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Department of Signal Theory and Communications
Carlos III University of Madrid

Madrid, Spain
ignasip@tsc.uc3m.es

M. Julia Fernández-Getino Garcı́a
Department of Signal Theory and Communications

Carlos III University of Madrid
Madrid, Spain

mjulia@tsc.uc3m.es

Abstract—Superimposed training (ST) is an attractive tech-
nique for channel estimation in orthogonal frequency division
multiplexing (OFDM) modulation. However, its main challenge
is the intrinsic interference due to the joint transmission of
pilot and data symbols, which can be mitigated by averaging
the received signal. Previous works analyzed the mean square
error (MSE) of the channel estimation, for both least squares
(LS) and minimum MSE (MMSE) estimators, and showed that,
under realistic channel models, the optimum number of averaged
symbols could be computed by solving a transcendental equation.
In this paper, as a practical implementation proposal, these
optimum averaging values are parametrically approximated with
a multilinear regression model. Also, it is proposed an accurate
classifier that, under delay and performance tolerances, is able
to select the most suitable estimator between LS and MMSE.

Index Terms—OFDM, Superimposed Training, Time-Variant
Channel, Channel Estimation, Minimum Mean Squared Error,
Least Squares, Averaging, Regression, Classifier.

I. INTRODUCTION

The fifth generation (5G) of wireless communications has
been designed to enhance, by several orders of magnitude,
the capacity of data transmission and the amount of devices
supported by the network [1]. For this purpose, orthogonal
frequency division multiplexing (OFDM) has been chosen as
the main modulation scheme, however, to properly operate,
accurate estimations of the channel model are required [2].

A common approach to perform this estimation is based
on the pilot symbol assisted modulation (PSAM) technique,
which reserves resources from the OFDM grid to be used as
pilot symbols [3]. Even though this method is very reliable,
if the channel coefficients change very frequently or many
devices are in the system, the spectral efficiency can be very
hampered [1]. Under these conditions, superimposed training
(ST), which consists in a scheme that embeds the pilot symbols
with the data stream, has proven to provide better results [3]–
[5]. In particular, ST showed a great potential to mitigate the
pilot contamination issue due to overcrowded cells [6].

This work has been supported by a fellowship from the Spanish Min-
istry of Science and Innovation, under grant PRE2018-084315, and, by the
Spanish National Project IRENE-EARTH (PID2020-115323RB-C33 / AEI /
10.13039/501100011033).

Then, since the potential of ST is very attractive for future
schemes, in [7] and [8], its performance was analyzed when
realistic time-variant channel coefficients from 5G New Radio
(NR) standard models were used. In these works, the mean
square error (MSE) of the ST-based channel estimation was
derived for the least squares (LS) and minimum MSE (MMSE)
estimators. Among the results, it was shown that the number
of received symbols that needs to be averaged, which is
a common procedure that mitigates an intrinsic interference
of ST [3], was no longer the trivial state-of-the-art (SOA)
coherence time of the channel model. In fact, the averaging
parameter could be obtained for every scenario by solving a
transcendental equation numerically.

To avoid this costly computation, especially for real time
applications, in [9], a parametrical implementation of LS
estimator was proposed following a multilinear regression
model. To extend this proposal for the MMSE case, a more
general approach is presented in this paper.

The contributions of this paper are:

• A multilinear regression model is proposed to paramet-
rically compute the optimum averaging length of ST for
MMSE, and it is compared with the reported regression
model for LS.

• The robustness of the regression model is shown in
terms of final MSE discrepancy and the best polynomial
configuration is determined.

• A novel classification method is proposed, which selects
the most suitable estimator between LS and MMSE
depending on delay and performance design tolerances.

Notation: x, x and X refer to a scalar, a vector and a matrix,
respectively, with

[
X
]
(m,:)

being the elements from the m-th
row; (·)T is the transpose and (·)−1 is the inverse of a matrix;
⊗ is the matrix Kronecker product and || is the concatenation
of two vectors; E {·} is the mean, ⌈·⌉ is the ceil and ⌊·⌉ is
the nearest integer operation; N0 and N1 are the sets of non-
negative and positive integers, respectively, and R>0 is the
set of positive real numbers; ∩ corresponds to the intersection
operation between sets.
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II. SYSTEM MODEL

Following the line of work of [7]–[9], the considered
system model is an uplink (UL) single-antenna transmitter
and receiver. Obviously, under proper notation, the proposed
analysis is valid for more complex scenarios.

A. Transmitter

In the transmitter, all the resources from the OFDM grid
have implemented a ST scheme. The complete symbol (x) for
the k-th subcarrier at m-th time index is [3],

xk
m = skm + ckm ,

{
∀ k ∈ [0, · · · ,K − 1]

∀m ∈ N0

, (1)

where c and s are pilot and data symbols, whose powers are
Pc and Ps, respectively, and K is the number of subcarriers.
The intrinsic interference between c and s is limited by β, the
power allocation factor. This way, the power of x is,

P = Ps + Pc

{
Ps = (1− β)P

Pc = βP
, with β = [0, 1] . (2)

After that, x is processed by the OFDM transmitter scheme
which modulates the signal with the proper guard bands and
cyclic-prefix (CP).

B. Receiver

In the receiver, a perfect synchronization of the received
signal is assumed. The signal is processed with the OFDM
receiver scheme and the symbol at the k-th subcarrier and m-th
time index is recovered as the following flat fading model,

ykm = Hk
mxk

m + wk
m = Hk

mskm +Hk
mckm + wk

m , (3)

in which Hk
m ∼ CN

(
0, σ2

h

K

)
and wk

m ∼ CN
(
0, σ2

w

)
, are the

channel coefficient and the additive white Gaussian noise
(AWGN) component, both in the frequency domain. Without
loss of generality, only small-scale fading effects of the
channel model have been taken into account.

Also, the power relation between components of the system
can be expressed with the signal-to-noise ratio (SNR) as,

SNR =
Pσ2

h

σ2
w

, SNR dB = 10 log
(
SNR

)
, (4)

where σ2
h and σ2

w are the powers of the channel and the
AWGN, respectively, and SNR dB is the logarithmic SNR(1).

C. Channel Model in Time Domain

Since the aim of this paper is to optimize the ST scheme un-
der realistic time variant channels, only the temporal evolution
of the channel coefficients will be considered(2). Therefore, as
it was explained in [7]–[9], the correlation between the m-th
and the m′-th time index of the channel coefficients can be
expressed as,

E
{
(Hm)

∗
Hm′

}
=

σ2
h

K
ρt(γ∆m) , with ∆m = |m−m′| ,

(5)

(1)All logarithmic values from this paper are defined with “log” in base 10.
(2)From now on, the k-th index from channel coefficients will be omitted.

in which ρt(·) is the correlation profile and γ is a constant that
embeds the configuration of the system as follows [10], [11],

γ = 2πfdTsym , with Tsym =

(
1 +

Lcp

K

)
∆f

and fd =
v

3.6 c
fc ,

(6)
where Tsym is the duration of the OFDM symbol, computed
with the subacarrier spacing (∆f ) and the extra samples
appended as CP (Lcp); and fd is the Doppler frequency
computed with the relative speed between the transmitter and
the receiver (v in km/h for convenience), the speed of light
constant (c in m/s) and the carrier frequency (fc).

From the definition of Tsym and fd in (6), the coher-
ence time of the channel model can be approximated with
Tcoh ∼ 0.423

fd
[12]. This value is commonly used as the dura-

tion that channel coefficients remain almost constant (at least
with a correlation higher than 70%) [7]. Analogously, Tcoh

can also be expressed in terms of number of symbols as,

Nc ∼
⌊
Tcoh

Tsym

⌉
=

⌊
κ

v

⌉
∼ Nc(v) , with κ =

0.423 · 3.6 c
Tsym fc

.

(7)

III. OPTIMAL ST-BASED CHANNEL ESTIMATION:
LS & MMSE

In this section, the optimal averaging of ST is presented
when realistic time-variant channels are considered. Detailed
derivations of following expressions can be found in previous
works such as [7], [8].

Before analyzing any channel estimation technique, it
should be appreciated that both c and s from (3) are affected
by the same channel coefficient. In [3], [5], [7], to enhance
the MSE of the estimation, the authors proved that this self-
interference could be mitigated if a group of received symbols
is averaged as follows,

ȳχξ =
∑
k′

∑
m′

1

NtNf
yk

′

m′ , with

{
(χ− 1)Nf ≤ k′≤ χNf − 1

(ξ − 1)Nt ≤ m′≤ ξNt − 1
,

(8)

where Nt and Nf are the size of the averaged group in time
and frequency domain, and ξ ∈ N1 and χ ∈

[
1,
⌈

K
Nf

⌉]
are

time and frequency index positions for each group, respec-
tively. After that, ȳχξ is used as the input for both LS or MMSE
estimators to estimate the corresponding channel coefficients.

A. Derivation of the Estimator and the MSE

The LS estimator can be computed by minimizing the
following cost function [13],

Jcost =

∣∣∣∣ c∗βP ȳχξ −
(
ĤLS

)χ
ξ

∣∣∣∣2 →
(
ĤLS

)χ
ξ
=

c∗

βP
ȳχξ . (9)

Since there is no distinction between different (ξ, χ) groups, to
simplify notation, the analysis will be focused on ξ = χ = 1
and both indices will be omitted.
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Ψ =
σ2
h

K

(
1− 1

Nt

Nt−1∑
m′=0

A2
m′

(Contribution of the channel coefficients’ variability︷ ︸︸ ︷
1

N2
t

Nt−1∑
m1=0

Nt−1∑
m2=0

ρt(γ |m1 −m2|) +
B

Nt
Υ0

))
, (11)

where {Am′ , B} =

{
{1 ,−1} for the LS estimator

{ζm′ from (10) , 1} for the MMSE estimator

Using (9), the MMSE can be derived as follows,

Ĥm, MMSE =
Cov {Hm , ȳ}

Var {ȳ}
ȳ = ζmĤLS

where ζm =

∑Nt−1
m1=0 ρt(γ |m −m1|)

1
Nt

∑Nt−1
m1=0

∑Nt−1
m2=0 ρt(γ |m1 −m2|) + Υ0

,

and Υ0 =
1

Nf

((
1

β
− 1

)
+

σ2
w

βP

K

σ2
h

)
.

(10)

Unlike LS, MMSE depends on ζm , which shows the effect of
the correlation between different channel coefficients. Finally,
the respective MSE can be derived as (11).

B. Optimization of the MSE

From (11), it should be noted that the MSE (Ψ) can be
minimized if the proper number of averaged symbols (Nt)
is selected. Obviously, this computation is affected by the
correlation profile

(
ρt(·)

)
. For example, if a simplified block-

fading model is assumed, in which the channel coefficients
remain constant for a specific Tcoh, the optimum averaging
is actually the corresponding Nc [3], [4]. However, in a more
realistic channel model this trivial averaging is no longer valid.

In [7] and [8], to derive the optimum averaging under real-
istic channel models, an approximation of a correlation profile
from 5G-NR standard was proposed. The results provided the
optimum MSE performance and showed to be very accurate
under different scenario conditions. To obtain these solutions,
for both LS and MMSE, the non-negative real-valued roots
(nopt

t,LS, n
opt
t,MMSE ∈ R>0) of the following equations must be

computed,

γ

nopt
t,LS

ϕ
(
nopt
t,LS

)
− Si

(
γnopt

t,LS

)
− γ

2
Υ0 = 0 , (12)

(
ϕ
(
nopt
t,MMSE

)
−

nopt
t,MMSE

γ
Si
(
γnopt

t,MMSE

))
·

·
(
2 +

1

ntΥ0
ϕ
(
nopt
t,MMSE

))
− 1

2
ϕ
(
nopt
t,MMSE

)
= 0 ,

(13)
where,

ϕ(nt) =
2

γ2
(γnt Si (γnt) + cos (γnt)− 1) . (14)

Finally, the optimum averaging values are their closest inte-

gers, Nopt
t,LS =

⌊
nopt
t,LS

⌉
and Nopt

t,MMSE =
⌊
nopt
t,MMSE

⌉
.

IV. PROPOSED REGRESSION MODEL

As it was shown in previous Subsection III-B, the opti-
mum averaging can be numerically computed by finding the
solutions to transcendental equations (12) and (13). Since
this computation relies in numerical methods, which may
become time consuming in real-time applications, a parametric
approach, based on a regression model, can be an attractive
implementation.

In this section, the multiple linear regression model from
[9] is revisited and it is extended to MMSE. Since the same
approach will be applied independently to each estimator, the
“LS” and “MMSE” labels from the variables will be omitted.

In this manner, the fitting polynomial that tries to match the
i-th data point

(
yi = log(Nopt

t,LS)i, or yi = log(Nopt
t,MMSE)i

)
, can

be expressed as [14],

yi = α0 +

p∑
j=1

αj xi,j + εi , ∀ i = 1, 2, ..., n , with p < n

(15)
where, αj are weight values, xi,j are the input variables of
the model, εi is the approximation error, and n and p are the
size of the data points set and the order of the polynomial,
respectively(3).

From the scalar fitting of previous equation (15), a general
expression can be written in a matrix form [14]. This way,
the whole data points set can be approximated at once, which
ultimately can be used to estimate the weights of the regression
model. A common way to proceed with this computation is by
applying the pseudoinverse of the regression matrix as follows,

y = Xα+ ε → α̂ =
(
XTX

)−1
XTy , (16)

in which the previous scalar values are gathered in a matrix
form as,

y =
[
y1 · · · yn

]T
ε =

[
ε1 · · · εn

]T
α =

[
α0 · · · αp

]T
α̂ =

[
α̂0 · · · α̂p

]T
X =

1 x1,1 · · · x1,p

...
...

. . .
...

1 xn,1 · · · xn,p

 .

(17)

and α̂j are the estimated weights of the polynomial.
As it was shown in [9] for the LS case, the values of Nopt

t

showed an almost linear relationship with Nc(v) in log-log

(3)Despite the reuse of variables (x, y) from previous Section II, from now
on, they will refer only to the regression model variables from (15).
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scale, and a less trivial relationship with SNR dB . Now, it has
been found that, for the MMSE case, the same almost linear
relationship is followed. Thus, yi can be approximated with
a polynomial whose inputs (X) are constructed with SNR dB

i

and log
(
Nc(vi)

)
values as follows,

xi = [X](i,:) =
(
x2i ⊗ x1i

)T
(18)

where


x1i =

[
1 log

(
Nc(vi)

)
· · · log

(
Nc(vi)

)p′ ]T
x2i =

[
1 SNR dB

i · · ·
(
SNR dB

i

)p′ ]T ,

and p′ is the maximum order of each variable.
In this case, the order of the polynomial is p = (p′ + 1)2,

however, simpler models, which do not have cross-terms
between SNR dB

i and log
(
Nc(vi)

)
, are constructed with,

xi =
(
x1i ||x2′

i

)T
(19)

where x2′
i =

[
SNR dB

i · · ·
(
SNR dB

i

)p′ ]T
.

Here, the order of the polynomial is reduced to p = 2 p′ + 1.
As a last step, the optimum averaging can be computed

parametrically using the estimated weights of each estimator.
This way, the resultant polynomial model is,

ŷi = log(n̂opt
t,i ) = α̂0 +

p∑
j=1

α̂j xi,j , N̂opt
t,i =

⌊
n̂opt
t,i

⌉
. (20)

V. NUMERICAL RESULTS

In this paper, simulations have been computed using the
same 5G-NR channel model and the same system deployment
as in [7]. It basically consists in a mmWave transmission
model modulated at 28 GHz (fc), with an OFDM scheme
of 512 subcarriers (K), whose subcarrier spacing (∆f ) is
120 kHz and the overhead of the CP

(Lcp

K

)
is 7%. As a

convention, the coloring of the results will be orange for LS
and blue for MMSE.

A. Performance Analysis

To start with, in Fig. 1 it is plotted the MSE performance of
an ST when the averaging is implemented at the trivial SOA
coherence time or at the optimum averaging from [7] and [8].

In general, the SOA averaging (empty markers with dotted
lines) provides worse results, particularly in high SNR which
shows an error floor. On the other hand, the optimum averaging
(full markers with solid lines) consistently improves the MSE
for all the speed scenarios. As expected, the MMSE shows
the best performance, which is more apparent in low SNR
environments with medium-fast speeds.

B. Delay Analysis and Accuracy of the Regression Model

In Fig. 2, Nopt
t values for different SNR conditions are

plotted against the coherence time of their respective scenario
(expressed as Nc in the bottom axis or v in the top axis).

From this figure, it can be appreciated the apparent linear re-
lationship between the data points. For this reason, it has been
illustrated the multilinear regression model from Section IV
(colored lines from red to green) that matches the original data
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Fig. 1. MSE performance of optimum and SOA averaging for both LS and
MMSE estimators.
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Fig. 2. Relationship between Nopt
t,LS (left) and Nopt

t,MMSE (right) with respect to
Nc under different scenarios. Also, parametric approximation (colored solid
lines) of a polynomial with p′ = 5 and cross-terms input variables.

points (colored markers) with high accuracy. Also, to train the
parametric model, the outlier points from the LS case (empty
squares in Fig. 2-left) were omitted [9].

It must be noted that the polynomial regression from Fig. 2
(colored solid lines) is computed with the input variables
of (18), which has cross-terms between log

(
Nc(vi)

)
and

SNR dB
i , and their maximum order is p′ = 5. The reason

to use this configuration is depicted in the following Fig. 3,
in which it is plotted the discrepancy between the MSE at the
approximated N̂opt

t,i and the MSE at the original Nopt
t,i . In the

top figure it is represented the maximum error, while in the
bottom it is depicted the mean error, which are computed as
follows,

ϵMax =
max(ϵ)

Ψ
(
Nopt

t

) · 100 , ϵAvg =
E {ϵ}

Ψ
(
Nopt

t

) · 100
with ϵ =

∣∣∣Ψ(Nopt
t

)
−Ψ

(
N̂opt

t

)∣∣∣ .

(21)

From these results, when p′ > 2, ϵMax is very similar for all
regression models, with the best results for p′ = 4 (Fig. 3-top).
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Fig. 3. Maximum (top) and averaged (bottom) error in terms of the MSE
due to different regression models to approximate the optimum averaging.

On the other hand, when p′ > 3, ϵAvg is minimal for both
estimators (Fig. 3-bottom). Specifically, results are the most
accurate if the polynomial model is constructed considering
cross-terms (solid lines) as in (18).

C. Proposed Estimator Classifier

Once the parametric model is shown to provide accurate
results, in this section it is proposed a classification method
to select the most suitable estimator for each scenario.

To start with, it is true that a trivial solution consists in
using always the MMSE estimator since it provides the best
performance in terms of MSE (Fig. 1) and delay (Fig. 2)(4).
However, there are occasions in which the LS estimator can
be a more attractive solution, particularly because its simpler
expression does not rely on ζm from (10), and it does not need
to be updated at each m-th time index.

Thus, to select an estimator, the following inequalities have
be proposed as classification rules related to,

Delay: Nopt
t,LS −Nopt

t,MMSE

LS
≶

MMSE
td ·Nopt

t,MMSE (td∈ [0, 1]),

(22)

Performance: Ψopt
LS −Ψopt

MMSE

LS
≶

MMSE
tp ·Ψopt

MMSE (tp∈ [0, 1]),

(23)

where Ψopt=Ψ
(
Nopt

t

)
, and td, tp are design thresholds.

In Fig. 4, these classifiers are depicted for different speeds
and SNR values when td = tp = 10%. As it can be seen, in
general, when there are high speeds and low SNR conditions
(left diagonal side), the selected estimator is MMSE, whereas
under low speeds and high SNR values (right diagonal side)
the selected estimator is LS. In essence, this means that if
the channel conditions are favorable, the LS estimator is good
enough to be selected instead of the MMSE.

It is worth noticing that altough the performance classifier
(Fig. 4-middle) shows a clear boundary between estimator

(4)Note that Fig. 2-right does not have outlier points.
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Fig. 4. Classification criterions for different speeds and SNR values: delay
(top), performance (middle) and the intersection of both (bottom). Also, linear
approximation of LS and MMSE regions (green dashed line).

regions, the delay classifier (Fig. 4-top) is more irregular
with sparsed blue regions in the bottom-left part of the grid.
This behavior happens because under high speed scenarios,
Nopt

t,MMSE < 10. Then, since Nopt
t,LS −Nopt

t,MMSE is usually equal
to 1, which is greater than 10% ·Nopt

t,MMSE, the delay classifier
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is not fulfilled by LS. To avoid this “blue” sparsity, the delay
classifier from (22) can be adjusted by treating the following
special case apart (blue squares with orange circles),

If Nopt
t,LS −Nopt

t,MMSE = 1 > td ·Nopt
t,MMSE → LS . (22b)

Then, in Fig. 4-bottom the intersection (∩) of both sets of
selected estimators is computed and a complete classifier based
on delay & performance criterions is depicted.

Now, the main issue about these results is that for each
scenario, conditions (22), (22b) and (23), which depend on
Nopt

t and Ψopt, need to be computed. As an alternative, since
the boundary of LS and MMSE regions in Fig. 4-bottom is
very distinct, the following simplified decision method (dashed
green line) is proposed,

a log(vi)+b−SNR dB
i

LS
≶

MMSE
0 ,with

a =
SNR dB

2 −SNR dB
1

log(v2)−log(v1)

b = SNR dB
2 −a log(v2)

.

(24)
where a and b are the slope and the offset of the line, and
(v1, SNR dB

1 ) and (v2, SNR dB
2 ) are two known configuration

parameters (yellow squares), whose only condition is to belong
to MMSE region and to be contiguous to LS region. This
way, the delay & performance classifier can be simplified as
a decision method constructed with a linear boundary.

Finally, in Fig. 5, the accuracy of (24) is shown under
different td and tp tolerances. In addition, the robustness of the
proposed boundary is tested when (22b) is considered (solid
lines) or when it is omitted (dotted lines). This figure compares
the rate of true positives (TP-vertical axis) in front of the rate
of false positives (FP-horizontal axis), which is known as the
receiver operating characteristic curve (ROC) [15]. An ideal
classifier (dash-dotted blue line) reaches the upper-left corner,
whereas a random guess classifier (dashed blue line) provides
a 45º diagonal.

From these results, it can be seen that, in general, the
linear boundary from (24) is reliable since its TP values

are close to the upper-left corner (full and empty circles).
Additionally, results are optimum when tp < td (green curves),
particularly, when the special case (22b) is considered (solid
lines). Overall, it can be stated that the implementation of
the linear approximation (24) is promising to select the most
suitable estimator for each scenario.

VI. CONCLUSION

This paper proposes a practical implementation of ST
technique in two application areas. On one hand, a multilinear
regression model is presented to parametrically approximate
the optimum averaging for the MMSE estimator. This way,
previous solutions that required numerical methods can be
avoided. On the other hand, an estimator classifier for LS and
MMSE, which selects the most suitable technique depending
on delay and performance tolerances, is proposed. Finally, a
simplified version of this classifier is designed and its accuracy
is verified under different configurations.
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