performed an excellent review of the

course materials detecting and fixing more than thirty typos and
four bugs)

• Santiago Palmero Muñoz (fixed a typo and a bug)
• Federico Petraccaro (fixed three typos)
• Enrique Ramírez Díaz (fixed a typo)
• Pavel Razgovorov (fixed a typo)
• Cristina Rodríguez Beltrán (fixed a typo and two bugs)
• Manuel Rodríguez Ramírez (fixed two typos)
• Celia Romero González (fixed a typo)
• Carlota Royo Ruiz (fixed a bug)
• Leonardo Stincone (fixed a typo and a bug)

Contributions

Contributions, reporting of typos, and feedback on the notes are
very welcome. Just send an email to edgarcia@est-econ.uc3m.es

and give me a good reason for writing your name in the list of
contributors!

License

All the material in these notes is licensed under the Creative Com-
mons Attribution-NonCommercial-NoDerivatives 4.0 Interna-
tional Public License (CC BY-NC-ND 4.0). You may not use this
material except in compliance with the aforementioned license. The
human-readable summary of the license states that:

• You are free to:

– Share – Copy and redistribute the material in any medium or
format.

• Under the following terms:

– Attribution – You must give appropriate credit, provide a link
to the license, and indicate if changes were made. You may do
so in any reasonable manner, but not in any way that suggests
the licensor endorses you or your use.

– NonCommercial – You may not use the material for commercial
purposes.

https://www.linkedin.com/in/marcosjc/
https://publons.com/researcher/2785151/luis-cerdan-phd/
https://www.linkedin.com/in/frederik-chettouh-2a864aa0/
https://www.linkedin.com/in/gulnurdemir/
https://www.linkedin.com/in/andr%C3%A9s-escalante-ariza-144858148/
https://github.com/jangelfdez
https://www.linkedin.com/in/celia-garc%C3%ADa
https://www.linkedin.com/in/trinidad-gonz%C3%A1lez-berzal-47bb6817a/
https://www.linkedin.com/in/david-gonzalez-gonzalez/
https://www.linkedin.com/in/antoniomarinabril/
https://www.linkedin.com/in/santiago-palmero-mu%C3%B1oz-8359b8163/
https://www.linkedin.com/in/federicopetraccaro
https://www.linkedin.com/in/pavel-razgovorov/
https://www.linkedin.com/in/cristina-rodr%C3%ADguez-beltr%C3%A1n-941016199/
https://www.linkedin.com/in/manuel-rodr%C3%ADguez-ram%C3%ADrez-a214b4151/
https://www.linkedin.com/in/celia-romero-gonz%C3%A1lez-063121114/
https://www.linkedin.com/in/carlota-royo-ruiz-1b2b68210/
https://www.linkedin.com/in/leonardo-stincone-803741bb/
mailto:edgarcia@est-econ.uc3m.es
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
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– NoDerivatives – If you remix, transform, or build upon the
material, you may not distribute the modified material.

Citation

You may use the following BIBTEX entry when citing these notes:

@book{Garcia-Portugues2023,

title = {Notes for Predictive Modeling},

author = {Garc\’ia-Portugu\’es, E.},

year = {2023},

note = {Version 5.9.12. ISBN 978-84-09-29679-8},

url = {https://bookdown.org/egarpor/PM-UC3M/}

}

You may also want to use the following template:

García-Portugués, E. (2023). Notes for Predictive Modeling. Version
5.9.12. ISBN 978-84-09-29679-8. Available at https://bookdown.org/
egarpor/PM-UC3M/.

https://bookdown.org/egarpor/PM-UC3M/
https://bookdown.org/egarpor/PM-UC3M/


1 Among others: basic programming
in R, ability to work with objects and
data structures, ability to produce
graphics, knowledge of the main
statistical functions, and ability to run
scripts in RStudio.

1
Introduction

These notes contain both the theory and the practice for the statis-
tical methods presented in the course. The emphasis is placed on
building intuition behind the methods, gaining insight into their
properties, and showing their application through the use of sta-
tistical software. The topics we will cover are an in-depth analysis
of linear models and different variants, their extension to generalized
linear models, and an introduction to nonparametric regression.

1.1 Course overview

The notes contain a substantial amount of snippets of code that are
fully self-contained within the chapter in which they are included.
This allows understanding of how the methods and theory translate
neatly to the practice. The software employed in the course is the
statistical language R and its most common IDE (Integrated Devel-
opment Environment) nowadays, RStudio. Prior basic knowledge of
both is assumed1. Appendix B presents some very basic introduc-
tions to RStudio and R for those students lacking basic expertise on
them.

The Shiny interactive apps on the notes can be downloaded and
run locally, which in particular allows inspection of their codes.
Check out this GitHub repository for the sources. We will employ
several packages that are not included within R by default. These
can be installed as:

# Installation of required packages

packages <- c("MASS", "car", "readxl", "rgl", "rmarkdown", "nortest",

"latex2exp", "pca3d", "ISLR", "pls", "corrplot", "glmnet",

"mvtnorm", "biglm", "leaps", "lme4", "viridis", "ffbase",

"ks", "KernSmooth", "nor1mix", "np", "locfit",

"manipulate", "mice", "VIM", "nnet")

install.packages(packages)

The notes make explicit mention of the package to which a func-
tion belongs by using the operator ::, unless when the use of the
functions of a package is very repetitive and that package is loaded.
You can load all the packages by running:

# Load packages

lapply(packages, library, character.only = TRUE)

https://cran.r-project.org/
https://www.rstudio.com/products/rstudio/download/
https://github.com/egarpor/ShinyServer
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2 The relation is encoded in average by
means of the conditional expectation.

3 That can be regarded as “structures
for m”.

4 This is an alternative useful view of ε:
the aggregation of the effects what we
cannot account for predicting Y.

1.2 What is Predictive Modeling?

Predictive modeling is the process of developing a mathematical
tool or model that generates an accurate prediction about a random
quantity of interest.

In predictive modeling we are interested in predicting a random
variable, typically denoted by Y, from a set of related variables
X1, . . . , Xp. The focus is on learning what is the probabilistic model
that relates Y with X1, . . . , Xp, and use that acquired knowledge
for predicting Y given an observation of X1, . . . , Xp. Some concrete
examples of this are:

• Predicting the wine quality (Y) from a set of environmental
variables (X1, . . . , Xp).

• Predicting the number of sales (Y) from a set of marketing in-
vestments (X1, . . . , Xp).

• Modeling the average house value in a given suburb (Y) from a
set of community-related features (X1, . . . , Xp).

• Predicting the probability of failure (Y) of a rocket launcher from
the ambient temperature (X1).

• Predicting students academic performance (Y) according to
education resources and learning methodologies (X1, . . . , Xp).

• Predicting the fuel consumption of a car (Y) from a set of driving
variables (X1, . . . , Xp).

The process of predictive modeling can be statistically abstracted
in the following way. We believe that Y and X1, . . . , Xp are related
by a regression model of the form

Y = m(X1, . . . , Xp) + ε, (1.1)

where m is the regression function and ε is a random error with zero
mean that accounts for the uncertainty of knowing Y if X1, . . . , Xp

are known. The function m : Rp → R is unknown in practice and
its estimation is the objective of predictive modeling: m encodes the
relation2 between Y and X1, . . . , Xp. In other words, m captures the
trend of the relation between Y and X1, . . . , Xp, and ε represents the
stochasticity of that relation. Knowing m allows to predict Y. This
course is devoted to statistical models3 that allow us to come up with
an estimate of m, denoted by m̂, that can be used to predict Y.

Let’s see a concrete example of this with an artificial dataset.
Suppose Y represents average fuel consumption (l/100km) of a car
and X is the average speed (km/h). It is well-known from physics
that the energy and speed have a quadratic relationship, and there-
fore we may assume that Y and X are truly quadratically-related for
the sake of exposition:

Y = a + bX + cX2 + ε.

Then m : R → R (p = 1) with m(x) = a + bx + cx2. Suppose the
following data consists of measurements from a given car model,
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Figure 1.1: Scatterplot of fuel con-
sumption vs. speed.

5 Note we use the information that m
has to be of a particular form (in this
case quadratic) which is an unrealistic
situation for other data applications.
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Figure 1.2: Fitted quadratic model.

6 Not only that but they are neatly
interpretable.

measured in different drivers and conditions (we do not have data
for accounting for all those effects, which go to the ε term4):

x <- c(64, 20, 14, 64, 44, 39, 25, 53, 48, 9, 100, 112, 78, 105, 116, 94, 71,

71, 101, 109)

y <- c(4, 6, 6.4, 4.1, 4.9, 4.4, 6.6, 4.4, 3.8, 7, 7.4, 8.4, 5.2, 7.6, 9.8,

6.4, 5.1, 4.8, 8.2, 8.7)

plot(x, y, xlab = "Speed", ylab = "Fuel consumption")

From this data, we can estimate m by means of a polynomial
model5:

# Estimates for a, b, and c

lm(y ~ x + I(xˆ2))

##

## Call:

## lm(formula = y ~ x + I(xˆ2))

##

## Coefficients:

## (Intercept) x I(xˆ2)

## 8.512421 -0.153291 0.001408

Then the estimate of m is m̂(x) = â + b̂x + ĉx2 = 8.512− 0.153x +

0.001x2 and its fit to the data is pretty good. As a consequence,
we can use this precise mathematical function to predict the Y
from a particular observation X. For example, the estimated fuel
consumption at speed 90 km/h is 8.512421 - 0.153291 * 90 +

0.001408 * 90ˆ2 = 6.1210.

plot(x, y, xlab = "Speed", ylab = "Fuel consumption")

curve(8.512421 - 0.153291 * x + 0.001408 * xˆ2, add = TRUE, col = 2)

There are a number of generic issues and decisions to take when
building and estimating regression models that are worth to high-
light:

1. The prediction accuracy versus interpretability trade-off. Predic-
tion accuracy is key in any predictive model: of course, the better
the model is able to predict Y, the more useful it will be. How-
ever, some models achieve this predictive accuracy in exchange
of a clear interpretability of the model (the so-called black boxes).
Interpretability is key in order to gain insights on the prediction
process, to know exactly which variables are most influential in
Y, to be able to interpret the parameters of the model, and to
translate the prediction process to non-experts. In essence, inter-
pretability allows to explain precisely how and why the model
behaves when predicting Y from X1, . . . , Xp. Most of models seen
in these notes clearly favor interpretability6 and hence they
may make a sacrifice in terms of their prediction accuracy when
compared with more convoluted models.

2. Model correctness versus model usefulness. Correctness and
usefulness are two different concepts in modeling. The first
refers to the model being statistically correct, this is, it translates
to stating that the assumptions on which the model relating
Y with X1, . . . , Xp is built are satisfied. The second refers to
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7 Particularly, it usually happens that
the inference based on erroneous
assumptions underestimates variability,
as the assumptions tend to ensure
that the information of the sample
is maximal for estimating the model
at hand. Thus, inference based on
erroneous assumptions results in a
false sense of confidence: a larger error
is made in reality than the one the
model theory states.

8 Three datasets if we are fitting hy-
perparameters or tuning parameters in
our model: the training dataset for
estimating the model parameters;
the validation dataset for estimating
the hyper-parameters; and the test-
ing dataset for evaluating the final
performance of the fitted model.

the model being useful for explaining or predicting Y from
X1, . . . , Xp. Both concepts are certainly related (if the model is
correct/useful, then likely it is useful/correct) but neither is im-
plied by the other. For example, a regression model might be
correct but useless if the variance of ε is large (too much noise).
And yet if the model is not completely correct, it may give use-
ful insights and predictions, but inference may be completely
spurious7.

3. Flexibility versus simplicity. The best model is the one which is
very simple (low number of parameters), highly interpretable,
and delivers great predictions. This is often unachievable in
practice. What can be achieved is a good model: the one that bal-
ances the simplicity with the prediction accuracy, which is often
increased the more flexible the model is. However, flexibility
comes at a price: more flexible (hence more complex) models use
more parameters that need to be estimated from a finite amount
of information – the sample. This is problematic, as overly flex-
ible models are more dependent on the sample, up to the point
in which they end up not estimating the true relation between
Y and X1, . . . , Xp, m, but merely interpolating the observed data.
This well-known phenomenon is called overfitting and it can
be avoided by splitting the dataset in two datasets8: the training
dataset, used for estimating the model; and the testing dataset,
used for evaluating the fitted model predictive performance.
On the other hand, excessive simplicity (underfitting) is also
problematic, since the true relation between Y and X1, . . . , Xp

may be overly simplified. Therefore, a trade-off in the degree of
flexibility has to be attained for having a good model. This is
often referred to as the bias-variance trade-off (low flexibility
increases the bias of the fitted model, high flexibility increases
the variance). An illustration of this transversal problem in pre-
dictive modeling is given in Figure 1.3.

Figure 1.3: Illustration of overfitting in
polynomial regression. The left plot
shows the training dataset and the
right plot the testing dataset. Better
fitting of the training data with a
higher polynomial order does not
imply better performance in new
observations (prediction), but just an
over-fitting of the available data with
an overly-parametrized model (too
flexible for the amount of information
available). Reduction in the predictive
error is only achieved with fits (in red)
of polynomial degrees close to the
true regression (in black). Application
available here.

https://shinyserv.es/shiny/over-fitting/
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9 Respectively, F(x) =
∫ x
−∞ f (t)dt.

10 Understood as the probability that
(X1 ≤ x1) and . . . and (Xp ≤ xp).

1.3 General notation and background

We use capital letters to denote random variables, such as X, and
lowercase, such as x, to denote deterministic values. For example
P[X = x] means “the probability that the random variable X takes
the particular value x”. In predictive modeling we are concerned
about the prediction or explanation of a response Y from a set of
predictors X1, . . . , Xp. Both Y and X1, . . . , Xp are random variables,
but we use them in a different way: our interest lies in predicting
or explaining Y from X1, . . . , Xp. Other name for Y is dependent
variable and X1, . . . , Xp are sometimes referred to as independent
variables, covariates, or explanatory variables. We will not use these
terminologies.

The cumulative distribution function (cdf) of a random variable X
is F(x) := P[X ≤ x] and is a function that completely characterizes
the randomness of X. Continuous random variables are also charac-
terized by the probability density function (pdf) f (x) = F′(x) 9, which
represents the infinitesimal relative probability of X per unit of length.
On the other hand, discrete random variables are also characterized
by the probability mass function P[X = x]. We write X ∼ F (or X ∼ f
if X is continuous) to denote that X has a cdf F (or a pdf f ). If two
random variables X and Y have the same distribution, we write
X d

= Y.
For a random variable X ∼ F, the expectation of g(X) is defined

as

E[g(X)] :=
∫

g(x)dF(x)

:=


∫

g(x) f (x)dx, if X is continuous,

∑
{x∈R:P[X=x]>0}

g(x)P[X = x], if X is discrete.

The sign “:=” emphasizes that the Left Hand Side (LHS) of the
equality is defined for the first time as the Right Hand Side (RHS).
Unless otherwise stated, the integration limits of any integral are
R or Rp. The variance is defined as Var[X] := E[(X − E[X])2] =

E[X2]−E[X]2.
We employ boldface to denote vectors (assumed to be column

matrices, although sometimes written in row-layout), like a, and
matrices, like A. We denote by A′ to the transpose of A. Boldfaced
capitals will be used simultaneously for denoting matrices and also
random vectors X = (X1, . . . , Xp), which are collections of random
variables X1, . . . , Xp. The (joint) cdf of X is10

F(x) := P[X ≤ x] := P[X1 ≤ x1, . . . , Xp ≤ xp]

and, if X is continuous, its (joint) pdf is f := ∂p

∂x1···∂xp
F.

The marginals of F and f are the cdf and pdf of Xj, j = 1, . . . , p,
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11 Recall that the X-part of E[Y|X]
is random. However, E[Y|X = x] is
deterministic.

respectively. They are defined as:

FXj(xj) := P[Xj ≤ xj] = F(∞, . . . , ∞, xj, ∞, . . . , ∞),

fXj(xj) :=
∂

∂xj
FXj(xj) =

∫
Rp−1

f (x)dx−j,

where x−j := (x1, . . . , xj−1, xj+1, . . . , xp). The definitions can be ex-
tended analogously to the marginals of the cdf and pdf of different
subsets of X.

The conditional cdf and pdf of X1|(X2, . . . , Xp) are defined, re-
spectively, as

FX1|X−1=x−1
(x1) := P[X1 ≤ x1|X−1 = x−1],

fX1|X−1=x−1
(x1) :=

f (x)
fX−1(x−1)

.

The conditional expectation of Y|X is the following random vari-
able11

E[Y|X] :=
∫

y dFY|X(y|X).

For two random variables X1 and X2, the covariance between them
is defined as

Cov[X1, X2] := E[(X1 −E[X1])(X2 −E[X2])] = E[X1X2]−E[X1]E[X2],

and the correlation between them is defined as

Cor[X1, X2] :=
Cov[X1, X2]√

Var[X1]Var[X2]
.

The variance and the covariance are extended to a random vector
X = (X1, . . . , Xp)′ by means of the so-called variance-covariance
matrix:

Var[X] :=E[(X−E[X])(X−E[X])′]

=E[XX′]−E[X]E[X]′

=


Var[X1] Cov[X1, X2] · · · Cov[X1, Xp]

Cov[X2, X1] Var[X2] · · · Cov[X2, Xp]
...

...
. . .

...
Cov[Xp, X1] Cov[Xp, X2] · · · Var[Xp]

 ,

where E[X] := (E[X1], . . . , E[Xp])′ is just the componentwise
expectation. As in the univariate case, the expectation is a linear
operator, which now means that

E[AX + b] = AE[X] + b, for a q× p matrix A and b ∈ Rq. (1.2)

It follows from (1.2) that

Var[AX + b] = AVar[X]A′, for a q× p matrix A and b ∈ Rq.
(1.3)

The p-dimensional normal of mean µ ∈ Rp and covariance matrix
Σ (a p × p symmetric and positive definite matrix) is denoted by
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12 If µ = 0 and σ = 1 (standard normal),
then the pdf and cdf are simply
denoted by ϕ and Φ, without extra
parameters.

Np(µ, Σ) and is the generalization to p random variables of the
usual normal distribution. Its (joint) pdf is given by

ϕ(x; µ, Σ) :=
1

(2π)p/2|Σ|1/2
e−

1
2 (x−µ)′Σ−1(x−µ), x ∈ Rp.

The p-dimensional normal has a nice linear property that stems
from (1.2) and (1.3):

ANp(µ, Σ) + b d
= Nq(Aµ + b, AΣA′). (1.4)

Notice that when p = 1, and µ = µ and Σ = σ2, then the pdf of
the usual normal N (µ, σ2) is recovered12:

ϕ(x; µ, σ2) :=
1√
2πσ

e−
(x−µ)2

2σ2 .

When p = 2, the pdf is expressed in terms of µ = (µ1, µ2)
′ and

Σ = (σ2
1 , ρσ1σ2; ρσ1σ2, σ2

2 ), for µ1, µ2 ∈ R, σ1, σ2 > 0, and −1 < ρ < 1:

ϕ(x1, x2; µ1, µ2, σ2
1 , σ2

2 , ρ) :=
1

2πσ1σ2
√

1− ρ2
(1.5)

× exp

{
− 1

2(1− ρ2)

[
(x1 − µ1)

2

σ2
1

+
(x2 − µ2)

2

σ2
2

− 2ρ(x1 − µ1)(x2 − µ2)

σ1σ2

]}
.

The surface defined by (1.5) can be regarded as a 3-dimensional
bell. In addition, it serves to provide concrete examples of the func-
tions introduced above:

• Joint pdf:

f (x1, x2) = ϕ(x1, x2; µ1, µ2, σ2
1 , σ2

2 , ρ).

• Marginal pdfs:

fX1(x1) =
∫

ϕ(x1, t2; µ1, µ2, σ2
1 , σ2

2 , ρ)dt2 = ϕ(x1; µ1, σ2
1 )

and fX2(x2) = ϕ(x2; µ2, σ2
2 ). Hence X1 ∼ N

(
µ1, σ2

1
)

and X2 ∼
N
(
µ2, σ2

2
)

.

• Conditional pdfs:

fX1|X2=x2
(x1) =

f (x1, x2)

fX2(x2)
= ϕ

(
x1; µ1 + ρ

σ1

σ2
(x2 − µ2), (1− ρ2)σ2

1

)
,

fX2|X1=x1
(x2) =ϕ

(
x2; µ2 + ρ

σ2

σ1
(x1 − µ1), (1− ρ2)σ2

2

)
.

Hence

X1|X2 = x2 ∼ N
(

µ1 + ρ
σ1

σ2
(x2 − µ2), (1− ρ2)σ2

1

)
,

X2|X1 = x1 ∼ N
(

µ2 + ρ
σ2

σ1
(x1 − µ1), (1− ρ2)σ2

2

)
.

• Conditional expectations:

E[X1|X2 = x2] = µ1 + ρ
σ1

σ2
(x2 − µ2),

E[X2|X1 = x1] = µ2 + ρ
σ2

σ1
(x1 − µ1).
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• Joint cdf:

∫ x2

−∞

∫ x1

−∞
ϕ(t1, t2; µ1, µ2, σ2

1 , σ2
2 , ρ)dt1 dt2.

• Marginal cdfs:
∫ x1
−∞ ϕ(t; µ1, σ2

1 )dt =: Φ(x1; µ1, σ2
1 ) and analo-

gously Φ(x2; µ2, σ2
2 ).

• Conditional cdfs:∫ x1

−∞
ϕ

(
t; µ1 + ρ

σ1

σ2
(x2 − µ2), (1− ρ2)σ2

1

)
dt = Φ

(
x1; µ1 + ρ

σ1

σ2
(x2 − µ2), (1− ρ2)σ2

1

)

and analogously Φ
(

x2; µ2 + ρ σ2
σ1
(x1 − µ1), (1− ρ2)σ2

2

)
.

Figure 1.4 graphically summarizes the concepts of joint, marginal,
and conditional distributions within the context of a 2-dimensional
normal.

Figure 1.4: Visualization of the joint
pdf (in blue), marginal pdfs (green),
conditional pdf of X2|X1 = x1 (or-
ange), expectation (red point), and
conditional expectation E[X2|X1 = x1]
(orange point) of a 2-dimensional nor-
mal. The conditioning point of X1 is
x1 = −2. Note the different scales of
the densities, as they have to integrate
one over different supports. Note how
the conditional density (upper orange
curve) is not the joint pdf f (x1, x2)
(lower orange curve) with x1 = −2
but a rescaling of this curve by 1

fX1
(x1)

.

The parameters of the 2-dimensional
normal are µ1 = µ2 = 0, σ1 = σ2 = 1
and ρ = 0.75. 500 observations sam-
pled from the distribution are shown
in black.

Finally, in the predictive models we will consider an indepen-
dent and identically distributed (iid) sample of the response and the
predictors. We use the following notation: Yi is the i-th observa-
tion of the response Y and Xij represents the i-th observation of
the j-th predictor Xj. Thus we will deal with samples of the form
{(Xi1, . . . , Xip, Yi)}n

i=1.
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1.4 Scripts and datasets

The snippets of code of the notes are conveniently collected in the
following scripts. To download them, simply save the link as a file
in your browser.

• Chapter 1: 01-intro.R.
• Chapter 2: 02-lm-i.R.
• Chapter 3: 03-lm-ii.R.
• Chapter 4: 04-lm-iii.R.
• Chapter 5: 05-glm.R. Generation of Figures 5.11–5.22: hypothesisGlm.R.
• Chapter 6: 06-npreg.R.
• Appendices A and B: 07-appendix.R.

The following is a handy list of all the relevant datasets used
in the course together with brief descriptions. The list is sorted
according to the order of appearance of the datasets in the notes. To
download them, simply save the link as a file in your browser.

• wine.csv. The dataset is formed by the auction Price of 27 red
Bordeaux vintages, five vintage descriptors (WinterRain, AGST,
HarvestRain, Age, Year), and the population of France in the year
of the vintage (FrancePop).

• least-squares.RData. Contains a single data.frame, named
leastSquares, with 50 observations of the variables x, yLin,
yQua, and yExp. These are generated as X ∼ N (0, 1), Ylin =

−0.5 + 1.5X + ε, Yqua = −0.5 + 1.5X2 + ε, and Yexp = −0.5 +

1.5 · 2X + ε, with ε ∼ N (0, 0.52). The purpose of the dataset is to
illustrate the least squares fitting.

• least-squares-3D.RData. Contains a single data.frame, named
leastSquares3D, with 50 observations of the variables x1, x2, x3,
yLin, yQua, and yExp. These are generated as X1, X2 ∼ N (0, 1),
X3 = X1 +N (0, 0.052), Ylin = −0.5 + 0.5X1 + 0.5X2 + ε, Yqua =

−0.5 + X2
1 + 0.5X2 + ε, and Yexp = −0.5 + 0.5eX2 + X3 + ε, with

ε ∼ N (0, 1). The purpose of the dataset is to illustrate the least
squares fitting with several predictors.

• assumptions.RData. Contains the data frame assumptions with
200 observations of the variables x1, . . . , x9 and y1, . . . , y9. The
purpose of the dataset is to identify which regression y1 ~ x1,
. . . , y9 ~ x9 fulfills the assumptions of the linear model. The
moreAssumptions.RData dataset has the same structure.

• assumptions3D.RData. Contains the data frame assumptions3D

with 200 observations of the variables x1.1, . . . , x1.8, x2.1, . . . ,
x2.8 and y.1, . . . , y.8. The purpose of the dataset is to identify
which regression y.1 ~ x1.1 + x2.1, . . . , y.8 ~ x1.8 + x2.8

fulfills the assumptions of the linear model.

• Boston.xlsx. The dataset contains 14 variables describing 506
suburbs in Boston. Among those variables, medv is the median

https://raw.githubusercontent.com/egarpor/handy/master/scripts/PM-UC3M/01-intro.R
https://raw.githubusercontent.com/egarpor/handy/master/scripts/PM-UC3M/02-lm-i.R
https://raw.githubusercontent.com/egarpor/handy/master/scripts/PM-UC3M/03-lm-ii.R
https://raw.githubusercontent.com/egarpor/handy/master/scripts/PM-UC3M/04-lm-iii.R
https://raw.githubusercontent.com/egarpor/handy/master/scripts/PM-UC3M/05-glm.R
https://raw.githubusercontent.com/egarpor/handy/master/scripts/PM-UC3M/hypothesisGlm.R
https://raw.githubusercontent.com/egarpor/handy/master/scripts/PM-UC3M/06-npreg.R
https://raw.githubusercontent.com/egarpor/handy/master/scripts/PM-UC3M/07-appendix.R
https://raw.githubusercontent.com/egarpor/handy/master/datasets/wine.csv
https://raw.githubusercontent.com/egarpor/handy/master/datasets/least-squares.RData
https://raw.githubusercontent.com/egarpor/handy/master/datasets/least-squares-3D.RData
https://raw.githubusercontent.com/egarpor/handy/master/datasets/assumptions.RData
https://raw.githubusercontent.com/egarpor/handy/master/datasets/moreAssumptions.RData
https://raw.githubusercontent.com/egarpor/handy/master/datasets/assumptions3D.RData
https://raw.githubusercontent.com/egarpor/handy/master/datasets/Boston.xlsx
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house value, rm is the average number of rooms per house, and
crim is the per capita crime rate. The full description is available
in ?MASS::Boston.

• cpus.txt and gpus.txt. The datasets contain 102 and 35 rows,
respectively, of commercial CPUs and GPUs appeared since
the first models up to nowadays. The variables in the datasets
are Processor, Transistor count, Date of introduction,
Manufacturer, Process, and Area.

• la-liga-2015-2016.xlsx. Contains 19 performance metrics for
the 20 football teams in La Liga 2015/2016.

• challenger.txt. Contains data for 23 space-shuttle launches.
There are 8 variables. Among them: temp (the temperature in
Celsius degrees at the time of launch), and fail.field and
fail.nozzle (indicators of whether there were an incidents in
the O-rings of the field joints and nozzles of the solid rocket
boosters).

• species.txt. Contains data for 90 country parcels in which the
Biomass, pH of the terrain (categorical variable), and number of
Species were measured.

• heart.txt. Contains data for 226 patients suspected of having
a future heart attack. The variables are CK (level of creatinine
kinase), and ha and ok (number of patients that suffered a heart
attack and did not suffer it, respectively).

• Chile.txt. Contains data for 2700 respondents on a survey for
the voting intentions in the 1988 Chilean national plebiscite.
There are 8 variables: region, population, sex, age, education,
income, statusquo (scale of support for the status quo), and vote.
vote is a factor with levels A (abstention), N (against Pinochet), U
(undecided), and Y (for Pinochet). Retrieved from data(Chile,

package = "carData").

https://raw.githubusercontent.com/egarpor/handy/master/datasets/cpus.txt
https://raw.githubusercontent.com/egarpor/handy/master/datasets/gpus.txt
https://raw.githubusercontent.com/egarpor/handy/master/datasets/la-liga-2015-2016.xlsx
https://raw.githubusercontent.com/egarpor/handy/master/datasets/challenger.txt
https://raw.githubusercontent.com/egarpor/handy/master/datasets/species.txt
https://raw.githubusercontent.com/egarpor/handy/master/datasets/heart.txt
https://raw.githubusercontent.com/egarpor/handy/master/datasets/Chile.txt
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Figure 2.1: Scatterplot of a sample
(X1, Y1), . . . , (Xn, Yn) showing a linear
pattern.

1 “How computers routed the experts”,
Financial Times, 31/08/2007.

2 Young wines are astringent, when the
wines age they lose their astringency.

2
Linear models I: multiple linear model

The multiple linear model is a simple but useful statistical model.
In short, it allows us to analyze the (assumed) linear relation be-
tween a response Y and multiple predictors, X1, . . . , Xp in a proper
way:

Y = β0 + β1X1 + β2X2 + · · ·+ βpXp + ε

The simplest case corresponds to p = 1, known as the simple linear
model:

Y = β0 + β1X + ε

This model would be useful, for example, to predict Y given X from
a sample (X1, Y1), . . . , (Xn, Yn) such that its scatterplot is the one in
Figure 2.1.

2.1 Case study: The Bordeaux equation

Calculate the winter rain and the harvest rain (in millimeters). Add
summer heat in the vineyard (in degrees centigrade). Subtract 12.145.
And what do you have? A very, very passionate argument over wine.

— “Wine Equation Puts Some Noses Out of Joint”, The New York
Times, 04/03/1990.

ABC interview to Orley Ashenfelter, broadcasted in 1992. Video
also available here.

This case study is motivated by the study of Princeton professor
Orley Ashenfelter (Ashenfelter et al., 1995) on the quality of red
Bordeaux vintages. The study became mainstream after disputes
with the wine press, especially with Robert Parker Jr., one of the
most influential wine critics in America. You can see a short review
of the story at the Financial Times1 and at the video in Figure 2.1.

Red Bordeaux wines have been produced in Bordeaux, one of
most famous and prolific wine regions in the world, in a very sim-
ilar way for hundreds of years. However, the quality of vintages is
largely variable from one season to another due to a long list of ran-
dom factors, such as weather conditions. Because Bordeaux wines
taste better when they are older2, there is an incentive to store the
young wines until they are mature. Due to the important difference

http://www.nytimes.com/1990/03/04/us/wine-equation-puts-some-noses-out-of-joint.html
http://www.nytimes.com/1990/03/04/us/wine-equation-puts-some-noses-out-of-joint.html
https://www.youtube.com/watch?v=Ec8hPHLMyzY
https://www.ft.com/content/f68ba784-56b8-11dc-9a3a-0000779fd2ac
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3 Source: http://www.liquidasset.
com/winedata.html.

in taste, it is hard to determine the quality of the wine when it is so
young just by tasting it, because it will change substantially when
the aged wine is in the market. Therefore, being able to predict the
quality of a vintage is valuable information for investing resources,
for determining a fair price for vintages, and for understanding
what factors are affecting the wine quality. The purpose of this case
study is to answer:

• Q1. Can we predict the quality of a vintage effectively?
• Q2. What is the interpretation of such prediction?

The wine.csv file contains 27 red Bordeaux vintages. The data is
the same data3 originally employed by Ashenfelter et al. (1995), ex-
cept for the inclusion of the variable Year, the exclusion of NAs and
the reference price used for the wine. Each row has the following
variables:

• Year: year in which grapes were harvested to make wine.
• Price: logarithm of the average market price for Bordeaux vin-

tages according to a series of auctions. The price is relative to the
price of the 1961 vintage, regarded as the best one ever recorded.

• WinterRain: winter rainfall (in mm).
• AGST: Average Growing Season Temperature (in Celsius degrees).
• HarvestRain: harvest rainfall (in mm).
• Age: age of the wine, measured in 1983 as the number of years

stored in a cask.
• FrancePop: population of France at Year (in thousands).

The quality of the wine is quantified as the Price, a clever way of
quantifying a qualitative measure. A portion of the data is shown
in Table 2.1.

Table 2.1: First 15 rows of the wine dataset.

Year Price WinterRain AGST HarvestRain Age FrancePop

1952 7.4950 600 17.1167 160 31 43183.57

1953 8.0393 690 16.7333 80 30 43495.03

1955 7.6858 502 17.1500 130 28 44217.86

1957 6.9845 420 16.1333 110 26 45152.25

1958 6.7772 582 16.4167 187 25 45653.81

1959 8.0757 485 17.4833 187 24 46128.64

1960 6.5188 763 16.4167 290 23 46584.00

1961 8.4937 830 17.3333 38 22 47128.00

1962 7.3880 697 16.3000 52 21 48088.67

1963 6.7127 608 15.7167 155 20 48798.99

1964 7.3094 402 17.2667 96 19 49356.94

1965 6.2518 602 15.3667 267 18 49801.82

1966 7.7443 819 16.5333 86 17 50254.97

1967 6.8398 714 16.2333 118 16 50650.41

http://www.liquidasset.com/winedata.html
http://www.liquidasset.com/winedata.html
https://raw.githubusercontent.com/egarpor/handy/master/datasets/wine.csv
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1968 6.2435 610 16.2000 292 15 51034.41

We will see along the chapter how to answer Q1 and Q2 and
how to obtain quantitative insights on the effects of the predictors
on the price. Before doing so, we need to introduce the required
statistical machinery.

2.2 Model formulation and least squares

In order to simplify the introduction of the foundations of the linear
model, we first present the simple linear model and then extend it
to the multiple linear model.

2.2.1 Simple linear model

The simple linear model is constructed by assuming that the linear
relation

Y = β0 + β1X + ε (2.1)

holds between X and Y. In (2.1), β0 and β1 are known as the inter-
cept and slope, respectively. The random variable ε has mean zero
and is independent from X. It describes the error around the mean,
or the effect of other variables that we do not model. Another way
of looking at (2.1) is

E[Y|X = x] = β0 + β1x, (2.2)

since E[ε|X = x] = 0.
The LHS of (2.2) is the conditional expectation of Y given X. It

represents how the mean of the random variable Y is changing
according to a particular value x of the random variable X. With
the RHS, what we are saying is that the mean of Y is changing
in a linear fashion with respect to the value of X. Hence the clear
interpretation of the coefficients:

• β0: is the mean of Y when X = 0.
• β1: is the increment in the mean of Y for an increment of one

unit in X = x.

If we have a sample (X1, Y1), . . . , (Xn, Yn) for our random vari-
ables X and Y, we can estimate the unknown coefficients β0 and β1.
A possible way of doing so is by looking for certain optimality, for
example the minimization of the Residual Sum of Squares (RSS):

RSS(β0, β1) :=
n

∑
i=1

(Yi − β0 − β1Xi)
2.

In other words, we look for the estimators (β̂0, β̂1) such that

(β̂0, β̂1) = arg min
(β0,β1)∈R2

RSS(β0, β1).

The motivation for minimizing the RSS is geometrical, as shown
by Figure 2.2. We aim to minimize the squares of the distances of
points projected vertically onto the line determined by (β̂0, β̂1).
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4 They are unique and always exist
(except if sx = 0, when all the data
points are the same). They can be
obtained by solving ∂

∂β0
RSS(β0, β1) =

0 and ∂
∂β1

RSS(β0, β1) = 0.

5 The sample standard deviation is
sx =

√
s2

x .

Figure 2.2: The effect of the kind of
distance in the error criterion. The
choices of intercept and slope that
minimize the sum of squared distances
for one kind of distance are not the
optimal choices for a different kind of
distance. Application available here.

It can be seen that the minimizers of the RSS4 are

β̂0 = Ȳ− β̂1X̄, β̂1 =
sxy

s2
x

, (2.3)

where:

• X̄ = 1
n ∑n

i=1 Xi is the sample mean.
• s2

x = 1
n ∑n

i=1(Xi − X̄)2 is the sample variance5.
• sxy = 1

n ∑n
i=1(Xi − X̄)(Yi − Ȳ) is the sample covariance. It mea-

sures the degree of linear association between X1, . . . , Xn and
Y1, . . . , Yn. Once scaled by sxsy, it gives the sample correlation
coefficient rxy =

sxy
sxsy

.

There are some important points hidden behind the election of
RSS as the error criterion for obtaining (β̂0, β̂1):

• Why the vertical distances and not horizontal or perpendicular? Be-
cause we want to minimize the error in the prediction of Y! Note
that the treatment of the variables is not symmetrical.

• Why the squares in the distances and not the absolute value? Due to
mathematical convenience. Squares are nice to differentiate and
are closely related with maximum likelihood estimation under
the normal distribution (see Appendix A.2).

Let’s see how to obtain automatically the minimizers of the error
in Figure 2.2 by the lm (linear model) function. The data of the
figure has been generated with the following code:

# Generates 50 points from a N(0, 1): predictor and error

set.seed(34567)

x <- rnorm(n = 50)

eps <- rnorm(n = 50)

https://shinyserv.es/shiny/least-squares/
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Figure 2.3: Linear fit for the data
employed in Figure 2.2 minimizing the
RSS.

# Responses

yLin <- -0.5 + 1.5 * x + eps

yQua <- -0.5 + 1.5 * xˆ2 + eps

yExp <- -0.5 + 1.5 * 2ˆx + eps

# Data

leastSquares <- data.frame(x = x, yLin = yLin, yQua = yQua, yExp = yExp)

For a simple linear model, lm has the syntax lm(formula =

response ~ predictor, data = data), where response and
predictor are the names of two variables in the data frame data.
Note that the LHS of ~ represents the response and the RHS the
predictors.

# Call lm

lm(yLin ~ x, data = leastSquares)

##

## Call:

## lm(formula = yLin ~ x, data = leastSquares)

##

## Coefficients:

## (Intercept) x

## -0.6154 1.3951

lm(yQua ~ x, data = leastSquares)

##

## Call:

## lm(formula = yQua ~ x, data = leastSquares)

##

## Coefficients:

## (Intercept) x

## 0.9710 -0.8035

lm(yExp ~ x, data = leastSquares)

##

## Call:

## lm(formula = yExp ~ x, data = leastSquares)

##

## Coefficients:

## (Intercept) x

## 1.270 1.007

# The lm object

mod <- lm(yLin ~ x, data = leastSquares)

mod

##

## Call:

## lm(formula = yLin ~ x, data = leastSquares)

##

## Coefficients:

## (Intercept) x

## -0.6154 1.3951

# We can produce a plot with the linear fit easily

plot(x, yLin)

abline(coef = mod$coefficients, col = 2)

# Access coefficients with $coefficients

mod$coefficients

## (Intercept) x

## -0.6153744 1.3950973

# Compute the minimized RSS

sum((yLin - mod$coefficients[1] - mod$coefficients[2] * x)ˆ2)

## [1] 41.02914

sum(mod$residualsˆ2)

## [1] 41.02914
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# mod is a list of objects whose names are

names(mod)

## [1] "coefficients" "residuals" "effects" "rank" "fitted.values" "assign" "qr"

## [8] "df.residual" "xlevels" "call" "terms" "model"

Check that you can not improve the error in Figure 2.2
when using the coefficients given by lm, if vertical dis-
tances are selected. Check also that these coefficients are
only optimal for vertical distances.

An interesting exercise is to check that lm is actually implement-
ing the estimates given in (2.3):

# Covariance

Sxy <- cov(x, yLin)

# Variance

Sx2 <- var(x)

# Coefficients

beta1 <- Sxy / Sx2

beta0 <- mean(yLin) - beta1 * mean(x)

c(beta0, beta1)

## [1] -0.6153744 1.3950973

# Output from lm

mod <- lm(yLin ~ x, data = leastSquares)

mod$coefficients

## (Intercept) x

## -0.6153744 1.3950973

The population regression coefficients, (β0, β1), are not the
same as the estimated regression coefficients, (β̂0, β̂1):

• (β0, β1) are the theoretical and always unknown quan-
tities (except under controlled scenarios).

• (β̂0, β̂1) are the estimates computed from the data.
They are random variables, since they are computed
from the random sample (X1, Y1), . . . , (Xn, Yn).

In an abuse of notation, the term regression line is often
used to denote both the theoretical (y = β0 + β1x) and the
estimated (y = β̂0 + β̂1x) regression lines.

2.2.2 Case study application

Let’s get back to the wine dataset and compute some simple linear
regressions. Prior to that, let’s begin by summarizing the informa-
tion in Table 2.1 to get a grasp of the structure of the data. For that,
we first correctly import the dataset into R:

# Read data

wine <- read.table(file = "wine.csv", header = TRUE, sep = ",")

Now we can conduct a quick exploratory analysis to have in-
sights into the data:
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# Numerical -- marginal distributions

summary(wine)

## Year Price WinterRain AGST HarvestRain Age FrancePop

## Min. :1952 Min. :6.205 Min. :376.0 Min. :14.98 Min. : 38.0 Min. : 3.00 Min. :43184

## 1st Qu.:1960 1st Qu.:6.508 1st Qu.:543.5 1st Qu.:16.15 1st Qu.: 88.0 1st Qu.: 9.50 1st Qu.:46856

## Median :1967 Median :6.984 Median :600.0 Median :16.42 Median :123.0 Median :16.00 Median :50650

## Mean :1967 Mean :7.042 Mean :608.4 Mean :16.48 Mean :144.8 Mean :16.19 Mean :50085

## 3rd Qu.:1974 3rd Qu.:7.441 3rd Qu.:705.5 3rd Qu.:17.01 3rd Qu.:185.5 3rd Qu.:22.50 3rd Qu.:53511

## Max. :1980 Max. :8.494 Max. :830.0 Max. :17.65 Max. :292.0 Max. :31.00 Max. :55110

# Graphical -- pairwise relations with linear and "smooth" regressions

car::scatterplotMatrix(wine, col = 1, regLine = list(col = 2),

smooth = list(col.smooth = 4, col.spread = 4))
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Figure 2.4: Scatterplot matrix for
the wine dataset. The diagonal plots
show density estimators of the pdf
of each variable (see Section 6.1.2).
The (i, j)-th scatterplot shows the
data of Xi vs. Xj, where the red line
is the regression line of Xi (response)
on Xj (predictor) and the blue curve
represents a smoother that estimates
nonparametrically the regression
function of Xi on Xj (see Section
6.2). The dashed blue curves are the
confidence intervals associated to the
nonparametric smoother.

As we can see, Year and FrancePop are very dependent, and
Year and Age are perfectly dependent. This is so because Age = 1983

- Year. Therefore, we opt to remove the predictor Year and use
it to set the case names, which can be helpful later for identifying
outliers:

# Set row names to Year -- useful for outlier identification

row.names(wine) <- wine$Year

wine$Year <- NULL
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Remember that the objective is to predict Price. Based on the
above matrix scatterplot, the best we can predict Price by a simple
linear regression seems to be with AGST or HarvestRain. Let’s see
which one yields the higher R2, which, as we will see in Section
2.7.1, is an indicative of the performance of the linear model.

# Price ~ AGST

modAGST <- lm(Price ~ AGST, data = wine)

# Summary of the model

summary(modAGST)

##

## Call:

## lm(formula = Price ~ AGST, data = wine)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.78370 -0.23827 -0.03421 0.29973 0.90198

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -3.5469 2.3641 -1.500 0.146052

## AGST 0.6426 0.1434 4.483 0.000143 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.4819 on 25 degrees of freedom

## Multiple R-squared: 0.4456, Adjusted R-squared: 0.4234

## F-statistic: 20.09 on 1 and 25 DF, p-value: 0.0001425

# The summary is also an object

sumModAGST <- summary(modAGST)

names(sumModAGST)

## [1] "call" "terms" "residuals" "coefficients" "aliased" "sigma" "df"

## [8] "r.squared" "adj.r.squared" "fstatistic" "cov.unscaled"

# Rˆ2

sumModAGST$r.squared

## [1] 0.4455894

Complete the analysis by computing the linear models
Price ~ FrancePop, Price ~ Age, Price ~ WinterRain,
and Price ~ HarvestRain. Name them as modFrancePop,
modAge, modWinterRain, and modHarvestRain. Obtain
their R2’s and display them in a table like:

Predictor R2

AGST 0.4456
HarvestRain 0.2572
FrancePop 0.2314
Age 0.2120
WinterRain 0.0181

It seems that none of these simple linear models on their own are
properly explaining Price. Intuitively, it would make sense to bind
them together to achieve a better explanation of Price. Let’s see
how to do that with a more advanced model.
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6 Note that now X1 represents the first
predictor and not the first element of a
sample of X.

2.2.3 Multiple linear model

The multiple linear model extends the simple linear model by de-
scribing the relation between several random variables X1, . . . , Xp

6

and Y. Therefore, as before, the multiple linear model is constructed
by assuming that the linear relation

Y = β0 + β1X1 + · · ·+ βpXp + ε (2.4)

holds between the predictors X1, . . . , Xp and the response Y. In
(2.4), β0 is the intercept and β1, . . . , βp are the slopes, respectively.
The random variable ε has mean zero and is independent from
X1, . . . , Xp. Another way of looking at (2.4) is

E[Y|X1 = x1, . . . , Xp = xp] = β0 + β1x1 + · · ·+ βpxp, (2.5)

since E[ε|X1 = x1, . . . , Xp = xp] = 0.
The LHS of (2.5) is the conditional expectation of Y given X1, . . . ,

Xp. It represents how the mean of the random variable Y is chang-
ing, now according to particular values of several predictors. With
the RHS, what we are saying is that the mean of Y is changing in
a linear fashion with respect to the values of X1, . . . , Xp. Hence the
neat interpretation of the coefficients:

• β0: is the mean of Y when X1 = . . . = Xp = 0.
• β j, 1 ≤ j ≤ p: is the increment in the mean of Y for an incre-

ment of one unit in Xj = xj, provided that the rest of predictors
X1, . . . , Xj−1, Xj+1, . . . , Xp remain constant.

Figure 2.5 illustrates the geometrical interpretation of a mul-
tiple linear model: a hyperplane in Rp+1. If p = 1, the hyper-
plane is actually a line, the regression line for simple linear regres-
sion. If p = 2, then the regression plane can be visualized in a
3-dimensional plot.

The estimation of β0, β1, . . . , βp is done as in simple linear re-
gression by minimizing the RSS, which now accounts for the sum
of squared distances of the data to the vertical projections on the
hyperplane. Before doing so, we need to introduce some helpful
matrix notation:

• A sample of (X1, . . . , Xp, Y) is denoted as {(Xi1, . . . , Xip, Yi)}n
i=1,

where Xij is the i-th observation of the j-th predictor Xj. We
denote with Xi := (Xi1, . . . , Xip) to the i-th observation of
(X1, . . . , Xp), so the sample simplifies to {(Xi, Yi)}n

i=1.

• The design matrix contains all the information of the predictors
plus a column of ones

X :=


1 X11 · · · X1p
...

...
. . .

...
1 Xn1 · · · Xnp


n×(p+1)

.
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7 Recall that (2.4) and (2.5) were re-
ferring to the relation of the random
variable (or population) Y with the
random variables X1, . . . , Xp. Those
are population versions of the linear
model and clearly generate the sample
versions when they are replicated for
each observation (Xi , Yi), i = 1, . . . , n,
of the random vector (X, Y).

8 It can be seen that they are unique
and that they always exist, provided
that rank(X′X) = p + 1.

• The vector of responses Y, the vector of coefficients β, and the vector
of errors are, respectively,

Y :=


Y1
...

Yn


n×1

, β :=


β0

β1
...

βp


(p+1)×1

, and ε :=


ε1
...

εn


n×1

.

Thanks to the matrix notation, we can turn the sample version7

of the multiple linear model, namely

Yi = β0 + β1Xi1 + · · ·+ βpXip + εi, i = 1, . . . , n,

into something as compact as

Y = Xβ + ε.

Figure 2.5: The least squares regression
plane y = β̂0 + β̂1x1 + β̂2x2 and its
dependence on the kind of squared
distance considered. Application
available here.

Recall that if p = 1 we recover the simple linear model.
In this case:

X =


1 X11
...

...
1 Xn1


n×2

and β =

(
β0

β1

)
2×1

.

With this notation, the RSS for the multiple linear regression is

RSS(β) :=
n

∑
i=1

(Yi − β0 − β1Xi1 − · · · − βpXip)
2

= (Y− Xβ)′(Y− Xβ). (2.6)

The RSS aggregates the squared vertical distances from the data to
a regression plane given by β. The least squares estimators are the
minimizers of the RSS8:

https://shinyserv.es/shiny/least-squares-3D/
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9 It follows from ∂(Ax)
∂x = A and

∂( f (x)′g(x))
∂x = f (x)′ ∂g(x)

∂x + g(x)′ ∂ f (x)
∂x

for two vector-valued functions f , g :

Rp → Rm, where ∂( f (x)′g(x))
∂x is the

gradient row vector of f ′g, and ∂ f (x)
∂x

and ∂g(x)
∂x are the Jacobian matrices of f

and g, respectively.

10 If you wanted to do so, you will
need to use the function I() for
indicating that + is not including
predictors in the model, but is acting
as the algebraic sum operator.

β̂ := arg min
β∈Rp+1

RSS(β).

Luckily, thanks to the matrix form of (2.6), it is possible9 to com-
pute a closed-form expression for the least squares estimates:

β̂ = (X′X)−1X′Y. (2.7)

There are some similarities between (2.7) and β̂1 = (s2
x)
−1

sxy from the simple linear model: both are related to the
covariance between X and Y weighted by the variance of
X.

Let’s check that indeed the coefficients given by lm are the ones
given by (2.7). For that purpose we consider the leastSquares3D

data frame in the least-squares-3D.RData dataset. Among other
variables, the data frame contains the response yLin and the predic-
tors x1 and x2.

load(file = "least-squares-3D.RData")

Let’s compute the coefficients of the regression of yLin on the
predictors x1 and x2, which is denoted by yLin ~ x1 + x2. Note
the use of + for including all the predictors. This does not mean that
they are all added and then the regression is done on the sum10.
Instead, this syntax is designed to resemble the mathematical form
of the multiple linear model.

# Output from lm

mod <- lm(yLin ~ x1 + x2, data = leastSquares3D)

mod$coefficients

## (Intercept) x1 x2

## -0.5702694 0.4832624 0.3214894

# Matrix X

X <- cbind(1, leastSquares3D$x1, leastSquares3D$x2)

# Vector Y

Y <- leastSquares3D$yLin

# Coefficients

beta <- solve(t(X) %*% X) %*% t(X) %*% Y

# %*% multiplies matrices

# solve() computes the inverse of a matrix

# t() transposes a matrix

beta

## [,1]

## [1,] -0.5702694

## [2,] 0.4832624

## [3,] 0.3214894

Compute β̂ for the regressions yLin ~ x1 + x2, yQua ~

x1 + x2, and yExp ~ x2 + x3 using:

a. Equation (2.7) and
b. the function lm.

Check that both are the same.

https://raw.githubusercontent.com/egarpor/handy/master/datasets/least-squares-3D.RData
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Once we have the least squares estimates β̂, we can define the
next concepts:

• The fitted values Ŷ1, . . . , Ŷn, where

Ŷi := β̂0 + β̂1Xi1 + · · ·+ β̂pXip, i = 1, . . . , n.

They are the vertical projections of Y1, . . . , Yn onto the fitted
plane (see Figure 2.5). In a matrix form, inputting (2.6)

Ŷ = Xβ̂ = X(X′X)−1X′Y = HY,

where H := X(X′X)−1X′ is called the hat matrix because it “puts
the hat into Y”. What it does is to project Y into the regression
plane (see Figure 2.5).

• The residuals (or estimated errors) ε̂1, . . . , ε̂n, where

ε̂i := Yi − Ŷi, i = 1, . . . , n.

They are the vertical distances between actual data and fitted
data.

These two objects are present in the output of lm:

# Fitted values

mod$fitted.values

# Residuals

mod$residuals

We conclude with an important insight on the relation of mul-
tiple and simple linear regressions that is illustrated in Figure 2.6.
The data used in that figure is:

set.seed(212542)

n <- 100

x1 <- rnorm(n, sd = 2)

x2 <- rnorm(n, mean = x1, sd = 3)

y <- 1 + 2 * x1 - x2 + rnorm(n, sd = 1)

data <- data.frame(x1 = x1, x2 = x2, y = y)

Consider the multiple linear model Y = β0 + β1X1 +

β2X2 +ε1 and its associated simple linear models
Y = α0 + α1X1 + ε2 and Y = γ0 + γ1X2 + ε3, where
ε1, ε2, ε3 are random errors. Assume that we have a sam-
ple {(Xi1, Xi2, Yi)}n

i=1. Then, in general, α̂0 ̸= β̂0 ̸= γ̂0,
α̂1 ̸= β̂1, and γ̂1 ̸= β̂2. Even if α0 = β0 = γ0, α1 = β1,
and γ1 = β2. That is, in general, the inclusion of a new
predictor changes the coefficient estimates of the rest of
predictors.

With the above data, check how the fitted coefficients
change for y ~ x1, y ~ x2, and y ~ x1 + x2.
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Figure 2.6: The regression plane (blue)
of Y on X1 and X2 and its relation
with the simple linear regressions
(green lines) of Y on X1 and of Y
on X2. The red points represent the
sample for (X1, X2, Y) and the black
points the sample projections for
(X1, X2) (bottom), (X1, Y) (left), and
(X2, Y) (right). As it can be seen, the
regression plane does not extend the
simple linear regressions.

2.2.4 Case study application

A natural step now is to extend these simple regressions to increase
both the R2 and the prediction accuracy for Price by means of the
multiple linear regression:

# Regression on all the predictors

modWine1 <- lm(Price ~ Age + AGST + FrancePop + HarvestRain + WinterRain,

data = wine)

# A shortcut

modWine1 <- lm(Price ~ ., data = wine)

modWine1

##

## Call:

## lm(formula = Price ~ ., data = wine)

##

## Coefficients:

## (Intercept) WinterRain AGST HarvestRain Age FrancePop

## -2.343e+00 1.153e-03 6.144e-01 -3.837e-03 1.377e-02 -2.213e-05

# Summary

summary(modWine1)

##

## Call:

## lm(formula = Price ~ ., data = wine)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.46541 -0.24133 0.00413 0.18974 0.52495

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -2.343e+00 7.697e+00 -0.304 0.76384
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11 After all, we already have a neat way
of estimating β from the data. . . Isn’t
it all is needed?

## WinterRain 1.153e-03 4.991e-04 2.311 0.03109 *
## AGST 6.144e-01 9.799e-02 6.270 3.22e-06 ***
## HarvestRain -3.837e-03 8.366e-04 -4.587 0.00016 ***
## Age 1.377e-02 5.821e-02 0.237 0.81531

## FrancePop -2.213e-05 1.268e-04 -0.175 0.86313

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.293 on 21 degrees of freedom

## Multiple R-squared: 0.8278, Adjusted R-squared: 0.7868

## F-statistic: 20.19 on 5 and 21 DF, p-value: 2.232e-07

The fitted regression is Price = −2.343 + 0.013× Age +0.614×
AGST −0.000× FrancePop −0.003× HarvestRain +0.001× WinterRain.
Recall that the 'Multiple R-squared' has almost doubled with
respect to the best simple linear regression! This tells us that com-
bining several predictors may lead to important performance gains
in the prediction of the response. However, note that the R2 of the
multiple linear model is not the sum of the R2’s of the simple linear
models. The performance gain of combining predictors is hard to
anticipate from the single-predictor models and depends on the
dependence among the predictors.

2.3 Assumptions of the model

A natural11 question to ask is: “Why do we need assumptions?”
The answer is that we need probabilistic assumptions to ground sta-
tistical inference about the model parameters. Or, in other words,
to quantify the variability of the estimator β̂ and to infer proper-
ties about the unknown population coefficients β from the sample
{(Xi, Yi)}n

i=1.
The assumptions of the multiple linear model are:

i. Linearity: E[Y|X1 = x1, . . . , Xp = xp] = β0 + β1x1 + · · ·+ βpxp.
ii. Homoscedasticity: Var[ε|X1 = x1, . . . , Xp = xp] = σ2.
iii. Normality: ε ∼ N (0, σ2).
iv. Independence of the errors: ε1, . . . , εn are independent (or

uncorrelated, E[εiε j] = 0, i ̸= j, since they are assumed to be
normal).

A good one-line summary of the linear model is the following
(independence is implicit)

Y|(X1 = x1, . . . , Xp = xp) ∼ N (β0 + β1x1 + · · ·+ βpxp, σ2). (2.8)

Recall that, except assumption iv, the rest are expressed in terms
of the random variables, not in terms of the sample. Thus they are
population versions, rather than sample versions. It is however
trivial to express (2.8) in terms of assumptions about the sample
{(Xi, Yi)}n

i=1:

Yi|(Xi1 = xi1, . . . , Xip = xip) ∼ N (β0 + β1xi1 + · · ·+ βpxip, σ2),
(2.9)



notes for predictive modeling 35

with Y1, . . . , Yn being independent conditionally on the sample
of predictors. Equivalently stated in a compact matrix way, the
assumptions of the model on the sample are:

Y|X ∼ Nn(Xβ, σ2I). (2.10)

Figures 2.9 and 2.10 represent situations where the assumptions
of the model for p = 1 are respected and violated, respectively.

Figure 2.7: The key concepts of the
simple linear model. The red points
represent a sample with population
regression line y = β0 + β1x given
by the black line. The yellow band
denotes where 95% of the data is,
according to the model. The blue
densities represent the conditional
density of Y given X = x, whose
means lie in the regression line.

Figure 2.11 represents situations where the assumptions of the
model are respected and violated, for the situation with two pre-
dictors. Clearly, the inspection of the scatterplots for identifying
strange patterns is more complicated than in simple linear regres-
sion – and here we are dealing only with two predictors.

The dataset assumptions.RData contains the variables x1,
. . . , x9 and y1, . . . , y9. For each regression y1 ~ x1, . . . ,
y9 ~ x9:

a. Check whether the assumptions of the linear model
are being satisfied (make a scatterplot with a regres-
sion line).

b. State which assumption(s) are violated and justify
your answer.

https://raw.githubusercontent.com/egarpor/handy/master/datasets/assumptions.RData
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Figure 2.8: The key concepts of the
multiple linear model when p = 2.
The red points represent a sample
with population regression plane
y = β0 + β1x1 + β2x2 given by the
blue plane. The black points represent
the associated observations of the
predictors. The space between the
yellow planes denotes where 95% of
the data is, according to the model.

Figure 2.9: Perfectly valid simple
linear models (all the assumptions are
verified).
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Figure 2.10: Problematic simple linear
models (a single assumption does not
hold).

Figure 2.11: Valid (all the assumptions
are verified) and problematic (a single
assumption does not hold) multiple
linear models, when there are two
predictors. Application available here.

https://shinyserv.es/shiny/assump-lm-3D/
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12 This is for theoretical and modeling
convenience. With this assumption, we
just model the randomness of Y given
the predictors. If the randomness of Y
and the randomness of X1, . . . , Xn was
to be modeled, we will require from a
significantly more complex model.

2.4 Inference for model parameters

The assumptions introduced in the previous section allow us to
specify what is the distribution of the random vector β̂. The distribu-
tion is derived conditionally on the predictors’ sample X1, . . . , Xn. In
other words, we assume that the randomness of Y = Xβ + ε comes
only from the error terms and not from the predictors12. To denote
this, we employ lowercase for the predictors’ sample x1, . . . , xn.

2.4.1 Distributions of the fitted coefficients

The distribution of β̂ is:

β̂ ∼ Np+1

(
β, σ2(X′X)−1

)
. (2.11)

This result can be obtained from the form of β̂ given in (2.7), the
sample version of the model assumptions given in (2.10), and the
linear transformation property of a normal given in (1.4). Equation
(2.11) implies that the marginal distribution of β̂ j is

β̂ j ∼ N
(

β j, SE(β̂ j)
2
)

, (2.12)

where SE(β̂ j) is the standard error, SE(β̂ j)
2 := σ2vj, and

vj is the j-th element of the diagonal of (X′X)−1.

Recall that an equivalent form for (2.12) is (why?)

β̂ j − β j

SE(β̂ j)
∼ N (0, 1).

The interpretation of (2.12) is simpler in the case with p = 1, where

β̂0 ∼ N
(

β0, SE(β̂0)
2
)

, β̂1 ∼ N
(

β1, SE(β̂1)
2
)

, (2.13)

with

SE(β̂0)
2 =

σ2

n

[
1 +

X̄2

s2
x

]
, SE(β̂1)

2 =
σ2

ns2
x

. (2.14)

Some insights on (2.13) and (2.14), illustrated interactively in Figure
2.12, are the following:

• Bias. Both estimates are unbiased. That means that their expecta-
tions are the true coefficients for any sample size n.

• Variance. The variances SE(β̂0)
2 and SE(β̂1)

2 have interesting
interpretations in terms of their components:

– Sample size n. As the sample size grows, the precision of the
estimators increases, since both variances decrease.

– Error variance σ2. The more disperse the error is, the less pre-
cise the estimates are, since more vertical variability is present.
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13 Undestood as small |(X′X)−1|.

– Predictor variance s2
x. If the predictor is spread out (large s2

x),
then it is easier to fit a regression line: we have information
about the data trend over a long interval. If s2

x is small, then
all the data is concentrated on a narrow vertical band, so we
have a much more limited view of the trend.

– Mean X̄. It has influence only on the precision of β̂0. The
larger X̄ is, the less precise β̂0 is.

Figure 2.12: Illustration of the random-
ness of the fitted coefficients (β̂0, β̂1)
and the influence of n, σ2, and s2

x .
The predictors’ sample x1, . . . , xn is
fixed and new responses Y1, . . . , Yn
are generated each time from a linear
model Y = β0 + β1X + ε. Application
available here.

The insights about (2.11) are more convoluted. The following
broad remarks, extensions of what happened when p = 1, apply:

• Bias. All the estimates are unbiased for any sample size n.

• Variance. It depends on:

– Sample size n. Hidden inside X′X. As n grows, the precision of
the estimators increases.

– Error variance σ2. The larger σ2 is, the less precise β̂ is.
– Predictor sparsity (X′X)−1. The more “disperse”13 the predic-

tors are, the more precise β̂ is.

The problem with the result in (2.11) is that σ2 is unknown in
practice. Therefore, we need to estimate σ2 in order to use a result
similar to (2.11). We do so by computing a rescaled sample variance
of the residuals ε̂1, . . . , ε̂n:

σ̂2 :=
1

n− p− 1

n

∑
i=1

ε̂2
i . (2.15)

https://shinyserv.es/shiny/lm-random/
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14 Prior to undertake the estima-
tion of σ we have used the sam-
ple to estimate β̂. The situation
is thus analogous to the discus-
sion between the sample variance
s2

x = 1
n ∑n

i=1 (Xi − X̄)
2 and the sample

quasi-variance ŝ2
x = 1

n−1 ∑n
i=1 (Xi − X̄)

2

that are computed from a sample
X1, . . . , Xn. When estimating Var[X],
both estimate previously E[X] through
X̄. The fact that ŝ2

x accounts for that
prior estimation through the degrees
of freedom n− 1 makes that estimator
unbiased for Var[X] (s2

x is not).
15 Recall that the sample variance of
ε̂1, . . . , ε̂n is 1

n ∑n
i=1 (ε̂i − ¯̂ε)2 .

16 In the sense of practically realistic.

Note the n − p − 1 in the denominator. The factor n − p − 1 rep-
resents the degrees of freedom: the number of data points minus the
number of already14 fitted parameters (p slopes plus 1 intercept)
with the data. For the interpretation of σ̂2, it is key to realize that
the mean of the residuals ε̂1, . . . , ε̂n is zero, this is ¯̂ε = 0. Therefore, σ̂2

is indeed a rescaled sample variance of the residuals which esti-
mates the variance of ε 15. It can be seen that σ̂2 is unbiased as an
estimator of σ2.

If we use the estimate σ̂2 instead of σ2, we get more useful16

distributions than (2.12):

β̂ j − β j

ŜE(β̂ j)
∼ tn−p−1, ŜE(β̂ j)

2 := σ̂2vj, (2.16)

where tn−p−1 represents the Student’s t distribution with n − p − 1
degrees of freedom.

The LHS of (2.16) is the t-statistic for β j, j = 0, . . . , p. We will
employ them for building confidence intervals and hypothesis tests
in what follows.

2.4.2 Confidence intervals for the coefficients

Thanks to (2.16), we can have the 100(1− α)% Confidence Intervals
(CI) for the coefficient β j, j = 0, . . . , p:(

β̂ j ± ŜE(β̂ j)tn−p−1;α/2

)
(2.17)

where tn−p−1;α/2 is the α/2-upper quantile of the tn−p−1. Usually,
α = 0.10, 0.05, 0.01 are considered.

Figure 2.13: Illustration of the random-
ness of the CI for β0 at 100(1− α)%
confidence. The plot shows 100 ran-
dom CIs for β0, computed from 100

random datasets generated by the
same simple linear model, with in-
tercept β0. The illustration for β1 is
completely analogous. Application
available here.

This random CI contains the unknown coefficient β j “with a probabil-
ity of 1− α”. The previous quoted statement has to be understood

https://shinyserv.es/shiny/ci-random/
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17 Shortcut for significantly different from
zero.

18 This is denoted as
β̂ j−0

ŜE(β̂ j)

H0∼ tn−p−1.

19 In R, tn−p−1;α/2 can be computed as
qt(p = 1 - alpha / 2, df = n - p -

1) or qt(p = alpha / 2, df = n - p

- 1, lower.tail = FALSE).

as follows. Suppose you have 100 samples generated according to
a linear model. If you compute the CI for a coefficient, then in ap-
proximately 100(1− α) of the samples the true coefficient would be
actually inside the random CI. Note also that the CI is symmetric
around β̂ j. This is illustrated in Figure 2.13.

2.4.3 Testing on the coefficients

The distributions in (2.16) allow also to conduct a formal hypothesis
test on the coefficients β j, j = 0, . . . , p. For example the test for sig-
nificance17 is especially important, that is, the test of the hypotheses

H0 : β j = 0

for j = 0, . . . , p. The test of H0 : β j = 0 with 1 ≤ j ≤ p is especially
interesting, since it allows us to answer whether the variable Xj

has a significant linear effect on Y. The statistic used for testing for
significance is the t-statistic

β̂ j − 0

ŜE(β̂ j)
,

which is distributed as a tn−p−1 under the (veracity of) the null hypoth-
esis18.

The null hypothesis H0 is tested against the alternative hypothe-
sis, H1. If H0 is rejected, it is rejected in favor of H1. The alternative
hypothesis can be two-sided (we will focus mostly on these alterna-
tives), such as

H0 : β j = 0 vs. H1 : β j ̸= 0

or one-sided, such as

H0 : β j = 0 vs. H1 : β j < (>)0.

The test based on the t-statistic is referred to as the t-test. It rejects
H0 : β j = 0 (against H1 : β j ̸= 0) at significance level α for large
absolute values of the t-statistic, precisely for those above the α/2-
upper quantile of the tn−p−1 distribution. That is, it rejects H0 at

level α if
|β̂ j |

ŜE(β̂ j)
> tn−p−1;α/2

19. For the one-sided tests, it rejects

H0 against H1 : β j < 0 or H1 : β j > 0 if
β̂ j

ŜE(β̂ j)
< −tn−p−1;α or

β̂ j

ŜE(β̂ j)
> tn−p−1;α, respectively.

Remember the following insights about hypothesis testing.

The analogy of conducting an hypothesis test and a trial
can be seen in Appendix A.1.
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In an hypothesis test, the p-value measures the degree of
veracity of H0 according to the data. The rule of thumb is
the following:

Is the p-value lower than α?

• Yes→ reject H0.
• No→ do not reject H0.

The connection of a t-test for H0 : β j = 0 and the CI for β j, both
at level α, is the following:

Is 0 inside the CI for β j?

• Yes↔ do not reject H0.
• No↔ reject H0.

The one-sided test H0 : β j = 0 vs. H1 : β j < 0 (respectively,
H1 : β j > 0) can be done by means of the CI for β j. If H0 is rejected,
they allow us to conclude that β̂ j is significantly negative (positive)
and that for the considered regression model, Xj has a significant negative
(positive) effect on Y. The rule of thumb is the following:

Is the CI for β j below (above) 0 at level α?

• Yes→ reject H0 at level α. Conclude Xj has a signifi-
cant negative (positive) effect on Y at level α.

• No→ the criterion is not conclusive.

2.4.4 Case study application

Let’s analyze the multiple linear model we have considered for
the wine dataset, now that we know how to make inference on the
model parameters. The relevant information is obtained with the
summary of the model:

# Fit

modWine1 <- lm(Price ~ ., data = wine)

# Summary

sumModWine1 <- summary(modWine1)

sumModWine1

##

## Call:

## lm(formula = Price ~ ., data = wine)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.46541 -0.24133 0.00413 0.18974 0.52495

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -2.343e+00 7.697e+00 -0.304 0.76384

## WinterRain 1.153e-03 4.991e-04 2.311 0.03109 *
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20 For example, '**' indicates that the
p-value lies within 0.001 and 0.01.

21 This is a context-guided decision, not
data-driven.

22 Notice the use of - for excluding a
particular predictor.

## AGST 6.144e-01 9.799e-02 6.270 3.22e-06 ***
## HarvestRain -3.837e-03 8.366e-04 -4.587 0.00016 ***
## Age 1.377e-02 5.821e-02 0.237 0.81531

## FrancePop -2.213e-05 1.268e-04 -0.175 0.86313

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.293 on 21 degrees of freedom

## Multiple R-squared: 0.8278, Adjusted R-squared: 0.7868

## F-statistic: 20.19 on 5 and 21 DF, p-value: 2.232e-07

# Contains the estimation of sigma ("Residual standard error")

sumModWine1$sigma

## [1] 0.2930287

# Which is the same as

sqrt(sum(modWine1$residualsˆ2) / modWine1$df.residual)

## [1] 0.2930287

The Coefficients block of the summary output contains the next
elements regarding the significance of each coefficient β j, this is, the
test H0 : β j = 0 vs. H1 : β j ̸= 0:

• Estimate: least squares estimate β̂ j.
• Std. Error: estimated standard error ŜE(β̂ j).

• t value: t-statistic
β̂ j

ŜE(β̂ j)
.

• Pr(>|t|): p-value of the t-test.
• Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '

' 1: codes indicating the size of the p-value. The more asterisks,
the more evidence supporting that H0 does not hold20.

Note that a high proportion of predictors are not significant
in modWine1: FrancePop and Age are not significant (and the inter-
cept is not significant also). This is an indication of an excess of
predictors adding little information to the response. One explana-
tion is the almost perfect correlation between FrancePop and Age

shown before: one of them is not adding any extra information to
explain Price. This complicates the model unnecessarily and, more
importantly, it has the undesirable effect of making the coefficient
estimates less precise. We opt to remove the predictor FrancePop
from the model since it is exogenous to the wine context21. A data-
driven justification of the removal of this variable is that it is the
least significant in modWine1.

Then, the model without FrancePop22 is:

modWine2 <- lm(Price ~ . - FrancePop, data = wine)

summary(modWine2)

##

## Call:

## lm(formula = Price ~ . - FrancePop, data = wine)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.46024 -0.23862 0.01347 0.18601 0.53443

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -3.6515703 1.6880876 -2.163 0.04167 *
## WinterRain 0.0011667 0.0004820 2.420 0.02421 *
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## AGST 0.6163916 0.0951747 6.476 1.63e-06 ***
## HarvestRain -0.0038606 0.0008075 -4.781 8.97e-05 ***
## Age 0.0238480 0.0071667 3.328 0.00305 **
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.2865 on 22 degrees of freedom

## Multiple R-squared: 0.8275, Adjusted R-squared: 0.7962

## F-statistic: 26.39 on 4 and 22 DF, p-value: 4.057e-08

All the coefficients are significant at level α = 0.05. Therefore,
there is no clear redundant information. In addition, the R2 is very
similar to the full model, but the 'Adjusted R-squared', a weight-
ing of the R2 to account for the number of predictors used by the
model, is slightly larger. As we will see in Section 2.7.2, this means
that, compared to the number of predictors used, modWine2 explains
more variability of Price than modWine1.

A handy way of comparing the coefficients of both models is
car::compareCoefs:

car::compareCoefs(modWine1, modWine2)

## Calls:

## 1: lm(formula = Price ~ ., data = wine)

## 2: lm(formula = Price ~ . - FrancePop, data = wine)

##

## Model 1 Model 2

## (Intercept) -2.34 -3.65

## SE 7.70 1.69

##

## WinterRain 0.001153 0.001167

## SE 0.000499 0.000482

##

## AGST 0.6144 0.6164

## SE 0.0980 0.0952

##

## HarvestRain -0.003837 -0.003861

## SE 0.000837 0.000808

##

## Age 0.01377 0.02385

## SE 0.05821 0.00717

##

## FrancePop -2.21e-05

## SE 1.27e-04

##

Note how the coefficients for modWine2 have smaller errors than
modWine1.

The individual CIs for the unknown β j’s can be obtained by
applying the confint function to an lm object. Let’s compute the
CIs for the model coefficients of modWine1, modWine2, and a new
model modWine3:

# Fit a new model

modWine3 <- lm(Price ~ Age + WinterRain, data = wine)

summary(modWine3)

##

## Call:

## lm(formula = Price ~ Age + WinterRain, data = wine)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.88964 -0.51421 -0.00066 0.43103 1.06897

##
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## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 5.9830427 0.5993667 9.982 5.09e-10 ***
## Age 0.0360559 0.0137377 2.625 0.0149 *
## WinterRain 0.0007813 0.0008780 0.890 0.3824

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.5769 on 24 degrees of freedom

## Multiple R-squared: 0.2371, Adjusted R-squared: 0.1736

## F-statistic: 3.73 on 2 and 24 DF, p-value: 0.03884

# Confidence intervals at 95%

# CI: (lwr, upr)

confint(modWine3)

## 2.5 % 97.5 %

## (Intercept) 4.746010626 7.220074676

## Age 0.007702664 0.064409106

## WinterRain -0.001030725 0.002593278

# Confidence intervals at other levels

confint(modWine3, level = 0.90)

## 5 % 95 %

## (Intercept) 4.9575969417 7.008488360

## Age 0.0125522989 0.059559471

## WinterRain -0.0007207941 0.002283347

confint(modWine3, level = 0.99)

## 0.5 % 99.5 %

## (Intercept) 4.306650310 7.659434991

## Age -0.002367633 0.074479403

## WinterRain -0.001674299 0.003236852

# Compare with previous models

confint(modWine1)

## 2.5 % 97.5 %

## (Intercept) -1.834844e+01 13.6632391095

## WinterRain 1.153872e-04 0.0021910509

## AGST 4.106337e-01 0.8182146540

## HarvestRain -5.577203e-03 -0.0020974232

## Age -1.072931e-01 0.1348317795

## FrancePop -2.858849e-04 0.0002416171

confint(modWine2)

## 2.5 % 97.5 %

## (Intercept) -7.1524497573 -0.150690903

## WinterRain 0.0001670449 0.002166393

## AGST 0.4190113907 0.813771726

## HarvestRain -0.0055353098 -0.002185890

## Age 0.0089852800 0.038710748

confint(modWine3)

## 2.5 % 97.5 %

## (Intercept) 4.746010626 7.220074676

## Age 0.007702664 0.064409106

## WinterRain -0.001030725 0.002593278

In modWine3, the 95% CI for β0 is (4.7460, 7.2201), for β1 is
(0.0077, 0.0644), and for β2 is (−0.0010, 0.0026). Therefore, we
can say with a 95% confidence that the coefficient of WinterRain is
non-significant (0 is inside the CI). But, inspecting the CI of β2 in
modWine2 we can see that it is significant for the model! How is this
possible? The answer is that the presence of extra predictors af-
fects the coefficient estimate, as we saw in Figure 2.6. Therefore, the
precise statement to make is:

In model Price ~ Age + WinterRain, with α = 0.05, the coefficient
of WinterRain is non-significant.
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Note that this does not mean that the coefficient will be al-
ways non-significant: in Price ~ Age + AGST + HarvestRain +

WinterRain it is.

Compute and interpret the CIs for the coefficients, at
levels α = 0.10, 0.05, 0.01, for the following regressions:

a. Price ~ WinterRain + HarvestRain + AGST (wine).
b. AGST ~ Year + FrancePop (wine).

For the assumptions dataset, do the following:

a. Regression y7 ~ x7. Check that:

• The intercept is not significant for the regression at
any reasonable level α.

• The slope is significant for any α ≥ 10−7.

b. Regression y6 ~ x6. Assume the linear model as-
sumptions are verified.

• Check that β̂0 is significantly different from zero at
any level α.

• For which α = 0.10, 0.05, 0.01 is β̂1 significantly dif-
ferent from zero?

In certain applications, it is useful to center the predictors
X1, . . . , Xp prior to fit the model, in such a way that the
slope coefficients (β1, . . . , βp) measure the effects of devi-
ations of the predictors from their means. Theoretically,
this amounts to considering the linear model

Y = β0 + β1(X1 −E[X1]) + · · ·+ βp(Xp −E[Xp]) + ε.

In the sample case, we proceed by replacing Xij by
Xij − X̄j, which can be easily done by the scale function
(see below). If, in addition, the response is also centered,
then β0 = 0 and β̂0 = 0. This centering of the data has
no influence on the significance of the predictors (but has
influence on the significance of β̂0), as it is just a linear
transformation of them.

# By default, scale centers (subtracts the mean) and scales (divides by the

# standard deviation) the columns of a matrix

wineCen <- data.frame(scale(wine, center = TRUE, scale = FALSE))

# Regression with centered response and predictors

modWine3Cen <- lm(Price ~ Age + WinterRain, data = wineCen)

# Summary

summary(modWine3Cen)

##

## Call:
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23 Because the prediction of a new
observation from the random variable
N (β0 + β1x1 + · · ·+ βpxp, σ2) is simply
its mean, β0 + β1x1 + · · · + βpxp,
which is also the most likely value in a
normal.

## lm(formula = Price ~ Age + WinterRain, data = wineCen)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.88964 -0.51421 -0.00066 0.43103 1.06897

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 5.964e-16 1.110e-01 0.000 1.0000

## Age 3.606e-02 1.374e-02 2.625 0.0149 *
## WinterRain 7.813e-04 8.780e-04 0.890 0.3824

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.5769 on 24 degrees of freedom

## Multiple R-squared: 0.2371, Adjusted R-squared: 0.1736

## F-statistic: 3.73 on 2 and 24 DF, p-value: 0.03884

2.5 Prediction

The forecast of Y from X = x (this is, X1 = x1, . . . , Xp = xp) is
approached in two different ways:

1. Through the estimation of the conditional mean of Y given
X = x, E[Y|X = x]. This is a deterministic quantity, which equals
β0 + β1x1 + · · ·+ βpxp.

2. Through the prediction of the conditional response Y|X = x.
This is a random variable distributed as N (β0 + β1x1 + · · · +
βpxp, σ2).

There are similarities and differences in the prediction of the
conditional mean E[Y|X = x] and conditional response Y|X = x,
which we highlight next:

• Similarities. The estimate is the same23, ŷ = β̂0 + β̂1x1 + · · · +
β̂pxp. The CIs for both quantities are centered in ŷ.

• Differences. E[Y|X = x] is deterministic and Y|X = x is a random
variable. The prediction of the latter is noisier, because it has to
take into account the randomness of Y. Therefore, the variance
is larger for the prediction of Y|X = x than for the prediction
of E[Y|X = x]. This has a direct consequence on the length of
the prediction intervals, which are longer for Y|X = x than for
E[Y|X = x].

The inspection of the CIs for the conditional mean and condi-
tional response in the simple linear model offers great insight into
the previous similarities and differences, and also on what compo-
nents affect precisely the quality of the prediction:

• The 100(1− α)% CI for the conditional mean β0 + β1x is

(
ŷ± tn−2;α/2

√
σ̂2

n

(
1 +

(x− x̄)2

s2
x

))
. (2.18)

• The 100(1− α)% CI for the conditional response Y|X = x is
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24 A consequence of this extra σ̂2 is that
the length of (2.19) cannot be reduced
arbitrarily if the sample size n grows.

(
ŷ± tn−2;α/2

√
σ̂2 +

σ̂2

n

(
1 +

(x− x̄)2

s2
x

))
. (2.19)

Figure 2.14: Illustration of the CIs for
the conditional mean and response.
Note how the width of the CIs is
influenced by x, especially for the
conditional mean (the conditional
response has a constant term affecting
the width). Application available here.

Notice the dependence of both CIs on x, n, and σ̂2, each of them
with a clear effect on the resulting length of the interval. Note also
the high similarity between (2.18) and (2.19) (both intervals are
centered at ŷ and have a similar variance) and its revealing unique
difference: the extra σ̂2 in (2.19)24, consequence of the “extra ran-
domness” of the conditional response with respect to the condi-
tional mean. Figure 2.14 helps to visualize these concepts and the
difference between CIs interactively.

2.5.1 Case study application

The prediction and the computation of prediction CIs can be done
with predict. The objects required for predict are: first, an lm ob-
ject; second, a data.frame containing the locations x = (x1, . . . , xp)

where we want to predict β0 + β1x1 + · · · + βpxp. The prediction
is β̂0 + β̂1x1 + · · ·+ β̂pxp and the CIs returned are either (2.18) or
(2.19).

It is mandatory to name the columns of the data.frame

with the same names of the predictors used in lm. Other-
wise predict will throw an error.

# Fit a linear model for the price on WinterRain, HarvestRain, and AGST

modWine4 <- lm(Price ~ WinterRain + HarvestRain + AGST, data = wine)

summary(modWine4)

https://shinyserv.es/shiny/ci-prediction/
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##

## Call:

## lm(formula = Price ~ WinterRain + HarvestRain + AGST, data = wine)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.62816 -0.17923 0.02274 0.21990 0.62859

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -4.9506001 1.9694011 -2.514 0.01940 *
## WinterRain 0.0012820 0.0005765 2.224 0.03628 *
## HarvestRain -0.0036242 0.0009646 -3.757 0.00103 **
## AGST 0.7123192 0.1087676 6.549 1.11e-06 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.3436 on 23 degrees of freedom

## Multiple R-squared: 0.7407, Adjusted R-squared: 0.7069

## F-statistic: 21.9 on 3 and 23 DF, p-value: 6.246e-07

# Data for which we want a prediction

# Important! You have to name the column with the predictor's name!

weather <- data.frame(WinterRain = 500, HarvestRain = 123, AGST = 18)

weatherBad <- data.frame(500, 123, 18)

# Prediction of the mean

# Prediction of the mean at 95% -- the defaults

predict(modWine4, newdata = weather)

## 1

## 8.066342

predict(modWine4, newdata = weatherBad) # Error

## Error in eval(predvars, data, env): object 'WinterRain' not found

# Prediction of the mean with 95% confidence interval (the default)

# CI: (lwr, upr)

predict(modWine4, newdata = weather, interval = "confidence")

## fit lwr upr

## 1 8.066342 7.714178 8.418507

predict(modWine4, newdata = weather, interval = "confidence", level = 0.95)

## fit lwr upr

## 1 8.066342 7.714178 8.418507

# Other levels

predict(modWine4, newdata = weather, interval = "confidence", level = 0.90)

## fit lwr upr

## 1 8.066342 7.774576 8.358108

predict(modWine4, newdata = weather, interval = "confidence", level = 0.99)

## fit lwr upr

## 1 8.066342 7.588427 8.544258

# Prediction of the response

# Prediction of the mean at 95% -- the defaults

predict(modWine4, newdata = weather)

## 1

## 8.066342

# Prediction of the response with 95% confidence interval

# CI: (lwr, upr)

predict(modWine4, newdata = weather, interval = "prediction")

## fit lwr upr

## 1 8.066342 7.273176 8.859508

predict(modWine4, newdata = weather, interval = "prediction", level = 0.95)

## fit lwr upr

## 1 8.066342 7.273176 8.859508
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25 This is an important result that can
be checked using the matrix notation
introduced in Section 2.2.3.

26 Recall that SSE and RSS (of the
least squares estimator β̂) are two
names for the same quantity (that
appears in different contexts): SSE =

∑n
i=1
(
Yi − Ŷi

)2
= ∑n

i=1
(
Yi − β̂0 −

β̂1Xi1 − · · · − β̂pXip
)2

= RSS(β̂).

# Other levels

predict(modWine4, newdata = weather, interval = "prediction", level = 0.90)

## fit lwr upr

## 1 8.066342 7.409208 8.723476

predict(modWine4, newdata = weather, interval = "prediction", level = 0.99)

## fit lwr upr

## 1 8.066342 6.989951 9.142733

# Predictions for several values

weather2 <- data.frame(WinterRain = c(500, 200), HarvestRain = c(123, 200),

AGST = c(17, 18))

predict(modWine4, newdata = weather2, interval = "prediction")

## fit lwr upr

## 1 7.354023 6.613835 8.094211

## 2 7.402691 6.533945 8.271437

For the wine dataset, do the following:

a. Regress WinterRain on HarvestRain and AGST. Name
the fitted model modExercise.

b. Compute the estimate for the conditional mean of
WinterRain for HarvestRain = 123.0 and AGST = 16.15.
What is the CI at α = 0.01?

c. Compute the estimate for the conditional response for
HarvestRain = 125.0 and AGST = 15. What is the CI at
α = 0.10?

d. Check that modExercise$fitted.values is
the same as predict(modExercise, newdata =

data.frame(HarvestRain = wine$HarvestRain, AGST

= wine$AGST)). Why is this so?

2.6 ANOVA

The variance of the error, σ2, plays a fundamental role in the infer-
ence for the model coefficients and in prediction. In this section we
will see how the variance of Y is decomposed into two parts, each
corresponding to the regression and to the error, respectively. This
decomposition is called the ANalysis Of VAriance (ANOVA).

An important fact to highlight prior to introducing the ANOVA
decomposition is that Ȳ = ¯̂Y 25. The ANOVA decomposition
considers the following measures of variation related with the re-
sponse:

• SST := ∑n
i=1
(
Yi − Ȳ

)2, the Total Sum of Squares. This is the total
variation of Y1, . . . , Yn, since SST = ns2

y, where s2
y is the sample

variance of Y1, . . . , Yn.
• SSR := ∑n

i=1
(
Ŷi − Ȳ

)2, the Regression Sum of Squares. This
is the variation explained by the regression plane, that is, the
variation from Ȳ that is explained by the estimated conditional mean
Ŷi = β̂0 + β̂1Xi1 + · · ·+ β̂pXip. Also, SSR = ns2

ŷ, where s2
ŷ is the

sample variance of Ŷ1, . . . , Ŷn.
• SSE := ∑n

i=1
(
Yi − Ŷi

)2, the Sum of Squared Errors26. Is the vari-
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27 Geometrically: the plane is com-
pletely flat, it does not have any
inclination in the Y direction.
28 And therefore, there is a statistical
meaningful (i.e., not constant) linear
trend to model.

29 Little variation is explained by the
regression model since β̂ ≈ 0.

30 In R, qf(p = 1 - alpha, df1 =

n - p - 1, df2 = p) or qf(p =

alpha, df1 = n - p - 1, df2 = p,

lower.tail = FALSE).

ation around the conditional mean. Recall that SSE = ∑n
i=1 ε̂2

i =

(n − p − 1)σ̂2, where σ̂2 is the rescaled sample variance of
ε̂1, . . . , ε̂n.

The ANOVA decomposition states that:

SST︸︷︷︸
Variation of Y′i s

= SSR︸︷︷︸
Variation of Ŷ′i s

+ SSE︸︷︷︸
Variation of ε̂′is

(2.20)

or, equivalently (dividing by n in (2.20)),

s2
y︸︷︷︸

Variance of Y′i s

= s2
ŷ︸︷︷︸

Variance of Ŷ′i s

+ (n− p− 1)/n× σ̂2︸ ︷︷ ︸
Variance of ε̂′is

.

The graphical interpretation of (2.20) when p = 1 is shown in Fig-
ure 2.15. Figure 2.16 dynamically shows how the ANOVA decom-
position places more weight on SSR or SSE according to σ̂2 (which
is obviously driven by the value of σ2).

The ANOVA table summarizes the decomposition of the vari-
ance:

Degrees of
freedom

Sum
Squares

Mean
Squares F-value p-value

Predictors p SSR SSR
p

SSR/p
SSE/(n−p−1) p-value

Residuals n− p− 1 SSE SSE
n−p−1

The F-value of the ANOVA table represents the value of the F-
statistic SSR/p

SSE/(n−p−1) . This statistic is employed to test

H0 : β1 = . . . = βp = 0 vs. H1 : β j ̸= 0 for any j ≥ 1,

that is, the hypothesis of no linear dependence of Y on X1, . . . , Xp
27.

This is the so-called F-test and, if H0 is rejected, allows to conclude
that at least one β j is significantly different from zero28. It hap-
pens that

F =
SSR/p

SSE/(n− p− 1)
H0∼ Fp,n−p−1,

where Fp,n−p−1 represents the Snedecor’s F distribution with p and
n− p− 1 degrees of freedom. If H0 is true, then F is expected to be
small since SSR will be close to zero29. The F-test rejects at signif-
icance level α for large values of the F-statistic, precisely for those
above the α-upper quantile of the Fp,n−p−1 distribution, denoted by
Fp,n−p−1;α

30. That is, H0 is rejected if F > Fp,n−p−1;α.
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Figure 2.15: Visualization of the
ANOVA decomposition. SST measures
the variation of Y1, . . . , Yn with respect
to Ȳ. SSR measures the variation of
Ŷ1, . . . , Ŷn with respect to ¯̂Y = Ȳ.
SSE collects the variation between
Y1, . . . , Yn and Ŷ1, . . . , Ŷn, that is, the
variation of the residuals.

Figure 2.16: Illustration of the ANOVA
decomposition and its dependence
on σ2 and σ̂2. Larger (respectively,
smaller) σ̂2 results in more weight
placed on the SSE (SSR) term. Applica-
tion available here.

https://shinyserv.es/shiny/anova/
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31 More complex – included here just
for clarification of the anova’s output.

32 Note that, if mod <- lm(resp ~

preds, data) represents a model
with response resp and predictors
preds, and mod0, is the intercept-only
model mod0 <- lm(resp ~ 1, data)

that does not contain predictors,
anova(mod0, mod) gives a similar,
output to the seen ANOVA table.
Precisely, the first row of the outputted
table stands for the SST and the
second row for the SSE row (so we
call it the SST–SSE table). The SSR
row is not present. The seen ANOVA
table (which contains SSR and SSE)
and the SST–SSE table encode the
same information due to the ANOVA
decomposition. So it is a matter of
taste and tradition to employ one or
the other. In particular, both have the
F-test and its associated p-value (in the
SSE row for the SST–SSE table).

The “ANOVA table” is a broad concept in statistics, with
different variants. Here we are only covering the ba-
sic ANOVA table from the relation SST = SSR + SSE.
However, further sophistication is possible when SSR
is decomposed into the variations contributed by each
predictor. In particular, for multiple linear regression R’s
anova implements a sequential (type I) ANOVA table, which
is not the previous table!

The anova function takes a model as an input and returns the
following sequential ANOVA table31:

Degrees of
freedom

Sum
Squares

Mean
Squares F-value p-value

Predictor 1 1 SSR1
SSR1

1
SSR1/1

SSE/(n−p−1) p1

Predictor 2 1 SSR2
SSR2

1
SSR2/1

SSE/(n−p−1) p2
...

...
...

...
...

...

Predictor p 1 SSRp
SSRp

1
SSRp/1

SSE/(n−p−1) pp

Residuals n− p− 1 SSE SSE
n−p−1

Here the SSRj represents the regression sum of squares associ-
ated to the inclusion of Xj in the model with predictors X1, . . . , Xj−1,
this is:

SSRj = SSR(X1, . . . , Xj)− SSR(X1, . . . , Xj−1).

The p-values p1, . . . , pp correspond to the testing of the hypotheses

H0 : β j = 0 vs. H1 : β j ̸= 0,

carried out inside the linear model Y = β0 + β1X1 + · · · + β jXj + ε.
This is like the t-test for β j for the model with predictors X1, . . . , Xj.
Recall that there is no F-test in this version of the ANOVA table.

In order to exactly32 compute the simplified ANOVA table seen
before, we can rely on the following ad-hoc function. The function
takes as input a fitted lm:
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# This function computes the simplified anova from a linear model

simpleAnova <- function(object, ...) {

# Compute anova table

tab <- anova(object, ...)

# Obtain number of predictors

p <- nrow(tab) - 1

# Add predictors row

predictorsRow <- colSums(tab[1:p, 1:2])

predictorsRow <- c(predictorsRow, predictorsRow[2] / predictorsRow[1])

# F-quantities

Fval <- predictorsRow[3] / tab[p + 1, 3]

pval <- pf(Fval, df1 = p, df2 = tab$Df[p + 1], lower.tail = FALSE)

predictorsRow <- c(predictorsRow, Fval, pval)

# Simplified table

tab <- rbind(predictorsRow, tab[p + 1, ])

row.names(tab)[1] <- "Predictors"

return(tab)

}

2.6.1 Case study application

Let’s compute the ANOVA decomposition of modWine1 and modWine2

to test the existence of linear dependence.

# Models

modWine1 <- lm(Price ~ ., data = wine)

modWine2 <- lm(Price ~ . - FrancePop, data = wine)

# Simplified table

simpleAnova(modWine1)

## Analysis of Variance Table

##

## Response: Price

## Df Sum Sq Mean Sq F value Pr(>F)

## Predictors 5 8.6671 1.73343 20.188 2.232e-07 ***
## Residuals 21 1.8032 0.08587

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

simpleAnova(modWine2)

## Analysis of Variance Table

##

## Response: Price

## Df Sum Sq Mean Sq F value Pr(>F)

## Predictors 4 8.6645 2.16613 26.39 4.057e-08 ***
## Residuals 22 1.8058 0.08208

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# The null hypothesis of no linear dependence is emphatically rejected in

# both models

# R's ANOVA table -- warning this is not what we saw in lessons

anova(modWine1)

## Analysis of Variance Table

##

## Response: Price

## Df Sum Sq Mean Sq F value Pr(>F)

## WinterRain 1 0.1905 0.1905 2.2184 0.1512427

## AGST 1 5.8989 5.8989 68.6990 4.645e-08 ***
## HarvestRain 1 1.6662 1.6662 19.4051 0.0002466 ***
## Age 1 0.9089 0.9089 10.5852 0.0038004 **
## FrancePop 1 0.0026 0.0026 0.0305 0.8631279
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33 Which is not the σ̂2 in (2.21), but σ̂2

is obviously dependent on σ2.

## Residuals 21 1.8032 0.0859

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Compute the ANOVA table for the regression Price ~

WinterRain + AGST + HarvestRain + Age in the wine

dataset. Check that the p-value for the F-test given in
summary and by simpleAnova are the same.

For the y6 ~ x6 and y7 ~ x7 in the assumptions dataset,
compute their ANOVA tables. Check that the p-values of
the t-test for β1 and the F-test are the same (any explana-
tion of why this is so?).

2.7 Model fit

2.7.1 The R2

The coefficient of determination R2 is closely related with the ANOVA
decomposition. It is defined as

R2 :=
SSR
SST

=
SSR

SSR + SSE
=

SSR
SSR + (n− p− 1)σ̂2 . (2.21)

The R2 measures the proportion of variation of the response vari-
able Y that is explained by the predictors X1, . . . , Xp through the
regression. Intuitively, R2 measures the tightness of the data cloud
around the regression plane. Check in Figure 2.16 how the value of
σ233 affects the R2.

The sample correlation coefficient is intimately related with the
R2. For example, if p = 1, then it can be seen (exercise below)
that R2 = r2

xy. More importantly, R2 = r2
yŷ for any p, that is, the

square of the sample correlation coefficient between Y1, . . . , Yn and
Ŷ1, . . . , Ŷn is R2, a fact that is not immediately evident. Let’s check
this fact when p = 1 by relying on R2 = r2

xy. First, by the form of β̂0

given in (2.3),

Ŷi = β̂0 + β̂1Xi

= (Ȳ− β̂1X̄) + β̂1Xi

= Ȳ + β̂1(Xi − X̄). (2.22)
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34 Which do not hold!

Then, replace (2.22) in

r2
yŷ =

s2
yŷ

s2
ys2

ŷ

=

(
∑n

i=1
(
Yi − Ȳ

)(
Ŷi − Ȳ

))2

∑n
i=1
(
Yi − Ȳ

)2
∑n

i=1
(
Ŷi − Ȳ

)2

=

(
∑n

i=1
(
Yi − Ȳ

)(
Ȳ + β̂1(Xi − X̄)− Ȳ

))2

∑n
i=1
(
Yi − Ȳ

)2
∑n

i=1
(
Ȳ + β̂1(Xi − X̄)− Ȳ

)2

= r2
xy.

As a consequence, r2
yŷ = r2

xy = R2 when p = 1.

Show that R2 = r2
xy when p = 1. Hint: start from the defi-

nition of R2 and use (2.3) to arrive to r2
xy.

Trusting the R2 blindly can lead to catastrophic conclusions.
Here are a couple of counterexamples of a linear regression per-
formed in a data that clearly does not satisfy the assumptions dis-
cussed in Section 2.3 but, despite that, the linear models have large
R2’s. These counterexamples emphasize that inference, built on the
validity of the model assumptions34, will be problematic if these
assumptions are violated, no matter what is the value of R2. For
example, recall how biased the predictions and its associated CIs
will be in x = 0.35 and x = 0.65.

# Simple linear model

# Create data that:

# 1) does not follow a linear model

# 2) the error is heteroskedastic

x <- seq(0.15, 1, l = 100)

set.seed(123456)

eps <- rnorm(n = 100, sd = 0.25 * xˆ2)

y <- 1 - 2 * x * (1 + 0.25 * sin(4 * pi * x)) + eps

# Great Rˆ2!?

reg <- lm(y ~ x)

summary(reg)

##

## Call:

## lm(formula = y ~ x)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.53525 -0.18020 0.02811 0.16882 0.46896

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.87190 0.05860 14.88 <2e-16 ***
## x -1.69268 0.09359 -18.09 <2e-16 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.232 on 98 degrees of freedom

## Multiple R-squared: 0.7695, Adjusted R-squared: 0.7671

## F-statistic: 327.1 on 1 and 98 DF, p-value: < 2.2e-16
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Figure 2.17: Regression line for a
dataset that clearly violates the linear-
ity and homoscedasticity assumptions.
The R2 is, nevertheless, as high as
(approximately) 0.77.

# scatterplot is a quick alternative to

# plot(x, y)

# abline(coef = reg$coef, col = 3)

# But prediction is obviously problematic

car::scatterplot(y ~ x, col = 1, regLine = list(col = 2), smooth = FALSE)

# Multiple linear model

# Create data that:

# 1) does not follow a linear model

# 2) the error is heteroskedastic

x1 <- seq(0.15, 1, l = 100)

set.seed(123456)

x2 <- runif(100, -3, 3)

eps <- rnorm(n = 100, sd = 0.25 * x1ˆ2)

y <- 1 - 3 * x1 * (1 + 0.25 * sin(4 * pi * x1)) + 0.25 * cos(x2) + eps

# Great Rˆ2!?

reg <- lm(y ~ x1 + x2)

summary(reg)

##

## Call:

## lm(formula = y ~ x1 + x2)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.78737 -0.20946 0.01031 0.19652 1.05351

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.788812 0.096418 8.181 1.1e-12 ***
## x1 -2.540073 0.154876 -16.401 < 2e-16 ***
## x2 0.002283 0.020954 0.109 0.913

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.3754 on 97 degrees of freedom

## Multiple R-squared: 0.744, Adjusted R-squared: 0.7388

## F-statistic: 141 on 2 and 97 DF, p-value: < 2.2e-16

We can visualize the fit of the latter multiple linear model, since
we are in p = 2.

# But prediction is obviously problematic

car::scatter3d(y ~ x1 + x2, fit = "linear")

rgl::rglwidget()

The previous counterexamples illustrate that a large R2

means nothing in terms of inference if the assumptions of
the model do not hold.

Remember that:

• R2 does not measure the correctness of a linear model
but its usefulness, assuming the model is correct.

• R2 is the proportion of variance of Y explained by
X1, . . . , Xp but, of course, only when the linear model is
correct.
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35 An informal way of regarding the
difference between R2 and R2

Adj is

by thinking of R2 as a measure of fit
that “is not aware of the dangers of
overfitting”. In this interpretation, R2

Adj

is the overfitting-aware version of R2.

We finalize by pointing out a nice connection between the R2, the
ANOVA decomposition, and the least squares estimator β̂.

The ANOVA decomposition gives another view on the
least-squares estimates: β̂ are the estimated coefficients
that maximize the R2 (among all the possible estimates
we could think about). To see this, recall that

R2 =
SSR
SST

=
SST− SSE

SST
=

SST− RSS(β̂)

SST
.

Then, if RSS(β̂) = minβ∈Rp+1 RSS(β), then R2 is maximal

for β̂.

2.7.2 The R2
Adj

As we saw, these are equivalent forms for R2:

R2 =
SSR
SST

=
SST− SSE

SST
= 1− SSE

SST

= 1− σ̂2

SST
× (n− p− 1). (2.23)

The SSE on the numerator always decreases as more predictors are
added to the model, even if these are not significant. As a conse-
quence, the R2 always increases with p. Why is this so? Intuitively,
because the complexity – hence the flexibility – of the model in-
creases when we use more predictors to explain Y. Mathematically,
because when p approaches n − 1 the second term in (2.23) is re-
duced and, as a consequence, R2 grows.

The adjusted R2, R2
Adj, is an important quantity specifically de-

signed to overcome this R2’s flaw, ubiquitous in multiple linear
regression. The purpose is to have a better tool for comparing models
without systematically favoring more complex models35. This alternative
coefficient is defined as

R2
Adj := 1− SSE/(n− p− 1)

SST/(n− 1)
= 1− SSE

SST
× n− 1

n− p− 1

= 1− σ̂2

SST
× (n− 1). (2.24)

The R2
Adj is independent of p, at least explicitly. If p = 1 then

R2
Adj is almost R2 (practically identical if n is large). Both (2.23) and

(2.24) are quite similar except for the last factor, which in the latter
does not depend on p. Therefore, (2.24) will only increase if σ̂2 is
reduced with p; in other words, if the new variables contribute in
the reduction of variability around the regression plane.

The different behavior between R2 and R2
Adj can be visualized

with the following simulation study. Suppose that we generate a
random dataset {(Xi1, Xi2, Yi)}n

i=1, with n = 200 observations of
two predictors X1 and X2 that are distributed as a N (0, 1), and a
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response Y generated by the linear model

Yi = β0 + β1Xi1 + β2Xi2 + εi, (2.25)

where εi ∼ N (0, 9). To this data, we add 196 “garbage” predictors
Xj ∼ N (0, 1) that are completely independent from Y. There-
fore, we end up with p = 198 predictors where only the first two
ones are relevant for explaining Y. We compute now the R2(j) and
R2

Adj(j) for the models

Y = β0 + β1X1 + · · ·+ β jXj + ε, (2.26)

with j = 1, . . . , p, and we plot them as the curves (j, R2(j)) and
(j, R2

Adj(j)). Since R2 and R2
Adj are random variables, we repeat this

procedure M = 500 times to have an idea of the variability behind
R2 and R2

Adj. Figure 2.18 contains the results of this experiment.

Figure 2.18: Comparison of R2 and
R2

Adj on the model (2.26) fitted with
data generated by (2.25). The number
of predictors p ranges from 1 to 198,
with only the first two predictors being
significant. The M = 500 curves for
each color arise from M simulated
datasets of sample size n = 200. The
thicker curves are the mean of each
color’s curves.

As it can be seen, the R2 increases linearly with the number of
predictors considered, although only the first two ones were actu-
ally relevant. Thus, if we did not know about the random mecha-
nism (2.25) that generated Y, we would be tempted to believe that
the more adequate models would be the ones with a larger number
of predictors. On the contrary, R2

Adj only increases in the first two
variables and then exhibits a mild decaying trend, indicating that,
on average, the best choice for the number of predictors is actually
close to p = 2. However, note that R2

Adj has a huge variability when
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36 This indicates that R2
Adj can act as a

model selection device up to a certain
point, as its effectiveness becomes
too variable, too erratic, when the
number of predictors is very high in
comparison with n.
37 Coincidentally, the experiment
also serves as a reminder about the
randomness of R2 and R2

Adj, a fact that
is sometimes overlooked.

p approaches n− 2, a consequence of the explosive variance of σ̂2 in
that degenerate case36. The experiment helps to visualize that R2

Adj

is more adequate than the R2 for evaluating the fit of a multiple
linear regression37.

An example of a simulated dataset considered in the experiment
of Figure 2.18 is:

# Generate data

p <- 198

n <- 200

set.seed(3456732)

beta <- c(0.5, -0.5, rep(0, p - 2))

X <- matrix(rnorm(n * p), nrow = n, ncol = p)

Y <- drop(X %*% beta + rnorm(n, sd = 3))

data <- data.frame(y = Y, x = X)

# Regression on the two meaningful predictors

summary(lm(y ~ x.1 + x.2, data = data))

# Adding 20 "garbage" variables

# Rˆ2 increases and adjusted Rˆ2 decreases

summary(lm(y ~ X[, 1:22], data = data))

Implement the simulation study behind Figure 2.18 in
order to replicate it.

The R2
Adj no longer measures the proportion of variation

of Y explained by the regression, but the result of correct-
ing this proportion by the number of predictors employed. As a
consequence of this, R2

Adj ≤ 1 and R2
Adj can be negative.

The next code illustrates a situation where we have two predic-
tors completely independent from the response. The fitted model
has a negative R2

Adj.

# Three independent variables

set.seed(234599)

x1 <- rnorm(100)

x2 <- rnorm(100)

y <- 1 + rnorm(100)

# Negative adjusted Rˆ2

summary(lm(y ~ x1 + x2))

##

## Call:

## lm(formula = y ~ x1 + x2)

##

## Residuals:

## Min 1Q Median 3Q Max

## -3.5081 -0.5021 -0.0191 0.5286 2.4750

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.97024 0.10399 9.330 3.75e-15 ***
## x1 0.09003 0.10300 0.874 0.384

## x2 -0.05253 0.11090 -0.474 0.637

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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##

## Residual standard error: 1.034 on 97 degrees of freedom

## Multiple R-squared: 0.009797, Adjusted R-squared: -0.01062

## F-statistic: 0.4799 on 2 and 97 DF, p-value: 0.6203

For the previous example, construct more predictors (x3,
x4, . . . ) that are independent from y. Then check that,
when the predictors are added to the model, the R2

Adj

decreases and the R2 increases.

Beware of the R2 and R2
Adj for model fits with no in-

tercept! If the linear model is fitted with no intercept,
the summary function silently returns a 'Multiple

R-squared' and an 'Adjusted R-squared' that do not
correspond (see this question in the R FAQ) with the seen
expressions

R2 = 1− SSE
∑n

i=1(Yi − Ȳ)2 , R2
Adj = 1− SSE

SST
× n− 1

n− p− 1
.

In the case with no intercept, summary rather returns

R2
0 := 1− SSE

∑n
i=1 Y2

i
, R2

0,Adj := 1− SSE
∑n

i=1 Y2
i
× n− 1

n− p− 1
.

The reason is perhaps shocking: if the model is fitted
without intercept and neither the response nor the pre-
dictors are centered, then the ANOVA decomposition
does not hold, in the sense that

SST ̸= SSR + SSE.

The fact that the ANOVA decomposition does not hold for no-
intercept models has serious consequences on the theory we built.
In particular, the R2 can be negative and R2 ̸= r2

yŷ, both deriving
from the fact that ∑n

i=1 ε̂i ̸= 0. Therefore, the R2 cannot be re-
garded as the “proportion of variance explained” if the model fit is
performed without intercept. The R2

0 and R2
0,Adj versions are con-

sidered because they are the ones that arise from the “no-intercept
ANOVA decomposition”

SST0 = SSR + SSE, SST0 :=
n

∑
i=1

Y2
i ,

and therefore the R2
0 is guaranteed to be a quantity in [0, 1]. It

would indeed be the proportion of variance explained if the pre-
dictors and the response were centered (i.e., if Ȳ = 0 and X̄j = 0,
j = 1, . . . , p).

The next chunk of code illustrates these concepts for the iris

dataset.

# Model with intercept

mod1 <- lm(Sepal.Length ~ Petal.Width, data = iris)

https://cran.r-project.org/doc/FAQ/R-FAQ.html#Why-does-summary_0028_0029-report-strange-results-for-the-R_005e2-estimate-when-I-fit-a-linear-model-with-no-intercept_003f
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mod1

##

## Call:

## lm(formula = Sepal.Length ~ Petal.Width, data = iris)

##

## Coefficients:

## (Intercept) Petal.Width

## 4.7776 0.8886

# Model without intercept

mod0 <- lm(Sepal.Length ~ 0 + Petal.Width, data = iris)

mod0

##

## Call:

## lm(formula = Sepal.Length ~ 0 + Petal.Width, data = iris)

##

## Coefficients:

## Petal.Width

## 3.731

# Recall the different way of obtaining the estimators

X1 <- cbind(1, iris$Petal.Width)

X0 <- cbind(iris$Petal.Width) # No column of ones!

Y <- iris$Sepal.Length

betaHat1 <- solve(crossprod(X1)) %*% t(X1) %*% Y

betaHat0 <- solve(crossprod(X0)) %*% t(X0) %*% Y

betaHat1

## [,1]

## [1,] 4.7776294

## [2,] 0.8885803

betaHat0

## [,1]

## [1,] 3.731485

# Summaries: higher Rˆ2 for the model with no intercept!?

summary(mod1)

##

## Call:

## lm(formula = Sepal.Length ~ Petal.Width, data = iris)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1.38822 -0.29358 -0.04393 0.26429 1.34521

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 4.77763 0.07293 65.51 <2e-16 ***
## Petal.Width 0.88858 0.05137 17.30 <2e-16 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.478 on 148 degrees of freedom

## Multiple R-squared: 0.669, Adjusted R-squared: 0.6668

## F-statistic: 299.2 on 1 and 148 DF, p-value: < 2.2e-16

summary(mod0)

##

## Call:

## lm(formula = Sepal.Length ~ 0 + Petal.Width, data = iris)

##

## Residuals:

## Min 1Q Median 3Q Max

## -3.1556 -0.3917 1.0625 3.8537 5.0537

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## Petal.Width 3.732 0.150 24.87 <2e-16 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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##

## Residual standard error: 2.609 on 149 degrees of freedom

## Multiple R-squared: 0.8058, Adjusted R-squared: 0.8045

## F-statistic: 618.4 on 1 and 149 DF, p-value: < 2.2e-16

# Wait a moment... let's see the actual fit

plot(Sepal.Length ~ Petal.Width, data = iris)

abline(mod1, col = 2) # Obviously, much better

abline(mod0, col = 3)

# Compute the Rˆ2 manually for mod1

SSE1 <- sum((mod1$residuals - mean(mod1$residuals))ˆ2)

SST1 <- sum((mod1$model$Sepal.Length - mean(mod1$model$Sepal.Length))ˆ2)

1 - SSE1 / SST1

## [1] 0.6690277

# Compute the Rˆ2 manually for mod0

SSE0 <- sum((mod0$residuals - mean(mod0$residuals))ˆ2)

SST0 <- sum((mod0$model$Sepal.Length - mean(mod0$model$Sepal.Length))ˆ2)

1 - SSE0 / SST0

## [1] -6.179158

# It is negative!

# Recall that the mean of the residuals is not zero!

mean(mod0$residuals)

## [1] 1.368038

# What summary really returns if there is no intercept

n <- nrow(iris)

p <- 1

R0 <- 1 - sum(mod0$residualsˆ2) / sum(mod0$model$Sepal.Lengthˆ2)

R0Adj <- 1 - sum(mod0$residualsˆ2) / sum(mod0$model$Sepal.Lengthˆ2) *
(n - 1) / (n - p - 1)

R0

## [1] 0.8058497

R0Adj

## [1] 0.8045379

# What if we centered the data previously?

irisCen <- data.frame(scale(iris[, -5], center = TRUE, scale = FALSE))

modCen1 <- lm(Sepal.Length ~ Petal.Width, data = irisCen)

modCen0 <- lm(Sepal.Length ~ 0 + Petal.Width, data = irisCen)

# No problem, "correct" Rˆ2

summary(modCen1)

##

## Call:

## lm(formula = Sepal.Length ~ Petal.Width, data = irisCen)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1.38822 -0.29358 -0.04393 0.26429 1.34521

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -9.050e-16 3.903e-02 0.0 1

## Petal.Width 8.886e-01 5.137e-02 17.3 <2e-16 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.478 on 148 degrees of freedom

## Multiple R-squared: 0.669, Adjusted R-squared: 0.6668

## F-statistic: 299.2 on 1 and 148 DF, p-value: < 2.2e-16

summary(modCen0)

##

## Call:

## lm(formula = Sepal.Length ~ 0 + Petal.Width, data = irisCen)
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##

## Residuals:

## Min 1Q Median 3Q Max

## -1.38822 -0.29358 -0.04393 0.26429 1.34521

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## Petal.Width 0.8886 0.0512 17.36 <2e-16 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.4764 on 149 degrees of freedom

## Multiple R-squared: 0.669, Adjusted R-squared: 0.6668

## F-statistic: 301.2 on 1 and 149 DF, p-value: < 2.2e-16

# But only if we center predictor and response...

summary(lm(iris$Sepal.Length ~ 0 + irisCen$Petal.Width))

##

## Call:

## lm(formula = iris$Sepal.Length ~ 0 + irisCen$Petal.Width)

##

## Residuals:

## Min 1Q Median 3Q Max

## 4.455 5.550 5.799 6.108 7.189

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## irisCen$Petal.Width 0.8886 0.6322 1.406 0.162

##

## Residual standard error: 5.882 on 149 degrees of freedom

## Multiple R-squared: 0.01308, Adjusted R-squared: 0.006461

## F-statistic: 1.975 on 1 and 149 DF, p-value: 0.1619

Let’s play the evil practitioner and try to modify the R2
0

returned by summary when the intercept is excluded. If
we were really evil, we could use this knowledge to fool
someone that is not aware of the difference between R2

0
and R2 into believing that any given model is incredibly
good or bad in terms of the R2!

a. For the previous example, display the R2
0 as a func-

tion of a shift in mean of the predictor Petal.Width.
What can you conclude? Hint: you may use I() for
performing the shifting inside the model equation.

b. What shift on Petal.Width would be necessary to
achieve an R2

0 ≈ 0.95? Is this shift unique?
c. Do the same but for a shift in the mean of the re-

sponse Sepal.Length. What shift would be necessary
to achieve an R2

0 ≈ 0.50? Is there a single shift?
d. Consider the multiple linear model medv ~ nox + rm

for the Boston dataset. We want to tweak the R2
0 to set

it to any number in [0, 1]. Can we achieve this by only
shifting rm or medv (only one of them)?

e. Explore systematically the R2
0 for the shifting combi-

nations of rm and medv and obtain a combination that
delivers an R2

0 ≈ 0.30. Hint: use filled.contour() for
visualizing the R2

0 surface.
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2.7.3 Case study application

Coming back to the case study, we have studied so far three mod-
els:

# Fit models

modWine1 <- lm(Price ~ ., data = wine)

modWine2 <- lm(Price ~ . - FrancePop, data = wine)

modWine3 <- lm(Price ~ Age + WinterRain, data = wine)

# Summaries

summary(modWine1)

##

## Call:

## lm(formula = Price ~ ., data = wine)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.46541 -0.24133 0.00413 0.18974 0.52495

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -2.343e+00 7.697e+00 -0.304 0.76384

## WinterRain 1.153e-03 4.991e-04 2.311 0.03109 *
## AGST 6.144e-01 9.799e-02 6.270 3.22e-06 ***
## HarvestRain -3.837e-03 8.366e-04 -4.587 0.00016 ***
## Age 1.377e-02 5.821e-02 0.237 0.81531

## FrancePop -2.213e-05 1.268e-04 -0.175 0.86313

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.293 on 21 degrees of freedom

## Multiple R-squared: 0.8278, Adjusted R-squared: 0.7868

## F-statistic: 20.19 on 5 and 21 DF, p-value: 2.232e-07

summary(modWine2)

##

## Call:

## lm(formula = Price ~ . - FrancePop, data = wine)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.46024 -0.23862 0.01347 0.18601 0.53443

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -3.6515703 1.6880876 -2.163 0.04167 *
## WinterRain 0.0011667 0.0004820 2.420 0.02421 *
## AGST 0.6163916 0.0951747 6.476 1.63e-06 ***
## HarvestRain -0.0038606 0.0008075 -4.781 8.97e-05 ***
## Age 0.0238480 0.0071667 3.328 0.00305 **
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.2865 on 22 degrees of freedom

## Multiple R-squared: 0.8275, Adjusted R-squared: 0.7962

## F-statistic: 26.39 on 4 and 22 DF, p-value: 4.057e-08

summary(modWine3)

##

## Call:

## lm(formula = Price ~ Age + WinterRain, data = wine)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.88964 -0.51421 -0.00066 0.43103 1.06897

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 5.9830427 0.5993667 9.982 5.09e-10 ***
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## Age 0.0360559 0.0137377 2.625 0.0149 *
## WinterRain 0.0007813 0.0008780 0.890 0.3824

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.5769 on 24 degrees of freedom

## Multiple R-squared: 0.2371, Adjusted R-squared: 0.1736

## F-statistic: 3.73 on 2 and 24 DF, p-value: 0.03884

The model modWine2 has the largest R2
Adj among the three stud-

ied. It is a model that explains the 82.75% of the variability in a
non-redundant way and with all its coefficients significant. There-
fore, we have a formula for effectively explaining and predicting
the quality of a vintage (answers Q1). Prediction and, importantly,
quantification of the uncertainty in the prediction, can be done
through the predict function.

Furthermore, the interpretation of modWine2 agrees with well-
known facts in viticulture that make perfect sense. Precisely (an-
swers Q2):

• Higher temperatures are associated with better quality (higher
priced) wine.

• Rain before the growing season is good for the wine quality, but
during harvest is bad.

• The quality of the wine improves with the age.

Although these conclusions could be regarded as common folk-
lore, keep in mind that this model

• allows to quantify the effect of each variable on the wine qual-
ity and

• provides a precise way of predicting the quality of future vin-
tages.



1 An hedonic model is a model that
decomposes the price of an item into
separate components that determine
its price. For example, an hedonic
model for the price of a house may
decompose its price into the house
characteristics, the kind of neighbor-
hood, and the location.

2 But be aware of the changes in units
for medv, black, lstat, and nox.

3
Linear models II: model selection, extensions, and diag-
nostics

Given the response Y and the predictors X1, . . . , Xp, many linear
models can be built for predicting and explaining Y. In this chap-
ter we will see how to address the problem of selecting the best
subset of predictors X1, . . . , Xp for explaining Y. Among others, we
will also see how to extend the linear model to account for non-
linear relations between Y and X1, . . . , Xp, how to check whether
the assumptions of the model are realistic in practice, and how to
incorporate dimension reduction within linear regression.

3.1 Case study: Housing values in Boston

This case study is motivated by Harrison and Rubinfeld (1978),
who proposed an hedonic model1 for determining the willingness
of house buyers to pay for clean air. The study of Harrison and
Rubinfeld (1978) employed data from the Boston metropolitan area,
containing 560 suburbs and 14 variables. The Boston dataset is
available through the file Boston.xlsx file and through the dataset
MASS::Boston.

The description of the related variables can be found in ?Boston

and Harrison and Rubinfeld (1978)2, but we summarize here the
most important ones as they appear in Boston. They are aggregated
into five categories:

• Dependent variable: medv, the median value of owner-occupied
homes (in thousands of dollars).

• Structural variables indicating the house characteristics: rm (aver-
age number of rooms “in owner units”) and age (proportion of
owner-occupied units built prior to 1940).

• Neighborhood variables: crim (crime rate), zn (proportion of res-
idential areas), indus (proportion of non-retail business area),
chas (whether there is river limitation), tax (cost of public ser-
vices in each community), ptratio (pupil-teacher ratio), black
(variable 1000(B − 0.63)2, where B is the proportion of black
population – low and high values of B increase housing prices)
and lstat (percent of lower status of the population).

https://raw.githubusercontent.com/egarpor/handy/master/datasets/Boston.xlsx
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• Accessibility variables: dis (distances to five employment centers)
and rad (accessibility to radial highways – larger index denotes
better accessibility).

• Air pollution variable: nox, the annual concentration of nitrogen
oxide (in parts per ten million).

We begin by importing the data:

# Read data

Boston <- readxl::read_excel(path = "Boston.xlsx", sheet = 1, col_names = TRUE)

# # Alternatively

# data(Boston, package = "MASS")

A quick summary of the data is shown below:

summary(Boston)

## crim zn indus chas nox rm

## Min. : 0.00632 Min. : 0.00 Min. : 0.46 Min. :0.00000 Min. :0.3850 Min. :3.561

## 1st Qu.: 0.08205 1st Qu.: 0.00 1st Qu.: 5.19 1st Qu.:0.00000 1st Qu.:0.4490 1st Qu.:5.886

## Median : 0.25651 Median : 0.00 Median : 9.69 Median :0.00000 Median :0.5380 Median :6.208

## Mean : 3.61352 Mean : 11.36 Mean :11.14 Mean :0.06917 Mean :0.5547 Mean :6.285

## 3rd Qu.: 3.67708 3rd Qu.: 12.50 3rd Qu.:18.10 3rd Qu.:0.00000 3rd Qu.:0.6240 3rd Qu.:6.623

## Max. :88.97620 Max. :100.00 Max. :27.74 Max. :1.00000 Max. :0.8710 Max. :8.780

## age dis rad tax ptratio black lstat

## Min. : 2.90 Min. : 1.130 Min. : 1.000 Min. :187.0 Min. :12.60 Min. : 0.32 Min. : 1.73

## 1st Qu.: 45.02 1st Qu.: 2.100 1st Qu.: 4.000 1st Qu.:279.0 1st Qu.:17.40 1st Qu.:375.38 1st Qu.: 6.95

## Median : 77.50 Median : 3.207 Median : 5.000 Median :330.0 Median :19.05 Median :391.44 Median :11.36

## Mean : 68.57 Mean : 3.795 Mean : 9.549 Mean :408.2 Mean :18.46 Mean :356.67 Mean :12.65

## 3rd Qu.: 94.08 3rd Qu.: 5.188 3rd Qu.:24.000 3rd Qu.:666.0 3rd Qu.:20.20 3rd Qu.:396.23 3rd Qu.:16.95

## Max. :100.00 Max. :12.127 Max. :24.000 Max. :711.0 Max. :22.00 Max. :396.90 Max. :37.97

## medv

## Min. : 5.00

## 1st Qu.:17.02

## Median :21.20

## Mean :22.53

## 3rd Qu.:25.00

## Max. :50.00

The two goals of this case study are:

• Q1. Quantify the influence of the predictor variables in the housing
prices.

• Q2. Obtain the “best possible” model for decomposing the housing
prices and interpret it.

We begin by making an exploratory analysis of the data with a
matrix scatterplot. Since the number of variables is high, we opt to
plot only five variables: crim, dis, medv, nox, and rm. Each of them
represents the five categories in which variables were classified.

car::scatterplotMatrix(~ crim + dis + medv + nox + rm, regLine = list(col = 2),

col = 1, smooth = list(col.smooth = 4, col.spread = 4),

data = Boston)

Note the peculiar distribution of crim, very concentrated at zero,
and the asymmetry in medv, with a second mode associated to
the most expensive properties. Inspecting the individual panels,
it is clear that some nonlinearity exists in the data and that some
predictors are going to be more important than others (and recall
that we have plotted just a subset of all the predictors).
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Figure 3.1: Scatterplot matrix for
crim, dis, medv, nox, and rm from the
Boston dataset. The diagonal panels
show an estimate of the unknown pdf
of each variable (see Section 6.1.2).
The red and blue lines are linear
and nonparametric (see Section 6.2)
estimates of the regression functions
for pairwise relations.

3 Applying its formula, we would
obtain σ̂2 = 0/0 and so σ̂2 will not be
defined.

3.2 Model selection

In Chapter 2 we briefly saw that the inclusion of more predictors
is not for free: there is a price to pay in terms of more variability in
the coefficients estimates, harder interpretation, and possible inclu-
sion of highly-dependent predictors. Indeed, there is a maximum
number of predictors p that can be considered in a linear model for
a sample size n:

p ≤ n− 2.

Equivalently, there is a minimum sample size n required for fitting
a model with p predictors: n ≥ p + 2.

The interpretation of this fact is simple if we think on the geome-
try for p = 1 and p = 2:

• If p = 1, we need at least n = 2 points to uniquely fit a line.
However, this line gives no information on the vertical variation
about it, hence σ2 cannot be estimated3. Therefore, we need at
least n = 3 points, that is, n ≥ p + 2 = 3.

• If p = 2, we need at least n = 3 points to uniquely fit a plane.
But again this plane gives no information on the variation of the
data about it and hence σ2 cannot be estimated. Therefore, we
need n ≥ p + 2 = 4.

Another interpretation is the following:
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Figure 3.2: Effect of df = n− p− 1 in
tdf;α/2 for α = 0.10, 0.05, 0.01.
4 Of course, with the same responses.

The fitting of a linear model with p predictors involves the estimation
of p + 2 parameters (β, σ2) from n data points. The closer p + 2
and n are, the more variable the estimates (β̂, σ̂2) will be, since less
information is available for estimating each one. In the limit case
n = p + 2, each sample point determines a parameter estimate.

In the above discussion the degenerate case p = n − 1 was
excluded, as it gives a perfect and useless fit for which σ̂2 is not
defined. However, β̂ is actually computable if p = n− 1. The output
of the next chunk of code clarifies the distinction between p = n− 1
and p = n− 2.

# Data: n observations and p = n - 1 predictors

set.seed(123456)

n <- 5

p <- n - 1

df <- data.frame(y = rnorm(n), x = matrix(rnorm(n * p), nrow = n, ncol = p))

# Case p = n - 1 = 4: beta can be estimated, but sigmaˆ2 cannot (hence, no

# inference can be performed since it requires the estimated sigmaˆ2)

summary(lm(y ~ ., data = df))

# Case p = n - 2 = 3: both beta and sigmaˆ2 can be estimated (hence, inference

# can be performed)

summary(lm(y ~ . - x.1, data = df))

The degrees of freedom n− p− 1 quantify the increase in the vari-
ability of (β̂, σ̂2) when p approaches n− 2. For example:

• tn−p−1;α/2 appears in (2.16) and influences the length of the CIs
for β j, see (2.17). It also influences the length of the CIs for the
prediction. As Figure 3.2 shows, when the degrees of freedom
decrease, tn−p−1;α/2 increases, thus the intervals widen.

• σ̂2 = 1
n−p−1 ∑n

i=1 ε̂2
i influences the R2 and R2

Adj. If no relevant

variables are added to the model then ∑n
i=1 ε̂2

i will not change
substantially. However, the factor 1

n−p−1 will increase as p aug-

ments, inflating σ̂2 and its variance. This is exactly what hap-
pened in Figure 2.18.

Now that we have shed more light on the problem of having
an excess of predictors, we turn the focus on selecting the most
adequate predictors for a multiple regression model. This is a chal-
lenging task without a unique solution, and what is worse, without
a method that is guaranteed to work in all the cases. However, there
is a well-established procedure that usually gives good results: the
stepwise model selection. Its principle is to sequentially compare
multiple linear regression models with different predictors4, im-
proving iteratively a performance measure through a greedy search.

Stepwise model selection typically uses as measure of perfor-
mance an information criterion. An information criterion balances
the fitness of a model with the number of predictors employed.
Hence, it determines objectively the best model as the one that min-
imizes the considered information criterion. Two common criteria
are the Bayesian Information Criterion (BIC) and the Akaike Informa-
tion Criterion (AIC). Both are based on balancing the model fitness



notes for predictive modeling 71

5 Recall that log(n) > 2 if n ≥ 8.
6 Also, because the BIC is consistent, see
Section 3.2.2.

and its complexity:

BIC(model) = −2ℓ(model)︸ ︷︷ ︸
Model fitness

+ npar(model)× log(n)︸ ︷︷ ︸
Complexity

, (3.1)

where ℓ(model) is the log-likelihood of the model (how well the
model fits the data) and npar(model) is the number of param-
eters considered in the model (how complex the model is). In
the case of a multiple linear regression model with p predictors,
npar(model) = p + 2. The AIC replaces the log(n) factor by a 2 in
(3.1) so, compared with the BIC, it penalizes less the more complex
models5. This is one of the reasons why BIC is preferred by some
practitioners for performing model comparison6.

The BIC and AIC can be computed through the functions BIC

and AIC. They take a model as the input.

# Two models with different predictors

mod1 <- lm(medv ~ age + crim, data = Boston)

mod2 <- lm(medv ~ age + crim + lstat, data = Boston)

# BICs

BIC(mod1)

## [1] 3581.893

BIC(mod2) # Smaller -> better

## [1] 3300.841

# AICs

AIC(mod1)

## [1] 3564.987

AIC(mod2) # Smaller -> better

## [1] 3279.708

# Check the summaries

summary(mod1)

##

## Call:

## lm(formula = medv ~ age + crim, data = Boston)

##

## Residuals:

## Min 1Q Median 3Q Max

## -13.940 -4.991 -2.420 2.110 32.033

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 29.80067 0.97078 30.698 < 2e-16 ***
## age -0.08955 0.01378 -6.499 1.95e-10 ***
## crim -0.31182 0.04510 -6.914 1.43e-11 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 8.157 on 503 degrees of freedom

## Multiple R-squared: 0.2166, Adjusted R-squared: 0.2134

## F-statistic: 69.52 on 2 and 503 DF, p-value: < 2.2e-16

summary(mod2)

##

## Call:

## lm(formula = medv ~ age + crim + lstat, data = Boston)

##

## Residuals:

## Min 1Q Median 3Q Max

## -16.133 -3.848 -1.380 1.970 23.644

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)



72 eduardo garcía-portugués

7 Since we have to take p binary
decisions on whether to include or not
each of the p predictors.

## (Intercept) 32.82804 0.74774 43.903 < 2e-16 ***
## age 0.03765 0.01225 3.074 0.00223 **
## crim -0.08262 0.03594 -2.299 0.02193 *
## lstat -0.99409 0.05075 -19.587 < 2e-16 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 6.147 on 502 degrees of freedom

## Multiple R-squared: 0.5559, Adjusted R-squared: 0.5533

## F-statistic: 209.5 on 3 and 502 DF, p-value: < 2.2e-16

Let’s go back to the selection of predictors. If we have p predic-
tors, a naive procedure would be to check all the possible models
that can be constructed with them and then select the best one in
terms of BIC/AIC. This exhaustive search is the so-called best sub-
set selection – its application to be seen in Section 4.4. The problem
is that there are 2p possible models to inspect!7 Fortunately, the
MASS::stepAIC function helps us navigating this ocean of models
by implementing stepwise model selection. Stepwise selection will
iteratively add predictors that decrease an information criterion
and/or remove those that increase it, depending on the mode of
stepwise search that is performed.

stepAIC takes as input an initial model to be improved and has
several variants. Let’s see first how it works in its default mode
using the already studied wine dataset.

# Load data -- notice that "Year" is also included

wine <- read.csv(file = "wine.csv", header = TRUE)

We use as initial model the one featuring all the available pre-
dictors. The argument k of stepAIC stands for the factor post-
multiplying npar(model) in (3.1). It defaults to 2, which gives the
AIC. If we set it to k = log(n), the function considers the BIC.

# Full model

mod <- lm(Price ~ ., data = wine)

# With AIC

modAIC <- MASS::stepAIC(mod, k = 2)

## Start: AIC=-61.07

## Price ~ Year + WinterRain + AGST + HarvestRain + Age + FrancePop

##

##

## Step: AIC=-61.07

## Price ~ Year + WinterRain + AGST + HarvestRain + FrancePop

##

## Df Sum of Sq RSS AIC

## - FrancePop 1 0.0026 1.8058 -63.031

## - Year 1 0.0048 1.8080 -62.998

## <none> 1.8032 -61.070

## - WinterRain 1 0.4585 2.2617 -56.952

## - HarvestRain 1 1.8063 3.6095 -44.331

## - AGST 1 3.3756 5.1788 -34.584

##

## Step: AIC=-63.03

## Price ~ Year + WinterRain + AGST + HarvestRain

##

## Df Sum of Sq RSS AIC

## <none> 1.8058 -63.031

## - WinterRain 1 0.4809 2.2867 -58.656

## - Year 1 0.9089 2.7147 -54.023

## - HarvestRain 1 1.8760 3.6818 -45.796
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8 The function always prints ‘AIC’,
even if ‘BIC’ is employed.

9 Note the - before FrancePop. Note
also the convenient sorting of the BICs
in an increasing form, so that the next
best action always corresponds to the
first row.

## - AGST 1 3.4428 5.2486 -36.222

# The result is an lm object

summary(modAIC)

##

## Call:

## lm(formula = Price ~ Year + WinterRain + AGST + HarvestRain,

## data = wine)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.46024 -0.23862 0.01347 0.18601 0.53443

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 43.6390418 14.6939240 2.970 0.00707 **
## Year -0.0238480 0.0071667 -3.328 0.00305 **
## WinterRain 0.0011667 0.0004820 2.420 0.02421 *
## AGST 0.6163916 0.0951747 6.476 1.63e-06 ***
## HarvestRain -0.0038606 0.0008075 -4.781 8.97e-05 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.2865 on 22 degrees of freedom

## Multiple R-squared: 0.8275, Adjusted R-squared: 0.7962

## F-statistic: 26.39 on 4 and 22 DF, p-value: 4.057e-08

# With BIC

modBIC <- MASS::stepAIC(mod, k = log(nrow(wine)))

## Start: AIC=-53.29

## Price ~ Year + WinterRain + AGST + HarvestRain + Age + FrancePop

##

##

## Step: AIC=-53.29

## Price ~ Year + WinterRain + AGST + HarvestRain + FrancePop

##

## Df Sum of Sq RSS AIC

## - FrancePop 1 0.0026 1.8058 -56.551

## - Year 1 0.0048 1.8080 -56.519

## <none> 1.8032 -53.295

## - WinterRain 1 0.4585 2.2617 -50.473

## - HarvestRain 1 1.8063 3.6095 -37.852

## - AGST 1 3.3756 5.1788 -28.105

##

## Step: AIC=-56.55

## Price ~ Year + WinterRain + AGST + HarvestRain

##

## Df Sum of Sq RSS AIC

## <none> 1.8058 -56.551

## - WinterRain 1 0.4809 2.2867 -53.473

## - Year 1 0.9089 2.7147 -48.840

## - HarvestRain 1 1.8760 3.6818 -40.612

## - AGST 1 3.4428 5.2486 -31.039

An explanation of what stepAIC did for modBIC:

• At each step, stepAIC displayed information about the current
value of the information criterion. For example, the BIC at the
first step was Step: AIC=-53.29 and then it improved to Step:

AIC=-56.55 in the second step.8

• The next model to move on was decided by exploring the infor-
mation criteria of the different models resulting from adding or
removing a predictor (depending on the direction argument,
explained later). For example, in the first step the model arising
from removing9 FrancePop had a BIC equal to -56.551.
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10 If possible!

• The stepwise regression proceeded then by removing FrancePop,
as it gave the lowest BIC. When repeating the previous explo-
ration, it was found that removing <none> predictors was the
best possible action.

The selected models modBIC and modAIC are equivalent to the
modWine2 we selected in Section 2.7.3 as the best model. This is a
simple illustration that the model selected by stepAIC is often a
good starting point for further additions or deletions of predictors.

The direction argument of stepAIC controls the mode of the
stepwise model search:

• "backward": removes predictors sequentially from the given
model. It produces a sequence of models of decreasing complexity
until attaining the optimal one.

• "forward": adds predictors sequentially to the given model,
using the available ones in the data argument of lm. It produces
a sequence of models of increasing complexity until attaining the
optimal one.

• "both" (default): a forward-backward search that, at each step,
decides whether to include or exclude a predictor. Differently
from the previous modes, a predictor that was excluded/included
previously can be later included/excluded.

The next chunk of code clearly explains how to exploit the
direction argument, and other options of stepAIC, with a modi-
fied version of the wine dataset. An important warning is that in
order to use direction = "forward" or direction = "both", scope
needs to be properly defined. The practical advice to model selec-
tion is to run10 several of these three search modes and retain the
model with minimum BIC/AIC, being specially careful with the
scope argument.

# Add an irrelevant predictor to the wine dataset

set.seed(123456)

wineNoise <- wine

n <- nrow(wineNoise)

wineNoise$noisePredictor <- rnorm(n)

# Backward selection: removes predictors sequentially from the given model

# Starting from the model with all the predictors

modAll <- lm(formula = Price ~ ., data = wineNoise)

MASS::stepAIC(modAll, direction = "backward", k = log(n))

## Start: AIC=-50.13

## Price ~ Year + WinterRain + AGST + HarvestRain + Age + FrancePop +

## noisePredictor

##

##

## Step: AIC=-50.13

## Price ~ Year + WinterRain + AGST + HarvestRain + FrancePop +

## noisePredictor

##

## Df Sum of Sq RSS AIC

## - FrancePop 1 0.0036 1.7977 -53.376

## - Year 1 0.0038 1.7979 -53.374

## - noisePredictor 1 0.0090 1.8032 -53.295

## <none> 1.7941 -50.135
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## - WinterRain 1 0.4598 2.2539 -47.271

## - HarvestRain 1 1.7666 3.5607 -34.923

## - AGST 1 3.3658 5.1599 -24.908

##

## Step: AIC=-53.38

## Price ~ Year + WinterRain + AGST + HarvestRain + noisePredictor

##

## Df Sum of Sq RSS AIC

## - noisePredictor 1 0.0081 1.8058 -56.551

## <none> 1.7977 -53.376

## - WinterRain 1 0.4771 2.2748 -50.317

## - Year 1 0.9162 2.7139 -45.552

## - HarvestRain 1 1.8449 3.6426 -37.606

## - AGST 1 3.4234 5.2212 -27.885

##

## Step: AIC=-56.55

## Price ~ Year + WinterRain + AGST + HarvestRain

##

## Df Sum of Sq RSS AIC

## <none> 1.8058 -56.551

## - WinterRain 1 0.4809 2.2867 -53.473

## - Year 1 0.9089 2.7147 -48.840

## - HarvestRain 1 1.8760 3.6818 -40.612

## - AGST 1 3.4428 5.2486 -31.039

##

## Call:

## lm(formula = Price ~ Year + WinterRain + AGST + HarvestRain,

## data = wineNoise)

##

## Coefficients:

## (Intercept) Year WinterRain AGST HarvestRain

## 43.639042 -0.023848 0.001167 0.616392 -0.003861

# Starting from an intermediate model

modInter <- lm(formula = Price ~ noisePredictor + Year + AGST, data = wineNoise)

MASS::stepAIC(modInter, direction = "backward", k = log(n))

## Start: AIC=-32.38

## Price ~ noisePredictor + Year + AGST

##

## Df Sum of Sq RSS AIC

## - noisePredictor 1 0.0146 5.0082 -35.601

## <none> 4.9936 -32.384

## - Year 1 0.7522 5.7459 -31.891

## - AGST 1 3.2211 8.2147 -22.240

##

## Step: AIC=-35.6

## Price ~ Year + AGST

##

## Df Sum of Sq RSS AIC

## <none> 5.0082 -35.601

## - Year 1 0.7966 5.8049 -34.911

## - AGST 1 3.2426 8.2509 -25.417

##

## Call:

## lm(formula = Price ~ Year + AGST, data = wineNoise)

##

## Coefficients:

## (Intercept) Year AGST

## 41.49441 -0.02221 0.56067

# Recall that other predictors not included in modInter are not explored

# during the search (so the relevant predictor HarvestRain is not added)

# Forward selection: adds predictors sequentially from the given model

# Starting from the model with no predictors, only intercept (denoted as ~ 1)

modZero <- lm(formula = Price ~ 1, data = wineNoise)

MASS::stepAIC(modZero, direction = "forward",

scope = list(lower = modZero, upper = modAll), k = log(n))
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## Start: AIC=-22.28

## Price ~ 1

##

## Df Sum of Sq RSS AIC

## + AGST 1 4.6655 5.8049 -34.911

## + HarvestRain 1 2.6933 7.7770 -27.014

## + FrancePop 1 2.4231 8.0472 -26.092

## + Year 1 2.2195 8.2509 -25.417

## + Age 1 2.2195 8.2509 -25.417

## <none> 10.4703 -22.281

## + WinterRain 1 0.1905 10.2798 -19.481

## + noisePredictor 1 0.1761 10.2942 -19.443

##

## Step: AIC=-34.91

## Price ~ AGST

##

## Df Sum of Sq RSS AIC

## + HarvestRain 1 2.50659 3.2983 -46.878

## + WinterRain 1 1.42392 4.3809 -39.214

## + FrancePop 1 0.90263 4.9022 -36.178

## + Year 1 0.79662 5.0082 -35.601

## + Age 1 0.79662 5.0082 -35.601

## <none> 5.8049 -34.911

## + noisePredictor 1 0.05900 5.7459 -31.891

##

## Step: AIC=-46.88

## Price ~ AGST + HarvestRain

##

## Df Sum of Sq RSS AIC

## + FrancePop 1 1.03572 2.2625 -53.759

## + Year 1 1.01159 2.2867 -53.473

## + Age 1 1.01159 2.2867 -53.473

## + WinterRain 1 0.58356 2.7147 -48.840

## <none> 3.2983 -46.878

## + noisePredictor 1 0.06084 3.2374 -44.085

##

## Step: AIC=-53.76

## Price ~ AGST + HarvestRain + FrancePop

##

## Df Sum of Sq RSS AIC

## + WinterRain 1 0.45456 1.8080 -56.519

## <none> 2.2625 -53.759

## + noisePredictor 1 0.00829 2.2542 -50.562

## + Year 1 0.00085 2.2617 -50.473

## + Age 1 0.00085 2.2617 -50.473

##

## Step: AIC=-56.52

## Price ~ AGST + HarvestRain + FrancePop + WinterRain

##

## Df Sum of Sq RSS AIC

## <none> 1.8080 -56.519

## + noisePredictor 1 0.0100635 1.7979 -53.374

## + Year 1 0.0048039 1.8032 -53.295

## + Age 1 0.0048039 1.8032 -53.295

##

## Call:

## lm(formula = Price ~ AGST + HarvestRain + FrancePop + WinterRain,

## data = wineNoise)

##

## Coefficients:

## (Intercept) AGST HarvestRain FrancePop WinterRain

## -5.945e-01 6.127e-01 -3.804e-03 -5.189e-05 1.136e-03

# It is very important to set the scope argument adequately when doing forward

# search! In the scope you have to define the "minimum" (lower) and "maximum"

# (upper) models that contain the set of explorable models. If not provided,

# the maximum model will be taken as the passed starting model (in this case

# modZero) and stepAIC will not do any search
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# Starting from an intermediate model

MASS::stepAIC(modInter, direction = "forward",

scope = list(lower = modZero, upper = modAll), k = log(n))

## Start: AIC=-32.38

## Price ~ noisePredictor + Year + AGST

##

## Df Sum of Sq RSS AIC

## + HarvestRain 1 2.71878 2.2748 -50.317

## + WinterRain 1 1.35102 3.6426 -37.606

## <none> 4.9936 -32.384

## + FrancePop 1 0.24004 4.7536 -30.418

##

## Step: AIC=-50.32

## Price ~ noisePredictor + Year + AGST + HarvestRain

##

## Df Sum of Sq RSS AIC

## + WinterRain 1 0.47710 1.7977 -53.376

## <none> 2.2748 -50.317

## + FrancePop 1 0.02094 2.2539 -47.271

##

## Step: AIC=-53.38

## Price ~ noisePredictor + Year + AGST + HarvestRain + WinterRain

##

## Df Sum of Sq RSS AIC

## <none> 1.7977 -53.376

## + FrancePop 1 0.0036037 1.7941 -50.135

##

## Call:

## lm(formula = Price ~ noisePredictor + Year + AGST + HarvestRain +

## WinterRain, data = wineNoise)

##

## Coefficients:

## (Intercept) noisePredictor Year AGST HarvestRain WinterRain

## 44.096639 -0.019617 -0.024126 0.620522 -0.003840 0.001211

# Recall that predictors included in modInter are not dropped during the

# search (so the irrelevant noisePredictor is kept)

# Both selection: useful if starting from an intermediate model

# Removes the problems associated to "backward" and "forward" searches done

# from intermediate models

MASS::stepAIC(modInter, direction = "both",

scope = list(lower = modZero, upper = modAll), k = log(n))

## Start: AIC=-32.38

## Price ~ noisePredictor + Year + AGST

##

## Df Sum of Sq RSS AIC

## + HarvestRain 1 2.7188 2.2748 -50.317

## + WinterRain 1 1.3510 3.6426 -37.606

## - noisePredictor 1 0.0146 5.0082 -35.601

## <none> 4.9936 -32.384

## - Year 1 0.7522 5.7459 -31.891

## + FrancePop 1 0.2400 4.7536 -30.418

## - AGST 1 3.2211 8.2147 -22.240

##

## Step: AIC=-50.32

## Price ~ noisePredictor + Year + AGST + HarvestRain

##

## Df Sum of Sq RSS AIC

## - noisePredictor 1 0.01182 2.2867 -53.473

## + WinterRain 1 0.47710 1.7977 -53.376

## <none> 2.2748 -50.317

## + FrancePop 1 0.02094 2.2539 -47.271

## - Year 1 0.96258 3.2374 -44.085

## - HarvestRain 1 2.71878 4.9936 -32.384

## - AGST 1 2.94647 5.2213 -31.180

##

## Step: AIC=-53.47
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## Price ~ Year + AGST + HarvestRain

##

## Df Sum of Sq RSS AIC

## + WinterRain 1 0.48087 1.8058 -56.551

## <none> 2.2867 -53.473

## + FrancePop 1 0.02497 2.2617 -50.473

## + noisePredictor 1 0.01182 2.2748 -50.317

## - Year 1 1.01159 3.2983 -46.878

## - HarvestRain 1 2.72157 5.0082 -35.601

## - AGST 1 2.96500 5.2517 -34.319

##

## Step: AIC=-56.55

## Price ~ Year + AGST + HarvestRain + WinterRain

##

## Df Sum of Sq RSS AIC

## <none> 1.8058 -56.551

## - WinterRain 1 0.4809 2.2867 -53.473

## + noisePredictor 1 0.0081 1.7977 -53.376

## + FrancePop 1 0.0026 1.8032 -53.295

## - Year 1 0.9089 2.7147 -48.840

## - HarvestRain 1 1.8760 3.6818 -40.612

## - AGST 1 3.4428 5.2486 -31.039

##

## Call:

## lm(formula = Price ~ Year + AGST + HarvestRain + WinterRain,

## data = wineNoise)

##

## Coefficients:

## (Intercept) Year AGST HarvestRain WinterRain

## 43.639042 -0.023848 0.616392 -0.003861 0.001167

# It is very important as well to correctly define the scope, because "both"

# resorts to "forward" (as well as to "backward")

# Using the defaults from the full model essentially does backward selection,

# but allowing predictors that were removed to enter again at later steps

MASS::stepAIC(modAll, direction = "both", k = log(n))

## Start: AIC=-50.13

## Price ~ Year + WinterRain + AGST + HarvestRain + Age + FrancePop +

## noisePredictor

##

##

## Step: AIC=-50.13

## Price ~ Year + WinterRain + AGST + HarvestRain + FrancePop +

## noisePredictor

##

## Df Sum of Sq RSS AIC

## - FrancePop 1 0.0036 1.7977 -53.376

## - Year 1 0.0038 1.7979 -53.374

## - noisePredictor 1 0.0090 1.8032 -53.295

## <none> 1.7941 -50.135

## - WinterRain 1 0.4598 2.2539 -47.271

## - HarvestRain 1 1.7666 3.5607 -34.923

## - AGST 1 3.3658 5.1599 -24.908

##

## Step: AIC=-53.38

## Price ~ Year + WinterRain + AGST + HarvestRain + noisePredictor

##

## Df Sum of Sq RSS AIC

## - noisePredictor 1 0.0081 1.8058 -56.551

## <none> 1.7977 -53.376

## - WinterRain 1 0.4771 2.2748 -50.317

## + FrancePop 1 0.0036 1.7941 -50.135

## - Year 1 0.9162 2.7139 -45.552

## - HarvestRain 1 1.8449 3.6426 -37.606

## - AGST 1 3.4234 5.2212 -27.885

##

## Step: AIC=-56.55

## Price ~ Year + WinterRain + AGST + HarvestRain
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##

## Df Sum of Sq RSS AIC

## <none> 1.8058 -56.551

## - WinterRain 1 0.4809 2.2867 -53.473

## + noisePredictor 1 0.0081 1.7977 -53.376

## + FrancePop 1 0.0026 1.8032 -53.295

## - Year 1 0.9089 2.7147 -48.840

## - HarvestRain 1 1.8760 3.6818 -40.612

## - AGST 1 3.4428 5.2486 -31.039

##

## Call:

## lm(formula = Price ~ Year + WinterRain + AGST + HarvestRain,

## data = wineNoise)

##

## Coefficients:

## (Intercept) Year WinterRain AGST HarvestRain

## 43.639042 -0.023848 0.001167 0.616392 -0.003861

# Omit lengthy outputs

MASS::stepAIC(modAll, direction = "both", trace = 0,

scope = list(lower = modZero, upper = modAll), k = log(n))

##

## Call:

## lm(formula = Price ~ Year + WinterRain + AGST + HarvestRain,

## data = wineNoise)

##

## Coefficients:

## (Intercept) Year WinterRain AGST HarvestRain

## 43.639042 -0.023848 0.001167 0.616392 -0.003861

Run the previous stepwise selections for the Boston

dataset, with the aim of clearly understanding the differ-
ent search directions. Specifically:

a. Do a "forward" stepwise fit starting from medv ~ 1.
b. Do a "forward" stepwise fit starting from medv ~

crim + lstat + age.
c. Do a "both" stepwise fit starting from medv ~ crim +

lstat + age.
d. Do a "both" stepwise fit starting from medv ~ ..
e. Do a "backward" stepwise fit starting from medv ~ ..

We conclude with a couple of quirks of stepAIC to be aware of.

stepAIC assumes that no NA’s (missing values) are
present in the data. It is advised to remove the miss-
ing values in the data before. Their presence might lead
to errors. To do so, employ data = na.omit(dataset) in
the call to lm (if your dataset is dataset). Also, see Ap-
pendix A.4 for possible alternatives to deal with missing
data.
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stepAIC and friends (addterm and dropterm) compute
a slightly different version of the BIC/AIC than the
BIC/AIC functions. Precisely, the BIC/AIC they report
come from the extractAIC function, which differs in
an additive constant from the output of BIC/AIC. This
is not relevant for model comparison, since shifting by
a common constant the BIC/AIC does not change the
lower-to-higher BIC/AIC ordering of models. However,
it is important to be aware of this fact in order to do not
compare directly the output of stepAIC with the one of
BIC/AIC. The additive constant (included in BIC/AIC but
not in extractAIC) is n(log(2π) + 1) + log(n) for the
BIC and n(log(2π) + 1) + 2 for the AIC. The discrepancy
arises from simplifying the computation of the BIC/AIC
for linear models and from counting σ̂2 as an estimated
parameter.

The following chunk of code illustrates the relation of the AIC
reported in stepsAIC, the output of extractAIC, and the BIC/AIC
reported by BIC/AIC.

# Same BICs, different scale

n <- nobs(modBIC)

extractAIC(modBIC, k = log(n))[2]

## [1] -56.55135

BIC(modBIC)

## [1] 23.36717

# Observe that MASS::stepAIC(mod, k = log(nrow(wine))) returned as final BIC

# the one given by extractAIC(), not by BIC()! But both are equivalent, they

# just differ in a constant shift

# Same AICs, different scale

extractAIC(modAIC, k = 2)[2]

## [1] -63.03053

AIC(modAIC)

## [1] 15.59215

# The additive constant: BIC() includes it but extractAIC() does not

BIC(modBIC) - extractAIC(modBIC, k = log(n))[2]

## [1] 79.91852

n * (log(2 * pi) + 1) + log(n)

## [1] 79.91852

# Same for the AIC

AIC(modAIC) - extractAIC(modAIC)[2]

## [1] 78.62268

n * (log(2 * pi) + 1) + 2

## [1] 78.62268

3.2.1 Case study application

We want to build a linear model for predicting and explaining medv.
There are a good number of predictors and some of them might be
of little use for predicting medv. However, there is no clear intuition
of which predictors will yield better explanations of medv with
the information at hand. Therefore, we can start by doing a linear
model on all the predictors:
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modHouse <- lm(medv ~ ., data = Boston)

summary(modHouse)

##

## Call:

## lm(formula = medv ~ ., data = Boston)

##

## Residuals:

## Min 1Q Median 3Q Max

## -15.595 -2.730 -0.518 1.777 26.199

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 3.646e+01 5.103e+00 7.144 3.28e-12 ***
## crim -1.080e-01 3.286e-02 -3.287 0.001087 **
## zn 4.642e-02 1.373e-02 3.382 0.000778 ***
## indus 2.056e-02 6.150e-02 0.334 0.738288

## chas 2.687e+00 8.616e-01 3.118 0.001925 **
## nox -1.777e+01 3.820e+00 -4.651 4.25e-06 ***
## rm 3.810e+00 4.179e-01 9.116 < 2e-16 ***
## age 6.922e-04 1.321e-02 0.052 0.958229

## dis -1.476e+00 1.995e-01 -7.398 6.01e-13 ***
## rad 3.060e-01 6.635e-02 4.613 5.07e-06 ***
## tax -1.233e-02 3.760e-03 -3.280 0.001112 **
## ptratio -9.527e-01 1.308e-01 -7.283 1.31e-12 ***
## black 9.312e-03 2.686e-03 3.467 0.000573 ***
## lstat -5.248e-01 5.072e-02 -10.347 < 2e-16 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 4.745 on 492 degrees of freedom

## Multiple R-squared: 0.7406, Adjusted R-squared: 0.7338

## F-statistic: 108.1 on 13 and 492 DF, p-value: < 2.2e-16

There are a couple of non-significant variables, but so far the
model has an R2 = 0.74 and the fitted coefficients are sensible with
what would be expected. For example, crim, tax, ptratio, and nox

have negative effects on medv, while rm, rad, and chas have positive
effects. However, the non-significant coefficients are only adding
noise to the prediction and decreasing the overall accuracy of the
coefficient estimates.

Let’s polish the previous model a little bit. Instead of manually
removing each non-significant variable to reduce the complexity, we
employ stepAIC for performing a forward-backward search starting
from the full model. This gives us a candidate best model.

# Best BIC and AIC models

modBIC <- MASS::stepAIC(modHouse, k = log(nrow(Boston)))

## Start: AIC=1648.81

## medv ~ crim + zn + indus + chas + nox + rm + age + dis + rad +

## tax + ptratio + black + lstat

##

## Df Sum of Sq RSS AIC

## - age 1 0.06 11079 1642.6

## - indus 1 2.52 11081 1642.7

## <none> 11079 1648.8

## - chas 1 218.97 11298 1652.5

## - tax 1 242.26 11321 1653.5

## - crim 1 243.22 11322 1653.6

## - zn 1 257.49 11336 1654.2

## - black 1 270.63 11349 1654.8

## - rad 1 479.15 11558 1664.0

## - nox 1 487.16 11566 1664.4

## - ptratio 1 1194.23 12273 1694.4

## - dis 1 1232.41 12311 1696.0
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## - rm 1 1871.32 12950 1721.6

## - lstat 1 2410.84 13490 1742.2

##

## Step: AIC=1642.59

## medv ~ crim + zn + indus + chas + nox + rm + dis + rad + tax +

## ptratio + black + lstat

##

## Df Sum of Sq RSS AIC

## - indus 1 2.52 11081 1636.5

## <none> 11079 1642.6

## - chas 1 219.91 11299 1646.3

## - tax 1 242.24 11321 1647.3

## - crim 1 243.20 11322 1647.3

## - zn 1 260.32 11339 1648.1

## - black 1 272.26 11351 1648.7

## - rad 1 481.09 11560 1657.9

## - nox 1 520.87 11600 1659.6

## - ptratio 1 1200.23 12279 1688.4

## - dis 1 1352.26 12431 1694.6

## - rm 1 1959.55 13038 1718.8

## - lstat 1 2718.88 13798 1747.4

##

## Step: AIC=1636.48

## medv ~ crim + zn + chas + nox + rm + dis + rad + tax + ptratio +

## black + lstat

##

## Df Sum of Sq RSS AIC

## <none> 11081 1636.5

## - chas 1 227.21 11309 1640.5

## - crim 1 245.37 11327 1641.3

## - zn 1 257.82 11339 1641.9

## - black 1 270.82 11352 1642.5

## - tax 1 273.62 11355 1642.6

## - rad 1 500.92 11582 1652.6

## - nox 1 541.91 11623 1654.4

## - ptratio 1 1206.45 12288 1682.5

## - dis 1 1448.94 12530 1692.4

## - rm 1 1963.66 13045 1712.8

## - lstat 1 2723.48 13805 1741.5

modAIC <- MASS::stepAIC(modHouse, trace = 0, k = 2)

# Comparison: same fits

car::compareCoefs(modBIC, modAIC)

## Calls:

## 1: lm(formula = medv ~ crim + zn + chas + nox + rm + dis + rad + tax + ptratio + black + lstat, data = Boston)

## 2: lm(formula = medv ~ crim + zn + chas + nox + rm + dis + rad + tax + ptratio + black + lstat, data = Boston)

##

## Model 1 Model 2

## (Intercept) 36.34 36.34

## SE 5.07 5.07

##

## crim -0.1084 -0.1084

## SE 0.0328 0.0328

##

## zn 0.0458 0.0458

## SE 0.0135 0.0135

##

## chas 2.719 2.719

## SE 0.854 0.854

##

## nox -17.38 -17.38

## SE 3.54 3.54

##

## rm 3.802 3.802

## SE 0.406 0.406

##

## dis -1.493 -1.493

## SE 0.186 0.186
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##

## rad 0.2996 0.2996

## SE 0.0634 0.0634

##

## tax -0.01178 -0.01178

## SE 0.00337 0.00337

##

## ptratio -0.947 -0.947

## SE 0.129 0.129

##

## black 0.00929 0.00929

## SE 0.00267 0.00267

##

## lstat -0.5226 -0.5226

## SE 0.0474 0.0474

##

summary(modBIC)

##

## Call:

## lm(formula = medv ~ crim + zn + chas + nox + rm + dis + rad +

## tax + ptratio + black + lstat, data = Boston)

##

## Residuals:

## Min 1Q Median 3Q Max

## -15.5984 -2.7386 -0.5046 1.7273 26.2373

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 36.341145 5.067492 7.171 2.73e-12 ***
## crim -0.108413 0.032779 -3.307 0.001010 **
## zn 0.045845 0.013523 3.390 0.000754 ***
## chas 2.718716 0.854240 3.183 0.001551 **
## nox -17.376023 3.535243 -4.915 1.21e-06 ***
## rm 3.801579 0.406316 9.356 < 2e-16 ***
## dis -1.492711 0.185731 -8.037 6.84e-15 ***
## rad 0.299608 0.063402 4.726 3.00e-06 ***
## tax -0.011778 0.003372 -3.493 0.000521 ***
## ptratio -0.946525 0.129066 -7.334 9.24e-13 ***
## black 0.009291 0.002674 3.475 0.000557 ***
## lstat -0.522553 0.047424 -11.019 < 2e-16 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 4.736 on 494 degrees of freedom

## Multiple R-squared: 0.7406, Adjusted R-squared: 0.7348

## F-statistic: 128.2 on 11 and 494 DF, p-value: < 2.2e-16

# Confidence intervals

confint(modBIC)

## 2.5 % 97.5 %

## (Intercept) 26.384649126 46.29764088

## crim -0.172817670 -0.04400902

## zn 0.019275889 0.07241397

## chas 1.040324913 4.39710769

## nox -24.321990312 -10.43005655

## rm 3.003258393 4.59989929

## dis -1.857631161 -1.12779176

## rad 0.175037411 0.42417950

## tax -0.018403857 -0.00515209

## ptratio -1.200109823 -0.69293932

## black 0.004037216 0.01454447

## lstat -0.615731781 -0.42937513

Note how the R2
Adj has slightly increased with respect to the full

model and how all the predictors are significant. Note also that
modBIC and modAIC are the same.

Using modBIC, we can quantify the influence of the predictor
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variables on the housing prices (Q1) and we can conclude that, in
the final model (Q2) and with significance level α = 0.05:

• zn, chas, rm, rad, and black have a significantly positive influ-
ence on medv;

• crim, nox, dis, tax, ptratio, and lstat have a significantly
negative influence on medv.

The functions MASS::addterm and MASS::dropterm al-
low adding and removing all individual predictors to a
given model, and inform the BICs / AICs of the possible
combinations. Check that:

a. modBIC cannot be improved in terms of BIC by re-
moving predictors. Use dropterm(modBIC, k =

log(nobs(modBIC))) for that.
b. modBIC cannot be improved in terms of BIC by adding

predictors. Use addterm(modBIC, scope = lm(medv

~ ., data = Boston), k = log(nobs(modBIC))) for
that.

For the second point, recall that scope must specify
the maximal model or formula. However, be careful be-
cause if using the formula approach, addterm(modBIC,
scope = medv ~ ., k = log(nobs(modBIC))) will un-
derstand that . refers to all the predictors in modBIC, not
in the Boston dataset, and will return an error. Calling
addterm(modBIC, scope = medv ~ . + indus + age,

k = log(nobs(modBIC))) gives the required result in
terms of a formula, at the expense of manually adding
the remaining predictors.

3.2.2 Consistency in model selection

A caveat on the use of the BIC/AIC is that both criteria are con-
structed assuming that the sample size n is much larger than the
number of parameters in the model (p + 2), that is, assuming that
n ≫ p + 2. Therefore, they will work reasonably well if n ≫ p + 2
but, when this is not true, they enter in “overfitting mode” and start
favoring unrealistic complex models. An illustration of this phe-
nomenon is shown in Figure 3.3, which is the BIC/AIC version of
Figure 2.18 and corresponds to the simulation study of Section 2.6.
The BIC/AIC curves tend to have local minima close to p = 2 and
then increase. But, when p + 2 gets close to n, they quickly drop
below their values at p = 2.

In particular, Figure 3.3 gives the following insights:

• The steeper BIC curves are a consequence of the higher penal-
ization that BIC introduces on model complexity with respect
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11 The specifics of this result for the
linear model are given in Schwarz
(1978).

to AIC. Therefore, the local minima of the BIC curves are better
identified than those of the flatter AIC curves.

• The BIC resists better the overfitting than the AIC. The average
BIC curve, BIC(p), starts giving smaller values than BIC(2) ≈
1023.76 when p = 198 (BIC(198) ≈ 788.30). Overfitting appears
earlier in the AIC, and AIC(2) ≈ 1010.57 is surpassed for p ≥ 155
(AIC(155) ≈ 1009.57).

• The variabilities of both AIC and BIC curves are comparable,
with no significant differences between them.

Figure 3.3: Comparison of BIC and
AIC on the model (2.26) fitted with
data generated by (2.25). The number
of predictors p ranges from 1 to 198,
with only the first two predictors being
significant. The M = 500 curves for
each color arise from M simulated
datasets of sample size n = 200. The
thicker curves are the mean of each
color’s curves.

Another big difference between the AIC and BIC, which is in-
deed behind the behaviors seen in Figure 3.3, is the consistency of
the BIC in performing model selection. In simple terms, “consis-
tency” means that, if enough data is provided, the BIC is guaran-
teed to identify the true data-generating model among a list of can-
didate models if the true model is included in the list. Mathemat-
ically, it means that, given a collection of models M0, M1, . . . , Mm,
where M0 is the generating model of a sample of size n, then

P

[
arg min

k=0,...,m
BIC(M̂k) = 0

]
→ 1 as n→ ∞, (3.2)

where M̂k represents the Mk model fitted with a sample of size n
generated from M0.11 Note that, despite being a nice theoretical
result, its application may be unrealistic in practice, as most likely
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12 Cross-validation and its different
variants are formally addressed at the
end of Section 3.6.2.

the true model is nonlinear or not present in the list of candidate
models we examine.

The AIC is inconsistent, in the sense that (3.2) is not true if BIC
is replaced by AIC. Indeed, this result can be seen as a consequence
of the asymptotic equivalence of model selection by AIC and
leave-one-out cross-validation12, and the inconsistency of the latter.
This is beautifully described in the paper by Shao (1993), whose ab-
stract is given in Figure 3.4. The paper made a shocking discovery
in terms of what is the required modification to induce consistency
in model selection by cross-validation.

Figure 3.4: The abstract of Jun Shao’s
Linear model selection by cross-validation
(Shao, 1993).

The Leave-One-Out Cross-Validation (LOOCV) error in a fitted
linear model is defined as

LOOCV :=
1
n

n

∑
i=1

(Yi − Ŷi,−i)
2, (3.3)

where Ŷi,−i is the prediction of the i-th observation in a linear
model that has been fitted without the i-th datum (Xi1, . . . , Xip, Yi).
That is, Ŷi,−i = β̂0,−i + β̂1,−iXi1 + · · ·+ β̂p,−iXip, where β̂−i are the
estimated coefficients from the sample {(Xj1, . . . , Xjp, Yj)}n

j=1, j ̸=i.
Model selection based on LOOCV chooses the model with mini-
mum error (3.3) within a list of candidate models. Note that the
computation of LOOCV requires, in principle, to fit n separate lin-
ear models, predict, and then aggregate. However, an algebraic
shortcut based on (4.25) allows to compute (3.3) using a single lin-
ear fit.

We carry out a small simulation study in order to illustrate the
consistency property (3.2) of BIC and the inconsistency of model se-
lection by AIC and LOOCV. For that, we consider the linear model

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + ε,

β = (0.5, 1, 1, 0, 0, 0)′,
(3.4)

where Xj ∼ N (0, 1) for j = 1, . . . , 5 (independently) and ε ∼
N (0, 1). Only the first two predictors are relevant, the last three
are “garbage” predictors. For a given sample, model selection is
performed by selecting among the 25 possible fitted models the
ones with minimum AIC, BIC, and LOOCV. The experiment is
repeated M = 500 times for sample sizes n = 2ℓ, ℓ = 3, . . . , 12,
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and the estimated probability of selecting the correct model (the
one only involving X1 and X2) is displayed in Figure 3.5. The figure
evidences empirically several interesting results:

• LOOCV and AIC are asymptotically equivalent. For large n,
they tend to select the same model and hence their estimated
probabilities of selecting the true model are almost equal. For
small n, there are significant differences between them.

• The BIC is consistent in selecting the true model, and its proba-
bility of doing so quickly approaches 1, as anticipated by (3.2).

• The AIC and LOOCV are inconsistent in selecting the true
model. Despite the sample size n doubling at each step, their
probability of recovering the true model gets stuck at about 0.60.

• Even for moderate n’s, the probability of recovering the true
model by BIC quickly outperforms those of AIC/LOOCV.

Figure 3.5: Estimation of the probabil-
ity of selecting the correct model by
minimizing the AIC, BIC, and LOOCV
criteria, done for an exhaustive search
with p = 5 predictors. The correct
model contained two predictors.
The probability was estimated with
M = 500 Monte Carlo runs. The hori-
zontal axis is in logarithmic scale. The
estimated proportion of true model
recoveries with BIC for n = 4096 is
0.984.

Implement the simulation study behind Figure 3.5:

1. Sample from (3.4), but take p = 4.
2. Fit the 2p possible models.
3. Select the best model according to the AIC and BIC.
4. Repeat Steps 1–3 M = 100 times. Estimate by Monte

Carlo the probability of selecting the true model.
5. Move n in a range from 10 to 200.

Once you have a working solution, increase (p, n, M) to
approach the settings in Figure 3.5 (or go beyond!).
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Modify the Step 3 of the previous exercise to:

a. Select the best model according to the R2
Adj and inves-

tigate its consistency in model selection.
b. Add the LOOCV criterion in order to fully replicate

Figure 3.5. Hint: you may want to adapt (4.25) to your
needs in order to reduce computation time.

Investigate what happens with the probability of select-
ing the true model using BIC and AIC if the exhaustive
search is replaced by a stepwise selection. Precisely, do:

1. Sample from (3.4), but take p = 10 (pad β with zeros).
2. Run a forward-backward stepwise search, both for the

AIC and BIC.
3. Repeat Steps 1–2 M = 100 times. Estimate by Monte

Carlo the probability of selecting the true model.
4. Move n in a range from 20 to 200.

Once you have a working solution, increase (n, M) to
approach the settings in Figure 3.5 (or go beyond!).

Shao (1993)’s modification on how to make consistent the model
selection by cross-validation is shocking. As in LOOCV, one has to
split the sample of size n into two subsets: a training set, of size nt,
and a validation set, of size nv. Of course, n = nt + nv. However,
totally opposite to LOOCV, where nt = n − 1 and nv = 1, the
modification required is to choose nv asymptotically equal to n, in
the sense that nv/n → 1 as n → ∞. An example would be to take
nv = n − 20 and nt = 20. But nv = n/2 and nt = n/2, a typical
choice, would not make the selection consistent! Shao (1993)’s result
gives a great insight: the difficulty in model selection lies in the
comparison of models, not in their estimation, and the sample in-
formation has to be disproportionately allocated to the comparison
task to achieve a consistent model selection device.

Verify Shao (1993)’s result by constructing the analogous
of Figure 3.5 for the following choices of (nt, nv):

a. nt = n− 1, nv = 1 (LOOCV).
b. nt = n/2, nv = n/2.
c. nt = n/4, nv = (3/4)n.
d. nt = 5p, nv = n− 5p.

Use first p = 4 predictors, M = 100 Monte Carlo runs,
and move n in a range from 20 to 200. Then increase the
settings to approach those of Figure 3.5.
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3.3 Use of qualitative predictors

An important situation not covered so far is how to deal with qual-
itative, and not quantitative, predictors. Qualitative predictors are
also known as categorical variables or, in R’s terminology, factors,
and are very common in many fields, such as in social sciences.
Dealing with them requires some care and proper understanding of
how these variables are represented.

The simplest case is the situation with two levels. A binary
variable C with two levels (for example, a and b) can be encoded as

D =

{
1, if C = b,
0, if C = a.

D is a dummy variable: it codifies with zeros and ones the two pos-
sible levels of the categorical variable. An example of C is smoker,
which has levels yes and no. The dummy variable associated is
D = 1 if a person smokes and D = 0 if a person is non-smoker.

The advantage of this dummification is its interpretability in re-
gression models. Since level a corresponds to 0, it can be seen as the
reference level to which level b is compared. This is the key point in
dummification: set one level as the reference, codify the rest as
departures from it.

The previous interpretation translates easily to the linear model.
Assume that the dummy variable D is available together with other
predictors X1, . . . , Xp. Then:

E[Y|X1 = x1, . . . , Xp = xp, D = d] = β0 + β1x1 + · · ·+ βpxp + βp+1d.

The coefficient associated to D is easily interpretable: βp+1 is the
increment in the mean of Y associated to changing D = 0 (ref-
erence) to D = 1, while the rest of the predictors are fixed. Or
in other words, βp+1 is the increment in mean of Y associated to
changing the level of the categorical variable from a to b.

R does the dummification automatically, translating a categori-
cal variable C into its dummy version D, if it detects that a factor
variable is present in the regression model.

Let’s see now the case with more than two levels, for example,
a categorical variable C with levels a, b, and c. If we take a as the
reference level, this variable can be represented by two dummy
variables:

D1 =

{
1, if C = b,
0, if C ̸= b

and

D2 =

{
1, if C = c,
0, if C ̸= c.

Therefore, we can represent the levels of C as in the following table.
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13 To account for the J − 1 possible
departures from a reference level.

C D1 D2

a 0 0
b 1 0
c 0 1

The interpretation of the regression models in the presence of
D1 and D2 is very similar to the one before. For example, for the
linear model, the coefficient associated to D1 gives the increment
in the mean of Y when the level of C changes from a to b, and the
coefficient for D2 gives the increment in mean of Y when C changes
from a to c.

In general, if we have a categorical variable C with J levels, then
the previous process is iterated and the number of dummy vari-
ables required to encode C is J − 1 13. Again, R does the dummifi-
cation automatically if it detects that a factor variable is present in
the regression model.

Let’s see an example with the famous iris dataset.

# iris dataset -- factors in the last column

summary(iris)

## Sepal.Length Sepal.Width Petal.Length Petal.Width Species

## Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100 setosa :50

## 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300 versicolor:50

## Median :5.800 Median :3.000 Median :4.350 Median :1.300 virginica :50

## Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199

## 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800

## Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500

# Summary of a linear model

mod1 <- lm(Sepal.Length ~ ., data = iris)

summary(mod1)

##

## Call:

## lm(formula = Sepal.Length ~ ., data = iris)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.79424 -0.21874 0.00899 0.20255 0.73103

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 2.17127 0.27979 7.760 1.43e-12 ***
## Sepal.Width 0.49589 0.08607 5.761 4.87e-08 ***
## Petal.Length 0.82924 0.06853 12.101 < 2e-16 ***
## Petal.Width -0.31516 0.15120 -2.084 0.03889 *
## Speciesversicolor -0.72356 0.24017 -3.013 0.00306 **
## Speciesvirginica -1.02350 0.33373 -3.067 0.00258 **
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.3068 on 144 degrees of freedom

## Multiple R-squared: 0.8673, Adjusted R-squared: 0.8627

## F-statistic: 188.3 on 5 and 144 DF, p-value: < 2.2e-16

# Speciesversicolor (D1) coefficient: -0.72356. The average increment of

# Sepal.Length when the species is versicolor instead of setosa (reference)

# Speciesvirginica (D2) coefficient: -1.02350. The average increment of

# Sepal.Length when the species is virginica instead of setosa (reference)

# Both dummy variables are significant

# How to set a different level as reference (versicolor)

iris$Species <- relevel(iris$Species, ref = "versicolor")
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# Same estimates, except for the dummy coefficients

mod2 <- lm(Sepal.Length ~ ., data = iris)

summary(mod2)

##

## Call:

## lm(formula = Sepal.Length ~ ., data = iris)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.79424 -0.21874 0.00899 0.20255 0.73103

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 1.44770 0.28149 5.143 8.68e-07 ***
## Sepal.Width 0.49589 0.08607 5.761 4.87e-08 ***
## Petal.Length 0.82924 0.06853 12.101 < 2e-16 ***
## Petal.Width -0.31516 0.15120 -2.084 0.03889 *
## Speciessetosa 0.72356 0.24017 3.013 0.00306 **
## Speciesvirginica -0.29994 0.11898 -2.521 0.01280 *
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.3068 on 144 degrees of freedom

## Multiple R-squared: 0.8673, Adjusted R-squared: 0.8627

## F-statistic: 188.3 on 5 and 144 DF, p-value: < 2.2e-16

# Speciessetosa (D1) coefficient: 0.72356. The average increment of

# Sepal.Length when the species is setosa instead of versicolor (reference)

# Speciesvirginica (D2) coefficient: -0.29994. The average increment of

# Sepal.Length when the species is virginica instead of versicolor (reference)

# Both dummy variables are significant

# Coefficients of the model

confint(mod2)

## 2.5 % 97.5 %

## (Intercept) 0.8913266 2.00408209

## Sepal.Width 0.3257653 0.66601260

## Petal.Length 0.6937939 0.96469395

## Petal.Width -0.6140049 -0.01630542

## Speciessetosa 0.2488500 1.19827390

## Speciesvirginica -0.5351144 -0.06475727

# The coefficients of Speciessetosa and Speciesvirginica are

# significantly positive and negative, respectively

# Show the dummy variables employed for encoding a factor

contrasts(iris$Species)

## setosa virginica

## versicolor 0 0

## setosa 1 0

## virginica 0 1

iris$Species <- relevel(iris$Species, ref = "setosa")

contrasts(iris$Species)

## versicolor virginica

## setosa 0 0

## versicolor 1 0

## virginica 0 1

It may happen that one dummy variable, say D1, is not
significant, while other dummy variables of the same
categorical variable, say D2, are significant. For example,
this happens in the example above at level α = 0.01.
Then, in the considered model, the level associated to D1

does not add relevant information for explaining Y with
respect to the reference level.
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Do not codify a categorical variable as a discrete vari-
able. This constitutes a major methodological failure that
will flaw the subsequent statistical analysis.
For example if you have a categorical variable party with
levels partyA, partyB, and partyC, do not encode it as
a discrete variable taking the values 1, 2, and 3, respec-
tively. If you do so:

• You assume implicitly an order in the levels of party,
since partyA is closer to partyB than to partyC.

• You assume implicitly that partyC is three times larger
than partyA.

• The codification is completely arbitrary – why not
consider 1, 1.5, and 1.75 instead?

The right way of dealing with categorical variables in
regression is to set the variable as a factor and let R do
the dummification internally.

3.3.1 Case study application

Let’s see what the dummy variables are in the Boston dataset and
what effect they have on medv.

# Load the Boston dataset

data(Boston, package = "MASS")

# Structure of the data

str(Boston)

## 'data.frame': 506 obs. of 14 variables:

## $ crim : num 0.00632 0.02731 0.02729 0.03237 0.06905 ...

## $ zn : num 18 0 0 0 0 0 12.5 12.5 12.5 12.5 ...

## $ indus : num 2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 7.87 ...

## $ chas : int 0 0 0 0 0 0 0 0 0 0 ...

## $ nox : num 0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 0.524 0.524 ...

## $ rm : num 6.58 6.42 7.18 7 7.15 ...

## $ age : num 65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9 ...

## $ dis : num 4.09 4.97 4.97 6.06 6.06 ...

## $ rad : int 1 2 2 3 3 3 5 5 5 5 ...

## $ tax : num 296 242 242 222 222 222 311 311 311 311 ...

## $ ptratio: num 15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.2 ...

## $ black : num 397 397 393 395 397 ...

## $ lstat : num 4.98 9.14 4.03 2.94 5.33 ...

## $ medv : num 24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 ...

# chas is a dummy variable measuring if the suburb is close to the river (1)

# or not (0). In this case it is not codified as a factor but as a 0 or 1

# (so it is already dummified)

# Summary of a linear model

mod <- lm(medv ~ chas + crim, data = Boston)

summary(mod)

##

## Call:

## lm(formula = medv ~ chas + crim, data = Boston)

##

## Residuals:

## Min 1Q Median 3Q Max

## -16.540 -5.421 -1.878 2.575 30.134

##
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## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 23.61403 0.41862 56.409 < 2e-16 ***
## chas 5.57772 1.46926 3.796 0.000165 ***
## crim -0.40598 0.04339 -9.358 < 2e-16 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 8.373 on 503 degrees of freedom

## Multiple R-squared: 0.1744, Adjusted R-squared: 0.1712

## F-statistic: 53.14 on 2 and 503 DF, p-value: < 2.2e-16

# The coefficient associated to chas is 5.57772. That means that if the suburb

# is close to the river, the mean of medv increases in 5.57772 units for

# the same house and neighborhood conditions

# chas is significant (the presence of the river adds a valuable information

# for explaining medv)

# Summary of the best model in terms of BIC

summary(modBIC)

##

## Call:

## lm(formula = medv ~ crim + zn + chas + nox + rm + dis + rad +

## tax + ptratio + black + lstat, data = Boston)

##

## Residuals:

## Min 1Q Median 3Q Max

## -15.5984 -2.7386 -0.5046 1.7273 26.2373

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 36.341145 5.067492 7.171 2.73e-12 ***
## crim -0.108413 0.032779 -3.307 0.001010 **
## zn 0.045845 0.013523 3.390 0.000754 ***
## chas 2.718716 0.854240 3.183 0.001551 **
## nox -17.376023 3.535243 -4.915 1.21e-06 ***
## rm 3.801579 0.406316 9.356 < 2e-16 ***
## dis -1.492711 0.185731 -8.037 6.84e-15 ***
## rad 0.299608 0.063402 4.726 3.00e-06 ***
## tax -0.011778 0.003372 -3.493 0.000521 ***
## ptratio -0.946525 0.129066 -7.334 9.24e-13 ***
## black 0.009291 0.002674 3.475 0.000557 ***
## lstat -0.522553 0.047424 -11.019 < 2e-16 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 4.736 on 494 degrees of freedom

## Multiple R-squared: 0.7406, Adjusted R-squared: 0.7348

## F-statistic: 128.2 on 11 and 494 DF, p-value: < 2.2e-16

# The coefficient associated to chas is 2.71871. If the suburb is close to

# the river, the mean of medv increases in 2.71871 units

# chas is significant as well in the presence of more predictors

We will see how to mix dummy and quantitative predictors in
Section 3.4.3.

3.4 Nonlinear relationships

3.4.1 Transformations in the simple linear model

The linear model is termed linear not only because the form it as-
sumes for the regression function m is linear, but because the ef-
fects of the parameters are linear. Indeed, the predictor X may
exhibit a nonlinear effect on the response Y and still be a linear
model! For example, the following models can be transformed into
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simple linear models:

1. Y = β0 + β1X2 + ε.
2. Y = β0 + β1 log(X) + ε.
3. Y = β0 + β1(X3 − log(|X|) + 2X) + ε.

The trick is to work with a transformed predictor X̃ as a replace-
ment of the original predictor X. Then, for the above examples,
rather than working with the sample {(Xi, Yi)}n

i=1, we consider the
transformed sample {(X̃i, Yi)}n

i=1 with:

1. X̃i = X2
i , i = 1, . . . , n.

2. X̃i = log(Xi), i = 1, . . . , n.
3. X̃i = X3

i − log(|Xi|) + 2Xi , i = 1, . . . , n.

An example of this simple but powerful trick is given as follows.
The left panel of Figure 3.6 shows the scatterplot for some data
y and x, together with its fitted regression line. Clearly, the data
does not follow a linear pattern, but a nonlinear one, similar to a
parabola y = x2. Hence, y might be better explained by the square of
x, xˆ2, rather than by x. Indeed, if we plot y against xˆ2 in the right
panel of Figure 3.6, we can see that the relation of y and xˆ2 is now
linear!
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Figure 3.6: Left: quadratic pattern
when plotting Y against X. Right:
linearized pattern when plotting Y
against X2. In red, the fitted regression
line.

Figure 3.7: Illustration of the choice
of the nonlinear transformation.
Application available here.

In conclusion, with a simple trick we have drastically increased
the explanation of the response. However, there is a catch: knowing
which transformation is required in order to linearize the relation
between response and the predictor is a kind of art which requires

https://shinyserv.es/shiny/non-linear/
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Figure 3.8: Some common nonlinear
transformations and their negative
counterparts. Recall the domain of
definition of each transformation.

good eyeballing. A first approach is to try with one of the usual
transformations, displayed in Figure 3.8, depending on the pat-
tern of the data. Figure 3.7 illustrates how to choose an adequate
transformation for linearizing certain nonlinear data patterns.

If you apply a nonlinear transformation, namely f , and
fit the linear model Y = β0 + β1 f (X) + ε, then there is no
point in also fitting the model resulting from the negative
transformation − f . The model with − f is exactly the
same as the one with f but with the sign of β1 flipped.
As a rule of thumb, use Figure 3.8 with the transforma-
tions to compare it with the data pattern, choose the
most similar curve, and apply the corresponding func-
tion with positive sign (for simpler interpretation).

Let’s see how to transform the predictor and perform the regres-
sions behind Figure 3.6.

# Data

x <- c(-2, -1.9, -1.7, -1.6, -1.4, -1.3, -1.1, -1, -0.9, -0.7, -0.6,

-0.4, -0.3, -0.1, 0, 0.1, 0.3, 0.4, 0.6, 0.7, 0.9, 1, 1.1, 1.3,

1.4, 1.6, 1.7, 1.9, 2, 2.1, 2.3, 2.4, 2.6, 2.7, 2.9, 3, 3.1,

3.3, 3.4, 3.6, 3.7, 3.9, 4, 4.1, 4.3, 4.4, 4.6, 4.7, 4.9, 5)

y <- c(1.4, 0.4, 2.4, 1.7, 2.4, 0, 0.3, -1, 1.3, 0.2, -0.7, 1.2, -0.1,

-1.2, -0.1, 1, -1.1, -0.9, 0.1, 0.8, 0, 1.7, 0.3, 0.8, 1.2, 1.1,

2.5, 1.5, 2, 3.8, 2.4, 2.9, 2.7, 4.2, 5.8, 4.7, 5.3, 4.9, 5.1,

6.3, 8.6, 8.1, 7.1, 7.9, 8.4, 9.2, 12, 10.5, 8.7, 13.5)

# Data frame (a matrix with column names)

nonLinear <- data.frame(x = x, y = y)

# We create a new column inside nonLinear, called x2, that contains the

# new variable xˆ2

nonLinear$x2 <- nonLinear$xˆ2

# If you wish to remove it

# nonLinear$x2 <- NULL

# Regressions

mod1 <- lm(y ~ x, data = nonLinear)

mod2 <- lm(y ~ x2, data = nonLinear)

summary(mod1)

##

## Call:

## lm(formula = y ~ x, data = nonLinear)

##

## Residuals:

## Min 1Q Median 3Q Max

## -2.5268 -1.7513 -0.4017 0.9750 5.0265

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.9771 0.3506 2.787 0.0076 **
## x 1.4993 0.1374 10.911 1.35e-14 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 2.005 on 48 degrees of freedom

## Multiple R-squared: 0.7126, Adjusted R-squared: 0.7067

## F-statistic: 119 on 1 and 48 DF, p-value: 1.353e-14

summary(mod2)

##
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## Call:

## lm(formula = y ~ x2, data = nonLinear)

##

## Residuals:

## Min 1Q Median 3Q Max

## -3.0418 -0.5523 -0.1465 0.6286 1.8797

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.05891 0.18462 0.319 0.751

## x2 0.48659 0.01891 25.725 <2e-16 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.9728 on 48 degrees of freedom

## Multiple R-squared: 0.9324, Adjusted R-squared: 0.931

## F-statistic: 661.8 on 1 and 48 DF, p-value: < 2.2e-16

# mod2 has a larger Rˆ2. Also notice the intercept is not significative

A fast way of performing and summarizing the quadratic
fit is

summary(lm(y ~ I(x^2), data = nonLinear))

The I() function wrapping xˆ2 is fundamental when
applying arithmetic operations in the predictor. The sym-
bols +, *, ˆ, . . . have different meaning when inputted
in a formula, so it is required to use I() to indicate that
they must be interpreted in their arithmetic meaning and
that the result of the expression denotes a new predictor.
For example, use I((x - 1)ˆ3 - log(3 * x)) to apply
the transformation (x - 1)ˆ3 - log(3 * x).

Load the dataset assumptions.RData. We are going to
work with the regressions y2 ~ x2, y3 ~ x3, y8 ~ x8,
and y9 ~ x9, in order to identify which transformation of
Figure 3.8 gives the best fit. For these, do the following:

a. Find the transformation that yields the largest R2.
b. Compare the original and transformed linear models.

Hints:

• y2 ~ x2 has a negative dependence, so look at the
right panel of Figure 3.7.

• y3 ~ x3 seems to have just a subtle nonlinearity. . .
Will it be worth to attempt a transformation?

• For y9 ~ x9, try also with exp(-abs(x9)),
log(abs(x9)), and 2ˆabs(x9).

The nonlinear transformations introduced for the simple linear
model are readily applicable in the multiple linear model. Con-
sequently, the multiple linear model is able to approximate re-
gression functions with nonlinear forms, if appropriate nonlinear
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14 In particular, Taylor’s theorem allows
to approximate a sufficiently regular
function m by a polynomial, which
is identifiable with a multiple linear
model as seen in Section 3.4.2. This
idea, applied locally, is elaborated in
Section 6.2.2.

15 The consideration of more than one
predictor is conceptually straightfor-
ward, yet notationally more cumber-
some.

16 Precisely, the type of orthogo-
nal polynomials considered are
a data-driven shifting and rescal-
ing of the Legendre polynomials in
(−1, 1). The Legendre polynomi-
als pj and pℓ in (−1, 1) satisfy that∫ 1
−1 pj(x)pℓ(x)dx = 2

2j+1 δjℓ, where
δjℓ is the Kronecker’s delta. The first
five Legendre polynomials in (−1, 1)
are, respectively: p1(x) = x, p2(x) =
1
2 (3x2 − 1), p3(x) = 1

2 (5x3 − 3x),
p4(x) = 1

8 (35x4 − 30x2 + 3), and
p5(x) = 1

8 (63x5 − 70x3 + 15x). Also,
p0(x) = 1. The recursive formula
pk+1(x) = (k + 1)−1[(2k + 1)xpk(x)−
kpk−1(x)

]
allows to obtain the (k + 1)-

th order Legendre polynomial from
the previous two ones. Notice that
from k ≥ 3, pk(x) involves more
monomials than just xk , precisely all
the monomials with a lower order and
with the same parity. This may compli-
cate the interpretation of a coefficient
related to pk(X) for k ≥ 3, as it is not
directly associated to a k-th order effect
of X.
17 This is due to how the second matrix
of (3.5) is computed: by means of a
QR decomposition associated to the
first matrix. The decomposition yields
a data matrix formed by polynomials
that are not exactly the Legendre
polynomials but a data-driven shifting
and rescaling of them.

transformations for the predictors are used.14

3.4.2 Polynomial transformations

Polynomial models are a powerful nonlinear extension of the linear
model. These are constructed by replacing each predictor Xj by

a set of monomials (Xj, X2
j , . . . , X

kj
j ) constructed from Xj. In the

simpler case with a single predictor15 X, we have the k-th order
polynomial fit:

Y = β0 + β1X + · · ·+ βkXk + ε.

With this approach, a highly flexible model is produced, as it was
already shown in Figure 1.3.

The creation of polynomial models can be automated with the
R’s poly function. For the observations (X1, . . . , Xn) of X, poly
creates the matrices

X1 X2
1 . . . Xk

1
...

...
. . .

...
Xn X2

n . . . Xk
n

 or


p1(X1) p2(X1) . . . pk(X1)

...
...

. . .
...

p1(Xn) p2(Xn) . . . pk(Xn)

 , (3.5)

where p1, . . . , pk are orthogonal polynomials16 of orders 1, . . . , k, re-
spectively. For orthogonal polynomials, poly yields a data matrix
in (3.5) with uncorrelated17 columns. That is, such that the sample
correlation coefficient between two columns is zero.

Let’s see a couple of examples on using poly.

x1 <- seq(-1, 1, l = 4)

poly(x = x1, degree = 2, raw = TRUE) # (X, Xˆ2)

## 1 2

## [1,] -1.0000000 1.0000000

## [2,] -0.3333333 0.1111111

## [3,] 0.3333333 0.1111111

## [4,] 1.0000000 1.0000000

## attr(,"degree")

## [1] 1 2

## attr(,"class")

## [1] "poly" "matrix"

poly(x = x1, degree = 2) # By default, it employs orthogonal polynomials

## 1 2

## [1,] -0.6708204 0.5

## [2,] -0.2236068 -0.5

## [3,] 0.2236068 -0.5

## [4,] 0.6708204 0.5

## attr(,"coefs")

## attr(,"coefs")$alpha

## [1] -5.551115e-17 -5.551115e-17

##

## attr(,"coefs")$norm2

## [1] 1.0000000 4.0000000 2.2222222 0.7901235

##

## attr(,"degree")

## [1] 1 2

## attr(,"class")

## [1] "poly" "matrix"

# Depiction of raw polynomials

x <- seq(-1, 1, l = 200)

degree <- 5
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Figure 3.9: Raw polynomials xk in
(−1, 1), up to degree k = 5.
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Figure 3.10: Orthogonal polynomials
pk(x) in (−1, 1), up to degree k = 5.
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Figure 3.11: Raw and orthogonal
polynomial fits of dist ~ speed in the
cars dataset.
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Figure 3.12: Raw and orthogonal
polynomial fits of dist ~ speed in the
cars dataset.

matplot(x, poly(x, degree = degree, raw = TRUE), type = "l", lty = 1,

ylab = expression(xˆk))

legend("bottomright", legend = paste("k =", 1:degree), col = 1:degree, lwd = 2)

# Depiction of orthogonal polynomials

matplot(x, poly(x, degree = degree), type = "l", lty = 1,

ylab = expression(p[k](x)))

legend("bottomright", legend = paste("k =", 1:degree), col = 1:degree, lwd = 2)

These matrices can now be used as inputs in the predictor side of
lm. Let’s see this in an example.

# Data containing speed (mph) and stopping distance (ft) of cars from 1920

data(cars)

plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)")

# Fit a linear model of dist ~ speed

mod1 <- lm(dist ~ speed, data = cars)

abline(coef = mod1$coefficients, col = 2)

# Quadratic

mod2 <- lm(dist ~ poly(speed, degree = 2), data = cars)

# The fit is not a line, we must look for an alternative approach

d <- seq(0, 25, length.out = 200)

lines(d, predict(mod2, new = data.frame(speed = d)), col = 3)

# Cubic

mod3 <- lm(dist ~ poly(speed, degree = 3), data = cars)

lines(d, predict(mod3, new = data.frame(speed = d)), col = 4)

# 10th order -- overfitting

mod10 <- lm(dist ~ poly(speed, degree = 10), data = cars)

lines(d, predict(mod10, new = data.frame(speed = d)), col = 5)

# BICs -- the linear model is better!

BIC(mod1, mod2, mod3, mod10)

## df BIC

## mod1 3 424.8929

## mod2 4 426.4202

## mod3 5 429.4451

## mod10 12 450.3523

# poly computes by default orthogonal polynomials. These are not

# Xˆ1, Xˆ2, ..., Xˆp but combinations of them such that the polynomials are

# orthogonal. 'Raw' polynomials are possible with raw = TRUE. They give the

# same fit, but the coefficient estimates are different.

mod2Raw <- lm(dist ~ poly(speed, degree = 2, raw = TRUE), data = cars)

plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)")

lines(d, predict(mod2, new = data.frame(speed = d)), col = 1)

lines(d, predict(mod2Raw, new = data.frame(speed = d)), col = 2)

# However: different coefficient estimates, but same Rˆ2. How is this possible?

summary(mod2)

##

## Call:

## lm(formula = dist ~ poly(speed, degree = 2), data = cars)

##

## Residuals:

## Min 1Q Median 3Q Max

## -28.720 -9.184 -3.188 4.628 45.152

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 42.980 2.146 20.026 < 2e-16 ***
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Figure 3.13: Correlations between
the first and second order orthogonal
polynomials associated to speed, and
between speed and speedˆ2.
18 Of course, the roles of X1 and X2 can
be interchanged in this interpretation.

## poly(speed, degree = 2)1 145.552 15.176 9.591 1.21e-12 ***
## poly(speed, degree = 2)2 22.996 15.176 1.515 0.136

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 15.18 on 47 degrees of freedom

## Multiple R-squared: 0.6673, Adjusted R-squared: 0.6532

## F-statistic: 47.14 on 2 and 47 DF, p-value: 5.852e-12

summary(mod2Raw)

##

## Call:

## lm(formula = dist ~ poly(speed, degree = 2, raw = TRUE), data = cars)

##

## Residuals:

## Min 1Q Median 3Q Max

## -28.720 -9.184 -3.188 4.628 45.152

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 2.47014 14.81716 0.167 0.868

## poly(speed, degree = 2, raw = TRUE)1 0.91329 2.03422 0.449 0.656

## poly(speed, degree = 2, raw = TRUE)2 0.09996 0.06597 1.515 0.136

##

## Residual standard error: 15.18 on 47 degrees of freedom

## Multiple R-squared: 0.6673, Adjusted R-squared: 0.6532

## F-statistic: 47.14 on 2 and 47 DF, p-value: 5.852e-12

# Because the predictors in mod2Raw are highly related between them, and

# the ones in mod2 are uncorrelated between them!

car::scatterplotMatrix(mod2$model[, -1], col = 1, regLine = list(col = 2),

smooth = list(col.smooth = 4, col.spread = 4))

car::scatterplotMatrix(mod2Raw$model[, -1],col = 1, regLine = list(col = 2),

smooth = list(col.smooth = 4, col.spread = 4))

cor(mod2$model[, -1])

## 1 2

## 1 1 0

## 2 0 1

cor(mod2Raw$model[, -1])

## 1 2

## 1 1.0000000 0.9794765

## 2 0.9794765 1.0000000

The use of orthogonal polynomials instead of raw poly-
nomials is advised for high order polynomial fits, since
they avoid the numerical instabilities arising from exces-
sive linear dependencies between the raw polynomial
predictors.

3.4.3 Interactions

When two or more predictors X1 and X2 are present, it may be
of interest to explore the interaction between them by means of
X1X2. This is a new variable that positively (negatively) affects the
response Y when both X1 and X2 are positive or negative at the
same time (at different times):

Y = β0 + β1X1 + β2X2 + β3X1X2 + ε.

The coefficient β3 in Y = β0 + β1X1 + β2X2 + β3X1X2 + ε can be
interpreted as the increment of the effect of the predictor X1 on
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the mean of Y, for a unit increment in X2
18. Significance testing on

these coefficients can be carried out as usual.
The way of adding these interactions in lm is through the op-

erators : and *. The operator : only adds the term X1X2, while *
adds X1, X2, and X1X2 at the same time. Let’s see an example in
the Boston dataset.

# Interaction between lstat and age

summary(lm(medv ~ lstat + lstat:age, data = Boston))

##

## Call:

## lm(formula = medv ~ lstat + lstat:age, data = Boston)

##

## Residuals:

## Min 1Q Median 3Q Max

## -15.815 -4.039 -1.335 2.086 27.491

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 36.041514 0.691334 52.133 < 2e-16 ***
## lstat -1.388161 0.126911 -10.938 < 2e-16 ***
## lstat:age 0.004103 0.001133 3.621 0.000324 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 6.142 on 503 degrees of freedom

## Multiple R-squared: 0.5557, Adjusted R-squared: 0.554

## F-statistic: 314.6 on 2 and 503 DF, p-value: < 2.2e-16

# For a unit increment in age, the effect of lstat in the response

# increases positively by 0.004103 units, shifting from -1.388161 to -1.384058

# Thus, when age increases makes lstat affect less negatively medv.

# Note that the same interpretation does NOT hold if we switch the roles

# of age and lstat because age is not present as a sole predictor!

# First order interaction

summary(lm(medv ~ lstat * age, data = Boston))

##

## Call:

## lm(formula = medv ~ lstat * age, data = Boston)

##

## Residuals:

## Min 1Q Median 3Q Max

## -15.806 -4.045 -1.333 2.085 27.552

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 36.0885359 1.4698355 24.553 < 2e-16 ***
## lstat -1.3921168 0.1674555 -8.313 8.78e-16 ***
## age -0.0007209 0.0198792 -0.036 0.9711

## lstat:age 0.0041560 0.0018518 2.244 0.0252 *
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 6.149 on 502 degrees of freedom

## Multiple R-squared: 0.5557, Adjusted R-squared: 0.5531

## F-statistic: 209.3 on 3 and 502 DF, p-value: < 2.2e-16

# Second order interaction

summary(lm(medv ~ lstat * age * indus, data = Boston))

##

## Call:

## lm(formula = medv ~ lstat * age * indus, data = Boston)

##

## Residuals:

## Min 1Q Median 3Q Max

## -15.1549 -3.6437 -0.8427 2.1991 24.8751
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##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 46.103752 2.891173 15.946 < 2e-16 ***
## lstat -2.641475 0.372223 -7.096 4.43e-12 ***
## age -0.042300 0.041668 -1.015 0.31051

## indus -1.849829 0.380252 -4.865 1.54e-06 ***
## lstat:age 0.014249 0.004437 3.211 0.00141 **
## lstat:indus 0.177418 0.037647 4.713 3.18e-06 ***
## age:indus 0.014332 0.004386 3.268 0.00116 **
## lstat:age:indus -0.001621 0.000408 -3.973 8.14e-05 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 5.929 on 498 degrees of freedom

## Multiple R-squared: 0.5901, Adjusted R-squared: 0.5844

## F-statistic: 102.4 on 7 and 498 DF, p-value: < 2.2e-16

A fast way of accounting interactions between predictors
is to use the ˆ operator in lm:

• lm(y ~ (x1 + x2 + x3)ˆ2) equals lm(y ~ x1 + x2 +

x3 + x1:x2 + x1:x3 + x2:x3). Higher powers like
lm(y ~ (x1 + x2 + x3)ˆ3) include up to second-
order interactions like x1:x2:x3.

• It is possible to regress on all the predictors and the
first order interactions using lm(y ~ .ˆ2).

• Further flexibility in lm is possible, e.g., removing a
particular interaction with lm(y ~ .ˆ2 - x1:x2) or
forcing the intercept to be zero with lm(y ~ 0 + .ˆ2).

Stepwise regression can also be performed with interaction
terms. MASS::stepAIC supports interaction terms, but their inclu-
sion must be asked for in the scope argument. By default, scope
considers the largest model in which to perform stepwise regres-
sion as the formula of the model in object, the first argument. In
order to set the largest model to search for the best subset of predic-
tors as the one that contains first-order interactions, we proceed as
follows:

# Include first-order interactions in the search for the best model in

# terms of BIC, not just single predictors

modIntBIC <- MASS::stepAIC(object = lm(medv ~ ., data = Boston),

scope = medv ~ .ˆ2, k = log(nobs(modBIC)), trace = 0)

summary(modIntBIC)

##

## Call:

## lm(formula = medv ~ crim + indus + chas + nox + rm + age + dis +

## rad + tax + ptratio + black + lstat + rm:lstat + rad:lstat +

## rm:rad + dis:rad + black:lstat + dis:ptratio + crim:chas +

## chas:nox + chas:rm + chas:ptratio + rm:ptratio + age:black +

## indus:dis + indus:lstat + crim:rm + crim:lstat, data = Boston)

##

## Residuals:

## Min 1Q Median 3Q Max

## -8.5845 -1.6797 -0.3157 1.5433 19.4311

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)
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## (Intercept) -9.673e+01 1.350e+01 -7.167 2.93e-12 ***
## crim -1.454e+00 3.147e-01 -4.620 4.95e-06 ***
## indus 7.647e-01 1.237e-01 6.182 1.36e-09 ***
## chas 6.341e+01 1.115e+01 5.687 2.26e-08 ***
## nox -1.691e+01 3.020e+00 -5.598 3.67e-08 ***
## rm 1.946e+01 1.730e+00 11.250 < 2e-16 ***
## age 2.233e-01 5.898e-02 3.786 0.000172 ***
## dis -2.462e+00 6.776e-01 -3.634 0.000309 ***
## rad 3.461e+00 3.109e-01 11.132 < 2e-16 ***
## tax -1.401e-02 2.536e-03 -5.522 5.52e-08 ***
## ptratio 1.207e+00 7.085e-01 1.704 0.089111 .

## black 7.946e-02 1.262e-02 6.298 6.87e-10 ***
## lstat 2.939e+00 2.707e-01 10.857 < 2e-16 ***
## rm:lstat -3.793e-01 3.592e-02 -10.559 < 2e-16 ***
## rad:lstat -4.804e-02 4.465e-03 -10.760 < 2e-16 ***
## rm:rad -3.490e-01 4.370e-02 -7.986 1.05e-14 ***
## dis:rad -9.236e-02 2.603e-02 -3.548 0.000427 ***
## black:lstat -8.337e-04 3.355e-04 -2.485 0.013292 *
## dis:ptratio 1.371e-01 3.719e-02 3.686 0.000254 ***
## crim:chas 2.544e+00 3.813e-01 6.672 7.01e-11 ***
## chas:nox -3.706e+01 6.202e+00 -5.976 4.48e-09 ***
## chas:rm -3.774e+00 7.402e-01 -5.099 4.94e-07 ***
## chas:ptratio -1.185e+00 3.701e-01 -3.203 0.001451 **
## rm:ptratio -3.792e-01 1.067e-01 -3.555 0.000415 ***
## age:black -7.107e-04 1.552e-04 -4.578 5.99e-06 ***
## indus:dis -1.316e-01 2.533e-02 -5.197 3.00e-07 ***
## indus:lstat -2.580e-02 5.204e-03 -4.959 9.88e-07 ***
## crim:rm 1.605e-01 4.001e-02 4.011 7.00e-05 ***
## crim:lstat 1.511e-02 4.954e-03 3.051 0.002408 **
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 3.045 on 477 degrees of freedom

## Multiple R-squared: 0.8964, Adjusted R-squared: 0.8904

## F-statistic: 147.5 on 28 and 477 DF, p-value: < 2.2e-16

# There is no improvement by removing terms in modIntBIC

MASS::dropterm(modIntBIC, k = log(nobs(modIntBIC)), sorted = TRUE)

## Single term deletions

##

## Model:

## medv ~ crim + indus + chas + nox + rm + age + dis + rad + tax +

## ptratio + black + lstat + rm:lstat + rad:lstat + rm:rad +

## dis:rad + black:lstat + dis:ptratio + crim:chas + chas:nox +

## chas:rm + chas:ptratio + rm:ptratio + age:black + indus:dis +

## indus:lstat + crim:rm + crim:lstat

## Df Sum of Sq RSS AIC

## <none> 4423.7 1277.7

## black:lstat 1 57.28 4481.0 1278.0

## crim:lstat 1 86.33 4510.1 1281.2

## chas:ptratio 1 95.15 4518.9 1282.2

## dis:rad 1 116.73 4540.5 1284.6

## rm:ptratio 1 117.23 4541.0 1284.7

## dis:ptratio 1 126.00 4549.7 1285.7

## crim:rm 1 149.24 4573.0 1288.2

## age:black 1 194.40 4618.1 1293.2

## indus:lstat 1 228.05 4651.8 1296.9

## chas:rm 1 241.11 4664.8 1298.3

## indus:dis 1 250.51 4674.2 1299.3

## tax 1 282.77 4706.5 1302.8

## chas:nox 1 331.19 4754.9 1308.0

## crim:chas 1 412.86 4836.6 1316.6

## rm:rad 1 591.45 5015.2 1335.0

## rm:lstat 1 1033.93 5457.7 1377.7

## rad:lstat 1 1073.80 5497.5 1381.4

# Neither by including other terms interactions

MASS::addterm(modIntBIC, scope = lm(medv ~ .ˆ2, data = Boston),
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k = log(nobs(modIntBIC)), sorted = TRUE)

## Single term additions

##

## Model:

## medv ~ crim + indus + chas + nox + rm + age + dis + rad + tax +

## ptratio + black + lstat + rm:lstat + rad:lstat + rm:rad +

## dis:rad + black:lstat + dis:ptratio + crim:chas + chas:nox +

## chas:rm + chas:ptratio + rm:ptratio + age:black + indus:dis +

## indus:lstat + crim:rm + crim:lstat

## Df Sum of Sq RSS AIC

## <none> 4423.7 1277.7

## nox:age 1 52.205 4371.5 1277.9

## chas:lstat 1 50.231 4373.5 1278.1

## crim:nox 1 50.002 4373.7 1278.2

## indus:tax 1 46.182 4377.6 1278.6

## nox:rad 1 42.822 4380.9 1279.0

## tax:ptratio 1 37.105 4386.6 1279.6

## age:lstat 1 29.825 4393.9 1280.5

## rm:tax 1 27.221 4396.5 1280.8

## nox:rm 1 25.099 4398.6 1281.0

## nox:ptratio 1 17.994 4405.7 1281.8

## rm:age 1 16.956 4406.8 1282.0

## crim:black 1 15.566 4408.2 1282.1

## dis:tax 1 13.336 4410.4 1282.4

## dis:lstat 1 10.944 4412.8 1282.7

## rm:black 1 9.909 4413.8 1282.8

## rm:dis 1 9.312 4414.4 1282.8

## crim:indus 1 8.458 4415.3 1282.9

## tax:lstat 1 7.891 4415.8 1283.0

## ptratio:black 1 7.769 4416.0 1283.0

## rad:black 1 7.327 4416.4 1283.1

## age:ptratio 1 6.857 4416.9 1283.1

## age:tax 1 5.785 4417.9 1283.2

## nox:dis 1 5.727 4418.0 1283.2

## age:dis 1 5.618 4418.1 1283.3

## nox:tax 1 5.579 4418.2 1283.3

## crim:dis 1 5.376 4418.4 1283.3

## tax:black 1 4.867 4418.9 1283.3

## indus:age 1 4.554 4419.2 1283.4

## indus:rm 1 4.089 4419.6 1283.4

## indus:ptratio 1 4.082 4419.6 1283.4

## zn 1 3.919 4419.8 1283.5

## chas:tax 1 3.918 4419.8 1283.5

## rad:tax 1 3.155 4420.6 1283.5

## age:rad 1 3.085 4420.6 1283.5

## nox:black 1 2.939 4420.8 1283.6

## ptratio:lstat 1 2.469 4421.3 1283.6

## indus:chas 1 2.359 4421.4 1283.6

## chas:black 1 1.940 4421.8 1283.7

## indus:nox 1 1.440 4422.3 1283.7

## indus:black 1 1.177 4422.6 1283.8

## chas:rad 1 0.757 4423.0 1283.8

## chas:age 1 0.757 4423.0 1283.8

## crim:rad 1 0.678 4423.1 1283.8

## nox:lstat 1 0.607 4423.1 1283.8

## rad:ptratio 1 0.567 4423.2 1283.8

## crim:age 1 0.348 4423.4 1283.9

## indus:rad 1 0.219 4423.5 1283.9

## dis:black 1 0.077 4423.7 1283.9

## crim:ptratio 1 0.019 4423.7 1283.9

## crim:tax 1 0.004 4423.7 1283.9

## chas:dis 1 0.004 4423.7 1283.9

Interactions are also possible with categorical variables. For
example, for one predictor X and one dummy variable D encod-
ing a factor with two levels, we have seven possible linear models
stemming from how we want to combine X and D. Outlining these
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models helps understanding the possible range of effects of adding
a dummy variable:

1. Predictor and no dummy variable. The usual simple linear model:

Y = β0 + β1X + ε

2. Predictor and dummy variable. D affects the intercept of the linear
model, which is different for each group:

Y = β0 + β1X + β2D + ε =

β0 + β1X + ε, if D = 0,

(β0 + β2) + β1X + ε, if D = 1.

3. Predictor and dummy variable, with interaction. D affects the inter-
cept and the slope of the linear model, and both are different for
each group:

Y = β0 + β1X + β2D + β3(X · D) + ε

=

β0 + β1X + ε, if D = 0,

(β0 + β2) + (β1 + β3)X + ε, if D = 1.

4. Predictor and interaction with dummy variable. D affects only the
slope of the linear model, which is different for each group:

Y = β0 + β1X + β2(X · D) + ε =

β0 + β1X + ε, if D = 0,

β0 + (β1 + β2)X + ε, if D = 1.

5. Dummy variable and no predictor. D controls the intercept of a
constant fit, depending on each group:

Y = β0 + β1D + ε =

β0 + ε, if D = 0,

(β0 + β1) + ε, if D = 1.

6. Dummy variable and interaction with predictor. D adds the predic-
tor X for one group and affects the intercept, which is different
for each group:

Y = β0 + β1D + β2(X · D) + ε =

β0 + ε, if D = 0,

(β0 + β1) + β2X + ε, if D = 1.

7. Interaction of dummy and predictor. D adds the predictor X for one
group and the intercept is common:

Y = β0 + β1(X · D) + ε =

β0 + ε, if D = 0,

β0 + β1X + ε, if D = 1.

Let’s see the visualization of these seven models with Y = medv,
X = lstat, and D = chas for the Boston dataset. In the following,
the green color stands for data points and linear fits associated to
D = 0, whereas blue stands for D = 1.
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# Group settings

col <- Boston$chas + 3

cex <- 0.5 + 0.25 * Boston$chas

# 1. No dummy variable

(mod1 <- lm(medv ~ lstat, data = Boston))

##

## Call:

## lm(formula = medv ~ lstat, data = Boston)

##

## Coefficients:

## (Intercept) lstat

## 34.55 -0.95

plot(medv ~ lstat, data = Boston, col = col, pch = 16, cex = cex, main = "1")

abline(coef = mod1$coefficients, lwd = 2)

# 2. Dummy variable

(mod2 <- lm(medv ~ lstat + chas, data = Boston))

##

## Call:

## lm(formula = medv ~ lstat + chas, data = Boston)

##

## Coefficients:

## (Intercept) lstat chas

## 34.0941 -0.9406 4.9200

plot(medv ~ lstat, data = Boston, col = col, pch = 16, cex = cex, main = "2")

abline(a = mod2$coefficients[1], b = mod2$coefficients[2], col = 3, lwd = 2)

abline(a = mod2$coefficients[1] + mod2$coefficients[3],

b = mod2$coefficients[2], col = 4, lwd = 2)

# 3. Dummy variable, with interaction

(mod3 <- lm(medv ~ lstat * chas, data = Boston))

##

## Call:

## lm(formula = medv ~ lstat * chas, data = Boston)

##

## Coefficients:

## (Intercept) lstat chas lstat:chas

## 33.7672 -0.9150 9.8251 -0.4329

plot(medv ~ lstat, data = Boston, col = col, pch = 16, cex = cex, main = "3")

abline(a = mod3$coefficients[1], b = mod3$coefficients[2], col = 3, lwd = 2)

abline(a = mod3$coefficients[1] + mod3$coefficients[3],

b = mod3$coefficients[2] + mod3$coefficients[4], col = 4, lwd = 2)

# 4. Dummy variable only present in interaction

(mod4 <- lm(medv ~ lstat + lstat:chas, data = Boston))

##

## Call:

## lm(formula = medv ~ lstat + lstat:chas, data = Boston)

##

## Coefficients:

## (Intercept) lstat lstat:chas

## 34.4893 -0.9580 0.2128

plot(medv ~ lstat, data = Boston, col = col, pch = 16, cex = cex, main = "4")

abline(a = mod4$coefficients[1], b = mod4$coefficients[2], col = 3, lwd = 2)

abline(a = mod4$coefficients[1],

b = mod4$coefficients[2] + mod4$coefficients[3], col = 4, lwd = 2)

# 5. Dummy variable and no predictor

(mod5 <- lm(medv ~ chas, data = Boston))

##
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## Call:

## lm(formula = medv ~ chas, data = Boston)

##

## Coefficients:

## (Intercept) chas

## 22.094 6.346

plot(medv ~ lstat, data = Boston, col = col, pch = 16, cex = cex, main = "5")

abline(a = mod5$coefficients[1], b = 0, col = 3, lwd = 2)

abline(a = mod5$coefficients[1] + mod5$coefficients[2], b = 0, col = 4, lwd = 2)

# 6. Dummy variable. Interaction in the intercept and slope

(mod6 <- lm(medv ~ chas + lstat:chas, data = Boston))

##

## Call:

## lm(formula = medv ~ chas + lstat:chas, data = Boston)

##

## Coefficients:

## (Intercept) chas chas:lstat

## 22.094 21.498 -1.348

plot(medv ~ lstat, data = Boston, col = col, pch = 16, cex = cex, main = "6")

abline(a = mod6$coefficients[1], b = 0, col = 3, lwd = 2)

abline(a = mod6$coefficients[1] + mod6$coefficients[2],

b = mod6$coefficients[3], col = 4, lwd = 2)

# 7. Dummy variable. Interaction in the slope

(mod7 <- lm(medv ~ lstat:chas, data = Boston))

##

## Call:

## lm(formula = medv ~ lstat:chas, data = Boston)

##

## Coefficients:

## (Intercept) lstat:chas

## 22.49484 0.04882

plot(medv ~ lstat, data = Boston, col = col, pch = 16, cex = cex, main = "7")

abline(a = mod7$coefficients[1], b = 0, col = 3, lwd = 2)

abline(a = mod7$coefficients[1], b = mod7$coefficients[2], col = 4, lwd = 2)

From the above illustration, it is clear that the effect of adding
a dummy variable is to simultaneously fit two linear models
(with varying flexibility) to the two groups of data encoded by
the dummy variable, and merge this simultaneous fit within a sin-
gle linear model. We can check this in more detail using the subset

option of lm:

# Model using a dummy variable in the full dataset

lm(medv ~ lstat + chas + lstat:chas, data = Boston)

##

## Call:

## lm(formula = medv ~ lstat + chas + lstat:chas, data = Boston)

##

## Coefficients:

## (Intercept) lstat chas lstat:chas

## 33.7672 -0.9150 9.8251 -0.4329

# Individual model for the group with chas == 0

lm(medv ~ lstat, data = Boston, subset = chas == 0)

##

## Call:

## lm(formula = medv ~ lstat, data = Boston, subset = chas == 0)

##

## Coefficients:

## (Intercept) lstat
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Figure 3.14: The three linear fits
of Sepal.Width ~ Petal.Width *
Species for each of the three levels
in the Species factor (setosa in red,
versicolor in green, and virginica

in blue) in the iris dataset. The
black line represents the linear fit for
Sepal.Width ~ Petal.Width, that
is, the linear fit without accounting
for the levels in Species. Recall how
Sepal.Widthis positively correlated
with Petal.Width within each group,
but is negatively correlated in the
aggregated data.

## 33.767 -0.915

# Notice that the intercept and lstat coefficient are the same as before

# Individual model for the group with chas == 1

lm(medv ~ lstat, data = Boston, subset = chas == 1)

##

## Call:

## lm(formula = medv ~ lstat, data = Boston, subset = chas == 1)

##

## Coefficients:

## (Intercept) lstat

## 43.592 -1.348

# Notice that the intercept and lstat coefficient equal the ones from the

# joint model, plus the specific terms associated to chas

This discussion can be extended to factors with several lev-
els with more associated dummy variables. The next code chunk
shows how three group-specific linear regressions are modeled
together by means of two dummy variables in the iris dataset.

# Does not take into account the groups in the data

modIris <- lm(Sepal.Width ~ Petal.Width, data = iris)

modIris$coefficients

## (Intercept) Petal.Width

## 3.3084256 -0.2093598

# Adding interactions with the groups

modIrisSpecies <- lm(Sepal.Width ~ Petal.Width * Species, data = iris)

modIrisSpecies$coefficients

## (Intercept) Petal.Width Speciesversicolor Speciesvirginica

## 3.2220507 0.8371922 -1.8491878 -1.5272777

## Petal.Width:Speciesversicolor Petal.Width:Speciesvirginica

## 0.2164556 -0.2057870

# Joint regression line shows negative correlation, but each group

# regression line shows a positive correlation

plot(Sepal.Width ~ Petal.Width, data = iris, col = as.integer(Species) + 1,

pch = 16)

abline(a = modIris$coefficients[1], b = modIris$coefficients[2], lwd = 2)

abline(a = modIrisSpecies$coefficients[1], b = modIrisSpecies$coefficients[2],

col = 2, lwd = 2)

abline(a = modIrisSpecies$coefficients[1] + modIrisSpecies$coefficients[3],

b = modIrisSpecies$coefficients[2] + modIrisSpecies$coefficients[5],

col = 3, lwd = 2)

abline(a = modIrisSpecies$coefficients[1] + modIrisSpecies$coefficients[4],

b = modIrisSpecies$coefficients[2] + modIrisSpecies$coefficients[6],

col = 4, lwd = 2)

The last scatterplot is an illustration of the Simpson’s
paradox. The simplest case of the paradox arises in
simple linear regression, when there are two or more
well-defined groups in the data such that:

1. Within each group, there is a clear and common corre-
lation pattern between the response and the predictor.

2. When the groups are aggregated, the response and
the predictor exhibit an opposite correlation pattern.

If groups are present in the data, always explore the
intra-group correlations!
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3.4.4 Case study application

The model employed in Harrison and Rubinfeld (1978) is different
from the modBIC model. In the paper, several nonlinear transforma-
tions of the predictors and the response are done to improve the
linear fit. Also, different units are used for medv, black, lstat, and
nox. The authors considered these variables:

• Response: log(1000 * medv).
• Linear predictors: age, black / 1000 (this variable corresponds to

their (B− 0.63)2), tax, ptratio, crim, zn, indus, and chas.
• Nonlinear predictors: rmˆ2, log(dis), log(rad), log(lstat /

100), and (10 * nox)ˆ2.

Do the following:

1. Check if the model with such predictors corresponds
to the one in the first column, Table VII, page 100

of Harrison and Rubinfeld (1978) (open-access pa-
per available here). To do so, save this model as
modelHarrison and summarize it.

2. Make a stepAIC selection of the variables
in modelHarrison (use BIC) and save it as
modelHarrisonSel. Summarize the fit.

3. Which model has a larger R2? And R2
Adj? Which is

simpler and has more significant coefficients?

3.5 Model diagnostics

As we saw in Section 2.3, checking the assumptions of the multiple
linear model through the visualization of the data becomes tricky
even when p = 2. To solve this issue, a series of diagnostic tools have
been designed in order to evaluate graphically and systematically
the validity of the assumptions of the linear model.

We will illustrate them in the wine dataset, which is available in
the wine.RData workspace:

load("wine.RData")

mod <- lm(Price ~ Age + AGST + HarvestRain + WinterRain, data = wine)

summary(mod)

Before going into specifics, recall the following general comment
on performing model diagnostics.

When one assumption fails, it is likely that this failure
will affect to other assumptions. For example, if linearity
fails, then most likely homoscedasticity and normality
will fail also. Therefore, identifying the root cause of the
assumptions failure is key in order to try to find a patch.

https://deepblue.lib.umich.edu/bitstream/handle/2027.42/22636/0000186.pdf
https://raw.githubusercontent.com/egarpor/handy/master/datasets/wine.RData
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19 If p = 1, then it is possible to inspect
the scatterplot of the {(Xi1, Yi)}n

i=1 in
order to determine whether linearity
is plausible. But the usefulness of this
graphical check quickly decays with
the dimension p, as p scatterplots need
to be investigated. That is precisely the
key point for relying in the residuals
vs. fitted values plot.

3.5.1 Linearity

Linearity between the response Y and the predictors X1, . . . , Xp

is the building block of the linear model. If this assumption fails,
i.e., if there is a nonlinear trend linking Y and at least one of the
predictors X1, . . . , Xp in a significant way, then the linear fit will
yield flawed conclusions, with varying degrees of severity, about
the explanation of Y. Therefore, linearity is a crucial assumption.

How to check it
The so-called residuals vs. fitted values plot is the scatterplot of

{(Ŷi, ε̂i)}n
i=1 and is a very useful tool for detecting linearity depar-

tures using a single19 graphical device. Figure 3.15 illustrates how
the residuals vs. fitted values plots behave for situations in which
the linearity is known to be respected or violated.

Figure 3.15: Residuals vs. fitted values
plots for datasets respecting (left
column) and violating (right column)
the linearity assumption.
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Figure 3.16: Residuals vs. fitted val-
ues for the Price ~ Age + AGST +

HarvestRain + WinterRain model for
the wine dataset.
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Figure 3.17: Regression terms for
Price ~ Age + AGST + HarvestRain +

WinterRain in the wine dataset.
20 Assume that f (Y) = β0 + β1X + ε,
with f nonlinear and invertible.
Clearly, W = f (Y) satisfies W = β0 +
β1X + ε, and we can estimate E[W|X =
x] with ŵ = β̂0 + β̂1x unbiasedly, i.e.,
E[ŵ|X1, . . . , Xn] = E[W|X = x].
Define ŷ f := f−1(ŵ). Because of
the delta method (see next footnote),
E[ŷ f |X1, . . . , Xn] is asymptotically
equal to f−1(E[W|X = x]). However,
f−1(E[W|X = x]) ̸= (E[ f−1(W)|X =
x]) = E[Y|X = x], so ŷ f is a biased
estimator of E[Y|X = x]. Indeed,
if f is strictly convex (e.g., f = log),
then f−1 is strictly concave, and
Jensen’s inequality guarantees that
f−1(E[W|X = x]) ≥ E[ f−1(W)|X = x],
that is, ŷ f underestimates E[Y|X = x].
21 Delta method. Let θ̂ be an estimator
of θ such that

√
n(θ̂ − θ) is asymp-

totically a N (0, σ2) when n → ∞. If
g is a real-valued function such that
g′(θ) ̸= 0 exists, then

√
n(g(θ̂)− g(θ))

is asymptotically a N (0, σ2(g′(θ))2).
22 Given that removing the bias intro-
duced by considering Ŷf = f−1(Ŵ) is
challenging.

Under linearity, we expect that there is no significant trend in
the residuals ε̂i with respect to Ŷi. This can be assessed by checking
if a flexible fit of the mean of the residuals is constant. Such fit is
given by the red line produced by:

plot(mod, 1)

If nonlinearities are observed, it is worth to plot the regression
terms of the model. These are the p scatterplots of {(Xij, Yi)}n

i=1,
for j = 1, . . . , p, that are accompanied by the regression lines y =

β̂0 + β̂ jxj, where (β̂0, β̂1, . . . , β̂p)′ come from the multiple linear fit,
not from individual simple linear regressions. The regression terms
help identifying which predictors have nonlinear effects on Y.

par(mfrow = c(2, 2)) # We have 4 predictors

termplot(mod, partial.resid = TRUE)

What to do if it fails
Using an adequate nonlinear transformation for the problem-

atic predictors or adding interaction terms, as we saw in Section
3.4, might be helpful in linearizing the relation between Y and
X1, . . . , Xp. Alternatively, one can consider a nonlinear transforma-
tion f for the response Y, at the expenses of:

1. Modeling W := f (Y) rather than Y, thus slightly changing the
setting of the original modeling problem.

2. Alternatively, untransforming the linear prediction Ŵ as Ŷf :=
f−1(Ŵ) and performing biased predictions20 21 for Y.

Transformations of Y are explored in Section 3.5.7. Chapter 5

is devoted to replacing the untransformed approach with a more
principled one22.

Let’s see the transformation of predictors in the example that
motivated Section 3.4.

par(mfrow = c(1, 2))

plot(lm(y ~ x, data = nonLinear), 1) # Nonlinear

plot(lm(y ~ I(xˆ2), data = nonLinear), 1) # Linear
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23 Recall that β̂ j = e′j(X
′X)−1X′Y =:

∑n
i=1 wijYi , where ej is the canonical

vector of Rp+1 with 1 in the j-th
position and 0 elsewhere. Therefore,
β̂ j is a weighted sum of the random
variables Y1, . . . , Yn (recall that we
assume that X is given and therefore
is deterministic). Even if Y1, . . . , Yn
are not normal, the central limit
theorem entails that

√
n(β̂ j − β j) is

asymptotically normally distributed
when n → ∞, provided that linearity
holds.

24 Distributions that are not heavy
tailed, not heavily multimodal, and not
heavily skewed.
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Figure 3.18: QQ-plot for the resid-
uals of the Price ~ Age + AGST +

HarvestRain + WinterRain model for
the wine dataset.
25 For X ∼ F, the p-th quantile xp =
F−1(p) of X is estimated through the

sample quantile x̂p := F(−1)
n (p), where

Fn(x) = 1
n ∑n

i=1 1{Xi≤x} is the empirical

cdf of X1, . . . , Xn and F(−1)
n is the

generalized inverse function of Fn. If
X ∼ f is continuous, then

√
n(x̂p − xp)

is asymptotically a N
(

0, p(1−p)
f (xp)2

)
.

Therefore, the variance of x̂p grows if
p→ 0 or p→ 1, hence more variability
is expected on the extremes of the
QQ-plot (see Figure 3.20).

3.5.2 Normality

The assumed normality of the errors ε1, . . . , εn allows us to make
exact inference in the linear model, in the sense that the distribution
of β̂ given in (2.11) is exact for any n, and not asymptotic with
n → ∞. If normality does not hold, then the inference we did
(CIs for β j, hypothesis testing, CIs for prediction) is to be somehow
suspected. Why just somehow? Roughly speaking, the reason is
that the central limit theorem will make β̂ asymptotically normal23,
even if the errors are not. However, the speed of this asymptotic
convergence greatly depends on how non-normal is the distribution
of the errors. Hence the next rule of thumb:

Non-severe24 departures from normality yield valid (asymptotic)
inference for relatively large sample sizes n.

Therefore, the failure of normality is typically less problematic
than other assumptions.

How to check it
The QQ-plot (theoretical quantile vs. empirical quantile plot)

allows to check if the standardized residuals follow a N (0, 1). What
it does is to compare the theoretical quantiles of a N (0, 1) with the
quantiles of the sample of standardized residuals.

plot(mod, 2)

Under normality, we expect the points to align with the diag-
onal line, which represents the expected position of the points if
they were sampled from a N (0, 1). It is usual to have larger depar-
tures from the diagonal in the extremes25 than in the center, even
under normality, although these departures are more evident if the
data is non-normal.

There are formal tests to check the null hypothesis of normality
in our residuals. Two popular ones are the Shapiro–Wilk test, im-
plemented by the shapiro.test function, and the Lilliefors test26,
implemented by the nortest::lillie.test function:

# Shapiro-Wilk test of normality

shapiro.test(mod$residuals)

##

## Shapiro-Wilk normality test

##

## data: mod$residuals

## W = 0.95903, p-value = 0.3512

# We do not reject normality

# shapiro.test allows up to 5000 observations -- if dealing with more data

# points, randomization of the input is a possibility

# Lilliefors test -- the Kolmogorov-Smirnov adaptation for testing normality

nortest::lillie.test(mod$residuals)

##

## Lilliefors (Kolmogorov-Smirnov) normality test

##

## data: mod$residuals

## D = 0.13739, p-value = 0.2125

# We do not reject normality
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Figure 3.19: QQ-plots for datasets
respecting (left column) and violating
(right column) the normality assump-
tion.
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26 This is the Kolmogorov–Smirnov
test shown in Section A.1 but adapted
to testing the normality of the data
with unknown mean and variance.
More precisely, the test tests the
composite null hypothesis H0 : F =
Φ(·; µ, σ2) with µ and σ2 unknown.
Note that this is different from the
simple null hypothesis H0 : F = F0
of the Kolmogorov–Smirnov test in
which F0 is completely specified.
Further tests of normality can be
derived by adapting other tests for
the simple null hypothesis H0 : F =
F0, such as the Cramér–von Mises
and the Anderson–Darling tests,
and these are implemented in the
functions nortest::cvm.test and
nortest::ad.test.
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Figure 3.20: The uncertainty behind
the QQ-plot. The figure aggregates
M = 1000 different QQ-plots of
N (0, 1) data with n = 100, displaying
for each of them the pairs (xp, x̂p)

evaluated at p = i−1/2
n , i = 1, . . . , n

(as they result from ppoints(n)).
The uncertainty is measured by the
asymptotic 100(1− α)% CIs for x̂p,

given by
(

xp ±
z1−α/2√

n

√
p(1−p)

ϕ(xp)

)
.

These curves are displayed in red for
α = 0.05. Observe that the vertical
strips arise since the xp coordinate is
deterministic.
27 Precisely, if λ < 1, positive skewness
(or skewness to the right) is palliated
(large values of Y shrink, small values
grow), whereas if λ > 1 negative
skewness (or skewness to the left) is
corrected (large values of Y grow,
small values shrink).
28 Maximum likelihood for a N (µ, σ2)
and potentially using the linear model
structure if we are performing the
transformation to achieve normality
in errors of the linear model. Recall
that optimally transforming Y such
that Y is normal-like or Y|(X1, . . . , Xp)
is normal-like (the assumption in the
linear model) are very different goals!

What to do if it fails
Patching non-normality is not easy and most of the time requires

the consideration of other models, like the ones seen in Chapter 5.
If Y is non-negative, one possibility is to transform Y by means of
the Box–Cox (Box and Cox, 1964) transformation:

y(λ) :=


yλ−1

λ , λ ̸= 0,

log(y), λ = 0.
(3.6)

This transformation alleviates the skewness27 of the data, there-
fore making it more symmetric and hence normal-like. The op-
timal data-dependent λ̂ that makes the data most normal-like
can be found through maximum likelihood28 on the transformed
sample {Y(λ)

i }
n
i=1. If Y is not non-negative, (3.6) cannot be ap-

plied. A possible patch is to shift the data by a positive constant
m = −min(Y1, . . . , Yn) + δ, δ > 0, such that transformation (3.6)
becomes

y(λ,m) :=


(y+m)λ−1

λ , λ ̸= 0,

log(y + m), λ = 0.

A neat alternative to this shifting is to rely on a transformation that
is already designed for real Y, such as the Yeo–Johnson (Yeo and
Johnson, 2000) transformation:

y(λ) :=



(y+1)λ−1
λ , λ ̸= 0, y ≥ 0,

log(y + 1), λ = 0, y ≥ 0,

− (−y+1)2−λ−1
2−λ , λ ̸= 2, y < 0,

− log(−y + 1), λ = 2, y < 0.

(3.7)

The beauty of the Yeo–Johnson transformation is that it extends
neatly the Box–Cox transformation, which appears as a particular
case when Y is non-negative and after performing a shift of 1 units
(see Figure 3.21). As with the Box–Cox transformation, the optimal
λ̂ is estimated through maximum likelihood on the transformed
sample {Y(λ)

i }
n
i=1.

N <- 200

y <- seq(-4, 4, length.out = N)

lambda <- c(0, 0.5, 1, 2, -0.5, -1, -2)

l <- length(lambda)

psi <- sapply(lambda, function(la) car::yjPower(U = y, lambda = la))

matplot(y, psi, type = "l", ylim = c(-4, 4), lwd = 2, lty = 1:l,

ylab = latex2exp::TeX("$yˆ{(\\lambda)}$"), col = 1:l, las = 1,

main = "Yeo-Johnson transformation")

abline(v = 0, h = 0)

abline(v = -1, h = 0, lty = 2)

legend("bottomright", lty = 1:l, lwd = 2, col = 1:l,

legend = latex2exp::TeX(paste0("$\\lambda = ", lambda, "$")))

Let’s see how to implement both transformations using the
car::powerTransform, car::bcPower, and car::yjPower functions.

# Test data



114 eduardo garcía-portugués

-4 -2 0 2 4

-4

-2

0

2

4

Yeo-Johnson transformation

y

y
(λ
)

λ= 0
λ= 0.5
λ= 1
λ= 2
λ= -0.5
λ= -1
λ= -2

Figure 3.21: Yeo–Johnson transfor-
mation for some values of λ. The
Box–Cox transformation for λ, and
shifted by −1 units, corresponds to the
part y ≥ −1 of the plot.
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# Predictors

n <- 200

set.seed(121938)

X1 <- rexp(n, rate = 1 / 5) # Non-negative

X2 <- rchisq(n, df = 5) - 3 # Real

# Response of a linear model

epsilon <- rchisq(n, df = 10) - 10 # Centered error, but not normal

Y <- 10 - 0.5 * X1 + X2 + epsilon

# Transformation of non-normal data to achieve normal-like data (no model)

# Optimal lambda for Box-Cox

BC <- car::powerTransform(lm(X1 ~ 1), family = "bcPower") # Maximum-likelihood fit

# Note we use a regression model with no predictors

(lambdaBC <- BC$lambda) # The optimal lambda

## Y1

## 0.2412419

# lambda < 1, so positive skewness is corrected

# Box-Cox transformation

X1Transf <- car::bcPower(U = X1, lambda = lambdaBC)

# Comparison

par(mfrow = c(1, 2))

hist(X1, freq = FALSE, breaks = 10, ylim = c(0, 0.3))

hist(X1Transf, freq = FALSE, breaks = 10, ylim = c(0, 0.3))

# Optimal lambda for Yeo-Johnson

YJ <- car::powerTransform(lm(X2 ~ 1), family = "yjPower")

(lambdaYJ <- YJ$lambda)

## Y1

## 0.5850791

# Yeo-Johnson transformation

X2Transf <- car::yjPower(U = X2, lambda = lambdaYJ)

# Comparison

par(mfrow = c(1, 2))

hist(X2, freq = FALSE, breaks = 10, ylim = c(0, 0.3))

hist(X2Transf, freq = FALSE, breaks = 10, ylim = c(0, 0.3))

# Transformation of non-normal response in a linear model

# Optimal lambda for Yeo-Johnson

YJ <- car::powerTransform(lm(Y ~ X1 + X2), family = "yjPower")

(lambdaYJ <- YJ$lambda)

## Y1

## 0.9160924

# Yeo-Johnson transformation

YTransf <- car::yjPower(U = Y, lambda = lambdaYJ)

# Comparison for the residuals

par(mfrow = c(1, 2))

plot(lm(Y ~ X1 + X2), 2)

plot(lm(YTransf ~ X1 + X2), 2) # Slightly better

Be aware that using the previous transformations implies mod-
eling the transformed response rather than Y. Normality is also
possible to patch if it is a consequence of the failure of linearity or
homoscedasticity, which translates the problem into fixing those
assumptions.



notes for predictive modeling 115

6.0 6.5 7.0 7.5 8.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

Fitted values
S

ta
n

d
a

rd
iz

e
d

 r
e

s
id

u
a

ls
lm(Price ~ Age + AGST + HarvestRain + WinterRain)

Scale-Location

6

24
20

Figure 3.22: Scale-location plot for the
Price ~ Age + AGST + HarvestRain +

WinterRain model for the wine dataset.

3.5.3 Homoscedasticity

The constant-variance assumption of the errors is also key for ob-
taining the inferential results we saw. For example, if the assump-
tion does not hold, then the CIs for prediction will not respect the
confidence for which they were built.

How to check it
Heteroskedasticity can be detected by looking into irregular

vertical dispersion patterns in the residuals vs. fitted values plot.
However, it is simpler to use the scale-location plot, where the
standardized residuals are transformed by a square root of its abso-
lute value, and inspect the deviations in the positive axis.

plot(mod, 3)

Under homoscedasticity, we expect the red line, a flexible fit of
the mean of the transformed residuals, to be almost constant about
1. If there are clear non-constant patterns, then there is evidence of
heteroskedasticity.

There are formal tests to check the null hypothesis of homoscedas-
ticity in our residuals. For example, the Breusch–Pagan test imple-
mented in car::ncvTest:

# Breusch-Pagan test

car::ncvTest(mod)

## Non-constant Variance Score Test

## Variance formula: ~ fitted.values

## Chisquare = 0.3254683, Df = 1, p = 0.56834

# We do not reject homoscedasticity

The Breusch–Pagan test checks homoscedasticity against
a non-constant variance in the residuals that is linearly
increasing with respect to the predictors. This means that
the test can be fooled by a nonlinear pattern in the vari-
ance of the residuals that results in a flat linear fit (e.g., a
quadratic pattern). It is advised then to check the scale-
location plot if performing the Breusch–Pagan test, in
order to identify evident non-constant variances hidden
behind tricky nonlinearities.

The next code illustrates the previous warning with two exam-
ples.

# Heteroskedastic models

set.seed(123456)

x <- rnorm(100)

y1 <- 1 + 2 * x + rnorm(100, sd = xˆ2)

y2 <- 1 + 2 * x + rnorm(100, sd = 1 + x * (x > 0))

modHet1 <- lm(y1 ~ x)

modHet2 <- lm(y2 ~ x)

# Heteroskedasticity not detected

car::ncvTest(modHet1)

## Non-constant Variance Score Test

## Variance formula: ~ fitted.values
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Figure 3.23: Scale-location plots for
datasets respecting (left column)
and violating (right column) the
homoscedasticity assumption.
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Figure 3.24: Two heteroskedasticity
patterns that are undetected and
detected, respectively, by the Breusch–
Pagan test.

## Chisquare = 2.938652e-05, Df = 1, p = 0.99567

plot(modHet1, 3)

# Heteroskedasticity correctly detected

car::ncvTest(modHet2)

## Non-constant Variance Score Test

## Variance formula: ~ fitted.values

## Chisquare = 41.03562, Df = 1, p = 1.4948e-10

plot(modHet2, 3)

What to do if it fails
Using a nonlinear transformation for the response Y may help

to control the variance. Typical choices are log(Y) and
√

Y, which
reduce the scale of the larger responses and leads to a reduction
of heteroskedasticity. Keep in mind that these transformations, as
the Box–Cox transformations, are designed for non-negative Y. The
Yeo–Johnson transformation can be used instead if Y is real.

Let’s see some examples.

# Artificial data with heteroskedasticity

set.seed(12345)

X <- rchisq(500, df = 3)

e <- rnorm(500, sd = sqrt(0.1 + 2 * X))

Y <- 1 + X + e

# Original

plot(lm(Y ~ X), 3) # Very heteroskedastic

# Transformed

plot(lm(I(log(abs(Y))) ~ X), 3) # Much less hereroskedastic, but at the price

# of losing the signs in Y...

# Shifted and transformed

delta <- 1 # This is tunable

m <- -min(Y) + delta

plot(lm(I(log(Y + m)) ~ X), 3) # No signs loss

# Transformed by Yeo-Johnson

# Optimal lambda for Yeo-Johnson

YJ <- car::powerTransform(lm(Y ~ X), family = "yjPower")

(lambdaYJ <- YJ$lambda)

## Y1

## 0.6932053

# Yeo-Johnson transformation

YTransf <- car::yjPower(U = Y, lambda = lambdaYJ)

plot(lm(YTransf ~ X), 3) # Slightly less hereroskedastic

3.5.4 Independence

Independence is also a key assumption: it guarantees that the
amount of information that we have on the relationship between
Y and X1, . . . , Xp, from n observations, is maximal. If there is de-
pendence, then information is repeated, and as a consequence the
variability of the estimates will be larger. For example, 95% CIs
built under the assumption of independence will be shorter than
the adequate, meaning that they will not contain with a 95% confi-
dence the unknown parameter, but with a lower confidence (say
80%).



118 eduardo garcía-portugués

5 10 15

0
.0

0
.5

1
.0

1
.5

Fitted values

S
ta

n
d

a
rd

iz
e

d
 r

e
s
id

u
a

ls

lm(Y ~ X)

Scale-Location

137

306 338

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Fitted values

S
ta

n
d

a
rd

iz
e

d
 r

e
s
id

u
a

ls

lm(I(log(abs(Y))) ~ X)

Scale-Location

372

202

155

1.5 2.0 2.5 3.0

0
.0

0
.5

1
.0

1
.5

2
.0

Fitted values

S
ta

n
d

a
rd

iz
e

d
 r

e
s
id

u
a

ls

lm(I(log(Y + m)) ~ X)

Scale-Location

137

295

323

2 4 6 8

0
.0

0
.5

1
.0

1
.5

2
.0

Fitted values

S
ta

n
d

a
rd

iz
e

d
 r

e
s
id

u
a

ls

lm(YTransf ~ X)

Scale-Location

137

295

323

Figure 3.25: Patching of heteroskedas-
ticity for an artificial dataset.

An extreme case is the following: suppose we have two samples
of sizes n and 2n, where the 2n-sample contains the elements of
the n-sample twice. The information in both samples is the same,
and so are the estimates for the coefficients β. Yet, in the 2n-sample
the length of the confidence intervals is C(2n)−1/2, whereas in
the n-sample they have length Cn−1/2. A reduction by a factor
of
√

2 in the confidence interval has happened, but we have the
same information! This will give us a wrong sense of confidence
in our model, and the root of the evil is that the information that is
actually in the sample is smaller due to dependence.

How to check it
The set of possible dependence structures on the residuals is

immense, and there is no straightforward way of checking all of
them. Usually what it is examined is the presence of autocorrelation,
which appears when there is some kind of serial dependence in
the measurement of observations. The serial plot of the residuals
allows to detect time trends in them:

plot(mod$residuals, type = "o")

Under uncorrelation, we expect the series to show no tracking
of the residuals. That is, that the closer observations do not take
similar values, but rather change without any kind of distinguish-
able pattern. Tracking is associated to positive autocorrelation, but
negative autocorrelation, manifested as alternating small-large or
positive-negative residuals, is also possible. The lagged plots of
(ε̂i−ℓ, ε̂i), i = ℓ + 1, . . . , n, obtained through lag.plot, allow us
to detect both kinds of autocorrelations for a given lag ℓ. Under
independence, we expect no trend in such plot. Here is an example:

lag.plot(mod$residuals, lags = 1, do.lines = FALSE)

# No serious serial trend, but some negative autocorrelation is appreciated

cor(mod$residuals[-1], mod$residuals[-length(mod$residuals)])

## [1] -0.4267776

There are also formal tests for testing for the absence of au-
tocorrelation, such as the Durbin–Watson test implemented in
car::durbinWatsonTest:

# Durbin-Watson test

car::durbinWatsonTest(mod)

## lag Autocorrelation D-W Statistic p-value

## 1 -0.4160168 2.787261 0.054

## Alternative hypothesis: rho != 0

# Does not reject at alpha = 0.05

What to do if it fails
Little can be done if there is dependence in the data, once this

has been collected. If the dependence is temporal, we must rely
on the family of statistical models meant to deal with serial de-
pendence: time series. Other kinds of dependence such as spatial
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Figure 3.27: Serial plots of the residu-
als for datasets respecting (left column)
and violating (right column) the inde-
pendence assumption.
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Figure 3.26: Serial plot of the resid-
uals of the Price ~ Age + AGST +

HarvestRain + WinterRain model for
the wine dataset.
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Figure 3.28: Graphical visualization of
the correlation matrix.

dependence, spatio-temporal dependence, geometrically-driven de-
pendencies, censorship, truncation, etc. need to be analyzed with a
different set of tools to the ones covered in these notes.

However, there is a simple trick worth mentioning to deal
with serial dependence. If the observations of the response Y, say
Y1, Y2, . . . , Yn, present serial dependence, a differentiation of the
sample that yields Y1 − Y2, Y2 − Y3, . . . , Yn−1 − Yn may lead to inde-
pendent observations. These are called the innovations of the series
of Y.

Load the dataset assumptions3D.RData and compute
the regressions y.3 ~ x1.3 + x2.3, y.4 ~ x1.4 + x2.4,
y.5 ~ x1.5 + x2.5, and y.8 ~ x1.8 + x2.8. Use the
presented diagnostic tools to test the assumptions of the
linear model and look out for possible problems.

3.5.5 Multicollinearity

A common problem that arises in multiple linear regression is mul-
ticollinearity. This is the situation when two or more predictors are
highly linearly related between them. Multicollinearitiy has impor-
tant effects on the fit of the model:

• It reduces the precision of the estimates. As a consequence, the
signs of fitted coefficients may be even reversed and valuable
predictors may appear as non-significant. In limit cases, numeri-
cal instabilities may appear since X′X will be almost singular.

• It is difficult to determine how each of the highly-related pre-
dictors affects the response, since one masks the other.

Intuitively, multicollinearity can be visualized as a card
(fitting plane) that is hold on its opposite corners and
that spins on its diagonal, where the data is concen-
trated. Then, very different planes will fit the data almost
equally well, which results in a large variability of the
optimal plane.

An approach to detect multicollinearity is to inspect the correla-
tion matrix between the predictors.

# Numerically

round(cor(wine), 2)

## Year Price WinterRain AGST HarvestRain Age FrancePop

## Year 1.00 -0.46 0.05 -0.29 -0.06 -1.00 0.99

## Price -0.46 1.00 0.13 0.67 -0.51 0.46 -0.48

## WinterRain 0.05 0.13 1.00 -0.32 -0.27 -0.05 0.03

## AGST -0.29 0.67 -0.32 1.00 -0.03 0.29 -0.30

## HarvestRain -0.06 -0.51 -0.27 -0.03 1.00 0.06 -0.03

## Age -1.00 0.46 -0.05 0.29 0.06 1.00 -0.99

## FrancePop 0.99 -0.48 0.03 -0.30 -0.03 -0.99 1.00

# Graphically

corrplot::corrplot(cor(wine), addCoef.col = "grey")

https://raw.githubusercontent.com/egarpor/handy/master/datasets/assumptions3D.RData
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Figure 3.29: Unsuspicious correlation
matrix with hidden multicollinearity.
29 And therefore more informative on
the linear dependence of the predictors
than the correlations of Xj with each of
the remaining predictors.

Here we can see what we already knew from Section 2.1: Age
and Year are perfectly linearly related and Age and FrancePop are
highly linearly related. Then one approach will be to directly re-
move one of the highly-correlated predictors.

However, it is not enough to inspect pairwise correlations in
order to get rid of multicollinearity. Indeed, it is possible to build
counterexamples that show non-suspicious pairwise correlations
but problematic complex linear relations that remain hidden. For
the sake of illustration, here is one:

# Create predictors with multicollinearity: x4 depends on the rest

set.seed(45678)

x1 <- rnorm(100)

x2 <- 0.5 * x1 + rnorm(100)

x3 <- 0.5 * x2 + rnorm(100)

x4 <- -x1 + x2 + rnorm(100, sd = 0.25)

# Response

y <- 1 + 0.5 * x1 + 2 * x2 - 3 * x3 - x4 + rnorm(100)

data <- data.frame(x1 = x1, x2 = x2, x3 = x3, x4 = x4, y = y)

# Correlations -- none seems suspicious

corrplot::corrplot(cor(data), addCoef.col = "grey")

A better approach to detect multicollinearity is to compute the
Variance Inflation Factor (VIF) of each fitted coefficient β̂ j. This is
a measure of how linearly dependent is Xj on the rest of the predictors29

and it is defined as

VIF(β̂ j) =
1

1− R2
Xj |X−j

,

where R2
Xj |X−j

represents the R2 from the regression of Xj onto the

remaining predictors X1, . . . , Xj−1, Xj+1 . . . , Xp. Clearly, VIF(β̂ j) ≥
1. The next simple rule of thumb gives direct insight into which
predictors are multicollinear:

• VIF close to 1: absence of multicollinearity.
• VIF larger than 5 or 10: problematic amount of multicollinearity.

Advised to remove the predictor with largest VIF.

VIF is computed with the car::vif function, which takes as an
argument a linear model. Let’s see how it works in the previous
example with hidden multicollinearity.

# Abnormal variance inflation factors: largest for x4, we remove it

modMultiCo <- lm(y ~ x1 + x2 + x3 + x4)

car::vif(modMultiCo)

## x1 x2 x3 x4

## 26.361444 29.726498 1.416156 33.293983

# Without x4

modClean <- lm(y ~ x1 + x2 + x3)

# Comparison

car::compareCoefs(modMultiCo, modClean)

## Calls:

## 1: lm(formula = y ~ x1 + x2 + x3 + x4)

## 2: lm(formula = y ~ x1 + x2 + x3)

##
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## Model 1 Model 2

## (Intercept) 1.062 1.058

## SE 0.103 0.103

##

## x1 0.922 1.450

## SE 0.551 0.116

##

## x2 1.640 1.119

## SE 0.546 0.124

##

## x3 -3.165 -3.145

## SE 0.109 0.107

##

## x4 -0.529

## SE 0.541

##

confint(modMultiCo)

## 2.5 % 97.5 %

## (Intercept) 0.8568419 1.2674705

## x1 -0.1719777 2.0167093

## x2 0.5556394 2.7240952

## x3 -3.3806727 -2.9496676

## x4 -1.6030032 0.5446479

confint(modClean)

## 2.5 % 97.5 %

## (Intercept) 0.8526681 1.262753

## x1 1.2188737 1.680188

## x2 0.8739264 1.364981

## x3 -3.3564513 -2.933473

# Summaries

summary(modMultiCo)

##

## Call:

## lm(formula = y ~ x1 + x2 + x3 + x4)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1.9762 -0.6663 0.1195 0.6217 2.5568

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 1.0622 0.1034 10.270 < 2e-16 ***
## x1 0.9224 0.5512 1.673 0.09756 .

## x2 1.6399 0.5461 3.003 0.00342 **
## x3 -3.1652 0.1086 -29.158 < 2e-16 ***
## x4 -0.5292 0.5409 -0.978 0.33040

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 1.028 on 95 degrees of freedom

## Multiple R-squared: 0.9144, Adjusted R-squared: 0.9108

## F-statistic: 253.7 on 4 and 95 DF, p-value: < 2.2e-16

summary(modClean)

##

## Call:

## lm(formula = y ~ x1 + x2 + x3)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1.91297 -0.66622 0.07889 0.65819 2.62737

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 1.0577 0.1033 10.24 < 2e-16 ***
## x1 1.4495 0.1162 12.47 < 2e-16 ***
## x2 1.1195 0.1237 9.05 1.63e-14 ***
## x3 -3.1450 0.1065 -29.52 < 2e-16 ***
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Figure 3.30: Estimated average error
E[∥β̂− β∥], for varying n and degrees
of multicollinearity, indexed by b. The
horizontal and vertical axes are in
logarithmic scales.

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 1.028 on 96 degrees of freedom

## Multiple R-squared: 0.9135, Adjusted R-squared: 0.9108

## F-statistic: 338 on 3 and 96 DF, p-value: < 2.2e-16

# Variance inflation factors are normal

car::vif(modClean)

## x1 x2 x3

## 1.171942 1.525501 1.364878

Note that multicollinearity is another instance of the
model correctness vs. usefulness. A model with mul-
ticollinearity might be perfectly valid in the sense of
respecting the assumptions of the model. As we saw
in Section 2.3, it does not matter whether the predic-
tors are related or not, at least for the verification of the
assumptions. But the model will be useless if the mul-
ticollinearity is high, since it can inflate the variability
of the estimation without any kind of bound. In the ex-
treme case in which the multicollinearity is perfect, then
the model will not be identifiable, despite being correct.

The next simulation study illustrates how the non-indentifiability
of β worsens with increasing multicollinearity, and therefore so
does the error on estimating β. We consider the linear model

Y = X1 + X2 + X3 + ε, ε ∼ N (0, 1),

where

X1, X2 ∼ N (0, 1), X3 = b(X1 + X2) + δ, δ ∼ N (0, 0.25)

and b ≥ 0 controls the degree of multicollinearity of X3 with X1

and X2 (if b = 0, X3 is uncorrelated with X1 and X2). We aim to
study how E[∥β̂− β∥] behaves when n grows, for different values
of b. To do so, we consider n = 2ℓ, ℓ = 3, . . . , 12, b = 0, 0.5, 1, 5, 10,
and approximate the expected error by Monte Carlo using M = 500
replicates. The results of the simulation study are shown in Figure
3.30, which illustrates that multicollinearity notably decreases the
accuracy of β̂, at all sample sizes n.

Replicate Figure 3.30 by implementing the simulation
study behind it.

3.5.6 Outliers and high-leverage points

Outliers and high-leverage points are particular observations that
have an important impact in the final linear model, either on the
estimates or on the properties of the model. They are defined as
follows:
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• Outliers are the observations with a response Yi far away from
the regression plane. They typically do not affect the estimate of
the plane, unless one of the predictors is also extreme (see next
point). But they inflate σ̂ and, as a consequence, they draw down
the R2 of the model and expand the CIs.

• High-leverage points are observations with an extreme predictor
Xij located far away from the rest of points. These observations are
highly influential and may drive the linear model fit. The reason
is the squared distance in the RSS: an individual extreme point
may represent a large portion of the RSS.

Both outliers and high-leverage points can be identified with the
residuals vs. leverage plot:

plot(mod, 5)

The rules of thumb for declaring outliers and high-leverage
points are:

• If the standardized residual of an observation is larger than 3 in
absolute value, then it may be an outlier.

• If the leverage statistic hi is greatly exceeding (p + 1)/n 30 (see
below), then the i-th observation may be suspected of having a
high leverage.

Let’s see an artificial example.

# Create data

set.seed(12345)

x <- rnorm(100)

e <- rnorm(100, sd = 0.5)

y <- 1 + 2 * x + e

# Leverage expected value

2 / 101 # (p + 1) / n

## [1] 0.01980198

# Base model

m0 <- lm(y ~ x)

plot(x, y)

abline(coef = m0$coefficients, col = 2)

plot(m0, 5)

summary(m0)

##

## Call:

## lm(formula = y ~ x)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1.10174 -0.30139 -0.00557 0.30949 1.30485

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 1.01103 0.05176 19.53 <2e-16 ***
## x 2.04727 0.04557 44.93 <2e-16 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##
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## Residual standard error: 0.5054 on 98 degrees of freedom

## Multiple R-squared: 0.9537, Adjusted R-squared: 0.9532

## F-statistic: 2018 on 1 and 98 DF, p-value: < 2.2e-16

# Make an outlier

x[101] <- 0; y[101] <- 30

m1 <- lm(y ~ x)

plot(x, y)

abline(coef = m1$coefficients, col = 2)

plot(m1, 5)

summary(m1)

##

## Call:

## lm(formula = y ~ x)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1.3676 -0.5730 -0.2955 0.0941 28.6881

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 1.3119 0.2997 4.377 2.98e-05 ***
## x 1.9901 0.2652 7.505 2.71e-11 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 2.942 on 99 degrees of freedom

## Multiple R-squared: 0.3627, Adjusted R-squared: 0.3562

## F-statistic: 56.33 on 1 and 99 DF, p-value: 2.708e-11

# Make a high-leverage point

x[101] <- 10; y[101] <- 5

m2 <- lm(y ~ x)

plot(x, y)

abline(coef = m2$coefficients, col = 2)

plot(m2, 5)

summary(m2)

##

## Call:

## lm(formula = y ~ x)

##

## Residuals:

## Min 1Q Median 3Q Max

## -9.2423 -0.6126 0.0373 0.7864 2.1652

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 1.09830 0.13676 8.031 2.06e-12 ***
## x 1.31440 0.09082 14.473 < 2e-16 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 1.339 on 99 degrees of freedom

## Multiple R-squared: 0.6791, Adjusted R-squared: 0.6758

## F-statistic: 209.5 on 1 and 99 DF, p-value: < 2.2e-16

The leverage statistic associated to the i-th datum corresponds to
the i-th diagonal entry of the hat matrix H:

hi := Hii = (X(X′X)−1X′)ii.
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It can be seen that 1
n ≤ hi ≤ 1 and that the mean h̄ = 1

n ∑n
i=1 hi =

p+1
n . This can be clearly seen in the case of simple linear regression,

where the leverage statistic has the explicit form

hi =
1
n
+

(Xi − X̄)2

∑n
j=1(Xj − X̄)2 .

Interestingly, this expression shows that the leverage statistic is
directly dependent on the distance to the center of the predictor.
A precise threshold for determining when hi is greatly exceeding
measure its expected value h̄ can be given if the predictors are
assumed to be jointly normal. In this case, nhi − 1 ∼ χ2

p (Peña, 2002)
and hence the i-th point is declared as a potential high-leverage point

if hi >
χ2

p;α+1
n , where χ2

p;α is the α-upper quantile of the χ2
p distribution

(α can be taken as 0.05 or 0.01).
The functions influence, hat, and rstandard allow performing a

finer inspection of the leverage statistics.

# Access leverage statistics

head(influence(model = m2, do.coef = FALSE)$hat)

## 1 2 3 4 5 6

## 0.01017449 0.01052333 0.01083766 0.01281244 0.01022209 0.03137304

# Another option

h <- hat(x = x)

# 1% most influential points

n <- length(x)

p <- 1

hist(h, breaks = 20)

abline(v = (qchisq(0.99, df = p) + 1) / n, col = 2)

# Standardized residuals

rs <- rstandard(m2)

plot(m2, 2) # QQ-plot

points(qnorm(ppoints(n = n)), sort(rs), col = 2, pch = '+') # Manually computed

3.5.7 Case study application

Moore’s law (Moore, 1965) is an empirical law that states that the
power of a computer doubles approximately every two years.
Translated into a mathematical formula, Moore’s law is

transistors ≈ 2years/2.

Applying logarithms to both sides gives

log(transistors) ≈ log(2)
2

years.

We can write the above formula more generally as

log(transistors) = β0 + β1years + ε,

where ε is a random error. This is a linear model!
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The dataset cpus.txt (source, retrieved in September
2016) contains the transistor counts for the CPUs ap-
peared in the time range 1971–2015. For this data, do the
following:

a. Import conveniently the data and name it as cpus.
b. Show a scatterplot of Transistor.count

vs. Date.of.introduction with a linear regression.
c. Are the assumptions verified in Transistor.count ~

Date.of.introduction? Which ones are more “prob-
lematic”?

d. Create a new variable, named Log.Transistor.count,
containing the logarithm of Transistor.count.

e. Show a scatterplot of Log.Transistor.count
vs. Date.of.introduction with a linear regression.

f. Are the assumptions verified in
Log.Transistor.count ~ Date.of.introduction?
Which ones are which are more “problematic”?

g. Regress Log.Transistor.count ~

Date.of.introduction.
h. Summarize the fit. What are the estimates β̂0 and β̂1?

Is β̂1 close to log(2)
2 ?

i. Compute the CI for β1 at α = 0.05. Is log(2)
2 inside it?

What happens at levels α = 0.10, 0.01?
j. We want to forecast the average log-number of transis-

tors for the CPUs to be released in 2024. Compute the
adequate prediction and CI.

k. A new CPU design is expected for 2025. What is the
range of log-number of transistors expected for it, at a
95% level of confidence?

l. Compute the ANOVA table for Log.Transistor.count
~ Date.of.introduction. Is β1 significant?

The dataset gpus.txt (source, retrieved in September
2016) contains the transistor counts for the GPUs ap-
peared in the period 1997–2016. Repeat the previous
analysis for this dataset.

https://raw.githubusercontent.com/egarpor/handy/master/datasets/cpus.txt
https://en.wikipedia.org/wiki/Transistor_count#Microprocessors
https://raw.githubusercontent.com/egarpor/handy/master/datasets/gpus.txt
https://en.wikipedia.org/wiki/Transistor_count#GPUs
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Analyze the bias induced by transforming the response,
fitting a linear model, and then untransforming. For that,
consider the relation

Y = exp(β0 + β1X + ε), (3.8)

where X ∼ N (0, 0.5) and ε ∼ N (0, 1). Set β0 = −1 and
β1 = 1. Then, follow these steps:

1. Compute the exact conditional distribution Y|X = x.
Hint: use the lognormal distribution.

2. Based on Step 1, compute the true regression function
m(x) = E[Y|X = x] exactly and plot it.

3. Simulate a sample {(Xi, Yi)}n
i=1 from (3.8), with

n = 200.
4. Define W := log(Y) and fit the linear model W = β0+

β1X + ε from the previous sample. Are (β0, β1) prop-
erly estimated?

5. Estimate E[W|X = 0] and E[W|X = 1] by ŵ0 = β̂0 and
ŵ1 = β̂0 + β̂1, respectively.

6. Compute ŷ0 = exp(ŵ0) and ŷ1 = exp(ŵ1), the pre-
dictions with the transformed model of E[Y|X = 0]
and E[Y|X = 1]. Compare the estimates with m(0) and
m(1).

7. Plot the fitted curve ŷ = exp(β̂0 + β̂1x) and compare
with m in Step 2.

8. If n is increased in Step 3, does the estimation in Step
6 improve? Summarize your takeaways from the exer-
cise.

3.6 Dimension reduction techniques

As we have seen in Section 3.2, the selection of the best linear
model from a set of p predictors is a challenging task that increases
with the dimension of the problem, that is, with p. In addition to the
growth of the set of possible models as p grows, the model space
becomes more complicated to explore due to the potential multi-
collinearity among the predictors. We will see in this section two
methods to deal with these two problems simultaneously.

3.6.1 Review on principal component analysis

Principal Component Analysis (PCA) is a multivariate technique
designed to summarize the most important features and relations of
p numerical random variables X1, . . . , Xp. PCA computes a new set
of variables, the principal components Γ1, . . . , Γp, that contain the
same information as X1, . . . , Xp but expressed in a more convenient
way. The goal of PCA is to retain only a limited number ℓ, 1 ≤ ℓ ≤
p, of principal components that explain most of the information,
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31 That is, E[Xj] = 0, j = 1, . . . , p. This
is important since PCA is sensitive to
the centering of the data.

32 Recall that the covariance matrix is a
real, symmetric, semi-positive definite
matrix.

33 Therefore, A−1 = A′.

34 Since the variance-covariance matrix
Var[Γ] is diagonal.

therefore performing dimension reduction.
If X1, . . . , Xp are centered31, then the principal components are

orthonormal linear combinations of X1, . . . , Xp:

Γj := a1jX1 + a2jX2 + · · ·+ apjXp = a′jX, j = 1, . . . , p, (3.9)

where aj := (a1j, . . . , apj)
′, X := (X1, . . . , Xp)′, and the orthonormal-

ity condition is

a′iaj =

1, if i = j,

0, if i ̸= j.

Remarkably, PCA computes the principal components in an ordered
way: Γ1 is the principal component that explains the most of the
information (quantified as the variance) of X1, . . . , Xp, and then the
explained information decreases monotonically down to Γp, the
principal component that explains the least information. Precisely:

Var[Γ1] ≥ Var[Γ2] ≥ . . . ≥ Var[Γp]. (3.10)

Mathematically, PCA computes the spectral decomposition32 of the
covariance matrix Σ := Var[X]:

Σ = AΛA′,

where Λ = diag(λ1, . . . , λp) contains the eigenvalues of Σ and
A is the orthogonal matrix33 whose columns are the unit-norm
eigenvectors of Σ. The matrix A gives, thus, the coefficients of the
orthonormal linear combinations:

A =
(

a1 a2 · · · ap

)
=


a11 a12 · · · a1p

a21 a22 · · · a2p
...

...
. . .

...
ap1 ap2 · · · app

 .

If the variables are not centered, the computation of the prin-
cipal components is done by first subtracting µ = E[X] and then
premultiplying with A′:

Γ = A′(X− µ), (3.11)

where Γ = (Γ1, . . . , Γp)′, X = (X1, . . . , Xp)′, and µ = (µ1, . . . , µp)′.
Note that, because of (1.3) and (3.11),

Var[Γ] = A′ΣA = A′AΛA′A = Λ. (3.12)

Therefore, Var[Γj] = λj, j = 1, . . . , p, and as a consequence (3.10)
indeed holds.

Also, from (3.11), it is evident that we can express the random
vector X in terms of Γ:

X = µ + AΓ, (3.13)

which admits an insightful interpretation: Γ is an uncorrelated34
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35 Up to now, the exposition has been
focused exclusively on the population
case.

36 Some care is needed here. The
matrix S is obtained from linear
combinations of the n vectors X1 −
X̄, . . . , Xn − X̄. Recall that these n
vectors are not linearly independent,
as they are guaranteed to add 0,
∑n

i=1[Xi − X̄] = 0, so it is possible
to express one perfectly on the rest.
That implies that the p × p matrix
S has rank smaller or equal to n −
1. If p ≤ n − 1, then the matrix
has full rank p and it is invertible
(excluding degenerate cases in which
the p variables are collinear). But
if p ≥ n, then S is singular and,
as a consequence, λj = 0 for j ≥
n. This implies that the principal
components for those eigenvalues
cannot be determined univocally.

vector that, once rotated by A and translated to the location µ, pro-
duces exactly X. Therefore, Γ contains the same information as X
but rearranged in a more convenient way, because the principal
components are centered and uncorrelated between them:

E[Γi] = 0 and Cov[Γi, Γj] =

λi, if i = j,

0, if i ̸= j.

Due to the uncorrelation of Γ, we can measure the total variance
of Γ as ∑

p
j=1 Var[Γj] = ∑

p
j=1 λj. Consequently, we can define the

proportion of variance explained by the first ℓ principal compo-
nents, 1 ≤ ℓ ≤ p, as

∑ℓ
j=1 λj

∑
p
j=1 λj

.

In the sample case35 where a sample X1, . . . , Xn is given and µ and
Σ are unknown, µ is replaced by the sample mean X̄ and Σ by the
sample variance-covariance matrix S = 1

n ∑n
i=1(Xi − X̄)(Xi − X̄)′.

Then, the spectral decomposition of S is computed36. This gives Â,
the matrix of loadings, and produces the scores of the data:

Γ̂1 := Â′(X1 − X̄), . . . , Γ̂n := Â′(Xn − X̄).

The scores are centered, uncorrelated, and have sample variances in
each vector’s entry that are sorted in a decreasing way. The scores
are the data coordinates with respect to the principal component
basis.

The maximum number of principal components that can
be determined from a sample X1, . . . , Xn is min(n − 1, p),
assuming that the matrix formed by (X1 · · ·Xn) is of full
rank (i.e., if the rank is min(n, p)). If n ≥ p and the vari-
ables X1, . . . , Xp are such that only r of them are linearly
independent, then the maximum is min(n− 1, r).

Let’s see an example of these concepts in La Liga 2015/2016
dataset. It contains the standings and team statistics for La Liga
2015/2016.

laliga <- readxl::read_excel("la-liga-2015-2016.xlsx", sheet = 1, col_names = TRUE)

laliga <- as.data.frame(laliga) # Avoid tibble since it drops row.names

A quick preprocessing gives:

rownames(laliga) <- laliga$Team # Set teams as case names to avoid factors

laliga$Team <- NULL

laliga <- laliga[, -c(2, 8)] # Do not add irrelevant information

summary(laliga)

## Points Wins Draws Loses Goals.scored Goals.conceded

## Min. :32.00 Min. : 8.00 Min. : 4.00 Min. : 4.00 Min. : 34.00 Min. :18.00

## 1st Qu.:41.25 1st Qu.:10.00 1st Qu.: 8.00 1st Qu.:12.00 1st Qu.: 40.00 1st Qu.:42.50

## Median :44.50 Median :12.00 Median : 9.00 Median :15.50 Median : 45.50 Median :52.50

## Mean :52.40 Mean :14.40 Mean : 9.20 Mean :14.40 Mean : 52.15 Mean :52.15

https://raw.githubusercontent.com/egarpor/handy/master/datasets/la-liga-2015-2016.xlsx
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Comp.1 Comp.3 Comp.5 Comp.7 Comp.9

## 3rd Qu.:60.50 3rd Qu.:17.25 3rd Qu.:10.25 3rd Qu.:18.25 3rd Qu.: 51.25 3rd Qu.:63.25

## Max. :91.00 Max. :29.00 Max. :18.00 Max. :22.00 Max. :112.00 Max. :74.00

## Percentage.scored.goals Percentage.conceded.goals Shots Shots.on.goal Penalties.scored Assistances

## Min. :0.890 Min. :0.470 Min. :346.0 Min. :129.0 Min. : 1.00 Min. :23.00

## 1st Qu.:1.050 1st Qu.:1.115 1st Qu.:413.8 1st Qu.:151.2 1st Qu.: 1.00 1st Qu.:28.50

## Median :1.195 Median :1.380 Median :438.0 Median :165.0 Median : 3.00 Median :32.50

## Mean :1.371 Mean :1.371 Mean :452.4 Mean :173.1 Mean : 3.45 Mean :37.85

## 3rd Qu.:1.347 3rd Qu.:1.663 3rd Qu.:455.5 3rd Qu.:180.0 3rd Qu.: 4.50 3rd Qu.:36.75

## Max. :2.950 Max. :1.950 Max. :712.0 Max. :299.0 Max. :11.00 Max. :90.00

## Fouls.made Matches.without.conceding Yellow.cards Red.cards Offsides

## Min. :385.0 Min. : 4.0 Min. : 66.0 Min. :1.00 Min. : 72.00

## 1st Qu.:483.8 1st Qu.: 7.0 1st Qu.: 97.0 1st Qu.:4.00 1st Qu.: 83.25

## Median :530.5 Median :10.5 Median :108.5 Median :5.00 Median : 88.00

## Mean :517.6 Mean :10.7 Mean :106.2 Mean :5.05 Mean : 92.60

## 3rd Qu.:552.8 3rd Qu.:13.0 3rd Qu.:115.2 3rd Qu.:6.00 3rd Qu.:103.75

## Max. :654.0 Max. :24.0 Max. :141.0 Max. :9.00 Max. :123.00

Let’s check that R’s function for PCA, princomp, returns the same
principal components we outlined in the theory.

# PCA

pcaLaliga <- princomp(laliga, fix_sign = TRUE)

summary(pcaLaliga)

## Importance of components:

## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8

## Standard deviation 104.7782561 48.5461449 22.13337511 12.66692413 8.234215354 7.83426116 6.068864168 4.137079559

## Proportion of Variance 0.7743008 0.1662175 0.03455116 0.01131644 0.004782025 0.00432876 0.002597659 0.001207133

## Cumulative Proportion 0.7743008 0.9405183 0.97506949 0.98638593 0.991167955 0.99549671 0.998094374 0.999301507

## Comp.9 Comp.10 Comp.11 Comp.12 Comp.13 Comp.14 Comp.15

## Standard deviation 2.0112480391 1.8580509157 1.126111e+00 9.568824e-01 4.716064e-01 1.707105e-03 8.365534e-04

## Proportion of Variance 0.0002852979 0.0002434908 8.943961e-05 6.457799e-05 1.568652e-05 2.055361e-10 4.935768e-11

## Cumulative Proportion 0.9995868048 0.9998302956 9.999197e-01 9.999843e-01 1.000000e+00 1.000000e+00 1.000000e+00

## Comp.16 Comp.17

## Standard deviation 0 0

## Proportion of Variance 0 0

## Cumulative Proportion 1 1

# The standard deviations are the square roots of the eigenvalues

# The cumulative proportion of variance explained accumulates the

# variance explained starting at the first component

# We use fix_sign = TRUE so that the signs of the loadings are

# determined by the first element of each loading, set to be

# non-negative. Otherwise, the signs could change for different OS /

# R versions yielding to opposite interpretations of the PCs

# Plot of variances of each component (screeplot)

plot(pcaLaliga, type = "l")

# Useful for detecting an "elbow" in the graph whose location gives the

# "right" number of components to retain. Ideally, this elbow appears

# when the next variances are almost similar and notably smaller when

# compared with the previous

# Alternatively: plot of the cumulated percentage of variance

# barplot(cumsum(pcaLaliga$sdevˆ2) / sum(pcaLaliga$sdevˆ2))

# Computation of PCA from the spectral decomposition

n <- nrow(laliga)

eig <- eigen(cov(laliga) * (n - 1) / n) # By default, cov() computes the

# quasi-variance-covariance matrix that divides by n - 1, but PCA and princomp

# consider the sample variance-covariance matrix that divides by n

A <- eig$vectors

# Same eigenvalues

pcaLaliga$sdevˆ2 - eig$values

## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8

## -5.456968e-12 -1.364242e-12 0.000000e+00 -4.263256e-13 -2.415845e-13 -1.278977e-13 -3.552714e-14 -4.263256e-14
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## Comp.9 Comp.10 Comp.11 Comp.12 Comp.13 Comp.14 Comp.15 Comp.16

## -2.025047e-13 -7.549517e-14 -1.088019e-14 -3.108624e-15 -1.626477e-14 -3.685726e-15 1.036604e-15 -2.025796e-13

## Comp.17

## 1.435137e-12

# The eigenvectors (the a_j vectors) are the column vectors in $loadings

pcaLaliga$loadings

##

## Loadings:

## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10 Comp.11 Comp.12

## Points 0.125 0.497 0.195 0.139 0.340 0.425 0.379 0.129 0.166

## Wins 0.184 0.175 0.134 -0.198 0.139

## Draws 0.101 -0.186 0.608 0.175 0.185 -0.251

## Loses -0.129 -0.114 -0.157 -0.410 -0.243 -0.166 0.112

## Goals.scored 0.181 0.251 -0.186 -0.169 0.399 0.335 -0.603 -0.155 0.129 0.289 -0.230

## Goals.conceded -0.471 -0.493 -0.277 0.257 0.280 0.441 -0.118 0.297

## Percentage.scored.goals

## Percentage.conceded.goals

## Shots 0.718 0.442 -0.342 0.255 0.241 0.188

## Shots.on.goal 0.386 0.213 0.182 -0.287 -0.532 -0.163 -0.599

## Penalties.scored -0.350 0.258 0.378 -0.661 0.456

## Assistances 0.148 0.198 -0.173 0.362 0.216 0.215 0.356 -0.685 -0.265

## Fouls.made -0.480 0.844 0.166 -0.110

## Matches.without.conceding 0.151 0.129 -0.182 0.176 -0.369 -0.376 -0.411

## Yellow.cards -0.141 0.144 -0.363 0.113 0.225 0.637 -0.550 -0.126 0.156

## Red.cards -0.123 -0.157 0.405 0.666

## Offsides 0.108 0.202 -0.696 0.647 -0.106

## Comp.13 Comp.14 Comp.15 Comp.16 Comp.17

## Points 0.138 0.240 0.345

## Wins 0.147 -0.904

## Draws -0.304 0.554 -0.215

## Loses 0.156 0.794 0.130

## Goals.scored -0.153

## Goals.conceded

## Percentage.scored.goals -0.760 -0.650

## Percentage.conceded.goals 0.650 -0.760

## Shots

## Shots.on.goal

## Penalties.scored -0.114

## Assistances -0.102

## Fouls.made

## Matches.without.conceding -0.664

## Yellow.cards

## Red.cards -0.587

## Offsides

##

## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10 Comp.11 Comp.12 Comp.13 Comp.14

## SS loadings 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

## Proportion Var 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059

## Cumulative Var 0.059 0.118 0.176 0.235 0.294 0.353 0.412 0.471 0.529 0.588 0.647 0.706 0.765 0.824

## Comp.15 Comp.16 Comp.17

## SS loadings 1.000 1.000 1.000

## Proportion Var 0.059 0.059 0.059

## Cumulative Var 0.882 0.941 1.000

# The scores is the representation of the data in the principal components -

# it has the same information as laliga

head(round(pcaLaliga$scores, 4))

## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10 Comp.11 Comp.12

## Barcelona 242.2392 -21.5810 25.3801 -17.4375 -7.1797 9.0814 -5.5920 -7.3615 -0.3716 1.7161 0.0265 -1.0948

## Real Madrid 313.6026 63.2024 -8.7570 8.5558 0.7119 0.2221 6.7035 2.4456 1.8388 -2.9661 -0.1345 0.3410

## Atlético Madrid 45.9939 -0.6466 38.5410 31.3888 3.9163 3.2904 0.2432 5.0913 -3.0444 2.0975 0.6771 -0.3986

## Villarreal -96.2201 -42.9329 50.0036 -11.2420 10.4733 2.4294 -3.0183 0.1958 1.2106 -1.7453 0.1351 -0.5735

## Athletic 14.5173 -16.1897 18.8840 -0.4122 -5.6491 -6.9330 8.0653 2.4783 -2.6921 0.8950 0.1542 1.4715

## Celta -13.0748 6.7925 5.2271 -9.0945 6.1265 11.8795 -2.6148 6.9707 3.0826 0.3130 0.0860 1.9159

## Comp.13 Comp.14 Comp.15 Comp.16 Comp.17

## Barcelona 0.1516 -0.0010 -2e-04 0 0

## Real Madrid -0.0332 0.0015 4e-04 0 0
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37 Therefore, a sample of lengths
measured in centimeters will have
a variance 104 times larger than the
same sample measured in meters – yet
it is the same information!

## Atlético Madrid -0.1809 0.0005 -1e-04 0 0

## Villarreal -0.5894 -0.0001 -2e-04 0 0

## Athletic 0.1109 -0.0031 -3e-04 0 0

## Celta 0.3722 -0.0018 3e-04 0 0

# Uncorrelated

corrplot::corrplot(cor(pcaLaliga$scores), addCoef.col = "gray")

# Caution! What happened in the last columns? What happened is that the

# variance for the last principal components is close to zero (because there

# are linear dependencies on the variables; e.g., Points, Wins, Loses, Draws),

# so the computation of the correlation matrix becomes unstable for those

# variables (a 0/0 division takes place)

# Better to inspect the covariance matrix

corrplot::corrplot(cov(pcaLaliga$scores), addCoef.col = "gray", is.corr = FALSE)

# The scores are A' * (X_i - mu). We center the data with scale()

# and then multiply each row by A'

scores <- scale(laliga, center = TRUE, scale = FALSE) %*% A

# Same as (but this is much slower)

# scores <- t(apply(scale(laliga, center = TRUE, scale = FALSE), 1,

# function(x) t(A) %*% x))

# Same scores (up to possible changes in signs)

max(abs(abs(pcaLaliga$scores) - abs(scores)))

## [1] 2.278507e-11

# Reconstruct the data from all the principal components

head(

sweep(pcaLaliga$scores %*% t(pcaLaliga$loadings), 2, pcaLaliga$center, "+")

)

## Points Wins Draws Loses Goals.scored Goals.conceded Percentage.scored.goals Percentage.conceded.goals

## Barcelona 91 29 4 5 112 29 2.95 0.76

## Real Madrid 90 28 6 4 110 34 2.89 0.89

## Atlético Madrid 88 28 4 6 63 18 1.66 0.47

## Villarreal 64 18 10 10 44 35 1.16 0.92

## Athletic 62 18 8 12 58 45 1.53 1.18

## Celta 60 17 9 12 51 59 1.34 1.55

## Shots Shots.on.goal Penalties.scored Assistances Fouls.made Matches.without.conceding Yellow.cards

## Barcelona 600 277 11 79 385 18 66

## Real Madrid 712 299 6 90 420 14 72

## Atlético Madrid 481 186 1 49 503 24 91

## Villarreal 346 135 3 32 534 17 100

## Athletic 450 178 3 42 502 13 84

## Celta 442 170 4 43 528 10 116

## Red.cards Offsides

## Barcelona 1 120

## Real Madrid 5 114

## Atlético Madrid 3 84

## Villarreal 4 106

## Athletic 5 92

## Celta 6 103

An important issue when doing PCA is the scale of the variables,
since the variance depends on the units in which the variable is
measured37. Therefore, when variables with different ranges are
mixed, the variability of one may dominate the other merely due to
a scale artifact. To prevent this, we standardize the dataset prior to
do a PCA.

# Use cor = TRUE to standardize variables (all have unit variance)

# and avoid scale distortions
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Figure 3.32: Biplots for laliga dataset,
with unstandardized and standardized
data, respectively.
38 The biplot is implemented in R
by biplot.princomp (or by biplot

applied to a princomp object). This
function applies an internal scaling of
the scores and variables to improve the
visualization (see ?biplot.princomp),
which can be disabled with the argu-
ment scale = 0.
39 For the sample version, replace the
variable Xj by its sample X1j, . . . , Xnj,
the loadings aji by their estimates âji ,
and the principal component Γj by the
scores {Γ̂ij}n

i=1.
40 Observe that both Xj =
aj1Γ1 + aj2Γ2 + · · · + ajpΓp and
Γj = a1jX1 + a2jX2 + · · · + apjXp,
j = 1, . . . , p, hold simultaneously due
to the orthogonality of A.

pcaLaligaStd <- princomp(x = laliga, cor = TRUE, fix_sign = TRUE)

summary(pcaLaligaStd)

## Importance of components:

## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8

## Standard deviation 3.2918365 1.5511043 1.13992451 0.91454883 0.85765282 0.59351138 0.45780827 0.370649324

## Proportion of Variance 0.6374228 0.1415250 0.07643694 0.04919997 0.04326873 0.02072093 0.01232873 0.008081231

## Cumulative Proportion 0.6374228 0.7789478 0.85538472 0.90458469 0.94785342 0.96857434 0.98090308 0.988984306

## Comp.9 Comp.10 Comp.11 Comp.12 Comp.13 Comp.14 Comp.15

## Standard deviation 0.327182806 0.217470830 0.128381750 0.0976778705 0.083027923 2.582795e-03 1.226924e-03

## Proportion of Variance 0.006296976 0.002781974 0.000969522 0.0005612333 0.000405508 3.924019e-07 8.854961e-08

## Cumulative Proportion 0.995281282 0.998063256 0.999032778 0.9995940111 0.999999519 9.999999e-01 1.000000e+00

## Comp.16 Comp.17

## Standard deviation 9.256461e-09 0

## Proportion of Variance 5.040122e-18 0

## Cumulative Proportion 1.000000e+00 1

# The effects of the distortion can be clearly seen with the biplot

# Variability absorbed by Shots, Shots.on.goal, Fouls.made

biplot(pcaLaliga, cex = 0.75)

# The effects of the variables are more balanced

biplot(pcaLaligaStd, cex = 0.75)

The biplot38 provides a powerful and succinct way of display-
ing the relevant information contained in the first two principal
components. It shows:

1. The scores {(Γ̂i1, Γ̂i2)}n
i=1 by points (with optional text labels,

depending if there are case names). These are the representations
of the data in the first two principal components.

2. The loadings {(âj1, âj2)}
p
j=1 by the arrows, centered at (0, 0).

These are the representations of the variables in the first two
principal components.

Let’s examine the population39 arrow associated to the variable
Xj. Xj is expressed in terms of Γ1 and Γ2 by the loadings aj1 and
aj2

40:

Xj = aj1Γ1 + aj2Γ2 + · · ·+ ajpΓp ≈ aj1Γ1 + aj2Γ2.

The weights aj1 and aj2 have the same sign as Cor(Xj, Γ1) and
Cor(Xj, Γ2), respectively. The arrow associated to Xj is given by
the segment joining (0, 0) and (aj1, aj2). Therefore:

• If the arrow points right (aj1 > 0), there is positive correlation
between Xj and Γ1. Analogous if the arrow points left.

• If the arrow is approximately vertical (aj1 ≈ 0), there is uncorrelation
between Xj and Γ1.

Analogously:

• If the arrow points up (aj2 > 0), there is positive correlation between
Xj and Γ2. Analogous if the arrow points down.

• If the arrow is approximately horizontal (aj2 ≈ 0), there is uncorrela-
tion between Xj and Γ2.

In addition, the magnitude of the arrow informs us about the
strength of the correlation of Xj with (Γ1, Γ2).
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41 The first two principal components
of the dataset explain the 78% of the
variability of the data. Hence, the
insights obtained from the biplot
should be regarded as “78%-accurate”.

The biplot also informs about the direct relation between vari-
ables, at sight of their expressions in Γ1 and Γ2. The angle of the
arrows of variable Xj and Xk gives an approximation to the corre-
lation between them, Cor(Xj, Xk):

• If angle ≈ 0◦, the two variables are highly positively correlated.
• If angle ≈ 90◦, they are approximately uncorrelated.
• If angle ≈ 180◦, the two variables are highly negatively corre-

lated.

The insights obtained from the approximate correlations
between variables are as precise as the percentage of
variance explained by the first two principal compo-
nents.
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Figure 3.33: Biplot for laliga dataset.
The interpretations of the first two
principal components are driven by
the signs of the variables inside them
(directions of the arrows) and by the
strength of their correlations with the
variables (length of the arrows). The
scores of the data serve also to cluster
similar observations according to their
proximity in the biplot.

Some interesting insights in La Liga 2015/2016 biplot, obtained
from the previous remarks, are41:

• The first component can be regarded as the performance of a team
during the season. It is positively correlated with Wins, Points,
etc. and negatively correlated with Draws, Loses, Yellow.cards,
etc. The best performing teams are not surprising: Barcelona,
Real Madrid, and Atlético Madrid. On the other hand, among
the worst-performing teams are Levante, Getafe, and Granada.
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Figure 3.34: Pseudo-biplots for laliga
dataset based on principal components
1 and 3, and principal components 2

and 3, respectively.
42 This is certainly not always true, but
it is often the case. See Figure 3.35.
43 For the sake of simplicity, we consid-
ering the exposition the first ℓ principal
components, but obviously other com-
binations of ℓ principal components
are possible.

• The second component can be seen as the efficiency of a team
(obtaining points with little participation in the game). Using
this interpretation we can see that Atlético Madrid and Villareal
were the most efficient teams and that Rayo Vallecano and Real
Madrid were the most inefficient.

• Offsides is approximately uncorrelated with Red.cards and
Matches.without.conceding.

A 3D representation of the biplot can be computed through:

pca3d::pca3d(pcaLaligaStd, show.labels = TRUE, biplot = TRUE)

rgl::rglwidget()

Finally, the biplot function allows to construct the biplot using
two arbitrary principal components using the choices argument.
Keep in mind than these pseudo-biplots will explain a lower pro-
portion of variance than the default choices = 1:2:

biplot(pcaLaligaStd, choices = c(1, 3)) # 0.7138 proportion of variance

biplot(pcaLaligaStd, choices = c(2, 3)) # 0.2180 proportion of variance

At the sight of the previous plots, can you think about an
interpretation for the third principal component?

3.6.2 Principal components regression

The key idea behind Principal Components Regression (PCR) is to
regress the response Y in a set of principal components Γ1, . . . , Γℓ

obtained from the predictors X1, . . . , Xp, where ℓ < p. The motiva-
tion is that often a small number of principal components is enough
to explain most of the variability of the predictors and consequently
their relationship with Y 42. Therefore, we look for fitting the linear
model43

Y = α0 + α1Γ1 + · · ·+ αℓΓℓ + ε. (3.14)

The main advantages of PCR are two:

1. Multicollinearity is avoided by design: Γ1, . . . , Γℓ are uncorre-
lated between them.

2. There are less coefficients to estimate (ℓ instead of p), hence the
accuracy of the estimation increases.

However, keep in mind that PCR affects the linear model in two
fundamental ways:

1. Interpretation of the coefficients is not directly related with the predic-
tors, but with the principal components. Hence, the interpretabil-
ity of a given coefficient in the regression model is tied to the
interpretability of the associated principal component.

2. Prediction needs an extra step, since it is required to obtain the
scores of the new observations of the predictors.
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44 Since we know by (3.11) that Γ =
A′(X− µ), where A is the p× p matrix
of loadings.

45 For example, thanks to γ̂ we know
that the estimated conditional response
of Y precisely increases γ̂j units for a
marginal unit increment in Xj.
46 If ℓ = p, then PCR is equivalent to
least squares estimation.

The first point is elaborated next. The PCR model (3.14) can be
seen as a linear model expressed in terms of the original predictors.
To make this point clearer, let’s re-express (3.14) as

Y = α0 + Γ′1:ℓα1:ℓ + ε, (3.15)

where the subindex 1 : ℓ denotes the inclusion of the vector entries
from 1 to ℓ. Now, we can express the PCR problem (3.15) in terms
of the original predictors44:

Y = α0 + (A′1:ℓ(X− µ))′α1:ℓ + ε

= (α0 − µ′A1:ℓα1:ℓ) + X′A1:ℓα1:ℓ + ε

= γ0 + X′γ1:p + ε,

where A1:ℓ represents the A matrix with only its first ℓ columns and

γ0 := α0 − µ′A1:ℓα1:ℓ, γ1:p := A1:ℓα1:ℓ. (3.16)

In other words, the coefficients α1:ℓ of the PCR done with ℓ princi-
pal components in (3.14) translate into the coefficients (3.16) of the
linear model based on the p original predictors:

Y = γ0 + γ1X1 + · · ·+ γpXp + ε.

In the sample case, we have that

γ̂0 = α̂0 − X̄′Â1:ℓα̂1:ℓ, γ̂1:p = Â1:ℓα̂1:ℓ. (3.17)

Notice that γ̂ is not the least squares estimator performed with
the original predictors, that we use to denote by β̂. γ̂ contains the
coefficients of the PCR that are associated to the original predictors.
Consequently, γ̂ is useful for the interpretation of the linear model
produced by PCR, as it can be interpreted in the same way β̂ was45.

Finally, remember that the usefulness of PCR relies on how well
we are able to reduce the dimensionality46 of the predictors and
the veracity of the assumption that the ℓ principal components are
related with Y.

Keep in mind that PCR considers the PCA done in the
set of predictors, this is, we exclude the response for ob-
vious reasons (a perfect and useless fit). It is important to
remove the response from the call to princomp if we want
to use the output in lm.

We see now two approaches for performing PCR, which we illus-
trate with the laliga dataset. The common objective is to predict
Points using the remaining variables (excluding those directly
related: Wins, Draws, Loses, and Matches.without.conceding) in or-
der to quantify, explain, and predict the final points of a team from
its performance.

The first approach combines the use of the princomp and lm

functions. Its strong points are that is both able to predict and
explain, and is linked with techniques we have employed so far.
The weak point is that it requires extra coding.
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# A linear model is problematic

mod <- lm(Points ~ . - Wins - Draws - Loses - Matches.without.conceding,

data = laliga)

summary(mod) # Lots of non-significant predictors

##

## Call:

## lm(formula = Points ~ . - Wins - Draws - Loses - Matches.without.conceding,

## data = laliga)

##

## Residuals:

## Min 1Q Median 3Q Max

## -5.2117 -1.4766 0.0544 1.9515 4.1422

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 77.11798 26.12915 2.951 0.0214 *
## Goals.scored -28.21714 17.44577 -1.617 0.1498

## Goals.conceded -24.23628 15.45595 -1.568 0.1608

## Percentage.scored.goals 1066.98731 655.69726 1.627 0.1477

## Percentage.conceded.goals 896.94781 584.97833 1.533 0.1691

## Shots -0.10246 0.07754 -1.321 0.2279

## Shots.on.goal 0.02024 0.13656 0.148 0.8863

## Penalties.scored -0.81018 0.77600 -1.044 0.3312

## Assistances 1.41971 0.44103 3.219 0.0147 *
## Fouls.made -0.04438 0.04267 -1.040 0.3328

## Yellow.cards 0.27850 0.16814 1.656 0.1416

## Red.cards 0.68663 1.44229 0.476 0.6485

## Offsides -0.00486 0.14854 -0.033 0.9748

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 4.274 on 7 degrees of freedom

## Multiple R-squared: 0.9795, Adjusted R-squared: 0.9443

## F-statistic: 27.83 on 12 and 7 DF, p-value: 9.784e-05

# We try to clean the model

modBIC <- MASS::stepAIC(mod, k = log(nrow(laliga)), trace = 0)

summary(modBIC) # Better, but still unsatisfactory

##

## Call:

## lm(formula = Points ~ Goals.scored + Goals.conceded + Percentage.scored.goals +

## Percentage.conceded.goals + Shots + Assistances + Yellow.cards,

## data = laliga)

##

## Residuals:

## Min 1Q Median 3Q Max

## -5.4830 -1.4505 0.9008 1.1813 5.8662

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 62.91373 10.73528 5.860 7.71e-05 ***
## Goals.scored -23.90903 11.22573 -2.130 0.05457 .

## Goals.conceded -12.16610 8.11352 -1.499 0.15959

## Percentage.scored.goals 894.56861 421.45891 2.123 0.05528 .

## Percentage.conceded.goals 440.76333 307.38671 1.434 0.17714

## Shots -0.05752 0.02713 -2.120 0.05549 .

## Assistances 1.42267 0.28462 4.999 0.00031 ***
## Yellow.cards 0.11313 0.07868 1.438 0.17603

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 3.743 on 12 degrees of freedom

## Multiple R-squared: 0.973, Adjusted R-squared: 0.9572

## F-statistic: 61.77 on 7 and 12 DF, p-value: 1.823e-08

# Also, huge multicollinearity

car::vif(modBIC)

## Goals.scored Goals.conceded Percentage.scored.goals Percentage.conceded.goals
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## 77998.044760 22299.952547 76320.612579 22322.307151

## Shots Assistances Yellow.cards

## 6.505748 32.505831 3.297224

# A quick way of removing columns without knowing its position

laligaRed <- subset(laliga, select = -c(Points, Wins, Draws, Loses,

Matches.without.conceding))

# PCA without Points, Wins, Draws, Loses, and Matches.without.conceding

pcaLaligaRed <- princomp(x = laligaRed, cor = TRUE, fix_sign = TRUE)

summary(pcaLaligaRed) # l = 3 gives 86% of variance explained

## Importance of components:

## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8

## Standard deviation 2.7437329 1.4026745 0.91510249 0.8577839 0.65747209 0.5310954 0.332556029 0.263170555

## Proportion of Variance 0.6273392 0.1639580 0.06978438 0.0613161 0.03602246 0.0235052 0.009216126 0.005771562

## Cumulative Proportion 0.6273392 0.7912972 0.86108155 0.9223977 0.95842012 0.9819253 0.991141438 0.996913000

## Comp.9 Comp.10 Comp.11 Comp.12

## Standard deviation 0.146091551 0.125252621 3.130311e-03 1.801036e-03

## Proportion of Variance 0.001778562 0.001307352 8.165704e-07 2.703107e-07

## Cumulative Proportion 0.998691562 0.999998913 9.999997e-01 1.000000e+00

# Interpretation of PC1 and PC2

biplot(pcaLaligaRed)

# PC1: attack performance of the team

# Create a new dataset with the response + principal components

laligaPCA <- data.frame("Points" = laliga$Points, pcaLaligaRed$scores)

# Regression on all the principal components

modPCA <- lm(Points ~ ., data = laligaPCA)

summary(modPCA) # Predictors clearly significative -- same Rˆ2 as mod

##

## Call:

## lm(formula = Points ~ ., data = laligaPCA)

##

## Residuals:

## Min 1Q Median 3Q Max

## -5.2117 -1.4766 0.0544 1.9515 4.1422

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 52.4000 0.9557 54.831 1.76e-10 ***
## Comp.1 5.7690 0.3483 16.563 7.14e-07 ***
## Comp.2 -2.4376 0.6813 -3.578 0.0090 **
## Comp.3 3.4222 1.0443 3.277 0.0135 *
## Comp.4 -3.6079 1.1141 -3.238 0.0143 *
## Comp.5 1.9713 1.4535 1.356 0.2172

## Comp.6 5.7067 1.7994 3.171 0.0157 *
## Comp.7 -3.4169 2.8737 -1.189 0.2732

## Comp.8 9.0212 3.6313 2.484 0.0419 *
## Comp.9 -4.6455 6.5415 -0.710 0.5006

## Comp.10 -10.2087 7.6299 -1.338 0.2227

## Comp.11 222.0340 305.2920 0.727 0.4907

## Comp.12 -954.7650 530.6164 -1.799 0.1150

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 4.274 on 7 degrees of freedom

## Multiple R-squared: 0.9795, Adjusted R-squared: 0.9443

## F-statistic: 27.83 on 12 and 7 DF, p-value: 9.784e-05

car::vif(modPCA) # No problems at all

## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10 Comp.11 Comp.12

## 1 1 1 1 1 1 1 1 1 1 1 1

# Using the first three components

modPCA3 <- lm(Points ~ Comp.1 + Comp.2 + Comp.3, data = laligaPCA)

summary(modPCA3)

##
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## Call:

## lm(formula = Points ~ Comp.1 + Comp.2 + Comp.3, data = laligaPCA)

##

## Residuals:

## Min 1Q Median 3Q Max

## -8.178 -4.541 -1.401 3.501 16.093

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 52.4000 1.5672 33.435 3.11e-16 ***
## Comp.1 5.7690 0.5712 10.100 2.39e-08 ***
## Comp.2 -2.4376 1.1173 -2.182 0.0444 *
## Comp.3 3.4222 1.7126 1.998 0.0630 .

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 7.009 on 16 degrees of freedom

## Multiple R-squared: 0.8738, Adjusted R-squared: 0.8501

## F-statistic: 36.92 on 3 and 16 DF, p-value: 2.027e-07

# Coefficients associated to each original predictor (gamma)

alpha <- modPCA3$coefficients

gamma <- pcaLaligaRed$loadings[, 1:3] %*% alpha[-1] # Slopes

gamma <- c(alpha[1] - pcaLaligaRed$center %*% gamma, gamma) # Intercept

names(gamma) <- c("Intercept", rownames(pcaLaligaRed$loadings))

gamma

## Intercept Goals.scored Goals.conceded Percentage.scored.goals

## -44.2288551 1.7305124 -3.4048178 1.7416378

## Percentage.conceded.goals Shots Shots.on.goal Penalties.scored

## -3.3944235 0.2347716 0.8782162 2.6044699

## Assistances Fouls.made Yellow.cards Red.cards

## 1.4548813 -0.1171732 -1.7826488 -2.6423211

## Offsides

## 1.3755697

# We can overpenalize to have a simpler model -- also one single

# principal component does quite well

modPCABIC <- MASS::stepAIC(modPCA, k = 2 * log(nrow(laliga)), trace = 0)

summary(modPCABIC)

##

## Call:

## lm(formula = Points ~ Comp.1 + Comp.2 + Comp.3 + Comp.4 + Comp.6 +

## Comp.8, data = laligaPCA)

##

## Residuals:

## Min 1Q Median 3Q Max

## -6.6972 -2.6418 -0.3265 2.3535 8.4944

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 52.4000 1.0706 48.946 3.95e-16 ***
## Comp.1 5.7690 0.3902 14.785 1.65e-09 ***
## Comp.2 -2.4376 0.7632 -3.194 0.00705 **
## Comp.3 3.4222 1.1699 2.925 0.01182 *
## Comp.4 -3.6079 1.2481 -2.891 0.01263 *
## Comp.6 5.7067 2.0158 2.831 0.01416 *
## Comp.8 9.0212 4.0680 2.218 0.04502 *
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 4.788 on 13 degrees of freedom

## Multiple R-squared: 0.9521, Adjusted R-squared: 0.9301

## F-statistic: 43.11 on 6 and 13 DF, p-value: 7.696e-08

# Note that the order of the principal components does not correspond

# exactly to its importance in the regression!

# To perform prediction we need to compute first the scores associated to the

# new values of the predictors, conveniently preprocessed
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# Predictions for FCB and RMA (although they are part of the training sample)

newPredictors <- laligaRed[1:2, ]

newPredictors <- scale(newPredictors, center = pcaLaligaRed$center,

scale = pcaLaligaRed$scale) # Centered and scaled

newScores <- t(apply(newPredictors, 1,

function(x) t(pcaLaligaRed$loadings) %*% x))

# We need a data frame for prediction

newScores <- data.frame("Comp" = newScores)

predict(modPCABIC, newdata = newScores, interval = "prediction")

## fit lwr upr

## Barcelona 93.64950 80.35115 106.9478

## Real Madrid 90.05622 77.11876 102.9937

# Reality

laliga[1:2, 1]

## [1] 91 90

The second approach employs the function pls::pcr and is more
direct, yet less connected with the techniques we have seen so far.
It employs a model object that is different from the lm object and,
as a consequence, functions like summary, BIC, MASS::stepAIC, or
plot will not work properly. This implies that inference, model
selection, and model diagnostics are not so straightforward. In
exchange, pls::pcr allows for model fitting in an easier way and
model selection through the use of cross-validation. In overall, this
is a more pure predictive approach than predictive and explicative.

# Create a dataset without the problematic predictors and with the response

laligaRed2 <- subset(laliga, select = -c(Wins, Draws, Loses,

Matches.without.conceding))

# Simple call to pcr

library(pls)

modPcr <- pcr(Points ~ ., data = laligaRed2, scale = TRUE)

# Notice we do not need to create a data.frame with PCA, it is automatically

# done within pcr. We also have flexibility to remove predictors from the PCA

# scale = TRUE means that the predictors are scaled internally before computing

# PCA

# The summary of the model is different

summary(modPcr)

## Data: X dimension: 20 12

## Y dimension: 20 1

## Fit method: svdpc

## Number of components considered: 12

## TRAINING: % variance explained

## 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps 8 comps 9 comps 10 comps 11 comps 12 comps

## X 62.73 79.13 86.11 92.24 95.84 98.19 99.11 99.69 99.87 100.00 100 100.00

## Points 80.47 84.23 87.38 90.45 90.99 93.94 94.36 96.17 96.32 96.84 97 97.95

# First row: percentage of variance explained of the predictors

# Second row: percentage of variance explained of Y (the Rˆ2)

# Note that we have the same Rˆ2 for 3 and 12 components as in the previous

# approach

# Slots of information in the model -- most of them as 3-dim arrays with the

# third dimension indexing the number of components considered

names(modPcr)

## [1] "coefficients" "scores" "loadings" "Yloadings" "projection" "Xmeans" "Ymeans"

## [8] "fitted.values" "residuals" "Xvar" "Xtotvar" "fit.time" "ncomp" "method"

## [15] "scale" "call" "terms" "model"

# The coefficients of the original predictors (gammas), not of the components!

modPcr$coefficients[, , 12]

## Goals.scored Goals.conceded Percentage.scored.goals Percentage.conceded.goals
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## -602.85050765 -383.07010184 600.61255371 374.38729000

## Shots Shots.on.goal Penalties.scored Assistances

## -8.27239221 0.88174787 -2.14313238 24.42240486

## Fouls.made Yellow.cards Red.cards Offsides

## -2.96044265 5.51983512 1.20945331 -0.07231723

# pcr() computes up to ncomp (in this case, 12) linear models, each one

# considering one extra principal component. $coefficients returns in a

# 3-dim array the coefficients of all the linear models

# Prediction is simpler and can be done for different number of components

predict(modPcr, newdata = laligaRed2[1:2, ], ncomp = 12)

## , , 12 comps

##

## Points

## Barcelona 92.01244

## Real Madrid 91.38026

# Selecting the number of components to retain. All the components up to ncomp

# are selected, no further flexibility is possible

modPcr2 <- pcr(Points ~ ., data = laligaRed2, scale = TRUE, ncomp = 3)

summary(modPcr2)

## Data: X dimension: 20 12

## Y dimension: 20 1

## Fit method: svdpc

## Number of components considered: 3

## TRAINING: % variance explained

## 1 comps 2 comps 3 comps

## X 62.73 79.13 86.11

## Points 80.47 84.23 87.38

# Selecting the number of components to retain by Leave-One-Out

# cross-validation

modPcrCV1 <- pcr(Points ~ ., data = laligaRed2, scale = TRUE,

validation = "LOO")

summary(modPcrCV1)

## Data: X dimension: 20 12

## Y dimension: 20 1

## Fit method: svdpc

## Number of components considered: 12

##

## VALIDATION: RMSEP

## Cross-validated using 20 leave-one-out segments.

## (Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps 8 comps 9 comps 10 comps 11 comps

## CV 18.57 8.505 8.390 8.588 7.571 7.688 6.743 7.09 6.224 6.603 7.547 8.375

## adjCV 18.57 8.476 8.356 8.525 7.513 7.663 6.655 7.03 6.152 6.531 7.430 8.236

## 12 comps

## CV 7.905

## adjCV 7.760

##

## TRAINING: % variance explained

## 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps 8 comps 9 comps 10 comps 11 comps 12 comps

## X 62.73 79.13 86.11 92.24 95.84 98.19 99.11 99.69 99.87 100.00 100 100.00

## Points 80.47 84.23 87.38 90.45 90.99 93.94 94.36 96.17 96.32 96.84 97 97.95

# View cross-validation Mean Squared Error in Prediction

validationplot(modPcrCV1, val.type = "MSEP") # l = 8 gives the minimum CV

# The black is the CV loss, the dashed red line is the adjCV loss, a bias

# corrected version of the MSEP (not described in the notes)

# Selecting the number of components to retain by 10-fold Cross-Validation

# (k = 10 is the default, this can be changed with the argument segments)

modPcrCV10 <- pcr(Points ~ ., data = laligaRed2, scale = TRUE,

validation = "CV")

summary(modPcrCV10)

## Data: X dimension: 20 12

## Y dimension: 20 1

## Fit method: svdpc
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## Number of components considered: 12

##

## VALIDATION: RMSEP

## Cross-validated using 10 random segments.

## (Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps 8 comps 9 comps 10 comps 11 comps

## CV 18.57 8.520 8.392 8.911 7.187 7.124 6.045 6.340 5.728 6.073 7.676 9.300

## adjCV 18.57 8.464 8.331 8.768 7.092 7.043 5.904 6.252 5.608 5.953 7.423 8.968

## 12 comps

## CV 9.151

## adjCV 8.782

##

## TRAINING: % variance explained

## 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps 8 comps 9 comps 10 comps 11 comps 12 comps

## X 62.73 79.13 86.11 92.24 95.84 98.19 99.11 99.69 99.87 100.00 100 100.00

## Points 80.47 84.23 87.38 90.45 90.99 93.94 94.36 96.17 96.32 96.84 97 97.95

validationplot(modPcrCV10, val.type = "MSEP") # l = 8 gives the minimum CV

pcr() does an internal scaling of the predictors by their
quasi-standard deviations. This means that each variable
is divided by 1√

n−1
, when in princomp a scaling of 1√

n
is applied (the standard deviations are employed). This
results in a minor discrepancy in the scores object of
both methods that is easily patchable. The scores of

princomp() are the ones of pcr() multiplied by
√

n
n−1 .

This problem is inherited to the coefficients, which as-
sume scores divided by 1√

n−1
. Therefore, the γ̂ coeffi-

cients described in (3.17) are obtained by dividing the

coefficients of pcr() by
√

n
n−1 .

The next chunk of code illustrates the previous warning.

# Equality of loadings from princomp() and pcr()

max(abs(abs(pcaLaligaRed$loadings[, 1:3]) - abs(modPcr$loadings[, 1:3])))

## [1] 2.664535e-15

# Equality of scores from princomp() and pcr() (with the same standardization)

max(abs(abs(pcaLaligaRed$scores[, 1:3]) -

abs(modPcr$scores[, 1:3] * sqrt(n / (n - 1)))))

## [1] 9.298118e-15

# Equality of the gamma coefficients obtained previously for 3 PCA

# (with the same standardization)

modPcr$coefficients[, , 3] / sqrt(n / (n - 1))

## Goals.scored Goals.conceded Percentage.scored.goals Percentage.conceded.goals

## 1.7305124 -3.4048178 1.7416378 -3.3944235

## Shots Shots.on.goal Penalties.scored Assistances

## 0.2347716 0.8782162 2.6044699 1.4548813

## Fouls.made Yellow.cards Red.cards Offsides

## -0.1171732 -1.7826488 -2.6423211 1.3755697

gamma[-1]

## Goals.scored Goals.conceded Percentage.scored.goals Percentage.conceded.goals

## 1.7305124 -3.4048178 1.7416378 -3.3944235

## Shots Shots.on.goal Penalties.scored Assistances

## 0.2347716 0.8782162 2.6044699 1.4548813

## Fouls.made Yellow.cards Red.cards Offsides

## -0.1171732 -1.7826488 -2.6423211 1.3755697

# Coefficients associated to the principal components -- same as in modPCA3

lm(Points ~ ., data = data.frame("Points" = laliga$Points,

modPcr$scores[, 1:3] * sqrt(n / (n - 1))))
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47 Alternatively, the “in Prediction”
part of the latter terms is dropped and
they are just referred to as the MSE
and RMSE.

##

## Call:

## lm(formula = Points ~ ., data = data.frame(Points = laliga$Points,

## modPcr$scores[, 1:3] * sqrt(n/(n - 1))))

##

## Coefficients:

## (Intercept) Comp.1 Comp.2 Comp.3

## 52.400 -5.769 2.438 -3.422

modPCA3

##

## Call:

## lm(formula = Points ~ Comp.1 + Comp.2 + Comp.3, data = laligaPCA)

##

## Coefficients:

## (Intercept) Comp.1 Comp.2 Comp.3

## 52.400 5.769 -2.438 3.422

# Of course, flipping of signs is always possible with PCA

The selection of ℓ by cross-validation attempts to minimize
the Mean Squared Error in Prediction (MSEP) or, equivalently, the
Root MSEP (RMSEP) of the model47. This is a Swiss army knife
method valid for the selection of any tuning parameter λ that
affects the form of the estimate m̂λ of the regression function m
(remember (1.1)). Given the sample {(Xi, Yi)}n

i=1, leave-one-out
cross-validation considers the tuning parameter

λ̂CV := arg min
λ≥0

n

∑
i=1

(Yi − m̂λ,−i(Xi))
2, (3.18)

where m̂λ,−i represents the fit of the model m̂λ without the i-th
observation (Xi, Yi).

A less computationally expensive variation on leave-one-out
cross-validation is k-fold cross-validation, which partitions the data
into k folds F1, . . . , Fk of approximately equal size, trains the model
m̂λ in the aggregation of k− 1 folds, and evaluates its MSEP in the
remaining fold:

λ̂k-CV := arg min
λ≥0

k

∑
j=1

∑
i∈Fj

(Yi − m̂λ,−Fj(Xi))
2, (3.19)

where m̂λ,−Fj represents the fit of the model m̂λ excluding the data
from the j-th fold Fj. Recall that k-fold cross-validation is more
general than leave-one-out cross-validation, since the latter is a
particular case of the former with k = n.
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k-fold cross validation with k < n depends on the choice
of the folds for splitting the data (i.e., how each datum
is assigned to each of the k folds). Some statistical soft-
wares do this assignment randomly, which means that
the selection of λ̂k-CV may vary from one run to another.
Thus, fixing the seed prior to the parameter selection is
important to ensure reproducibility. Another alternative
is to aggregate, in a convenient way, the results of several
k-fold cross-validations done in different random random
partitions. This problem is not present in leave-one-out
cross-validation (where k = n).

Inference in PCR can be carried out as in the standard
linear model. The key point is to realize that it is about
the coefficients α0:ℓ associated to the ℓ principal compo-
nents, and that it can be carried out by the summary()

function on the output of lm(). The coefficients α0:ℓ are
the ones estimated by least squares when considering
the scores of the ℓ principal components as the predic-
tors. This transformation of the predictors does not affect
the validity of the inferential results of Section 2.4 (de-
rived conditionally on the predictors). But recall that this
inference is not about γ.

Inference in PCR is based on the assumptions of the lin-
ear model being satisfied for the considered conprincipal
components. The evaluation of the assumptions can be
done using the exact same tools described in Section 3.5.
However, keep in mind that PCA is a linear transforma-
tion of the data. Therefore:

• If the linearity assumption fails for the predictors
X1, . . . , Xp, then it will also likely fail for Γ1, . . . , Γℓ,
since the transformation will not introduce nonlineari-
ties able to capture the nonlinear effects.

• Similarly, if the homoscedasticity, normality, or inde-
pendence assumptions fail for X1, . . . , Xp, then they
will also likely fail for Γ1, . . . , Γℓ.

Exceptions to the previous common implications are pos-
sible, and may involve the association of one or several
problematic predictors (e.g., have nonlinear effects on the
response) to the principal components that are excluded
from the model. Up to which extent the failure of the
assumptions in the original predictors can be mitigated
by PCR depends on each application.
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48 Compare (3.20) with (3.9).

49 Recall (2.3) for the sample version.

50 They play the role of X1, . . . , Xp
in the computation of P1 and can be
regarded as X1, . . . , Xp after filtering
the linear information explained by P1.

51 Of course, in practice, the compu-
tations need to be done in terms of
the sample versions of the presented
population versions.

3.6.3 Partial least squares regression

PCR works by replacing the predictors X1, . . . , Xp by a set of prin-
cipal components Γ1, . . . , Γℓ, under the hope that these directions,
that explain most of the variability of the predictors, are also the
best directions for predicting the response Y. While this is a reason-
able belief, it is not a guaranteed fact. Partial Least Squares Regression
(PLSR) precisely tackles this point with the idea of regressing the
response Y on a set of new variables P1, . . . , Pℓ that are constructed
with the objective of predicting Y from X1, . . . , Xp in the best linear
way.

As with PCA, the idea is to find linear combinations of the pre-
dictors X1, . . . , Xp, that is, to have:

P1 :=
p

∑
j=1

a1jXj, . . . , Pp :=
p

∑
j=1

apjXj. (3.20)

These new predictors are called PLS components48.
The question is how to choose the coefficients akj, j, k = 1, . . . , p.

PLSR does it by placing the most weight in the predictors that are
most strongly correlated with Y and in such a way that the result-
ing P1, . . . , Pp are uncorrelated between them. After standardizing
the variables, for P1 this is achieved by setting a1j equal to the theo-
retical slope coefficient of regressing Y into Xj, that is49:

a1j :=
Cov[Xj, Y]

Var[Xj]
,

where a1j stems from Y = a0 + a1jXj + ε.
The second partial least squares direction, P2, is computed in a

similar way, but once the linear effects of P1 on X1, . . . , Xp are removed.
This is achieved by:

1. Regressing each of X1, . . . , Xp on P1. That is, fit the p simple
linear models

Xj = α0 + α1jP1 + ε j, j = 1, . . . , p.

2. Regress Y on each of the p random errors ε1, . . . , εp
50 from the

above regressions, yielding

a2j :=
Cov[ε j, Y]

Var[ε j]
,

where a2j stems from Y = a0 + a2jε j + ε.

The coefficients for Pj, j > 2, are computed51 by iterating the
former process. Once P1, . . . , Pℓ are obtained, then PLSR proceeds
as PCR and fits the model

Y = β0 + β1P1 + · · ·+ βℓPℓ + ε.

The implementation of PLSR can be done by the function pls::plsr,
which has an analogous syntax to pls::pcr.
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# Simple call to plsr -- very similar to pcr

modPlsr <- plsr(Points ~ ., data = laligaRed2, scale = TRUE)

# The summary of the model

summary(modPlsr)

## Data: X dimension: 20 12

## Y dimension: 20 1

## Fit method: kernelpls

## Number of components considered: 12

## TRAINING: % variance explained

## 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps 8 comps 9 comps 10 comps 11 comps 12 comps

## X 62.53 76.07 84.94 88.29 92.72 95.61 98.72 99.41 99.83 100.00 100.00 100.00

## Points 83.76 91.06 93.93 95.43 95.94 96.44 96.55 96.73 96.84 96.84 97.69 97.95

# First row: percentage of variance explained of the predictors

# Second row: percentage of variance explained of Y (the Rˆ2)

# Note we have the same Rˆ2 for 12 components as in the linear model

# Slots of information in the model

names(modPlsr)

## [1] "coefficients" "scores" "loadings" "loading.weights" "Yscores" "Yloadings"

## [7] "projection" "Xmeans" "Ymeans" "fitted.values" "residuals" "Xvar"

## [13] "Xtotvar" "fit.time" "ncomp" "method" "scale" "call"

## [19] "terms" "model"

# PLS scores

head(modPlsr$scores)

## Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 Comp 7 Comp 8 Comp 9

## Barcelona 7.36407868 -0.6592285 -0.4262822 -0.1357589 0.8668796 -0.52701770 -0.1547704 -0.3104798 -0.15841110

## Real Madrid 6.70659816 -1.2848902 0.7191143 0.5679398 -0.5998745 0.30663290 0.5382173 0.2110337 0.15242836

## Atlético Madrid 2.45577740 2.6469837 0.4573647 0.6179274 -0.4307465 0.13368949 0.2951566 -0.1597672 -0.15232469

## Villarreal 0.06913485 2.0275895 0.6548014 -0.2358589 0.8350426 0.61305618 -0.6684330 0.0556628 0.07919102

## Athletic 0.96513341 0.3860060 -0.2718465 -0.1580349 -0.2649106 0.01822319 -0.1899969 0.3846156 -0.28926416

## Celta -0.39588401 -0.5296417 0.6148093 0.1494496 0.5817902 0.69106828 0.1586472 0.2396975 0.41575546

## Comp 10 Comp 11 Comp 12

## Barcelona -0.18952142 -0.0001005279 0.0011993985

## Real Madrid 0.15826286 -0.0011752690 -0.0030013550

## Atlético Madrid 0.05857664 0.0028149603 0.0012838990

## Villarreal -0.05343433 0.0012705829 -0.0001652195

## Athletic 0.03702926 -0.0008077855 0.0052995290

## Celta -0.03488514 0.0003208900 0.0022585552

# Also uncorrelated

head(cov(modPlsr$scores))

## Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 Comp 7 Comp 8

## Comp 1 7.393810e+00 3.973430e-16 -2.337312e-16 -7.304099e-18 9.115515e-16 1.149665e-15 3.272236e-16 7.011935e-17

## Comp 2 3.973430e-16 1.267859e+00 -2.980072e-16 -1.840633e-16 -2.103580e-16 -1.920978e-16 -2.337312e-17 -9.495329e-17

## Comp 3 -2.337312e-16 -2.980072e-16 9.021126e-01 -8.399714e-18 1.256305e-16 1.003401e-16 -2.921640e-18 5.843279e-18

## Comp 4 -7.304099e-18 -1.840633e-16 -8.399714e-18 3.130984e-01 -5.660677e-17 -4.660928e-17 -3.652049e-19 2.282531e-17

## Comp 5 9.115515e-16 -2.103580e-16 1.256305e-16 -5.660677e-17 2.586132e-01 9.897054e-17 8.180591e-17 3.432926e-17

## Comp 6 1.149665e-15 -1.920978e-16 1.003401e-16 -4.660928e-17 9.897054e-17 2.792408e-01 1.132135e-17 1.314738e-17

## Comp 9 Comp 10 Comp 11 Comp 12

## Comp 1 -4.090295e-17 -2.571043e-16 -1.349090e-16 -3.928806e-16

## Comp 2 -1.358562e-16 -3.652049e-17 -1.000234e-16 2.990686e-17

## Comp 3 -1.168656e-17 -2.848599e-17 8.478176e-18 -9.205732e-18

## Comp 4 2.246010e-17 2.757297e-17 -2.658007e-17 -7.249889e-18

## Comp 5 4.382459e-18 1.679943e-17 -5.937433e-18 7.983152e-18

## Comp 6 1.150396e-17 2.191230e-18 -2.137412e-17 -5.567770e-18

# The coefficients of the original predictors, not of the components!

modPlsr$coefficients[, , 2]

## Goals.scored Goals.conceded Percentage.scored.goals Percentage.conceded.goals

## 1.8192870 -4.4038213 1.8314760 -4.4045722

## Shots Shots.on.goal Penalties.scored Assistances

## 0.4010902 0.9369002 -0.2006251 2.3688050

## Fouls.made Yellow.cards Red.cards Offsides

## 0.2807601 -1.6677725 -2.4952503 1.2187529

# Obtaining the coefficients of the PLS components



148 eduardo garcía-portugués

0 2 4 6 8 10 12

5
0

1
0

0
1

5
0

2
0

0
2

5
0

3
0

0
3

5
0

Points

number of components

M
S

E
P

lm(formula = Points ~., data = data.frame("Points" = laliga$Points,

modPlsr$scores[, 1:3]))

##

## Call:

## lm(formula = Points ~ ., data = data.frame(Points = laliga$Points,

## modPlsr$scores[, 1:3]))

##

## Coefficients:

## (Intercept) Comp.1 Comp.2 Comp.3

## 52.400 6.093 4.341 3.232

# Prediction

predict(modPlsr, newdata = laligaRed2[1:2, ], ncomp = 12)

## , , 12 comps

##

## Points

## Barcelona 92.01244

## Real Madrid 91.38026

# Selecting the number of components to retain

modPlsr2 <- plsr(Points ~ ., data = laligaRed2, scale = TRUE, ncomp = 2)

summary(modPlsr2)

## Data: X dimension: 20 12

## Y dimension: 20 1

## Fit method: kernelpls

## Number of components considered: 2

## TRAINING: % variance explained

## 1 comps 2 comps

## X 62.53 76.07

## Points 83.76 91.06

# Selecting the number of components to retain by Leave-One-Out cross-validation

modPlsrCV1 <- plsr(Points ~ ., data = laligaRed2, scale = TRUE,

validation = "LOO")

summary(modPlsrCV1)

## Data: X dimension: 20 12

## Y dimension: 20 1

## Fit method: kernelpls

## Number of components considered: 12

##

## VALIDATION: RMSEP

## Cross-validated using 20 leave-one-out segments.

## (Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps 8 comps 9 comps 10 comps 11 comps

## CV 18.57 8.307 7.221 6.807 6.254 6.604 6.572 6.854 7.348 7.548 7.532 7.854

## adjCV 18.57 8.282 7.179 6.742 6.193 6.541 6.490 6.764 7.244 7.430 7.416 7.717

## 12 comps

## CV 7.905

## adjCV 7.760

##

## TRAINING: % variance explained

## 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps 8 comps 9 comps 10 comps 11 comps 12 comps

## X 62.53 76.07 84.94 88.29 92.72 95.61 98.72 99.41 99.83 100.00 100.00 100.00

## Points 83.76 91.06 93.93 95.43 95.94 96.44 96.55 96.73 96.84 96.84 97.69 97.95

# View cross-validation Mean Squared Error Prediction

validationplot(modPlsrCV1, val.type = "MSEP") # l = 4 gives the minimum CV

# Selecting the number of components to retain by 10-fold Cross-Validation

# (k = 10 is the default)

modPlsrCV10 <- plsr(Points ~ ., data = laligaRed2, scale = TRUE,

validation = "CV")

summary(modPlsrCV10)

## Data: X dimension: 20 12

## Y dimension: 20 1

## Fit method: kernelpls

## Number of components considered: 12

##
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## VALIDATION: RMSEP

## Cross-validated using 10 random segments.

## (Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps 8 comps 9 comps 10 comps 11 comps

## CV 18.57 7.895 6.944 6.571 6.330 6.396 6.607 7.018 7.487 7.612 7.607 8.520

## adjCV 18.57 7.852 6.868 6.452 6.201 6.285 6.444 6.830 7.270 7.372 7.368 8.212

## 12 comps

## CV 8.014

## adjCV 7.714

##

## TRAINING: % variance explained

## 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps 8 comps 9 comps 10 comps 11 comps 12 comps

## X 62.53 76.07 84.94 88.29 92.72 95.61 98.72 99.41 99.83 100.00 100.00 100.00

## Points 83.76 91.06 93.93 95.43 95.94 96.44 96.55 96.73 96.84 96.84 97.69 97.95

validationplot(modPlsrCV10, val.type = "MSEP")

# l = 4 is close to the minimum CV

# Regress manually Points in the scores, in order to have an lm object

# Create a new dataset with the response + PLS components

laligaPLS <- data.frame("Points" = laliga$Points, cbind(modPlsr$scores))

# Regression on the first two PLS

modPlsr <- lm(Points ~ Comp.1 + Comp.2, data = laligaPLS)

summary(modPlsr) # Predictors clearly significative -- same Rˆ2 as in modPlsr2

##

## Call:

## lm(formula = Points ~ Comp.1 + Comp.2, data = laligaPLS)

##

## Residuals:

## Min 1Q Median 3Q Max

## -9.3565 -3.6157 0.4508 2.3288 12.3116

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 52.4000 1.2799 40.941 < 2e-16 ***
## Comp.1 6.0933 0.4829 12.618 4.65e-10 ***
## Comp.2 4.3413 1.1662 3.723 0.00169 **
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 5.724 on 17 degrees of freedom

## Multiple R-squared: 0.9106, Adjusted R-squared: 0.9

## F-statistic: 86.53 on 2 and 17 DF, p-value: 1.225e-09

car::vif(modPlsr) # No problems at all

## Comp.1 Comp.2

## 1 1
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Let’s perform PCR and PLSR in the iris dataset. Recall
that this dataset contains a factor variable, which can
not be treated directly by princomp but can be used in
PCR/PLSR (it is transformed internally to two dummy
variables). Do the following:

a. Compute the PCA of iris, excluding Species. What
is the percentage of variability explained with two
components?

b. Draw the biplot and look for interpretations of the
principal components.

c. Plot the PCA scores in a car::scatterplotMatrix

plot such that the scores are colored by the levels in
Species (you can use the groups argument).

d. Compute the PCR of Petal.Width with ℓ = 2 (exclude
Species). Inspect by leave-one-out cross-validation the
best selection of ℓ.

e. Repeat the previous point with PLSR.
f. Plot the PLS scores of the data in a

car::scatterplotMatrix plot such that the scores
are colored by the levels in Species. Compare with the
PCA scores. Is there any interesting interpretation? (A
quick way of converting the scores to a matrix is with
rbind.)

In theory, the dimensionality reduction of PLSR is more
adequate for linear regression than that of PCR. How-
ever, in many practical situations PLSR and PCR tend
to perform similarly, since the variance of the PLSR
predictors P1, . . . , Pℓ is larger (due to the iterative linear-
filtering procedure on which they are constructed) than
the variance of the PCR predictors Γ1, . . . , Γℓ.

Inference for PLSR is more involved since, differently to
what happens in PCR, the PLS directions are dependent
on the response Y. This directly breaks a core assump-
tion made in Section 2.4: that the randomness of the
regression model came only from the error terms and not
from the predictors.

We conclude by illustrating the differences between PLSR and
PCR with a small numerical example. For that, we consider two
correlated predictors(

X1

X2

)
∼ N2

((
0
0

)
,

(
1 ρ

ρ 1

))
, −1 ≤ ρ ≤ 1, (3.21)



notes for predictive modeling 151

52 Recall that we do not care about
whether the directions of PLS1 and β
are close, but rather if the axes spanned
by PLS1 and β are close. The signs of
β are learned during the model fitting!

53 In the sense that the absolute value
of the projection of β along (b̂11, b̂21)

′,
|(b̂11, b̂21)β|, is usually larger than that
along (â11, â21)

′.

and the linear model

Y = β1X1 + β2X2 + ε, β =

(
cos(θ)
sin(θ)

)
, (3.22)

where θ ∈ [0, 2π) and ε ∼ N (0, 1). Therefore:

• The correlation ρ controls the linear dependence between X1

and X2. This parameter is the only one that affects the two prin-
cipal components Γ1 = a11X1 + a21X2 and Γ2 = a12X1 + a22X2

(recall (3.9)). The loadings (â11, â21)
′ and (â12, â22)

′ are the (sam-
ple) PC1 and PC2 directions.

• The angle θ controls the direction of β, that is, the linear relation
between Y and (X1, X2). Consequently, θ affects the PLS compo-
nents P1 = b11X1 + b21X2 and P2 = b12X1 + b22X2 (recall (3.20),
with adapted notation). The loadings (b̂11, b̂21)

′ and (b̂12, b̂22)
′ are

the (sample) PLS1 and PLS2 directions.

The animation in Figure 3.35 contains samples from (3.21) col-
ored according to their expected value under (3.22). It illustrates the
following insights:

• PC directions are unaware of β; PLS directions are affected by β.
• PC directions are always orthogonal; PLS directions are not.
• PLS1 aligns52 with β when ρ = 0. This does not happen when

ρ ̸= 0 (remember Figure 2.6).
• Under high correlation, the PLS and PC directions are very simi-

lar.
• Under low-moderate correlation, PLS1 better explains53 β than

PC1.

Figure 3.35: Illustration of the differ-
ences and similarities between PCR
and PLSR. The points are sampled
from (3.21) and colored according
to their expected value under (3.22):
yellow for larger values; dark violet
for smaller. The color gradient is thus
controlled by the direction of β (black
arrow) and informs on the position
of the plane y = β1x1 + β2x2. The
PC/PLS directions are described in the
text. Application available here.

https://shinyserv.es/shiny/plsr/




1 See Section 1.2.

4
Linear models III: shrinkage, multivariate response, and
big data

We explore in this chapter several extensions of the linear model
for certain non-classical settings such as: high-dimensional data
(p ≫ n) that requires from shrinkage methods, big data (large
n) that demands thoughtful computations, and the multivariate
response situation in which the interest lies on explaining a vector
of responses Y = (Y1, . . . , Yq).

4.1 Shrinkage

As we saw in Section 2.4.1, the least squares estimates β̂ of the
linear model

Y = β0 + β1X1 + · · ·+ βpXp + ε

were the minimizers of the residual sum of squares

RSS(β) =
n

∑
i=1

(Yi − β0 − β1Xi1 − · · · − βpXip)
2.

Under the validity of the assumptions of Section 2.3, in Section 2.4
we saw that

β̂ ∼ Np+1

(
β, σ2(X′X)−1

)
.

A particular consequence of this result is that β̂ is unbiased in esti-
mating β, that is, β̂ does not make any systematic error in estimat-
ing β. However, bias is only one part of the quality of an estimate:
variance is also important. Indeed, the bias-variance trade-off 1 arises
from the bias-variance decomposition of the Mean Squared Error
(MSE) of an estimate. For example, for the estimate β̂ j of β j, we
have

MSE[β̂ j] := E[(β̂ j − β j)
2] = (E[β̂ j]− β j)

2︸ ︷︷ ︸
Bias2

+Var[β̂ j]︸ ︷︷ ︸
Variance

. (4.1)

Shrinkage methods pursue the following idea:
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2 Remember that, for a vector x ∈ Rm,
r ≥ 1, the ℓr norm (usually referred
to as ℓp norm, but renamed here to
avoid confusion with the number
of predictors) is defined as ∥x∥r :=(

∑m
j=1 |xj|r

)1/r
. The ℓ∞ norm is

defined as ∥x∥∞ := max1≤j≤m |xj| and
it is satisfied that limr→∞ ∥x∥r = ∥x∥∞,
for all x ∈ Rm. A visualization of these
norms for m = 2 is given in Figure 4.1.
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Figure 4.1: The “unit circle”
∥(x1, x2)∥r = 1 for r = 1, 2, 3, 4, ∞.
3 Such as, for example, RSS(β) +
λ∥β−1∥r

r , for r ≥ 1.

4 The function ∥x∥r
r is convex if r ≥ 1.

If 0 < r < 1, ∥x∥r
r is not convex.

5 The main exception being the ridge
regression, as seen in Section 4.1.1.
6 In addition, α can also be regarded
as a tuning parameter. We do not deal
with its data-driven selection in these
notes, as this will imply a more costly
optimization of the cross-validation on
the pair (λ, α).

Add an amount of smart bias to β̂ in order to reduce its variance,
in such a way that we obtain simpler interpretations from the biased
version of β̂.

This idea is implemented by enforcing sparsity, that is, by biasing
the estimates of β towards being non-null only for the most im-
portant predictors. The two main methods covered in this section,
ridge regression and lasso (least absolute shrinkage and selection op-
erator), use this idea in a different way. However, it is important to
realize that both methods do consider the standard linear model;
what they do different is the way of estimating β.

The way they enforce sparsity in the estimates is by minimizing
the RSS plus a penalty term that favors sparsity on the estimated
coefficients. For example, the ridge regression enforces a quadratic
penalty to the candidate slope coefficients β−1 = (β1, . . . , βp)′ and
seeks to minimize2

RSS(β) + λ
p

∑
j=1

β2
j = RSS(β) + λ∥β−1∥

2
2, (4.2)

where λ ≥ 0 is the penalty parameter. On the other hand, the lasso
considers an absolute penalty:

RSS(β) + λ
p

∑
j=1
|β j| = RSS(β) + λ∥β−1∥1. (4.3)

Among other possible joint representations for (4.2) and (4.3)3,
the one based on the elastic nets is particularly convenient, as it aims
to combine the strengths of both methods in a computationally
tractable way and is the one employed in the reference package
glmnet. Considering a proportion 0 ≤ α ≤ 1, the elastic net is
defined as

RSS(β) + λ(α∥β−1∥1 + (1− α)∥β−1∥
2
2). (4.4)

Clearly, ridge regression corresponds to α = 0 (quadratic penalty)
and lasso to α = 1 (absolute penalty). Obviously, if λ = 0, we are
back to the least squares problem and theory. The optimization of
(4.4) gives

β̂λ,α := arg min
β∈Rp+1

{
RSS(β) + λ

p

∑
j=1

(α|β j|+ (1− α)|β j|2)
}

, (4.5)

which is the penalized estimation of β. Note that the sparsity is
enforced in the slopes, not in the intercept, since this depends on
the mean of Y. Note also that the optimization problem is convex4

and therefore it is guaranteed the existence and uniqueness of a
minimum. However, in general5, there are no explicit formulas for
β̂λ,α and the optimization problem needs to be solved numerically.
Finally, λ is a tuning parameter that will need to be chosen suitably
and that we will discuss later6. What it is important now is to recall
that the predictors need to be standardized, or otherwise its scale will
distort the optimization of (4.4).
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7 Recall that (4.5) can be seen as the
Lagrangian of (4.6). Because of the
convexity of the optimization problem,
the minimizers of (4.5) and (4.6) do
actually coincide.

An equivalent way of viewing (4.5) that helps in visualizing the
differences between the ridge and lasso regressions is that they try
to solve the equivalent optimization problem7 of (4.5):

β̂sλ ,α := arg min
β∈Rp+1 :∑

p
j=1(α|β j |+(1−α)|β j |2)≤sλ

RSS(β), (4.6)

where sλ is certain scalar that does not depend on β.

Figure 4.2: Comparison of ridge and
lasso solutions from the optimization
problem (4.6) with p = 2. The elliptical
contours show the regions with equal
RSS(β1, β2), the objective function, for
(β1, β2) ∈ R2 (β0 = 0 is assumed).
The diamond (α = 1) and circular
(α = 0) regions show the feasibility
regions determined by ∑

p
j=1(α|β j|+

(1− α)|β j|2) ≤ sλ for the optimization
problem. The sharpness of the diamond
makes the lasso attain solutions with
many coefficients exactly equal to
zero, in a similar situation to the one
depicted. Extracted from James et al.
(2013).

The glmnet package is the reference implementation of shrinkage
estimators based on elastic nets. In order to illustrate how to apply
the ridge and lasso regression in practice, we will work with the
ISLR::Hitters dataset. This dataset contains statistics and salaries
from baseball players from the 1986 and 1987 seasons. The objective
will be to predict the Salary from the remaining predictors.

# Load data -- baseball players statistics

data(Hitters, package = "ISLR")

# Discard NA's

Hitters <- na.omit(Hitters)

# The glmnet function works with the design matrix of predictors (without

# the ones). This can be obtained easily through model.matrix()

x <- model.matrix(Salary ~ 0 + ., data = Hitters)

# 0 + to exclude a column of 1's for the intercept, since the intercept will be

# added by default in glmnet::glmnet and if we do not exclude it here we will

# end with two intercepts, one of them resulting in NA. In the newer versions of

# glmnet this step is luckily not necessary

# Interestingly, note that in Hitters there are two-level factors and these

# are automatically transformed into dummy variables in x -- the main advantage

# of model.matrix

head(Hitters[, 14:20])

## League Division PutOuts Assists Errors Salary NewLeague

## -Alan Ashby N W 632 43 10 475.0 N

## -Alvin Davis A W 880 82 14 480.0 A

## -Andre Dawson N E 200 11 3 500.0 N

## -Andres Galarraga N E 805 40 4 91.5 N

## -Alfredo Griffin A W 282 421 25 750.0 A

## -Al Newman N E 76 127 7 70.0 A

head(x[, 14:19])

## LeagueA LeagueN DivisionW PutOuts Assists Errors
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## -Alan Ashby 0 1 1 632 43 10

## -Alvin Davis 1 0 1 880 82 14

## -Andre Dawson 0 1 0 200 11 3

## -Andres Galarraga 0 1 0 805 40 4

## -Alfredo Griffin 1 0 1 282 421 25

## -Al Newman 0 1 0 76 127 7

# We also need the vector of responses

y <- Hitters$Salary

model.matrix removes by default the observations with
any NAs, returning only the complete cases. This may be
undesirable in certain circumstances. If NAs are to be pre-
served, an option is to use na.action = "na.pass" but
with the function model.matrix.lm (not model.matrix, as
it ignores the argument!).

The next code illustrates the previous warning.

# Data with NA in the first observation

data_na <- data.frame("x1" = rnorm(3), "x2" = rnorm(3), "y" = rnorm(3))

data_na$x1[1] <- NA

# The first observation disappears!

model.matrix(y ~ 0 + ., data = data_na)

## x1 x2

## 2 0.5136652 1.435410

## 3 -0.6558154 1.085212

## attr(,"assign")

## [1] 1 2

# Still ignores NA's

model.matrix(y ~ 0 + ., data = data_na, na.action = "na.pass")

## x1 x2

## 2 0.5136652 1.435410

## 3 -0.6558154 1.085212

## attr(,"assign")

## [1] 1 2

# Does not ignore NA's

model.matrix.lm(y ~ 0 + ., data = data_na, na.action = "na.pass")

## x1 x2

## 1 NA -1.329132

## 2 0.5136652 1.435410

## 3 -0.6558154 1.085212

## attr(,"assign")

## [1] 1 2

4.1.1 Ridge regression

We describe next how to do the fitting, tuning parameter selection,
prediction, and the computation of the analytical form for the ridge
regression. The first three topics are very similar for the lasso or for
other elastic net fits (i.e., without α = 0).

Fitting

# Call to the main function -- use alpha = 0 for ridge regression

library(glmnet)

ridgeMod <- glmnet(x = x, y = y, alpha = 0)

# By default, it computes the ridge solution over a set of lambdas

# automatically chosen. It also standardizes the variables by default to make
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# the model fitting since the penalization is scale-sensitive. Importantly,

# the coefficients are returned on the original scale of the predictors

# Plot of the solution path -- gives the value of the coefficients for different

# measures in xvar (penalization imposed to the model or fitness)

plot(ridgeMod, xvar = "norm", label = TRUE)

# xvar = "norm" is the default: L1 norm of the coefficients sum_j abs(beta_j)

# Versus lambda

plot(ridgeMod, label = TRUE, xvar = "lambda")

# Versus the percentage of deviance explained -- this is a generalization of the

# Rˆ2 for generalized linear models. Since we have a linear model, this is the

# same as the Rˆ2

plot(ridgeMod, label = TRUE, xvar = "dev")

# The maximum Rˆ2 is slightly above 0.5

# Indeed, we can see that Rˆ2 = 0.5461

summary(lm(Salary ~., data = Hitters))$r.squared

## [1] 0.5461159

# Some persistently important predictors are 16, 14, and 15

colnames(x)[c(16, 14, 15)]

## [1] "DivisionW" "LeagueA" "LeagueN"

# What is inside glmnet's output?

names(ridgeMod)

## [1] "a0" "beta" "df" "dim" "lambda" "dev.ratio" "nulldev" "npasses" "jerr"

## [10] "offset" "call" "nobs"

# lambda versus Rˆ2 -- fitness decreases when sparsity is introduced, in

# in exchange of better variable interpretation and avoidance of overfitting

plot(log(ridgeMod$lambda), ridgeMod$dev.ratio, type = "l",

xlab = "log(lambda)", ylab = "R2")

ridgeMod$dev.ratio[length(ridgeMod$dev.ratio)]

## [1] 0.5164752

# Slightly different to lm's because it compromises accuracy for speed

# The coefficients for different values of lambda are given in $a0 (intercepts)

# and $beta (slopes) or, alternatively, both in coef(ridgeMod)

length(ridgeMod$a0)

## [1] 100

dim(ridgeMod$beta)

## [1] 20 100

length(ridgeMod$lambda) # 100 lambda's were automatically chosen

## [1] 100

# Inspecting the coefficients associated to the 50th lambda

coef(ridgeMod)[, 50]

## (Intercept) AtBat Hits HmRun Runs RBI Walks Years

## 214.720400777 0.090210299 0.371622563 1.183305701 0.597288606 0.595291960 0.772639340 2.474046387

## CAtBat CHits CHmRun CRuns CRBI CWalks LeagueA LeagueN

## 0.007597343 0.029269640 0.217470479 0.058715486 0.060728347 0.058696981 -2.903863555 2.903558868

## DivisionW PutOuts Assists Errors NewLeagueN

## -21.886726912 0.052629591 0.007406370 -0.147635449 2.663300534

ridgeMod$lambda[50]

## [1] 2674.375

# Zoom in path solution

plot(ridgeMod, label = TRUE, xvar = "lambda",

xlim = log(ridgeMod$lambda[50]) + c(-2, 2), ylim = c(-30, 10))
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abline(v = log(ridgeMod$lambda[50]))

points(rep(log(ridgeMod$lambda[50]), nrow(ridgeMod$beta)), ridgeMod$beta[, 50],

pch = 16, col = 1:6)

# The squared l2-norm of the coefficients decreases as lambda increases

plot(log(ridgeMod$lambda), sqrt(colSums(ridgeMod$betaˆ2)), type = "l",

xlab = "log(lambda)", ylab = "l2 norm")

Tuning parameter selection
The selection of the penalty parameter λ is usually done by k-

fold cross-validation, following the general principle described at
the end of Section 3.6. This data-driven selector is denoted by λ̂k-CV

and has the form given8 in (3.19) (or (3.18) if k = n):

λ̂k-CV := arg min
λ≥0

CVk(λ), CVk(λ) :=
k

∑
j=1

∑
i∈Fj

(Yi − m̂λ,−Fj(Xi))
2.

A very interesting variant for the λ̂k-CV selector is the so-called one
standard error rule. This rule is based on a parsimonious principle:

“favor simplicity within the set of most likely optimal models”.

It arises from observing that the objective function to minimize,
CVk, is random. Thus, its minimizer λ̂k-CV is subjected to variabil-
ity. Then, the parsimonious approach proceeds by selecting not
λ̂k-CV, but the largest λ (hence, the simplest model) that is still likely
optimal, i.e., that is “close” to λ̂k-CV. This closeness is quantified
by the estimation of the standard deviation of the random variable
CVk(λ̂k-CV), which is obtained thanks to the folding splitting of the
sample. Mathematically, λ̂k-1SE is defined as

λ̂k-1SE := max
{

λ ≥ 0 : CVk(λ) ∈
(
CVk(λ̂k-CV)± ŜE

(
CVk(λ̂k-CV)

))}
.

The λ̂k-1SE selector often offers a good trade-off between model
fitness and interpretability in practice.9 The code below gives all the
details.

# If we want, we can choose manually the grid of penalty parameters to explore

# The grid should be descending

ridgeMod2 <- glmnet(x = x, y = y, alpha = 0, lambda = 100:1)

plot(ridgeMod2, label = TRUE, xvar = "lambda") # Not a good choice!

# Lambda is a tuning parameter that can be chosen by cross-validation, using as

# error the MSE (other possible error can be considered for generalized models

# using the argument type.measure)

# 10-fold cross-validation. Change the seed for a different result

set.seed(12345)

kcvRidge <- cv.glmnet(x = x, y = y, alpha = 0, nfolds = 10)

# The lambda that minimizes the CV error is

kcvRidge$lambda.min

## [1] 25.52821

# Equivalent to

indMin <- which.min(kcvRidge$cvm)
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kcvRidge$lambda[indMin]

## [1] 25.52821

# The minimum CV error

kcvRidge$cvm[indMin]

## [1] 115034

min(kcvRidge$cvm)

## [1] 115034

# Potential problem! Minimum occurs at one extreme of the lambda grid in which

# CV is done. The grid was automatically selected, but can be manually inputted

range(kcvRidge$lambda)

## [1] 25.52821 255282.09651

lambdaGrid <- 10ˆseq(log10(kcvRidge$lambda[1]), log10(0.1),

length.out = 150) # log-spaced grid

kcvRidge2 <- cv.glmnet(x = x, y = y, nfolds = 10, alpha = 0,

lambda = lambdaGrid)

# Much better

plot(kcvRidge2)

kcvRidge2$lambda.min

## [1] 9.506186

# But the CV curve is random, since it depends on the sample. Its variability

# can be estimated by considering the CV curves of each fold. An alternative

# approach to select lambda is to choose the largest within one standard

# deviation of the minimum error, in order to favor simplicity of the model

# around the optimal lambda value. This is known as the "one standard error rule"

kcvRidge2$lambda.1se

## [1] 2964.928

# Location of both optimal lambdas in the CV loss function in dashed vertical

# lines, and lowest CV error and lowest CV error + one standard error

plot(kcvRidge2)

indMin2 <- which.min(kcvRidge2$cvm)

abline(h = kcvRidge2$cvm[indMin2] + c(0, kcvRidge2$cvsd[indMin2]))

# The consideration of the one standard error rule for selecting lambda makes

# special sense when the CV function is quite flat around the minimum (hence an

# overpenalization that gives more sparsity does not affect so much the CV loss)

# Leave-one-out cross-validation. More computationally intense but completely

# objective in the choice of the fold-assignment

ncvRidge <- cv.glmnet(x = x, y = y, alpha = 0, nfolds = nrow(Hitters),

lambda = lambdaGrid)

# Location of both optimal lambdas in the CV loss function

plot(ncvRidge)

Prediction

# Inspect the best models (the glmnet fit is inside the output of cv.glmnet)

plot(kcvRidge2$glmnet.fit, label = TRUE, xvar = "lambda")

abline(v = log(c(kcvRidge2$lambda.min, kcvRidge2$lambda.1se)))

# The model associated to lambda.1se (or any other lambda not included in the

# original path solution -- obtained by an interpolation) can be retrieved with

predict(kcvRidge2, type = "coefficients", s = kcvRidge2$lambda.1se)

## 21 x 1 sparse Matrix of class "dgCMatrix"

## s1

## (Intercept) 229.758314334

## AtBat 0.086325740

## Hits 0.351303930

## HmRun 1.142772275

## Runs 0.567245068
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10 That is, that Ȳ = 0 and X̄ = 0.

11 If the data was not centered, then
(4.8) would translate into β̂λ,0 =

(X′X + diag(0, λ, . . . , λ))−1X′Y, where
X is the n× (p + 1) design matrix with
the first column consisting of ones.
12 This was the original motivation for
ridge regression, a way of estimating β
beyond p ≤ n. This property also holds
for any other elastic net estimator (e.g.,
lasso) as long as λ > 0.

## RBI 0.568056880

## Walks 0.731144713

## Years 2.389248929

## CAtBat 0.007261489

## CHits 0.027854683

## CHmRun 0.207220032

## CRuns 0.055877337

## CRBI 0.057777505

## CWalks 0.056352113

## LeagueA -2.509251990

## LeagueN 2.509060248

## DivisionW -20.162700810

## PutOuts 0.048911039

## Assists 0.006973696

## Errors -0.128351187

## NewLeagueN 2.373103450

# Predictions for the first two observations

predict(kcvRidge2, type = "response", s = kcvRidge2$lambda.1se,

newx = x[1:2, ])

## s1

## -Alan Ashby 530.8080

## -Alvin Davis 577.8485

# Predictions for the first observation, for all the lambdas. We can see how

# the prediction for one observation changes according to lambda

plot(log(kcvRidge2$lambda),

predict(kcvRidge2, type = "response", newx = x[1, , drop = FALSE],

s = kcvRidge2$lambda),

type = "l", xlab = "log(lambda)", ylab = " Prediction")

Analytical form
The optimization problem (4.5) has an explicit solution for α =

0. To see it, assume that both the response Y and the predictors
X1, . . . , Xp are centered, and that the sample {(Xi, Yi)}n

i=1 is also
centered10. In this case, there is no intercept β0 (= 0) to estimate by
β̂0 (= 0) and the linear model is simply

Y = β1X1 + · · ·+ βpXp + ε.

Then, the ridge regression estimator β̂λ,0 ∈ Rp is

β̂λ,0 = arg min
β∈Rp

RSS(β) + λ∥β∥2
2

= arg min
β∈Rp

n

∑
i=1

(Yi − Xiβ)
2 + λβ′β

= arg min
β∈Rp

(Y− Xβ)′(Y− Xβ) + λβ′β, (4.7)

where X is the design matrix but now excluding the column of
ones (thus of size n × p). Nicely, (4.7) is a continuous quadratic
optimization problem that is easily solved with the same arguments
we employed for obtaining (2.7), resulting in11

β̂λ,0 = (X′X + λIp)
−1X′Y. (4.8)

The form (4.8) neatly connects with the least squares estimator
(λ = 0) and yields many interesting insights. First, notice how the
ridge regression estimator is always computable, even if p ≫ n 12

and the matrix X′X is not invertible, or if X′X is singular due to
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13 If the eigenvalues of X′X are η1 ≥
. . . ≥ ηp > 0, then the eigenvalues
of X′X + λIp are η1 + λ ≥ . . . ≥
ηp + λ > 0 (because the addition
involves a constant diagonal matrix).
Therefore, the determinant of (X′X)−1

is ∏
p
j=1 η−1

j and the determinant of

(X′X + λIp)−1X′X(X′X + λIp)−1 is
∏

p
j=1 ηj(ηj + λ)−2, which is smaller

than ∏
p
j=1 η−1

j since λ ≥ 0.

14 Recall that, if the predictors are un-
correlated, (1 + λ)β̂λ,0 ∼ Np

(
β, σ2Ip

)
and the t-tests and CIs for β j follow
easily from here. In general, from (4.9)
it follows that

(
Ip + λ(X′X)−1) β̂λ,0 ∼

Np
(

β, σ2(X′X)−1) if X′X is invertible,
from where t-tests and CIs for β j can
be derived.

15 We employ the cyclic property of the
trace operator: tr(ABC) = tr(CAB) =
tr(BCA) for any matrices A, B, and
C for which the multiplications are
possible.
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Figure 4.3: The effective degrees of
freedom df(λ) as a function of log(λ)
for a ridge regression with p = 5.

perfect multicollinearity. Second, as it was done with (2.11), it is
straightforward to see that, under the assumptions of the linear
model,

β̂λ,0 ∼ Np

(
(X′X + λIp)

−1X′Xβ, σ2(X′X + λIp)
−1X′X(X′X + λIp)

−1
)

.

(4.9)

The distribution (4.9) is revealing: it shows that β̂λ,0 is no longer
unbiased and that its variance is smaller13 than the least squares
estimator β̂. This is much more clear in the case where the predic-
tors are uncorrelated and standardized, hence X′X = Ip – precisely the
case of the PCA or PLS scores if these are standardized to have unit
variance. In this situation, then (4.8) and (4.9) simplify to

β̂λ,0 = (1 + λ)−1X′Y = (1 + λ)−1β̂,

β̂λ,0 ∼ Np

(
(1 + λ)−1β, σ2(1 + λ)−2Ip

)
.

(4.10)

The shrinking effect of λ is yet more evident from (4.10): when the
predictors are uncorrelated, we shrink equally the least squares es-
timator β̂ by the factor (1 + λ)−1, which results in a reduction of
the variance by a factor of (1 + λ)−2. Furthermore, notice an im-
portant point: due to the explicit control of the distribution of β̂λ,0,
inference about β can be done in a relatively straightforward14 way
from β̂λ,0, just as it was done from β̂ in Section 2.4. This tractabil-
ity, both on the explicit form of the estimator and on the associated
inference, is one of the main advantages of ridge regression with
respect to other shrinkage methods.

Finally, just as we did for the least squares estimator, we can
define the hat matrix

Hλ := X(X′X + λIp)
−1X′

that predicts Ŷ from Y. This hat matrix becomes especially useful
now, as it can be employed to define the effective degrees of freedom
associated to a ridge regression with penalty λ. These are defined
as the trace of the hat matrix:

df(λ) := tr(Hλ).

The motivation behind is that, for the unrestricted least squares fit15

tr(H0) = tr
(
X(X′X)−1X′

)
= tr

(
X′X(X′X)−1) = p

and thus indeed df(0) = p is representing the degrees of freedom
of the fit, understood as the number of parameters employed (keep
in mind that the intercept was excluded). For a constrained fit with
λ > 0, df(λ) < p because, even if we are estimating p parameters
in β̂λ,0, these are restricted to satisfy ∥β̂λ,0∥2

2 ≤ sλ (for a certain
sλ, recall (4.6)). The function df is monotonically decreasing and
such that limλ→∞ df(λ) = 0, see Figure 4.3. Recall that, due to
the imposed constraint on the coefficients, we could choose λ such
that df(λ) = r, where r is an integer smaller than p: this would
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16 One of them is that glmnet::glmnet
considers 1

2n RSS(β) + λ(α∥β−1∥1 +
(1− α)∥β−1∥2

2) instead of (4.4), since
1

2n RSS(β) is more related with the log-
likelihood. This rescaling of RSS(β)
affects the scale of λ.

correspond to effectively employing exactly r parameters in the
regression, despite considering p predictors.

The next chunk of code implements β̂λ,0 and shows that is equiv-
alent to the output of glmnet::glmnet, with certain quirks16.

# Random data

p <- 5

n <- 200

beta <- seq(-1, 1, l = p)

set.seed(123124)

x <- matrix(rnorm(n * p), n, p)

y <- 1 + x %*% beta + rnorm(n)

# Unrestricted fit

fit <- glmnet(x, y, alpha = 0, lambda = 0, intercept = TRUE,

standardize = FALSE)

beta0Hat <- rbind(fit$a0, fit$beta)

beta0Hat

## 6 x 1 sparse Matrix of class "dgCMatrix"

## s0

## 1.05856208

## V1 -1.03109958

## V2 -0.56932123

## V3 -0.03813426

## V4 0.47415412

## V5 1.05761841

# Unrestricted fit matches least squares -- but recall glmnet uses an

# iterative method so it is inexact (convergence threshold thresh = 1e-7 by

# default)

X <- model.matrix(y ~ x) # A way of constructing a design matrix that is a

# data.frame and has a column of ones

solve(crossprod(X)) %*% t(X) %*% y

## [,1]

## (Intercept) 1.05856209

## x1 -1.03109954

## x2 -0.56932123

## x3 -0.03813426

## x4 0.47415412

## x5 1.05761841

# Restricted fit

# glmnet considers as the regularization parameter "lambda" the value

# lambda / n (lambda being here the penalty parameter employed in the theory)

lambda <- 2

fit <- glmnet(x, y, alpha = 0, lambda = lambda / n, intercept = TRUE,

standardize = FALSE)

betaLambdaHat <- rbind(fit$a0, fit$beta)

betaLambdaHat

## 6 x 1 sparse Matrix of class "dgCMatrix"

## s0

## 1.0586029

## V1 -1.0264951

## V2 -0.5667469

## V3 -0.0377357

## V4 0.4710700

## V5 1.0528297

# Analytical form with intercept

solve(crossprod(X) + diag(c(0, rep(lambda, p)))) %*% t(X) %*% y

## [,1]

## (Intercept) 1.05864278

## x1 -1.02203900

## x2 -0.56425607

## x3 -0.03735258

## x4 0.46809435

## x5 1.04819600
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4.1.2 Lasso

The main novelty in lasso with respect to ridge is its ability to ex-
actly zeroing coefficients and the lack of analytical solution. Fitting,
tuning parameter selection, and prediction are completely analo-
gous to ridge regression.

Fitting

# Get the Hitters data back

x <- model.matrix(Salary ~ 0 + ., data = Hitters)

y <- Hitters$Salary

# Call to the main function -- use alpha = 1 for lasso regression (the default)

lassoMod <- glmnet(x = x, y = y, alpha = 1)

# Same defaults as before, same object structure

# Plot of the solution path -- now the paths are not smooth when decreasing to

# zero (they are zero exactly). This is a consequence of the l1 norm

plot(lassoMod, xvar = "lambda", label = TRUE)

# Some persistently important predictors are 16 and 14

# Versus the Rˆ2 -- same maximum Rˆ2 as before

plot(lassoMod, label = TRUE, xvar = "dev")

# Now the l1-norm of the coefficients decreases as lambda increases

plot(log(lassoMod$lambda), colSums(abs(lassoMod$beta)), type = "l",

xlab = "log(lambda)", ylab = "l1 norm")

# 10-fold cross-validation. Change the seed for a different result

set.seed(12345)

kcvLasso <- cv.glmnet(x = x, y = y, alpha = 1, nfolds = 10)

# The lambda that minimizes the CV error

kcvLasso$lambda.min

## [1] 2.674375

# The "one standard error rule" for lambda

kcvLasso$lambda.1se

## [1] 76.16717

# Location of both optimal lambdas in the CV loss function

indMin <- which.min(kcvLasso$cvm)

plot(kcvLasso)

abline(h = kcvLasso$cvm[indMin] + c(0, kcvLasso$cvsd[indMin]))

# No problems now: the minimum does not occur at one extreme

# Interesting: note that the numbers on top of the figure give the number of

# coefficients *exactly* different from zero -- the number of predictors

# effectively considered in the model!

# In this case, the one standard error rule makes also sense

# Leave-one-out cross-validation

lambdaGrid <- 10ˆseq(log10(kcvLasso$lambda[1]), log10(0.1),

length.out = 150) # log-spaced grid

ncvLasso <- cv.glmnet(x = x, y = y, alpha = 1, nfolds = nrow(Hitters),

lambda = lambdaGrid)

# Location of both optimal lambdas in the CV loss function

plot(ncvLasso)
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Prediction

# Inspect the best models

plot(kcvLasso$glmnet.fit, label = TRUE, xvar = "lambda")

abline(v = log(c(kcvLasso$lambda.min, kcvLasso$lambda.1se)))

# The model associated to lambda.min (or any other lambda not included in the

# original path solution -- obtained by an interpolation) can be retrieved with

predict(kcvLasso, type = "coefficients",

s = c(kcvLasso$lambda.min, kcvLasso$lambda.1se))

## 21 x 2 sparse Matrix of class "dgCMatrix"

## s1 s2

## (Intercept) 1.558172e+02 144.37970458

## AtBat -1.547343e+00 .

## Hits 5.660897e+00 1.36380384

## HmRun . .

## Runs . .

## RBI . .

## Walks 4.729691e+00 1.49731098

## Years -9.595837e+00 .

## CAtBat . .

## CHits . .

## CHmRun 5.108207e-01 .

## CRuns 6.594856e-01 0.15275165

## CRBI 3.927505e-01 0.32833941

## CWalks -5.291586e-01 .

## LeagueA -3.206508e+01 .

## LeagueN 2.108435e-12 .

## DivisionW -1.192990e+02 .

## PutOuts 2.724045e-01 0.06625755

## Assists 1.732025e-01 .

## Errors -2.058508e+00 .

## NewLeagueN . .

# Predictions for the first two observations

predict(kcvLasso, type = "response",

s = c(kcvLasso$lambda.min, kcvLasso$lambda.1se),

newx = x[1:2, ])

## s1 s2

## -Alan Ashby 427.8822 540.0835

## -Alvin Davis 700.1705 615.3311

4.1.3 Variable selection with lasso

Thanks to its ability to exactly zeroing coefficients, lasso is a pow-
erful device for performing variable/model selection within its fit.
The practical approach is really simple and amounts to identify the
entries of β̂λ,1 different from zero, after λ is appropriately selected.

# We can use lasso for model selection!

selPreds <- predict(modLassoCV, type = "coefficients",

s = c(kcvLasso$lambda.min, kcvLasso$lambda.1se))[-1, ] != 0

x1 <- x[, selPreds[, 1]]

x2 <- x[, selPreds[, 2]]

# Least squares fit with variables selected by lasso

modLassoSel1 <- lm(y ~ x1)

modLassoSel2 <- lm(y ~ x2)

summary(modLassoSel1)

##

## Call:

## lm(formula = y ~ x1)

##

## Residuals:
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## Min 1Q Median 3Q Max

## -940.10 -174.20 -25.94 127.05 1890.12

##

## Coefficients: (1 not defined because of singularities)

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 224.24408 84.45013 2.655 0.008434 **
## x1AtBat -2.30798 0.56236 -4.104 5.5e-05 ***
## x1Hits 7.34602 1.71760 4.277 2.7e-05 ***
## x1Walks 6.08610 1.57008 3.876 0.000136 ***
## x1Years -13.60502 10.38333 -1.310 0.191310

## x1CHmRun 0.83633 0.84709 0.987 0.324457

## x1CRuns 0.90924 0.27662 3.287 0.001159 **
## x1CRBI 0.35734 0.36252 0.986 0.325229

## x1CWalks -0.83918 0.27207 -3.084 0.002270 **
## x1LeagueA -36.68460 40.73468 -0.901 0.368685

## x1LeagueN NA NA NA NA

## x1DivisionW -119.67399 39.32485 -3.043 0.002591 **
## x1PutOuts 0.29296 0.07632 3.839 0.000157 ***
## x1Assists 0.31483 0.20460 1.539 0.125142

## x1Errors -3.23219 4.29443 -0.753 0.452373

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 314 on 249 degrees of freedom

## Multiple R-squared: 0.5396, Adjusted R-squared: 0.5156

## F-statistic: 22.45 on 13 and 249 DF, p-value: < 2.2e-16

summary(modLassoSel2)

##

## Call:

## lm(formula = y ~ x2)

##

## Residuals:

## Min 1Q Median 3Q Max

## -914.21 -171.94 -33.26 97.63 2197.08

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -96.96096 55.62583 -1.743 0.082513 .

## x2Hits 2.09338 0.57376 3.649 0.000319 ***
## x2Walks 2.51513 1.22010 2.061 0.040269 *
## x2CRuns 0.26490 0.19463 1.361 0.174679

## x2CRBI 0.39549 0.19755 2.002 0.046339 *
## x2PutOuts 0.26620 0.07857 3.388 0.000814 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 333 on 257 degrees of freedom

## Multiple R-squared: 0.4654, Adjusted R-squared: 0.455

## F-statistic: 44.75 on 5 and 257 DF, p-value: < 2.2e-16

# Comparison with stepwise selection

modBIC <- MASS::stepAIC(lm(Salary ~ ., data = Hitters), k = log(nrow(Hitters)),

trace = 0)

summary(modBIC)

##

## Call:

## lm(formula = Salary ~ AtBat + Hits + Walks + CRuns + CRBI + CWalks +

## Division + PutOuts, data = Hitters)

##

## Residuals:

## Min 1Q Median 3Q Max

## -794.06 -171.94 -28.48 133.36 2017.83

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 117.15204 65.07016 1.800 0.072985 .

## AtBat -2.03392 0.52282 -3.890 0.000128 ***
## Hits 6.85491 1.65215 4.149 4.56e-05 ***
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## Walks 6.44066 1.52212 4.231 3.25e-05 ***
## CRuns 0.70454 0.24869 2.833 0.004981 **
## CRBI 0.52732 0.18861 2.796 0.005572 **
## CWalks -0.80661 0.26395 -3.056 0.002483 **
## DivisionW -123.77984 39.28749 -3.151 0.001824 **
## PutOuts 0.27539 0.07431 3.706 0.000259 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 314.7 on 254 degrees of freedom

## Multiple R-squared: 0.5281, Adjusted R-squared: 0.5133

## F-statistic: 35.54 on 8 and 254 DF, p-value: < 2.2e-16

# The lasso variable selection is similar, although the model is slightly worse

# in terms of adjusted Rˆ2 and significance of the predictors. However, keep in

# mind that lasso is solving a constrained least squares problem, so it is

# expected to achieve better Rˆ2 and adjusted Rˆ2 via a selection procedure

# that employs solutions of unconstrained least squares. What is remarkable

# is the speed of lasso on selecting variables, and the fact that gives quite

# good starting points for performing further model selection

# Another interesting possibility is to run a stepwise selection starting from

# the set of predictors selected by lasso. In this search, it is important to

# use direction = "both" (default) and define the scope argument adequately

f <- formula(paste("Salary ~", paste(names(which(selPreds[, 2])),

collapse = " + ")))

start <- lm(f, data = Hitters) # Model with predictors selected by lasso

scope <- list(lower = lm(Salary ~ 1, data = Hitters), # No predictors

upper = lm(Salary ~ ., data = Hitters)) # All the predictors

modBICFromLasso <- MASS::stepAIC(object = start, k = log(nrow(Hitters)),

scope = scope, trace = 0)

summary(modBICFromLasso)

##

## Call:

## lm(formula = Salary ~ Hits + Walks + CRBI + PutOuts + AtBat +

## Division, data = Hitters)

##

## Residuals:

## Min 1Q Median 3Q Max

## -873.11 -181.72 -25.91 141.77 2040.47

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 91.51180 65.00006 1.408 0.160382

## Hits 7.60440 1.66254 4.574 7.46e-06 ***
## Walks 3.69765 1.21036 3.055 0.002488 **
## CRBI 0.64302 0.06443 9.979 < 2e-16 ***
## PutOuts 0.26431 0.07477 3.535 0.000484 ***
## AtBat -1.86859 0.52742 -3.543 0.000470 ***
## DivisionW -122.95153 39.82029 -3.088 0.002239 **
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 319.9 on 256 degrees of freedom

## Multiple R-squared: 0.5087, Adjusted R-squared: 0.4972

## F-statistic: 44.18 on 6 and 256 DF, p-value: < 2.2e-16

# Comparison in terms of BIC, slight improvement with modBICFromLasso

BIC(modLassoSel1, modLassoSel2, modBICFromLasso, modBIC)

## df BIC

## modLassoSel1 15 3839.690

## modLassoSel2 7 3834.434

## modBICFromLasso 8 3817.785

## modBIC 10 3818.320
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Figure 4.4: “L”-shaped form of a
cross-validation curve with unrelated
response and predictors.
17 Understanding this statement as that
the probability of lasso-selecting the
predictors with slopes different from
zero converges to one when n→ ∞.
18 The details are quite technical and
can be checked in Theorems 1–4 in
Zhao and Yu (2006).
19 An example for p = 5 predictors
follows. If β−1 = (1,−1, 0, 0, 0)′,
then there are q = 2 non-zero slopes.
Therefore, c

2q−1 < 1
3 and the strong

irrepresentable condition holds if all
the correlations between the predictors
are strictly smaller than 1

3 .

Consider la-liga-2015-2016.xlsx dataset. We aim to
predict Points after removing the perfectly related linear
variables with Points. Do the following:

a. Lasso regression. Select λ by cross-validation. Obtain
the estimated coefficients for the chosen lambda.

b. Use the predictors with non-null coefficients for creat-
ing a model with lm.

c. Summarize the model and check for multicollinearity.

It may happen that the cross-validation curve has an
“L”-shaped form without a well-defined global mini-
mum. This usually happens when only the intercept is
significative and none of the predictors are relevant for
explaining Y.

The code below illustrates the previous warning.

# Random data with predictors unrelated with the response

p <- 100

n <- 300

set.seed(123124)

x <- matrix(rnorm(n * p), n, p)

y <- 1 + rnorm(n)

# CV

lambdaGrid <- exp(seq(-10, 3, l = 200))

plot(cv.glmnet(x = x, y = y, alpha = 1, nfolds = n, lambda = lambdaGrid))

The lasso-selection of variables is conceptually and practically
straightforward. But, is this a consistent model selection procedure?
As seen in Section 3.2.2, the answer to this question may be some-
times surprising and may have important practical consequences.

Zhao and Yu (2006) proved that lasso is consistent on the selec-
tion of the true model17 if a certain condition, known as the strong
irrepresentable condition, holds for the predictors. It is also required
that the regularization parameter λ ≡ λn is such that λn → 0, at
some specific speeds18, as n → ∞. The strong irrepresentable condi-
tion is quite technical, but essentially is satisfied if the correlations
between the predictors are appropriately controlled. In particu-
lar, Zhao and Yu (2006) identify several simple situations for the
predictors that guarantee that the strong irrepresentable condition
holds:

• If the predictors are uncorrelated.
• If the correlations of the predictors are bounded by a certain

constant. Precisely, if β−1 has q entries different from zero, it
must be satisfied that Cor[Xi, Xj] ≤ c

2q−1 for a constant 0 ≤ c < 1,
for all i, j = 1, . . . , p, i ̸= j.19

• If the correlations of the predictors are power-decaying. That is,
if Cor[Xi, Xj] = ρ|i−j|, for |ρ| < 1 and for all i, j = 1, . . . , p.

https://raw.githubusercontent.com/egarpor/handy/master/datasets/la-liga-2015-2016.xlsx
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20 Based on limited empirical evidence!
21 Yet λ̂n-1SE is much faster to compute
that doing an exhaustive search with
BIC!

Despite the usefulness of these three conditions, they do not
inform directly on the consistency of the lasso in the more complex
situation in which a data-driven penalizing parameter λ̂ is used
(as opposed to a deterministic sequence λn → 0, as in Zhao and
Yu (2006)). Let’s explore this situation by retaking the simulation
study behind Figure 3.5. Within the same settings described there,
we lasso-select the predictors with estimated coefficients different
from zero using λ̂n-CV and λ̂n-1SE, then approximate by Monte Carlo
the probability of selecting the true model. The results are collected
in Figure 4.5.

Figure 4.5: Estimation of the proba-
bility of selecting the correct model
by lasso selection based on λ̂n-CV and
λ̂n-1SE, and by minimizing the AIC,
BIC, and LOOCV criteria in an exhaus-
tive search (see Figure 3.5). There are
p = 5 independent predictors and the
correct model contained two predic-
tors. The probability was estimated
with M = 500 Monte Carlo runs.

In addition to the insights from Figure 3.5, Figure 4.5 shows
interesting results, described next. Recall that the simulation study
was performed with independent predictors.

• Lasso-selection based on λ̂n-CV is inconsistent. It tends to select
more predictors than required, as AIC does, yet its performance
is much worse (about a 0.25 probability of recovering the true
model!). This result is somehow coherent what it would be ex-
pected from Shao (1993)’s result on the inconsistency of LOOCV.

• Lasso-selection based on λ̂n-1SE seems to be20 consistent and im-
itates the performance of the BIC21. Observe that the overpenal-
ization given by the one standard error rule somehow resembles
the overpenalization of BIC with respect to AIC.
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Implement the lasso part of the simulation study behind
Figure 4.5:

1. Sample from (3.4).
2. Compute the λ̂n-CV and λ̂n-1SE.
3. Identify the estimated coefficients for λ̂n-CV and λ̂n-1SE

that are different from zero.
4. Repeat Steps 1–3 M = 200 times. Estimate by Monte

Carlo the probability of selecting the true model.
5. Move n = 2ℓ, ℓ = 3, . . . , 12.

Once you have a working solution, increase M to ap-
proach the settings in Figure 4.5 (or go beyond!). You can
increase also p and pad β with zeros.

Investigate what happens if Step 2 of the previous exer-
cise is replaced by the computation of λ̂k-CV and λ̂k-1SE,
where:

a. k = 2.
b. k = 4.
c. k = 8.
d. k = 16.

Take ℓ = 3, . . . , 12 and overlay the eight curves together.

Investigate what happens if Step 2 of the previous exer-
cise is replaced by the computation of λ̂k-CV and λ̂k-1SE,
where:

a. k = n/8.
b. k = n/4.
c. k = n/2.
d. k = n.

Take ℓ = 3, . . . , 12 and overlay the eight curves together.

Investigate what happens if Step 1 is replaced by sam-
pling from dependent predictors. Particularly, sample
from (3.4) but with (X1, . . . , X5)

′ ∼ N5(0, Σ), with
Σ = (σij) such that:

a. σij = ρ|i−j| for i, j = 1, . . . , 5 and ρ = 0.25, 0.50, 0.99.
Hint: use the toeplitz function.

b. σij = c
2q−1 and σii = 1, for i, j = 1, . . . , 5, i ̸= j, where

q = 2 (number of non-zero entries of β). Take c = 0.75.
c. Same as b., but with c = 2.
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22 For example, based on the data-
driven penalization parameters λ̂k-CV
or λ̂k-1SE.
23 Note that with this approach we
assign to the more computationally
efficient lasso the “hard work” of
coming up with a set of relevant
predictors from the whole dataset,
whereas the betterment of that model
is done with the more demanding
stepwise regression (if the number of
predictors is smaller than n).
24 Note that this is a random quantity,
but we ignore this fact for the sake of
exposition.

25 Therefore, usually not invertible.

26 We do not require the previous
notation β−1!

4.2 Constrained linear models

As outlined in the previous section, after doing variable selection
with lasso22, two possibilities are: (i) fit a linear model on the lasso-
selected predictors; (ii) run a stepwise selection starting from the
lasso-selected model to try to further improve the model23.

Let’s explore the intuitive idea behind (i) in more detail. For the
sake of exposition, assume that among p predictors, lasso zeroed
out the first q of them24. Then, once q is known, we would seek to
fit the model

Y = β0 + β1X1 + · · ·+ βpXp + ε, subject to β1 = . . . = βq = 0.

This is a very simple constraint that we know how to solve: just
include the p− q remaining predictors in the model and fit it. It is
however a specific case of a linear constraint on β, since β1 = . . . =
βq = 0 is expressible as(

Iq 0q×(p−q)

)
q×p

β−1 = 0q, (4.11)

where Iq is an q × q identity matrix and β−1 = (β1, . . . , βp)′. The
constraint in (4.11) can be generalized as Aβ−1 = c, which results in
the (linearly) constrained linear model

Y = β0 + β1X1 + · · ·+ βpXp + ε, subject to Aβ−1 = c, (4.12)

where A is an q× p matrix25 of rank q and c ∈ Rq. The constrained
linear model (4.12) is useful when there is prior information avail-
able about a linear relation that the coefficients of the linear model
must satisfy (e.g., in piecewise polynomial fitting).

Before fitting the model (4.12), let’s assume from now on that
the variables Y and X1, . . . , Xp, as well the sample {(Xi, Yi)}n

i=1, are
centered (see the tip at the end of Section 2.4.4). This means that
Ȳ = 0 and that X̄ := (X̄1, . . . , X̄p)′ is zero. More importantly, it also
means that β0 and β̂0 are null, hence they are not included in the
model. That is, that the model

Y = β1X1 + · · ·+ βpXp + ε (4.13)

is considered. In this setting, β = (β1, . . . , βp)′ 26 and β̂ =

(X′X)−1X′Y is the least squares estimator, with the design matrix
X now omitting the first column of ones.

Now, the estimator of β in (4.13) from a sample {(Xi, Yi)}n
i=1

under the linear constraint Aβ = c is defined as

β̂A := arg min
β∈Rp

Aβ=c

RSS0(β), RSS0(β) :=
n

∑
i=1

(Yi − β1Xi1 − · · · − βpXip)
2.

(4.14)

Solving (4.14) analytically is possible using Lagrange multipliers,
and the explicit solution to (4.14) can be seen to be

β̂A = β̂ + (X′X)−1A′[A(X′X)−1A′]−1(c−Aβ̂). (4.15)
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For the general case given in (4.12), in which neither Y and X nor
the sample are centered, the estimator of β in (4.12) is unaltered for
the slopes and equals (4.15). The intercept is given by

β̂A,0 = Ȳ− X̄′ β̂A.

The next code illustrates how to fit a linear model with con-
straints in practice.

# Simulate data

set.seed(123456)

n <- 50

p <- 3

x1 <- rnorm(n, mean = 1)

x2 <- rnorm(n, mean = 2)

x3 <- rnorm(n, mean = 3)

eps <- rnorm(n, sd = 0.5)

y <- 1 + 2 * x1 - 3 * x2 + x3 + eps

# Center the data and compute design matrix

x1Cen <- x1 - mean(x1)

x2Cen <- x2 - mean(x2)

x3Cen <- x3 - mean(x3)

yCen <- y - mean(y)

X <- cbind(x1Cen, x2Cen, x3Cen)

# Linear restriction: use that

# beta_1 + beta_2 + beta_3 = 0

# beta_2 = -3

# In this case q = 2. The restriction is codified as

A <- rbind(c(1, 1, 1),

c(0, 1, 0))

c <- c(0, -3)

# Fit model without intercept

S <- solve(crossprod(X))

beta_hat <- S %*% t(X) %*% yCen

beta_hat

## [,1]

## x1Cen 1.9873776

## x2Cen -3.1449015

## x3Cen 0.9828062

# Restricted fit enforcing A * beta = c

beta_hat_A <- beta_hat +

S %*% t(A) %*% solve(A %*% S %*% t(A)) %*% (c - A %*% beta_hat)

beta_hat_A

## [,1]

## x1Cen 2.0154729

## x2Cen -3.0000000

## x3Cen 0.9845271

# Intercept of the constrained fit

beta_hat_A_0 <- mean(y) - c(mean(x1), mean(x2), mean(x3)) %*% beta_hat_A

beta_hat_A_0

## [,1]

## [1,] 1.02824

What about inference? In principle, it can be obtained analo-
gously to how the inference for the unconstrained linear model was
obtained in Section 2.4, since the distribution of β̂A under the as-
sumptions of the linear model is straightforward to obtain. We keep
assuming that the model is centered. Then, recall that (4.15) can be
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27 They do not depend on c!

28 Do not confuse them with Y1, . . . , Yn,
the notation employed in the rest of
the sections for denoting the sample of
the response Y.

expressed as

β̂A = (X′X)−1A′[A(X′X)−1A′]−1c

+
(

I− (X′X)−1A′[A(X′X)−1A′]−1A
)

β̂.

Therefore, using (1.4) and proceeding similarly to (2.11),

β̂A ∼ Np

(
β + b(β, A, c, X), σ2(X′X)−1 − v(σ2, A, X)

)
, (4.16)

where

b(β, A, c, X) := (X′X)−1A′[A(X′X)−1A′]−1(c−Aβ),

v(σ2, A, X) := σ2(X′X)−1A′[A(X′X)−1A′]−1A(X′X)−1.

The inference for constrained linear models is not built within base
R. Therefore, we just give a couple of insights about (4.16) and do
not pursue inference further. Note that:

• The variances of β̂A,j, j = 1, . . . , p, decrease with respect to the
variances of β̂ j, given by the diagonal elements of σ2(X′X)−1.
This is perfectly coherent, after all we are constraining the possi-
ble values that the estimator of β can take in order to accommo-
date Aβ = c. More importantly, these variances remain the same
irrespective of whether Aβ = c holds or not27.

• The bias of β̂A depends on the veracity of Aβ = c. If the restric-
tion is verified, then b(β, A, c, X) = 0 and β̂A is still unbiased.
However, if Aβ ̸= c, then β̂A is severely biased in estimating β.

Verify by Monte Carlo that the covariance matrix in (4.16)
is correct. To do so:

1. Choose β, A, and c at your convenience.
2. Sample n = 50 observations for the predictors.
3. Sample n = 50 observations for the responses from a

linear model based on β. Use the same n observations
for the predictors from Step 2.

4. Compute β̂A.
5. Repeat Steps 3–4 M = 500 times, saving each time β̂A.
6. Compute the sample covariance matrix of the β̂A’s.
7. Compare it with the covariance matrix in (4.16).

Do the same study for checking the expectation in (4.16),
for the cases in which Aβ = c and Aβ ̸= c.

4.3 Multivariate multiple linear model

So far, we have been interested in predicting/explaining a single
response Y from a set of predictors X1, . . . , Xp. However, we might
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29 Centering the responses and pre-
dictors is useful for removing the
intercept term, allowing for simpler
matricial versions.

30 The notation X is introduced to
avoid confusions between the design
matrix X and the random vector X and
observations Xi , i = 1, . . . , n.

want to predict/explain several responses Y1, . . . , Yq
28. As we will

see, the model construction and estimation are quite analogous
to the univariate multiple linear model, yet more cumbersome in
notation.

4.3.1 Model formulation and least squares

The centered29 population version of the multivariate multiple linear
model is

Y1 = β11X1 + · · ·+ βp1Xp + ε1,

...

Yq = β1qX1 + · · ·+ βpqXp + εq,

or, equivalently in matrix form,

Y = B′X + ε (4.17)

where ε := (ε1, . . . , εq)′ is a random vector with null expectation,
Y = (Y1, . . . , Yq)′ and X = (X1, . . . , Xp)′ are random vectors, and

B =


β11 . . . β1q

...
. . .

...
βp1 . . . βpq


p×q

.

Clearly, this construction implies that the conditional expectation of
the random vector Y is

E[Y|X = x] = B′x.

Given a sample {(Xi, Yi)}n
i=1 of observations of (X1, . . . , Xp) and

(Y1, . . . , Yq), the sample version of (4.17) is
Y11 . . . Y1q

...
. . .

...
Yn1 . . . Ynq


n×q

=


X11 . . . X1p

...
. . .

...
Xn1 . . . Xnp


n×p


β11 . . . β1q

...
. . .

...
βp1 . . . βpq


p×q

+


ε11 . . . ε1q
...

. . .
...

εn1 . . . εnq


n×q

,

(4.18)

or, equivalently in matrix form,

Y = XB + E, (4.19)

where Y, X, and E are clearly identified by comparing (4.19) with
(4.18).30

The approach for estimating B is really similar to the univariate
multiple linear model: minimize the sum of squared distances be-
tween the responses Y1, . . . , Yn and their explanations B′X1, . . . , B′Xn.
These distances are now measured by the ∥ · ∥2 norm in Rq, result-
ing

RSS(B) :=
n

∑
i=1
∥Yi − B′Xi∥2

2

=
n

∑
i=1

(Yi − B′Xi)
′(Yi − B′Xi)

= tr
(
(Y−XB)′(Y−XB)

)
.
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31 Employing the centered version of
the univariate multiple linear model,
as we have done in this section for the
multivariate version.

The similarities with (2.6) are clear and it is immediate to see that
(2.6) appears as a special case31 for q = 1. The minimizer of RSS(B)
is obtained analogously to how the least squares estimator was
obtained when q = 1:

B̂ := arg min
B∈Mp×q

RSS(B) = (X′X)−1X′Y. (4.20)

Recall that if the responses and predictors are not centered, then the
estimate of the intercept is simply obtained from the sample means
Ȳ := (Ȳ1, . . . , Ȳq)′ and X̄ = (X̄1, . . . , X̄p)′:

β̂0 = Ȳ− B̂′X̄.

Equation (4.20) reveals that fitting a q-multivariate linear
model amounts to fitting q univariate linear models
separately! Indeed, recall that B = (β1 · · · βq), where the
column vector βj represents the vector of coefficients of
the j-th univariate linear model. Then, comparing (4.20)
with (2.7) (where Y consisted of a single column) and by
block matrix multiplication, we can clearly see that B̂ is
just the concatenation of the columns of β̂j, j = 1, . . . , q,

i.e., B̂ = (β̂1 · · · β̂q).

As happened in the univariate linear model, if p > n then
the inverse of X′X in (4.20) does not exist. In that case,
one should either remove predictors or resort to a shrink-
age method that avoids inverting X′X. It is interesting
to note, though, that q has no effect on the feasibility
of the fitting, only p does. In particular it is possible to
compute (4.20) with q ≫ n, and hence pq ≫ n, i.e., the
number of estimated parameters can be much larger
than n.

We see next how to do multivariate multiple linear regression in
R with a simulated example.

# Dimensions and sample size

p <- 3

q <- 2

n <- 100

# A quick way of creating a non-diagonal (valid) covariance matrix for the

# errors

Sigma <- 3 * toeplitz(seq(1, 0.1, l = q))

set.seed(12345)

X <- mvtnorm::rmvnorm(n = n, mean = 1:p, sigma = diag(0.5, nrow = p, ncol = p))

E <- mvtnorm::rmvnorm(n = n, mean = rep(0, q), sigma = Sigma)

# Linear model

B <- matrix((-1)ˆ(1:p) * (1:p), nrow = p, ncol = q, byrow = TRUE)

Y <- X %*% B + E

# Fitting the model (note: Y and X are matrices!)
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mod <- lm(Y ~ X)

mod

##

## Call:

## lm(formula = Y ~ X)

##

## Coefficients:

## [,1] [,2]

## (Intercept) 0.05017 -0.36899

## X1 -0.54770 2.06905

## X2 -3.01547 -0.78308

## X3 1.88327 -3.00840

# Note that the intercept is markedly different from zero -- that is because

# X is not centered

# Compare with B

B

## [,1] [,2]

## [1,] -1 2

## [2,] -3 -1

## [3,] 2 -3

# Summary of the model: gives q separate summaries, one for each fitted

# univariate model

summary(mod)

## Response Y1 :

##

## Call:

## lm(formula = Y1 ~ X)

##

## Residuals:

## Min 1Q Median 3Q Max

## -4.0432 -1.3513 0.2592 1.1325 3.5298

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.05017 0.96251 0.052 0.9585

## X1 -0.54770 0.24034 -2.279 0.0249 *
## X2 -3.01547 0.26146 -11.533 < 2e-16 ***
## X3 1.88327 0.21537 8.745 7.38e-14 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 1.695 on 96 degrees of freedom

## Multiple R-squared: 0.7033, Adjusted R-squared: 0.694

## F-statistic: 75.85 on 3 and 96 DF, p-value: < 2.2e-16

##

##

## Response Y2 :

##

## Call:

## lm(formula = Y2 ~ X)

##

## Residuals:

## Min 1Q Median 3Q Max

## -4.1385 -0.7922 -0.0486 0.8987 3.6599

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -0.3690 0.8897 -0.415 0.67926

## X1 2.0691 0.2222 9.314 4.44e-15 ***
## X2 -0.7831 0.2417 -3.240 0.00164 **
## X3 -3.0084 0.1991 -15.112 < 2e-16 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 1.567 on 96 degrees of freedom

## Multiple R-squared: 0.7868, Adjusted R-squared: 0.7801
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## F-statistic: 118.1 on 3 and 96 DF, p-value: < 2.2e-16

# Exactly equivalent to

summary(lm(Y[, 1] ~ X))

##

## Call:

## lm(formula = Y[, 1] ~ X)

##

## Residuals:

## Min 1Q Median 3Q Max

## -4.0432 -1.3513 0.2592 1.1325 3.5298

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.05017 0.96251 0.052 0.9585

## X1 -0.54770 0.24034 -2.279 0.0249 *
## X2 -3.01547 0.26146 -11.533 < 2e-16 ***
## X3 1.88327 0.21537 8.745 7.38e-14 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 1.695 on 96 degrees of freedom

## Multiple R-squared: 0.7033, Adjusted R-squared: 0.694

## F-statistic: 75.85 on 3 and 96 DF, p-value: < 2.2e-16

summary(lm(Y[, 2] ~ X))

##

## Call:

## lm(formula = Y[, 2] ~ X)

##

## Residuals:

## Min 1Q Median 3Q Max

## -4.1385 -0.7922 -0.0486 0.8987 3.6599

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -0.3690 0.8897 -0.415 0.67926

## X1 2.0691 0.2222 9.314 4.44e-15 ***
## X2 -0.7831 0.2417 -3.240 0.00164 **
## X3 -3.0084 0.1991 -15.112 < 2e-16 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 1.567 on 96 degrees of freedom

## Multiple R-squared: 0.7868, Adjusted R-squared: 0.7801

## F-statistic: 118.1 on 3 and 96 DF, p-value: < 2.2e-16

Let’s see another quick example using the iris dataset.

# When we want to add several variables of a dataset as responses through a

# formula interface, we have to use cbind() in the response. Doing

# "Petal.Width + Petal.Length ~ ..." is INCORRECT, as lm will understand

# "I(Petal.Width + Petal.Length) ~ ..." and do one single regression

# Predict Petal's measurements from Sepal's

modIris <- lm(cbind(Petal.Width, Petal.Length) ~

Sepal.Length + Sepal.Width + Species, data = iris)

summary(modIris)

## Response Petal.Width :

##

## Call:

## lm(formula = Petal.Width ~ Sepal.Length + Sepal.Width + Species,

## data = iris)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.50805 -0.10042 -0.01221 0.11416 0.46455

##

## Coefficients:
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## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -0.86897 0.16985 -5.116 9.73e-07 ***
## Sepal.Length 0.06360 0.03395 1.873 0.063 .

## Sepal.Width 0.23237 0.05145 4.516 1.29e-05 ***
## Speciesversicolor 1.17375 0.06758 17.367 < 2e-16 ***
## Speciesvirginica 1.78487 0.07779 22.944 < 2e-16 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.1797 on 145 degrees of freedom

## Multiple R-squared: 0.9459, Adjusted R-squared: 0.9444

## F-statistic: 634.3 on 4 and 145 DF, p-value: < 2.2e-16

##

##

## Response Petal.Length :

##

## Call:

## lm(formula = Petal.Length ~ Sepal.Length + Sepal.Width + Species,

## data = iris)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.75196 -0.18755 0.00432 0.16965 0.79580

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -1.63430 0.26783 -6.102 9.08e-09 ***
## Sepal.Length 0.64631 0.05353 12.073 < 2e-16 ***
## Sepal.Width -0.04058 0.08113 -0.500 0.618

## Speciesversicolor 2.17023 0.10657 20.364 < 2e-16 ***
## Speciesvirginica 3.04911 0.12267 24.857 < 2e-16 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.2833 on 145 degrees of freedom

## Multiple R-squared: 0.9749, Adjusted R-squared: 0.9742

## F-statistic: 1410 on 4 and 145 DF, p-value: < 2.2e-16

# The fitted values and residuals are now matrices

head(modIris$fitted.values)

## Petal.Width Petal.Length

## 1 0.2687095 1.519831

## 2 0.1398033 1.410862

## 3 0.1735565 1.273483

## 4 0.1439590 1.212910

## 5 0.2855861 1.451142

## 6 0.3807391 1.697490

head(modIris$residuals)

## Petal.Width Petal.Length

## 1 -0.06870951 -0.119831001

## 2 0.06019672 -0.010861533

## 3 0.02644348 0.026517420

## 4 0.05604099 0.287089900

## 5 -0.08558613 -0.051141525

## 6 0.01926089 0.002510054

# The individual models

modIris1 <- lm(Petal.Width ~Sepal.Length + Sepal.Width + Species, data = iris)

modIris2 <- lm(Petal.Length ~Sepal.Length + Sepal.Width + Species, data = iris)

summary(modIris1)

##

## Call:

## lm(formula = Petal.Width ~ Sepal.Length + Sepal.Width + Species,

## data = iris)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.50805 -0.10042 -0.01221 0.11416 0.46455
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##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -0.86897 0.16985 -5.116 9.73e-07 ***
## Sepal.Length 0.06360 0.03395 1.873 0.063 .

## Sepal.Width 0.23237 0.05145 4.516 1.29e-05 ***
## Speciesversicolor 1.17375 0.06758 17.367 < 2e-16 ***
## Speciesvirginica 1.78487 0.07779 22.944 < 2e-16 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.1797 on 145 degrees of freedom

## Multiple R-squared: 0.9459, Adjusted R-squared: 0.9444

## F-statistic: 634.3 on 4 and 145 DF, p-value: < 2.2e-16

summary(modIris2)

##

## Call:

## lm(formula = Petal.Length ~ Sepal.Length + Sepal.Width + Species,

## data = iris)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.75196 -0.18755 0.00432 0.16965 0.79580

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -1.63430 0.26783 -6.102 9.08e-09 ***
## Sepal.Length 0.64631 0.05353 12.073 < 2e-16 ***
## Sepal.Width -0.04058 0.08113 -0.500 0.618

## Speciesversicolor 2.17023 0.10657 20.364 < 2e-16 ***
## Speciesvirginica 3.04911 0.12267 24.857 < 2e-16 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.2833 on 145 degrees of freedom

## Multiple R-squared: 0.9749, Adjusted R-squared: 0.9742

## F-statistic: 1410 on 4 and 145 DF, p-value: < 2.2e-16

4.3.2 Assumptions and inference

As deduced from what we have seen so far, fitting a multivariate
linear regression is more practical than doing q separate univariate
fits (especially if the number of responses q is large). However, it is
not conceptually different. The discussion becomes more interesting
in the inference for the multivariate linear regression, where the
dependence between the responses has to be taken into account.

In order to achieve inference, we will require some assumptions,
these being natural extensions of the ones seen in Section 2.3:

i. Linearity: E[Y|X = x] = B′x.
ii. Homoscedasticity: Var[ε|X1 = x1, . . . , Xp = xp] = Σ.
iii. Normality: ε ∼ Nq(0, Σ).
iv. Independence of the errors: ε1, . . . , εn are independent (or

uncorrelated, E[εiε
′
j] = 0, i ̸= j, since they are assumed to be

normal).

Then, a good one-line summary of the multivariate multiple
linear model is (independence is implicit)

Y|X = x ∼ Nq(B′x, Σ).
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32 Indeed, specifying the full distribu-
tion of B̂ would require introducing
the matrix normal distribution, a
generalization of the p-dimensional
normal seen in Section 1.3.

33 Observe how the covariance of the
errors ε j and εk , denoted by σjk , is the
responsible of the correlation between
β̂j and β̂k in (4.22). If σjk = 0, then β̂j

and β̂k would be uncorrelated, thus
independent because of their joint
normality. Therefore, inference on βj
and βk could be carried out separately.

Based on these assumptions, the key result for rooting inference
is the distribution of B̂ = (β̂1 · · · β̂q) as an estimator of B =

(β1 · · · βq). This result is now more cumbersome32, but we can
state it as

β̂j ∼ Np

(
βj, σ2

j (X
′X)−1

)
, j = 1, . . . , q, (4.21)(

β̂j

β̂k

)
∼ N2p

((
βj

βk

)
,

(
σ2

j (X
′X)−1 σjk(X

′X)−1

σjk(X
′X)−1 σ2

k (X
′X)−1

))
, j, k = 1, . . . , q,

(4.22)

where Σ = (σij) and σii = σ2
i .33

The results (4.21)–(4.22) open the way for obtaining hypothesis
tests on the joint significance of a predictor in the model (for the q
responses, not just for one), confidence intervals for the coefficients,
prediction confidence regions for the conditional expectation and the
conditional response, the Multivariate ANOVA (MANOVA) decom-
position, multivariate extensions of the F-test, and others. However,
due to the correlation between responses and the multivariateness,
these inferential tools are more complex than in the univariate lin-
ear model. Therefore, given the increased complexity, we do not go
into more details and refer the interested reader to, e.g., Chapter 8

in Seber (1984). We illustrate with code, though, the most important
practical aspects.

# Confidence intervals for the parameters

confint(modIris)

## 2.5 % 97.5 %

## Petal.Width:(Intercept) -1.204674903 -0.5332662

## Petal.Width:Sepal.Length -0.003496659 0.1307056

## Petal.Width:Sepal.Width 0.130680383 0.3340610

## Petal.Width:Speciesversicolor 1.040169583 1.3073259

## Petal.Width:Speciesvirginica 1.631118293 1.9386298

## Petal.Length:(Intercept) -2.163654566 -1.1049484

## Petal.Length:Sepal.Length 0.540501864 0.7521177

## Petal.Length:Sepal.Width -0.200934599 0.1197646

## Petal.Length:Speciesversicolor 1.959595164 2.3808588

## Petal.Length:Speciesvirginica 2.806663658 3.2915610

# Warning! Do not confuse Petal.Width:Sepal.Length with an interaction term!

# It is meant to represent the Response:Predictor coefficient

# Prediction -- now more limited without confidence intervals implemented

predict(modIris, newdata = iris[1:3, ])

## Petal.Width Petal.Length

## 1 0.2687095 1.519831

## 2 0.1398033 1.410862

## 3 0.1735565 1.273483

# MANOVA table

manova(modIris)

## Call:

## manova(modIris)

##

## Terms:

## Sepal.Length Sepal.Width Species Residuals

## Petal.Width 57.9177 6.3975 17.5745 4.6802

## Petal.Length 352.8662 50.0224 49.7997 11.6371

## Deg. of Freedom 1 1 2 145

##

## Residual standard errors: 0.1796591 0.2832942

## Estimated effects may be unbalanced
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34 If q = 1, then ∑
p
j=1 ∥Bj∥2 =

∑
p
j=1

√
β2

j1 = ∑
p
j=1 |β j1|.

35 This property would not hold if the
penalty ∑

p
i=1 ∑

q
j=1 |βij| was considered.

# "Same" as the "Sum Sq" and "Df" entries of

anova(modIris1)

## Analysis of Variance Table

##

## Response: Petal.Width

## Df Sum Sq Mean Sq F value Pr(>F)

## Sepal.Length 1 57.918 57.918 1794.37 < 2.2e-16 ***
## Sepal.Width 1 6.398 6.398 198.21 < 2.2e-16 ***
## Species 2 17.574 8.787 272.24 < 2.2e-16 ***
## Residuals 145 4.680 0.032

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

anova(modIris2)

## Analysis of Variance Table

##

## Response: Petal.Length

## Df Sum Sq Mean Sq F value Pr(>F)

## Sepal.Length 1 352.87 352.87 4396.78 < 2.2e-16 ***
## Sepal.Width 1 50.02 50.02 623.29 < 2.2e-16 ***
## Species 2 49.80 24.90 310.26 < 2.2e-16 ***
## Residuals 145 11.64 0.08

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# anova() serves for assessing the significance of including a new predictor

# for explaining all the responses. This is based on an extension of the

# *sequential* ANOVA table briefly covered in Section 2.6. The hypothesis test

# is by default conducted with the Pillai statistic (an extension of the F-test)

anova(modIris)

## Analysis of Variance Table

##

## Df Pillai approx F num Df den Df Pr(>F)

## (Intercept) 1 0.99463 13332.6 2 144 < 2.2e-16 ***
## Sepal.Length 1 0.97030 2351.9 2 144 < 2.2e-16 ***
## Sepal.Width 1 0.81703 321.5 2 144 < 2.2e-16 ***
## Species 2 0.89573 58.8 4 290 < 2.2e-16 ***
## Residuals 145

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

4.3.3 Shrinkage

Applying shrinkage is also possible in multivariate linear models.
In particular, this allows to fit models with p≫ n predictors.

The glmnet package implements the elastic net regularization for
multivariate linear models. It features extensions of the ∥ · ∥1 and
∥ · ∥2 norm penalties for a vector of parameters in Rp, as considered
in Section 4.1, to norms for a matrix of parameters of size p × q.
Precisely:

• The ridge penalty ∥β−1∥2
2 extends to ∥B∥2

F, where ∥B∥F =√
∑

p
i=1 ∑

q
j=1 β2

ij is the Frobenius norm of B. This is a global penalty
to shrink B.

• The lasso penalty ∥β−1∥1 extends34 to ∑
p
j=1 ∥Bj∥2, where Bj is

the j-th row of B. This is a rowwise penalty that seeks to effectively
remove rows of B, thus eliminating predictors35.

Taking these two extensions into account, the elastic net loss is
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defined as:

RSS(B) + λ

(
α

p

∑
j=1
∥Bj∥2 + (1− α)∥B∥2

F

)
. (4.23)

Clearly, ridge regression corresponds to α = 0 (quadratic penalty)
and lasso to α = 1 (rowwise penalty). And if λ = 0, we are back
to the least squares problem and theory. The optimization of (4.23)
gives

B̂λ,α := arg min
B∈Mp×q

{
RSS(B) + λ

(
α

p

∑
j=1
∥Bj∥2 + (1− α)∥B∥2

F

)}
.

From here, the workflow is very similar to the univariate linear
model: we have to be aware that an standardization of X and Y

takes place in glmnet; there are explicit formulas for the ridge re-
gression estimator, but not for lasso; tuning parameter selection
of λ is done by k-fold cross-validation and its one standard error
variant; variable selection (zeroing of rows in B) can be done with
lasso.

The following chunk of code illustrates some of these points
using glmnet::glmnet with family = "mgaussian" (do not forget
this argument!).

# Simulate data

n <- 500

p <- 50

q <- 10

set.seed(123456)

X <- mvtnorm::rmvnorm(n = n, mean = p:1, sigma = 5 * 0.5ˆtoeplitz(1:p))

E <- mvtnorm::rmvnorm(n = n, mean = rep(0, q), sigma = toeplitz(q:1))

B <- 5 * (2 / (0.5 * (1:p - 15)ˆ2 + 2) + 1 / (0.1 * (1:p - 40)ˆ2 + 1)) %*%

t(1 / sqrt(1:q))

Y <- X %*% B + E

# Visualize B -- dark violet is close to 0

image(1:q, 1:p, t(B), col = viridisLite::viridis(20), xlab = "q", ylab = "p")

# Lasso path fit

mfit <- glmnet(x = X, y = Y, family = "mgaussian", alpha = 1)

# A list of models for each response

str(mfit$beta, 1)

## List of 10

## $ y1 :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots

## $ y2 :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots

## $ y3 :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots

## $ y4 :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots

## $ y5 :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots

## $ y6 :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots

## $ y7 :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots

## $ y8 :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots

## $ y9 :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots

## $ y10:Formal class 'dgCMatrix' [package "Matrix"] with 6 slots

# Tuning parameter selection by 10-fold cross-validation

set.seed(12345)

kcvLassoM <- cv.glmnet(x = X, y = Y, family = "mgaussian", alpha = 1)

kcvLassoM$lambda.min

## [1] 0.135243
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kcvLassoM$lambda.1se

## [1] 0.497475

# Location of both optimal lambdas in the CV loss function

indMin <- which.min(kcvLassoM$cvm)

plot(kcvLassoM)

abline(h = kcvLassoM$cvm[indMin] + c(0, kcvLassoM$cvsd[indMin]))

# Extract the coefficients associated to some fits

coefs <- predict(kcvLassoM, type = "coefficients",

s = c(kcvLassoM$lambda.min, kcvLassoM$lambda.1se))

str(coefs, 1)

## List of 10

## $ y1 :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots

## $ y2 :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots

## $ y3 :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots

## $ y4 :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots

## $ y5 :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots

## $ y6 :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots

## $ y7 :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots

## $ y8 :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots

## $ y9 :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots

## $ y10:Formal class 'dgCMatrix' [package "Matrix"] with 6 slots

# Predictions for the first two observations

preds <- predict(kcvLassoM, type = "response",

s = c(kcvLassoM$lambda.min, kcvLassoM$lambda.1se),

newx = X[1:2, ])

preds

## , , 1

##

## y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

## [1,] 1607.532 1137.740 928.9553 804.5352 719.4861 656.1383 607.9023 568.9489 536.3892 508.3132

## [2,] 1598.747 1130.989 923.1741 799.3845 715.3698 652.8120 604.2244 565.1894 531.9679 504.8820

##

## , , 2

##

## y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

## [1,] 1606.685 1137.092 928.4553 804.0957 719.0616 655.7909 607.5870 568.5401 536.0135 508.0311

## [2,] 1600.321 1132.040 924.0621 800.1538 715.9371 653.3917 604.7983 565.6777 532.6244 505.4317

Finally, the next animation helps visualizing how the zeroing of
the lasso happens for the estimator of B with overall low absolute
values on the previous simulated model.

manipulate::manipulate({

# Color

col <- viridisLite::viridis(20)

# Common zlim

zlim <- range(B) + c(-0.25, 0.25)

# Plot true B

par(mfrow = c(1, 2))

image(1:q, 1:p, t(B), col = col, xlab = "q", ylab = "p", zlim = zlim,

main = "B")

# Extract B_hat from the lasso fit, a p x q matrix

B_hat <- sapply(seq_along(mfit$beta), function(i) mfit$beta[i][[1]][, j])

# Put as black rows the predictors included

not_zero <- abs(B_hat) > 0

image(1:q, 1:p, t(not_zero), breaks = c(0.5, 1),

col = rgb(1, 1, 1, alpha = 0.1), add = TRUE)
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# For B_hat

image(1:q, 1:p, t(B_hat), col = col, xlab = "q", ylab = "p", zlim = zlim,

main = "Bhat")

image(1:q, 1:p, t(not_zero), breaks = c(0.5, 1),

col = rgb(1, 1, 1, alpha = 0.1), add = TRUE)

}, j = manipulate::slider(min = 1, max = ncol(mfit$beta$y1), step = 1,

label = "j in lambda(j)"))

4.4 Big data considerations

The computation of the least squares estimator

β̂ = (X′X)−1X′Y (4.24)

involves inverting the (p + 1) × (p + 1) matrix X′X, where X is
an n × (p + 1) matrix. The vector to be obtained, β̂, is of size p +

1. However, computing it directly from (4.24) requires allocating
O(np + p2) elements in memory. When n is very large, this can be
prohibitive. In addition, for convenience of the statistical analysis,
R’s lm returns several objects of the same size as X and Y, thus
notably increasing the memory usage. For these reasons, alternative
approaches for computing β̂ with big data are required.

An approach for computing (4.24) in a memory-friendly way
is to split the computation of (X′X)−1 and X′Y by blocks that are
storable in memory. A possibility is to update sequentially the es-
timation of the vector of coefficients. This can be done with the
following expression, which relates β̂ with β̂−i, the vector of esti-
mated coefficients without the i-th datum:

β̂ = β̂−i + (X′X)−1xi

(
Yi − x′i β̂−i

)
. (4.25)

In (4.25) above, x′i is the i-th row of the design matrix X. The expres-
sion follows from the Sherman–Morrison formula for an invertible
matrix A and a vector b,

(A + bb′)−1 = A−1 − A−1bb′A−1

1 + b′A−1b
,

and from the equalities

X′X = X′−iX−i + xix′i,

X′Y = X′−iY−i + xiY′i ,

where X−i is the (n− 1)× (p + 1) matrix obtained by removing the
i-th row of X. In (4.25), using again the Sherman–Morrison formula,
we can update (X′X)−1 easily from

(
X′−iX−i

)−1:

(X′X)−1 =
(
X′−iX−i

)−1 −
(
X′−iX−i

)−1 xix′i
(
X′−iX−i

)−1

1 + x′i
(

X′−iX−i

)−1
xi

. (4.26)

This has the advantage of not requiring to compute X′X and then to
invert it. Instead of that, we work directly with

(
X′−iX−i

)−1 , which
was already computed and has size (p + 1)× (p + 1).

This idea can be iterated and we can compute β̂ by the following
iterative procedure:
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36 The QR decomposition of the matrix
X of size n× m is X = QR such that
Q is an n× n orthogonal matrix and
R is an n×m upper triangular matrix.
This factorization is commonly used in
numerical analysis for solving linear
systems.

1. Start from a reduced dataset Xold ≡ X−i and Yold ≡ Y−i for
which the least squares estimate can be computed. Denote it by
β̂old ≡ β̂−i.

2. Add one of the remaining data points to get β̂new ≡ β̂ from
(4.25) and (4.26).

3. Set β̂new ← β̂old and Xnew ← Xold.
4. Repeat Steps 2–3 until there are no remaining data points left.
5. Return β̂← β̂new.

The main advantage of this iterative procedure is clear: we do
not need to store any vector or matrix with n in the dimension –
only matrices of size p. As a consequence, we do not need to store
the data in memory.

A similar iterative approach (yet more sophisticated) is fol-
lowed by the biglm package. We omit the details here (see Miller
(1992)) and just comment the main idea: for computing (4.24),
biglm::biglm performs a QR decomposition36 of X that is com-
puted iteratively. Then, instead of computing (4.24), it solves the
triangular system

Rβ̂ = Q′Y.

Let’s see how biglm::biglm works in practice.

# Not really "big data", but for the sake of illustration

set.seed(12345)

n <- 1e6

p <- 10

beta <- seq(-1, 1, length.out = p)ˆ5

x1 <- matrix(rnorm(n * p), nrow = n, ncol = p)

x1[, p] <- 2 * x1[, 1] + rnorm(n, sd = 0.1) # Add some dependence to predictors

x1[, p - 1] <- 2 - x1[, 2] + rnorm(n, sd = 0.5)

y1 <- 1 + x1 %*% beta + rnorm(n)

x2 <- matrix(rnorm(100 * p), nrow = 100, ncol = p)

y2 <- 1 + x2 %*% beta + rnorm(100)

bigData1 <- data.frame("resp" = y1, "pred" = x1)

bigData2 <- data.frame("resp" = y2, "pred" = x2)

# biglm has a very similar syntax to lm -- but the formula interface does not

# work always as expected

# biglm::biglm(formula = resp ~ ., data = bigData1) # Does not work

# biglm::biglm(formula = y ~ x) # Does not work

# biglm::biglm(formula = resp ~ pred.1 + pred.2, data = bigData1) # Does work,

# but not very convenient for a large number of predictors

# Hack for automatic inclusion of all the predictors

f <- formula(paste("resp ~", paste(names(bigData1)[-1], collapse = " + ")))

biglmMod <- biglm::biglm(formula = f, data = bigData1)

# lm's call

lmMod <- lm(formula = resp ~ ., data = bigData1)

# The reduction in size of the resulting object is more than notable

print(object.size(biglmMod), units = "KB")

## 13.1 Kb

print(object.size(lmMod), units = "MB")

## 381.5 Mb

# Summaries

s1 <- summary(biglmMod)

s2 <- summary(lmMod)

s1
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## Large data regression model: biglm::biglm(formula = f, data = bigData1)

## Sample size = 1000000

## Coef (95% CI) SE p

## (Intercept) 1.0021 0.9939 1.0104 0.0041 0.0000

## pred.1 -0.9733 -1.0133 -0.9333 0.0200 0.0000

## pred.2 -0.2866 -0.2911 -0.2822 0.0022 0.0000

## pred.3 -0.0535 -0.0555 -0.0515 0.0010 0.0000

## pred.4 -0.0041 -0.0061 -0.0021 0.0010 0.0000

## pred.5 -0.0002 -0.0022 0.0018 0.0010 0.8373

## pred.6 0.0003 -0.0017 0.0023 0.0010 0.7771

## pred.7 0.0026 0.0006 0.0046 0.0010 0.0091

## pred.8 0.0521 0.0501 0.0541 0.0010 0.0000

## pred.9 0.2840 0.2800 0.2880 0.0020 0.0000

## pred.10 0.9867 0.9667 1.0067 0.0100 0.0000

s2

##

## Call:

## lm(formula = resp ~ ., data = bigData1)

##

## Residuals:

## Min 1Q Median 3Q Max

## -4.8798 -0.6735 -0.0013 0.6735 4.9060

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 1.0021454 0.0041200 243.236 < 2e-16 ***
## pred.1 -0.9732675 0.0199989 -48.666 < 2e-16 ***
## pred.2 -0.2866314 0.0022354 -128.227 < 2e-16 ***
## pred.3 -0.0534834 0.0009997 -53.500 < 2e-16 ***
## pred.4 -0.0040772 0.0009984 -4.084 4.43e-05 ***
## pred.5 -0.0002051 0.0009990 -0.205 0.83731

## pred.6 0.0002828 0.0009989 0.283 0.77706

## pred.7 0.0026085 0.0009996 2.610 0.00907 **
## pred.8 0.0520744 0.0009994 52.105 < 2e-16 ***
## pred.9 0.2840358 0.0019992 142.076 < 2e-16 ***
## pred.10 0.9866851 0.0099876 98.791 < 2e-16 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.9993 on 999989 degrees of freedom

## Multiple R-squared: 0.5777, Adjusted R-squared: 0.5777

## F-statistic: 1.368e+05 on 10 and 999989 DF, p-value: < 2.2e-16

# Further information

s1$mat # Coefficients and their inferences

## Coef (95% CI) SE p

## (Intercept) 1.0021454430 0.9939053491 1.010385537 0.0041200470 0.000000e+00

## pred.1 -0.9732674585 -1.0132653005 -0.933269616 0.0199989210 0.000000e+00

## pred.2 -0.2866314070 -0.2911021089 -0.282160705 0.0022353509 0.000000e+00

## pred.3 -0.0534833941 -0.0554827653 -0.051484023 0.0009996856 0.000000e+00

## pred.4 -0.0040771777 -0.0060739907 -0.002080365 0.0009984065 4.432709e-05

## pred.5 -0.0002051218 -0.0022030377 0.001792794 0.0009989579 8.373098e-01

## pred.6 0.0002828388 -0.0017149118 0.002280589 0.0009988753 7.770563e-01

## pred.7 0.0026085425 0.0006093153 0.004607770 0.0009996136 9.066118e-03

## pred.8 0.0520743791 0.0500755376 0.054073221 0.0009994208 0.000000e+00

## pred.9 0.2840358104 0.2800374345 0.288034186 0.0019991879 0.000000e+00

## pred.10 0.9866850849 0.9667099026 1.006660267 0.0099875911 0.000000e+00

s1$rsq # Rˆ2

## [1] 0.5777074

s1$nullrss # SST (as in Section 2.6)

## [1] 2364861

# Extract coefficients

coef(biglmMod)

## (Intercept) pred.1 pred.2 pred.3 pred.4 pred.5 pred.6 pred.7

## 1.0021454430 -0.9732674585 -0.2866314070 -0.0534833941 -0.0040771777 -0.0002051218 0.0002828388 0.0026085425

## pred.8 pred.9 pred.10

## 0.0520743791 0.2840358104 0.9866850849
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37 Not really exhaustive: the method
behind it, due to Furnival and Wilson
(1974), employs an ingenious branch
and bound algorithm to remove most
of the non-interesting models.

# Prediction works as usual

predict(biglmMod, newdata = bigData2[1:5, ])

## [,1]

## 1 2.3554732

## 2 2.5631387

## 3 2.4546594

## 4 2.3483083

## 5 0.6587481

# Must contain a column for the response

# predict(biglmMod, newdata = bigData2[1:5, -1]) # Error

# Update the model with training data

update(biglmMod, moredata = bigData2)

## Large data regression model: biglm::biglm(formula = f, data = bigData1)

## Sample size = 1000100

# AIC and BIC

AIC(biglmMod, k = 2)

## [1] 998685.1

AIC(biglmMod, k = log(n))

## [1] 998815.1

# Features not immediately available for biglm objects: stepwise selection by

# stepAIC, residuals, variance of the error, model diagnostics, and vifs

# Workaround for obtaining hat(sigma)ˆ2 = SSE / (n - p - 1), SSE = SST * (1 - Rˆ2)

(s1$nullrss * (1 - s1$rsq)) / s1$obj$df.resid

## [1] 0.9986741

s2$sigmaˆ2

## [1] 0.9986741

Model selection of biglm models can be done, not by MASS::stepAIC,
but with the more advanced leaps package. This is achieved by the
leaps::regsubsets function, which returns the best subset of up to
(by default) nvmax = 8 predictors among the p possible predictors
to be included in the model. The function requires the full biglm
model to begin the exhaustive37 search (Furnival and Wilson, 1974).
The kind of search can be changed using the method argument and
choosing the exhaustive (by default), forward, or backward selec-
tion.

# Model selection adapted to big data models

reg <- leaps::regsubsets(biglmMod, nvmax = p, method = "exhaustive")

plot(reg) # Plot best model (top row) to worst model (bottom row)

# Summarize (otherwise regsubsets's output is hard to decipher)

subs <- summary(reg)

subs

## Subset selection object

## 10 Variables (and intercept)

## Forced in Forced out

## pred.1 FALSE FALSE

## pred.2 FALSE FALSE

## pred.3 FALSE FALSE

## pred.4 FALSE FALSE

## pred.5 FALSE FALSE

## pred.6 FALSE FALSE

## pred.7 FALSE FALSE

## pred.8 FALSE FALSE

## pred.9 FALSE FALSE

## pred.10 FALSE FALSE
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Figure 4.6: Best subsets for
p = 10 predictors returned by
leaps::regsubsets. The vertical axis
indicates the sorting in terms of the
BIC (the top positions contain the best
models in terms of the BIC). White
color indicates that the predictor is not
included in the model and black that
it is included. The p models obtained
with the best subsets of 1 ≤ r ≤ p
out of p predictors are displayed. Note
that the vertical ordering does not
necessarily coincide with r = 1, . . . , p.

## 1 subsets of each size up to 9

## Selection Algorithm: exhaustive

## pred.1 pred.2 pred.3 pred.4 pred.5 pred.6 pred.7 pred.8 pred.9 pred.10

## 1 ( 1 ) " " " " " " " " " " " " " " " " " " "*"

## 2 ( 1 ) " " " " " " " " " " " " " " " " "*" "*"

## 3 ( 1 ) " " "*" " " " " " " " " " " " " "*" "*"

## 4 ( 1 ) " " "*" "*" " " " " " " " " " " "*" "*"

## 5 ( 1 ) " " "*" "*" " " " " " " " " "*" "*" "*"

## 6 ( 1 ) "*" "*" "*" " " " " " " " " "*" "*" "*"

## 7 ( 1 ) "*" "*" "*" "*" " " " " " " "*" "*" "*"

## 8 ( 1 ) "*" "*" "*" "*" " " " " "*" "*" "*" "*"

## 9 ( 1 ) "*" "*" "*" "*" " " "*" "*" "*" "*" "*"

# Lots of useful information

str(subs, 1)

## List of 8

## $ which : logi [1:9, 1:11] TRUE TRUE TRUE TRUE TRUE TRUE ...

## ..- attr(*, "dimnames")=List of 2

## $ rsq : num [1:9] 0.428 0.567 0.574 0.576 0.577 ...

## $ rss : num [1:9] 1352680 1023080 1006623 1003763 1001051 ...

## $ adjr2 : num [1:9] 0.428 0.567 0.574 0.576 0.577 ...

## $ cp : num [1:9] 354480 24444 7968 5106 2392 ...

## $ bic : num [1:9] -558604 -837860 -854062 -856894 -859585 ...

## $ outmat: chr [1:9, 1:10] " " " " " " " " ...

## ..- attr(*, "dimnames")=List of 2

## $ obj :List of 27

## ..- attr(*, "class")= chr "regsubsets"

## - attr(*, "class")= chr "summary.regsubsets"

# Get the model with lowest BIC

subs$which

## (Intercept) pred.1 pred.2 pred.3 pred.4 pred.5 pred.6 pred.7 pred.8 pred.9 pred.10

## 1 TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

## 2 TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE

## 3 TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE

## 4 TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE

## 5 TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE

## 6 TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE



188 eduardo garcía-portugués

## 7 TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE

## 8 TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE

## 9 TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE

subs$bic

## [1] -558603.7 -837859.9 -854062.3 -856893.8 -859585.3 -861936.5 -861939.3 -861932.3 -861918.6

subs$which[which.min(subs$bic), ]

## (Intercept) pred.1 pred.2 pred.3 pred.4 pred.5 pred.6 pred.7 pred.8 pred.9

## TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE

## pred.10

## TRUE

# Show the display in Figure 4.6

subs$which[order(subs$bic), ]

## (Intercept) pred.1 pred.2 pred.3 pred.4 pred.5 pred.6 pred.7 pred.8 pred.9 pred.10

## 7 TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE

## 6 TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE

## 8 TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE

## 9 TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE

## 5 TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE

## 4 TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE

## 3 TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE

## 2 TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE

## 1 TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

# It also works with ordinary linear models and it is much faster and

# informative than stepAIC

reg <- leaps::regsubsets(resp ~ ., data = bigData1, nvmax = p,

method = "backward")

subs <- summary(reg)

subs$bic

## [1] -558603.7 -837859.9 -854062.3 -856893.8 -859585.3 -861936.5 -861939.3 -861932.3 -861918.6 -861904.8

subs$which[which.min(subs$bic), ]

## (Intercept) pred.1 pred.2 pred.3 pred.4 pred.5 pred.6 pred.7 pred.8 pred.9

## TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE

## pred.10

## TRUE

# Compare it with stepAIC

MASS::stepAIC(lm(resp ~ ., data = bigData1), trace = 0,

direction = "backward", k = log(n))

##

## Call:

## lm(formula = resp ~ pred.1 + pred.2 + pred.3 + pred.4 + pred.8 +

## pred.9 + pred.10, data = bigData1)

##

## Coefficients:

## (Intercept) pred.1 pred.2 pred.3 pred.4 pred.8 pred.9 pred.10

## 1.002141 -0.973201 -0.286626 -0.053487 -0.004074 0.052076 0.284038 0.986651

Finally, let’s see an example on how to fit a linear model to a
large dataset that does not fit in the RAM of most regular laptops.
Imagine that you want to regress a response Y into a set of p =

10 predictors and the sample size is n = 108. Merely storing the
response and the predictors will take up to 8.2 GB in RAM:

# Size of the response

print(object.size(rnorm(1e6)) * 1e2, units = "GB")

## 0.7 Gb

# Size of the predictors

print(object.size(rnorm(1e6)) * 1e2 * 10, units = "GB")

## 7.5 Gb

In addition to this, if lm was called, it will return the residuals,
effects, and fitted.values slots (all vectors of length n, hence
0.7× 3 = 2.1 GB more). It will also return the qr decomposition
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of the design matrix and the model matrix (both are n × (p + 1)
matrices, so another 8.2× 2 = 16.4 GB more). The final lm object
will thus be at the very least, of size 18.5 GB. Clearly, this is not a
very memory-friendly procedure.

A possible approach is to split the dataset and perform updates
of the model in chunks of reasonable size. The next code provides a
template for such approach using biglm and update.

# Linear regression with n = 10ˆ8 and p = 10

n <- 10ˆ8

p <- 10

beta <- seq(-1, 1, length.out = p)ˆ5

# Number of chunks for splitting the dataset

nChunks <- 1e3

nSmall <- n / nChunks

# Simulates reading the first chunk of data

set.seed(12345)

x <- matrix(rnorm(nSmall * p), nrow = nSmall, ncol = p)

x[, p] <- 2 * x[, 1] + rnorm(nSmall, sd = 0.1)

x[, p - 1] <- 2 - x[, 2] + rnorm(nSmall, sd = 0.5)

y <- 1 + x %*% beta + rnorm(nSmall)

# First fit

bigMod <- biglm::biglm(y ~ x, data = data.frame(y, x))

# Update fit

# pb <- txtProgressBar(style = 3)

for (i in 2:nChunks) {

# Simulates reading the i-th chunk of data

set.seed(12345 + i)

x <- matrix(rnorm(nSmall * p), nrow = nSmall, ncol = p)

x[, p] <- 2 * x[, 1] + rnorm(nSmall, sd = 0.1)

x[, p - 1] <- 2 - x[, 2] + rnorm(nSmall, sd = 0.5)

y <- 1 + x %*% beta + rnorm(nSmall)

# Update the fit

bigMod <- update(bigMod, moredata = data.frame(y, x))

# Progress

# setTxtProgressBar(pb = pb, value = i / nChunks)

}

# Final model

summary(bigMod)

## Large data regression model: biglm::biglm(y ~ x, data = data.frame(y, x))

## Sample size = 100000000

## Coef (95% CI) SE p

## (Intercept) 1.0003 0.9995 1.0011 4e-04 0.0000

## x1 -1.0015 -1.0055 -0.9975 2e-03 0.0000

## x2 -0.2847 -0.2852 -0.2843 2e-04 0.0000

## x3 -0.0531 -0.0533 -0.0529 1e-04 0.0000

## x4 -0.0041 -0.0043 -0.0039 1e-04 0.0000

## x5 0.0002 0.0000 0.0004 1e-04 0.0760

## x6 -0.0001 -0.0003 0.0001 1e-04 0.2201

## x7 0.0041 0.0039 0.0043 1e-04 0.0000

## x8 0.0529 0.0527 0.0531 1e-04 0.0000

## x9 0.2844 0.2840 0.2848 2e-04 0.0000

## x10 1.0007 0.9987 1.0027 1e-03 0.0000

print(object.size(bigMod), units = "KB")

## 7.8 Kb
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The summary of a biglm object yields slightly different
significances for the coefficients than those of lm. The
reason is that biglm employs N (0, 1)-approximations for
the distributions of the t-tests instead of the exact tn−1

distribution. Obviously, if n is large, the differences are
inappreciable.



-3 -2 -1 0 1 2 3

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

X

Y

Figure 5.1: Scatterplot of a sample
{(Xi , Yi)}n

i=1 sampled from a logistic
regression.
1 His Appendix F in the Rogers Com-
mission is particularly critical on
the increasing sequence of risks that
NASA took previously to the Chal-
lenger disaster. His closing sentence:
“For a successful technology, reality
must take precedence over public
relations, for nature cannot be fooled”.

5
Generalized linear models

As we saw in Chapter 2, linear regression assumes that the re-
sponse variable Y is such that

Y|(X1 = x1, . . . , Xp = xp) ∼ N (β0 + β1x1 + · · ·+ βpxp, σ2)

and hence

E[Y|X1 = x1, . . . , Xp = xp] = β0 + β1x1 + · · ·+ βpxp.

This, in particular, implies that Y is continuous. In this chapter we
will see how generalized linear models can deal with other kinds of
distributions for Y|(X1 = x1, . . . , Xp = xp), particularly with discrete
responses, by modeling the transformed conditional expectation.
The simplest generalized linear model is logistic regression, which
arises when Y is a binary response, that is, a variable encoding two
categories with 0 and 1. This model would be useful, for example,
to predict Y given X from the sample {(Xi, Yi)}n

i=1 in Figure 5.1.

5.1 Case study: The Challenger disaster

The Challenger disaster occurred on the 28th January of 1986, when
the NASA Space Shuttle orbiter Challenger broke apart and disinte-
grated at 73 seconds into its flight, leading to the deaths of its seven
crew members. The accident had serious consequences for the
NASA credibility and resulted in an interruption of 32 months in
the shuttle program. The Presidential Rogers Commission (formed by
astronaut Neil A. Armstrong and Nobel laureate Richard P. Feyn-
man1, among others) was created in order to investigate the causes
of the disaster.

Challenger launch and posterior explosion, as broadcasted live
by NBC in 28/01/1986. Video also available here.

The Rogers Commission elaborated a report (Presidential Com-
mission on the Space Shuttle Challenger Accident, 1986) with all
the findings. The commission determined that the disintegration
began with the failure of an O-ring seal in the solid rocket booster
due to the unusually cold temperature (−0.6 Celsius degrees; 30.92
Fahrenheit degrees) during the launch. This failure produced a

https://history.nasa.gov/rogersrep/v2appf.htm
https://www.youtube.com/watch?v=fSTrmJtHLFU
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2 Episode S1:E3 “A Major Malfunction”
in Netflix’s series “Challenger: The
Final Flight” reproduces the events
during this teleconference between
Thiokol (Promontory, Utah) and
NASA (Cape Canaveral, Florida),
with interviews to the relevant actors.
The covering of the teleconference
spans from the time marks 17:40

to 23:55. Relevant highlights are:
the engineers are told to give an
assessment of concerns regarding
launching in cold weather (17:40–
18:56); the engineers present the report
and their unquantified concerns about
higher risk with cold temperatures
(20:38–21:20); Larry Mulloy, NASA
manager in 1986, says “The data
[the engineers presented] did not
support the recommendation that
the engineers were making. The data
was totally inconclusive.” (21:47–
21:58); the vice president of engineers
of Thiokol, Robert Lund, gives the
specific recommendation to not launch
below 53 degrees Fahrenheit (11.67
degrees Celsius) and Larry Mulloy
replies (22:33–22:53); Robert Lund,
pressured, changes his assessment
and agrees with Larry Mulloy’s: data
is inconclusive (24:12–25:33). Recall
that the data presented during the
teleconference is the one summarized
in Figure 5.2a.

breach of burning gas through the solid rocket booster that com-
promised the whole shuttle structure, resulting in its disintegration
due to the extreme aerodynamic forces.

The problem with O-rings was something known. The night
before the launch, there was a three-hour teleconference between
rocket engineers at Thiokol, the manufacturer company of the solid
rocket boosters, and NASA. In the teleconference it was discussed
the effect on the O-rings performance of the low temperature fore-
casted for the launch, and eventually a launch decision was at-
tained.2 Figure 5.2a influenced the data analysis conclusion that
sustained the launch decision:

“Temperature data [is] not conclusive on predicting primary O-ring
blowby.”

Figure 5.2: Number of incidents
in the O-rings (filed joints) versus
temperatures. Panel a includes only
flights with incidents. Panel b contains
all flights (with and without incidents).

The Rogers Commission noted a major flaw in Figure 5.2a, the
one presented by the solid rocket booster engineers at the telecon-
ference: the flights with zero incidents were excluded from the
plot by the engineers because it was felt that these flights did not
contribute any information about the temperature effect (Figure
5.2b). The Rogers Commission therefore concluded:

“A careful analysis of the flight history of O-ring performance would
have revealed the correlation of O-ring damage in low temperature”.

https://www.netflix.com/watch/81012173
https://www.netflix.com/watch/81012173
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3 After the shuttle exits the atmo-
sphere, the solid rocket boosters
separate and descend to land using
a parachute. After recovery, they are
carefully analyzed.

The purpose of this case study, inspired by Siddhartha et al.
(1989), is to quantify what was the influence of the temperature
on the probability of having at least one incident related with the
O-rings. Specifically, we want to address the following questions:

• Q1. Is the temperature associated with O-ring incidents?
• Q2. In which way was the temperature affecting the probability of

O-ring incidents?
• Q3. What was the predicted probability of an incident in an O-ring for

the temperature of the launch day?
• Q4. What was the predicted maximum probability of an incident in an

O-ring if the launch were postponed until the temperature was above
11.67 degrees Celsius, as the vice president of engineers of Thiokol
recommended?

To try to answer these questions, we analyze the challenger

dataset (download), partially collected in Table 5.1. The dataset
contains information regarding the state of the solid rocket boosters
after launch3 for 23 flights prior the Challenger launch. Each row
has, among others, the following variables:

• fail.field, fail.nozzle: binary variables indicating whether
there was an incident with the O-rings in the field joints or in the
nozzles of the solid rocket boosters. 1 codifies an incident and 0

its absence. For the analysis, we focus on the O-rings of the field
joint as those were the most determinants for the accident.

• nfail.field, nfail.nozzle: number of incidents with the O-
rings in the field joints and in the nozzles.

• temp: temperature in the day of launch, measured in Celsius
degrees.

• pres.field, pres.nozzle: leak-check pressure tests of the O-
rings. These tests assured that the rings would seal the joint.

Table 5.1: The challenger dataset.

flight date nfails.field nfails.nozzle fail.field fail.nozzle temp

1 12/04/81 0 0 0 0 18.9
2 12/11/81 1 0 1 0 21.1
3 22/03/82 0 0 0 0 20.6
5 11/11/82 0 0 0 0 20.0
6 04/04/83 0 2 0 1 19.4

7 18/06/83 0 0 0 0 22.2
8 30/08/83 0 0 0 0 22.8
9 28/11/83 0 0 0 0 21.1
41-B 03/02/84 1 1 1 1 13.9
41-C 06/04/84 1 1 1 1 17.2

41-D 30/08/84 1 1 1 1 21.1
41-G 05/10/84 0 0 0 0 25.6

https://raw.githubusercontent.com/egarpor/handy/master/datasets/challenger.txt
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51-A 08/11/84 0 0 0 0 19.4
51-C 24/01/85 2 2 1 1 11.7
51-D 12/04/85 0 2 0 1 19.4

51-B 29/04/85 0 2 0 1 23.9
51-G 17/06/85 0 2 0 1 21.1
51-F 29/07/85 0 0 0 0 27.2
51-I 27/08/85 0 0 0 0 24.4
51-J 03/10/85 0 0 0 0 26.1

61-A 30/10/85 2 0 1 0 23.9
61-B 26/11/85 0 2 0 1 24.4
61-C 12/01/86 1 2 1 1 14.4

Let’s begin the analysis by replicating Figures 5.2a and 5.2b, and
by checking that linear regression is not the right tool for address-
ing Q1–Q4.

# Read data

challenger <- read.table(file = "challenger.txt", header = TRUE, sep = "\t")

# Figures 5.3a and 5.3b

car::scatterplot(nfails.field ~ temp, smooth = FALSE, boxplots = FALSE,

data = challenger, subset = nfails.field > 0)

car::scatterplot(nfails.field ~ temp, smooth = FALSE, boxplots = FALSE,

data = challenger)

There is a fundamental problem in using linear regression for
this data: the response is not continuous. As a consequence, there
is no linearity and the errors around the mean are not normal (in-
deed, they are strongly non-normal). Let’s check this with the cor-
responding diagnostic plots:

# Fit linear model, and run linearity and normality diagnostics

mod <- lm(nfails.field ~ temp, data = challenger)

plot(mod, 1)

plot(mod, 2)

Despite linear regression is not the adequate tool for this data, it
is able to detect the obvious difference between the two plots:

1. The trend for launches with incidents is flat, hence suggesting
there is no correlation on the temperature (Figure 5.2a). This was
one of the arguments behind NASA’s decision of launching the
rocket at a temperature of −0.6 Celsius degrees.

2. However, as Figure 5.2b reveals, the trend for all launches in-
dicates a clear negative dependence between temperature and
number of incidents! Think about it in this way: the minimum
temperature for a launch without incidents ever recorded was
above 18 Celsius degrees, and the Challenger was launched at
−0.6 without clearly knowing the effects of such low tempera-
tures.

Along this chapter we will see the required tools for answering
precisely Q1–Q4.
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4 Recall that a binomial variable with size
n and probability p, B(n, p), is obtained
by summing n independent Ber(p),
so Ber(p) is the same distribution as
B(1, p).
5 Do not confuse this p with the num-
ber of predictors in the model, repre-
sented by p. The context should make
unambiguous the use of p.

5.2 Model formulation and estimation

For simplicity, we first study the logistic regression and then study
the general case of a generalized linear model.

5.2.1 Logistic regression

As we saw in Section 2.2, the multiple linear model described the
relation between the random variables X1, . . . , Xp and Y by assum-
ing a linear relation in the conditional expectation:

E[Y|X1 = x1, . . . , Xp = xp] = β0 + β1x1 + · · ·+ βpxp. (5.1)

In addition, it made three more assumptions on the data (see Sec-
tion 2.3), which resulted in the following one-line summary of the
linear model:

Y|(X1 = x1, . . . , Xp = xp) ∼ N (β0 + β1x1 + · · ·+ βpxp, σ2).

Recall that a necessary condition for the linear model to hold is
that Y is continuous, in order to satisfy the normality of the errors.
Therefore, the linear model is designed for a continuous response.

The situation when Y is discrete (naturally ordered values) or
categorical (non-ordered categories) requires a different treatment.
The simplest situation is when Y is binary: it can only take two
values, codified for convenience as 1 (success) and 0 (failure). For
binary variables there is no fundamental distinction between the
treatment of discrete and categorical variables. Formally, a binary
variable is referred to as a Bernoulli variable4: Y ∼ Ber(p), 0 ≤ p ≤
1 5, if

Y =

{
1, with probability p,
0, with probability 1− p,

or, equivalently, if

P[Y = y] = py(1− p)1−y, y = 0, 1. (5.2)

Recall that a Bernoulli variable is completely determined by the
probability p. Therefore, so do its mean and variance:

E[Y] = P[Y = 1] = p and Var[Y] = p(1− p).

Assume then that Y is a Bernoulli variable and that X1, . . . , Xp

are predictors associated to Y. The purpose in logistic regression is
to model

E[Y|X1 = x1, . . . , Xp = xp] = P[Y = 1|X1 = x1, . . . , Xp = xp], (5.3)

that is, to model how the conditional expectation of Y or, equiva-
lently, the conditional probability of Y = 1, is changing according
to particular values of the predictors. At sight of (5.1), a tempting
possibility is to consider the model

E[Y|X1 = x1, . . . , Xp = xp] = β0 + β1x1 + · · ·+ βpxp =: η.
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6 The fact that the logistic function is
a cdf allows remembering that the
logistic is to be applied to map R into
[0, 1], as opposed to the logit function.
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Figure 5.3: Transformations g−1

associated to different link functions.
The transformations g−1 map the
response of a linear regression η =
β0 + β1x1 + · · ·+ βpxp to [0, 1].
7 And also, as we will see later, because
it is the canonical link function.

8 Consequently, the name “odds” used
in this context is singular, as it refers to
a single ratio.
9 Recall that (traditionally) the result of
a bet is binary: one either wins or loses
it.

However, such a model will run into serious problems inevitably:
negative probabilities and probabilities larger than one may hap-
pen.

A solution is to consider a link function g to encapsulate the
value of E[Y|X1 = x1, . . . , Xp = xp] and map it back to R. Or,
alternatively, a function g−1 that takes η ∈ R and maps it to [0, 1],
the support of E[Y|X1 = x1, . . . , Xp = xp]. There are several link
functions g with associated g−1. Each link generates a different
model:

• Uniform link. Based on the truncation g−1(η) = η1{0<η<1} +

1{η≥1}.
• Probit link. Based on the normal cdf, this is, g−1(η) = Φ(η).
• Logit link. Based on the logistic cdf6:

g−1(η) = logistic(η) :=
eη

1 + eη =
1

1 + e−η .

The logistic transformation is the most employed due to its
tractability, interpretability, and smoothness7. Its inverse, g :
[0, 1] −→ R, is known as the logit function:

logit(p) := logistic−1(p) = log
(

p
1− p

)
.

In conclusion, with the logit link function we can map the do-
main of Y to R in order to apply a linear model. The logistic model
can be then equivalently stated as

E[Y|X1 = x1, . . . , Xp = xp] = logistic(η) =
1

1 + e−η , (5.4)

or as

logit(E[Y|X1 = x1, . . . , Xp = xp]) = η (5.5)

where recall that

η = β0 + β1x1 + · · ·+ βpxp.

There is a clear interpretation of the role of the linear predictor η in
(5.4) when we come back to (5.3):

• If η = 0, then P[Y = 1|X1 = x1, . . . , Xp = xp] =
1
2 (Y = 1 and

Y = 0 are equally likely).
• If η < 0, then P[Y = 1|X1 = x1, . . . , Xp = xp] <

1
2 (Y = 1 is less

likely).
• If η > 0, then P[Y = 1|X1 = x1, . . . , Xp = xp] >

1
2 (Y = 1 is more

likely).

To be more precise on the interpretation of the coefficients we
need to introduce the odds. The odds is an equivalent way of ex-
pressing the distribution of probabilities in a binary variable Y.
Instead of using p to characterize the distribution of Y, we can use

odds(Y) :=
p

1− p
=

P[Y = 1]
P[Y = 0]

. (5.6)
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10 For example, if a horse Y has prob-
ability p = 2/3 of winning a race
(Y = 1), then the odds of the horse is

p
1−p = 2/3

1/3 = 2. This means that the
horse has a probability of winning that is
twice larger than the probability of losing.
This is sometimes written as a 2 : 1 or
2× 1 (spelled “two-to-one”).
11 For the previous example: if the
odds of the horse was 5, then the
probability of winning would be
p = 5/6.

12 To do so, apply (5.6) to (5.4) and use
(5.3).

The odds is thus the ratio between the probability of success and the
probability of failure8. It is extensively used in betting9 due to its
better interpretability10. Conversely, if the odds of Y is given, we
can easily know what is the probability of success p, using the
inverse of (5.6)11:

p = P[Y = 1] =
odds(Y)

1 + odds(Y)
.

Recall that the odds is a number in [0,+∞]. The 0 and
+∞ values are attained for p = 0 and p = 1, respectively.
The log-odds (or logit) is a number in [−∞,+∞].

We can rewrite (5.4) in terms of the odds (5.6)12 so we get:

odds(Y|X1 = x1, . . . , Xp = xp) = eη = eβ0 eβ1x1 · · · eβpxp . (5.7)

Alternatively, taking logarithms, we have the log-odds (or logit)

log(odds(Y|X1 = x1, . . . , Xp = xp)) = β0 + β1x1 + · · ·+ βpxp. (5.8)

The conditional log-odds (5.8) plays the role of the conditional
mean for multiple linear regression. Therefore, we have an analo-
gous interpretation for the coefficients:

• β0: is the log-odds when X1 = . . . = Xp = 0.
• β j, 1 ≤ j ≤ p: is the additive increment of the log-odds for an

increment of one unit in Xj = xj, provided that the remaining
variables X1, . . . , Xj−1, Xj+1, . . . , Xp do not change.

The log-odds is not as easy to interpret as the odds. For that
reason, an equivalent way of interpreting the coefficients, this time
based on (5.7), is:

• eβ0 : is the odds when X1 = . . . = Xp = 0.
• eβ j , 1 ≤ j ≤ p: is the multiplicative increment of the odds for

an increment of one unit in Xj = xj, provided that the remaining
variables X1, . . . , Xj−1, Xj+1, . . . , Xp do not change. If the increment
in Xj is of r units, then the multiplicative increment in the odds
is (eβ j)r.

As a consequence of this last interpretation, we have:

If β j > 0 (respectively, β j < 0) then eβ j > 1 (eβ j < 1)
in (5.7). Therefore, an increment of one unit in Xj, pro-
vided that the remaining variables do not change, results
in a positive (negative) increment in the odds and in
P[Y = 1|X1 = x1, . . . , Xp = xp].
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13 As in the linear model, we assume
the randomness comes from the error
present in Y once X is given, not from
the X, and we therefore denote xi to
the i-th observation of X.
14 Section 5.7 discusses in detail the
assumptions of generalized linear
models.

Case study application
In the Challenger case study we used fail.field as an indicator

of whether “there was at least an incident with the O-rings” (1 =
yes, 0 = no). Let’s see if the temperature was associated with O-
ring incidents (Q1). For that, we compute the logistic regression of
fail.field on temp and we plot the fitted logistic curve.

# Logistic regression: computed with glm and family = "binomial"

nasa <- glm(fail.field ~ temp, family = "binomial", data = challenger)

# Plot data

plot(challenger$temp, challenger$fail.field, xlim = c(-1, 30),

xlab = "Temperature", ylab = "Incident probability")

# Draw the fitted logistic curve

x <- seq(-1, 30, l = 200)

y <- exp(-(nasa$coefficients[1] + nasa$coefficients[2] * x))

y <- 1 / (1 + y)

lines(x, y, col = 2, lwd = 2)

# The Challenger

points(-0.6, 1, pch = 16)

text(-0.6, 1, labels = "Challenger", pos = 4)

At the sight of this curve and the summary it seems that the
temperature was affecting the probability of an O-ring incident
(Q1). Let’s quantify this statement and answer Q2 by looking to the
coefficients of the model:

# Exponentiated coefficients ("odds ratios")

exp(coef(nasa))

## (Intercept) temp

## 1965.9743592 0.6592539

The exponentials of the estimated coefficients are:

• eβ̂0 = 1965.974. This means that, when the temperature is zero,
the fitted odds is 1965.974, so the (estimated) probability of hav-
ing an incident (Y = 1) is 1965.974 times larger than the prob-
ability of not having an incident (Y = 0). Or, in other words,
the probability of having an incident at temperature zero is

1965.974
1965.974+1 = 0.999.

• eβ̂1 = 0.659. This means that each Celsius degree increment on
the temperature multiplies the fitted odds by a factor of 0.659 ≈
2
3 , hence reducing it.

However, for the moment we cannot say whether these findings
are significant or are just an artifact of the randomness of the data,
since we do not have information on the variability of the estimates
of β. We will need inference for that.

Estimation by maximum likelihood
The estimation of β from a sample {(xi, Yi)}n

i=1
13 is done by

Maximum Likelihood Estimation (MLE). As it can be seen in Ap-
pendix A.2, in the linear model, under the assumptions mentioned
in Section 2.3, MLE is equivalent to least squares estimation. In the
logistic model, we assume that14
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Yi|(X1 = xi1, . . . , Xp = xip) ∼ Ber(logistic(ηi)), i = 1, . . . , n,

where ηi := β0 + β1xi1 + · · ·+ βpxip. Denoting pi(β) := logistic(ηi),
the log-likelihood of β is

ℓ(β) = log

(
n

∏
i=1

pi(β)Yi (1− pi(β))1−Yi

)

=
n

∑
i=1

[Yi log(pi(β)) + (1−Yi) log(1− pi(β))] . (5.9)

The ML estimate of β is

β̂ := arg max
β∈Rp+1

ℓ(β).

Unfortunately, due to the nonlinearity of (5.9), there is no explicit
expression for β̂ and it has to be obtained numerically by means
of an iterative procedure. We will see that with more detail in the
next section. Just be aware that this iterative procedure may fail to
converge in low sample size situations with perfect classification,
where the likelihood might be numerically unstable.

Figure 5.4: The logistic regression fit
and its dependence on β0 (horizontal
displacement) and β1 (steepness of the
curve). Recall the effect of the sign of
β1 in the curve: if positive, the logistic
curve has an ‘s’ form; if negative, the
form is a reflected ‘s’. Application
available here.

Figure 5.4 shows how the log-likelihood changes with respect
to the values for (β0, β1) in three data patterns. The data of the
illustration has been generated with the next chunk of code.

# Data

set.seed(34567)

x <- rnorm(50, sd = 1.5)

y1 <- -0.5 + 3 * x

y2 <- 0.5 - 2 * x

y3 <- -2 + 5 * x

y1 <- rbinom(50, size = 1, prob = 1 / (1 + exp(-y1)))

y2 <- rbinom(50, size = 1, prob = 1 / (1 + exp(-y2)))

y3 <- rbinom(50, size = 1, prob = 1 / (1 + exp(-y3)))

https://shinyserv.es/shiny/log-maximum-likelihood/
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Figure 5.5: Log-likelihood surface
ℓ(β0, β1) and its global maximum
(β̂0, β̂1).

# Data

dataMle <- data.frame(x = x, y1 = y1, y2 = y2, y3 = y3)

For fitting a logistic model we employ glm, which has the syntax
glm(formula = response ~ predictor, family = "binomial",

data = data), where response is a binary variable. Note that
family = "binomial" is referring to the fact that the response is
a binomial variable (since it is a Bernoulli). Let’s check that indeed
the coefficients given by glm are the ones that maximize the likeli-
hood given in the animation of Figure 5.4. We do so for y1 ~ x.

# Call glm

mod <- glm(y1 ~ x, family = "binomial", data = dataMle)

mod$coefficients

## (Intercept) x

## -0.1691947 2.4281626

# -loglik(beta)

minusLogLik <- function(beta) {

p <- 1 / (1 + exp(-(beta[1] + beta[2] * x)))

-sum(y1 * log(p) + (1 - y1) * log(1 - p))

}

# Optimization using as starting values beta = c(0, 0)

opt <- optim(par = c(0, 0), fn = minusLogLik)

opt

## $par

## [1] -0.1691366 2.4285119

##

## $value

## [1] 14.79376

##

## $counts

## function gradient

## 73 NA

##

## $convergence

## [1] 0

##

## $message

## NULL

# Visualization of the log-likelihood surface

beta0 <- seq(-3, 3, l = 50)

beta1 <- seq(-2, 8, l = 50)

L <- matrix(nrow = length(beta0), ncol = length(beta1))

for (i in seq_along(beta0)) {

for (j in seq_along(beta1)) {

L[i, j] <- minusLogLik(c(beta0[i], beta1[j]))

}

}

filled.contour(beta0, beta1, -L, color.palette = viridis::viridis,

xlab = expression(beta[0]), ylab = expression(beta[1]),

plot.axes = {

axis(1); axis(2)

points(mod$coefficients[1], mod$coefficients[2],

col = 2, pch = 16)

points(opt$par[1], opt$par[2], col = 4)

})

# The plot.axes argument is a hack to add graphical information within the

# coordinates of the main panel (behind filled.contour there is a layout()...)
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15 Notice that this approach is very
different from directly transform-
ing the response as g(Y), as out-
lined in Section 3.5.1. Indeed, in
generalized linear models one
transforms E[Y|X1, . . . , Xp], not Y.
Of course, g(E[Y|X1, . . . , Xp]) ̸=
E[g(Y)|X1, . . . , Xp].

16 Not to be confused with the expo-
nential distribution Exp(λ), which is a
member of the exponential family.
17 This is the so-called canonical form of
the exponential family. Generalizations
of the family are possible, though we
do not consider them.

For the regressions y2 ~ x and y3 ~ x, do the following:

a. Check that the true β is close to maximizing the likeli-
hood computed in Figure 5.4.

b. Plot the fitted logistic curve and compare it with the
one in Figure 5.4.

The extension of the logistic model to the case of a cat-
egorical response with more than two levels is sketched in
Appendix A.3.

5.2.2 General case

The same idea we used in logistic regression, namely transforming
the conditional expectation of Y into something that can be mod-
eled by a linear model (this is, a quantity that lives in R), can be
generalized. This raises the family of generalized linear models, which
extends the linear model to different kinds of response variables
and provides a convenient parametric framework.

The first ingredient is a link function g, that is monotonic and
differentiable, which is going to produce a transformed expectation15

to be modeled by a linear combination of the predictors:

g
(
E[Y|X1 = x1, . . . , Xp = xp]

)
= η

or, equivalently,

E[Y|X1 = x1, . . . , Xp = xp] = g−1(η),

where

η := β0 + β1x1 + · · ·+ βpxp

is the linear predictor.
The second ingredient of generalized linear models is a distribu-

tion for Y|(X1, . . . , Xp), just as the linear model assumes normality
or the logistic model assumes a Bernoulli random variable. Thus,
we have two linked generalizations with respect to the usual linear
model:

1. The conditional mean may be modeled by a transformation g−1

of the linear predictor η.
2. The distribution of Y|(X1, . . . , Xp) may be different from the

normal.

Generalized linear models are intimately related with the expo-
nential family16 17, which is the family of distributions with pdf
expressible as

f (y; θ, ϕ) = exp
{

yθ − b(θ)
a(ϕ)

+ c(y, ϕ)

}
, (5.10)
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where a(·), b(·), and c(·, ·) are specific functions. If Y has the pdf
(5.10), then we write Y ∼ E(θ, ϕ, a, b, c). If the scale parameter ϕ is
known, this is an exponential family with canonical parameter
θ (if ϕ is unknown, then it may or not may be a two-parameter
exponential family).

Distributions from the exponential family have some nice proper-
ties. Importantly, if Y ∼ E(θ, ϕ, a, b, c), then

µ := E[Y] = b′(θ), σ2 := Var[Y] = b′′(θ)a(ϕ). (5.11)

The canonical link function is the function g that transforms
µ = b′(θ) into the canonical parameter θ. For E(θ, ϕ, a, b, c), this
happens if

θ = g(µ) (5.12)

or, more explicitly due to (5.11), if

g(µ) = (b′)−1(µ). (5.13)

In the case of canonical link function, the one-line summary of the
generalized linear model is (independence is implicit)

Y|(X1 = x1, . . . , Xp = xp) ∼ E(η, ϕ, a, b, c). (5.14)

Expression (5.14) gives insight on what a generalized
linear model does:

1. Select a member of the exponential family in (5.10) for
modeling Y.

2. The canonical link function g is g(µ) = (b′)−1(µ). In
this case, θ = g(µ).

3. The generalized linear model associated to the mem-
ber of the exponential family and g models the con-
ditional θ, given X1, . . . , Xn, by means of the linear
predictor η. This is equivalent to modeling the condi-
tional µ by means of g−1(η).

The linear model arises as a particular case of (5.14) with

a(ϕ) = ϕ, b(θ) =
θ2

2
, c(y, ϕ) = −1

2

{
y2

ϕ
+ log(2πϕ)

}
,

and scale parameter ϕ = σ2. In this case, µ = θ and the
canonical link function g is the identity.

Show that the normal, Bernoulli, exponential, and Pois-
son distributions are members of the exponential family.
For that, express their pdfs in terms of (5.10) and identify
who is θ and ϕ.
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18 The pdf of a Γ(a, ν) is f (x; a, p) =
ap

Γ(ν) xν−1e−ax , for a, ν > 0 and x ∈
(0, ∞) (the pdf is zero otherwise). The
expectation is E[Γ(a, ν)] = ν

a .
19 If the argument −ην is not positive,
then the probability assigned by
Γ(−ην, ν) is zero. This delicate case
may complicate the estimation of the
model. Valid starting values for β are
required.
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Show that the binomial and gamma (which includes ex-
ponential and chi-squared) distributions are members
of the exponential family. For that, express their pdfs in
terms of (5.10) and identify who is θ and ϕ.

The following table lists some useful generalized linear models.
Recall that the linear and logistic models of Sections 2.2.3 and 5.2.1
are obtained from the first and second rows, respectively.18

18
19

19

Support
of Y

Generating
distribu-

tion
Link
g(µ)

Expectation
g−1(η)

Scale
ϕ

Distribution
of Y|X = x

R N (µ, σ2) µ η σ2 N (η, σ2)

{0, 1} Ber(p) logit(µ) logistic(η) 1 Ber (logistic(η))

{0, . . . , N} B(N, p) log
(

µ
N−µ

)
N ·

logistic(η)
1 B(N, logistic(η))

{0, 1, . . .} Pois(λ) log(µ) eη 1 Pois(eη)

(0, ∞) Γ(a, ν) 18 − 1
µ − 1

η
1
ν Γ(−ην, ν) 19

Obtain the canonical link function for the exponential
distribution Exp(λ). What is the scale parameter? What
is the distribution of Y|(X1 = x1, . . . , Xp = xp) in such
model?

Poisson regression
Poisson regression is usually employed for modeling count data

that arises from the recording of the frequencies of a certain phe-
nomenon. It considers that

Y|(X1 = x1, . . . , Xp = xp) ∼ Pois(eη),

this is,

E[Y|X1 = x1, . . . , Xp = xp] = λ(Y|X1 = x1, . . . , Xp = xp)

= eβ0+β1x1+···+βpxp . (5.15)

Let’s see how to apply a Poisson regression. For that aim we
consider the species (download) dataset. The goal is to analyze
whether the Biomass and the pH (a factor) of the terrain are influen-
tial on the number of Species. Incidentally, it will serve to illustrate
that the use of factors within glm is completely analogous to what
we did with lm.

# Read data

species <- read.table("species.txt", header = TRUE)

species$pH <- as.factor(species$pH)

# Plot data

plot(Species ~ Biomass, data = species, col = as.numeric(pH))

legend("topright", legend = c("High pH", "Medium pH", "Low pH"),

col = c(1, 3, 2), lwd = 2) # colors according to as.numeric(pH)

https://raw.githubusercontent.com/egarpor/handy/master/datasets/species.txt
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# Fit Poisson regression

species1 <- glm(Species ~ ., data = species, family = poisson)

summary(species1)

##

## Call:

## glm(formula = Species ~ ., family = poisson, data = species)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -2.5959 -0.6989 -0.0737 0.6647 3.5604

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 3.84894 0.05281 72.885 < 2e-16 ***
## pHlow -1.13639 0.06720 -16.910 < 2e-16 ***
## pHmed -0.44516 0.05486 -8.114 4.88e-16 ***
## Biomass -0.12756 0.01014 -12.579 < 2e-16 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for poisson family taken to be 1)

##

## Null deviance: 452.346 on 89 degrees of freedom

## Residual deviance: 99.242 on 86 degrees of freedom

## AIC: 526.43

##

## Number of Fisher Scoring iterations: 4

# Took 4 iterations of the IRLS

# Interpretation of the coefficients:

exp(species1$coefficients)

## (Intercept) pHlow pHmed Biomass

## 46.9433686 0.3209744 0.6407222 0.8802418

# - 46.9433 is the average number of species when Biomass = 0 and the pH is high

# - For each increment in one unit in Biomass, the number of species decreases

# by a factor of 0.88 (12% reduction)

# - If pH decreases to med (low), then the number of species decreases by a factor

# of 0.6407 (0.3209)

# With interactions

species2 <- glm(Species ~ Biomass * pH, data = species, family = poisson)

summary(species2)

##

## Call:

## glm(formula = Species ~ Biomass * pH, family = poisson, data = species)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -2.4978 -0.7485 -0.0402 0.5575 3.2297

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 3.76812 0.06153 61.240 < 2e-16 ***
## Biomass -0.10713 0.01249 -8.577 < 2e-16 ***
## pHlow -0.81557 0.10284 -7.931 2.18e-15 ***
## pHmed -0.33146 0.09217 -3.596 0.000323 ***
## Biomass:pHlow -0.15503 0.04003 -3.873 0.000108 ***
## Biomass:pHmed -0.03189 0.02308 -1.382 0.166954

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for poisson family taken to be 1)

##

## Null deviance: 452.346 on 89 degrees of freedom

## Residual deviance: 83.201 on 84 degrees of freedom

## AIC: 514.39

##
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20 Note this situation is very different
from logistic regression, for which
we either have observations with the
values 0 or 1. In binomial regression,
we can naturally have proportions.
21 Clearly, E[B(N, p)/N] = p because
E[B(N, p)] = Np.

## Number of Fisher Scoring iterations: 4

exp(species2$coefficients)

## (Intercept) Biomass pHlow pHmed Biomass:pHlow Biomass:pHmed

## 43.2987424 0.8984091 0.4423865 0.7178730 0.8563910 0.9686112

# - If pH decreases to med (low), then the effect of the biomass in the number

# of species decreases by a factor of 0.9686 (0.8564). The higher the pH, the

# stronger the effect of the Biomass in Species

# Draw fits

plot(Species ~ Biomass, data = species, col = as.numeric(pH))

legend("topright", legend = c("High pH", "Medium pH", "Low pH"),

col = c(1, 3, 2), lwd = 2) # colors according to as.numeric(pH)

# Without interactions

bio <- seq(0, 10, l = 100)

z <- species1$coefficients[1] + species1$coefficients[4] * bio

lines(bio, exp(z), col = 1)

lines(bio, exp(species1$coefficients[2] + z), col = 2)

lines(bio, exp(species1$coefficients[3] + z), col = 3)

# With interactions seems to provide a significant improvement

bio <- seq(0, 10, l = 100)

z <- species2$coefficients[1] + species2$coefficients[2] * bio

lines(bio, exp(z), col = 1, lty = 2)

lines(bio, exp(species2$coefficients[3] + species2$coefficients[5] * bio + z),

col = 2, lty = 2)

lines(bio, exp(species2$coefficients[4] + species2$coefficients[6] * bio + z),

col = 3, lty = 2)

For the challenger dataset, do the following:

a. Do a Poisson regression of the total number of inci-
dents, nfails.field + nfails.nozzle, on temp.

b. Plot the data and the fitted Poisson regression curve.
c. Predict the expected number of incidents at tempera-

tures −0.6 and 11.67.

Binomial regression
Binomial regression is an extension of logistic regression that

allows to model discrete responses Y in {0, 1, . . . , N}, where N is
fixed. In its most vanilla version, it considers the model

Y|(X1 = x1, . . . , Xp = xp) ∼ B(N, logistic(η)), (5.16)

this is,

E[Y|X1 = x1, . . . , Xp = xp] = N · logistic(η). (5.17)

Comparing (5.17) with (5.4), it is clear that the logistic regression is
a particular case with N = 1. The interpretation of the coefficients is
therefore clear from the interpretation of (5.4), given that logistic(η)
models the probability of success of each of the N experiments of
the binomial B(N, logistic(η)).

The extra flexibility that binomial regression has offers interest-
ing applications. First, we can use (5.16) as an approach to model
proportions20 Y/N ∈ [0, 1]. In this case, (5.17) becomes21

E[Y/N|X1 = x1, . . . , Xp = xp] = logistic(η).
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22 The sample size here is n = 12, not
226. There are N1, . . . , N12 binomial
sizes corresponding to each observa-
tion, and ∑n

i=1 Ni = 226.

Second, we can let N be dependent on the predictors to accommo-
date group structures, perhaps the most common usage of binomial
regression:

Y|X = x ∼ B(Nx, logistic(η)), (5.18)

where the size of the binomial distribution, Nx, depends on the
values of the predictors. For example, imagine that the predictors
are two quantitative variables and two dummy variables encoding
three categories. Then X = (X1, X2, D1, D2)

′ and x = (x1, x2, d1, d2)
′.

In this case, Nx could for example take the form

Nx =


30, d1 = 0, d2 = 0,

25, d1 = 1, d2 = 0,

50, d1 = 0, d2 = 1,

that is, we have a different number of experiments on each category,
and we want to model the number (or, equivalently, the propor-
tion) of successes for each one, also taking into account the effects
of other qualitative variables. This is a very common situation in
practice, when one encounters the sample version of (5.18):

Yi|Xi = xi ∼ B(Ni, logistic(ηi)), i = 1, . . . , n. (5.19)

Let’s see an example of binomial regression that illustrates the
particular usage of glm() in this case. The example is a data ap-
plication from Wood (2006) featuring different binomial sizes. It
employs the heart (download) dataset. The goal is to investigate
whether the level of creatinine kinase level present in the blood, ck,
is a good diagnostic for determining if a patient is likely to have
a future heart attack. The number of patients that did not have a
heart attack (ok) and that had a heart attack (ha) was established af-
ter ck was measured. In total, there are 226 patients that have been
aggregated into n = 12 22 categories of different sizes that have
been created according to the average level of ck. Table 5.3 shows
the data.

# Read data

heart <- read.table("heart.txt", header = TRUE)

# Sizes for each observation (Ni's)

heart$Ni <- heart$ok + heart$ha

# Proportions of patients with heart attacks

heart$prop <- heart$ha / (heart$ha + heart$ok)

Table 5.3: The heart dataset with Ni (Ni) and Yi/Ni (prop)
added.

ck ha ok Ni prop

20 2 88 90 0.022

60 13 26 39 0.333

https://raw.githubusercontent.com/egarpor/handy/master/datasets/heart.txt
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100 30 8 38 0.789

140 30 5 35 0.857

180 21 0 21 1.000

220 19 1 20 0.950

260 18 1 19 0.947

300 13 1 14 0.929

340 19 1 20 0.950

380 15 0 15 1.000

420 7 0 7 1.000

460 8 0 8 1.000

# Plot of proportions versus ck: twelve observations, each requiring

# Ni patients to determine the proportion

plot(heart$ck, heart$prop, xlab = "Creatinine kinase level",

ylab = "Proportion of heart attacks")

# Fit binomial regression: recall the cbind() to pass the number of successes

# and failures

heart1 <- glm(cbind(ha, ok) ~ ck, family = binomial, data = heart)

summary(heart1)

##

## Call:

## glm(formula = cbind(ha, ok) ~ ck, family = binomial, data = heart)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -3.08184 -1.93008 0.01652 0.41772 2.60362

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -2.758358 0.336696 -8.192 2.56e-16 ***
## ck 0.031244 0.003619 8.633 < 2e-16 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 271.712 on 11 degrees of freedom

## Residual deviance: 36.929 on 10 degrees of freedom

## AIC: 62.334

##

## Number of Fisher Scoring iterations: 6

# Alternatively: put proportions as responses, but then it is required to

# inform about the binomial size of each observation

heart1 <- glm(prop ~ ck, family = binomial, data = heart, weights = Ni)

summary(heart1)

##

## Call:

## glm(formula = prop ~ ck, family = binomial, data = heart, weights = Ni)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -3.08184 -1.93008 0.01652 0.41772 2.60362

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -2.758358 0.336696 -8.192 2.56e-16 ***
## ck 0.031244 0.003619 8.633 < 2e-16 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)
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##

## Null deviance: 271.712 on 11 degrees of freedom

## Residual deviance: 36.929 on 10 degrees of freedom

## AIC: 62.334

##

## Number of Fisher Scoring iterations: 6

# Add fitted line

ck <- 0:500

newdata <- data.frame(ck = ck)

logistic <- function(eta) 1 / (1 + exp(-eta))

lines(ck, logistic(cbind(1, ck) %*% heart1$coefficients))

# It seems that a polynomial fit could better capture the "wiggly" pattern

# of the data

heart2 <- glm(prop ~ poly(ck, 2, raw = TRUE), family = binomial, data = heart,

weights = Ni)

heart3 <- glm(prop ~ poly(ck, 3, raw = TRUE), family = binomial, data = heart,

weights = Ni)

heart4 <- glm(prop ~ poly(ck, 4, raw = TRUE), family = binomial, data = heart,

weights = Ni)

# Best fit given by heart3

BIC(heart1, heart2, heart3, heart4)

## df BIC

## heart1 2 63.30371

## heart2 3 44.27018

## heart3 4 35.59736

## heart4 5 37.96360

summary(heart3)

##

## Call:

## glm(formula = prop ~ poly(ck, 3, raw = TRUE), family = binomial,

## data = heart, weights = Ni)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -0.99572 -0.08966 0.07468 0.17815 1.61096

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -5.786e+00 9.268e-01 -6.243 4.30e-10 ***
## poly(ck, 3, raw = TRUE)1 1.102e-01 2.139e-02 5.153 2.57e-07 ***
## poly(ck, 3, raw = TRUE)2 -4.649e-04 1.381e-04 -3.367 0.00076 ***
## poly(ck, 3, raw = TRUE)3 6.448e-07 2.544e-07 2.535 0.01125 *
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 271.7124 on 11 degrees of freedom

## Residual deviance: 4.2525 on 8 degrees of freedom

## AIC: 33.658

##

## Number of Fisher Scoring iterations: 6

# All fits together

lines(ck, logistic(cbind(1, poly(ck, 2, raw = TRUE)) %*% heart2$coefficients),

col = 2)

lines(ck, logistic(cbind(1, poly(ck, 3, raw = TRUE)) %*% heart3$coefficients),

col = 3)

lines(ck, logistic(cbind(1, poly(ck, 4, raw = TRUE)) %*% heart4$coefficients),

col = 4)

legend("bottomright", legend = c("Linear", "Quadratic", "Cubic", "Quartic"),

col = 1:4, lwd = 2)
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23 We assume the randomness comes
from the error present in Y once X is
given, not from the X. This is implicit
in the considered expectations.

24 The system stems from a first-order
Taylor expansion of the function
∂ℓ(β)

∂β : Rp+1 → Rp+1 about the root β̂,

where ∂ℓ(β)
∂β

∣∣∣
β=β̂

= 0.

25 Recall that E[(Yi − µi)(Yj − µj)] =

Cov[Yi , Yj] =

{
Vi , i = j,
0, i ̸= j,

because of

independence.

Estimation by maximum likelihood
The estimation of β by MLE can be done in a unified framework,

for all generalized linear models, thanks to the exponential family
(5.10). Given {(xi, Yi)}n

i=1
23, and employing a canonical link func-

tion (5.13), we have that

Yi|(X1 = xi1, . . . , Xp = xip) ∼ E(θi, ϕ, a, b, c), i = 1, . . . , n,

where

θi := ηi := β0 + β1xi1 + · · ·+ βpxip,

µi := E[Yi|X1 = xi1, . . . , Xp = xip] = g−1(ηi).

Then, the log-likelihood is

ℓ(β) =
n

∑
i=1

(
Yiθi − b(θi)

a(ϕ)
+ c(Yi, ϕ)

)
. (5.20)

Differentiating with respect to β gives

∂ℓ(β)

∂β
=

n

∑
i=1

(Yi − b′(θi))

a(ϕ)
∂θi
∂β

which, exploiting the properties of the exponential family, can be
reduced to

∂ℓ(β)

∂β
=

n

∑
i=1

(Yi − µi)

g′(µi)Vi
xi, (5.21)

where xi now represents the i-th row of the design matrix X and
Vi := Var[Yi] = a(ϕ)b′′(θi). Solving explicitly the system of equa-
tions ∂ℓ(β)

∂β = 0 is not possible in general and a numerical procedure
is required. Newton–Raphson is usually employed, which is based
in obtaining βnew from the linear system24

∂2ℓ(β)

∂β∂β′

∣∣∣∣
β=βold

(βnew − βold) = −
∂ℓ(β)

∂β

∣∣∣∣
β=βold

. (5.22)

A simplifying trick is to consider the expectation of ∂2ℓ(β)

∂β∂β′

∣∣∣
β=βold

in (5.22), rather than its actual value. By doing so, we can arrive to
a neat iterative algorithm called Iterative Reweighted Least Squares
(IRLS). We use the following well-known property of the Fisher
information matrix of the MLE theory:

E

[
∂2ℓ(β)

∂β∂β′

]
= −E

[
∂ℓ(β)

∂β

(
∂ℓ(β)

∂β

)′]
.

Then, it can be seen that25

E

[
∂2ℓ(β)

∂β∂β′

∣∣∣∣
β=βold

]
= −

n

∑
i=1

wixix′i = −X′WX, (5.23)

where wi := 1
Vi(g′(µi))2 and W := diag(w1, . . . , wn). Using this

notation and from (5.21),

∂ℓ(β)

∂β

∣∣∣∣
β=βold

= X′W(Y− µold)g
′(µold), (5.24)
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26 That work quite well in practice and
deliver many valuable insights.

Substituting (5.23) and (5.24) in (5.22), we have:

βnew = βold −E

[
∂2ℓ(β)

∂ββ′

∣∣∣∣
β=βold

]−1
∂ℓ(β)

∂β

∣∣∣∣
β=βold

= βold + (X′WX)−1X′W(Y− µold)g
′(µold)

= (X′WX)−1X′Wz, (5.25)

where z := Xβold + (Y− µold)g
′(µold) is the working vector.

As a consequence, fitting a generalized linear model by IRLS
amounts to performing a series of weighted linear models with
changing weights and responses given by the working vector. IRLS
can be summarized as:

1. Set βold with some initial estimation.
2. Compute µold, W, and z.
3. Compute βnew using (5.25).
4. Set βold as βnew.
5. Iterate Steps 2–4 until convergence, then set β̂ = βnew.

In general, E
[

∂2ℓ(β)

∂β∂β′

]
̸= ∂2ℓ(β)

∂β∂β′
. Therefore, IRLS in gen-

eral departures from the standard Newton–Raphson.
However, if the canonical link is used, it can be seen that
the equality of ∂2ℓ(β)

∂β∂β′
with its expectation is guaranteed

and IRLS is exactly the same as Newton–Raphson. In that
case, wi = 1

g′(µi)
(which simplifies the computation of W

in the algorithm above).

5.3 Inference for model parameters

The assumptions on which a generalized linear model is con-
structed allow us to specify what is the asymptotic distribution of
the random vector β̂ through the theory of MLE. Again, the distri-
bution is derived conditionally on the predictors’ sample X1, . . . , Xn.
In other words, we assume that the randomness of Y comes only
from Y|(X1 = x1, . . . , Xp = xp) and not from the predictors.

For the ease of exposition, we will focus only on the logistic
model rather than in the general case. The conceptual differences
are not so big, but the simplification in terms of notation and the
benefits on the intuition side are important.

There is an important difference between the inference results for
the linear model and for logistic regression:

• In linear regression the inference is exact. This is due to the nice
properties of the normal, least squares estimation, and linear-
ity. As a consequence, the distributions of the coefficients are
perfectly known assuming that the assumptions hold.

• In generalized linear models the inference is asymptotic. This
means that the distributions of the coefficients are unknown ex-
cept for large sample sizes n, for which we have approximations26.



notes for predictive modeling 211

27 The linear model is an exception in
terms of exact and simple inference,
not the rule.

28 Recall expression (5.23) for the
general case of I(β).

29 Undestood as small |(X′VX)−1|.

The reason is the higher complexity of the model in terms of
nonlinearity. This is the usual situation for the majority of re-
gression models27.

5.3.1 Distributions of the fitted coefficients

The distribution of β̂ is given by the asymptotic theory of MLE:

β̂
a∼ Np+1

(
β, I(β)−1

)
(5.26)

where a∼ [. . .] means “asymptotically distributed as [. . .] when
n→ ∞” and

I(β) := −E

[
∂2ℓ(β)

∂β∂β′

]
is the Fisher information matrix. The name comes from the fact that
it measures the information available in the sample for estimating β. The
“larger” the matrix (larger eigenvalues) is, the more precise the
estimation of β is, because that results in smaller variances in (5.26).

The inverse of the Fisher information matrix is28

I(β)−1 = (X′VX)−1, (5.27)

where V = diag(V1, . . . , Vn) and Vi = logistic(ηi)(1− logistic(ηi)),
with ηi = β0 + β1xi1 + · · · + βpxip. In the case of the multiple
linear regression, I(β)−1 = σ2(X′X)−1 (see (2.11)), so the presence
of V here is a consequence of the heteroskedasticity of the logistic
model.

The interpretation of (5.26) and (5.27) gives some useful insights
on what concepts affect the quality of the estimation:

• Bias. The estimates are asymptotically unbiased.

• Variance. It depends on:

– Sample size n. Hidden inside X′VX. As n grows, the precision
of the estimators increases.

– Weighted predictor sparsity (X′VX)−1. The more “disperse”29

the predictors are, the more precise β̂ is. When p = 1, X′VX is
a weighted version of s2

x.

Figure 5.6 aids visualizing these insights.

The precision of β̂ is affected by the value of β, which
is hidden inside V. This contrasts sharply with the linear
model, where the precision of the least squares estimator
was not affected by β (see (2.11)). The reason is par-
tially due to the heteroskedasticity of logistic regression,
which implies a dependence of the variance of Y in the
logistic curve, hence in β.
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30 Because eβ̂ j−ŜE(β̂ j)zα/2 ≤ eβ j ≤
eβ̂ j+ŜE(β̂ j)zα/2 ⇐⇒ β̂ j − ŜE(β̂ j)zα/2 ≤
β j ≤ β̂ j + ŜE(β̂ j)zα/2 since the ex-
ponential is a monotone increasing
function.

Similar to linear regression, the problem with (5.26) and (5.27) is
that V is unknown in practice because it depends on β. Plugging-in
the estimate β̂ into β in V gives the estimator V̂. Now we can use V̂
to get

β̂ j − β j

ŜE(β̂ j)

a∼ N (0, 1), ŜE(β̂ j)
2 := vj (5.28)

where

vj is the j-th element of the diagonal of (X′V̂X)−1.

The LHS of (5.28) is the Wald statistic for β j, j = 0, . . . , p. They
are employed for building marginal confidence intervals and hy-
pothesis tests, in a completely analogous way to how the t-statistics
in linear regression operate.

Figure 5.6: Illustration of the ran-
domness of the fitted coefficients
(β̂0, β̂1) and the influence of n,
(β0, β1) and s2

x . The predictors’ sam-
ple x1, . . . , xn are fixed and new
responses Y1, . . . , Yn are generated
each time from a simple logistic model
Y|X = x ∼ Ber(logistic(β0 + β1x)).
Application available here.

5.3.2 Confidence intervals for the coefficients

Thanks to (5.28), we can have the 100(1− α)% CI for the coefficient
β j, j = 0, . . . , p: (

β̂ j ± ŜE(β̂ j)zα/2
)

(5.29)

where zα/2 is the α/2-upper quantile of the N (0, 1). In case we are
interested in the CI for eβ j , we can just simply take the exponential
on the above CI.30 So the 100(1− α)% CI for eβ j , j = 0, . . . , p, is

e(β̂ j±ŜE(β̂ j)zα/2).

Of course, this CI is not the same as
(

eβ̂ j ± eŜE(β̂ j)zα/2
)

, which is not

a valid CI for eβ j !

https://shinyserv.es/shiny/log-random/
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5.3.3 Testing on the coefficients

The distributions in (5.28) also allow us to conduct a formal hy-
pothesis test on the coefficients β j, j = 0, . . . , p. For example, the test
for significance:

H0 : β j = 0

for j = 0, . . . , p. The test of H0 : β j = 0 with 1 ≤ j ≤ p is especially
interesting, since it allows us to answer whether the variable Xj has a
significant effect on Y. The statistic used for testing for significance is
the Wald statistic

β̂ j − 0

ŜE(β̂ j)
,

which is asymptotically distributed as a N (0, 1) under the (veracity
of) the null hypothesis. H0 is tested against the two-sided alternative
hypothesis H1 : β j ̸= 0.

Is the CI for β j below (above) 0 at level α?

• Yes→ reject H0 at level α. Conclude Xj has a signifi-
cant negative (positive) effect on Y at level α.

• No→ the criterion is not conclusive.

The tests for significance are built-in in the summary function.
However, due to discrepancies between summary and confint, a
note of caution is required when applying the previous rule of
thumb for rejecting H0 in terms of the CI.

The significances given in summary and the output of
MASS::confint are slightly incoherent and the previous
rule of thumb does not apply. The reason is because
MASS::confint is using a more sophisticated method
(profile likelihood) to estimate the standard error of β̂ j,
ŜE(β̂ j), and not the asymptotic distribution behind the
Wald statistic.

By changing confint to R’s default confint.default,
the results of the latter will be completely equivalent to
the significances in summary, and the rule of thumb still
be completely valid. For the contents of this course we
prefer confint.default due to its better interpretability.
This point is exemplified in the next section.

5.3.4 Case study application

Let’s compute the summary of the nasa model in order to address
the significance of the coefficients. At the sight of this curve and the
summary of the model we can conclude that the temperature was
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increasing the probability of an O-ring incident (Q2). Indeed, the
confidence intervals for the coefficients show a significant negative
correlation at level α = 0.05:

# Summary of the model

summary(nasa)

##

## Call:

## glm(formula = fail.field ~ temp, family = "binomial", data = challenger)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.0566 -0.7575 -0.3818 0.4571 2.2195

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 7.5837 3.9146 1.937 0.0527 .

## temp -0.4166 0.1940 -2.147 0.0318 *
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 28.267 on 22 degrees of freedom

## Residual deviance: 20.335 on 21 degrees of freedom

## AIC: 24.335

##

## Number of Fisher Scoring iterations: 5

# Confidence intervals at 95%

confint.default(nasa)

## 2.5 % 97.5 %

## (Intercept) -0.08865488 15.25614140

## temp -0.79694430 -0.03634877

# Confidence intervals at other levels

confint.default(nasa, level = 0.90)

## 5 % 95 %

## (Intercept) 1.1448638 14.02262275

## temp -0.7358025 -0.09749059

# Confidence intervals for the factors affecting the odds

exp(confint.default(nasa))

## 2.5 % 97.5 %

## (Intercept) 0.9151614 4.223359e+06

## temp 0.4507041 9.643039e-01

The coefficient for temp is significant at α = 0.05 and the intercept
is not (it is for α = 0.10). The 95% confidence interval for β0 is
(−0.0887, 15.2561) and for β1 is (−0.7969,−0.0363). For eβ0 and eβ1 ,
the CIs are (0.9151, 4.2233× 106) and (0.4507, 0.9643), respectively.
Therefore, we can say with a 95% confidence that:

• When temp=0, the probability of fail.field=1 is not signifi-
cantly larger than the probability of fail.field=0 (using the CI
for β0). fail.field=1 is between 0.9151 and 4.2233× 106 more
likely than fail.field=0 (using the CI for eβ0 ).

• temp has a significantly negative effect on the probability of
fail.field=1 (using the CI for β1). Indeed, each unit increase in
temp produces a reduction of the odds of fail.field by a factor
between 0.4507 and 0.9643 (using the CI for eβ1 ).

This completes the answers to Q1 and Q2.
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31 For example, the CI for the condi-
tional response in the logistic model is
not be very informative, as it can either
be {0}, {1} or {0, 1}. Predictions and
CIs for the conditional response are
carried out on a model-by-model basis.

We conclude by illustrating the incoherence of summary and
confint.

# Significances with asymptotic approximation for the standard errors

summary(nasa)

##

## Call:

## glm(formula = fail.field ~ temp, family = "binomial", data = challenger)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.0566 -0.7575 -0.3818 0.4571 2.2195

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 7.5837 3.9146 1.937 0.0527 .

## temp -0.4166 0.1940 -2.147 0.0318 *
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 28.267 on 22 degrees of freedom

## Residual deviance: 20.335 on 21 degrees of freedom

## AIC: 24.335

##

## Number of Fisher Scoring iterations: 5

# CIs with asymptotic approximation -- coherent with summary

confint.default(nasa, level = 0.95)

## 2.5 % 97.5 %

## (Intercept) -0.08865488 15.25614140

## temp -0.79694430 -0.03634877

confint.default(nasa, level = 0.99)

## 0.5 % 99.5 %

## (Intercept) -2.4994971 17.66698362

## temp -0.9164425 0.08314945

# CIs with profile likelihood -- incoherent with summary

confint(nasa, level = 0.95) # intercept still significant

## 2.5 % 97.5 %

## (Intercept) 1.3364047 17.7834329

## temp -0.9237721 -0.1089953

confint(nasa, level = 0.99) # temp still significant

## 0.5 % 99.5 %

## (Intercept) -0.3095128 22.26687651

## temp -1.1479817 -0.02994011

5.4 Prediction

Prediction in general linear models focuses mainly on predicting
the values of the conditional mean

E[Y|X1 = x1, . . . , Xp = xp] = g−1(η) = g−1(β0 + β1x1 + · · ·+ βpxp)

by means of η̂ := β̂0 + β̂1x1 + · · ·+ β̂pxp and not on predicting the
conditional response. The reason is that confidence intervals, the
main difference between both kinds of prediction, depend heavily
on the family we are considering for the response.31

For the logistic model, the prediction of the conditional response



216 eduardo garcía-portugués

follows immediately from logistic(η̂):

Ŷ|(X1 = x1, . . . , Xp = xp) =

{
1, with probability logistic(η̂),
0, with probability 1− logistic(η̂).

As a consequence, we can predict Y as 1 if logistic(η̂) > 1
2 and as 0

otherwise.
To make predictions and compute CIs in practice we use predict.

There are two differences with respect to its use for lm:

• The argument type. type = "link" returns η̂ (the log-odds in
the logistic model), type = "response" returns g−1(η̂) (the prob-
abilities in the logistic model). Observe that type = "response"

has a different behavior than predict for lm, where it returned
the predictions for the conditional response.

• There is no interval argument for using predict with glm.
That means that the computation of CIs for prediction is not
implemented and has to be done manually from the standard
errors returned when se.fit = TRUE (see Section 5.4.1).

Figure 5.7 gives an interactive visualization of the CIs for the
conditional probability in simple logistic regression. Their inter-
pretation is very similar to the CIs for the conditional mean in the
simple linear model, see Section 2.5 and Figure 2.14.

Figure 5.7: Illustration of the CIs for
the conditional probability in the
simple logistic regression. Application
available here.

5.4.1 Case study application

Let’s compute what was the probability of having at least one inci-
dent with the O-rings in the launch day (answers Q3):

predict(nasa, newdata = data.frame(temp = -0.6), type = "response")

## 1

## 0.999604

https://shinyserv.es/shiny/log-ci-prediction/
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Recall that there is a serious problem of extrapolation in the
prediction, which makes it less precise (or more variable). But this
extrapolation, together with the evidences raised by the simple
analysis we did, should have been strong arguments for postponing
the launch.

Since it is a bit cumbersome to compute the CIs for the condi-
tional response, we can code the function predictCIsLogistic to
do it automatically.

# Function for computing the predictions and CIs for the conditional probability

predictCIsLogistic <- function(object, newdata, level = 0.95) {

# Compute predictions in the log-odds

pred <- predict(object = object, newdata = newdata, se.fit = TRUE)

# CI in the log-odds

za <- qnorm(p = (1 - level) / 2)

lwr <- pred$fit + za * pred$se.fit

upr <- pred$fit - za * pred$se.fit

# Transform to probabilities

fit <- 1 / (1 + exp(-pred$fit))

lwr <- 1 / (1 + exp(-lwr))

upr <- 1 / (1 + exp(-upr))

# Return a matrix with column names "fit", "lwr" and "upr"

result <- cbind(fit, lwr, upr)

colnames(result) <- c("fit", "lwr", "upr")

return(result)

}

Let’s apply the function to our model:

# Data for which we want a prediction

newdata <- data.frame(temp = -0.6)

# Prediction of the conditional log-odds, the default

predict(nasa, newdata = newdata, type = "link")

## 1

## 7.833731

# Prediction of the conditional probability

predict(nasa, newdata = newdata, type = "response")

## 1

## 0.999604

# Simple call

predictCIsLogistic(nasa, newdata = newdata)

## fit lwr upr

## 1 0.999604 0.4838505 0.9999999

# The CI is large because there is no data around temp = -0.6 and

# that makes the prediction more variable (and also because we only

# have 23 observations)

Finally, let’s answer Q4 and see what was the probability of
having at least one incident with the O-rings if the launch was
postponed until the temperature was above 11.67 degrees Celsius.

# Estimated probability for launching at 53 degrees Fahrenheit

predictCIsLogistic(nasa, newdata = data.frame(temp = 11.67))

## fit lwr upr

## 1 0.9382822 0.3504908 0.9976707
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32 Whether at this temperature it would
have been a fatal incident or not is left
to speculation.

33 Several are possible depending on
the interpolation between points.

The maximum predicted probability is 0.94. Notice that is the
maximum in accordance to the suggestion of launching above 11.67
degrees Celsius. The probability of having at least one incident32

with the O-rings is still very high.

For the challenger dataset, do the following:

a. Regress fail.nozzle on temp and pres.nozzle.
b. Compute the predicted probability of fail.nozzle=1

for temp = 15 and pres.nozzle = 200. What is the
predicted probability for fail.nozzle=0?

c. Compute the confidence interval for the two predicted
probabilities at level 95%.

5.5 Deviance

The deviance is a key concept in generalized linear models. In-
tuitively, it measures the deviance of the fitted generalized linear
model with respect to a perfect model for the sample {(xi, Yi)}n

i=1.
This perfect model, known as the saturated model, is the model that
perfectly fits the data, in the sense that the fitted responses (Ŷi)
equal the observed responses (Yi). For example, in logistic regres-
sion this would be the model such that

P̂[Y = 1|X1 = Xi1, . . . , Xp = Xip] = Yi, i = 1, . . . , n.

Figure 5.8 shows a33 saturated model and a fitted logistic model.
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Figure 5.8: Fitted logistic regression
versus a saturated model and the null
model.
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34 The canonical link function g is the
identity, check (5.12) and (5.13).

Formally, the deviance is defined through the difference of the
log-likelihoods between the fitted model, ℓ(β̂), and the saturated
model, ℓs. Computing ℓs amounts to substitute µi by Yi in (5.20).
If the canonical link function is used, this corresponds to setting
θi = g(Yi) (recall (5.12)). The deviance is then defined as:

D := −2
[
ℓ(β̂)− ℓs

]
ϕ.

The log-likelihood ℓ(β̂) is always smaller than ℓs (the saturated
model is more likely given the sample, since it is the sample itself).
As a consequence, the deviance is always larger or equal than zero,
being zero only if the fit of the model is perfect.

If the canonical link function is employed, the deviance can be
expressed as

D = − 2
a(ϕ)

n

∑
i=1

(
Yi θ̂i − b(θ̂i)−Yig(Yi) + b(g(Yi))

)
ϕ

=
2ϕ

a(ϕ)

n

∑
i=1

(
Yi(g(Yi)− θ̂i)− b(g(Yi)) + b(θ̂i)

)
. (5.30)

In most of the cases, a(ϕ) ∝ ϕ, so the deviance does not depend on ϕ.
Expression (5.30) is interesting, since it delivers the following key
insight:

The deviance generalizes the Residual Sum of Squares
(RSS) of the linear model. The generalization is driven
by the likelihood and its equivalence with the RSS in the
linear model.

To see this insight, let’s consider the linear model in (5.30) by

setting ϕ = σ2, a(ϕ) = ϕ, b(θ) = θ2

2 , c(y, ϕ) = − 1
2{

y2

ϕ + log(2πϕ)},
and θ = µ = η 34. Then:

D =
2σ2

σ2

n

∑
i=1

(
Yi(Yi − η̂i)−

Y2
i

2
+

η̂2
i

2

)

=
n

∑
i=1

(
2Y2

i − 2Yiη̂i −Y2
i + η̂2

i

)
=

n

∑
i=1

(Yi − η̂i)
2

= RSS(β̂), (5.31)

since η̂i = β̂0 + β̂1xi1 + · · ·+ β̂pxip. Remember that RSS(β̂) is just
another name for the SSE.

A benchmark for evaluating the scale of the deviance is the null
deviance,

D0 := −2
[
ℓ(β̂0)− ℓs

]
ϕ,

which is the deviance of the model without predictors, the one
featuring only an intercept, to the perfect model. In logistic regres-
sion, this model is

Y|(X1 = x1, . . . , Xp = xp) ∼ Ber(logistic(β0))
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and, in this case, β̂0 = logit(m
n ) = log

( m
n

1−m
n

)
where m is the

number of 1’s in Y1, . . . , Yn (see Figure 5.8).
Using again (5.30), we can see that the null deviance is a gen-

eralization of the total sum of squares of the linear model (see
Section 2.6):

D0 =
n

∑
i=1

(Yi − η̂i)
2 =

n

∑
i=1

(
Yi − β̂0

)2
= SST,

since β̂0 = Ȳ because there are no predictors.

Figure 5.9: Pictorial representation of
the deviance (D) and the null deviance
(D0).

Using the deviance and the null deviance, we can compare how
much the model has improved by adding the predictors X1, . . . , Xp

and quantify the percentage of deviance explained. This can be done
by means of the R2 statistic, which is a generalization of the deter-
mination coefficient for linear regression:

R2 := 1− D
D0

linear
model
= 1− SSE

SST
.

The R2 for generalized linear models is a measure that
shares the same philosophy with the determination co-
efficient in linear regression: it is a proportion of how
good the model fit is. If perfect, D = 0 and R2 = 1. If
the predictors are not model-related with Y, then D = D0

and R2 = 0.

However, this R2 has a different interpretation than in
linear regression. In particular:

• Is not the percentage of variance explained by the
model, but rather a ratio indicating how close is the fit
to being perfect or the worst.

• It is not related to any correlation coefficient.

The deviance is returned by summary. It is important to recall that
R refers to the deviance as the 'Residual deviance' and the null
deviance is referred to as 'Null deviance'.
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# Summary of model

nasa <- glm(fail.field ~ temp, family = "binomial", data = challenger)

summaryLog <- summary(nasa)

summaryLog

##

## Call:

## glm(formula = fail.field ~ temp, family = "binomial", data = challenger)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.0566 -0.7575 -0.3818 0.4571 2.2195

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 7.5837 3.9146 1.937 0.0527 .

## temp -0.4166 0.1940 -2.147 0.0318 *
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 28.267 on 22 degrees of freedom

## Residual deviance: 20.335 on 21 degrees of freedom

## AIC: 24.335

##

## Number of Fisher Scoring iterations: 5

# 'Residual deviance' is the deviance; 'Null deviance' is the null deviance

# Null model (only intercept)

null <- glm(fail.field ~ 1, family = "binomial", data = challenger)

summaryNull <- summary(null)

summaryNull

##

## Call:

## glm(formula = fail.field ~ 1, family = "binomial", data = challenger)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -0.852 -0.852 -0.852 1.542 1.542

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -0.8267 0.4532 -1.824 0.0681 .

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 28.267 on 22 degrees of freedom

## Residual deviance: 28.267 on 22 degrees of freedom

## AIC: 30.267

##

## Number of Fisher Scoring iterations: 4

# Compute the Rˆ2 with a function -- useful for repetitive computations

r2glm <- function(model) {

summaryLog <- summary(model)

1 - summaryLog$deviance / summaryLog$null.deviance

}

# Rˆ2

r2glm(nasa)

## [1] 0.280619

r2glm(null)

## [1] -4.440892e-16
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35 Note that D∗p1
> D∗p2

because
ℓ(β̂p1

) < ℓ(β̂p2
).

36 In other words, M2 does not add
significant predictors when compared
with the submodel M1.

A quantity related with the deviance is the scaled deviance:

D∗ :=
D
ϕ

= −2
[
ℓ(β̂)− ℓs

]
.

If ϕ = 1, such as in the binomial or Poisson regression models,
then both the deviance and the scaled deviance agree. The scaled
deviance has asymptotic distribution

D∗ a∼ χ2
n−p−1, (5.32)

where χ2
k is the Chi-squared distribution with k degrees of freedom. In

the case of the linear model, D∗ = 1
σ2 RSS is exactly distributed as a

χ2
n−p−1.

The result (5.32) provides a way of estimating ϕ when it is un-

known: match D∗ with the expectation E
[
χ2

n−p−1

]
= n − p − 1.

This provides

ϕ̂D :=
−2(ℓ(β̂)− ℓs)

n− p− 1
,

which, as expected, in the case of the linear model is equivalent to
σ̂2 as given in (2.15). More importantly, the scaled deviance can be
used for performing hypotheses tests on sets of coefficients of a
generalized linear model.

Assume we have one model, say M2, with p2 predictors and
another model, say M1, with p1 < p2 predictors that are contained
in the set of predictors of the M2. In other words, assume M1 is
nested within M2. Then we can test the null hypothesis that the
extra coefficients of M2 are simultaneously zero. For example, if
M1 has the coefficients {β0, β1, . . . , βp1} and M2 has coefficients
{β0, β1, . . . , βp1 , βp1+1, . . . , βp2}, we can test

H0 : βp1+1 = . . . = βp2 = 0 vs. H1 : β j ̸= 0 for any p1 < j ≤ p2.

This can be done by means of the statistic35

D∗p1
− D∗p2

a, H0∼ χ2
p2−p1

. (5.33)

If H0 is true36, then D∗p1
− D∗p2

is expected to be small, thus we will
reject H0 if the value of the statistic is above the α-upper quantile of
the χ2

p2−p1
, denoted as χ2

α;p2−p1
.

D∗ apparently removes the effects of ϕ, but it is still dependent
on ϕ, since this is hidden in the likelihood (see (5.30)). Therefore,
D∗ cannot be computed unless ϕ is known, which forbids using
(5.33). Hopefully, this dependence is removed by employing (5.32)
and (5.33) and assuming that they are asymptotically independent.
This gives the F-test for H0:

F =
(D∗p1

− D∗p2
)/(p2 − p1)

D∗p2
/(n− p2 − 1)

=
(Dp1 − Dp2)/(p2 − p1)

Dp2 /(n− p2 − 1)
a, H0∼ Fp2−p1,n−p2−1.

Note that F is perfectly computable, since ϕ cancels due to the
quotient (and because we assume that a(ϕ) ∝ ϕ).
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Note also that this is an extension of the F-test seen in Section
2.6: take p1 = 0 and p2 = p and then one tests the significance
of all the predictors included in the model (both models contain
intercept).

The computation of deviances and associated tests is done
through anova, which implements the Analysis of Deviance. This
is illustrated in the following code, which coincidentally also illus-
trates the inclusion of nonlinear transformations on the predictors.

# Polynomial predictors

nasa0 <- glm(fail.field ~ 1, family = "binomial", data = challenger)

nasa1 <- glm(fail.field ~ temp, family = "binomial", data = challenger)

nasa2 <- glm(fail.field ~ poly(temp, degree = 2), family = "binomial",

data = challenger)

nasa3 <- glm(fail.field ~ poly(temp, degree = 3), family = "binomial",

data = challenger)

# Plot fits

temp <- seq(-1, 35, l = 200)

tt <- data.frame(temp = temp)

plot(fail.field ~ temp, data = challenger, pch = 16, xlim = c(-1, 30),

xlab = "Temperature", ylab = "Incident probability")

lines(temp, predict(nasa0, newdata = tt, type = "response"), col = 1)

lines(temp, predict(nasa1, newdata = tt, type = "response"), col = 2)

lines(temp, predict(nasa2, newdata = tt, type = "response"), col = 3)

lines(temp, predict(nasa3, newdata = tt, type = "response"), col = 4)

legend("bottomleft", legend = c("Null model", "Linear", "Quadratic", "Cubic"),

lwd = 2, col = 1:4)

# Rˆ2's

r2glm(nasa0)

## [1] -4.440892e-16

r2glm(nasa1)

## [1] 0.280619

r2glm(nasa2)

## [1] 0.3138925

r2glm(nasa3)

## [1] 0.4831863

# Chisq and F tests -- same results since phi is known

anova(nasa1, test = "Chisq")

## Analysis of Deviance Table

##

## Model: binomial, link: logit

##

## Response: fail.field

##

## Terms added sequentially (first to last)

##

##

## Df Deviance Resid. Df Resid. Dev Pr(>Chi)

## NULL 22 28.267

## temp 1 7.9323 21 20.335 0.004856 **
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

anova(nasa1, test = "F")

## Analysis of Deviance Table

##

## Model: binomial, link: logit

##

## Response: fail.field

##

## Terms added sequentially (first to last)

##
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##

## Df Deviance Resid. Df Resid. Dev F Pr(>F)

## NULL 22 28.267

## temp 1 7.9323 21 20.335 7.9323 0.004856 **
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# Incremental comparisons of nested models

anova(nasa1, nasa2, nasa3, test = "Chisq")

## Analysis of Deviance Table

##

## Model 1: fail.field ~ temp

## Model 2: fail.field ~ poly(temp, degree = 2)

## Model 3: fail.field ~ poly(temp, degree = 3)

## Resid. Df Resid. Dev Df Deviance Pr(>Chi)

## 1 21 20.335

## 2 20 19.394 1 0.9405 0.3321

## 3 19 14.609 1 4.7855 0.0287 *
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# Quadratic effects are not significative

# Cubic vs. linear

anova(nasa1, nasa3, test = "Chisq")

## Analysis of Deviance Table

##

## Model 1: fail.field ~ temp

## Model 2: fail.field ~ poly(temp, degree = 3)

## Resid. Df Resid. Dev Df Deviance Pr(>Chi)

## 1 21 20.335

## 2 19 14.609 2 5.726 0.0571 .

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# Example in Poisson regression

species1 <- glm(Species ~ ., data = species, family = poisson)

species2 <- glm(Species ~ Biomass * pH, data = species, family = poisson)

# Comparison

anova(species1, species2, test = "Chisq")

## Analysis of Deviance Table

##

## Model 1: Species ~ pH + Biomass

## Model 2: Species ~ Biomass * pH

## Resid. Df Resid. Dev Df Deviance Pr(>Chi)

## 1 86 99.242

## 2 84 83.201 2 16.04 0.0003288 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

r2glm(species1)

## [1] 0.7806071

r2glm(species2)

## [1] 0.8160674

5.6 Model selection

The same discussion we did in Section 3.2 is applicable to general-
ized linear models with small changes:

1. The deviance of the model (reciprocally the likelihood and the
R2) always decreases (increases) with the inclusion of more
predictors – no matter whether they are significant or not.

2. The excess of predictors in the model is paid by a larger vari-
ability in the estimation of the model which results in less pre-
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37 The leaps package does not support
generalized linear models directly.
There are, however, other packages for
performing best subset selection with
generalized linear models, but we do
not cover them here.

cise prediction.
3. Multicollinearity may hide significant variables, change the

sign of them, and result in an increase of the variability of the
estimation.

4. Roughly speaking, the BIC is consistent in performing model-
selection, and penalizes more the complex models when com-
pared to AIC and LOOCV.

In addition, variable selection can also be done with the lasso for
generalized linear models, as seen in Section 5.8.

Stepwise selection can be done through MASS::stepAIC as in
linear models37. Conveniently, summary also reports the AIC:

# Models

nasa1 <- glm(fail.field ~ temp, family = "binomial", data = challenger)

nasa2 <- glm(fail.field ~ temp + pres.field, family = "binomial",

data = challenger)

# Summaries

summary(nasa1)

##

## Call:

## glm(formula = fail.field ~ temp, family = "binomial", data = challenger)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.0566 -0.7575 -0.3818 0.4571 2.2195

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 7.5837 3.9146 1.937 0.0527 .

## temp -0.4166 0.1940 -2.147 0.0318 *
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 28.267 on 22 degrees of freedom

## Residual deviance: 20.335 on 21 degrees of freedom

## AIC: 24.335

##

## Number of Fisher Scoring iterations: 5

summary(nasa2)

##

## Call:

## glm(formula = fail.field ~ temp + pres.field, family = "binomial",

## data = challenger)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.2109 -0.6081 -0.4292 0.3498 2.0913

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 6.642709 4.038547 1.645 0.1000

## temp -0.435032 0.197008 -2.208 0.0272 *
## pres.field 0.009376 0.008821 1.063 0.2878

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 28.267 on 22 degrees of freedom

## Residual deviance: 19.078 on 20 degrees of freedom

## AIC: 25.078
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38 This is a common way of generating
a binary variable from a quantitative
variable.

##

## Number of Fisher Scoring iterations: 5

# AICs

AIC(nasa1) # Better

## [1] 24.33485

AIC(nasa2)

## [1] 25.07821

MASS::stepAIC works analogously as in linear regression. An
illustration is given next for a predicting binary variable that mea-
sures whether a Boston suburb (Boston dataset from Section 3.1)
is wealth or not. The binary variable is medv > 25: it is TRUE (1) for
suburbs with median house value larger than 25000$ and FALSE

(0) otherwise.38 The cutoff 25000$ corresponds to the 25% richest
suburbs.

# Boston dataset

data(Boston, package = "MASS")

# Model whether a suburb has a median house value larger than $25000

mod <- glm(I(medv > 25) ~ ., data = Boston, family = "binomial")

summary(mod)

##

## Call:

## glm(formula = I(medv > 25) ~ ., family = "binomial", data = Boston)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -3.3498 -0.2806 -0.0932 -0.0006 3.3781

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 5.312511 4.876070 1.090 0.275930

## crim -0.011101 0.045322 -0.245 0.806503

## zn 0.010917 0.010834 1.008 0.313626

## indus -0.110452 0.058740 -1.880 0.060060 .

## chas 0.966337 0.808960 1.195 0.232266

## nox -6.844521 4.483514 -1.527 0.126861

## rm 1.886872 0.452692 4.168 3.07e-05 ***
## age 0.003491 0.011133 0.314 0.753853

## dis -0.589016 0.164013 -3.591 0.000329 ***
## rad 0.318042 0.082623 3.849 0.000118 ***
## tax -0.010826 0.004036 -2.682 0.007314 **
## ptratio -0.353017 0.122259 -2.887 0.003884 **
## black -0.002264 0.003826 -0.592 0.554105

## lstat -0.367355 0.073020 -5.031 4.88e-07 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 563.52 on 505 degrees of freedom

## Residual deviance: 209.11 on 492 degrees of freedom

## AIC: 237.11

##

## Number of Fisher Scoring iterations: 7

r2glm(mod)

## [1] 0.628923

# With BIC -- ends up with only the significant variables and a similar Rˆ2

modBIC <- MASS::stepAIC(mod, trace = 0, k = log(nrow(Boston)))

summary(modBIC)

##

## Call:

## glm(formula = I(medv > 25) ~ indus + rm + dis + rad + tax + ptratio +
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## lstat, family = "binomial", data = Boston)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -3.3077 -0.2970 -0.0947 -0.0005 3.2552

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.556433 3.948818 0.394 0.693469

## indus -0.143236 0.054771 -2.615 0.008918 **
## rm 1.950496 0.441794 4.415 1.01e-05 ***
## dis -0.426830 0.111572 -3.826 0.000130 ***
## rad 0.301060 0.076542 3.933 8.38e-05 ***
## tax -0.010240 0.003631 -2.820 0.004800 **
## ptratio -0.404964 0.112086 -3.613 0.000303 ***
## lstat -0.384823 0.069121 -5.567 2.59e-08 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 563.52 on 505 degrees of freedom

## Residual deviance: 215.03 on 498 degrees of freedom

## AIC: 231.03

##

## Number of Fisher Scoring iterations: 7

r2glm(modBIC)

## [1] 0.6184273

The logistic model is at the intersection between regression models
and classification methods. Therefore, the search for adequate predic-
tors to be included in the model can also be done in terms of the
classification performance. Although we do not explore in detail
this direction, we simply mention how the overall predictive accu-
racy can be summarized with the hit matrix (also called confusion
matrix):

Reality vs. classified Ŷ = 0 Ŷ = 1

Y = 0 Correct0 Incorrect01

Y = 1 Incorrect10 Correct1

The hit ratio, Correct0+Correct1
n , is the percentage of correct classifi-

cations. The hit matrix is easily computed with the table function
which, whenever called with two vectors, computes the cross-table
between those two vectors.

# Fitted probabilities for Y = 1

nasa$fitted.values

## 1 2 3 4 5 6 7 8 9 10

## 0.42778935 0.23014393 0.26910358 0.32099837 0.37772880 0.15898364 0.12833090 0.23014393 0.85721594 0.60286639

## 11 12 13 14 15 16 17 18 19 20

## 0.23014393 0.04383877 0.37772880 0.93755439 0.37772880 0.08516844 0.23014393 0.02299887 0.07027765 0.03589053

## 21 22 23

## 0.08516844 0.07027765 0.82977495

# Classified Y's

yHat <- nasa$fitted.values > 0.5

# Hit matrix:

# - 16 correctly classified as 0

# - 4 correctly classified as 1
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# - 3 incorrectly classified as 0

tab <- table(challenger$fail.field, yHat)

tab

## yHat

## FALSE TRUE

## 0 16 0

## 1 3 4

# Hit ratio (ratio of correct classification)

sum(diag(tab)) / sum(tab)

## [1] 0.8695652

It is important to recall that the hit matrix will be always biased
towards unrealistically good classification rates if it is computed in
the same sample used for fitting the logistic model. An approach
based on data-splitting/cross-validation is therefore needed to
estimate unbiasedly the hit matrix.

For the Boston dataset, do the following:

a. Compute the hit matrix and hit ratio for the regres-
sion I(medv > 25) ~ ..

b. Fit I(medv > 25) ~ . but now using only the first 300

observations of Boston, the training dataset.
c. For the previous model, predict the probability of the

responses and classify them into 0 or 1 in the last 206
observations, the testing dataset.

d. Compute the hit matrix and hit ratio for the new pre-
dictions. Check that the hit ratio is smaller than the
one in the first point.

5.7 Model diagnostics

As it was implicit in Section 5.2, generalized linear models are built
on some probabilistic assumptions that are required for performing
inference on the model parameters β and ϕ.

In general, if we employ the canonical link function, we assume
that the data has been generated from (independence is implicit)

Y|(X1 = x1, . . . , Xp = xp) ∼ E(η(x1, . . . , xp), ϕ, a, b, c), (5.34)

in such a way that

µ = E[Y|X1 = x1, . . . , Xp = xp] = g−1(η),

and η(x1, . . . , xp) = β0 + β1x1 + · · ·+ βpxp.
In the case of the logistic and Poisson regressions, both with

canonical link functions, the general model takes the form (inde-
pendence is implicit)

Y|(X1 = x1, . . . , Xp = xp) ∼ Ber (logistic(η)) , (5.35)

Y|(X1 = x1, . . . , Xp = xp) ∼ Pois (eη) . (5.36)

The assumptions behind (5.34), (5.35), and (5.36) are:
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i. Linearity in the transformed expectation: E[Y|X1 = x1, . . . , Xp =

xp] = g−1 (β0 + β1x1 + · · ·+ βpxp
)

.
ii. Response distribution: Y|X = x ∼ E(η(x), ϕ, a, b, c) (the scale ϕ

and the functions a, b, c are constant for x).
iii. Independence: Y1, . . . , Yn are independent, conditionally on

X1, . . . , Xn.

Figure 5.10: The key concepts of
the logistic model. The red points
represent a sample with population
logistic curve y = logistic(β0 +
β1x), shown in black. The blue bars
represent the conditional probability
mass functions of Y given X = x,
whose means lie in the logistic curve.

There are two important points of the linear model assumptions
“missing” here:

• Where is homoscedasticity? Homoscedasticity is specific to certain
exponential family distributions in which θ does not affect the
variance. This is not the case for binomial or Poisson distribu-
tions variables, which result in heteroskedastic models. Also,
homoscedasticity is the consequence of assumption ii in the case
of the normal distribution.

• Where are the errors? The errors are not fundamental for build-
ing the linear model, but just a helpful concept related to least
squares. The linear model can be constructed “without errors”
directly using (2.8).
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39 Also, due to the variety of ranges
the response Y is allowed to take in
generalized linear models.

40 The logic behind the statement
is that a χ2

k random variable has
the same distribution as the sum
of k independent squared N (0, 1)
variables.

41 Practical counterexamples to the
statement are possible, see Figures 5.15

and 5.17.

Recall that:

• Nothing is said about the distribution of X1, . . . , Xp.
They could be deterministic or random. They could be
discrete or continuous.

• X1, . . . , Xp are not required to be independent between
them.

Checking the assumptions of a generalized linear model is more
complicated than what we did in Section 3.5. The reason is the het-
erogeneity and heteroskedasticity of the responses, which makes
the inspection of the residuals Yi − Ŷi complicated39. The first step
is to construct some residuals ε̂i that are simpler to analyze.

The deviance residuals are the generalization of the residuals
ε̂i = Yi − Ŷi from the linear model. They are constructed using
the analogy between the deviance and the RSS saw in (5.31). The
deviance can be expressed into a sum of terms associated to each
datum (recall, e.g., (5.30)):

D =
n

∑
i=1

di.

For the linear model, di = ε̂2
i , since D = RSS(β̂). Based on this, we

can define the deviance residuals as

ε̂D
i := sign(Yi − µ̂i)

√
di, i = 1, . . . , n

and have a generalization of ε̂i for generalized linear models. This
definition has interesting distributional consequences. From (5.32),
we know that D∗ a∼ χ2

n−p−1. This suggests40 that

ε̂D
i are approximately normal if the model holds. (5.37)

The previous statement is of variable accuracy, depending on the
model, sample size, and distribution of the predictors.41 In the
linear model, it is exact and (ε̂D

1 , . . . , ε̂D
n ) are distributed exactly as a

Nn(0, σ2X′(X′X)−1X).
The deviance residuals are key for the diagnostics of generalized

linear models. Whenever we refer to “residuals”, we understand
that we refer to the deviance residuals (since several definitions of
residuals are possible). They are also the residuals returned in R,
either by glm$residuals or by residuals(glm).
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The definition of the deviance residuals has interesting
connections:

• If the canonical function is employed, then ∑n
i=1 ε̂D

i =

0, as in the linear model.
• The estimate of the scale parameter can be seen as

ϕ̂D =
∑n

i=1(ε̂
D
i )

2

n−p−1 , which is perfectly coherent with σ̂2 in
the linear model.

• Therefore, ϕ̂D is the sample variance of ε̂D
1 , . . . , ε̂D

n ,
which suggets that ϕ is the asymptotic variance of
the population deviance residuals, in other words,
Var[εD] ≈ ϕ.

• The deviance residuals equal the standard residuals in
the linear model.

The script used for generating the following (perhaps surprising)
Figures 5.11–5.22 is available here.

5.7.1 Linearity

Linearity between the transformed expectation of Y and the predictors
X1, . . . , Xp is the building block of generalized linear models. If
this assumption fails, then all the conclusions we might extract
from the analysis are suspected to be flawed. Therefore it is a key
assumption.

How to check it
We use the residuals vs. fitted values plot, which for generalized

linear models is the scatterplot of {(η̂i, ε̂D
i )}n

i=1. Recall that it is not
the scatterplot of {(Ŷi, ε̂i)}n

i=1. Under linearity, we expect that there
is no trend in the residuals ε̂D

i with respect to η̂i, in addition to the
patterns inherent to the nature of the response. If nonlinearities
are observed, it is worth plotting the regression terms of the model
via termplot.

What to do it fails
Using an adequate nonlinear transformation for the problematic

predictors or adding interaction terms might be helpful. Alterna-
tively, considering a nonlinear transformation f for the response Y
might also be helpful, at expenses of the same comments given in
Section 3.5.1.

https://raw.githubusercontent.com/egarpor/handy/master/scripts/PM-UC3M/hypothesisGlm.R
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42 This would be the rigorous ap-
proach, but it is notably more complex.

Figure 5.11: Residuals vs. fitted values
plots (first row) for datasets (second
row) respecting the linearity assump-
tion in Poisson regression.

Figure 5.12: Residuals vs. fitted values
plots (first row) for datasets (second
row) violating the linearity assump-
tion in Poisson regression.

5.7.2 Response distribution

The approximate normality in the deviance residuals allows to eval-
uate how well satisfied the assumption of the response distribution
is. The good news is that we can do so without relying on ad-hoc
tools for each distribution42. The bad news is that we have to pay
an important price in terms of inexactness, since we employ an
asymptotic distribution. The speed of this asymptotic convergence
and the effective validity of (5.37) largely depends on several as-
pects: distribution of the response, sample size, and distribution of
the predictors.

How to check it
The QQ-plot allows us to check if the standardized residuals

follow a N (0, 1). Under the correct distribution of the response,



notes for predictive modeling 233

Figure 5.13: Residuals vs. fitted values
plots (first row) for datasets (second
row) respecting the linearity assump-
tion in logistic regression.

Figure 5.14: Residuals vs. fitted values
plots (first row) for datasets (second
row) violating the linearity assump-
tion in logistic regression.
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we expect the points to align with the diagonal line. It is usual
to have departures from the diagonal in the extremes other than
in the center, even under normality, although these departures
are more evident if the data is non normal. Unfortunately, it is
also possible to have severe departures from normality even if the
model is perfectly correct, see below. The reason is simply that the
deviance residuals are significantly non-normal, which happens
often in logistic regression.

Figure 5.15: QQ-plots for the deviance
residuals (first row) for datasets
(second row) respecting the response
distribution assumption for Poisson
regression.

Figure 5.16: QQ-plots for the deviance
residuals (first row) for datasets
(second row) violating the response
distribution assumption for Poisson
regression.
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Figure 5.17: QQ-plots for the deviance
residuals (first row) for datasets
(second row) respecting the response
distribution assumption for logistic
regression.

Figure 5.18: QQ-plots for the deviance
residuals (first row) for datasets
(second row) violating the response
distribution assumption for logistic
regression.

What to do it fails
Patching the distribution assumption is not easy and requires

the consideration of more flexible models. One possibility is to
transform Y by means of one of the transformations discussed in
Section 3.5.2, of course at the price of modeling the transformed
response rather than Y.

5.7.3 Independence

Independence is also a key assumption: it guarantees that the
amount of information that we have on the relationship between
Y and X1, . . . , Xp with n observations is maximal.

How to check it
The presence of autocorrelation in the residuals can be examined

by means of a serial plot of the residuals. Under uncorrelation, we
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expect the series to show no tracking of the residuals, which is
a sign of positive serial correlation. Negative serial correlation
can be identified in the form of a small-large or positive-negative
systematic alternation of the residuals. This can be explored better
with lag.plot, as saw in Section 3.5.4.

What to do it fails
As in the linear model, little can be done if there is dependence

in the data, once this has been collected. If serial dependence is
present, a differentiation of the response may lead to independent
observations.

Figure 5.19: Serial plots of the resid-
uals (first row) for datasets (second
row) respecting the independence
assumption for Poisson regression.

Figure 5.20: Serial plots of the resid-
uals (first row) for datasets (second
row) violating the independence
assumption for Poisson regression.
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Figure 5.21: Serial plots of the resid-
uals (first row) for datasets (second
row) respecting the independence
assumption for logistic regression.

Figure 5.22: Serial plots of the resid-
uals (first row) for datasets (second
row) violating the independence
assumption for logistic regression.

5.7.4 Multicollinearity

Multicollinearity can also be present in generalized linear models.
Despite the nonlinear effect of the predictors on the response, the
predictors are combined linearly in (5.4). Due to this, if two or
more predictors are highly correlated between them, the fit of the
model will be compromised since the individual linear effect of
each predictor will be hard to separate from the rest of correlated
predictors.

Then, a useful way of detecting multicollinearity is to inspect
the VIF of each coefficient. The situation is exactly the same as
in linear regression, since VIF looks only into the linear relations
of the predictors. Therefore, the rule of thumb is the same as in
Section 3.5.5:
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• VIF close to 1: absence of multicollinearity.
• VIF larger than 5 or 10: problematic amount of multicollinearity.

Advised to remove the predictor with largest VIF.

# Create predictors with multicollinearity: x4 depends on the rest

set.seed(45678)

x1 <- rnorm(100)

x2 <- 0.5 * x1 + rnorm(100)

x3 <- 0.5 * x2 + rnorm(100)

x4 <- -x1 + x2 + rnorm(100, sd = 0.25)

# Response

z <- 1 + 0.5 * x1 + 2 * x2 - 3 * x3 - x4

y <- rbinom(n = 100, size = 1, prob = 1/(1 + exp(-z)))

data <- data.frame(x1 = x1, x2 = x2, x3 = x3, x4 = x4, y = y)

# Correlations -- none seems suspicious

cor(data)

## x1 x2 x3 x4 y

## x1 1.0000000 0.38254782 0.2142011 -0.5261464 0.20198825

## x2 0.3825478 1.00000000 0.5167341 0.5673174 0.07456324

## x3 0.2142011 0.51673408 1.0000000 0.2500123 -0.49853746

## x4 -0.5261464 0.56731738 0.2500123 1.0000000 -0.11188657

## y 0.2019882 0.07456324 -0.4985375 -0.1118866 1.00000000

# Abnormal generalized variance inflation factors: largest for x4, we remove it

modMultiCo <- glm(y ~ x1 + x2 + x3 + x4, family = "binomial")

car::vif(modMultiCo)

## x1 x2 x3 x4

## 27.84756 36.66514 4.94499 36.78817

# Without x4

modClean <- glm(y ~ x1 + x2 + x3, family = "binomial")

# Comparison

summary(modMultiCo)

##

## Call:

## glm(formula = y ~ x1 + x2 + x3 + x4, family = "binomial")

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -2.4743 -0.3796 0.1129 0.4052 2.3887

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.2527 0.4008 3.125 0.00178 **
## x1 -3.4269 1.8225 -1.880 0.06007 .

## x2 6.9627 2.1937 3.174 0.00150 **
## x3 -4.3688 0.9312 -4.691 2.71e-06 ***
## x4 -5.0047 1.9440 -2.574 0.01004 *
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 132.81 on 99 degrees of freedom

## Residual deviance: 59.76 on 95 degrees of freedom

## AIC: 69.76

##

## Number of Fisher Scoring iterations: 7

summary(modClean)

##

## Call:

## glm(formula = y ~ x1 + x2 + x3, family = "binomial")

##

## Deviance Residuals:

## Min 1Q Median 3Q Max
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43 We are now minimizing −ℓ(β), the
negative log-likelihood.

## -2.0952 -0.4144 0.1839 0.4762 2.5736

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 0.9237 0.3221 2.868 0.004133 **
## x1 1.2803 0.4235 3.023 0.002502 **
## x2 1.7946 0.5290 3.392 0.000693 ***
## x3 -3.4838 0.7491 -4.651 3.31e-06 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 132.813 on 99 degrees of freedom

## Residual deviance: 68.028 on 96 degrees of freedom

## AIC: 76.028

##

## Number of Fisher Scoring iterations: 6

# Generalized variance inflation factors normal

car::vif(modClean)

## x1 x2 x3

## 1.674300 2.724351 3.743940

Performing PCA on the predictors, as seen in Section
3.6.2, is a possibility to achieve uncorrelation and can be
employed straighforwardly in generalized linear mod-
els. The situation is different for PLS, since it makes
use of the linear structure between the response and
the predictors and thus is not immediately adaptable to
generalized linear models.

5.8 Shrinkage

Enforcing sparsity in generalized linear models can be done as how
it was done in linear models. Ridge regression and lasso can be
generalized with glmnet with little differences in practice.

What we want is to bias the estimates of β towards being non-
null only in the most important relations between the response
and predictors. To achieve that, we add a penalization term to the
maximum likelihood estimation of β 43:

−ℓ(β) + λ
p

∑
j=1

(α|β j|+ (1− α)|β j|2). (5.38)

As in Section 4.1, ridge regression corresponds to α = 0 (quadratic
penalty) and lasso to α = 1 (absolute value penalty). Obviously,
if λ = 0, we are back to the generalized linear models theory. The
optimization of (5.38) gives

β̂λ,α := arg min
β∈Rp+1

{
−ℓ(β) + λ

p

∑
j=1

(α|β j|+ (1− α)|β j|2)
}

. (5.39)

Note that the sparsity is enforced in the slopes, not in the intercept,
and that the link function g is not affecting the penalization term.
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As in linear models, the predictors need to be standardized if they
have a different nature.

We illustrate the shrinkage in generalized linear models with the
ISLR::Hitters dataset, where now the objective will be to predict
NewLeague, a factor with levels A (standing for American League)
and N (standing for National League). The variable indicates the
player’s league at the end of 1986. The predictors employed are his
statistics during 1986, and the objective is to see whether there is
some distinctive pattern between the players in both leagues.

# Load data

data(Hitters, package = "ISLR")

# Include only predictors related with 1986 season and discard NA's

Hitters <- subset(Hitters, select = c(League, AtBat, Hits, HmRun, Runs, RBI,

Walks, Division, PutOuts, Assists,

Errors))

Hitters <- na.omit(Hitters)

# Response and predictors

y <- Hitters$League

x <- model.matrix(League ~ ., data = Hitters)[, -1]

After preparing the data, we perform the regressions.

# Ridge and lasso regressions

library(glmnet)

ridgeMod <- glmnet(x = x, y = y, alpha = 0, family = "binomial")

lassoMod <- glmnet(x = x, y = y, alpha = 1, family = "binomial")

# Solution paths versus lambda

plot(ridgeMod, label = TRUE, xvar = "lambda")

plot(lassoMod, label = TRUE, xvar = "lambda")

# Versus the percentage of deviance explained

plot(ridgeMod, label = TRUE, xvar = "dev")

plot(lassoMod, label = TRUE, xvar = "dev")

# The percentage of deviance explained only goes up to 0.05. There are no

# clear patterns indicating player differences between both leagues

# Let's select the predictors to be included with a 10-fold cross-validation

set.seed(12345)

kcvLasso <- cv.glmnet(x = x, y = y, alpha = 1, nfolds = 10, family = "binomial")

plot(kcvLasso)

# The lambda that minimizes the CV error and "one standard error rule"'s lambda

kcvLasso$lambda.min

## [1] 0.01039048

kcvLasso$lambda.1se

## [1] 0.08829343

# Leave-one-out cross-validation -- similar result

ncvLasso <- cv.glmnet(x = x, y = y, alpha = 1, nfolds = nrow(Hitters),

family = "binomial")

plot(ncvLasso)
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ncvLasso$lambda.min

## [1] 0.007860015

ncvLasso$lambda.1se

## [1] 0.07330276

# Model selected

predict(ncvLasso, type = "coefficients", s = ncvLasso$lambda.1se)

## 11 x 1 sparse Matrix of class "dgCMatrix"

## s1

## (Intercept) -0.099447861

## AtBat .

## Hits .

## HmRun -0.006971231

## Runs .

## RBI .

## Walks .

## DivisionW .

## PutOuts .

## Assists .

## Errors .

HmRun is selected by leave-one-out cross-validation as the unique
predictor to be included in the lasso regression. We know that the
model is not good due to the percentage of deviance explained.
However, we still want to know whether HmRun has any signifi-
cance at all. When addressing this, we have to take into account
Appendix A.5 to avoid spurious findings.

# Analyze the selected model

fit <- glm(League ~ HmRun, data = Hitters, family = "binomial")

summary(fit)

##

## Call:

## glm(formula = League ~ HmRun, family = "binomial", data = Hitters)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.2976 -1.1320 -0.8106 1.1686 1.6440

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 0.27826 0.18086 1.539 0.12392

## HmRun -0.04290 0.01371 -3.130 0.00175 **
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 443.95 on 321 degrees of freedom

## Residual deviance: 433.57 on 320 degrees of freedom

## AIC: 437.57

##

## Number of Fisher Scoring iterations: 4

# HmRun is significant -- but it may be spurious due to the model selection

# procedure (see Appendix A.5)

# Let's split the dataset in two, do model-selection in one part and then

# inference on the selected model in the other, to have an idea of the real

# significance of HmRun

set.seed(12345678)

train <- sample(c(FALSE, TRUE), size = nrow(Hitters), replace = TRUE)

# Model selection in training part

ncvLasso <- cv.glmnet(x = x[train, ], y = y[train], alpha = 1,

nfolds = sum(train), family = "binomial")

predict(ncvLasso, type = "coefficients", s = ncvLasso$lambda.1se)
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## 11 x 1 sparse Matrix of class "dgCMatrix"

## s1

## (Intercept) 0.27240020

## AtBat .

## Hits .

## HmRun -0.01255322

## Runs .

## RBI .

## Walks .

## DivisionW .

## PutOuts .

## Assists .

## Errors .

# Inference in testing part

summary(glm(League ~ HmRun, data = Hitters[!train, ], family = "binomial"))

##

## Call:

## glm(formula = League ~ HmRun, family = "binomial", data = Hitters[!train,

## ])

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.1170 -1.0177 -0.8517 1.3173 1.6896

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -0.14389 0.25754 -0.559 0.5764

## HmRun -0.03255 0.01955 -1.665 0.0958 .

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 216.54 on 162 degrees of freedom

## Residual deviance: 213.64 on 161 degrees of freedom

## AIC: 217.64

##

## Number of Fisher Scoring iterations: 4

# HmRun is now not significant...

# We can repeat the analysis for different partitions of the data and we will

# obtain weak significances. Therefore, we can conclude that this is an spurious

# finding and that HmRun is not significant as a single predictor

# Prediction (obviously not trustable, but for illustration)

pred <- predict(ncvLasso, newx = x[!train, ], type = "response",

s = ncvLasso$lambda.1se)

# Hit matrix and hit ratio

H <- table(pred > 0.5, y[!train] == "A") # ("A" was the reference level)

H

##

## FALSE TRUE

## FALSE 5 18

## TRUE 57 83

sum(diag(H)) / sum(H) # Almost like tossing a coin!

## [1] 0.5398773

From the above analysis, we can conclude that there are no signi-
ficative differences between the players of both leagues in terms of
the variables analyzed.
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44 The ff package implements the
ff vectors and ffdf data frames
classes. The package ffbase provides
convenience functions for working
with these non-standard classes in a
more transparent way.

Perform an adequate statistical analysis based on shrink-
age of a generalized linear model to reply the following
questions:

a. What (if any) are the leading factors among the fea-
tures of a player in season 1986 in order to be in the
top 10% of most paid players in season 1987?

b. What (if any) are the player features in season 1986

influencing the number of home runs in the same
season? And during his career?

Hint: you may use the one shown in the section as a
template.

5.9 Big data considerations

As we saw in Section 5.2.2, fitting a generalized linear model in-
volves fitting a series of linear models. Therefore, all the memory
problems that appeared in Section 4.4 are inherited. Worse, compu-
tation is now more complicated because:

1. Computing the likelihood requires reading all the data at once. Dif-
ferently from the linear model, updating the model with a new
chunk implies re-fitting with all the data due to the nonlinearity
of the likelihood.

2. The IRLS algorithm requires reading the data as many times as
iterations.

These two peculiarities are a game-changer for the approach
followed in Section 4.4: biglm::bigglm needs to have access to the
full data while performing the fitting. This can be cumbersome.

Hopefully, a neat solution is available using the ff and ffbase

packages, which allow for efficiently “working with data stored in
disk that behave (almost) as if they were in RAM”44. The function
that we will employ is ffbase::bigglm.ffdf, and requires from an
object of the class ffdf (ff’s data frames).

The latest version of ffbase has a bug in
ffbase::bigglm.ffdf that is reported in this GitHub
issue. Until that issue is solved, you will not be able to
apply ffbase::bigglm.ffdf with the latest package ver-
sions. A temporary workaround is to downgrade the
packages bit, ff, and ffbase to the respective versions
1.1-15.2, 2.2-14.2, and 0.12.8. The next two chunk of
code provides this fix.

# To install specific versions of packages

install.packages("versions")

library(versions)

https://github.com/edwindj/ffbase/issues/61
https://github.com/edwindj/ffbase/issues/61
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# Install specific package versions. It may take a while to do so, be patient

install.versions(pkgs = c("bit", "ff", "ffbase"),

versions = c("1.1-15.2", "2.2-14.2", "0.12.8"))

# After bit's version 1.1-15.2, something is off in the integration with

# ffbase; see issue in https://github.com/edwindj/ffbase/issues/61

# Alternatively, if the binaries for your OS are not available (e.g., for

# Apple M1's processors), then you will need to compile the packages from

# source... and cross your fingers!

urls <- c(

"https://cran.r-project.org/src/contrib/Archive/bit/bit_1.1-15.2.tar.gz",

"https://cran.r-project.org/src/contrib/Archive/ff/ff_2.2-14.2.tar.gz",

"https://cran.r-project.org/src/contrib/Archive/ffbase/ffbase_0.12.8.tar.gz"

)

install.packages(pkgs = urls, repos = NULL, type = "source")

After the packages bit, ff, and ffbase have been downgraded
(or if the GitHub issue has been fixed), then you will be able to run
the following code:

# Not really "big data", but for the sake of illustration

set.seed(12345)

n <- 1e6

p <- 10

beta <- seq(-1, 1, length.out = p)ˆ5

x1 <- matrix(rnorm(n * p), nrow = n, ncol = p)

x1[, p] <- 2 * x1[, 1] + rnorm(n, sd = 0.1) # Add some dependence to predictors

x1[, p - 1] <- 2 - x1[, 2] + rnorm(n, sd = 0.5)

y1 <- rbinom(n, size = 1, prob = 1 / (1 + exp(-(1 + x1 %*% beta))))

x2 <- matrix(rnorm(100 * p), nrow = 100, ncol = p)

y2 <- rbinom(100, size = 1, prob = 1 / (1 + exp(-(1 + x2 %*% beta))))

bigData1 <- data.frame("resp" = y1, "pred" = x1)

bigData2 <- data.frame("resp" = y2, "pred" = x2)

# Save files to disk to emulate the situation with big data

write.csv(x = bigData1, file = "bigData1.csv", row.names = FALSE)

write.csv(x = bigData2, file = "bigData2.csv", row.names = FALSE)

# Read files using ff

library(ffbase) # Imports ff

bigData1ff <- read.table.ffdf(file = "bigData1.csv", header = TRUE, sep = ",")

bigData2ff <- read.table.ffdf(file = "bigData2.csv", header = TRUE, sep = ",")

# Recall: bigData1.csv is not copied into RAM

print(object.size(bigData1), units = "MB")

print(object.size(bigData1ff), units = "KB")

# Logistic regression

# Same comments for the formula framework -- this is the hack for automatic

# inclusion of all the predictors

library(biglm)

f <- formula(paste("resp ~", paste(names(bigData1)[-1], collapse = " + ")))

bigglmMod <- bigglm.ffdf(formula = f, data = bigData1ff, family = binomial())

# glm's call

glmMod <- glm(formula = resp ~ ., data = bigData1, family = binomial())

# Compare sizes

print(object.size(bigglmMod), units = "KB")

print(object.size(glmMod), units = "MB")

# Summaries

s1 <- summary(bigglmMod)

s2 <- summary(glmMod)

s1

s2

https://github.com/edwindj/ffbase/issues/61
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45 Without actually expanding that list,
as coming out with this list of candi-
date models is the most expensive part
in best subset selection.

# Further information

s1$mat # Coefficients and their inferences

s1$rsq # Rˆ2

s1$nullrss # Null deviance

# Extract coefficients

coef(bigglmMod)

# Prediction works as usual

predict(bigglmMod, newdata = bigData2[1:5, ], type = "response")

# predict(bigglmMod, newdata = bigData2[1:5, -1]) # Error

# Update the model with training data

update(bigglmMod, moredata = bigData2)

# AIC and BIC

AIC(bigglmMod, k = 2)

AIC(bigglmMod, k = log(n))

# Delete the files in disk

file.remove(c("bigData1.csv", "bigData2.csv"))

Note that this is also a perfectly valid approach for lin-
ear models, we just need to specify family = gaussian()

in the call to bigglm.ffdf.

Model selection of biglm::bigglm models is not so straightfor-
ward. The trick that leaps::regsubsets employs for simplifying
the model search in linear models (see Section 4.4) does not apply
for generalized linear models because of the nonlinearity of the
likelihood. However, there is a simple and useful hack: we can do
best subset selection in the linear model associated to the last
iteration of the IRLS algorithm and then refine the search by com-
puting the exact BIC/AIC from a set of candidate models45. If we
do so, we translate the model selection problem back to the linear
case, plus an extra overhead of fitting several generalized linear
models. Keep in mind that, albeit useful, this approach is a hacky
approximation to the task of finding the best subset of predictors.

# Model selection adapted to big data generalized linear models

reg <- leaps::regsubsets(bigglmMod, nvmax = p + 1, method = "exhaustive")

# This takes the QR decomposition, which encodes the linear model associated to

# the last iteration of the IRLS algorithm. However, the reported BICs are *not*
# the true BICs of the generalized linear models, but a sufficient

# approximation to obtain a list of candidate models in a fast way

# Get the model with lowest BIC

plot(reg)

subs <- summary(reg)

subs$which

subs$bic

subs$which[which.min(subs$bic), ]

# Let's compute the true BICs for the p models. This implies fitting p bigglm's

bestModels <- list()

for (i in 1:nrow(subs$which)) {

f <- formula(paste("resp ~", paste(names(which(subs$which[i, -1])),

collapse = " + ")))

bestModels[[i]] <- bigglm.ffdf(formula = f, data = bigData1ff,

family = binomial(), maxit = 20)

# Did not converge with the default iteration limit, maxit = 8
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}

# The approximate BICs and the true BICs are very similar (in this example)

exactBICs <- sapply(bestModels, AIC, k = log(n))

plot(subs$bic, exactBICs, type = "o", xlab = "Exact", ylab = "Approximate")

# Pearson correlation

cor(subs$bic, exactBICs, method = "pearson")

# Order correlation

cor(subs$bic, exactBICs, method = "spearman")

# Both give the same model selection and same order

subs$which[which.min(subs$bic), ] # Approximate

subs$which[which.min(exactBICs), ] # Exact



1 For example, linear models assume
that m is of the form m(x) = β0 +
β1x1 + · · ·+ βpxp for some unknown
coefficients β.

2 For the sake of introducing the main
concepts, on Section 6.3 we will see the
full general situation.

6
Nonparametric regression

The models we saw in the previous chapters share a common root:
all of them are parametric. This means that they assume a certain
structure on the regression function m, which is controlled by pa-
rameters1. If this assumption truly holds, then parametric methods
are the best approach for estimating m. But in practice it is rarely
the case where parametric methods work out-of-the-box, and sev-
eral tricks are needed in order to expand their degree of flexibility
in a case-by-case basis. Avoiding this nuisance is the strongest point
of nonparametric methods: they do not assume major hard-to-
satisfy hypotheses on the regression function, but just minimal
assumptions, which makes them directly employable. Their weak
points are that they usually are more computationally demanding
and are harder to interpret.

We consider first the simplest situation2: a single continuous
predictor X for predicting a response Y. In this case, recall that the
complete knowledge of Y when X = x is given by the conditional
pdf fY|X=x(y) = f (x,y)

fX(x) . While this pdf provides full knowledge
about Y|X = x, it is also a challenging task to estimate it: for each
x we have to estimate a different curve! A simpler approach, yet still
challenging, is to estimate the conditional mean (a scalar) for each x
through the regression function

m(x) = E[Y|X = x] =
∫

y fY|X=x(y)dy.

As we will see, this density-based view of the regression function is
useful in order to motivate estimators.

6.1 Nonparametric density estimation

In order to introduce a nonparametric estimator for the regression
function m, we need to introduce first a nonparametric estima-
tor for the density of the predictor X. This estimator is aimed to
estimate f , the density of X, from a sample X1, . . . , Xn without as-
suming any specific form for f . This is, without assuming, e.g., that
the data is normally distributed.
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3 Recall that with this standardization
we approach to the probability density
concept.
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6.1.1 Histogram and moving histogram

The simplest method to estimate a density f from an iid sample
X1, . . . , Xn is the histogram. From an analytical point of view, the
idea is to aggregate the data in intervals of the form [x0, x0 + h)
and then use their relative frequency to approximate the density at
x ∈ [x0, x0 + h), f (x), by the estimate of

f (x0) = F′(x0)

= lim
h→0+

F(x0 + h)− F(x0)

h

= lim
h→0+

P[x0 < X < x0 + h]
h

.

More precisely, given an origin t0 and a bandwidth h > 0, the
histogram builds a piecewise constant function in the intervals
{Bk := [tk, tk+1) : tk = t0 + hk, k ∈ Z} by counting the number of
sample points inside each of them. These constant-length intervals
are also called bins. The fact they have constant length h is impor-
tant, since it allows to standardize by h in order to have relative
frequencies per length3 in the bins. The histogram at a point x is
defined as

f̂H(x; t0, h) :=
1

nh

n

∑
i=1

1{Xi∈Bk :x∈Bk}. (6.1)

Equivalently, if we denote the number of points in Bk as vk, then the
histogram is f̂H(x; t0, h) = vk

nh if x ∈ Bk for k ∈ Z.
The computation of histograms is straightforward in R. As an

example, we consider the faithful dataset, which contains the
duration of the eruption and the waiting time between eruptions
for the Old Faithful geyser in Yellowstone National Park (USA).

# Duration of eruption

faithE <- faithful$eruptions

# Default histogram: automatically chooses bins and uses absolute frequencies

histo <- hist(faithE)

# Bins and bin counts

histo$breaks # Bk's

## [1] 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

histo$counts # vk's

## [1] 55 37 5 9 34 75 54 3

# With relative frequencies

hist(faithE, probability = TRUE)

# Choosing the breaks

t0 <- min(faithE)

h <- 0.25

Bk <- seq(t0, max(faithE), by = h)

hist(faithE, probability = TRUE, breaks = Bk)

rug(faithE) # The sample

Recall that the shape of the histogram depends on:
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• t0, since the separation between bins happens at t0k, k ∈ Z;
• h, which controls the bin size and the effective number of bins

for aggregating the sample.

We focus first on exploring the dependence on t0 with the next
example, as it serves for motivating the next density estimator.

# Uniform sample

set.seed(1234567)

u <- runif(n = 100)

# t0 = 0, h = 0.2

Bk1 <- seq(0, 1, by = 0.2)

# t0 = -0.1, h = 0.2

Bk2 <- seq(-0.1, 1.1, by = 0.2)

# Comparison

par(mfrow = 1:2)

hist(u, probability = TRUE, breaks = Bk1, ylim = c(0, 1.5),

main = "t0 = 0, h = 0.2")

rug(u)

abline(h = 1, col = 2)

hist(u, probability = TRUE, breaks = Bk2, ylim = c(0, 1.5),

main = "t0 = -0.1, h = 0.2")

rug(u)

abline(h = 1, col = 2)

t0 = 0, h = 0.2

u
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Figure 6.1: The dependence of the
histogram on the origin t0.

Clearly, this dependence is undesirable, as it is prone to change
notably the estimation of f using the same data. An alternative
to avoid the dependence on t0 is the moving histogram or naive
density estimator. The idea is to aggregate the sample X1, . . . , Xn

in intervals of the form (x − h, x + h) and then use its relative fre-
quency in (x− h, x + h) to approximate the density at x, which can
be written as

f (x) = F′(x)

= lim
h→0+

F(x + h)− F(x− h)
2h

= lim
h→0+

P[x− h < X < x + h]
2h

.
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4 Note that the function has 2n discon-
tinuities that are located at Xi ± h.

5 E[B(N, p)] = Np and Var[B(N, p)] =
Np(1− p).

6 Or, in other words, if h−1 grows
slower than n.

Recall the differences with the histogram: the intervals
depend on the evaluation point x and are centered
about it. That allows to directly estimate f (x) (without
the proxy f (x0)) by an estimate of the symmetric deriva-
tive.

Given a bandwidth h > 0, the naive density estimator builds a
piecewise constant function by considering the relative frequency of
X1, . . . , Xn inside (x− h, x + h) 4:

f̂N(x; h) :=
1

2nh

n

∑
i=1

1{x−h<Xi<x+h}. (6.2)

The analysis of f̂N(x; h) as a random variable follows from realiz-
ing that

n

∑
i=1

1{x−h<Xi<x+h} ∼ B(n, px,h)

where

px,h := P[x− h < X < x + h] = F(x + h)− F(x− h).

Therefore, employing the bias and variance expressions of a bino-
mial5, it follows:

E[ f̂N(x; h)] =
F(x + h)− F(x− h)

2h
,

Var[ f̂N(x; h)] =
F(x + h)− F(x− h)

4nh2

− (F(x + h)− F(x− h))2

4nh2 .

These two results provide very interesting insights on the effect
of h on the moving histogram:

1. If h → 0, then E[ f̂N(x; h)] → f (x) and (6.2) is an asymptotically
unbiased estimator of f (x). However, if h → 0, the variance

explodes: Var[ f̂N(x; h)] ≈ f (x)
2nh −

f (x)2

n → ∞.
2. If h → ∞, then both E[ f̂N(x; h)] → 0 and Var[ f̂N(x; h)] → 0.

Therefore, the variance shrinks to zero but the bias grows.
3. If nh → ∞ 6, then the variance shrinks to zero. If, in addition,

h → 0, the bias also shrinks to zero. So both the bias and the vari-
ance are reduced if n→ ∞, h→ 0, and nh→ ∞, simultaneously.

The animation in Figure 6.2 illustrates the previous points and
gives insight on how the performance of (6.2) varies with h.

The estimator (6.2) poses an interesting question:

Why giving the same weight to all X1, . . . , Xn in (x − h, x + h) for
estimating f (x)?

We are estimating f (x) = F′(x) by estimating F(x+h)−F(x−h)
2h

through the relative frequency of X1, . . . , Xn in the interval (x −
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Figure 6.2: Bias and variance for the
moving histogram. The animation
shows how for small bandwidths the
bias of f̂N(x; h) on estimating f (x) is
small, but the variance is high, and
how for large bandwidths the bias
is large and the variance is small.
The variance is represented by the
asymptotic 95% confidence intervals
for f̂N(x; h). Recall how the variance
of f̂N(x; h) is (almost) proportional to
f (x). Application also available here.

7 Also known as the Parzen–Rosenblatt
estimator to honor the proposals by
Parzen (1962) and Rosenblatt (1956).

h, x + h). Should not be the data points closer to x more important
than the ones further away? The answer to this question shows
that (6.2) is indeed a particular case of a wider class of density
estimators.

6.1.2 Kernel density estimation

The moving histogram (6.2) can be equivalently written as

f̂N(x; h) =
1

nh

n

∑
i=1

1
2

1{−1< x−Xi
h <1

}
=

1
nh

n

∑
i=1

K
(

x− Xi
h

)
, (6.3)

with K(z) = 1
2 1{−1<z<1}. Interestingly, K is a uniform density in

(−1, 1). This means that, when approximating

P[x− h < X < x + h] = P

[
−1 <

x− X
h

< 1
]

by (6.3), we give equal weight to all the points X1, . . . , Xn. The gen-
eralization of (6.3) is now obvious: replace K by an arbitrary den-
sity. Then K is known as a kernel: a density with certain regularity
that is (typically) symmetric and unimodal at 0. This generalization
provides the definition of kernel density estimator7 (kde):

f̂ (x; h) :=
1

nh

n

∑
i=1

K
(

x− Xi
h

)
. (6.4)

A common notation is Kh(z) := 1
h K
( z

h
)

, so the kde can be com-
pactly written as f̂ (x; h) = 1

n ∑n
i=1 Kh(x− Xi).

https://shinyserv.es/shiny/bias-var-movhist/
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8 Although the efficiency of the normal
kernel, with respect to the Epanech-
nikov kernel, is roughly 0.95.

9 Precisely, the rule-of-thumb given by
bw.nrd.

It is useful to recall (6.4) with the normal kernel. If that is the
case, then Kh(x − Xi) = ϕ(x; Xi, h2) = ϕ(x − Xi; 0, h2) (denoted
simply as ϕ(x− Xi; h2)) and the kernel is the density of a N (Xi, h2).
Thus the bandwidth h can be thought of as the standard deviation
of a normal density whose mean is Xi and the kde (6.4) as a data-
driven mixture of those densities. Figure 6.3 illustrates the construc-
tion of the kde, and the bandwidth and kernel effects.

Figure 6.3: Construction of the kernel
density estimator. The animation
shows how the bandwidth and kernel
affect the density estimate, and how
the kernels are rescaled densities with
modes at the data points. Application
available here.

Several types of kernels are possible. The most popular is the
normal kernel K(z) = ϕ(z), although the Epanechnikov kernel, K(z) =
3
4 (1− z2)1{|z|<1}, is the most efficient8. The rectangular kernel K(z) =
1
2 1{|z|<1} yields the moving histogram as a particular case. The
kde inherits the smoothness properties of the kernel. That means,
e.g., that (6.4) with a normal kernel is infinitely differentiable. But,
with an Epanechnikov kernel, (6.4) is not differentiable, and, with
a rectangular kernel, the kde is not even continuous. However, if
a certain smoothness is guaranteed (continuity at least), then the
choice of the kernel has little importance in practice (at least compared
with the choice of the bandwidth h).

The computation of the kde in R is done through the density

function. The function automatically chooses the bandwidth h
using a data-driven criterion9.

# Sample 100 points from a N(0, 1)

set.seed(1234567)

samp <- rnorm(n = 100, mean = 0, sd = 1)

# Quickly compute a kernel density estimator and plot the density object

# Automatically chooses bandwidth and uses normal kernel

plot(density(x = samp))

https://shinyserv.es/shiny/kde/
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# Select a particular bandwidth (0.5) and kernel (Epanechnikov)

lines(density(x = samp, bw = 0.5, kernel = "epanechnikov"), col = 2)

# density() automatically chooses the interval for plotting the kernel density

# estimator (observe that the black line goes to roughly between -3 and 3)

# This can be tuned using "from" and "to"

plot(density(x = samp, from = -4, to = 4), xlim = c(-5, 5))

# The density object is a list

kde <- density(x = samp, from = -5, to = 5, n = 1024)

str(kde)

## List of 7

## $ x : num [1:1024] -5 -4.99 -4.98 -4.97 -4.96 ...

## $ y : num [1:1024] 5.98e-17 3.46e-17 2.33e-17 3.40e-17 4.29e-17 ...

## $ bw : num 0.315

## $ n : int 100

## $ call : language density.default(x = samp, n = 1024, from = -5, to = 5)

## $ data.name: chr "samp"

## $ has.na : logi FALSE

## - attr(*, "class")= chr "density"

# Note that the evaluation grid "x"" is not directly controlled, only through

# "from, "to", and "n" (better use powers of 2). This is because, internally,

# kde employs an efficient Fast Fourier Transform on grids of size 2ˆm

# Plotting the returned values of the kde

plot(kde$x, kde$y, type = "l")

curve(dnorm(x), col = 2, add = TRUE) # True density

rug(samp)

Load the dataset faithful. Then:

a. Estimate and plot the density of faithful$eruptions.
b. Create a new plot and superimpose different density

estimations with bandwidths equal to 0.1, 0.5, and 1.
c. Get the density estimate at exactly the point x = 3.1

using h = 0.15 and the Epanechnikov kernel.

6.1.3 Bandwidth selection

The kde critically depends on the employed bandwidth; hence ob-
jective and automatic bandwidth selectors that attempt to minimize
the estimation error of the target density f are required to properly
apply a kde in practice.

A global, rather than local, error criterion for the kde is the Inte-
grated Squared Error (ISE):

ISE[ f̂ (·; h)] :=
∫
( f̂ (x; h)− f (x))2 dx.

The ISE is a random quantity, since it depends directly on the sam-
ple X1, . . . , Xn. As a consequence, looking for an optimal-ISE band-
width is a hard task, since the optimality is dependent on the sam-
ple itself (not only on f and n). To avoid this problematic, it is usual
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10 By solving d
dh AMISE[ f̂ (·; h)] = 0,

i.e., µ2
2(K)R( f ′′)h3 − R(K)n−1h−2 = 0,

yields hAMISE.

to compute the Mean Integrated Squared Error (MISE):

MISE[ f̂ (·; h)] :=E
[
ISE[ f̂ (·; h)]

]
=
∫

E
[
( f̂ (x; h)− f (x))2

]
dx

=
∫

MSE[ f̂ (x; h)]dx.

Once the MISE is set as the error criterion to be minimized, our
aim is to find

hMISE := arg min
h>0

MISE[ f̂ (·; h)].

For that purpose, we need an explicit expression of the MISE that
we can attempt to minimize. An asymptotic expansion can be de-
rived when h→ 0 and nh→ ∞, resulting in

MISE[ f̂ (·; h)] ≈ AMISE[ f̂ (·; h)] :=
1
4

µ2
2(K)R( f ′′)h4 +

R(K)
nh

, (6.5)

where µ2(K) :=
∫

z2K(z)dz and R(g) :=
∫

g(x)2 dx. The AMISE
stands for Asymptotic MISE and, due to its closed expression, it
allows to obtain a bandwidth that minimizes it:10

hAMISE =

[
R(K)

µ2
2(K)R( f ′′)n

]1/5

. (6.6)

Unfortunately, the AMISE bandwidth depends on R( f ′′) =
∫
( f ′′(x))2 dx,

which measures the curvature of the unknown density f . As a con-
sequence, it cannot be readily applied in practice!

Plug-in selectors
A simple solution to turn (6.6) into something computable is to

estimate R( f ′′) by assuming that f is the density of a N (µ, σ2), and
then plug-in the form of the curvature for such density:

R(ϕ′′(·; µ, σ2)) =
3

8π1/2σ5 .

While doing so, we approximate the curvature of an arbitrary den-
sity by means of the curvature of a normal and we have that

hAMISE =

[
8π1/2R(K)

3µ2
2(K)n

]1/5

σ.

Interestingly, the bandwidth is directly proportional to the standard
deviation of the target density. Replacing σ by an estimate yields
the normal scale bandwidth selector, which we denote by ĥNS to
emphasize its randomness:

ĥNS =

[
8π1/2R(K)

3µ2
2(K)n

]1/5

σ̂.

The estimate σ̂ can be chosen as the standard deviation s, or, in
order to avoid the effects of potential outliers, as the standardized
interquantile range

σ̂IQR :=
X([0.75n]) − X([0.25n])

Φ−1(0.75)−Φ−1(0.25)
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11 Not to confuse with bw.nrd0!

12 The motivation for doing so is to try
to add the parametric assumption at a
later, less important, step.

or as

σ̂ = min(s, σ̂IQR). (6.7)

When combined with a normal kernel, for which µ2(K) = 1 and
R(K) = 1

2
√

π
, this particularization of ĥNS gives the famous rule-of-

thumb for bandwidth selection:

ĥRT =

(
4
3

)1/5
n−1/5σ̂ ≈ 1.06n−1/5σ̂.

ĥRT is implemented in R through the function bw.nrd11.

# Data

set.seed(667478)

n <- 100

x <- rnorm(n)

# Rule-of-thumb

bw.nrd(x = x)

## [1] 0.4040319

# bwd.nrd employs 1.34 as an approximation for diff(qnorm(c(0.25, 0.75)))

# Same as

iqr <- diff(quantile(x, c(0.25, 0.75))) / diff(qnorm(c(0.25, 0.75)))

1.06 * nˆ(-1/5) * min(sd(x), iqr)

## [1] 0.4040319

The rule-of-thumb is an example of a zero-stage plug-in selector,
a terminology which lays on the fact that R( f ′′) was estimated
by plugging-in a parametric estimation at “the very first moment a
quantity that depends on f appears”. We could have opted to estimate
R( f ′′) nonparametrically, in a certain optimal way, and then plug-
in the estimate into into hAMISE. The important catch lies on the
optimal estimation of R( f ′′) : it requires the knowledge of R

(
f (4)
)
!

What ℓ-stage plug-in selectors do is to iterate these steps ℓ times
and finally plug-in a normal estimate of the unknown R

(
f (2ℓ)

)
12.

Typically, two stages are considered a good trade-off between
bias (mitigated when ℓ increases) and variance (augments with ℓ)
of the plug-in selector. This is the method proposed by Sheather
and Jones (1991), yielding what we call the Direct Plug-In (DPI).
The DPI selector is implemented in R through the function bw.SJ

(use method = "dpi"). An alternative and faster implementation is
ks::hpi, which also for more flexibility and has a somehow more
detailed documentation.

# Data

set.seed(672641)

x <- rnorm(100)

# DPI selector

bw.SJ(x = x, method = "dpi")

## [1] 0.5006905

# Similar to

ks::hpi(x) # Default is two-stages

## [1] 0.4999456
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Cross-validation
We turn now our attention to a different philosophy of band-

width estimation. Instead of trying to minimize the AMISE by
plugging-in estimates for the unknown curvature term, we directly
attempt to minimize the MISE by using the sample twice: one for
computing the kde and other for evaluating its performance on esti-
mating f . To avoid the clear dependence on the sample, we do the
evaluation in a cross-validatory way: the data used for computing the
kde is not used for its evaluation.

We begin by expanding the square in the MISE expression:

MISE[ f̂ (·; h)] =E

[∫
( f̂ (x; h)− f (x))2 dx

]
=E

[∫
f̂ (x; h)2 dx

]
− 2E

[∫
f̂ (x; h) f (x)dx

]
+
∫

f (x)2 dx.

Since the last term does not depend on h, minimizing MISE[ f̂ (·; h)]
is equivalent to minimizing

E

[∫
f̂ (x; h)2 dx

]
− 2E

[∫
f̂ (x; h) f (x)dx

]
.

This quantity is unknown, but it can be estimated unbiasedly by

LSCV(h) :=
∫

f̂ (x; h)2 dx− 2n−1
n

∑
i=1

f̂−i(Xi; h), (6.8)

where f̂−i(·; h) is the leave-one-out kde and is based on the sample
with the Xi removed:

f̂−i(x; h) =
1

n− 1

n

∑
j=1
j ̸=i

Kh(x− Xj).

The Least Squares Cross-Validation (LSCV) selector, also denoted
Unbiased Cross-Validation (UCV) selector, is defined as

ĥLSCV := arg min
h>0

LSCV(h).

Numerical optimization is required for obtaining ĥLSCV, contrary
to the previous plug-in selectors, and there is little control on the
shape of the objective function.

Numerical optimization of the (6.8) can be challeng-
ing. In practice, several local minima are possible, and
the roughness of the objective function can vary no-
tably depending on n and f . As a consequence, opti-
mization routines may get trapped in spurious solu-
tions. To be on the safe side, it is advisable to check
the solution by plotting LSCV(h) for a range of h, or
to perform an exhaustive search in a bandwidth grid:
ĥLSCV ≈ arg minh1,...,hG LSCV(h).
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13 Long intervals containing the so-
lution may lead to unsatisfactory
termination of the search; short inter-
vals might not contain the minimum.
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ĥLSCV is implemented in R through the function bw.ucv. bw.ucv
uses optimize, which is quite sensible to the selection of the search
interval13. Therefore, some care is needed and that is why the
bw.ucv.mod function is presented.

# Data

set.seed(123456)

x <- rnorm(100)

# UCV gives a warning

bw.ucv(x = x)

## [1] 0.4499177

# Extend search interval

bw.ucv(x = x, lower = 0.01, upper = 1)

## [1] 0.5482419

# bw.ucv.mod replaces the optimization routine of bw.ucv by an exhaustive

# search on "h.grid" (chosen adaptatively from the sample) and optionally

# plots the LSCV curve with "plot.cv"

bw.ucv.mod <- function(x, nb = 1000L,

h.grid = diff(range(x)) * (seq(0.1, 1, l = 200))ˆ2,

plot.cv = FALSE) {

if ((n <- length(x)) < 2L)

stop("need at least 2 data points")

n <- as.integer(n)

if (is.na(n))

stop("invalid length(x)")

if (!is.numeric(x))

stop("invalid 'x'")

nb <- as.integer(nb)

if (is.na(nb) || nb <= 0L)

stop("invalid 'nb'")

storage.mode(x) <- "double"

hmax <- 1.144 * sqrt(var(x)) * nˆ(-1/5)

Z <- .Call(stats:::C_bw_den, nb, x)

d <- Z[[1L]]

cnt <- Z[[2L]]

fucv <- function(h) .Call(stats:::C_bw_ucv, n, d, cnt, h)

## Original

# h <- optimize(fucv, c(lower, upper), tol = tol)$minimum

# if (h < lower + tol | h > upper - tol)

# warning("minimum occurred at one end of the range")

## Modification

obj <- sapply(h.grid, function(h) fucv(h))

h <- h.grid[which.min(obj)]

if (plot.cv) {

plot(h.grid, obj, type = "o")

rug(h.grid)

abline(v = h, col = 2, lwd = 2)

}

h

}

# Compute the bandwidth and plot the LSCV curve

bw.ucv.mod(x = x, plot.cv = TRUE)

## [1] 0.5431732

# We can compare with the default bw.ucv output

abline(v = bw.ucv(x = x), col = 3)

The next cross-validation selector is based on Biased Cross-
Validation (BCV). The BCV selector presents a hybrid strategy that
combines plug-in and cross-validation ideas. It starts by consider-
ing the AMISE expression in (6.5) and then plugs-in an estimate
for R( f ′′) based on a modification of R( f̂ ′′(·; h)). The appealing
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14 But be careful not expanding the
upper limit of the search interval too
much!
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property of ĥBCV is that it has a considerably smaller variance com-
pared to ĥLSCV. This reduction in variance comes at the price of an
increased bias, which tends to make ĥBCV larger than hMISE.

ĥBCV is implemented in R through the function bw.bcv. Again,
bw.bcv uses optimize so the bw.bcv.mod function is presented to
have better guarantees on finding the adequate minimum.14

# Data

set.seed(123456)

x <- rnorm(100)

# BCV gives a warning

bw.bcv(x = x)

## [1] 0.4500924

# Extend search interval

args(bw.bcv)

## function (x, nb = 1000L, lower = 0.1 * hmax, upper = hmax, tol = 0.1 *
## lower)

## NULL

bw.bcv(x = x, lower = 0.01, upper = 1)

## [1] 0.5070129

# bw.bcv.mod replaces the optimization routine of bw.bcv by an exhaustive

# search on "h.grid" (chosen adaptatively from the sample) and optionally

# plots the BCV curve with "plot.cv"

bw.bcv.mod <- function(x, nb = 1000L,

h.grid = diff(range(x)) * (seq(0.1, 1, l = 200))ˆ2,

plot.cv = FALSE) {

if ((n <- length(x)) < 2L)

stop("need at least 2 data points")

n <- as.integer(n)

if (is.na(n))

stop("invalid length(x)")

if (!is.numeric(x))

stop("invalid 'x'")

nb <- as.integer(nb)

if (is.na(nb) || nb <= 0L)

stop("invalid 'nb'")

storage.mode(x) <- "double"

hmax <- 1.144 * sqrt(var(x)) * nˆ(-1/5)

Z <- .Call(stats:::C_bw_den, nb, x)

d <- Z[[1L]]

cnt <- Z[[2L]]

fbcv <- function(h) .Call(stats:::C_bw_bcv, n, d, cnt, h)

## Original code

# h <- optimize(fbcv, c(lower, upper), tol = tol)$minimum

# if (h < lower + tol | h > upper - tol)

# warning("minimum occurred at one end of the range")

## Modification

obj <- sapply(h.grid, function(h) fbcv(h))

h <- h.grid[which.min(obj)]

if (plot.cv) {

plot(h.grid, obj, type = "o")

rug(h.grid)

abline(v = h, col = 2, lwd = 2)

}

h

}

# Compute the bandwidth and plot the BCV curve

bw.bcv.mod(x = x, plot.cv = TRUE)

## [1] 0.5130493

# We can compare with the default bw.bcv output

abline(v = bw.bcv(x = x), col = 3)
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Comparison of bandwidth selectors
Despite it is possible to compare theoretically the performance of

bandwidth selectors by investigating the convergence of nν(ĥ/hMISE−
1), comparisons are usually done by simulation and investigation
of the averaged ISE error. A popular collection of simulation sce-
narios was given by Marron and Wand (1992) and are conveniently
available through the package nor1mix. They form a collection of
normal r-mixtures of the form

f (x; µ, σ, w) : =
r

∑
j=1

wjϕ(x; µj, σ2
j ),

where wj ≥ 0, j = 1, . . . , r and ∑r
j=1 wj = 1. Densities of this form

are specially attractive since they allow for arbitrarily flexibility
and, if the normal kernel is employed, they allow for explicit and
exact MISE expressions, directly computable as

MISEr[ f̂ (·; h)] = (2
√

πnh)−1 + w′{(1− n−1)Ω2 − 2Ω1 + Ω0}w,

(Ωa)ij := ϕ(µi − µj; ah2 + σ2
i + σ2

j ), i, j = 1, . . . , r.

This expression is especially useful for benchmarking bandwidth
selectors, as the MISE optimal bandwidth can be computed by
hMISE = arg minh>0 MISEr[ f̂ (·; h)].

# Available models

?nor1mix::MarronWand

# Simulating -- specify density with MW object

samp <- nor1mix::rnorMix(n = 500, obj = nor1mix::MW.nm9)

hist(samp, freq = FALSE)

# Density evaluation

x <- seq(-4, 4, length.out = 400)

lines(x, nor1mix::dnorMix(x = x, obj = nor1mix::MW.nm9), col = 2)

# Plot a MW object directly

# A normal with the same mean and variance is plotted in dashed lines

par(mfrow = c(2, 2))

plot(nor1mix::MW.nm5)

plot(nor1mix::MW.nm7)

plot(nor1mix::MW.nm10)

plot(nor1mix::MW.nm12)

lines(nor1mix::MW.nm1, col = 2:3) # Also possible

Figure 6.4 presents a visualization of the performance of the
kde with different bandwidth selectors, carried out in the family of
mixtures of Marron and Wand (1992).
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Figure 6.4: Performance comparison
of bandwidth selectors. The RT, DPI,
LSCV, and BCV are computed for each
sample for a normal mixture density.
For each sample, computes the ISEs
of the selectors and sorts them from
best to worst. Changing the scenarios
gives insight on the adequacy of
each selector to hard- and simple-to-
estimate densities. Application also
available here.

Which bandwidth selector is the most adequate for a
given dataset?

There is no simple and universal answer to this question.
There are, however, a series of useful facts and sugges-
tions:

• Trying several selectors and inspecting the results
may help on determining which one is estimating the
density better.

• The DPI selector has a convergence rate much faster
than the cross-validation selectors. Therefore, in
theory, it is expected to perform better than LSCV
and BCV. For this reason, it tends to be amongst the
preferred bandwidth selectors in the literature.

• Cross-validatory selectors may be better suited for
highly non-normal and rough densities, in which
plug-in selectors may end up oversmoothing.

• LSCV tends to be considerably more variable than
BCV.

• The RT is a quick, simple, and inexpensive selector.
However, it tends to give bandwidths that are too
large for non-normal data.

https://shinyserv.es/shiny/kde-bwd/
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15 Observe that, if p = 1, then H will
equal the square of the bandwidth h,
that is, H = h2.

16 Observe that implementing the
optimization of (6.11) is not trivial,
since it is required to enforce the
constraint H ∈ SPDp. A neat way
of parametrizing H that induces
the positive definiteness constrain
is through the (unique) Cholesky
decomposition of H ∈ SPDp: H = R′R,
where R is a triangular matrix with
positive entries on the diagonal (but
the remaining entries unconstrained).
Therefore, optimization of (6.11) can be
done through the p(p+1)

2 entries of R.

6.1.4 Multivariate extension

Kernel density estimation can be extended to estimate multivari-
ate densities f in Rp. For a sample X1, . . . , Xn in Rp, the kde of f
evaluated at x ∈ Rp is

f̂ (x; H) :=
1

n|H|1/2

n

∑
i=1

K
(

H−1/2(x− Xi)
)

, (6.9)

where K is multivariate kernel, a p-variate density that is (typically)
symmetric and unimodal at 0, and that depends on the bandwidth
matrix15 H, a p× p symmetric and positive definite matrix. A com-
mon notation is KH(z) := |H|−1/2K

(
H−1/2z

)
, so the kde can be

compactly written as f̂ (x; H) := 1
n ∑n

i=1 KH(x− Xi). The most em-
ployed multivariate kernel is the normal kernel K(z) = ϕ(z; 0, Ip).

The interpretation of (6.9) is analogous to the one of (6.4): build a
mixture of densities with each density centered at each data point.
As a consequence, and roughly speaking, most of the concepts
and ideas seen in univariate kernel density estimation extend to
the multivariate situation, although some of them with consider-
able technical complications. For example, bandwidth selection
inherits the same cross-validatory ideas (LSCV and BCV selectors)
and plug-in methods (NS and DPI) seen before, but with increased
complexity for the BCV and DPI selectors. The interested reader is
referred to Chacón and Duong (2018) for a rigorous and compre-
hensive treatment.

We briefly discuss next the NS and LSCV selectors, denoted by
ĤNS and ĤLSCV, respectively. The normal scale bandwidth selector
follows, as in the univariate case, by minimizing the asymptotic
MISE of the kde, which now takes the form

MISE[ f̂ (·; H)] = E

[∫
( f̂ (x; H)− f (x))2 dx

]
,

and then assuming that f is the pdf of a Np (µ, Σ) . With the normal
kernel, this results in

HNS = (4(p + 2))2/(p+4)n−2/(p+4)Σ. (6.10)

Replacing Σ by the sample covariance matrix S in (6.10) gives ĤNS.
The unbiased cross-validation selector neatly extends from

the univariate case and attempts to minimize MISE[ f̂ (·; H)] by
estimating it unbiasedly with

LSCV(H) :=
∫

f̂ (x; H)2 dx− 2n−1
n

∑
i=1

f̂−i(Xi; H)

and then minimizing it:

ĤLSCV := arg min
H∈SPDp

LSCV(H), (6.11)

where SPDp is the set of positive definite matrices16 of size p.
Considering a full bandwidth matrix H gives more flexibility

to the kde, but also increases notably the amount of bandwidth
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parameters that need to be chosen – precisely p(p+1)
2 – which signif-

icantly complicates bandwidth selection as the dimension p grows.
A common simplification is to consider a diagonal bandwidth ma-
trix H = diag(h2

1, . . . , h2
p), which yields the kde employing product

kernels:

f̂ (x; h) =
1
n

n

∑
i=1

Kh1(x1 − Xi,1)×
p
· · · ×Khp(xp − Xi,p), (6.12)

where h = (h1, . . . , hp)′ is the vector of bandwidths. If the variables
X1, . . . , Xp have been standardized (so that they have the same
scale), then a simple choice is to consider h = h1 = . . . = hp.

Multivariate kernel density estimation and bandwidth selection
is not supported in base R, but the ks package implements the kde
by ks::kde for p ≤ 6. Bandwidth selectors, allowing for full or
diagonal bandwidth matrices are implemented by: ks::Hns (NS),
ks::Hpi and ks::Hpi.diag (DPI), ks::Hlscv and ks::Hlscv.diag

(LSCV), and ks::Hbcv and ks::Hbcv.diag (BCV). The next chunk of
code illustrates their usage with the faithful dataset.

# DPI selectors

Hpi1 <- ks::Hpi(x = faithful)

Hpi1

## [,1] [,2]

## [1,] 0.06326802 0.6041862

## [2,] 0.60418624 11.1917775

# Compute kde (if H is missing, ks::Hpi is called)

kdeHpi1 <- ks::kde(x = faithful, H = Hpi1)

# Different representations

plot(kdeHpi1, display = "slice", cont = c(25, 50, 75))

# "cont" specifies the density contours, which are upper percentages of highest

# density regions. The default contours are at 25%, 50%, and 75%

plot(kdeHpi1, display = "filled.contour2", cont = c(25, 50, 75))

plot(kdeHpi1, display = "persp")

# Manual plotting using the kde object structure

image(kdeHpi1$eval.points[[1]], kdeHpi1$eval.points[[2]],

kdeHpi1$estimate, col = viridis::viridis(20))

points(kdeHpi1$x)

# Diagonal vs. full

Hpi2 <- ks::Hpi.diag(x = faithful)

kdeHpi2 <- ks::kde(x = faithful, H = Hpi2)

plot(kdeHpi1, display = "filled.contour2", cont = c(25, 50, 75),

main = "full")

plot(kdeHpi2, display = "filled.contour2", cont = c(25, 50, 75),

main = "diagonal")
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# Comparison of selectors along predefined contours

x <- faithful

Hlscv0 <- ks::Hlscv(x = x)

Hbcv0 <- ks::Hbcv(x = x)

Hpi0 <- ks::Hpi(x = x)

Hns0 <- ks::Hns(x = x)

par(mfrow = c(2, 2))

p <- lapply(list(Hlscv0, Hbcv0, Hpi0, Hns0), function(H) {

# col.fun for custom colors

plot(ks::kde(x = x, H = H), display = "filled.contour2",

cont = seq(10, 90, by = 10), col.fun = viridis::viridis)

points(x, cex = 0.5, pch = 16)

})
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Kernel density estimation can be used to visualize density level
sets in 3D too, as illustrated as follows with the iris dataset.

# Normal scale bandwidth

Hns1 <- ks::Hns(iris[, 1:3])

# Show high nested contours of high density regions

plot(ks::kde(x = iris[, 1:3], H = Hns1))

rgl::points3d(x = iris[, 1:3])

rgl::rglwidget()
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Consider the normal mixture

w1N2(µ11, µ12, σ2
11, σ2

12, ρ1) + w2N2(µ21, µ22, σ2
21, σ2

22, ρ2),

where w1 = 0.3, w2 = 0.7, (µ11, µ12) = (1, 1), (µ21, µ22) =

(−1,−1), σ2
11 = σ2

21 = 1, σ2
12 = σ2

22 = 2, ρ1 = 0.5, and
ρ2 = −0.5.

Perform the following simulation exercise:

1. Plot the density of the mixture using ks::dnorm.mixt

and overlay points simulated employ-
ing ks::rnorm.mixt. You may want to use
ks::contourLevels to have density plots compara-
ble to the kde plots performed in the next step.

2. Compute the kde employing ĤDPI, both for full and
diagonal bandwidth matrices. Are there any gains on
considering full bandwidths? What if ρ2 = 0.7?

3. Consider the previous point with ĤLSCV instead of
ĤDPI. Are the conclusions the same?

6.2 Kernel regression estimation

6.2.1 Nadaraya–Watson estimator

Our objective is to estimate the regression function m : Rp →
R nonparametrically (recall that we are considering the simplest
situation: one continuous predictor, so p = 1). Due to its definition,
we can rewrite m as

m(x) =E[Y|X = x]

=
∫

y fY|X=x(y)dy

=

∫
y f (x, y)dy

fX(x)
. (6.13)

This expression shows an interesting point: the regression function
can be computed from the joint density f and the marginal fX .
Therefore, given a sample {(Xi, Yi)}n

i=1, a nonparametric estimate
of m may follow by replacing the previous densities by their kernel
density estimators! From the previous section, we know how to do
this using the multivariate and univariate kde’s given in (6.4) and
(6.9), respectively. For the multivariate kde, we can consider the kde
(6.12) based on product kernels for the two dimensional case and
bandwidths h = (h1, h2)

′, which yields the estimate

f̂ (x, y; h) =
1
n

n

∑
i=1

Kh1(x− Xi)Kh2(y−Yi) (6.14)
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17 Notice that it does not depend on h2,
only on h1, the bandwidth employed
for smoothing X.
18 Termed due to the coetaneous
proposals by Nadaraya (1964) and
Watson (1964).

of the joint pdf of (X, Y). On the other hand, considering the same
bandwidth h1 for the kde of fX , we have

f̂X(x; h1) =
1
n

n

∑
i=1

Kh1(x− Xi). (6.15)

We can therefore define the estimator of m that results from replac-
ing f and fX in (6.13) by (6.14) and (6.15):∫

y f̂ (x, y; h)dy
f̂X(x; h1)

=

∫
y 1

n ∑n
i=1 Kh1(x− Xi)Kh2(y−Yi)dy

1
n ∑n

i=1 Kh1(x− Xi)

=
1
n ∑n

i=1 Kh1(x− Xi)
∫

yKh2(y−Yi)dy
1
n ∑n

i=1 Kh1(x− Xi)

=
1
n ∑n

i=1 Kh1(x− Xi)Yi
1
n ∑n

i=1 Kh1(x− Xi)

=
n

∑
i=1

Kh1(x− Xi)

∑n
i=1 Kh1(x− Xi)

Yi.

The resulting estimator17 is the so-called Nadaraya–Watson18 esti-
mator of the regression function:

m̂(x; 0, h) :=
n

∑
i=1

Kh(x− Xi)

∑n
i=1 Kh(x− Xi)

Yi =
n

∑
i=1

W0
i (x)Yi, (6.16)

where

W0
i (x) :=

Kh(x− Xi)

∑n
i=1 Kh(x− Xi)

.

The Nadaraya–Watson estimator can be seen as a
weighted average of Y1, . . . , Yn by means of the set of
weights {Wi(x)}n

i=1 (they add to one). The set of varying
weights depends on the evaluation point x. That means
that the Nadaraya–Watson estimator is a local mean of
Y1, . . . , Yn about X = x (see Figure 6.6).

Let’s implement from scratch the Nadaraya–Watson estimate to
get a feeling of how it works in practice.

# A naive implementation of the Nadaraya-Watson estimator

mNW <- function(x, X, Y, h, K = dnorm) {

# Arguments

# x: evaluation points

# X: vector (size n) with the predictors

# Y: vector (size n) with the response variable

# h: bandwidth

# K: kernel

# Matrix of size n x length(x)

Kx <- sapply(X, function(Xi) K((x - Xi) / h) / h)

# Weights

W <- Kx / rowSums(Kx) # Column recycling!

# Means at x ("drop" to drop the matrix attributes)
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drop(W %*% Y)

}

# Generate some data to test the implementation

set.seed(12345)

n <- 100

eps <- rnorm(n, sd = 2)

m <- function(x) xˆ2 * cos(x)

# m <- function(x) x - xˆ2 # Other possible regression function, works

# equally well

X <- rnorm(n, sd = 2)

Y <- m(X) + eps

xGrid <- seq(-10, 10, l = 500)

# Bandwidth

h <- 0.5

# Plot data

plot(X, Y)

rug(X, side = 1); rug(Y, side = 2)

lines(xGrid, m(xGrid), col = 1)

lines(xGrid, mNW(x = xGrid, X = X, Y = Y, h = h), col = 2)

legend("top", legend = c("True regression", "Nadaraya-Watson"),

lwd = 2, col = 1:2)
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Figure 6.5: The Nadaraya–Watson
estimator of an arbitrary regression
function m.

Similarly to kernel density estimation, in the Nadaraya–Watson
estimator the bandwidth has a prominent effect on the shape of the
estimator, whereas the kernel is clearly less important. The code be-
low illustrates the effect of varying h using the manipulate::manipulate

function.

# Simple plot of N-W for varying h's

manipulate::manipulate({
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19 Obviously, avoiding the spurious
perfect fit attained with m̂(Xi) := Yi ,
i = 1, . . . , n.

20 Here we employ p for denoting
the order of the Taylor expansion
and, correspondingly, the order of
the associated polynomial fit. Do not
confuse p with the number of original
predictors for explaining Y – there
is only one predictor in this section,
X. However, with a local polynomial
fit we expand this predictor to p
predictors based on (X1, X2, . . . , Xp).

# Plot data

plot(X, Y)

rug(X, side = 1); rug(Y, side = 2)

lines(xGrid, m(xGrid), col = 1)

lines(xGrid, mNW(x = xGrid, X = X, Y = Y, h = h), col = 2)

legend("topright", legend = c("True regression", "Nadaraya-Watson"),

lwd = 2, col = 1:2)

}, h = manipulate::slider(min = 0.01, max = 2, initial = 0.5, step = 0.01))

Implement your own version of the Nadaraya–Watson
estimator in R and compare it with mNW. Focus only on
the normal kernel and reduce the accuracy of the final
computation up to 1e-7 to achieve better efficiency.
Are you able to improve the speed of mNW? Use the
microbenchmark::microbenchmark function to measure
the running times for a sample with n = 10000.

6.2.2 Local polynomial regression

The Nadaraya–Watson estimator can be seen as a particular case
of a wider class of nonparametric estimators, the so called local
polynomial estimators. Specifically, Nadaraya–Watson corresponds
to performing a local constant fit. Let’s see this wider class of non-
parametric estimators and their advantages with respect to the
Nadaraya–Watson estimator.

The motivation for the local polynomial fit comes from attempt-
ing to find an estimator m̂ of m that “minimizes”19 the RSS

n

∑
i=1

(Yi − m̂(Xi))
2 (6.17)

without assuming any particular form for the true m. This is not
achievable directly, since no knowledge on m is available. Recall
that what we did in parametric models was to assume a parametriza-
tion for m. For example, in simple linear regression we assumed
mβ(x) = β0 + β1x, which allowed to tackle the minimization of
(6.17) by means of solving

mβ̂(x) := arg min
β

n

∑
i=1

(Yi −mβ(Xi))
2.

The resulting mβ̂ is precisely the estimator that minimizes the RSS
among all the linear estimators, that is, among the class of estimators
that we have parametrized.

When m has no available parametrization and can adopt any
mathematical form, an alternative approach is required. The first
step is to induce a local parametrization for m. By a p-th20 order
Taylor expression it is possible to obtain that, for x close to Xi,

m(Xi) ≈m(x) + m′(x)(Xi − x) +
m′′(x)

2
(Xi − x)2

+ · · ·+ m(p)(x)
p!

(Xi − x)p. (6.18)
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21 The rationale is simple: (Xi , Yi)
should be more informative about
m(x) than (Xj, Yj) if x and Xi are
closer than x and Xj. Observe that Yi
and Yj are ignored in measuring this
proximity.

22 Recall that weighted least squares
already appeared in the IRLS of
Section 5.2.2.

23 Recall that the entries
of β̂h are estimating β =(

m(x), m′(x), m′(x)
2 , . . . , m(p)(x)

p!

)′
,

so we are indeed estimating m(x) (first
entry) and, in addition, its derivatives
up to order p!

Then, replacing (6.18) in the population version of (6.17) that re-
places m̂ with m, we have that

n

∑
i=1

(
Yi −

p

∑
j=0

m(j)(x)
j!

(Xi − x)j

)2

. (6.19)

Expression (6.19) is still not workable: it depends on m(j)(x),
j = 0, . . . , p, which of course are unknown, as m is unknown.

The great idea is to set β j := m(j)(x)
j! and turn (6.19) into a linear

regression problem where the unknown parameters are precisely
β = (β0, β1, . . . , βp)′. Simply rewriting (6.19) using this idea gives

n

∑
i=1

(
Yi −

p

∑
j=0

β j(Xi − x)j

)2

. (6.20)

Now, estimates of β automatically produce estimates for m(j)(x)!
In addition, we know how to obtain an estimate β̂ that minimizes
(6.20), since this is precisely the least squares problem studied in
Section 2.2.3. The final touch is to weight the contributions of each
datum (Xi, Yi) to the estimation of m(x) according to the proximity
of Xi to x 21. We can achieve this precisely by kernels:

β̂h := arg min
β∈Rp+1

n

∑
i=1

(
Yi −

p

∑
j=0

β j(Xi − x)j

)2

Kh(x− Xi). (6.21)

Solving (6.21) is easy once the proper notation is introduced. To
that end, denote

X :=


1 X1 − x · · · (X1 − x)p

...
...

. . .
...

1 Xn − x · · · (Xn − x)p


n×(p+1)

and

W := diag(Kh(X1 − x), . . . , Kh(Xn − x)), Y :=


Y1
...

Yn


n×1

.

Then we can re-express (6.21) into a weighted least squares problem22

whose exact solution is

β̂h = arg min
β∈Rp+1

(Y− Xβ)′W(Y− Xβ)

= (X′WX)−1X′WY. (6.22)

The estimate23 for m(x) is therefore computed as

m̂(x; p, h) := β̂h,0

= e′1(X
′WX)−1X′WY

=
n

∑
i=1

Wp
i (x)Yi (6.23)
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24 The lowess estimator, related with
loess, is the one employed in R’s
panel.smooth, which is the function in
charge of displaying the smooth fits in
lm and glm regression diagnostics. For
those diagnostics, it employs a prefixed
and not data-driven smoothing span of
2/3 – which makes it inevitably a bad
choice for certain data patterns. An
example of data pattern for which the
span 2/3 is not appropriate is the one
in upper right panel in Figure 5.14.

where

Wp
i (x) := e′1(X

′WX)−1X′Wei

and ei is the i-th canonical vector. Just as the Nadaraya–Watson
was, the local polynomial estimator is a weighted linear combina-
tion of the responses.

Two cases deserve special attention on (6.23):

• p = 0 is the local constant estimator or the Nadaraya–Watson
estimator. In this situation, the estimator has explicit weights, as
we saw before:

W0
i (x) =

Kh(x− Xi)

∑n
j=1 Kh(x− Xj)

.

• p = 1 is the local linear estimator, which has weights equal to:

W1
i (x) =

1
n

ŝ2(x; h)− ŝ1(x; h)(Xi − x)
ŝ2(x; h)ŝ0(x; h)− ŝ1(x; h)2 Kh(x− Xi),

where ŝr(x; h) := 1
n ∑n

i=1(Xi − x)rKh(x− Xi).

Recall that the local polynomial fit is computationally
more expensive than the local constant fit: m̂(x; p, h)
is obtained as the solution of a weighted linear prob-
lem, whereas m̂(x; 0, h) can be directly computed as a
weighted mean of the responses.

Figure 6.6 illustrates the construction of the local polynomial
estimator (up to cubic degree) and shows how β̂0 = m̂(x; p, h), the
intercept of the local fit, estimates m at x.

The local polynomial estimator m̂(·; p, h) of m performs a
series of weighted polynomial fits; as many as points x
on which m̂(·; p, h) is to be evaluated.

An inefficient implementation of the local polynomial estimator
can be done relatively straightforwardly from the previous insight
and from expression (6.22). However, several R packages provide
implementations, such as KernSmooth::locpoly and R’s loess24

(but this one has a different control of the bandwidth plus a set of
other modifications). Below are some examples of their usage.

# Generate some data

set.seed(123456)

n <- 100

eps <- rnorm(n, sd = 2)

m <- function(x) xˆ3 * sin(x)

X <- rnorm(n, sd = 1.5)

Y <- m(X) + eps

xGrid <- seq(-10, 10, l = 500)



270 eduardo garcía-portugués

Figure 6.6: Construction of the local
polynomial estimator. The animation
shows how local polynomial fits in a
neighborhood of x are combined to
provide an estimate of the regression
function, which depends on the
polynomial degree, bandwidth, and
kernel (gray density at the bottom).
The data points are shaded according
to their weights for the local fit at x.
Application available here.

# KernSmooth::locpoly fits

h <- 0.25

lp0 <- KernSmooth::locpoly(x = X, y = Y, bandwidth = h, degree = 0,

range.x = c(-10, 10), gridsize = 500)

lp1 <- KernSmooth::locpoly(x = X, y = Y, bandwidth = h, degree = 1,

range.x = c(-10, 10), gridsize = 500)

# Provide the evaluation points by range.x and gridsize

# loess fits

span <- 0.25 # The default span is 0.75, which works very bad in this scenario

lo0 <- loess(Y ~ X, degree = 0, span = span)

lo1 <- loess(Y ~ X, degree = 1, span = span)

# loess employs an "span" argument that plays the role of an variable bandwidth

# "span" gives the proportion of points of the sample that are taken into

# account for performing the local fit about x and then uses a triweight kernel

# (not a normal kernel) for weighting the contributions. Therefore, the final

# estimate differs from the definition of local polynomial estimator, although

# the principles in which are based are the same

# Prediction at x = 2

x <- 2

lp1$y[which.min(abs(lp1$x - x))] # Prediction by KernSmooth::locpoly

## [1] 5.445975

predict(lo1, newdata = data.frame(X = x)) # Prediction by loess

## 1

## 5.379652

m(x) # Reality

## [1] 7.274379

# Plot data

plot(X, Y)

rug(X, side = 1); rug(Y, side = 2)

lines(xGrid, m(xGrid), col = 1)

lines(lp0$x, lp0$y, col = 2)

lines(lp1$x, lp1$y, col = 3)

lines(xGrid, predict(lo0, newdata = data.frame(X = xGrid)), col = 2, lty = 2)

lines(xGrid, predict(lo1, newdata = data.frame(X = xGrid)), col = 3, lty = 2)

https://shinyserv.es/shiny/kreg/
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25 We do not address the analysis of
the general case in which p ≥ 1. The
reader is referred to, e.g., Theorem 3.1
of Fan and Gijbels (1996) for the full
analysis.
26 Recall that these are the only as-
sumptions done so far in the model!
Compared with the ones made for
linear models or generalized linear
models, they are extremely mild.
27 This assumption requires certain
smoothness of the regression function,
allowing thus for Taylor expansions
to be performed. This assumption is
important in practice: m̂(·; p, h) is in-
finitely differentiable if the considered
kernels K are.
28 Avoids the situation in which Y is a
degenerated random variable.
29 Avoids the degenerate situation
in which m is estimated at regions
without observations of the predictors
(such as holes in the support of X).
30 Meaning that there exist a positive
lower bound for f .
31 Mild assumption inherited from the
kde.

legend("bottom", legend = c("True regression", "Local constant (locpoly)",

"Local linear (locpoly)", "Local constant (loess)",

"Local linear (loess)"),

lwd = 2, col = c(1:3, 2:3), lty = c(rep(1, 3), rep(2, 2)))

As with the Nadaraya–Watson, the local polynomial estimator
heavily depends on h.

# Simple plot of local polynomials for varying h's

manipulate::manipulate({

# Plot data

lpp <- KernSmooth::locpoly(x = X, y = Y, bandwidth = h, degree = p,

range.x = c(-10, 10), gridsize = 500)

plot(X, Y)

rug(X, side = 1); rug(Y, side = 2)

lines(xGrid, m(xGrid), col = 1)

lines(lpp$x, lpp$y, col = p + 2)

legend("bottom", legend = c("True regression", "Local polynomial fit"),

lwd = 2, col = c(1, p + 2))

}, p = manipulate::slider(min = 0, max = 4, initial = 0, step = 1),

h = manipulate::slider(min = 0.01, max = 2, initial = 0.5, step = 0.01))

A more sophisticated framework for performing nonparametric
estimation of the regression function is the np package, which we
detail in Section 6.2.4. This package will be the chosen approach
for the more challenging situation in which several predictors are
present, since the former implementations do not escalate well for
more than one predictor.

6.2.3 Asymptotic properties

What affects the performance of the local polynomial estimator? Is
local linear estimation better than local constant estimation? What is
the effect of h?

The purpose of this section is to provide some highlights on
the questions above by examining the theoretical properties of
the local polynomial estimator. This is achieved by examining the
asymptotic bias and variance of the local linear and local constant
estimators25. For this goal, we consider the location-scale model for Y
and its predictor X:

Y = m(X) + σ(X)ε,

where σ2(x) := Var[Y|X = x] is the conditional variance of Y given
X and ε is such that E[ε|X = x]] = 0 and Var[ε|X = x]] = 1. Note
that since the conditional variance is not forced to be constant we
are implicitly allowing for heteroskedasticity.

The following assumptions26 are the only requirements to per-
form the asymptotic analysis of the estimator:

• A1.27 m is twice continuously differentiable.
• A2.28 σ2 is continuous and positive.
• A3.29 f , the marginal pdf of X, is continuously differentiable and

bounded away from zero30.
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32 Key assumption for reducing the
bias and variance of m̂(·; p, h) simulta-
neously.

33 The notation oP(an) stands for a
random variable that converges in
probability to zero at a rate faster
than an → 0. It is mostly employed
for denoting non-important terms in
asymptotic expansions, like the ones in
(6.24)–(6.25).

• A4.31 The kernel K is a symmetric and bounded pdf with finite
second moment and is square integrable.

• A5.32 h = hn is a deterministic sequence of bandwidths such
that, when n→ ∞, h→ 0 and nh→ ∞.

The bias and variance are studied in their conditional versions
on the predictor’s sample X1, . . . , Xn. The reason for analyzing
the conditional instead of the unconditional versions is avoiding
technical difficulties that integration with respect to the predictor’s
density may pose. This is in the spirit of what it was done in the
parametric inference of Sections 2.4 and 5.3. The main result is the
following, which provides useful insights on the effect of p, m, f
(standing from now on for the marginal pdf of X), and σ2 in the
performance of m̂(·; p, h).

Theorem 6.1. Under A1–A5, the conditional bias and variance of the
local constant (p = 0) and local linear (p = 1) estimators are33

Bias[m̂(x; p, h)|X1, . . . , Xn] = Bp(x)h2 + oP(h2), (6.24)

Var[m̂(x; p, h)|X1, . . . , Xn] =
R(K)

nh f (x)
σ2(x) + oP((nh)−1), (6.25)

where

Bp(x) :=


µ2(K)

2

{
m′′(x) + 2 m′(x) f ′(x)

f (x)

}
, if p = 0,

µ2(K)
2 m′′(x), if p = 1.

The bias and variance expressions (6.24) and (6.25) yield very
interesting insights:

1. Bias.

• The bias decreases with h quadratically for both p = 0, 1.
That means that small bandwidths h give estimators with
low bias, whereas large bandwidths provide largely biased
estimators.

• The bias at x is directly proportional to m′′(x) if p = 1 or
affected by m′′(x) if p = 0. Therefore:

– The bias is negative in regions where m is concave, i.e., {x ∈
R : m′′(x) < 0}. These regions correspond to peaks and
modes of m.

– Conversely, the bias is positive in regions where m is convex,
i.e., {x ∈ R : m′′(x) > 0}. These regions correspond to
valleys of m.

– All in all, the “wilder” the curvature m′′, the larger the bias
and the harder to estimate m.

• The bias for p = 0 at x is affected by m′(x), f ′(x), and f (x).
All of them are quantities that are not present in the bias
when p = 1. Precisely, for the local constant estimator, the
lower the density f (x), the larger the bias. Also, the faster m
and f change at x (derivatives), the larger the bias. Thus the
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34 Recall that this makes perfect sense:
low density regions of X imply less
information about m available.
35 The same happened in the the linear
model with the error variance σ2.

36 The variance of an unweighted
mean is reduced by a factor n−1 when
n observations are employed. For
computing m̂(x; p, h), n observations
are used but in a weighted fashion that
roughly amounts to considering nh
unweighted observations.

37 Further details are available in
Section 5.8 of Wand and Jones (1995)
and references therein.

bias of the local constant estimator is much more sensible
to m(x) and f (x) than the local linear (which is only sensi-
ble to m′′(x)). Particularly, the fact that the bias depends on
f ′(x) and f (x) is referred to as the design bias since it depends
merely on the predictor’s distribution.

2. Variance.

• The main term of the variance is the same for p = 0, 1. In

addition, it depends directly on σ2(x)
f (x) . As a consequence, the

lower the density, the more variable m̂(x; p, h) is34. Also, the
larger the conditional variance at x, σ2(x), the more variable
m̂(x; p, h) is35.

• The variance decreases at a factor of (nh)−1. This is related
with the so-called effective sample size nh, which can be thought
of as the amount of data in the neighborhood of x that is
employed for performing the regression.36

The main takeaway of the analysis of p = 0 vs. p = 1 is
that p = 1 has smaller bias than p = 0 (but of the same
order) while keeping the same variance as p = 0.

An extended version of Theorem 6.1, given in Theorem 3.1 of
Fan and Gijbels (1996), shows that this phenomenon extends to
higher orders: odd order (p = 2ν + 1, ν ∈ N) polynomial fits
introduce an extra coefficient for the polynomial fit that allows
them to reduce the bias, while maintaining the same variance of
the precedent even order (p = 2ν). So, for example, local cubic fits
are preferred to local quadratic fits. This motivates the claim that
local polynomial fitting is an “odd world” (Fan and Gijbels (1996)).

6.2.4 Bandwidth selection

Bandwidth selection, as for density estimation, has a crucial practi-
cal importance for kernel regression estimation. Several bandwidth
selectors have been by following cross-validatory and plug-in ideas
similar to the ones seen in Section 6.1.3. For simplicity, we briefly
mention37 the DPI analogue for local linear regression for a single
continuous predictor and focus mainly on least squares cross-
validation, as it is a bandwidth selector that readily generalizes to
the more complex settings of Section 6.3.

Following the derivation of the DPI for the kde, the first step is
to define a suitable error criterion for the estimator m̂(·; p, h). The
conditional (on the sample of the predictor) MISE of m̂(·; p, h) is
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38 A fit based on ordinal polynomial
fits but done in different blocks of the
data.

often considered:

MISE[m̂(·; p, h)|X1, . . . , Xn] :=E

[∫
(m̂(x; p, h)−m(x))2 f (x)dx|X1, . . . , Xn

]
=
∫

E
[
(m̂(x; p, h)−m(x))2|X1, . . . , Xn

]
f (x)dx

=
∫

MSE [m̂(x; p, h)|X1, . . . , Xn] f (x)dx.

Observe that this definition is very similar to the kde’s MISE, except
for the fact that f appears weighting the quadratic difference: what
matters is to minimize the estimation error of m on the regions
were the density of X is higher. Recall also that the MISE follows
by integrating the conditional MSE, which amounts to the squared
bias (6.24) plus the variance (6.25) given in Theorem 6.1. These
operations produce the conditional AMISE:

AMISE[m̂(·; p, h)|X1, . . . , Xn] = h2
∫

Bp(x)2 f (x)dx +
R(K)

nh

∫
σ2(x)dx

and, if p = 1, the resulting optimal AMISE bandwidth is

hAMISE =

[
R(K)

∫
σ2(x)dx

2µ2
2(K)θ22n

]1/5

,

where θ22 :=
∫
(m′′(x))2 f (x)dx.

As happened in the density setting, the AMISE-optimal band-
width cannot be readily employed, as knowledge about the “curva-
ture” of m, θ22, and about

∫
σ2(x)dx is required. As with the DPI

selector, a series of nonparametric estimations of θ22 and high-order
curvature terms follow, concluding with a necessary estimation of
a higher-order curvature based on a “block polynomial fit”38. The
estimation of

∫
σ2(x)dx is carried out by assuming homoscedastic-

ity and a compactly supported density f . The resulting bandwidth
selector, ĥDPI, has a much faster convergence rate to hMISE than
cross-validatory selectors. However, it is notably more convoluted,
and as a consequence is less straightforward to extend to more
complex settings.

The DPI selector for the local linear estimator is implemented in
KernSmooth::dpill.

# Generate some data

set.seed(123456)

n <- 100

eps <- rnorm(n, sd = 2)

m <- function(x) xˆ3 * sin(x)

X <- rnorm(n, sd = 1.5)

Y <- m(X) + eps

xGrid <- seq(-10, 10, l = 500)

# DPI selector

hDPI <- KernSmooth::dpill(x = X, y = Y)

# Fits

lp1 <- KernSmooth::locpoly(x = X, y = Y, bandwidth = 0.25, degree = 0,

range.x = c(-10, 10), gridsize = 500)

lp1DPI <- KernSmooth::locpoly(x = X, y = Y, bandwidth = hDPI, degree = 1,

range.x = c(-10, 10), gridsize = 500)
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39 Recall that h is a tuning parameter!

# Compare fits

plot(X, Y)

rug(X, side = 1); rug(Y, side = 2)

lines(xGrid, m(xGrid), col = 1)

lines(lp1$x, lp1$y, col = 2)

lines(lp1DPI$x, lp1DPI$y, col = 3)

legend("bottom", legend = c("True regression", "Local linear",

"Local linear (DPI)"),

lwd = 2, col = 1:3)

We turn now our attention to cross validation. Following an
analogy with the fit of the linear model, we could look for the
bandwidth h such that it minimizes an RSS of the form

1
n

n

∑
i=1

(Yi − m̂(Xi; p, h))2. (6.26)

As it looks, this is a bad idea. Attempting to minimize (6.26) always
leads to h ≈ 0 that results in a useless interpolation of the data, as
illustrated below.

# Grid for representing (6.26)

hGrid <- seq(0.1, 1, l = 200)ˆ2

error <- sapply(hGrid, function(h) {

mean((Y - mNW(x = X, X = X, Y = Y, h = h))ˆ2)

})

# Error curve

plot(hGrid, error, type = "l")

rug(hGrid)

abline(v = hGrid[which.min(error)], col = 2)

As we know, the root of the problem is the comparison of Yi

with m̂(Xi; p, h), since there is nothing forbidding h → 0 and as a
consequence m̂(Xi; p, h) → Yi. As discussed in (3.18)39, a solution
is to compare Yi with m̂−i(Xi; p, h), the leave-one-out estimate of
m computed without the i-th datum (Xi, Yi), yielding the least
squares cross-validation error

CV(h) :=
1
n

n

∑
i=1

(Yi − m̂−i(Xi; p, h))2 (6.27)

and then choose

ĥCV := arg min
h>0

CV(h).

The optimization of (6.27) might seem as very computationally
demanding, since it is required to compute n regressions for just a
single evaluation of the cross-validation function. There is, however,
a simple and neat theoretical result that vastly reduces the compu-
tational complexity, at the price of increasing the memory demand.
This trick allows to compute, with a single fit, the cross-validation
function.

Proposition 6.1. For any p ≥ 0, the weights of the leave-one-out estima-
tor m̂−i(x; p, h) = ∑n

j=1
j ̸=i

Wp
−i,j(x)Yj can be obtained from m̂(x; p, h) =
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∑n
i=1 Wp

i (x)Yi:

Wp
−i,j(x) =

Wp
j (x)

∑n
k=1
k ̸=i

Wp
k (x)

=
Wp

j (x)

1−Wp
i (x)

.

This implies that

CV(h) =
1
n

n

∑
i=1

(
Yi − m̂(Xi; p, h)

1−Wp
i (Xi)

)2

. (6.28)

The result can be proved using that the weights {Wp
i (x)}n

i=1 add
to one, for any x, and that m̂(x; p, h) is a linear combination40 of the
responses {Yi}n

i=1.

Computing (6.28) requires evaluating the local poly-
nomial estimator at the sample {Xi}n

i=1 and obtain-
ing {Wp

i (Xi)}n
i=1 (which are needed for evaluating

m̂(Xi; p, h)). Both tasks can be achieved simultaneously

from the n × n matrix
(

Wp
i (Xj)

)
ij

and, if p = 0, directly

from the symmetric n × n matrix
(
Kh(Xi − Xj)

)
ij , whose

storage costs O
(

n2−n
2

)
(the diagonal is constant).

Let’s implement ĥCV for the Nadaraya–Watson estimator.

# Generate some data to test the implementation

set.seed(12345)

n <- 100

eps <- rnorm(n, sd = 2)

m <- function(x) xˆ2 + sin(x)

X <- rnorm(n, sd = 1.5)

Y <- m(X) + eps

xGrid <- seq(-10, 10, l = 500)

# Objective function

cvNW <- function(X, Y, h, K = dnorm) {

sum(((Y - mNW(x = X, X = X, Y = Y, h = h, K = K)) /

(1 - K(0) / colSums(K(outer(X, X, "-") / h))))ˆ2)

# Beware: outer() is not very memory-friendly!

}

# Find optimum CV bandwidth, with sensible grid

bw.cv.grid <- function(X, Y,

h.grid = diff(range(X)) * (seq(0.1, 1, l = 200))ˆ2,

K = dnorm, plot.cv = FALSE) {

obj <- sapply(h.grid, function(h) cvNW(X = X, Y = Y, h = h, K = K))

h <- h.grid[which.min(obj)]

if (plot.cv) {

plot(h.grid, obj, type = "o")

rug(h.grid)

abline(v = h, col = 2, lwd = 2)

}

h

}

# Bandwidth

hCV <- bw.cv.grid(X = X, Y = Y, plot.cv = TRUE)
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## [1] 0.3117806

# Plot result

plot(X, Y)

rug(X, side = 1); rug(Y, side = 2)

lines(xGrid, m(xGrid), col = 1)

lines(xGrid, mNW(x = xGrid, X = X, Y = Y, h = hCV), col = 2)

legend("top", legend = c("True regression", "Nadaraya-Watson"),

lwd = 2, col = 1:2)

A more sophisticated cross-validation bandwidth selection can
be achieved by np::npregbw and np::npreg, as shown in the code
below.

# Turn off the "multistart" messages in the np package

options(np.messages = FALSE)

# np::npregbw computes by default the least squares CV bandwidth associated to

# a local constant fit

bw0 <- np::npregbw(formula = Y ~ X)

# Multiple initial points can be employed for minimizing the CV function (for

# one predictor, defaults to 1)

bw0 <- np::npregbw(formula = Y ~ X, nmulti = 2)

# The "rbandwidth" object contains many useful information, see ?np::npregbw for

# all the returned objects

bw0

##

## Regression Data (100 observations, 1 variable(s)):

##

## X

## Bandwidth(s): 0.3112962

##

## Regression Type: Local-Constant

## Bandwidth Selection Method: Least Squares Cross-Validation

## Formula: Y ~ X

## Bandwidth Type: Fixed

## Objective Function Value: 5.368999 (achieved on multistart 1)

##

## Continuous Kernel Type: Second-Order Gaussian

## No. Continuous Explanatory Vars.: 1

# Recall that the fit is very similar to hCV

# Once the bandwidth is estimated, np::npreg can be directly called with the

# "rbandwidth" object (it encodes the regression to be made, the data, the kind

# of estimator considered, etc). The hard work goes on np::npregbw, not on

# np::npreg

kre0 <- np::npreg(bw0)

kre0

##

## Regression Data: 100 training points, in 1 variable(s)

## X

## Bandwidth(s): 0.3112962

##

## Kernel Regression Estimator: Local-Constant

## Bandwidth Type: Fixed

##

## Continuous Kernel Type: Second-Order Gaussian

## No. Continuous Explanatory Vars.: 1

# The evaluation points of the estimator are by default the predictor's sample

# (which is not sorted!)

# The evaluation of the estimator is given in "mean"

plot(kre0$eval$X, kre0$mean)



278 eduardo garcía-portugués

-3 -2 -1 0 1 2 3 4

0
5

1
0

1
5

X

 Y

-3 -2 -1 0 1 2 3 4

-5
0

5
1

0
1

5

X

Y

True regression
Nadaraya-Watson
Local linear

# The evaluation points can be changed using "exdat"

kre0 <- np::npreg(bw0, exdat = xGrid)

# Plot directly the fit via plot() -- it employs different evaluation points

# than exdat

plot(kre0, col = 2, type = "o")

points(X, Y)

rug(X, side = 1); rug(Y, side = 2)

lines(xGrid, m(xGrid), col = 1)

lines(kre0$eval$xGrid, kre0$mean, col = 3, type = "o", pch = 16, cex = 0.5)

# Using the evaluation points

# Local linear fit -- find first the CV bandwidth

bw1 <- np::npregbw(formula = Y ~ X, regtype = "ll")

# regtype = "ll" stands for "local linear", "lc" for "local constant"

# Local linear fit

kre1 <- np::npreg(bw1, exdat = xGrid)

# Comparison

plot(X, Y)

rug(X, side = 1); rug(Y, side = 2)

lines(xGrid, m(xGrid), col = 1)

lines(kre0$eval$xGrid, kre0$mean, col = 2)

lines(kre1$eval$xGrid, kre1$mean, col = 3)

legend("top", legend = c("True regression", "Nadaraya-Watson", "Local linear"),

lwd = 2, col = 1:3)

The adequate bandwidths for the local linear estimator
are usually larger than the adequate bandwidths for the
local constant estimator. The reason: the extra flexibility
of the local linear estimator allows to adapt faster to vari-
ations in m, whereas the local constant estimator can only
achieve this by shrinking the neighborhood about x by
means of a small h.

There are more sophisticated options for bandwidth selection in
np::npregbw. For example, the argument bwtype allows to estimate
data-driven variable bandwidths ĥ(x) that depend on the evaluation
point x, rather than fixed bandwidths ĥ, as we have considered.
Roughly speaking, these variable bandwidths are related to the
variable bandwidth ĥk(x) that is necessary to contain the k nearest
neighbors X1, . . . , Xk of x in the neighborhood (x− ĥk(x), x + ĥk(x)).
There is a potential gain in employing variable bandwidths, as the
estimator can adapt the amount of smoothing according to the
density of the predictor. We do not investigate this approach in
detail but just point to its implementation.

# Generate some data with bimodal density

set.seed(12345)

n <- 100

eps <- rnorm(2 * n, sd = 2)

m <- function(x) xˆ2 * sin(x)

X <- c(rnorm(n, mean = -2, sd = 0.5), rnorm(n, mean = 2, sd = 0.5))

Y <- m(X) + eps

xGrid <- seq(-10, 10, l = 500)
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# Constant bandwidth

bwc <- np::npregbw(formula = Y ~ X, bwtype = "fixed", regtype = "ll")

krec <- np::npreg(bwc, exdat = xGrid)

# Variable bandwidths

bwg <- np::npregbw(formula = Y ~ X, bwtype = "generalized_nn", regtype = "ll")

kreg <- np::npreg(bwg, exdat = xGrid)

bwa <- np::npregbw(formula = Y ~ X, bwtype = "adaptive_nn", regtype = "ll")

krea <- np::npreg(bwa, exdat = xGrid)

# Comparison

plot(X, Y)

rug(X, side = 1); rug(Y, side = 2)

lines(xGrid, m(xGrid), col = 1)

lines(krec$eval$xGrid, krec$mean, col = 2)

lines(kreg$eval$xGrid, kreg$mean, col = 3)

lines(krea$eval$xGrid, krea$mean, col = 4)

legend("top", legend = c("True regression", "Fixed", "Generalized NN",

"Adaptive NN"),

lwd = 2, col = 1:4)
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# Observe how the fixed bandwidth may yield a fit that produces serious

# artifacts in the low density region. At that region the NN-based bandwidths

# enlarge to borrow strength from the points in the high density regions,

# whereas in the high density regions they shrink to adapt faster to the

# changes of the regression function

6.3 Kernel regression with mixed multivariate data

Until now, we have studied the simplest situation for perform-
ing nonparametric estimation of the regression function: a single,
continuous, predictor X is available for explaining Y, a continuous
response. This served for introducing the main concepts without
the additional technicalities associated to more complex predictors.
We now extend the study to the case in which there are
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41 Now q denotes the order of the
polynomial fit since p stands for the
number of predictors.

42 In particular, the consideration of
Taylor expansions of m : Rp → R

of more than two orders that involve
the consideration of the vector of
partial derivatives D⊗sm(x) formed by

∂sm(x)
∂x

s1
1 ···∂x

s1
p

, where s = s1 + · · ·+ sp. For

example: if s = 1, then D⊗1m(x) is just
the transpose of the gradient ∇m(x)′;
if s = 2, then D⊗2m(x) is the column
stacking of the Hessian matrix Hm(x);
and if s ≥ 3 the arrangement of
derivatives is made in terms of tensors
containing the derivatives ∂sm(x)

∂x
s1
1 ···∂x

s1
p

.

43 The gradient ∇m(x) =(
∂m(x)

∂x1
, . . . , ∂m(x)

∂xp

)
is a row vector.

44 Recall that now the entries of β̂h are
estimating β = (m(x),∇m(x))′ .

• multiple predictors X1, . . . , Xp and
• possible non-continuous predictors, namely categorical predic-

tors and discrete predictors.

The first point is how to extend the local polynomial estima-
tor m̂(·; q, h) 41 to deal with p continuous predictors. Although
this can be done for q ≥ 0, we focus on the local constant and
linear estimators (q = 0, 1) for avoiding excessive technical com-
plications42. Also, to avoid a quickly escalation of the number of
smoothing bandwidths, it is customary to consider product ker-
nels. With these two restrictions, the estimators for m based on a
sample {(Xi, Yi)}n

i=1 extend easily from the developments in Sec-
tions 6.2.1 and 6.2.2:

• Local constant estimator. We can replicate the argument in (6.13)
with a multivariate kde for fX based on product kernels with
bandwidth vector h, which gives

m̂(x; 0, h) :=
n

∑
i=1

Kh(x− Xi)

∑n
i=1 Kh(x− Xi)

Yi =
n

∑
i=1

W0
i (x)Yi

where

Kh(x− Xi) := Kh1(x1 − Xi1)×
p
· · · ×Khp(xp − Xip),

W0
i (x) :=

Kh(x− Xi)

∑n
i=1 Kh(x− Xi)

.

• Local linear estimator. Considering the Taylor expansion m(Xi) ≈
m(x) +∇m(x)(Xi − x) 43 instead of (6.18) it is possible to arrive
to the analogous of (6.21),

β̂h := arg min
β∈Rp+1

n

∑
i=1

(
Yi − β′(1, (Xi − x)′)′

)2 Kh(x− Xi),

and then solve the problem in the exact same way but now con-
sidering

X :=


1 (X1 − x)′
...

...
1 (Xn − x)′


n×(p+1)

and

W := diag(Kh(X1 − x), . . . , Kh(Xn − x)).

The estimate44 for m(x) is therefore computed as

m̂(x; 1, h) := β̂h,0

= e′1(X
′WX)−1X′WY

=
n

∑
i=1

W1
i (x)Yi

where

W1
i (x) := e′1(X

′WX)−1X′Wei.
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The cross-validation bandwidth selection rule studied on Section
6.2.4 extends neatly to the multivariate case:

CV(h) :=
1
n

n

∑
i=1

(Yi − m̂−i(Xi; p, h))2,

ĥCV := arg min
h1,...,hp>0

CV(h).

Obvious complications appear in the optimization of CV(h), which
now is a Rp → R function. Importantly, the trick described in
Proposition 6.1 also holds with obvious modifications.

Let’s see an application of multivariate kernel regression for the
wine dataset.

# Employing the wine dataset

wine <- read.table(file = "wine.csv", header = TRUE, sep = ",")

# Bandwidth by CV for local linear estimator -- a product kernel with 4

# bandwidths. Employs 4 random starts for minimizing the CV surface

bwWine <- np::npregbw(formula = Price ~ Age + WinterRain + AGST + HarvestRain,

data = wine, regtype = "ll")

bwWine

##

## Regression Data (27 observations, 4 variable(s)):

##

## Age WinterRain AGST HarvestRain

## Bandwidth(s): 3616691 290170218 0.8725243 106.5079

##

## Regression Type: Local-Linear

## Bandwidth Selection Method: Least Squares Cross-Validation

## Formula: Price ~ Age + WinterRain + AGST + HarvestRain

## Bandwidth Type: Fixed

## Objective Function Value: 0.0873955 (achieved on multistart 4)

##

## Continuous Kernel Type: Second-Order Gaussian

## No. Continuous Explanatory Vars.: 4

# Regression

fitWine <- np::npreg(bwWine)

summary(fitWine)

##

## Regression Data: 27 training points, in 4 variable(s)

## Age WinterRain AGST HarvestRain

## Bandwidth(s): 3616691 290170218 0.8725243 106.5079

##

## Kernel Regression Estimator: Local-Linear

## Bandwidth Type: Fixed

## Residual standard error: 0.2079691

## R-squared: 0.8889649

##

## Continuous Kernel Type: Second-Order Gaussian

## No. Continuous Explanatory Vars.: 4

# Plot marginal effects of each predictor on the response (the rest of

# predictors are fixed to their marginal medians)

plot(fitWine)

# Therefore:

# - Age is positively related with Price (almost linearly)

# - WinterRain is positively related with Price (with a subtle nonlinearity)

# - AGST is positively related with Price, but now we see what it looks like a

# quadratic pattern

# - HarvestRain is negatively related with Price (almost linearly)
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45 Recall Kh(x− Xi).
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The R2 outputted by the summary of np::npreg is defined
as

R2 :=
(∑n

i=1(Yi − Ȳ)(Ŷi − Ȳ))2

(∑n
i=1(Yi − Ȳ)2)(∑n

i=1(Ŷi − Ȳ)2)

and is neither the r2
yŷ (because it is not guaranteed that

Ȳ = ¯̂Y!) nor “the percentage of variance explained” by
the model – this interpretation only makes sense within
the linear model context. It is however a quantity in [0, 1]
that attains R2 = 1 when the fit is perfect.

Non-continuous variables can be taken into account by defin-
ing suitably adapted kernels. The two main possibilities for non-
continuous data are:

• Categorical or unordered discrete variables. For example, iris$species
is a categorical variable in which ordering does not make sense.
These variables are specified in R by factor. Due to the lack of
ordering, the basic mathematical operation behind a kernel, a
distance computation45, is senseless. That motivates the Aitchi-
son and Aitken (1976) kernel.

Assume that the categorical random variable Xd has cd different
levels. Then, it can be represented as Xd ∈ Cd := {0, 1, . . . , cd −
1}. For xd, Xd ∈ Cd, the Aitchison and Aitken (1976) unordered
discrete kernel is

l(xd, Xd; λ) =

1− λ, if xd = Xd,
λ

cd−1 , if xd ̸= Xd,
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where λ ∈ [0, (cd − 1)/cd] is the bandwidth.

• Ordinal or ordered discrete variables. For example, wine$Year is
a discrete variable with a clear order, but it is not continuous.
These variables are specified by ordered (an ordered factor). In
these variables there is ordering, but distances are discrete.

If the ordered discrete random variable Xd can take cd differ-
ent ordered values, then it can be represented as Xd ∈ Cd :=
{0, 1, . . . , cd − 1}. For xd, Xd ∈ Cd, a possible (Li and Racine, 2007)
ordered discrete kernel is

l(xd, Xd; λ) = λ|xd−Xd |,

where λ ∈ [0, 1] is the bandwidth.

The np package employs a variation of the previous kernels. The
following examples illustrate their use.

# Bandwidth by CV for local linear estimator

# Recall that Species is a factor!

bwIris <- np::npregbw(formula = Petal.Length ~ Sepal.Width + Species,

data = iris, regtype = "ll")

bwIris

##

## Regression Data (150 observations, 2 variable(s)):

##

## Sepal.Width Species

## Bandwidth(s): 898696.6 2.357536e-07

##

## Regression Type: Local-Linear

## Bandwidth Selection Method: Least Squares Cross-Validation

## Formula: Petal.Length ~ Sepal.Width + Species

## Bandwidth Type: Fixed

## Objective Function Value: 0.1541057 (achieved on multistart 1)

##

## Continuous Kernel Type: Second-Order Gaussian

## No. Continuous Explanatory Vars.: 1

##

## Unordered Categorical Kernel Type: Aitchison and Aitken

## No. Unordered Categorical Explanatory Vars.: 1

# Product kernel with 2 bandwidths

# Regression

fitIris <- np::npreg(bwIris)

summary(fitIris)

##

## Regression Data: 150 training points, in 2 variable(s)

## Sepal.Width Species

## Bandwidth(s): 898696.6 2.357536e-07

##

## Kernel Regression Estimator: Local-Linear

## Bandwidth Type: Fixed

## Residual standard error: 0.3775005

## R-squared: 0.9539633

##

## Continuous Kernel Type: Second-Order Gaussian

## No. Continuous Explanatory Vars.: 1

##

## Unordered Categorical Kernel Type: Aitchison and Aitken

## No. Unordered Categorical Explanatory Vars.: 1

# Plot marginal effects of each predictor on the response

par(mfrow = c(1, 2))

plot(fitIris, plot.par.mfrow = FALSE)



284 eduardo garcía-portugués

2.0 2.5 3.0 3.5 4.0

2
3

4
5

Sepal.Width

 P
e

ta
l.L

e
n

g
th

setosa virginica

2
3

4
5

Species

 P
e

ta
l.L

e
n

g
th

# Options for the plot method for np::npreg available at ?np::npplot

# For example, xq = 0.5 (default) indicates that all the predictors are set to

# their medians for computing the marginal effects

# Example from ?np::npreg: modeling of the GDP growth of a country from

# economic indicators of the country

# The predictors contain a mix of unordered, ordered, and continuous variables

# Load data

data(oecdpanel, package = "np")

# Bandwidth by CV for local constant -- use only two starts to reduce the

# computation time

bwOECD <- np::npregbw(formula = growth ~ factor(oecd) + ordered(year) +

initgdp + popgro + inv + humancap, data = oecdpanel,

regtype = "lc", nmulti = 2)

bwOECD

##

## Regression Data (616 observations, 6 variable(s)):

##

## factor(oecd) ordered(year) initgdp popgro inv humancap

## Bandwidth(s): 0.02413475 0.8944088 0.1940763 9672508 0.09140376 1.223202

##

## Regression Type: Local-Constant

## Bandwidth Selection Method: Least Squares Cross-Validation

## Formula: growth ~ factor(oecd) + ordered(year) + initgdp + popgro + inv +

## humancap

## Bandwidth Type: Fixed

## Objective Function Value: 0.0006545946 (achieved on multistart 2)

##

## Continuous Kernel Type: Second-Order Gaussian

## No. Continuous Explanatory Vars.: 4

##

## Unordered Categorical Kernel Type: Aitchison and Aitken

## No. Unordered Categorical Explanatory Vars.: 1

##

## Ordered Categorical Kernel Type: Li and Racine

## No. Ordered Categorical Explanatory Vars.: 1

# Regression

fitOECD <- np::npreg(bwOECD)

summary(fitOECD)

##

## Regression Data: 616 training points, in 6 variable(s)

## factor(oecd) ordered(year) initgdp popgro inv humancap

## Bandwidth(s): 0.02413475 0.8944088 0.1940763 9672508 0.09140376 1.223202

##

## Kernel Regression Estimator: Local-Constant

## Bandwidth Type: Fixed

## Residual standard error: 0.01814086

## R-squared: 0.6768302

##

## Continuous Kernel Type: Second-Order Gaussian

## No. Continuous Explanatory Vars.: 4

##

## Unordered Categorical Kernel Type: Aitchison and Aitken
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46 Precisely, the ones associated to the
asymptotic normality of m̂(x; p, h)
and that are based on the results of
Theorem 6.1.

## No. Unordered Categorical Explanatory Vars.: 1

##

## Ordered Categorical Kernel Type: Li and Racine

## No. Ordered Categorical Explanatory Vars.: 1

# Plot marginal effects of each predictor

par(mfrow = c(2, 3))

plot(fitOECD, plot.par.mfrow = FALSE)
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6.4 Prediction and confidence intervals

The prediction of the conditional response m(x) = E[Y|X = x] with
the local polynomial estimator reduces to evaluate m̂(x; p, h). The
fitted values are, therefore, Ŷi := m̂(Xi; p, h), i = 1, . . . , n. The np

package has methods to perform these operations via the predict

and fitted functions.
More interesting is the discussion about the uncertainty of m̂(x; p, h)

and, as a consequence, of the predictions. Differently to what hap-
pened in parametric models, in nonparametric regression there is
no parametric distribution of the response that can help to carry out
the inference and, consequently, to address the uncertainty of the
estimation. Because of this, it is required to resort to somehow con-
voluted asymptotic expressions46 (carried out by predict if se.fit
= TRUE) or to bootstrap resampling procedures. The default bootstrap
resampling procedure in np is the so-called wild bootstrap (Liu,
1988), which is particularly well-suited for regression problems
with potential heteroskedasticity.

Due to their increasing complexity, we just cover very superfi-
cially these methods with the following example.
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# Asymptotic confidence bands for the marginal effects of each predictor on the

# response

par(mfrow = c(2, 3))

plot(fitOECD, plot.errors.method = "asymptotic", common.scale = FALSE,

plot.par.mfrow = FALSE)
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# Bootstrap confidence bands

# They take more time to compute because a resampling + refitting takes place

par(mfrow = c(2, 3))

plot(fitOECD, plot.errors.method = "bootstrap", plot.par.mfrow = FALSE)

# The asymptotic standard error associated to the regression evaluated at the

# evaluation points are in $merr

head(fitOECD$merr)

## [1] 0.004534787 0.006105144 0.001558307 0.002400982 0.006213965 0.005274139

# Recall that in $mean we had the regression evaluated at the evaluation points,

# by default the sample of the predictors, so in this case the same as the

# fitted values

head(fitOECD$mean)

## [1] 0.02877743 0.02113513 0.03592755 0.04027579 0.01099637 0.03888485

# Prediction for the first 3 points + standard errors

pred <- predict(fitOECD, newdata = oecdpanel[1:3, ], se.fit = TRUE)

# Approximate (based on assuming asymptotic normality) 100(1 - alpha)% CI for

# the conditional mean of the first 3 points

alpha <- 0.05

pred$fit + (qnorm(1 - alpha / 2) * pred$se.fit) %o% c(-1, 1)

## [,1] [,2]

## [1,] 0.019889408 0.03766545

## [2,] 0.009169271 0.03310100

## [3,] 0.032873327 0.03898178
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Extrapolation with kernel regression estimators is par-
ticularly dangerous. Keep in mind that the kernel esti-
mators smooth the data in order to estimate m, the trend.
If there is no data close to the point x at which m(x)
is estimated, then the estimation will heavily depend
on the closest data point to x. If employing compactly-
supported kernels (so that they can take the value 0
exactly), the estimate may not be even properly defined.

6.5 Local likelihood

We explore in this section an extension of the local polynomial es-
timator that reproduces the extension generalized linear models
made of linear models. This extension aims to estimate the re-
gression function by relying in the likelihood, rather than the least
squares. Thus, the idea behind the local likelihood is to fit, locally,
parametric models by maximum likelihood.

We begin by seeing that local likelihood using the linear model is
equivalent to local polynomial modeling. Theorem A.1 shows that,
under the assumptions given in Section 2.3, the ML estimate of β in
the linear model

Y|(X1, . . . , Xp) ∼ N (β0 + β1X1 + · · ·+ βpXp, σ2) (6.29)

is equivalent to the least squares estimate, β̂ = (X′X)−1X′Y. The
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47 If p = 1, then we have the usual
simple logistic model.

reason was the form of the conditional (on X1, . . . , Xp) likelihood:

ℓ(β) = − n
2

log(2πσ2)

− 1
2σ2

n

∑
i=1

(Yi − β0 − β1Xi1 − · · · − βpXip)
2.

If there is a single predictor X, polynomial fitting of order p of
the conditional mean can be achieved by the well-known trick of
identifying the j-th predictor Xj in (6.29) by X j. This results in

Y|X ∼ N (β0 + β1X + · · ·+ βpXp, σ2). (6.30)

Therefore, the weighted log-likelihood of the linear model (6.30) about
x is

ℓx,h(β) = − n
2

log(2πσ2)

− 1
2σ2

n

∑
i=1

(Yi − β0 − β1Xi − · · · − βpXp
i )

2Kh(x− Xi).

(6.31)

Maximizing with respect to β the local log-likelihood (6.31) provides
β̂0 = m̂(x; p, h), the local polynomial estimator, as it was obtained in
(6.21), but now from a likelihood-based perspective. The key insight
is to realize that the very same idea can be applied to the family of
generalized linear models.

Figure 6.7: Construction of the local
likelihood estimator. The animation
shows how local likelihood fits in a
neighborhood of x are combined to
provide an estimate of the regression
function for binary response, which
depends on the polynomial degree,
bandwidth, and kernel (gray density
at the bottom). The data points are
shaded according to their weights for
the local fit at x. Application available
here.

We illustrate the local likelihood principle for the logistic regres-
sion. In this case, {(xi, Yi)}n

i=1 with

Yi|Xi = xi ∼ Ber(logistic(η(xi))), i = 1, . . . , n,

https://shinyserv.es/shiny/loclik/


notes for predictive modeling 289

48 No analytical solution for the opti-
mization problem, numerical optimiza-
tion is needed.

with the polynomial term47

η(x) := β0 + β1x + · · ·+ βpxp.

The log-likelihood of β is

ℓ(β) =
n

∑
i=1
{Yi log(logistic(η(xi))) + (1−Yi) log(1− logistic(η(xi)))}

=
n

∑
i=1

ℓ(Yi, η(xi)),

where we consider the log-likelihood addend ℓ(y, η) = yη − log(1 +

eη), and make explicit the dependence on η(x) for clarity in the
next developments (and implicit the dependence on β).

The local log-likelihood of β about x is then

ℓx,h(β) :=
n

∑
i=1

ℓ(Yi, η(Xi − x))Kh(x− Xi). (6.32)

Maximizing48 the local log-likelihood (6.32) with respect to β pro-
vides

β̂h = arg max
β∈Rp+1

ℓx,h(β),

where β̂h = (β̂h,0, β̂h,1, . . . , β̂h,p)
′. The local likelihood estimate of

η(x) is

η̂(x) := β̂h,0.

Note that the dependence of β̂0 on x and h is omitted. From η̂(x),
we can obtain the local logistic regression evaluated at x as

m̂ℓ(x; h, p) := g−1 (η̂(x)) = logistic(β̂h,0). (6.33)

Each evaluation of m̂ℓ(x; h, p) in a different x requires, thus, a
weighted fit of the underlying logistic model.

The code below shows three different ways of implementing the
local logistic regression (of first degree) in R.

# Simulate some data

n <- 200

logistic <- function(x) 1 / (1 + exp(-x))

p <- function(x) logistic(1 - 3 * sin(x))

set.seed(123456)

X <- runif(n = n, -3, 3)

Y <- rbinom(n = n, size = 1, prob = p(X))

# Set bandwidth and evaluation grid

h <- 0.25

x <- seq(-3, 3, l = 501)

# Approach 1: optimize the weighted log-likelihood through the workhorse

# function underneath glm, glm.fit

suppressWarnings(

fitGlm <- sapply(x, function(x) {

K <- dnorm(x = x, mean = X, sd = h)

glm.fit(x = cbind(1, X - x), y = Y, weights = K,

family = binomial())$coefficients[1]
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49 The interested reader is referred
to Sections 4.3.3 and 4.4.3 of Loader
(1999) for an approximation of (6.34)
that only requires a local likelihood fit
for a single sample.
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})

)

# Approach 2: optimize directly the weighted log-likelihood

suppressWarnings(

fitNlm <- sapply(x, function(x) {

K <- dnorm(x = x, mean = X, sd = h)

nlm(f = function(beta) {

-sum(K * (Y * (beta[1] + beta[2] * (X - x)) -

log(1 + exp(beta[1] + beta[2] * (X - x)))))

}, p = c(0, 0))$estimate[1]

})

)

# Approach 3: employ locfit::locfit

# Bandwidth cannot be controlled explicitly -- only through nn in ?lp

fitLocfit <- locfit::locfit(Y ~ locfit::lp(X, deg = 1, nn = h),

family = "binomial", kern = "gauss")

# Compare fits

plot(x, p(x), ylim = c(0, 1.5), type = "l", lwd = 2)

lines(x, logistic(fitGlm), col = 2)

lines(x, logistic(fitNlm), col = 3, lty = 2)

plot(fitLocfit, add = TRUE, col = 4)

legend("topright", legend = c("p(x)", "glm", "nlm", "locfit"), lwd = 2,

col = c(1, 2, 3, 4), lty = c(1, 1, 2, 1))

Bandwidth selection can be done by means of likelihood cross-
validation. The objective is to maximize the local likelihood fit at
(xi, Yi) but removing the influence by the datum itself. That is,
maximizing

LCV(h) =
n

∑
i=1

ℓ(Yi, η̂−i(Xi)), (6.34)

where η̂−i(xi) represents the local fit at xi without the i-th datum
(xi, Yi). Unfortunately, the nonlinearity of (6.33) forbids a simplify-
ing result as Proposition 6.1. Thus, in principle49, it is required to
fit n local likelihoods for sample size n − 1 for obtaining a single
evaluation of (6.34).

We conclude by illustrating how to compute the LCV function
and optimize it (keep in mind that much more efficient implemen-
tations are possible!).

# Exact LCV -- recall that we *maximize* the LCV!

h <- seq(0.1, 2, by = 0.1)

suppressWarnings(

LCV <- sapply(h, function(h) {

sum(sapply(1:n, function(i) {

K <- dnorm(x = X[i], mean = X[-i], sd = h)

nlm(f = function(beta) {

-sum(K * (Y[-i] * (beta[1] + beta[2] * (X[-i] - X[i])) -

log(1 + exp(beta[1] + beta[2] * (X[-i] - X[i])))))

}, p = c(0, 0))$minimum

}))

})

)

plot(h, LCV, type = "o")

abline(v = h[which.max(LCV)], col = 2)



1 Think about phenomena that may
randomly support innoncence or
guilt of the defendant, irrespective
of his true condition. For example:
spurious coincidences (“happen to
be in the wrong place at the wrong
time”), lost of evidences during the
case, previous past statemets of the
defendant, doubtious identification by
witness, imprecise witness testimonies,
unverificable alibi, etc.
2 Usually simply referred to as statistic.
3 As the judge has to have the power
of condemning a guilty defendant.
Setting α = 0 (no innocents are
declared guilt) would result in a judge
that systematically declares everybody
not guilty. Therefore, a compromise is
needed.

A
Further topics

A.1 Informal review on hypothesis testing

The process of hypothesis testing has an interesting analogy with
a (simplified) trial. The analogy helps understanding the elements
present in a formal hypothesis test in an intuitive way. 1

1
2

2
3

3

Hypothesis test Trial

Null hypothesis H0 The defendant: an individual accused
of committing a crime. He is backed
up by the presumption of innocence,
which means that he is not guilty until
there are enough evidences to support
his guilt.

Sample X1, . . . , Xn Collection of small evidences
supporting innocence and guilt of the
defendant. These evidences contain a
certain degree of uncontrollable
randomness due to how they were
collected and the context regarding the
case1.

Test statistic2 Tn Summary of the evidences presented
by the prosecutor and defense lawyer.

Distribution of Tn under
H0

The judge conducting the trial.
Evaluates and measures the evidence
presented by both sides and presents a
verdict for the defendant.

Significance level α 1− α is the strength of evidences
required by the judge for condemning
the defendant. The judge allows
evidences that, on average, condemn
100α% of the innocents, due to the
randomness inherent to the evidences
collection process. The level α = 0.05 is
considered to be reasonable3.



292 eduardo garcía-portugués

4 Understood as F(x) = F0(x) for all
x ∈ R. For F ̸= F0, we mean that
F(x) ̸= F0(x) for at least one x ∈ R.

5 Formally, a null hypothesis H0 is
tested against an alternative hypoth-
esis H1. The concept of alternative
hypothesis was not addressed in the
trial analogy for the sake of simplic-
ity, but you may think of H1 as the
defendant being not guilty or as the
plaintiff or complainant. The alter-
native hypothesis H1 represents the
“alternative truth” to H0 and the test
decides between H0 and H1, only
rejecting H0 in favor of H1 if there
are enough evidences on the data
against H0 or supporting H1. Obvi-
ously, H0 ∩ H1 = ∅. But recall that also
H1 ⊂ ¬H0 or, in other words, H1 may
be more restrictive than the negation of
H0.

Hypothesis test Trial

p-value Decision of the judge that measures
the degree of compatibility, in a scale
0–1, of the presumption of innocence
with the summary of the evidences
presented. If p-value < α, the
defendant is declared guilty, as the
evidences supporting its guilt are
strong enough to override his
presumption of innocence. Otherwise,
he is declared not guilty.

H0 is rejected The defendant is declared guilty: there
are strong evidences supporting its
guilt.

H0 is not rejected The defendant is declared not guilty:
either he is innocent or there are not
enough evidences supporting his
guilt.

More formally, the p-value of an hypothesis test about H0 is
defined as:

The p-value is the probability of obtaining a test statistic more un-
favourable to H0 than the observed, assuming that H0 is true.

Therefore, if the p-value is small (smaller than the chosen level
α), it is unlikely that the evidences against H0 are due to ran-
domness. As a consequence, H0 is rejected. If the p-value is large
(larger than α), then it is more likely that the evidences against H0

are merely due to the randomness of the data. In this case, we do
not reject H0.

If H0 holds, then the p-value (which is a random vari-
able) is distributed uniformly in (0, 1). If H0 does not
hold, then the distribution of the p-value is not uniform
but concentrated at 0 (where the rejections of H0 take
place).

Let’s quickly illustrate the previous fact with the well-known
Kolmogorov–Smirnov test. This test evaluates whether the unknown
cdf of X, F, equals a specified cdf F0. In other words, it tests the null
hypothesis4

H0 : F = F0

versus the alternative hypothesis5

H1 : F ̸= F0.
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6 When the sample size n is large:
n→ ∞.

7 Which is limn→∞ P[dn > Dn] =
1− K(dn), where dn is the observed
statistic and Dn is the random variable
(A.1).

For that purpose, given a sample X1, . . . , Xn of X, the Kolmogorov–
Smirnov statistic Dn is computed:

Dn :=
√

n sup
x∈R

|Fn(x)− F0(x)| = max(D+
n , D−n ), (A.1)

D+
n :=

√
n max

1≤i≤n

{
i
n
−U(i)

}
,

D−n :=
√

n max
1≤i≤n

{
U(i) −

i− 1
n

}
.

where Fn represents the empirical cdf of X1, . . . , Xn and U(j) stands
for the j-th sorted Ui := F0(Xi), i = 1, . . . , n. If H0 holds, then Dn

tends to be small. Conversely, when F ̸= F0, larger values of Dn are
expected, so the test rejects when Dn is large.

If H0 holds, then Dn has an asymptotic6 cdf given by the Kolmo-
gorov–Smirnov’s K function:

lim
n→∞

P[Dn ≤ x] = K(x) := 1− 2
∞

∑
m=1

(−1)m−1e−2m2x2
. (A.2)

The test statistic Dn, the asymptotic cdf K, and the associated
asymptotic p-value7 are readily implemented in R through the
ks.test function.

Implement the Kolmogorov–Smirnov test from the equa-
tions above. This amounts to:

a. Provide a function for computing the test statistic
(A.1) from a sample X1, . . . , Xn and a cdf F0.

b. Implement the K function (A.2).
c. Call the previous functions from a routine that returns

the asymptotic p-value of the test.

Compare that the implementations coincide with the
ones of the ks.test function when exact = FALSE. Note:
ks.test computes Dn/

√
n instead of Dn.

# Sample data from a N(0, 1)

set.seed(3245678)

n <- 50

x <- rnorm(n)

# Kolmogorov-Smirnov test for H_0 : F = N(0, 1). Does not reject.

ks.test(x, "pnorm")

##

## One-sample Kolmogorov-Smirnov test

##

## data: x

## D = 0.050298, p-value = 0.9989

## alternative hypothesis: two-sided

# Simulation of p-values when H_0 is true

M <- 1e4

pValues_H0 <- sapply(1:M, function(i) {

x <- rnorm(n) # N(0, 1)

ks.test(x, "pnorm")$p.value

})
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8 Normality is especially important
here due to the squares present in the
exponential of the normal pdf.

# Simulation of p-values when H_0 is false -- the data does not

# come from a N(0, 1) but from a N(0, 1.5)

pValues_H1 <- sapply(1:M, function(i) {

x <- rnorm(n, mean = 0, sd = sqrt(1.5)) # N(0, 1.5)

ks.test(x, "pnorm")$p.value

})

# Comparison of p-values

par(mfrow = 1:2)

hist(pValues_H0, breaks = seq(0, 1, l = 20), probability = TRUE,

main = expression(H[0]), ylim = c(0, 2.5))

abline(h = 1, col = 2)

hist(pValues_H1, breaks = seq(0, 1, l = 20), probability = TRUE,

main = expression(H[1]), ylim = c(0, 2.5))

abline(h = 1, col = 2)
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Figure A.1: Comparison of the dis-
tribution of p-values under H0 and
H1 for the Kolmogorov–Smirnov test.
Observe that the frequency of low p-
values, associated with the rejection of
H0, grows when H0 does not hold. Un-
der H0, the distribution of the p-values
is uniform.

A.2 Least squares and maximum likelihood estimation

Least squares had a prominent role in linear models. In certain
sense, this is strange. After all, it is a purely geometrical argument
for fitting a plane to a cloud of points and therefore it seems to
do not rely on any statistical grounds for estimating the unknown
parameters β.

However, as we will see, least squares estimation is equivalent
to maximum likelihood estimation under the assumptions of the
model seen in Section 2.38. So maximum likelihood estimation,
the most well-known statistical estimation method, is behind least
squares if the assumptions of the model hold.

First, recall that given the sample {(Xi, Yi)}n
i=1, due to the as-

sumptions introduced in Section 2.3, we have that:

Yi|(Xi1 = xi1, . . . , Xip = xip) ∼ N (β0 + β1xi1 + · · ·+ βpxip, σ2),

with Y1, . . . , Yn being independent conditionally on the sample of
predictors. Equivalently stated in a compact matrix way (recall the
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9 Since we assume that the randomness
is on the response only.

10 Recall that |σ2I|1/2 = σn.

notation behind (2.6)):

Y|X ∼ Nn(Xβ, σ2I).

From these two equations we can obtain the log-likelihood function
of Y1, . . . , Yn conditionally9 on X1, . . . , Xn as

ℓ(β) = log
(

ϕ(Y; Xβ, σ2I)
)
=

n

∑
i=1

log (ϕ(Yi; (Xβ)i, σ)) . (A.3)

Maximization of (A.3) with respect to β gives the maximum likeli-
hood estimator β̂ML.

Now we are ready to show the next result.

Theorem A.1. Under the assumptions i–iv in Section 2.3, the maximum
likelihood estimate of β is the least squares estimate (2.7):

β̂ML = arg max
β∈Rp+1

ℓ(β) = (X′X)−1XY.

Proof. Expanding the first equality at (A.3) gives10

ℓ(β) = − log
(
(2π)n/2σn

)
− 1

2σ2 (Y− Xβ)′(Y− Xβ).

In order to differentiate with respect to β, we use that, for two
vector-valued functions f and g:

∂Ax
∂x

= A and
∂ f (x)′g(x)

∂x
= f (x)′

∂g(x)
∂x

+ g(x)′
∂ f (x)

∂x
.

Then, differentiating with respect to β and equating to zero gives

1
σ2 (Y− Xβ)′X =

1
σ2 (Y

′X− β′X′X) = 0.

This means that optimizing ℓ does not require knowledge on σ2!
This is a very convenient fact that allows to solve the above equa-
tion, yielding

β̂ = (X′X)−1XY.

A final comment on the benefits of relying on maximum likeli-
hood estimation follows.

Maximum likelihood estimation is asymptotically op-
timal when estimating the unknown parameters of a
model. This is a very appealing property that means that,
when the sample size n is large, it is guaranteed to per-
form better than any other estimation method, where
better is understood in terms of the mean squared error.
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11 (J − 1) intercepts and (J − 1) × p
slopes.

A.3 Multinomial logistic regression

The logistic model seen in Section 5.2.1 can be generalized to cat-
egorical variables Y with more than two possible levels, namely
{1, . . . , J}. Given the predictors X1, . . . , Xp, multinomial logistic re-
gression models the probability of each level j of Y by

pj(x) :=P[Y = j|X1 = x1, . . . , Xp = xp]

=
eβ0j+β1jX1+···+βpjXp

1 + ∑J−1
ℓ=1 eβ0ℓ+β1ℓX1+···+βpℓXp

(A.4)

for j = 1, . . . , J − 1 and (for the last level J)

pJ(x) :=P[Y = J|X1 = x1, . . . , Xp = xp]

=
1

1 + ∑J−1
ℓ=1 eβ0ℓ+β1ℓX1+···+βpℓXp

. (A.5)

Note that (A.4) and (A.5) imply that ∑J
j=1 pj(x) = 1 and that there

are (J − 1) × (p + 1) coefficients11. Also, (A.5) reveals that the
last level, J, is given a different treatment. This is because it is the
reference level (it could be a different one, but it is the tradition to
choose the last one).

The multinomial logistic model has an interesting interpretation
in terms of logistic regressions. Taking the quotient between (A.4)
and (A.5) gives

pj(x)
pJ(x)

= eβ0j+β1jX1+···+βpjXp (A.6)

for j = 1, . . . , J− 1. Therefore, applying a logarithm to both sides we
have:

log
( pj(x)

pJ(x)

)
= β0j + β1jX1 + · · ·+ βpjXp. (A.7)

This equation is indeed very similar to (5.8). If J = 2, it is the same
up to a change in the codes for the levels: the logistic regression
giving the probability of Y = 1 versus Y = 2. On the LHS of (A.7)
we have the logarithm of the ratio of two probabilities and on the
RHS a linear combination of the predictors. If the probabilities on
the LHS were complementary (if they added up to one), then we
would have a log-odds and hence a logistic regression for Y. This
is not the situation, but it is close: instead of odds and log-odds,
we have ratios and log-ratios of non complementary probabilities.
Also, it gives a good insight on what the multinomial logistic re-
gression is: a set of J − 1 independent logistic regressions for the
probability of Y = j versus the probability of the reference Y = J.

Equation (A.6) gives also interpretation on the coefficients of the
model since

pj(x) = eβ0j+β1jX1+···+βpjXp pJ(x).

Therefore:
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• eβ0j : is the ratio between pj(0)/pJ(0), the probabilities of Y = j
and Y = J when X1 = . . . = Xp = 0. If eβ0j > 1 (equivalently,
β0j > 0), then Y = j is more likely than Y = J. If eβ0j < 1
(β0j < 0), then Y = j is less likely than Y = J.

• eβℓj , ℓ ≥ 1: is the multiplicative increment of the ratio between
pj(x)/pJ(x) for an increment of one unit in Xℓ = xℓ, provided
that the remaining variables X1, . . . , Xℓ−1, Xℓ+1, . . . , Xp do not
change. If eβℓj > 1 (equivalently, βℓj > 0), then Y = j becomes
more likely than Y = J for each increment in Xj. If eβℓj < 1
(βℓj < 0), then Y = j becomes less likely than Y = J.

The following code illustrates how to compute a basic multino-
mial regression employing the nnet package.

# Data from the voting intentions in the 1988 Chilean national plebiscite

data(Chile, package = "carData")

summary(Chile)

## region population sex age education income statusquo vote

## C :600 Min. : 3750 F:1379 Min. :18.00 P :1107 Min. : 2500 Min. :-1.80301 A :187

## M :100 1st Qu.: 25000 M:1321 1st Qu.:26.00 PS : 462 1st Qu.: 7500 1st Qu.:-1.00223 N :889

## N :322 Median :175000 Median :36.00 S :1120 Median : 15000 Median :-0.04558 U :588

## S :718 Mean :152222 Mean :38.55 NA's: 11 Mean : 33876 Mean : 0.00000 Y :868

## SA:960 3rd Qu.:250000 3rd Qu.:49.00 3rd Qu.: 35000 3rd Qu.: 0.96857 NA's:168

## Max. :250000 Max. :70.00 Max. :200000 Max. : 2.04859

## NA's :1 NA's :98 NA's :17

# vote is a factor with levels A (abstention), N (against Pinochet),

# U (undecided), Y (for Pinochet)

# Fit of the model done by multinom: Response ~ Predictors

# It is an iterative procedure (maxit sets the maximum number of iterations)

# Read the documentation in ?multinom for more information

mod1 <- nnet::multinom(vote ~ age + education + statusquo, data = Chile,

maxit = 1e3)

## # weights: 24 (15 variable)

## initial value 3476.826258

## iter 10 value 2310.201176

## iter 20 value 2135.385060

## final value 2132.416452

## converged

# Each row of coefficients gives the coefficients of the logistic

# regression of a level versus the reference level (A)

summary(mod1)

## Call:

## nnet::multinom(formula = vote ~ age + education + statusquo,

## data = Chile, maxit = 1000)

##

## Coefficients:

## (Intercept) age educationPS educationS statusquo

## N 0.3002851 0.004829029 0.4101765 -0.1526621 -1.7583872

## U 0.8722750 0.020030032 -1.0293079 -0.6743729 0.3261418

## Y 0.5093217 0.016697208 -0.4419826 -0.6909373 1.8752190

##

## Std. Errors:

## (Intercept) age educationPS educationS statusquo

## N 0.3315229 0.006742834 0.2659012 0.2098064 0.1292517

## U 0.3183088 0.006630914 0.2822363 0.2035971 0.1059440

## Y 0.3333254 0.006915012 0.2836015 0.2131728 0.1197440

##

## Residual Deviance: 4264.833

## AIC: 4294.833

# Set a different level as the reference (N) for easier interpretations

Chile$vote <- relevel(Chile$vote, ref = "N")
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mod2 <- nnet::multinom(vote ~ age + education + statusquo, data = Chile,

maxit = 1e3)

## # weights: 24 (15 variable)

## initial value 3476.826258

## iter 10 value 2393.713801

## iter 20 value 2134.438912

## final value 2132.416452

## converged

summary(mod2)

## Call:

## nnet::multinom(formula = vote ~ age + education + statusquo,

## data = Chile, maxit = 1000)

##

## Coefficients:

## (Intercept) age educationPS educationS statusquo

## A -0.3002035 -0.00482911 -0.4101274 0.1525608 1.758307

## U 0.5720544 0.01519931 -1.4394862 -0.5217093 2.084491

## Y 0.2091397 0.01186576 -0.8521205 -0.5382716 3.633550

##

## Std. Errors:

## (Intercept) age educationPS educationS statusquo

## A 0.3315153 0.006742654 0.2658887 0.2098012 0.1292494

## U 0.2448452 0.004819103 0.2116375 0.1505854 0.1091445

## Y 0.2850655 0.005700894 0.2370881 0.1789293 0.1316567

##

## Residual Deviance: 4264.833

## AIC: 4294.833

exp(coef(mod2))

## (Intercept) age educationPS educationS statusquo

## A 0.7406675 0.9951825 0.6635657 1.1648133 5.802607

## U 1.7719034 1.0153154 0.2370495 0.5935052 8.040502

## Y 1.2326171 1.0119364 0.4265095 0.5837564 37.846937

# Some highlights:

# - intercepts do not have too much interpretation (correspond to age = 0).

# A possible solution is to center age by its mean (so age = 0 would

# represent the mean of the ages)

# - both age and statusquo increase the probability of voting Y, A or U

# with respect to voting N -> conservatism increases with ages

# - both age and statusquo increase more the probability of voting Y and U

# than A -> elderly and status quo supporters are more decided to participate

# - a PS level of education increases the probability of voting N. Same for

# a S level of education, but more prone to A

# Prediction of votes -- three profile of voters

newdata <- data.frame(age = c(23, 40, 50),

education = c("PS", "S", "P"),

statusquo = c(-1, 0, 2))

# Probabilities of belonging to each class

predict(mod2, newdata = newdata, type = "probs")

## N A U Y

## 1 0.856057623 0.064885869 0.06343390 0.01562261

## 2 0.208361489 0.148185871 0.40245842 0.24099422

## 3 0.000288924 0.005659661 0.07076828 0.92328313

# Predicted class

predict(mod2, newdata = newdata, type = "class")

## [1] N U Y

## Levels: N A U Y
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Multinomial logistic regression will suffer from numer-
ical instabilities and its iterative algorithm might even
fail to converge if the levels of the categorical variable
are very separated (e.g., two data clouds clearly sepa-
rated corresponding to a different level of the categorical
variable).

A.4 Dealing with missing data

Missing data, codified as NA in R, can be problematic in predictive
modeling. By default, most of the regression models in R work with
the complete cases of the data, that is, they exclude the cases in
which there is at least one NA. This may be problematic in certain
circumstances. Let’s see an example.

# The airquality dataset contains NA's

data(airquality)

head(airquality)

## Ozone Solar.R Wind Temp Month Day

## 1 41 190 7.4 67 5 1

## 2 36 118 8.0 72 5 2

## 3 12 149 12.6 74 5 3

## 4 18 313 11.5 62 5 4

## 5 NA NA 14.3 56 5 5

## 6 28 NA 14.9 66 5 6

summary(airquality)

## Ozone Solar.R Wind Temp Month Day

## Min. : 1.00 Min. : 7.0 Min. : 1.700 Min. :56.00 Min. :5.000 Min. : 1.0

## 1st Qu.: 18.00 1st Qu.:115.8 1st Qu.: 7.400 1st Qu.:72.00 1st Qu.:6.000 1st Qu.: 8.0

## Median : 31.50 Median :205.0 Median : 9.700 Median :79.00 Median :7.000 Median :16.0

## Mean : 42.13 Mean :185.9 Mean : 9.958 Mean :77.88 Mean :6.993 Mean :15.8

## 3rd Qu.: 63.25 3rd Qu.:258.8 3rd Qu.:11.500 3rd Qu.:85.00 3rd Qu.:8.000 3rd Qu.:23.0

## Max. :168.00 Max. :334.0 Max. :20.700 Max. :97.00 Max. :9.000 Max. :31.0

## NA's :37 NA's :7

# Let's add more NA's for the sake of illustration

set.seed(123456)

airquality$Solar.R[runif(nrow(airquality)) < 0.7] <- NA

airquality$Day[runif(nrow(airquality)) < 0.1] <- NA

# See what are the fully-observed cases

comp <- complete.cases(airquality)

mean(comp) # Only 15% of cases are fully observed

## [1] 0.1568627

# Complete cases

head(airquality[comp, ])

## Ozone Solar.R Wind Temp Month Day

## 1 41 190 7.4 67 5 1

## 2 36 118 8.0 72 5 2

## 9 8 19 20.1 61 5 9

## 13 11 290 9.2 66 5 13

## 14 14 274 10.9 68 5 14

## 15 18 65 13.2 58 5 15

# Linear model on all the variables

summary(lm(Ozone ~ ., data = airquality)) # 129 not included

##

## Call:

## lm(formula = Ozone ~ ., data = airquality)

##
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## Residuals:

## Min 1Q Median 3Q Max

## -23.790 -10.910 -2.249 10.960 33.246

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -71.50880 31.49703 -2.270 0.035704 *
## Solar.R -0.01112 0.03376 -0.329 0.745596

## Wind -0.61129 0.96113 -0.636 0.532769

## Temp 1.82870 0.42224 4.331 0.000403 ***
## Month -2.86513 2.22222 -1.289 0.213614

## Day -0.28710 0.41700 -0.688 0.499926

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 16.12 on 18 degrees of freedom

## (129 observations deleted due to missingness)

## Multiple R-squared: 0.5957, Adjusted R-squared: 0.4833

## F-statistic: 5.303 on 5 and 18 DF, p-value: 0.00362

# Caution! Even if the problematic variable is excluded, only

# the complete observations are employed

summary(lm(Ozone ~ . - Solar.R, data = airquality))

##

## Call:

## lm(formula = Ozone ~ . - Solar.R, data = airquality)

##

## Residuals:

## Min 1Q Median 3Q Max

## -24.43 -11.56 -1.67 11.19 33.11

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -72.2501 30.6707 -2.356 0.029386 *
## Wind -0.6236 0.9376 -0.665 0.514001

## Temp 1.7980 0.4021 4.472 0.000261 ***
## Month -2.6533 2.0767 -1.278 0.216762

## Day -0.2944 0.4065 -0.724 0.477851

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 15.74 on 19 degrees of freedom

## (129 observations deleted due to missingness)

## Multiple R-squared: 0.5932, Adjusted R-squared: 0.5076

## F-statistic: 6.927 on 4 and 19 DF, p-value: 0.001291

# Notice the difference with

summary(lm(Ozone ~ ., data = subset(airquality, select = -Solar.R)))

##

## Call:

## lm(formula = Ozone ~ ., data = subset(airquality, select = -Solar.R))

##

## Residuals:

## Min 1Q Median 3Q Max

## -42.677 -12.609 -3.125 11.993 98.805

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -74.4456 25.8567 -2.879 0.00488 **
## Wind -3.1064 0.7028 -4.420 2.51e-05 ***
## Temp 2.1666 0.2876 7.534 2.25e-11 ***
## Month -3.6493 1.6343 -2.233 0.02778 *
## Day 0.3162 0.2549 1.241 0.21768

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 22.12 on 100 degrees of freedom

## (48 observations deleted due to missingness)
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## Multiple R-squared: 0.5963, Adjusted R-squared: 0.5801

## F-statistic: 36.92 on 4 and 100 DF, p-value: < 2.2e-16

# Model selection can be problematic with missing data, since

# the number of complete cases changes with the addition or

# removing of predictors

mod <- lm(Ozone ~ ., data = airquality)

# stepAIC drops an error

modAIC <- MASS::stepAIC(mod)

## Start: AIC=138.55

## Ozone ~ Solar.R + Wind + Temp + Month + Day

##

## Df Sum of Sq RSS AIC

## - Solar.R 1 28.2 4708.1 136.70

## - Wind 1 105.2 4785.0 137.09

## - Day 1 123.2 4803.1 137.18

## <none> 4679.9 138.55

## - Month 1 432.2 5112.1 138.67

## - Temp 1 4876.6 9556.5 153.69

## Error in MASS::stepAIC(mod): number of rows in use has changed: remove missing values?

# Also, this will be problematic (the number of complete

# cases changes with the predictors considered!)

modBIC <- MASS::stepAIC(mod, k = log(nrow(airquality)))

## Start: AIC=156.73

## Ozone ~ Solar.R + Wind + Temp + Month + Day

##

## Df Sum of Sq RSS AIC

## - Solar.R 1 28.2 4708.1 151.85

## - Wind 1 105.2 4785.0 152.24

## - Day 1 123.2 4803.1 152.33

## - Month 1 432.2 5112.1 153.82

## <none> 4679.9 156.73

## - Temp 1 4876.6 9556.5 168.84

## Error in MASS::stepAIC(mod, k = log(nrow(airquality))): number of rows in use has changed: remove missing values?

# Comparison of AICs or BICs is spurious: the scale of the

# likelihood changes with the sample size (the likelihood

# decreases with n), which increases AIC / BIC with n.

# Hence using BIC / AIC is not adequate for model selection

# with missing data.

AIC(lm(Ozone ~ ., data = airquality))

## [1] 208.6604

AIC(lm(Ozone ~ ., data = subset(airquality, select = -Solar.R)))

## [1] 955.0681

# Considers only complete cases including Solar.R

AIC(lm(Ozone ~ . - Solar.R, data = airquality))

## [1] 206.8047

We have seen the problems that missing data may cause in re-
gression models. There are many techniques designed to handle
missing data, depending on the missing data mechanism (whether
is it completely at random or whether there is some pattern in the
missing process) and the approach to impute the data (parametric,
nonparametric, Bayesian, etc). We do not give an exhaustive view of
the topic here, but we outline three concrete approaches to handle
missing data in practice:

1. Use complete cases. This is the simplest solution and can be
achieved by restricting the analysis to the set of fully-observed
observations. The advantage of this solution is that it can be im-
plemented very easily by using the complete.cases or na.exclude
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12 Check the available methods for
mice::mice at ?mice. There are specific
methods for different kinds of vari-
ables (numeric, factor with two levels,
factors of more than two levels) and
fairly advanced imputation methods.

functions. However, an undesirable consequence is that we may
lose a substantial amount of data and therefore the precision
of the estimators will be lower. In addition, it may lead to a bi-
ased representation of the original data (if the missing process is
associated with the values of the response or predictors).

2. Remove predictors with many missing data. This is another
simple solution that is useful in case most of the missing data is
concentrated in one predictor.

3. Use imputation for the missing values. The idea is to replace
the missing observations on the response or the predictors with
artificial values that try to preserve the dataset structure:

• When the response is missing, we can use a predictive model
to predict the missing response, then create a new fully-
observed dataset containing the predictions instead of the
missing values, and finally re-estimate the predictive model in
this expanded dataset. This approach is attractive if most of
the missing data is in the response.

• When different predictors and the response are missing, we
can use a direct imputation for them. The simplest approach
is to replace the missing data with the sample mean of the
observed cases (in the case of quantitative variables). Another
approach is to input sample means for the predictors, then
use the reconstructed dataset to predict the missing responses.
These and more sophisticated imputation methods, based on
predictive models, are available within the mice package12.
This approach is interesting if the data contains many NAs
scattered in different predictors (hence a complete-cases analy-
sis will be inefficient).

Let’s put in practice these three approaches in the previous ex-
ample.

# The complete cases approach is the default in R

summary(lm(Ozone ~ ., data = airquality))

##

## Call:

## lm(formula = Ozone ~ ., data = airquality)

##

## Residuals:

## Min 1Q Median 3Q Max

## -23.790 -10.910 -2.249 10.960 33.246

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -71.50880 31.49703 -2.270 0.035704 *
## Solar.R -0.01112 0.03376 -0.329 0.745596

## Wind -0.61129 0.96113 -0.636 0.532769

## Temp 1.82870 0.42224 4.331 0.000403 ***
## Month -2.86513 2.22222 -1.289 0.213614

## Day -0.28710 0.41700 -0.688 0.499926

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 16.12 on 18 degrees of freedom

## (129 observations deleted due to missingness)

## Multiple R-squared: 0.5957, Adjusted R-squared: 0.4833
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## F-statistic: 5.303 on 5 and 18 DF, p-value: 0.00362

# However, since the complete cases that R is going to consider

# depends on which predictors are included, it is safer to

# exclude NA's explicitly before the fitting of a model.

airqualityNoNA <- na.exclude(airquality)

summary(airqualityNoNA)

## Ozone Solar.R Wind Temp Month Day

## Min. : 8.00 Min. : 13.0 Min. : 6.300 Min. :58.00 Min. :5.00 Min. : 1.00

## 1st Qu.:13.00 1st Qu.: 61.5 1st Qu.: 9.575 1st Qu.:65.50 1st Qu.:5.00 1st Qu.:11.25

## Median :17.00 Median :178.5 Median :11.500 Median :71.50 Median :6.00 Median :16.50

## Mean :28.21 Mean :161.8 Mean :11.887 Mean :72.54 Mean :6.75 Mean :15.79

## 3rd Qu.:36.25 3rd Qu.:255.0 3rd Qu.:14.300 3rd Qu.:79.50 3rd Qu.:9.00 3rd Qu.:20.25

## Max. :96.00 Max. :334.0 Max. :20.700 Max. :97.00 Max. :9.00 Max. :29.00

# The package VIM has a function to visualize where the missing

# data is present. It gives the percentage of NA's for each

# variable and for the most important combinations of NA's.

VIM::aggr(airquality)

VIM::aggr(airqualityNoNA)

# Stepwise regression without NA's -- no problem

modBIC1 <- MASS::stepAIC(lm(Ozone ~ ., data = airqualityNoNA),

k = log(nrow(airqualityNoNA)), trace = 0)

summary(modBIC1)

##

## Call:

## lm(formula = Ozone ~ Temp, data = airqualityNoNA)

##

## Residuals:

## Min 1Q Median 3Q Max

## -27.645 -13.180 -0.136 8.926 37.666

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -90.1846 24.6414 -3.660 0.00138 **
## Temp 1.6321 0.3367 4.847 7.63e-05 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 15.95 on 22 degrees of freedom

## Multiple R-squared: 0.5164, Adjusted R-squared: 0.4944

## F-statistic: 23.49 on 1 and 22 DF, p-value: 7.634e-05

# But we only take into account 16% of the original data

nrow(airqualityNoNA) / nrow(airquality)

## [1] 0.1568627

# Removing the predictor with many NA's, as we did before

# We also exclude NA's from other predictors

airqualityNoSolar.R <- na.exclude(subset(airquality, select = -Solar.R))

modBIC2 <- MASS::stepAIC(lm(Ozone ~ ., data = airqualityNoSolar.R),

k = log(nrow(airqualityNoSolar.R)), trace = 0)

summary(modBIC2)

##

## Call:

## lm(formula = Ozone ~ Wind + Temp + Month, data = airqualityNoSolar.R)

##

## Residuals:

## Min 1Q Median 3Q Max

## -43.973 -14.170 -3.107 10.638 102.297

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -67.7279 25.3507 -2.672 0.0088 **
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## Wind -3.0439 0.7028 -4.331 3.51e-05 ***
## Temp 2.1323 0.2870 7.429 3.59e-11 ***
## Month -3.6167 1.6384 -2.207 0.0295 *
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 22.17 on 101 degrees of freedom

## Multiple R-squared: 0.5901, Adjusted R-squared: 0.5779

## F-statistic: 48.46 on 3 and 101 DF, p-value: < 2.2e-16

# In this example the approach works well because most of

# the NA's are associated to the variable Solar.R

# Input data using the sample mean

library(mice)

airqualityMean <- complete(mice(data = airquality, m = 1, method = "mean"))

##

## iter imp variable

## 1 1 Ozone Solar.R Day

## 2 1 Ozone Solar.R Day

## 3 1 Ozone Solar.R Day

## 4 1 Ozone Solar.R Day

## 5 1 Ozone Solar.R Day

head(airqualityMean)

## Ozone Solar.R Wind Temp Month Day

## 1 41.00000 190.0000 7.4 67 5 1.00000

## 2 36.00000 118.0000 8.0 72 5 2.00000

## 3 12.00000 181.7857 12.6 74 5 3.00000

## 4 18.00000 181.7857 11.5 62 5 15.62857

## 5 42.12931 181.7857 14.3 56 5 5.00000

## 6 28.00000 181.7857 14.9 66 5 15.62857

# Explanation of the syntax:

# - mice::complete() serves to retrieve the completed dataset from

# the mids object.

# - m = 1 specifies that we only want a reconstruction of the

# dataset because the imputation method is deterministic

# (it could be random).

# - method = "mean" says that we want the sample mean to be

# used to fill NA's in all the columns. This only works

# properly for quantitative variables.

# Impute using linear regression for the response (first column)

# and mean for the predictors (remaining five columns)

airqualityLm <- complete(mice(data = airquality, m = 1,

method = c("norm.predict", rep("mean", 5))))

##

## iter imp variable

## 1 1 Ozone Solar.R Day

## 2 1 Ozone Solar.R Day

## 3 1 Ozone Solar.R Day

## 4 1 Ozone Solar.R Day

## 5 1 Ozone Solar.R Day

head(airqualityLm)

## Ozone Solar.R Wind Temp Month Day

## 1 41.00000 190.0000 7.4 67 5 1.00000

## 2 36.00000 118.0000 8.0 72 5 2.00000

## 3 12.00000 181.7857 12.6 74 5 3.00000

## 4 18.00000 181.7857 11.5 62 5 15.62857

## 5 -13.35375 181.7857 14.3 56 5 5.00000

## 6 28.00000 181.7857 14.9 66 5 15.62857

# Imputed data -- some extrapolation problems may happen

airqualityLm$Ozone[is.na(airquality$Ozone)]

## [1] -13.3537515 33.3839709 -15.1032941 -6.4344422 15.0745276 43.7185093 34.5128480 0.1488983 57.7500138

## [10] 62.1313290 30.1891953 70.4905697 72.0216949 75.6909337 38.1841717 43.5104926 57.9764970 69.7165869

## [19] 63.0884481 51.9374205 50.0400961 56.8792515 41.2844048 49.6257521 33.0354266 67.4490679 48.9905942

## [28] 54.0457773 51.9941898 50.1697328 46.1697595 71.3235772 49.9344726 39.0222991 26.9297719 77.0827188

## [37] 26.9508942
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# Notice that the imputed data is the same (except for a small

# truncation that is introduced by mice) as

predict(lm(airquality$Ozone ~ ., data = airqualityMean),

newdata = airqualityMean[is.na(airquality$Ozone), -1])

## 5 10 25 26 27 32 33 34 35 36

## -13.3537515 33.3839709 -15.1032941 -6.4344422 15.0745276 43.7185093 34.5128480 0.1488983 57.7500138 62.1313290

## 37 39 42 43 45 46 52 53 54 55

## 30.1891953 70.4905697 72.0216949 75.6909337 38.1841717 43.5104926 57.9764970 69.7165869 63.0884481 51.9374205

## 56 57 58 59 60 61 65 72 75 83

## 50.0400961 56.8792515 41.2844048 49.6257521 33.0354266 67.4490679 48.9905942 54.0457773 51.9941898 50.1697328

## 84 102 103 107 115 119 150

## 46.1697595 71.3235772 49.9344726 39.0222991 26.9297719 77.0827188 26.9508942

# Removing the truncation with ridge = 0

complete(mice(data = airquality, m = 1,

method = c("norm.predict", rep("mean", 5)),

ridge = 0))[is.na(airquality$Ozone), 1]

##

## iter imp variable

## 1 1 Ozone Solar.R Day

## 2 1 Ozone Solar.R Day

## 3 1 Ozone Solar.R Day

## 4 1 Ozone Solar.R Day

## 5 1 Ozone Solar.R Day

## [1] -13.3537515 33.3839709 -15.1032941 -6.4344422 15.0745276 43.7185093 34.5128480 0.1488983 57.7500138

## [10] 62.1313290 30.1891953 70.4905697 72.0216949 75.6909337 38.1841717 43.5104926 57.9764970 69.7165869

## [19] 63.0884481 51.9374205 50.0400961 56.8792515 41.2844048 49.6257521 33.0354266 67.4490679 48.9905942

## [28] 54.0457773 51.9941898 50.1697328 46.1697595 71.3235772 49.9344726 39.0222991 26.9297719 77.0827188

## [37] 26.9508942

# The default mice's method (predictive mean matching) works

# better in this case (in the sense that it does not yield

# negative Ozone values)

# Notice that there is randomness in the imputation!

airqualityMice <- complete(mice(data = airquality, m = 1, seed = 123))

##

## iter imp variable

## 1 1 Ozone Solar.R Day

## 2 1 Ozone Solar.R Day

## 3 1 Ozone Solar.R Day

## 4 1 Ozone Solar.R Day

## 5 1 Ozone Solar.R Day

head(airqualityMice)

## Ozone Solar.R Wind Temp Month Day

## 1 41 190 7.4 67 5 1

## 2 36 118 8.0 72 5 2

## 3 12 64 12.6 74 5 3

## 4 18 44 11.5 62 5 11

## 5 19 27 14.3 56 5 5

## 6 28 286 14.9 66 5 22
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A.5 A note of caution with inference after model-selection

Inferences from models that result from model-selection
procedures, such as stepwise regression, ridge, or lasso,
have to be analyzed with caution. The reason is be-
cause we are using the sample twice: one for selecting the
most significant / informative predictors in order to
be included in the model, and other for making infer-
ence using the same sample. While making this, we are
biasing the significance tests, and thus obtaining unreal-
istically small p-values. In other words, when included
in the model, some selected predictors will be shown as
significant when in reality they are not.

A relatively simple solution for performing valid in-
ference in a data-driven selected model is to split the
dataset in two parts: one part for performing model-
selection (selection of important variables and model
structure; inside this part we could have two subparts for
training and validation) and another for fitting the model
and carrying out inference on the coefficients based on that
fit. Obviously, this approach has the undesirable conse-
quence of losing power in the estimation and inference
parts due to the sample splitting, but it guarantees valid
inference in a simple and general way.

The next simulation exercise exemplifies the previous remarks.
Consider the following linear model

Y = β1X1 + β2X2 + β3X3 + β4X4 + ε, (A.8)

where β1 = β2 = 1, β3 = β4 = 0, and ε ∼ N (0, 1). The next chunk
of code analyses the significances of the four coefficients for:

1. The model with all the predictors. The inferences for the coef-
ficients are correct: the distribution of the p-values (pvalues1) is
uniform whenever H0 : β j = 0 holds (for j = 3, 4) and concen-
trated around 0 when H0 does not hold (for j = 1, 2).

2. The model with predictors selected by stepwise regression. The
inferences for the coefficients are biased: when X3 and X4 are
included in the model is because they are highly significant for
the given sample by mere chance. Therefore, the distribution of
the p-values (pvalues2) is not uniform but concentrated at 0.

3. The model with selected predictors by stepwise regression, but
fitted in a separate dataset. In this case, the p-values (pvalues3)
are not unrealistically small if the non-significant predictors are
included in the model and the inference is correct.
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# Simulation setting

n <- 2e2

p <- 4

p0 <- p %/% 2

beta <- c(rep(1, p0), rep(0, p - p0))

# Generate two sets of independent data following the same linear model

# with coefficients beta and null intercept

x1 <- matrix(rnorm(n * p), nrow = n, ncol = p)

data1 <- data.frame("x" = x1)

xbeta1 <- x1 %*% beta

x2 <- matrix(rnorm(n * p), nrow = n, ncol = p)

data2 <- data.frame("x" = x2)

xbeta2 <- x2 %*% beta

# Objects for the simulation

M <- 1e4

pvalues1 <- pvalues2 <- pvalues3 <- matrix(NA, nrow = M, ncol = p)

set.seed(12345678)

data1$y <- xbeta1 + rnorm(n)

nam <- names(lm(y ~ 0 + ., data = data1)$coefficients)

# Simulation

# pb <- txtProgressBar(style = 3)

for (i in 1:M) {

# Generate new data

data1$y <- xbeta1 + rnorm(n)

# Obtain the significances of the coefficients for the usual linear model

mod1 <- lm(y ~ 0 + ., data = data1)

s1 <- summary(mod1)

pvalues1[i, ] <- s1$coefficients[, 4]

# Obtain the significances of the coefficients for a data-driven selected

# linear model (in this case, by stepwise regression using BIC)

mod2 <- MASS::stepAIC(mod1, k = log(n), trace = 0)

s2 <- summary(mod2)

ind <- match(x = names(s2$coefficients[, 4]), table = nam)

pvalues2[i, ind] <- s2$coefficients[, 4]

# Generate independent data

data2$y <- xbeta2 + rnorm(n)

# Significances of the coefficients by the data-driven selected model

s3 <- summary(lm(y ~ 0 + ., data = data2[, c(ind, p + 1)]))

pvalues3[i, ind] <- s3$coefficients[, 4]

# Progress

# setTxtProgressBar(pb = pb, value = i / M)

}

# Percentage of NA's: NA = predictor excluded

apply(pvalues2, 2, function(x) mean(is.na(x)))

## [1] 0.0000 0.0000 0.9774 0.9766

# Boxplots of significances

boxplot(pvalues1, names = expression(beta[1], beta[3], beta[3], beta[4]),

main = "p-values in the full model", ylim = c(0, 1))

boxplot(pvalues2, names = expression(beta[1], beta[3], beta[3], beta[4]),

main = "p-values in the stepwise model", ylim = c(0, 1))

boxplot(pvalues3, names = expression(beta[1], beta[3], beta[3], beta[4]),

main = "p-values in the model with the predictors selected by

stepwise regression, and fitted in an independent sample",

ylim = c(0, 1))
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# Test uniformity of the p-values associated to the coefficients that are 0

apply(pvalues1[, (p0 + 1):p], 2, function(x) ks.test(x, y = "punif")$p.value)

## [1] 0.4755784 0.4965309

apply(pvalues2[, (p0 + 1):p], 2, function(x) ks.test(x, y = "punif")$p.value)

## [1] 0 0

apply(pvalues3[, (p0 + 1):p], 2, function(x) ks.test(x, y = "punif")$p.value)

## [1] 0.8322453 0.1940926



1 This is an important step that is
required for 3D graphics to work.

B
Software

B.1 Installation of R and RStudio

This is what you have to do in order to install R and RStudio in
your own computer:

1. In Mac OS X, if you want to have 3D functionality for packages
like rgl , download and install first XQuartz and log out and
back on your Mac OS X account1. Be sure that your Mac OS X
system is up-to-date.

2. Download the latest version of R at https://cran.r-project.
org/. For Windows, you can download it directly here. For Mac
OS X, download the latest version here.

3. Install R. In Windows, be sure to select the 'Startup options'

and then choose 'SDI' in the 'Display Mode' options. Leave the
rest of installation options as default.

4. Download the latest version of RStudio for your system at
https://www.rstudio.com/products/rstudio/download/#download

and install it.

Linux users can follow the corresponding instructions here for
installing R, download RStudio (only certain Ubuntu and Fedora

versions are supported), and install it using a package manager.

B.2 Introduction to RStudio

RStudio is the most employed Integrated Development Environ-
ment (IDE) for R nowadays. When you start RStudio you will see a
window similar to Figure B.1. There are a lot of items in the GUI,
most of them described in the RStudio IDE Cheat Sheet. The most
important things to keep in mind are:

1. The code is written in scripts in the source panel (upper-left panel
in Figure B.1).

2. For running a line or code selection from the script in the console
(first tab in the lower-left panel in Figure B.1), you do it with
the keyboard shortcut 'Ctrl+Enter' (Windows and Linux) or
'Cmd+Enter' (Mac OS X).

https://www.xquartz.org/
https://cran.r-project.org/
https://cran.r-project.org/
https://cran.r-project.org/bin/windows/base/release.html
https://cran.r-project.org/bin/macosx/
https://www.rstudio.com/products/rstudio/download/#download
https://cran.r-project.org/
https://www.rstudio.com/products/rstudio/download/#download
https://www.rstudio.com/wp-content/uploads/2016/01/rstudio-IDE-cheatsheet.pdf
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Figure B.1: Main window of RStudio.
Extracted from here.

B.3 Introduction to R

This section provides a collection of self-explainable code snippets
for the programming language R (R Core Team, 2020). These snip-
pets are not meant to provide an exhaustive introduction to R but
just to illustrate the very basic functions and methods.

In the following, # denotes comments to the code and ## outputs
of the code.

Simple computations

# The console can act as a simple calculator

1.0 + 1.1

2 * 2

3/2

2ˆ3

1/0

0/0

# Use ";" for performing several operations in the same line

(1 + 3) * 2 - 1; 3 + 2

# Elemental mathematical functions

sqrt(2); 2ˆ0.5

exp(1)

log(10) # Natural logarithm

log10(10); log2(10) # Logs in base 10 and 2

sin(pi); cos(0); asin(0)

tan(pi/3)

sqrt(-1)

# Remember to close the parenthesis -- errors below

1 +

(1 + 3

## Error: <text>:24:0: unexpected end of input

## 22: 1 +

https://www.rstudio.com/wp-content/uploads/2016/01/rstudio-IDE-cheatsheet.pdf
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## 23: (1 + 3

## ˆ

Compute:

a. e2+sin(2)

cos−1
( 1

2

)
+2

. Answer: 2.723274.

b.
√

32.5 + log(10). Answer: 4.22978.
c. (20.93− log2(3+

√
2 + sin(1)))10tan(1/3))

√
32.5 + log(10).

Answer: -3.032108.

Variables and assignment
# Any operation that you perform in R can be stored in a variable

# (or object) with the assignment operator "<-"

x <- 1

# To see the value of a variable, simply type it

x

## [1] 1

# A variable can be overwritten

x <- 1 + 1

# Now the value of x is 2 and not 1, as before

x

## [1] 2

# Capitalization matters

X <- 3

x; X

## [1] 2

## [1] 3

# See what are the variables in the workspace

ls()

## [1] "x" "X"

# Remove variables

rm(X)

X

## Error in eval(expr, envir, enclos): object 'X' not found

Do the following:

a. Store −123 in the variable y.
b. Store the log of the square of y in z.
c. Store y−z

y+z2 in y and remove z.
d. Output the value of y. Answer: 4.366734.

Vectors
# We combine numbers with the function "c"

c(1, 3)

## [1] 1 3

c(1.5, 0, 5, -3.4)

## [1] 1.5 0.0 5.0 -3.4

# A handy way of creating integer sequences is the operator ":"
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1:5

## [1] 1 2 3 4 5

# Storing some vectors

myData <- c(1, 2)

myData2 <- c(-4.12, 0, 1.1, 1, 3, 4)

myData

## [1] 1 2

myData2

## [1] -4.12 0.00 1.10 1.00 3.00 4.00

# Entrywise operations

myData + 1

## [1] 2 3

myDataˆ2

## [1] 1 4

# If you want to access a position of a vector, use [position]

myData[1]

## [1] 1

myData2[6]

## [1] 4

# You can also change elements

myData[1] <- 0

myData

## [1] 0 2

# Think on what you want to access...

myData2[7]

## [1] NA

myData2[0]

## numeric(0)

# If you want to access all the elements except a position,

# use [-position]

myData2[-1]

## [1] 0.0 1.1 1.0 3.0 4.0

myData2[-2]

## [1] -4.12 1.10 1.00 3.00 4.00

# Also with vectors as indexes

myData2[1:2]

## [1] -4.12 0.00

myData2[myData]

## [1] 0

# And also

myData2[-c(1, 2)]

## [1] 1.1 1.0 3.0 4.0

# But do not mix positive and negative indexes!

myData2[c(-1, 2)]

## Error in myData2[c(-1, 2)]: only 0's may be mixed with negative subscripts

# Remove the first element

myData2 <- myData2[-1]



notes for predictive modeling 313

Do the following:

a. Create the vector x = (1, 7, 3, 4).
b. Create the vector y = (100, 99, 98, ..., 2, 1).
c. Create the vector z = (4, 8, 16, 32, 96).
d. Compute x2 + y4 and cos(x3) + sin(x2)e−y2 . Answers:

104 and -0.9899925.
e. Set x2 = 0 and y2 = −1. Recompute the previous ex-

pressions. Answers: 97 and 2.785875.
f. Index y by x + 1 and store it as z. What is the output?

Answer: z is c(-1, 100, 97, 96).

Some functions

# Functions take arguments between parenthesis and transform them

# into an output

sum(myData)

## [1] 2

prod(myData)

## [1] 0

# Summary of an object

summary(myData)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.0 0.5 1.0 1.0 1.5 2.0

# Length of the vector

length(myData)

## [1] 2

# Mean, standard deviation, variance, covariance, correlation

mean(myData)

## [1] 1

var(myData)

## [1] 2

cov(myData, myDataˆ2)

## [1] 4

cor(myData, myData * 2)

## [1] 1

quantile(myData)

## 0% 25% 50% 75% 100%

## 0.0 0.5 1.0 1.5 2.0

# Maximum and minimum of vectors

min(myData)

## [1] 0

which.min(myData)

## [1] 1

# Usually the functions have several arguments, which are set

# by "argument = value" In the next case, the second argument is

# a logical flag to indicate the kind of sorting

sort(myData) # If nothing is specified, decreasing = FALSE is

## [1] 0 2

# assumed

sort(myData, decreasing = TRUE)

## [1] 2 0

# Do not know what are the arguments of a function? Use args

# and help!

args(mean)

## function (x, ...)
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## NULL

?mean

Do the following:

a. Compute the mean, median and variance of y. An-
swers: 49.5, 49.5, 843.6869.

b. Do the same for y + 1. What are the differences?
c. What is the maximum of y? Where is it placed?
d. Sort y increasingly and obtain the 5th and 76th posi-

tions. Answer: c(4, 75).
e. Compute the covariance between y and y. Compute

the variance of y. Why do you get the same result?

Matrices, data frames, and lists

# A matrix is an array of vectors

A <- matrix(1:4, nrow = 2, ncol = 2)

A

## [,1] [,2]

## [1,] 1 3

## [2,] 2 4

# Another matrix

B <- matrix(1, nrow = 2, ncol = 2, byrow = TRUE)

B

## [,1] [,2]

## [1,] 1 1

## [2,] 1 1

# Matrix is a vector with dimension attributes

dim(A)

## [1] 2 2

# Binding by rows or columns

rbind(1:3, 4:6)

## [,1] [,2] [,3]

## [1,] 1 2 3

## [2,] 4 5 6

cbind(1:3, 4:6)

## [,1] [,2]

## [1,] 1 4

## [2,] 2 5

## [3,] 3 6

# Entrywise operations

A + 1

## [,1] [,2]

## [1,] 2 4

## [2,] 3 5

A * B

## [,1] [,2]

## [1,] 1 3

## [2,] 2 4

# Accessing elements

A[2, 1] # Element (2, 1)

## [1] 2

A[1, ] # First row -- this is a vector

## [1] 1 3

A[, 2] # First column -- this is a vector

## [1] 3 4
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# Obtain rows and columns as matrices (and not as vectors)

A[1, , drop = FALSE]

## [,1] [,2]

## [1,] 1 3

A[, 2, drop = FALSE]

## [,1]

## [1,] 3

## [2,] 4

# Matrix transpose

t(A)

## [,1] [,2]

## [1,] 1 2

## [2,] 3 4

# Matrix multiplication

A %*% B

## [,1] [,2]

## [1,] 4 4

## [2,] 6 6

A %*% B[, 1]

## [,1]

## [1,] 4

## [2,] 6

A %*% B[1, ]

## [,1]

## [1,] 4

## [2,] 6

# Care is needed

A %*% B[1, , drop = FALSE] # Incompatible product

## Error in A %*% B[1, , drop = FALSE]: non-conformable arguments

# Compute inverses with "solve"

solve(A) %*% A

## [,1] [,2]

## [1,] 1 0

## [2,] 0 1

# A data frame is a matrix with column names

# Useful when you have multiple variables

myDf <- data.frame(var1 = 1:2, var2 = 3:4)

myDf

## var1 var2

## 1 1 3

## 2 2 4

# You can change names

names(myDf) <- c("newname1", "newname2")

myDf

## newname1 newname2

## 1 1 3

## 2 2 4

# You can access variables by its name with the "$" operator

myDf$newname1

## [1] 1 2

# And create new variables also (they have to be of the same

# length as the rest of variables)

myDf$myNewVariable <- c(0, 1)

myDf

## newname1 newname2 myNewVariable

## 1 1 3 0

## 2 2 4 1

# A list is a collection of arbitrary variables
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myList <- list(myData = myData, A = A, myDf = myDf)

# Access elements by names

myList$myData

## [1] 0 2

myList$A

## [,1] [,2]

## [1,] 1 3

## [2,] 2 4

myList$myDf

## newname1 newname2 myNewVariable

## 1 1 3 0

## 2 2 4 1

# Reveal the structure of an object

str(myList)

## List of 3

## $ myData: num [1:2] 0 2

## $ A : int [1:2, 1:2] 1 2 3 4

## $ myDf :'data.frame': 2 obs. of 3 variables:

## ..$ newname1 : int [1:2] 1 2

## ..$ newname2 : int [1:2] 3 4

## ..$ myNewVariable: num [1:2] 0 1

str(myDf)

## 'data.frame': 2 obs. of 3 variables:

## $ newname1 : int 1 2

## $ newname2 : int 3 4

## $ myNewVariable: num 0 1

# A less lengthy output

names(myList)

## [1] "myData" "A" "myDf"

Do the following:

a. Create a matrix called M with rows given by y[3:5],
y[3:5]ˆ2, and log(y[3:5]).

b. Create a data frame called myDataFrame with column
names “y”, “y2”, and “logy” containing the vectors
y[3:5], y[3:5]ˆ2 and log(y[3:5]), respectively.

c. Create a list, called l, with entries for x and M. Access
the elements by their names.

d. Compute the squares of myDataFrame and save the
result as myDataFrame2.

e. Compute the log of the sum of myDataFrame and
myDataFrame2. Answer:

## y y2 logy

## 1 9.180087 18.33997 3.242862

## 2 9.159678 18.29895 3.238784

## 3 9.139059 18.25750 3.234656

More on data frames
# The iris dataset is already imported in R

# (beware: locfit has also an iris dataset, with different names
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# and shorter)

# The beginning of the data

head(iris)

## Sepal.Length Sepal.Width Petal.Length Petal.Width Species

## 1 5.1 3.5 1.4 0.2 setosa

## 2 4.9 3.0 1.4 0.2 setosa

## 3 4.7 3.2 1.3 0.2 setosa

## 4 4.6 3.1 1.5 0.2 setosa

## 5 5.0 3.6 1.4 0.2 setosa

## 6 5.4 3.9 1.7 0.4 setosa

# "names" gives you the variables in the data frame

names(iris)

## [1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"

# So we can access variables by "$" or as in a matrix

iris$Sepal.Length[1:10]

## [1] 5.1 4.9 4.7 4.6 5.0 5.4 4.6 5.0 4.4 4.9

iris[1:10, 1]

## [1] 5.1 4.9 4.7 4.6 5.0 5.4 4.6 5.0 4.4 4.9

iris[3, 1]

## [1] 4.7

# Information on the dimension of the data frame

dim(iris)

## [1] 150 5

# "str" gives the structure of any object in R

str(iris)

## 'data.frame': 150 obs. of 5 variables:

## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...

## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...

## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...

## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...

## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...

# Recall the species variable: it is a categorical variable

# (or factor), not a numeric variable

iris$Species[1:10]

## [1] setosa setosa setosa setosa setosa setosa setosa setosa setosa setosa

## Levels: setosa versicolor virginica

# Factors can only take certain values

levels(iris$Species)

## [1] "setosa" "versicolor" "virginica"

# If a file contains a variable with character strings as

# observations (either encapsulated by quotation marks or not),

# the variable will become a factor when imported into R

Do the following:

a. Load the faithful dataset into R.
b. Get the dimensions of faithful and show beginning

of the data.
c. Retrieve the fifth observation of eruptions in two

different ways.
d. Obtain a summary of waiting.
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Vector-related functions
# The function "seq" creates sequences of numbers equally separated

seq(0, 1, by = 0.1)

## [1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

seq(0, 1, length.out = 5)

## [1] 0.00 0.25 0.50 0.75 1.00

# You can short the latter argument

seq(0, 1, l = 5)

## [1] 0.00 0.25 0.50 0.75 1.00

# Repeat number

rep(0, 5)

## [1] 0 0 0 0 0

# Reverse a vector

myVec <- c(1:5, -1:3)

rev(myVec)

## [1] 3 2 1 0 -1 5 4 3 2 1

# Another way

myVec[length(myVec):1]

## [1] 3 2 1 0 -1 5 4 3 2 1

# Count repetitions in your data

table(iris$Species)

##

## setosa versicolor virginica

## 50 50 50

Do the following:

a. Create the vector x = (0.3, 0.6, 0.9, 1.2).
b. Create a vector of length 100 ranging from 0 to 1 with

entries equally separated.
c. Compute the amount of zeros and ones in x <- c(0,

0, 1, 0, 1, 0, 0, 1, 0, 1, 0). Check that they are
the same as in rev(x).

d. Compute the vector (0.1, 1.1, 2.1, ..., 100.1) in four dif-
ferent ways using seq and rev. Do the same but using
: instead of seq. Hint: add 0.1.

Logical conditions and subsetting
# Relational operators: x < y, x > y, x <= y, x >= y, x == y, x!= y

# They return TRUE or FALSE

# Smaller than

0 < 1

## [1] TRUE

# Greater than

1 > 1

## [1] FALSE

# Greater or equal to

1 >= 1 # Remember: ">="" and not "=>"" !

## [1] TRUE

# Smaller or equal to

2 <= 1 # Remember: "<="" and not "=<"" !
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## [1] FALSE

# Equal

1 == 1 # Tests equality. Remember: "=="" and not "="" !

## [1] TRUE

# Unequal

1 != 0 # Tests inequality

## [1] TRUE

# TRUE is encoded as 1 and FALSE as 0

TRUE + 1

## [1] 2

FALSE + 1

## [1] 1

# In a vector-like fashion

x <- 1:5

y <- c(0, 3, 1, 5, 2)

x < y

## [1] FALSE TRUE FALSE TRUE FALSE

x == y

## [1] FALSE FALSE FALSE FALSE FALSE

x != y

## [1] TRUE TRUE TRUE TRUE TRUE

# Subsetting of vectors

x

## [1] 1 2 3 4 5

x[x >= 2]

## [1] 2 3 4 5

x[x < 3]

## [1] 1 2

# Easy way of work with parts of the data

data <- data.frame(x = c(0, 1, 3, 3, 0), y = 1:5)

data

## x y

## 1 0 1

## 2 1 2

## 3 3 3

## 4 3 4

## 5 0 5

# Data such that x is zero

data0 <- data[data$x == 0, ]

data0

## x y

## 1 0 1

## 5 0 5

# Data such that x is larger than 2

data2 <- data[data$x > 2, ]

data2

## x y

## 3 3 3

## 4 3 4

# Problem -- what happened?

data[x > 2, ]

## x y

## 3 3 3

## 4 3 4

## 5 0 5

# AND operator "&"

TRUE & TRUE

## [1] TRUE
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TRUE & FALSE

## [1] FALSE

FALSE & FALSE

## [1] FALSE

# OR operator "|"

TRUE | TRUE

## [1] TRUE

TRUE | FALSE

## [1] TRUE

FALSE | FALSE

## [1] FALSE

# Both operators are useful for checking for ranges of data

y

## [1] 0 3 1 5 2

index1 <- (y <= 3) & (y > 0)

y[index1]

## [1] 3 1 2

index2 <- (y < 2) | (y > 4)

y[index2]

## [1] 0 1 5

Do the following for the iris dataset:

a. Compute the subset corresponding to Petal.Length

either smaller than 1.5 or larger than 2. Save this
dataset as irisPetal.

b. Compute and summarize a linear regression of
Sepal.Width into Petal.Width + Petal.Length for
the dataset irisPetal. What is the R2? Solution: 0.101.

c. Check that the previous model is the same as regress-
ing Sepal.Width into Petal.Width + Petal.Length for
the dataset iris with the appropriate subset expres-
sion.

d. Compute the variance for Petal.Width when
Petal.Width is smaller or equal that 1.5 and larger
than 0.3. Solution: 0.1266541.

Plotting functions
# "plot" is the main function for plotting in R

# It has a different behavior depending on the kind of object

# that it receives

# How to plot some data

plot(iris$Sepal.Length, iris$Sepal.Width,

main = "Sepal.Length vs. Sepal.Width")

# Change the axis limits

plot(iris$Sepal.Length, iris$Sepal.Width, xlim = c(0, 10),

ylim = c(0, 10))

# How to plot a curve (a parabola)

x <- seq(-1, 1, l = 50)

y <- xˆ2

plot(x, y, main = "A red thick parabola", type = "l",

col = "red", lwd = 3)
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# Plotting a more complicated curve between -pi and pi

x <- seq(-pi, pi, l = 50)

y <- (2 + sin(10 * x)) * xˆ2

plot(x, y, type = "l") # Kind of rough...

# Remember that we are joining points for creating a curve!

# More detailed plot

x <- seq(-pi, pi, l = 500)

y <- (2 + sin(10 * x)) * xˆ2

plot(x, y, type = "l")

# For more options in the plot customization see

?plot

## Help on topic 'plot' was found in the following packages:

##

## Package Library

## graphics /Library/Frameworks/R.framework/Versions/4.1-arm64/Resources/library

## base /Library/Frameworks/R.framework/Resources/library

##

##

## Using the first match ...

?par

# "plot" is a first level plotting function. That means that

# whenever is called, it creates a new plot. If we want to

# add information to an existing plot, we have to use a second

# level plotting function such as "points", "lines" or "abline"

plot(x, y) # Create a plot

lines(x, xˆ2, col = "red") # Add lines

points(x, y + 10, col = "blue") # Add points

abline(a = 5, b = 1, col = "orange", lwd = 2) # Add a straight

# line y = a + b * x

Do the following:

a. Plot the faithful dataset.
b. Add the straight line y = 110− 15x (red).
c. Make a new plot for the function y = sin(x) (black).

Add y = sin(2x) (red), y = sin(3x) (blue), and y =

sin(4x) (orange).

Distributions

# R allows to sample [r], compute density/probability mass

# functions [d], compute distribution function [p], and compute

# quantiles [q] for several continuous and discrete distributions.

# The format employed is [rdpq]name, where name stands for:

# - norm -> Normal

# - unif -> Uniform

# - exp -> Exponential

# - t -> Student's t

# - f -> Snedecor's F

# - chisq -> Chi squared

# - pois -> Poisson

# - binom -> Binomial
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# More distributions:

?Distributions

# Sampling from a normal -- 5 random points from a N(0, 1)

rnorm(n = 5, mean = 0, sd = 1)

## [1] -0.5881703 0.3004478 -2.0931383 1.8219223 0.3728798

# If you want to have always the same result, set the seed of

# the random number generator

set.seed(45678)

rnorm(n = 5, mean = 0, sd = 1)

## [1] 1.4404800 -0.7195761 0.6709784 -0.4219485 0.3782196

# Plotting the density of a N(0, 1) -- the Gaussian bell

x <- seq(-4, 4, l = 100)

y <- dnorm(x = x, mean = 0, sd = 1)

plot(x, y, type = "l")

# Plotting the distribution function of a N(0, 1)

x <- seq(-4, 4, l = 100)

y <- pnorm(q = x, mean = 0, sd = 1)

plot(x, y, type = "l")

# Computing the 95% quantile for a N(0, 1)

qnorm(p = 0.95, mean = 0, sd = 1)

## [1] 1.644854

# All distributions have the same syntax: rname(n,...),

# dname(x,...), dname(p,...) and qname(p,...), but the

# parameters in ... change. Look them in ?Distributions

# For example, here is the same for the uniform distribution

# Sampling from a U(0, 1)

set.seed(45678)

runif(n = 10, min = 0, max = 1)

## [1] 0.9251342 0.3339988 0.2358930 0.3366312 0.7488829 0.9327177 0.3365313 0.2245505 0.6473663 0.0807549

# Plotting the density of a U(0, 1)

x <- seq(-2, 2, l = 100)

y <- dunif(x = x, min = 0, max = 1)

plot(x, y, type = "l")

# Computing the 95% quantile for a U(0, 1)

qunif(p = 0.95, min = 0, max = 1)

## [1] 0.95

# Sampling from a Bi(10, 0.5)

set.seed(45678)

samp <- rbinom(n = 200, size = 10, prob = 0.5)

table(samp) / 200

## samp

## 1 2 3 4 5 6 7 8 9

## 0.010 0.060 0.115 0.220 0.210 0.215 0.115 0.045 0.010

# Plotting the probability mass of a Bi(10, 0.5)

x <- 0:10

y <- dbinom(x = x, size = 10, prob = 0.5)

plot(x, y, type = "h") # Vertical bars

# Plotting the distribution function of a Bi(10, 0.5)

x <- 0:10

y <- pbinom(q = x, size = 10, prob = 0.5)

plot(x, y, type = "h")
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Do the following:

a. Compute the 90%, 95% and 99% quantiles of a F
distribution with df1 = 1 and df2 = 5. Answer:
c(4.060420, 6.607891, 16.258177).

b. Plot the distribution function of a U (0, 1). Does it
make sense with its density function?

c. Sample 100 points from a Poisson with lambda = 5.
d. Sample 100 points from a U (−1, 1) and compute its

mean.
e. Plot the density of a t distribution with df = 1 (use a

sequence spanning from -4 to 4). Add lines of differ-
ent colors with the densities for df = 5, df = 10, df =

50, and df = 100. Do you see any pattern?

Functions

# A function is a way of encapsulating a block of code so it can

# be reused easily. They are useful for simplifying repetitive

# tasks and organize analyses

# This is a silly function that takes x and y and returns its sum

# Note the use of "return" to indicate what should be returned

add <- function(x, y) {

z <- x + y

return(z)

}

# Calling add -- you need to run the definition of the function

# first!

add(x = 1, y = 2)

## [1] 3

add(1, 1) # Arguments names can be omitted

## [1] 2

# A more complex function: computes a linear model and its

# posterior summary. Saves us a few keystrokes when computing a

# lm and a summary

lmSummary <- function(formula, data) {

model <- lm(formula = formula, data = data)

summary(model)

}

# If no return(), the function returns the value of the last

# expression

# Usage

lmSummary(Sepal.Length ~ Petal.Width, iris)

##

## Call:

## lm(formula = formula, data = data)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1.38822 -0.29358 -0.04393 0.26429 1.34521

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 4.77763 0.07293 65.51 <2e-16 ***
## Petal.Width 0.88858 0.05137 17.30 <2e-16 ***
## ---
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## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.478 on 148 degrees of freedom

## Multiple R-squared: 0.669, Adjusted R-squared: 0.6668

## F-statistic: 299.2 on 1 and 148 DF, p-value: < 2.2e-16

# Recall: there is no variable called model in the workspace.

# The function works on its own workspace!

model

## Error in eval(expr, envir, enclos): object 'model' not found

# Add a line to a plot

addLine <- function(x, beta0, beta1) {

lines(x, beta0 + beta1 * x, lwd = 2, col = 2)

}

# Usage

plot(x, y)

addLine(x, beta0 = 0.1, beta1 = 0)

# The function "sapply" allows to sequentially apply a function

sapply(1:10, sqrt)

## [1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490 2.645751 2.828427 3.000000 3.162278

sqrt(1:10) # The same

## [1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490 2.645751 2.828427 3.000000 3.162278

# The advantage of "sapply" is that you can use with any function

myFun <- function(x) c(x, xˆ2)

sapply(1:10, myFun) # Returns a 2 x 10 matrix

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

## [1,] 1 2 3 4 5 6 7 8 9 10

## [2,] 1 4 9 16 25 36 49 64 81 100

# "sapply" is useful for plotting non-vectorized functions

sumSeries <- function(n) sum(1:n)

plot(1:10, sapply(1:10, sumSeries), type = "l")

# "apply" applies iteratively a function to rows (1) or columns

# (2) of a matrix or data frame

A <- matrix(1:10, nrow = 5, ncol = 2)

A

## [,1] [,2]

## [1,] 1 6

## [2,] 2 7

## [3,] 3 8

## [4,] 4 9

## [5,] 5 10

apply(A, 1, sum) # Applies the function by rows

## [1] 7 9 11 13 15

apply(A, 2, sum) # By columns

## [1] 15 40

# With other functions

apply(A, 1, sqrt)

## [,1] [,2] [,3] [,4] [,5]

## [1,] 1.00000 1.414214 1.732051 2 2.236068

## [2,] 2.44949 2.645751 2.828427 3 3.162278

apply(A, 2, function(x) xˆ2)

## [,1] [,2]

## [1,] 1 36

## [2,] 4 49

## [3,] 9 64

## [4,] 16 81

## [5,] 25 100
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Do the following:

a. Create a function that takes as argument n and re-
turns the value of ∑n

i=1 i2.
b. Create a function that takes as input the argument N

and then plots the curve (n, ∑n
i=1

√
i) for n = 1, . . . , N.

Hint: use sapply.

Control structures

# The "for" statement allows to create loops that run along a

# given vector

# Print 3 times a message (i varies in 1:3)

for (i in 1:3) {

print(i)

}

## [1] 1

## [1] 2

## [1] 3

# Another example

a <- 0

for (i in 1:3) {

a <- i + a

}

a

## [1] 6

# Nested loops are possible

A <- matrix(0, nrow = 2, ncol = 3)

for (i in 1:2) {

for (j in 1:3) {

A[i, j] <- i + j

}

}

# The "if" statement allows to create conditional structures of

# the forms:

# if (condition) {

# # Something

# } else {

# # Something else

# }

# These structures are thought to be inside functions

# Is the number positive?

isPositive <- function(x) {

if (x > 0) {

print("Positive")

} else {

print("Not positive")

}

}

isPositive(1)

## [1] "Positive"

isPositive(-1)

## [1] "Not positive"

# A loop can be interrupted with the "break" statement

# Stop when x is above 100

x <- 1

for (i in 1:1000) {

x <- (x + 0.01) * x
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print(x)

if (x > 100) {

break

}

}

## [1] 1.01

## [1] 1.0302

## [1] 1.071614

## [1] 1.159073

## [1] 1.35504

## [1] 1.849685

## [1] 3.439832

## [1] 11.86684

## [1] 140.9406

Do the following:

a. Compute Cn×k in Cn×k = An×mBm×k from A and B.
Use that ci,j = ∑m

ℓ=1 ai,lbl,j. Test the implementation
with simple examples.

b. Create a function that samples a N (0, 1) and returns
the first sampled point that is larger than 4.

c. Create a function that simulates N samples from the
distribution of max(X1, . . . , Xn) where X1, . . . , Xn are
iid U (0, 1).
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