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Efficient evaluation of the error probability for
pilot-assisted URLLC with Massive MIMO

A. Oguz Kislal, Alejandro Lancho, Member, IEEE, Giuseppe Durisi, Senior Member, IEEE, and Erik
G. Ström, Fellow, IEEE

Abstract—We propose a numerically efficient method for
evaluating the random-coding union bound with parameter s on
the error probability achievable in the finite-blocklength regime
by a pilot-assisted transmission scheme employing Gaussian code-
books and operating over a memoryless block-fading channel.
Our method relies on the saddlepoint approximation, which,
differently from previous results reported for similar scenarios,
is performed with respect to the number of fading blocks (a.k.a.
diversity branches) spanned by each codeword, instead of the
number of channel uses per block. This different approach
avoids a costly numerical averaging of the error probability
over the realizations of the fading process and of its pilot-based
estimate at the receiver and results in a significant reduction
of the number of channel realizations required to estimate the
error probability accurately. Our numerical experiments for both
single-antenna communication links and massive multiple-input
multiple-output (MIMO) networks show that, when two or more
diversity branches are available, the error probability can be
estimated accurately with the saddlepoint approximation with
respect to the number of fading blocks using a numerical method
that requires about two orders of magnitude fewer Monte-Carlo
samples than with the saddlepoint approximation with respect to
the number of channel uses per block.

Index Terms—Pilot-assisted transmission, finite-blocklength in-
formation theory, saddlepoint approximation, ultra-reliable low-
latency communication, massive MIMO system

I. INTRODUCTION

Next-generation wireless communication systems will sup-
port mission-critical links operating under stringent reliability
and latency constraints. Denoted as ultra-reliable low-latency
communications (URLLC), this type of links will enable appli-
cations such as vehicle-to-everything communication, factory
automation [2], autonomous driving [3], and haptic communi-
cations [4].

One crucial characteristic of the URLLC traffic is that
it often involves small information payloads combined with
short packets, i.e., packets consisting of a small number of
coded symbols. To understand why short packets are needed,
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it is worth recalling that the length of a data packet depends
on the product of the available bandwidth and the signal
duration. In URLLC, the signal duration is limited because
of the latency constraint of the targeted applications (e.g.,
control of automated factories, critical internet-of-things ser-
vices). The bandwidth is often also limited, because of the
need to orthogonalize the transmission of different users to
avoid multiuser interference, which has a negative impact
on the packet error probability. As pointed out in, e.g., [5],
the classic asymptotic performance metrics used to design
communication systems, i.e., the ergodic and the outage rates,
are unsuitable in the short-packet regime. Thus, a much more
precise characterization of the tradeoff between transmission
rate and error probability is required.

Finite-blocklength information theory, a field whose rel-
evance to URLLC has become apparent after the seminal
works in [6], [7], provides a precise characterization of such
tradeoffs, in terms of nonasymptotic upper (achievability) and
lower (converse) bounds on the smallest error probability
compatible with a given SNR, transmission rate and packet
size.

To satisfy the reliability requirements over fading channels
in URLLC, under the above-mentioned diversity limitations in
both time and frequency, it becomes crucial to leverage on the
spatial diversity offered by multiple antennas. A promising
approach is to use massive multiple-input multiple-output
(MIMO)—a wireless cellular network architecture in which a
base station (BS) with a large number of active antennas serves
multiple users on the same time-frequency resources [8]. The
benefits of massive MIMO are well understood [9], and this
technology has been incorporated into the 5G standard.

Focusing on communication over memoryless block-fading
channels, we present in this paper a numerically efficient
method to evaluate information-theoretic upper bounds on the
finite-blocklength error probability achievable in practically
relevant scenarios, including massive MIMO deployments.
Methods such as the one presented in this paper are necessary
since evaluating most of the available information-theoretic
error-probability bounds and approximations that are accurate
for scenarios of interest for URLLC [10]–[12] is—as we shall
see—extremely time consuming. This prevents the use of
such expressions within URLLC optimization routines such
as resource-allocation and scheduling algorithms.

State of the art: Throughout the paper, we will focus on
the upper bound on the error probability obtained by using
the random-coding union bound with parameter s (RCUs)
proposed in [13]. As discussed in, e.g., [10], this bound



2

is particularly suited for transmission over fading channels
because it provides achievability results that hold both for
the optimal noncoherent maximum-likelihood (ML) decoder,
as well as for more practically relevant transmission schemes
that rely on pilot-assisted transmission (PAT). For example,
PAT schemes include the case in which the acquired channel
estimate at the receiver is treated as perfect via the use of a
mismatched scaled nearest-neighbor (SNN) decoder [14]. In
fact, for this setup, it appears that the RCUs bound is the only
known tractable bound on the error probability. Moreover, the
normal and saddlepoint approximations seem to be the only
reasonable ways to approximate the RCUs bound.

The RCUs bound involves the computation of a certain tail
probability, which is not known in closed form and needs
to be evaluated numerically. If performed naively, this step
is time consuming because of the low error probabilities of
interest in URLLC. A common approach to circumvent this
issue encompasses the following two steps. One starts by
noting that, given the realization of the fading channel and
of its estimate at the receiver, the random variable whose tail
probability is of interest can be written as a sum of independent
random variables. Then, one uses the central-limit theorem to
approximate this tail probability by a Gaussian tail probability.
The resulting approximation, which is typically referred to as
normal approximation (see, e.g., [7, Sec.IV]), is, however, not
accurate for the error probabilities of interest in the URLLC
regime [12], [13]. Furthermore, this approach still requires
one to perform a Monte-Carlo averaging over the channel
realizations and their estimate at the receiver, which is time
consuming.

As shown in, e.g., [13], [15], a much more accurate approx-
imation can be obtained by using the so-called saddlepoint
method [16]. Consider a memoryless block-fading channel
where each packet is assumed to span nb fading blocks.
Assume that, within each fading block, ns coded symbols are
transmitted. For this scenario, the saddlepoint method can be
applied in two different ways: we can fix nb and perform a
saddlepoint expansion with respect to (w.r.t.) ns, i.e., perform
an expansion that is accurate when the number of symbols
per block is large. Alternatively, we can fix ns and perform a
saddlepoint expansion w.r.t nb, i.e., perform an expansion that
is accurate when the number of fading blocks (a.k.a. diversity
branches) is large.

For PAT transmission and SNN decoding, the first approx-
imation has been recently studied in [10], [12] for the special
case nb = 1. As discussed in [12], this approach yields an
approximation on the conditional error probability given the
channel and its estimate, which needs then to be averaged w.r.t.
the channel realizations and their estimates at the receiver. A
different approach to evaluate this conditional error probability
is described in [17].

The second approximation was studied in [11], but only for
the case of optimal ML decoder. This approximation pertains
the unconditional tail probability, and, hence, does not require
an additional averaging over the realizations of the channel
and its estimate. As we shall see, this makes the numerical
evaluation of this approximation computationally efficient.

Contributions: Focusing on independent and identically
distributed (i.i.d.) Gaussian codebooks, we present in this
paper two saddlepoint approximations on the RCUs for the
practically relevant case of PAT and SNN decoding: the one
w.r.t. ns generalizes the one reported in [12] to arbitrary
nb values; the one w.r.t. to nb generalizes the one reported
in [11] to PAT and SNN decoding. Considering the URLLC
regime, we then provide a detailed analysis of the accuracy
and the computational complexity of both approximations in:
i) a single-input single-output (SISO) setup; ii) the uplink
of a two-user single-cell massive MIMO network; iii) the
uplink of a multi-user multi-cell massive MIMO network.
This progression allows us to understand the impact of the
number of BS and users in the network on both the accuracy
and the numerical complexity of the considered approxi-
mations. Our analysis shows that, despite being developed
under the assumption of large nb, the saddlepoint w.r.t. nb
is accurate for nb values as small as 2 in both SISO and
multi-user MIMO scenarios. Furthermore, it entails a much
smaller computational complexity than the saddlepoint w.r.t.
ns. Specifically, whenever nb ≥ 2, the number of samples
required to evaluate the saddlepoint w.r.t. nb via Monte-
Carlo simulation is typically around 2 orders of magnitude
smaller than the number of samples required to evaluate the
saddlepoint approximation w.r.t. ns, once the averaging over
the channel and its estimate is accounted for. We also show
that, for the scenarios considered in the paper, the normal
approximation is typically not accurate.

Notation: We denote random vectors and random scalars
by upper-case boldface letters such as X and upper-case
standard letters, such as X , respectively. Their realizations
are indicated by lower-case letters of the same font. We
use upper-case letters of two special fonts to denote deter-
ministic matrices (e.g., Y) and random matrices (e.g., Y).
To avoid ambiguities, we use another font, such as R for
rate, to denote constants that are typically capitalized in the
literature. The identity matrix of size a × a is written as Ia.
The circularly-symmetric Gaussian distribution is denoted by
CN (0, σ2), where σ2 denotes the variance. The superscripts
(·)T , (·)H , and (·)∗ denote transposition, Hermitian transpo-
sition, and complex conjugation, respectively. We write log(·)
to denote the natural logarithm, ∥·∥ stands for the ℓ2-norm,
P[·] for the probability of an event, E[·] for the expectation
operator, Var[·] for the variance of a random variable, and
Q(·) for the Gaussian Q-function. Finally, for two functions
f(n) and g(n), the notation f(n) = o(g(n)) means that
limn→∞ f(n)/g(n) = 0 and the notation f(n) = O(g(n))
means that lim supn→∞ |f(n)/g(n)| < ∞.

Organization of the paper: In Section II, we present a
finite-blocklength upper bound on the error probability for the
SISO Rayleigh block-fading channel. We then introduce differ-
ent methods to evaluate this bound in the URLLC regime. The
extension of our framework to multicell, multiuser massive
MIMO networks is presented in Section III. In Section IV,
we discuss the accuracy and computational complexity of the
methods introduced in Section II with the help of numerical
examples. Concluding remarks are provided in Section V.
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Fig. 1: Structure of a packet for nc = 6, np = 2, nb = 3.

II. A NON-ASYMPTOTIC UPPER BOUND ON THE ERROR
PROBABILITY

A. The SISO System Model

We start by considering a SISO memoryless block-fading
channel. Specifically, the channel is assumed to stay constant
over the transmission of a block of nc channel uses and to
change independently across blocks. Each transmitted packet
spans nb such fading blocks. Hence, each packet consists of
nbnc complex-valued symbols. We assume that the first np
symbols within each block are pilots known to the receiver
and the remaining ns = nc − np symbols are data symbols,
as illustrated in Fig. 1. Pilot symbols are used to estimate
the fading channel within the corresponding block. The input-
output relation corresponding to the pilot transmission phase
within block ℓ = 1, . . . , nb is modeled as

Y
(p)
ℓ = Hℓx

(p)
ℓ +W

(p)
ℓ . (1)

Here, xp
ℓ denotes the deterministic np-dimensional vector of

pilot symbols, which we assume to satisfy the power constraint
∥x(p)

ℓ ∥2 = ρnp, where ρ denotes the average transmit power
per symbol. Furthermore, Hℓ denotes the scalar random fading
complex channel gain, and W

(p)
ℓ denotes the np-dimensional

additive noise vector, which may depend on the fading pro-
cess.1 We assume that the entries of W

(p)
ℓ are conditionally

independent and CN (0, σ2
ℓ )-distributed given the realization

of the fading process.
The received vector Y

(p)
ℓ and the pilot sequence x

(p)
ℓ are

used by the receiver to obtain an estimate Ĥℓ of the chan-
nel Hℓ. Note that we have not specified the fading distribution
or the algorithm used by the receiver to estimate the fading
channel. Indeed, the error probability bounds we shall present
in this section hold for arbitrary fading distributions and
arbitrary channel-estimation algorithms.

Within each block, the pilot-transmission phase is followed
by a data-transmission phase involving ns = nc −np symbols
per block, i.e., a total of nbns symbols. The input-output
relation for the ℓth block in the data phase is given by

Yℓ = Hℓxℓ +Wℓ. (2)

We assume that the nbns-dimensional vector [xT
1 , . . . ,x

T
nb
]T

is selected from a codebook C of size ⌈exp(nbncR)⌉, where
R denotes the transmission rate in nats per channel use.2

1Allowing for such dependency will turn out crucial to extend the SISO
analysis to the multiuser MIMO case.

2With an abuse of notation, we will use R to denote also the rate
measured in bits per channel use when presenting numerical experiments in
Sections IV-A and IV-B

To perform decoding, the receiver seeks the codeword in
the codebook that is closest to the received signal, once
each part of the codeword corresponding to a different fading
block is scaled by the available channel estimate. Mathe-
matically, given the received vector [yT

1 , . . . ,y
T
nb
]T and the

channel estimates {ĥ1, . . . , ĥnb}, the decoded codeword x̂ =
[x̂T

1 , . . . , x̂
T
nb
]T is determined as follows:

x̂ = arg min
x̄=[x̄T

1 ,...,x̄T
nb

]T∈C

nb∑
ℓ=1

∥yℓ − ĥℓx̄ℓ∥2. (3)

This decoder, which is known as mismatched SNN decoder,
coincides with the ML decoder only when the receiver has per-
fect channel-state information, i.e., ĥℓ = hℓ for ℓ = 1, . . . , nb.
The attractive feature of this decoder is that information-
theoretic bounds on its error probability can be approached in
practice using good channel codes for the nonfading AWGN
channel [10]. In contrast, approaching information-theoretic
error-probability bounds for the optimal ML decoder consid-
ered in [11] with low-complexity coding schemes is still an
open problem (note, however, the recent progress reported
in [18]).

B. The RCUs Finite-Blocklength Bound

Like most of the achievablity results in information theory,
the RCUs bound [13] we shall focus on in this paper is
obtained by means of a random-coding argument. Specifically,
one evaluates the average error probability averaged over a
randomly constructed ensemble of codebooks. In this paper,
we consider the i.i.d. Gaussian ensemble, in which each
symbol of each codeword is drawn independently from a
CN (0, ρ) distribution, where ρ models the average transmit
power per symbol in the data phase (same power as in the
pilot phase). Although suboptimal at finite blocklength [19] in
the nonfading SISO case, the i.i.d. Gaussian ensemble is often
used in the literature because it leads tractable expressions
when applied to PAT, SNN decoding, and multiuser MIMO
scenarios.

Specialized to our setup, the RCUs bound results in the
following upper bound ϵub on the packet error probability ϵ:

ϵ ≤ ϵub = P

[
logU

ncnb
+

1

ncnb

nb∑
ℓ=1

ıs

(
Xℓ;Yℓ, Ĥℓ

)
≤ R

]
. (4)

Here, U is a random variable that is uniformly distributed on
[0, 1] and independent of all other quantities,

ıs

(
Xℓ;Yℓ, Ĥℓ

)
=

ns∑
k=1

ıs

(
Xk,ℓ;Yk,ℓ, Ĥℓ

)
(5)

where Xk,ℓ and Yk,ℓ are the kth element of Xℓ and Yℓ respec-
tively, and ıs(x; y, ĥ) is the so-called generalized information
density, which, for the case of i.i.d. CN (0, ρ) codebooks and
SNN decoding, is given by [12, App. A]

ıs(x; y, ĥ) = −s
∣∣∣y − ĥx

∣∣∣2
+

s |y|2

1 + sρ
∣∣∣ĥ∣∣∣2 + log

(
1 + sρ

∣∣∣ĥ∣∣∣2) . (6)
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Finally, s > 0 is an optimization parameter that can be used
to tighten the bound.

In general, no closed-form expression is available for (4).
Hence, this probability needs to be evaluated with numerical
methods. A naı̈ve implementation of this step results in time-
consuming simulations, given the low target error probabilities
of interest in URLLC. We next discuss two approaches to
compute (4) efficiently: one is based on asymptotic expansions
of (4) applied w.r.t. the number of data symbols per block
ns, and the other is based on asymptotic expansions of (4)
applied w.r.t. the number of blocks nb. For each approach, we
will present an expansion based on the central-limit theorem,
which will result in the so-called normal approximation, and
an expansion based on the saddlepoint method.

C. Asymptotic Expansion w.r.t. ns

The idea behind this approach, which for the case nb = 1
has been explored in [12], is to analyze first a conditional
version of the probability in (4), in which the channel and its
estimate within each block are given. Specifically, one focuses
on

ϵub

(
h, ĥ

)
= P

[
logU

ncnb
+

1

ncnb

nb∑
ℓ=1

ns∑
k=1

ıs

(
Xk,ℓ;Yk,ℓ, ĥℓ

)
≤ R

∣∣H = h, Ĥ = ĥ

]
(7)

where H = [H1, . . . ,Hnb ]
T and Ĥ = [Ĥ1, . . . , Ĥnb ]

T .3 Then
one seeks an asymptotic approximation to this conditional
probability. The approximations that will be presented in this
section are easy to evaluate numerically because they depend
on quantities that can be evaluated in closed form. To obtain
the desired estimate of ϵub, one still needs to perform the
averaging

ϵub = EH,Ĥ

[
ϵub

(
H, Ĥ

)]
(8)

over the channel and its estimate numerically.
1) Normal Approximation w.r.t. ns: One way to numerically

approximate (7) is to perform a normal approximation w.r.t.
ns based on the Berry-Esseen central-limit theorem [20, Ch.
XVI.5]. Specifically, note that given H and Ĥ , the nbns
random variables

{
ıs(Xk,ℓ;Yk,ℓ, ĥℓ)

}
in (7) are conditionally

independent and identically distributed within each fading
block. Let Is(hℓ, ĥℓ) = E[ıs(X1,ℓ, Y1,ℓ, ĥℓ)] and Vs(hℓ, ĥℓ) =
Var[ıs(X1,ℓ;Y1,ℓ, ĥℓ)] denote the mean and the variance of
the information density, respectively. Then, conditioned on
H = h and Ĥ = ĥ it follows that

E

[
nb∑
ℓ=1

ns∑
k=1

ıs

(
Xk,ℓ;Yk,ℓ, ĥℓ

)]

= ns

nb∑
ℓ=1

E
[
ıs

(
X1,ℓ, Y1,ℓ, ĥℓ

)]
(9)

= ns

nb∑
ℓ=1

Is

(
hℓ, ĥℓ

)
(10)

3Note that Yk,ℓ depends on Hℓ via (2).

and

Var

[
nb∑
ℓ=1

ns∑
k=1

ıs

(
Xk,ℓ;Yk,ℓ, ĥℓ

)]

= ns

nb∑
ℓ=1

Var
[
ıs

(
X1,ℓ, Y1,ℓ, ĥℓ

)]
(11)

= ns

nb∑
ℓ=1

Vs

(
hℓ, ĥℓ

)
. (12)

Note that in (9) and (11) we set k = 1 without loss
of generality. We now apply the Berry-Esseen central-limit
theorem [20, Ch. XVI.5] to the tail probability in (7) to obtain

ϵub

(
h, ĥ

)
= Q


ns

nb∑
ℓ=1

Is(hℓ, ĥℓ)− ncnbR√
ns

nb∑
ℓ=1

Vs

(
hℓ, ĥℓ

)
+O

(
1√
ns

)
.

(13)
Here, both Is(hℓ, ĥℓ) and Vs(hℓ, ĥℓ) are available in closed-
form as

Is

(
hℓ, ĥℓ

)
=

(
1 + sρ

∣∣∣ĥℓ

∣∣∣2)+ (βℓ − αℓ) (14)

Vs

(
hℓ, ĥℓ

)
= (βℓ − αℓ)

2 + 2αℓβℓ(1− νℓ) (15)

where

αℓ = s

(
ρ
∣∣∣hℓ − ĥℓ

∣∣∣2 + σ2

)
(16)

βℓ =
s

1 + sρ
∣∣∣ĥ∣∣∣2

(
ρ |hℓ|2 + σ2

)
(17)

νℓ =
s2
∣∣∣ρ |hℓ|2 + σ2 − h∗

ℓ ĥℓρ
∣∣∣2

αℓβℓ

(
1 + sρ

∣∣∣ĥℓ

∣∣∣2) . (18)

Strictly speaking, according to [20, Ch. XVI.5], for (13)
to hold, we need to verify that the third central moment of
ıs

(
X1,ℓ;Y1,ℓ, ĥℓ

)
exists for every ℓ ∈ {1, . . . , nb}. Otherwise,

the error term in (13) does not vanish as ns grows, and the
normal approximation is not applicable. We will show in Sec-
tion II-C2 that the third central moment of ıs

(
X1,ℓ;Y1,ℓ, ĥℓ

)
indeed exists. The normal approximation w.r.t. ns is finally
obtained by ignoring the O(·) term in (13) and by averaging
the resulting approximation over H and Ĥ . This is typically
done via Monte-Carlo simulations.

2) Saddlepoint Approximation w.r.t. ns: Since it is based on
a central-limit theorem, the normal approximation is typically
accurate only in the regime in which the target rate R is
close to the mean of the information density [11]. However,
this regime may be of limited interest in URLLC, since it
may correspond to packet error probability values above the
URLLC target (see, e.g., [12, Fig. 1]).

A more refined approximation can be obtained by using
the so-called saddlepoint method. It results in an error prob-
ability expansion given in terms of a leading factor that
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decays exponentially with ns and captures the behavior of
the error probability in the large-deviation regime, and a sub-
exponential factor, which is obtained by applying a refined
normal approximation, and which makes the resulting ap-
proximation accurate in the short-packet regime. This method
allows one to obtain an approximation that is accurate for a
large range of target error probabilities and rates, including
the ones relevant in URLLC scenarios.

We now state this approximation. Consider again the condi-
tional probability given in (7). We fix again k = 1, without loss
of generality, and let κ(ζ) be the cumulant generating function
(CGF) of the random variable −∑nb

ℓ=1 ıs(X1,ℓ;Y1,ℓ, ĥℓ):

κ(ζ) = logE
[
e−ζ

∑nb
ℓ=1 ıs(X1,ℓ;Y1,ℓ,ĥℓ)

]
(19)

=

nb∑
ℓ=1

logE
[
e−ζıs(X1,ℓ;Y1,ℓ,ĥℓ)

]
. (20)

Note that κ(ζ) depends on h and ĥ, but we choose not to make
this dependence explicit, to keep the notation compact. Each
term in (20) admits a closed-form expression. Specifically, let

g(ζ, hℓ, ĥℓ) = E
[
e−ζıs(X1,ℓ;Y1,ℓ,ĥℓ)

]
(21)

be the moment generating function (MGF) of the random
variable −ıs

(
X1,ℓ;Y1,ℓ, ĥℓ

)
. Then [12, Eq. (56)]

g(ζ, hℓ, ĥℓ) =

(
1 + (βℓ − αℓ) ζ − αℓβℓ(1− νℓ) ζ

2
)−1(

1 + sρ
∣∣∣ĥℓ

∣∣∣2)ζ
(22)

where αℓ, βℓ, and νℓ were defined in (16), (17), and (18).
Note that, by substituting (22) into (20), one can obtain a

closed-form expression not only for κ(ζ), but also for its first
and second derivatives, which we shall denote as κ′(ζ) and
κ′′(ζ), and we shall need shortly. Specifically, let κℓ(ζ) =
log g(ζ, hℓ, ĥℓ), so that κ(ζ) =

∑nb
ℓ=1 κℓ(ζ). We have that

(see [12, Eqs. (16)–(18)])

κℓ(ζ) = − ζ log(1 + sρ
∣∣∣ĥℓ

∣∣∣2)
− log(1 + (βℓ − αℓ)ζ − αℓβℓ(1− νℓ)ζ

2)

(23)

κ′
ℓ(ζ) = − log(1 + sρ

∣∣∣ĥℓ

∣∣∣2)
− (βℓ − αℓ)− 2αβℓ(1− νℓ)ζ

1 + (βℓ − αℓ)ζ − αℓβℓ(1− νℓ)ζ2
(24)

κ′′
ℓ (ζ) =

[
(βℓ − αℓ)− 2αℓβℓ(1− νℓ)ζ

1 + (βℓ − αℓ)ζ − αℓβℓ(1− νℓ)ζ2

]2
+

2αℓβℓ(1− νℓ)

1 + (βℓ − αℓ)ζ − αℓβℓ(1− νℓ)ζ2
. (25)

A saddlepoint expansion can be established provided that
the third derivative of the MGF of −ıs(X1,ℓ;Y1,ℓ, ĥℓ) exists
in a neighborhood of zero for every ℓ ∈ {1, . . . , nb}. Indeed,
the saddlepoint expansions presented next depend on the third
derivative of the MGF, albeit this term is included in the o(·)
and O(·) terms and, hence, does not appear explicitly in the

expansions. Specifically, for every ℓ ∈ {1, . . . , nb}, we require
that there exist two values ζ

ℓ
< 0 < ζℓ such that

sup
ζ
ℓ
<ζ<ζℓ

∣∣∣∣ d3dζ3
g(ζ, hℓ, ĥℓ)

∣∣∣∣ < ∞. (26)

As shown in [12, Appendix B], this condition holds in our
setup with

ζ
ℓ
= −

√
(βℓ − αℓ)2 + 4αℓβℓ(1− νℓ) + αℓ − βℓ

2αℓβℓ(1− νℓ)
(27)

ζℓ = −
√

(βℓ − αℓ)2 + 4αℓβℓ(1− νℓ)− αℓ + βℓ

2αℓβℓ(1− νℓ)
. (28)

This implies in particular that the third moment of
−ıs(X1,ℓ;Y1,ℓ, ĥℓ), which can be obtained by evaluating the
third derivative in (26) at ζ = 0, exists—a condition we re-
quired to establish the normal approximation in Section II-C1.

By taking ζ = max{ζ
1
, . . . , ζ

nb
} and ζ =

min{ζ1, . . . , ζnb
}, we ensure that (26) holds simultaneously

for every ℓ ∈ {1, . . . , nb}. The saddlepoint expansion w.r.t.
ns is stated in the following theorem.

Theorem 1: Assume that there exists a ζ ∈ [ζ, ζ] satisfying
R = −κ′(ζ)ns/(ncnb). If ζ ∈ [0, 1], then

ϵub(h, ĥ) =

ens(κ(ζ)−ζκ′(ζ))
[
Ψns,ζ(ζ) + Ψns,ζ(1− ζ) + o

(
1√
ns

)]
(29)

where
Ψb,ζ(u) = eb

u2

2 κ′′(ζ)Q
(
u
√

bκ′′(ζ)
)
. (30)

If ζ > 1, then

ϵub(h, ĥ) =

ens[κ(1)−κ′(ζ)]
[
Ψ̃ns(1, 1) + Ψ̃ns(0,−1) +O

(
1√
ns

)]
(31)

where

Ψ̃b(a1, a2) = e
ba1

[
−κ′(1)−R+

κ′′(1)
2

]

×Q

(
a1
√
bκ′′(1)− a2

b(κ′(1) + R)√
bκ′′(1)

)
. (32)

If ζ < 0, then

ϵub(h, ĥ) = 1−

ens[κ(ζ)−ζκ′(ζ)]
[
Ψns,ζ(−ζ)−Ψns,ζ(1− ζ) + o

(
1√
ns

)]
.

(33)

Proof: Although a direct proof of this theorem is not
available in the literature, the desired expansions can be
established following steps similar to the ones reported in [20,
App. E] for the case of abstract channels and generic mismatch
decoding rules and in [11, App. I] for the case of memoryless
block-fading channels and ML decoding rule.

We obtain the desired saddlepoint approximation of
ϵub(h, ĥ) in (7) by omitting the o(·) and the O(·) terms in (29),
(31), and (33).
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D. Asymptotic Expansion w.r.t. nb

We next present a different approach, which avoids the
conditioning w.r.t. H and Ĥ and the associated, often time-
consuming, Monte-Carlo step. The idea is to exploit directly
that the random variables

{
ıs

(
Xℓ;Yℓ, Ĥℓ

)}
in (4) are i.i.d.

across the block index ℓ, and perform an asymptotic expansion
of the tail probability in (4) w.r.t. the number of blocks nb.

1) Normal Approximation w.r.t. nb: Proceeding as in Sec-
tion II-C1, we can obtain an asymptotic expansion—this time
directly of ϵub in (4)—by applying the Berry-Esseen central-
limit theorem. Since the random variables {ıs(Xℓ,Yℓ, Ĥℓ)}
are i.i.d. in ℓ, it follows that

E

[
nb∑
ℓ=1

ıs

(
Xℓ;Yℓ, Ĥℓ

)]
= nb E

[
ıs

(
X1;Y1, Ĥ1

)]
(34)

and

Var

[
nb∑
ℓ=1

ıs

(
Xℓ;Yℓ, Ĥℓ

)]
= nb Var

[
ıs

(
X1;Y1, Ĥ1

)]
. (35)

Here, we have fixed ℓ = 1 without loss of generality. Fur-
thermore, since ıs(X1,Y1, Ĥ1) =

∑ns
k=1 ıs(Xk,1;Yk,1, Ĥ1)

and since conditioned on (H1, Ĥ1), the random variables
{ıs(Xk,1;Yk,1, Ĥ1)} are i.i.d. in k, we conclude that

E

[
nb∑
ℓ=1

ıs

(
Xℓ;Yℓ, Ĥℓ

)]

= nbns E
[
E
[
ıs

(
X1,1;Y1,1, Ĥ1

) ∣∣∣H1, Ĥ1

] ]
(36)

= nbns E
[
Is(H1, Ĥ1)

]
(37)

and

Var

[
nb∑
ℓ=1

ıs

(
Xℓ;Yℓ, Ĥℓ

)]

= nb

(
E
[
Var

[
ıs

(
X1;Y1, Ĥ1

) ∣∣∣H1, Ĥ1

]]
+ Var

[
E
[
ıs

(
X1;Y1, Ĥ1

) ∣∣∣ H1, Ĥ1

]])
(38)

= nb

(
ns E

[
Vs(H1, Ĥ1)

]
+ n2

s Var
[
Is

(
H1, Ĥ1

)])
. (39)

It then follows that

ϵub = Q


√
nb

(
ns E

[
Is

(
H1, Ĥ1

)]
− ncR

)
√

ns E
[
Vs

(
H1, Ĥ1

)]
+ n2

s Var
[
Is

(
H1, Ĥ1

)]


+O
(

1√
nb

)
. (40)

The normal approximation is obtained by neglecting the O(·)
term.

Note that, differently from the normal approximation pro-
vided in (13), the one provided in (40) applies directly to ϵub
and not to the conditional probability ϵub(h, ĥ). Hence, no
Monte-Carlo averaging step is required at the end. On the
negative side, although Is(·, ·) and Vs(·, ·) are available in

closed form (see (14) and (15)), the terms E
[
Is(H1, Ĥ1)

]
,

E
[
Vs(H1, Ĥ1)

]
, and Var

[
Is(H1, Ĥ1)

]
need to be evaluated

numerically using, e.g., Monte-Carlo methods. Similarly, the
existence of the third central moment of ıs

(
X1;Y1, Ĥ1

)
,

which is required for (40) to hold, needs to be ensured with
numerical methods.

2) Saddlepoint Approximation w.r.t. nb: We now proceed
as in Section II-C2 and obtain a saddlepoint approximation
of ϵub w.r.t. nb. As pointed out in Section II-C2, to establish
a saddlepoint asymptotic expansions we need that the third
derivative of the MGF of the random variables at hand exists in
a neighborhood of zero. Specifically, to establish a saddlepoint
approximation of ϵub w.r.t. nb, we shall require that, for some
ζ < 0 < ζ,

sup
ζ<ζ<ζ

∣∣∣∣ d3dζ3
E
[
e−ζıs(X1;Y1,Ĥ1)

]∣∣∣∣ < ∞. (41)

Unfortunately, differently from (26), the moment-generating
function E

[
e−ζıs(X1;Y1,Ĥ1)

]
is not known in closed form.

Hence, no closed-form expressions for ζ and ζ are available
and these quantities need to be estimated with numerical
methods.

To state the saddlepoint approximation, we shall need the
CGF γ(ζ) of the random variable −ıs(X1;Y1, Ĥ1)

γ(ζ) = logE
[
e−ζıs(X1;Y1,Ĥ1)

]
(42)

and its first and second derivatives γ′(ζ) and γ′′(ζ). Note that,
given H1 and Ĥ1, the random variable ıs(X1;Y1, Ĥ1) can
be decomposed into the sum of ns conditionally i.i.d. terms
(see (5)). Hence,

γ(ζ) = logEH1,Ĥ1

[
ns∏

k=1

E
[
e−ζıs(Xk,1;Yk,1,Ĥ1)

∣∣∣ H1, Ĥ1

]]
= logEH1,Ĥ1

[
g(ζ,H1, Ĥ1)

ns

]
(43)

where the function g was defined in (21). Let p(ζ) be the
MGF of −ıs(X1;Y1, Ĥ1). Then p(ζ) and its first and second
derivatives with respect to ζ are given as

p(ζ) = EH1,Ĥ1

[
g(ζ,H1, Ĥ1)

ns

]
(44)

p′(ζ) = ns EH1,Ĥ1

[
g(ζ,H1, Ĥ1)

ns−1g′(ζ,H1, Ĥ1)
]

(45)

p′′(ζ) = ns EH1,Ĥ1

[
(ns − 1)g(ζ,H1, Ĥ1)

ns−2g′(ζ,H1, Ĥ1)
2

+ g(ζ,H1, Ĥ1)
ns−1g′′(ζ,H1, Ĥ1)

]
(46)

where g′, g′′, p′ and p′′ denote the first and second derivatives
with respect to ζ of the functions g and p, respectively. We
can then write γ(ζ) and its first and second derivatives as

γ(ζ) = log p(ζ) (47)

γ′(ζ) =
p′(ζ)

p(ζ)
(48)

γ′′(ζ) =
p′′(ζ)p(ζ)− p′(ζ)2

p(ζ)2
. (49)
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We are now ready to state the saddlepoint expansion w.r.t.
nb.

Theorem 2: Assume that there exists a ζ ∈ [ζ, ζ] satisfying
R = −γ′(ζ)/nc. If ζ ∈ [0, 1] then

ϵub = enb[γ(ζ)−ζγ′(ζ)]

×
[
Φnb,ζ(ζ) + Φnb,ζ(1− ζ) + o

(
1√
nb

)]
(50)

where
Φb,ζ(u) = eb

u2

2 γ′′(ζ)Q
(
u
√
bγ′′(ζ)

)
. (51)

If ζ > 1, then

ϵub = enb[γ(1)−γ′(ζ)]

×
[
Φ̃nb(1, 1) + Φ̃nb(0,−1) +O

(
1√
nb

)]
(52)

where

Φ̃b(a1, a2) = e
ba1

[
−γ′(1)−R+

γ′′(1)
2

]

×Q

(
a1
√

bγ′′(1)− a2
b(γ′(1) + R)√

bγ′′(1)

)
. (53)

Finally, if ζ < 0,

ϵub = 1− enb[γ(ζ)−ζγ′(ζ)]

×
[
Φnb,ζ(−ζ)− Φnb,ζ(1− ζ) + o

(
1√
nb

)]
. (54)

Proof: The proof follows by combining the steps in
the proofs of [11, App. I] and [20, App. E]. Note that the
saddlepoint approximation in [11] was developed for Rayleigh
SISO block-fading channels but under the assumption of ML
decoding. Furthermore, this expansion was provided only for
the case ζ ∈ [0, 1]. The saddlepoint derived in [20] holds
only for channels whose input and output belong to finite-
cardinality alphabets, but applies to arbitrary mismatched
decoding rules and arbitrary values of ζ. Our result is obtained
by carefully combining the proof techniques used in these two
papers.

We obtain the desired saddlepoint approximation of ϵub
in (4) w.r.t. nb by neglecting the O(·) and the o(·) terms
in (50), (52), and (54). Note that, differently from the asymp-
totic expansion provided in Theorem 1, the one provided in
Theorem 2 applies directly to ϵub and not to the conditional
probability ϵub(h, ĥ). Hence, no Monte-Carlo averaging step
is required at the end. On the negative side, the function
γ(·) and its first and second derivatives are not available in
closed form and one needs to resort to numerical methods,
such as Monte-Carlo averaging, to evaluate them. Specifically,
one needs to evaluate numerically, the expectation over the
channel H1 and its estimate Ĥ1 appearing in the definition
of p(ζ) and of its first and second derivatives in (44), (45),
and (46). This is all one needs to evaluate numerically, in order
to compute both the normal approximation and the saddlepoint
approximation w.r.t. nb. Indeed, according to (47), (48), (49),
from p(ζ) and its first and second derivatives, one obtains
γ(ζ) and its first and second derivatives, which are the

required quantities to evaluate the saddlepoint approximation
in Theorem 1. Furthermore, since γ′(0) = ns E

[
Is(H1, Ĥ1)

]
and γ′′(0) = ns E

[
Vs(H1, Ĥ1)

]
+ n2

s Var
[
Is(H1, Ĥ1)

]
, one

can also evaluate the normal approximation in (40) from p(ζ)
and its first and second derivatives evaluated at ζ = 0.

III. MASSIVE MIMO NETWORK

In this section, we consider a multiuser massive MIMO
cellular network with L cells, each served by a BS with M
antennas. We assume there are K single-antenna users in each
cell and focus on uplink transmission. As in Section II-A, we
consider transmission over memoryless block-fading channels
and use nc and nb to denote the number of symbols per block
and the number of blocks spanned by each transmitted packet,
respectively. We denote by Hj

ℓ,i,k ∈ CM the channel gain
vector within the ℓth fading block between user k in cell
i and the BS in cell j. We consider a spatially correlated
Rayleigh fading model where Hj

ℓ,i,k ∼ CN (0M,Rj
i,k). The

normalized trace βj
i,k = tr(Rj

i,k)/M determines the average
channel gain between user k in cell i and the BS in cell j,
while the eigenstructure of Rj

i,k describes its spatial channel
correlation [9, Sec. 2.2].

A. Uplink pilot transmission

The np-dimensional pilot sequence transmitted by user k
in cell j during fading block ℓ is denoted by the vector
x
(p)
ℓ,j,k ∈ Cnp . We assume that this vector satisfies ∥x(p)

ℓ,j,k∥2 =
npρ. Furthermore, we assume that the LK users employ
mutually orthogonal pilot sequences during each fading block.
In particular, we set np = LK. During the pilot-transmission
phase, the received signal Y(p)

ℓ,j ∈ CM×np at the BS serving
cell j for fading block ℓ is given by

Y(p)
ℓ,j =

K∑
k=1

Hj
ℓ,j,k

(
x
(p)
ℓ,j,k

)T
+

L∑
i=1,i̸=j

K∑
k=1

Hj
ℓ,i,k

(
x
(p)
ℓ,i,k

)T
+W(p)

ℓ,j (55)

where W(p)
ℓ,j ∈ CM×np is the additive noise with i.i.d.

CN (0, σ2) entries.
We assume that the BS knows Rj

i,k, and that it can compute
the MMSE channel estimates [9, Sec. 3.2]

Ĥj
ℓ,i,k = Rj

i,kQ
j
ℓ,i,k

(
Y(p)

ℓ,j

(
x
(p)
ℓ,i,k

)∗)
(56)

where

Qj
ℓ,i,k =

(
L∑

i′=1

K∑
k′=1

Rj
i′,k′

(
x
(p)
ℓ,i′,k′

)H
x
(p)
ℓ,i,k + σ2IM

)−1

.

(57)

B. Uplink data transmission

To decode the signal transmitted from user k in cell j over
the ℓth fading block, which we denote by xℓ,j,k ∈ Cns , where
ns = nc −np, the BS serving cell j uses the combining vector
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Vℓ,j,k ∈ CM to compute the received vector Yℓ,j,k ∈ Cns as
follows:

Yℓ,j,k =
(
V H
ℓ,j,kH

j
ℓ,j,k

)
xℓ,i,k +

K∑
k′=1
k′ ̸=k

(
V H
ℓ,j,kH

j
ℓ,j,k′

)
xℓ,j,k′

+

L∑
i=1,i̸=j

K∑
k′=1

(
V H
ℓ,j,kH

j
ℓ,i,k′

)
xℓ,i,k′ + V H

ℓ,j,kWℓ,j . (58)

Here, Wℓ,j ∈ CM×ns is the additive Gaussian noise on the
ℓth fading block at the BS serving cell j with i.i.d. CN (0, σ2)
entries.

We assume that the BS uses multicell-MMSE combiners,
i.e.,

Vℓ,j,k =

(
L∑

i=1

K∑
k′=1

Ĥj
ℓ,i,k′

(
Ĥj

ℓ,i,k′

)H
+ Zℓ,j

)−1

Ĥj
ℓ,j,k

(59)
where

Zℓ,j =
L∑

i=1

K∑
k=1

ρnpR
j
i,kQ

j
ℓ,i,kR

j
i,k +

σ2

ρ
IM. (60)

Note that (58) has the same form as (2). Indeed, set
Yℓ = Yℓ,j,k, xℓ = xℓ,j,k, Hℓ = V H

ℓ,j,kH
j
ℓ,j,k, Ĥℓ =

V H
ℓ,j,kĤ

j
ℓ,j,k, and Wℓ =

∑K
k′=1,k′ ̸=k V

H
ℓ,j,kH

j
ℓ,j,k′xℓ,j,k′ +∑L

i=1,i̸=j

∑K
k′=1 V

H
ℓ,j,kH

j
ℓ,i,k′xℓ,i,k′ + V H

ℓ,j,kWℓ,j . Note also
that, given {Hj

ℓ,i,k′ , Ĥ
j
ℓ,i,k′}, the entries of the newly defined

vector Wℓ are conditionally i.i.d. and follow a CN (0, σ2
ℓ )

distribution, with

σ2
ℓ = σ2∥Vℓ,j,k∥2 + ρ

K∑
k′=1,k′ ̸=k

∣∣∣V H
ℓ,j,kH

j
ℓ,j,k′

∣∣∣2
+ρ

L∑
i=1,i̸=j

K∑
k′=1

∣∣∣V H
ℓ,j,kH

j
ℓ,i,k′

∣∣∣2 . (61)

Hence, we can evaluate the uplink per-user error probability
by using the information-theoretic bound in (4) and its normal
and saddlepoint approximations discussed in Section II.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we report numerical experiments to evaluate
the accuracy and the numerical complexity of the introduced
normal and saddlepoint approximations. Specifically, we will
address the following three questions:

1) In typical scenarios, the number ns of symbols per block
is much larger than the number nb of blocks spanned by a
codeword. How large should nb be for the approximations
w.r.t. to nb to be accurate?

2) Is the normal approximation (either w.r.t. ns or w.r.t. nb)
sufficiently accurate in the URLLC regime, or should one
use instead the saddlepoint approximations?

3) All the approximations presented in Section II require
numerical methods such as Monte-Carlo averaging for
the evaluation of terms that are not available in closed
form. Which method has lower complexity for a given
targeted accuracy?

1 4 8 12 16 24 36 48

100

101

Number of fading blocks nb

ρ
[d
B

]

saddlepoint w.r.t. ns
saddlepoint w.r.t. nb

normal w.r.t. ns
normal w.r.t. nb

RCUs

1

38

39

40

nb

ρ
[d
B

]

288 72 36 24 18 12 8 6
Channel uses per block nc

Fig. 2: Upper bound on the required transmit power ρ to achieve ϵ = 10−5.
Here, nbnc = 288, R = 0.104 bit per channel use; np and s are optimized.

In the following sections, we perform numerical experiments
on SISO and massive MIMO setups to answer these questions.

A. SISO Setup

We start by considering a Rayleigh-fading scenario where
the {Hℓ}nb

ℓ=1 are generated independently from a CN (0, 1)
distribution. Furthermore, we assume ML estimation of the
channel at the receiver. Specifically, we set

Ĥℓ =
1

ρnp

(
x
(p)
ℓ

)H
Y

(p)
ℓ . (62)

We assume that the noise variance σ2
ℓ is equal to 1 for ℓ ∈

{1, . . . , nb}, and consider a blocklength nbnc of 288 channel
uses. The results reported in this section are obtained after an
optimization over the parameter s > 0 in (4) and over the
number of pilots np within each block of nc channel uses.

Accuracy: In Fig. 2, we report the transmit-power value
ρ needed to achieve an error probability ϵ = 10−5 for R =
0.104 bit per channel use, as a function of the number of
fading blocks nb spanned by each codeword. Note that since
the blocklength is fixed, nc decreases when nb is increased.
This implies that fewer symbols are available in each block for
pilot and data transmissions. The value of ρ is estimated by
means of the RCUs bound in (4), evaluated via a Monte-Carlo
simulation involving the generation of 2× 1010 real Gaussian
random variables, as well as via its normal and saddlepoint
approximations w.r.t. ns and w.r.t. nb, in which all expectations
that need to be evaluated numerically are computed via Monte-
Carlo averaging 4× 108 real Gaussian random variables.

We see from the figure that the saddlepoint approximation
w.r.t. ns is accurate for nb as high as 36, which corresponds to
nc = 8 symbols per block, optimally split into np = 3 pilots
and ns = 5 data symbols. This implies that ns = 5 is sufficient
for the saddlepoint approximation w.r.t. ns to be accurate for
this setup. If nb is increased further, and, hence, nc is reduced,
this approximation loses accuracy. The normal approximation
w.r.t. ns is accurate only for nb ≤ 8.
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Fig. 3: Packet error probability as a function of s. Here, ρ = 2.79 dB, nbnc =
288, R = 0.104 bit per channel use; np is optimized.

5 10 15 20 25 30 35

10−5

10−4

10−3

10−2

10−1

100
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ϵ
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saddlepoint w.r.t. nb
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Fig. 4: Packet error probability as a function of np. Here, ρ = 2.79 dB,
nbnc = 288, R = 0.104 bit per channel use; s is optimized.

Moving to the approximations w.r.t. to nb, we note that
the normal approximation does not provide accurate results
even when nb = 48. The saddlepoint approximation slightly
underestimates the required transmit power ρ for nb = 1, but,
perhaps surprisingly, returns accurate results already for nb as
small as 2.

Note finally that for the scenario considered in the figure,
the required ρ is large for nb = 1 and decreases rapidly until
nb = 24, after which it increases again. This behavior can be
explained as follows. Increasing nb for a fixed product nbnc
yields an increase of the number of diversity branches, which
is beneficial, but also of the total number of pilot symbols npnb
which is detrimental because it increases the effective rate of
the channel code one can use to protect the information bits.
The first effect dominates for nb ≤ 24, whereas the second
effect dominates when nb > 24.

In Fig. 3, we report upper bounds on the packet-error
probability ϵ as a function of s for R = 0.104 bit per channel
use, nb = 8, ncnb = 288 and ρ = 2.79 dB. Here, we see that

all approximations of the RCUs bound with the exception of
the normal approximation w.r.t. nb are accurate for a large
range of values of the parameter s. Moreover, the parameter
s can be optimized to obtain a tighter bound. This figure also
shows that a moderate deviation from the optimal choice of s
does not affect tightness significantly.

In Fig. 4, we report upper bounds on the packet-error
probability as a function of np for R = 0.104 bit per channel
use, nb = 8, ncnb = 288 and ρ = 2.79 dB. Here, in parallel
to the result in Fig. 3, all approximations except the normal
approximation w.r.t. nb, provide accurate results for a large
range of values of np. This is crucial since np is not necessarily
optimized to minimize the packet error probability in every
system. Thus, being able to use the approximations, regardless
of the choice of np, is highly relevant.

Complexity: To address the third question, we assume
again that all expectations that need to be evaluated nu-
merically in the normal and saddlepoint approximations are
computed via Monte-Carlo averaging. Since the channel and
its estimate are jointly Gaussian random variables, as a proxy
for numerical complexity, we count the minimum number of
real Gaussian random variables that need to be generated
to guarantee that the normalized mean squared difference
between the error-probability value returned by the considered
approximation and the actual error probability bound in (4)
is less than a given threshold. Specifically, we compute each
approximation Nsim times for the ρ value achieving ϵub =

10−5 in (4), and let ϵ(i)app(N) be the error-probability estimate
obtained in the ith trial, when evaluating the considered ap-
proximation for the case in which the Monte-Carlo averaging
is performed using N real Gaussian random variables. The
normalized mean-squared difference is evaluated as follows:

e(N) =
1

Nsim

Nsim∑
i=1

(
ϵub − ϵ

(i)
app(N)

ϵub

)2

. (63)

Clearly the smaller e(N), the higher the accuracy.
In Fig. 5, we report the smallest value of N necessary to

guarantee that e(N) ≤ 0.5% when Nsim = 100, as a function
of nb. In the figure, we assumed that nbnc = 288, R = 0.104
bit per channel use, and that a target error probability of 10−5

needs to be guaranteed for all values of nb. The transmit power
is set according to the RCUs curve in Fig. 1. As shown in
Fig. 5, the saddlepoint approximations w.r.t. ns requires around
2 × 107 real Gaussian samples. This is not surprising, since
we want to evaluate accurately, via a Monte-Carlo procedure,
an error probability of 10−5. Although the number of random
variables that need to be generated increases with nb, this
increase translates in a larger value of N only for small values
of nb.

On the contrary, the saddlepoint w.r.t. nb requires only
around 105 samples whenever nb ≥ 4. This is around
two orders of magnitude fewer samples than the saddlepoint
w.r.t. ns. This suggests that the complexity of the Monte-Carlo
procedure required to evaluate numerically the expectations
in (44), (45), and (46), to the level of accuracy considered in
this experiment, is much smaller than the complexity of the
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Fig. 5: Required number of real Gaussian samples to guarantee that e(N) ≤
0.5%. Here nbnc = 288, R = 0.104 bit per channel use, Nsim = 100, and
ϵ = 10−5.

Monte-Carlo procedure required to evaluate numerically the
expectation over H and Ĥ in (8).4

We do not report the complexity of the normal approxima-
tions since they do not achieve the targeted e(N) because of
their limited accuracy.

B. Massive MIMO Setup

Our simulation setup consists of L square cells, each of
size 75m × 75m, containing K users each. The BSs, which
are equipped with a uniform linear array with M antenna
elements separated by half a wavelength, are placed in the
center of each cell. The antennas and the users are located
in the same horizontal plane. Thus, the azimuth angle is
sufficient to determine the directivity. We assume that the
scatterers are uniformly distributed in the angular interval
[φi,k−∆, φi,k+∆], where φi,k is the nominal angle of arrival
of user k in cell i and ∆ is the angular spread, which we set
to ∆ = 25◦. The (m1,m2)th entry of the matrix Rj

i,k is then
given by [9, Sec. 2.6][

Rj
i,k

]
m1,m2

=
βj
i,k

2∆

∫ ∆

−∆

ejπ(m1−m2) sin(φi,k+φ̄)dφ̄. (64)

Here, βj
i,k denotes the large-scale fading coefficient measured

in dB

βj
i,k = −35.3− 37.6 log10

(
dji,k
1m

)
(65)

with dji,k being the distance between the BS in the cell j and
the user k in cell i. The communication takes place over a
20MHz bandwidth with a total receiver noise power of σ2 =
−94 dBm consisting of thermal noise and a noise figure of
7 dB in the receiver hardware.

In the next two subsections, we extend the accuracy and
complexity analysis of the error-probability approximations

4Numerically achieving e(N) ≤ 0.5% is an indication that our approxima-
tions are numerically stable.
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Fig. 6: Two-user, single-cell massive MIMO scenario: required transmit power
ρ to achieve ϵ = 10−5. Here, nbnc = 144, R = 2 bit per channel use, and
np = 2.

performed for a SISO link in Section IV-A to the massive
MIMO uplink. Since repeating the study carried out for SISO
is unfeasible in a multi-cell multi-user MIMO setting, because
of complexity constraints, we first focus in Section IV-B1 on
a single-cell massive MIMO network with two users. We will
then provide in Section IV-B2 an extension of this analysis
to the multi-cell multiuser massive MIMO network for the
special case in which the number of blocks nb is equal to 3.

1) Accuracy and Complexity Analysis for the Two-User
Case: We consider the uplink of a single-cell massive MIMO
network in which the BS serves two users (L = 1 and
K = 2). The distance between the two users and the BS is
d11,1 = d11,2 = 36.4m. The nominal angle of user 1 w.r.t.
the BS is 30°, and the nominal angle of user 2 w.r.t. the BS
is 40°. We also assume that orthogonal pilot sequences are
assigned to each user, that np = 2, and that MMSE spatial
combining based on MMSE channel estimation is used at the
BS. Finally, we set nbnc = 144 and R = 2 bit per channel use,
which corresponds to 288 bits per packet. In Fig. 6 we report
the smallest ρ value needed to achieve an error probability
of 10−5, as a function of nb. All curves in the figures are
obtained by performing a Monte-Carlo simulation involving
the generation of 8×1010 real Gaussian random variables. We
observe that both saddlepoint approximations as well as the
normal approximation over ns agree and are therefore assumed
to be accurate for the nb values considered in the figure,
including nb = 1. On the contrary, the normal approximation
w.r.t. nb does not appear to be accurate. Note that, because
of the large spatial diversity available in this setup, increasing
nb from 2 to 6 has only a limited benefit in terms of ρ, and
increasing nb beyond 6 is actually deleterious, because of the
reduction in the number of channel uses per block available
for data transmission.

Focusing on both saddlepoint approximations and on the
normal approximation w.r.t. ns, we illustrate in Fig. 7, the
minimum number of real Gaussian samples that need to be
generated in the Monte-Carlo step required in all approxima-
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Fig. 7: Two-user, single-cell massive MIMO scenario: required number of
real Gaussian samples to guarantee that e(N) ≤ 0.5%. Here, nbnc = 144,
R = 2 bit per channel use, np = 2, Nsim = 100, and ϵ = 10−5.

TABLE I: Required transmit powers

Approximation ρ

Saddlepoint w.r.t. nb −2.257 dBm

Saddlepoint w.r.t. ns −2.254 dBm

Normal w.r.t. nb −2.500 dBm

Normal w.r.t. ns −2.311 dBm

tions, to guarantee that e(N) < 0.5% for a target error proba-
bility of 10−5. Note that, unlike the SISO case, evaluating the
transmit power required to achieve ϵ = 10−5 with the RCUs
bound (4) is not feasible due to its computational complexity.
Thus, in our complexity analysis, the transmit power is set to
the arithmetic average of the saddlepoint approximation curves
in Fig. 6.

We see from Fig. 7 that the number of real Gaussian
samples required by all approximations is more than two
orders of magnitude larger than in the SISO case (cf. Fig 5).
This is expected since the channel within each fading block
is now characterized by 200 (dependent) complex Gaussian
random variables, instead of the single complex Gaussian
random variable needed in the SISO case. We also see that
the saddlepoint approximation w.r.t. nb requires between 1
and 2 orders of magnitude fewer samples than both normal
approximation and saddlepoint approximation w.r.t. ns. This
observation is also in agreement with the results presented in
Section IV-A for the SISO case.

2) Multi-Cell Multi-User Setup: We finally consider a
massive MIMO network consisting of L = 4 cells and K = 6
users per cell and consider a wrap-around topology (for details,
see [9, Sec. 4.1.3]). We assume for simplicity that the users
within each cell are regularly spaced on a circle around the
BS of radius djj,k = 36.4m. We consider a scenario in which
nb = 3 and nc = 48, assume that all users transmit orthogonal
pilots over each block and set np = 24. Finally, we set R = 2
bit per channel use, and consider a target error probability of
10−5. The required transmit powers ρ for each approximation
are reported in Table I. These values of ρ are estimated

109 1010 1011
10−3

10−2

10−1

Number of generated real Gaussian samples N

e(
N
)

saddlepoint w.r.t. ns
saddlepoint w.r.t. nb

Fig. 8: Multi-cell, multi-user massive MIMO scenario. Here, ns = 30, np =
40, nb = 3, K = 10, L = 4, Nsim = 100, R = 2 bit per channel use, and
ϵ = 10−5.

using a Monte-Carlo procedure involving 1012 real Gaussian
random variables. Similar to the 2-user massive MIMO case,
the RCUs bound cannot be evaluated due to its computational
complexity. The reported results suggest that, in agreement
with the results obtained for the SISO and for the two-
user massive MIMO cases, both saddlepoint approximations
are accurate, whereas both normal approximations are not
accurate.

To assess the complexity of the two saddlepoint approxi-
mation, we take the arithmetic average of the transmit power
evaluated with the two saddlepoint approximations as refer-
ence transmit power. In Fig. 8, we depict the normalized mean-
square difference e(N), defined in (63), as a function of the
number of real Gaussian samples N used in the Monte-Carlo
step required for both saddlepoint approximations. We can
observe that the saddlepoint approximation w.r.t. nb requires
approximately 30 times fewer samples than the saddlepoint
approximation w.r.t. ns to achieve e(N) ≤ 0.5%. This is again
in accordance with the results reported in Fig. 5 for the SISO
case, and Fig. 7 for the single-cell, two-user massive MIMO
case.

V. CONCLUSION

We presented numerically efficient methods to evaluate an
upper bound on the error probability achievable over SISO and
massive MIMO memoryless block-fading channels when pilot-
assisted transmission, scaled nearest-neighbor decoding, and
i.i.d. Gaussian codebooks are used. Our methods include both
normal and saddlepoint approximations w.r.t. to the number
of data symbols per block ns, as well as novel normal and
saddlepoint approximations w.r.t. the number of fading blocks
nb spanned by each codeword. All approximations involve the
numerical evaluations of expectations that are not known in
closed form and can be evaluated using Monte-Carlo methods.
Our numerical experiments reveal that the saddlepoint approx-
imation w.r.t. to nb yield accurate estimates of the error proba-
bility in URLLC scenarios of practical relevance. Furthermore,
it involves a numerical complexity (measured in terms of



12

total number of Monte-Carlo samples required to achieve a
given accuracy) roughly two orders of magnitude lower than
the complexity of the saddlepoint approximations in ns. This
holds for a variety of scenarios ranging from SISO to mul-
ticell, multiuser massive MIMO. Hence, this approximation
should be preferred when evaluating error probabilities within
URLLC optimization routines such as resource-allocation and
scheduling algorithms. The normal approximations w.r.t. nb
and ns are not viable alternatives as they often provide inac-
curate results for the scenarios considered in this paper, at no
advantage in terms of complexity compared to the saddlepoint
approximation. An explicit characterization of the number
of samples needed for the introduced approximations to be
accurate is lacking. Indeed, obtaining such a characterization
would be an interesting topic for future work.
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“Short packets over block-memoryless fading channels: Pilot-assisted
or noncoherent transmission?” IEEE Trans. Commun., vol. 67, no. 2,
pp. 1521–1536, Feb. 2019.

[11] A. Lancho, J. Östman, G. Durisi, T. Koch, and G. Vazquez-Vilar,
“Saddlepoint approximations for short-packet wireless communications,”
IEEE Trans. Wireless Commun., vol. 19, no. 7, pp. 4831–4846, Jul. 2020.
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