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Detecting outliers in multivariate volatility models:

A wavelet procedure∗

Aurea Grané1, Belén Martı́n-Bagarrán2 and Helena Veiga3

Abstract

It is well known that outliers can affect both the estimation of parameters and volatilities when

fitting a univariate GARCH-type model. Similar biases and impacts are expected to be found on

correlation dynamics in the context of multivariate time series. We study the impact of outliers

on the estimation of correlations when fitting multivariate GARCH models and propose a general

detection algorithm based on wavelets, that can be applied to a large class of multivariate volatility

models. Its effectiveness is evaluated through a Monte Carlo study before it is applied to real data.

The method is both effective and reliable, since it detects very few false outliers.

MSC: 62M10, 91B84, 62G35, 62H10, 65C05.
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1 Introduction

The correlation structure of security returns is the keystone of both portfolio alloca-

tion and risk management decisions. In the literature, there are several models to es-

timate correlations, the multivariate GARCH being the most popular class of models.

Oil and financial series of returns often exhibit excess of kurtosis that can be caused by

large unexpected observations. In the univariate context, some authors tried to capture

this excess of kurtosis by estimating volatility models with fat tail distributed errors.

However, it was observed that the estimated residuals of these models still registered

excess kurtosis (see Baillie and Bollerslev, 1989, Teräsvirta, 1996). Furthermore, it is

well known that these observations can affect the estimation of the GARCH parameters
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(Fox, 1972, Van Dijk, Franses and Lucas, 1999, Verhoeven and McAleer, 2000, Bali

and Guirguis, 2007, Charles and Darné, 2014), the tests of conditional homoscedas-

ticity (Carnero, Peña and Ruiz, 2007, Grossi and Laurini, 2009), the out-of-sample

volatility forecasts (Ledolter, 1989, Chen and Liu, 1993, Franses and Ghijsels, 1999,

Grané and Veiga, 2010, Boudt, Danı́elsson and Laurent, 2013), the volatility estimates

(Carnero, Peña and Ruiz, 2012, Behmiri and Manera, 2015) and the risk measures

(Grané and Veiga, 2014). For a recent survey on the effects of the outliers on the spec-

ification, on the parameter estimation, on the volatility estimation and prediction see

Hotta and Trucı́os (2018). Analogously, when volatilities and correlations are estimated

using multivariate GARCH models similar effects might be expected (see, for instance,

Boudt and Croux, 2010).

Portfolios are often composed of commodities that can exhibit negative correla-

tions with stock price returns as, for example, oil returns. Oil is a strategic com-

modity used as an input in all economic activities, therefore, turmoils in the oil mar-

ket can propagate to stock markets and affect correlations making them quite negative

(see Ramos, Martı́n-Barragán and Veiga, 2015). Therefore, the first objective of this

paper is to study the effect of outliers, in particular, isolated level outliers, patches

of level outliers and volatility outliers, on the estimated correlations of multivariate

GARCH models (see Hotta and Tsay, 2012, Galeano and Peña, 2013, for a resume on

the different types of outliers). We focus on the diagonal Baba-Engle-Kraft-Kroner (D-

BEKK) by Engle and Kroner (1995), the conditional constant correlation (CCC) model

by Bollerslev (1990) and the dynamic conditional correlation (DCC) model by Engle

(2002). We have chosen these models because they are often used in empirical works

(see Bauwens, Laurent and Rombout, 2006, Silvennoinen and Teräsvirta, 2009, for ex-

celent surveys on these models). Moreover, as a multivariate GARCH model, the D-

BEKK is easier to estimate than the full BEKK because it involves less parameters. Yet,

the conclusions and the procedures of this work can be extended to other more sophis-

ticated multivariate volatility models. The second aim is to propose a procedure able

to detect outliers in multivariate volatility models that is based on the residuals. The

detection of outliers may warn the researcher to use more sophisticate models, filter for

outliers or to use robust methods as those proposed, for instance, in Muler and Yohai

(2008) for univariate GARCH models and Boudt and Croux (2010) for multivariate

GARCH models. Robust estimators work well in the case of additive outliers but lose

their efficiency when there is an autoregressive high order dependence. Furthermore

and regarding the M-estimators, their asymptotic theory is often based on the hypothe-

sis that the errors are homoscedastic, which is not the case when dealing, for instance,

with the DCC model. On the other hand, there are M-estimators that do not depend on

homoscedastic errors but they are not so efficient. Therefore, our recommendation is to

start by applying a detection procedure and in case outliers are detected, the researcher

can either filter them, go for a robust estimation method or use a more sophisticated

model that can accommodate outliers.
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The Monte Carlo study leads us to conclude that outliers affect the estimated corre-

lations and the effect is stronger for the conditional correlation models (CCC and DCC).

Second, our detection procedure is very reliable, not only because the percentage of

correct detections is quite high, but also because it detects very few false outliers. This

property ensures that when one observation is detected as a possible outlier, it is indeed

an outlier.

The advantages of our method are several: first, it can be applied to any multivari-

ate volatility model given that the errors follow a known distribution, second it is well

suited for detecting several types of outliers, such as isolated single/multiple outliers and

patches of outliers; third, the method is easy and quick to apply, which makes it an at-

tractive tool for academic communities and/or practitioners; fourth, it can be applied to

a high number of series, and finally, it is reliable since it detects very few false outliers.

The organization of this paper is as follows. In Section 2 we present the volatility

models used in the paper and review two particular types of additive outliers. In Section

3 we study the effect of outliers on the estimated correlations via several simulation

studies. In Section 4 we present and evaluate the performance of the detection algorithm

and we apply it to several daily series of returns in Section 5. Finally, we conclude in

Section 6. Additional Monte Carlo experiments are reported in the Appendix.

2 Outliers in multivariate volatility models

Multivariate financial time series of returns exhibit similar patterns to those of uni-

variate series, such as persistent time-varying volatilities. Additionally, they display

time-varying correlations that are often modeled by multivariate GARCH models. One

advantage of these models is that they are flexible enough to represent the dynamics of

the volatilities and correlations. We start this section describing the models we are going

to evaluate. Next we present the type of outliers we are going to consider.

2.1 Models under evaluation

The models that we consider have been pioneer in the financial econometrics literature

and are often applied empirically to many fields such as volatility spillover transmission,

contagion, portfolio management, asset allocation, etc. However, the methodology de-

veloped in this paper is not restricted to them.

In particular, the models under evaluation are the diagonal Baba-Engle-Kraft-Kroner

(D-BEKK) model defined in Engle and Kroner (1995), the constant conditional correla-

tion (CCC) model by Bollerslev (1990), and the dynamic conditional correlation (DCC)

model by Engle (2002).

Let {yt} be a vector stochastic process with dimension N × 1 such that E(yt) = 0

and Ft−1 is the information set till time t −1. We consider that yt = εεεt and εεεt = H
1/2
t ηηηt ,
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where Ht is the conditional covariance matrix of yt and ηηηt is an iid vector error process

such that E(ηηηtηηη
′
t) = I, the identity matrix of order N. We assume that there is no linear

dependence in yt .

Alternative approaches in the literature propose different models for the dependence

of Ht on past information Ft−1. In the D-BEKK, the dependence of Ht on past informa-

tion is modeled directly. In contrast, in the CCC and DCC models, first the conditional

variances are modeled using univariate specifications and then Ht is obtained by using

these conditional standard deviations together with some specifications of the correla-

tions (constant for CCC and time-varying for DCC).

We now proceed to a more detailed description of these three models.

DIAGONAL BEKK MODEL The D-BEKK of first order is a restricted version of the

model defined in Engle and Kroner (1995), where the dependence of Ht on past infor-

mation is modeled as follows:

Ht = CC
T+A

Tεεεt−1εεε
T

t−1A+B
T
Ht−1B, (1)

where A and B are N ×N diagonal matrices and C is a N ×N lower triangular matrix.

The D-BEKK is covariance stationary if and only if a2
ii+b2

ii < 1 for all i, where aii and bii

are, respectively, the diagonal elements of A and B. The conditional covariance matrix

is positive definite by construction.

CONDITIONAL CORRELATION MODELS The CCC model is given by

Ht = DtRDt =
(

ρi j

√

hii,t h j j,t

)

i j,t
,

where Dt = diag(h
1/2
11,t , ...h

1/2
NN,t). Here hii,t is defined in a univariate GARCH–type con-

text such as hii,t = α0i +α1iε
2
i,t−1 +β1ihii,t−1 and R = (ρi j)1≤i, j≤N is a correlation ma-

trix, that is symmetric and positive definite, with ρii = 1, −1 ≤ ρi j ≤ 1, ρi j = ρ ji for

i, j = 1, . . . ,N. If the N conditional variances are positive, since R is a positive defi-

nite matrix, then Ht is positive definite. The number of parameters to be estimated are

N(N+5)/2. Furthermore, univariate GARCH models require that α0i > 0, α1i ≥ 0 and

β1i ≥ 0 to guarantee positive conditional variances and α1i+β1i < 1 to enforce stationary

(see Duan et al., 2006).

On the other hand, the dynamic conditional correlation model, DCC, by Engle (2002)

is defined as

Ht = DtRtDt , (2)

with Dt defined as before and Rt =
(

qi j,t/
√

qii,t q j j,t

)

i j,t
, where Qt = (qi j,t) is a N ×N

symmetric positive definite matrix given by:

Qt = (1−α−β)Q̄+αut−1u
T

t−1 +βQt−1, (3)
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where ut = (u1,t , . . . ,uN,t)
T with ui,t = εi,t/

√

hii,t , Q̄ is the unconditional variance ma-

trix of ut and α and β are non-negative scalar parameters that satisfy α+ β < 1 (see

Bauwens et al., 2006).

We now proceed to define the type of outliers we are going to study. Following

Hotta and Tsay (2012), we distinguish two type of additive outliers, level and volatility,

and propose a simple extension to the multivariate case.

2.2 Additive level outliers

Additive level outliers (ALOs) can be caused by institutional changes or market cor-

rections that do not affect volatility. In this case, the conditional mean equation of the

multivariate volatility model becomes:

yt = ωωω · IT (t)+εεεt

εεεt = H
1/2
t ηηηt ,

(4)

where ηηηt is as before, that is, an iid vector error process such that E(ηηηtηηη
T

t) = I, ωωω =
(ω1, . . . ,ωN)

T is a vector containing the ALOs’ sizes and IT (t) = 1 for t ∈ T and 0 oth-

erwise, representing the presence of ALOs at a given set of times T . ALOs can occur

simultaneously at the same instant t or not and their sizes can coincide or not.

Note that the conditional covariance matrix Ht+1 depends only on the past infor-

mation through εεεt and Ht . Since the effect of the outlier is only in yt , the conditional

covariance matrix will not be affected by this type of outliers. Indeed ALOs only affect

the level of the series. This is true for all multivariate GARCH models.

2.3 Additive volatility outliers

Additive volatility outliers (AVOs) affect both the level of the returns and their volatil-

ities (see Carnero et al., 2007, Grané and Veiga, 2010, Hotta and Tsay, 2012, Hotta

and Trucı́os, 2018). In this context, the conditional mean equation of the multivariate

GARCH model becomes:

yt = εεεt

εεεt = ωωω · IT (t)+H
1/2
t ηηηt ,

(5)

where ηηηt , ωωω and IT (t) = 1 are defined as in section 2.2.

In contrast to ALOs, the effect of AVOs in yt is through the term εεεt which indeed

affects the conditional covariance matrix Ht+1. This means that the values of the returns

following the outlier occurrence will also be affected, since the conditional covariance

matrix has been modified by the outlier. In order to highlight this behavior we are going

to focus in the D-BEKK model.
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Let {yt} be a vector stochastic process following the D-BEKK model described by

equation (1) and {y∗t } a vector stochastic process following the D-BEKK model con-

taminated with an AVO at time s. Let H∗
t and εεε∗t denote the conditional covariance

matrix and the vector of errors for the contaminated process {y∗t }, respectively. Using

this notation, equation (1) for the process {y∗t } is:

H∗
t = CC

T+A
Tεεε∗t−1εεε

∗,T
t−1A+B

T
H∗

t−1B.

At time s, when the outlier occurs, εεε∗s = ωωω+εεεs. Hence, at time s+ 1, the conditional

covariance matrix of the process {y∗t } will get contaminated. That is:

H∗
s+1 = Hs+1 +A

T(ωωωωωωT+ωωωεεεT

s +εεεsωωω
T)A.

Note that, after time s+ 1, the conditional covariance matrix of the process {y∗t } is

different than that of the non–contaminated process {yt}, since it is affected by both the

second and the third terms of equation (1). It is easy to see that the third term is affected

by the outlier since it ultimately depends on H∗
t−1. The second term depends on εεε∗t ,

whose covariance is actually H∗
t , which is hence different from the non-contaminated

vector of errors εεεt .

Regarding, the CCC and DCC models the conditional covariance matrix Ht is also

affected by the AVO, since it depends on the conditional variances obtained with the

univariate GARCH models, that are as well affected by the AVO (see Carnero et al.,

2007, Grané and Veiga, 2010, Carnero et al., 2012).

3 Effects of outliers on the correlations: Simulation studies

In the univariate literature it is well known that outliers can affect the estimation of pa-

rameters and volatility in the context of GARCH models. However, there are still few

studies devoted to analyse the effects of these observations on the estimated correla-

tions using multivariate GARCH models. In this section we contribute in this line by

implementing simulation studies for Gaussian and Student-t7 distributed errors.

EXPERIMENTAL CONDITIONS All simulation studies involve single, multiple and

patches of additive level outliers and additive volatility outliers included in the mod-

els described in section 2.3.

The frequency of the simulations is daily and the number of simulated series is N = 2.

Outliers are placed randomly across the simulated series, but in the same position for

each pair of series. We consider that the outlier affects each pair of series at the same

instant of time. Each scenario involves 1000 replications and series are simulated from

CCC, DCC and D-BEKK(1,1,1) models with either normal or Student-t7 distributed er-

rors (see the Appendix). The number of replications is selected to provide robust results.
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Given a model, we analysed 24 scenarios, that are defined from the type and number

of outliers (one isolated ALO, multiple ALOs, patches of three ALOs, one isolated

AVO), the size of the outlier (ωωω = 5σσσy,10σσσy for ALOs and ωωω = 25σσσy,50σσσy for AVOs)

and the sample size of the simulated series (n = 1000,3000,5000).

GAUSSIAN ERRORS Parameter values were chosen by fitting the models to real time

series of financial returns including commodities such as oil. In particular, for the D-

BEKK model: {vec(C)= (0.053,0.042,0,0.020)T,diag(A)= (0.161,0.164)T,diag(B)=

(0.983,0.981)T}; for the CCC: {ααα0 = (0.010,0.013),ααα1 = (0.049,0.067),βββ1 =
(0.940,0.926),ρ12 = −0.606)}; and for the DCC model: {ααα0 = (0.010,0.013),ααα1 =

(0.049,0.067),βββ1 = (0.940,0.926),α= 0.015,β = 0.981}. Symbols ααα0, ααα1, βββ1 stand

for vectors of parameters of the univariate GARCH(1,1) models (see Grané and Veiga,

2010, for the details).

Simulation results are robust to the choice of parameter values and N. Therefore, we

use N = 2 since it allows presenting results graphically without losing generality.

The results of this simulation study are reported in Table 1 (16 top rows) and Fig-

ures 1–3.1

Table 1: Relative bias in the estimated correlations obtained from a CCC model from 1000 simulated series

of size n that include outliers of different magnitudes.

CCC Model with Gaussian errors

Estimated Relative Estimated Relative

n Correlation Bias n Correlation Bias

1 ALO 1000 -0.5987 -0.013 3 ALOSs 1000 -0.5892 -0.028

ωωω = 5σσσy 3000 -0.6042 -0.004 ωωω = 5σσσy 3000 -0.6007 -0.010

5000 -0.6051 -0.002 5000 -0.6017 -0.008

1 ALO 1000 -0.5872 -0.032 3 ALOs 1000 -0.5545 -0.086

ωωω = 10σσσy 3000 -0.5970 -0.016 ωωω = 10σσσy 3000 -0.5810 -0.042

5000 -0.6012 -0.009 5000 -0.5902 -0.027

Patch of 1000 -0.5972 -0.015 1 AVO 1000 -0.5614 -0.074

3 ALOs 3000 -0.6031 -0.006 ωωω = 25σσσy 3000 -0.5805 -0.043

ωωω = 5σσσy 5000 -0.6041 -0.004 5000 -0.5847 -0.036

Patch of 1000 -0.5839 -0.037 1 AVO 1000 -0.5318 -0.123

3 ALOs 3000 -0.5959 -0.017 ωωω = 50σσσy 3000 -0.5627 -0.072

ωωω = 10σσσy 5000 -0.5999 -0.011 5000 -0.5642 -0.070

No outliers 1000 -0.6064

3000 -0.6065

5000 -0.6064

1. Preliminary results concerning isolated ALOs were presented in an invited conference in the 7th International
Workshop on Statistical Simulation (Rimini, 2012) and published in the Proceedings of the workshop (see Grané, Veiga
and Martı́n-Barragán, 2014).
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Figure 1: Relative bias in the estimated correlations obtained from a (a) DCC model and a (b) D-BEKK

model with errors following normal distributions from 1000 simulated series of size n that include ALOs of

different magnitudes.
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Figure 2: Relative bias in the estimated correlations obtained from a (a) DCC model and a (b) D-BEKK

model with errors following normal distributions from 1000 simulated series of size n that include patches

of different magnitudes.
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(b1) D-BEKK, n = 1000 (b2) D-BEKK, n = 3000 (b3) D-BEKK, n = 5000

Figure 3: Relative bias in the estimated correlations obtained from a (a) DCC model and a (b) D-BEKK

model with errors following normal distributions from 1000 simulated series of size n that include 1 AVO of

different magnitudes.

Table 1 shows the estimated correlations (each reported value is the sample mean

computed on 1000 values) for the CCC model and the relative biases (or relative errors)

with respect to the estimated correlations in the absence of outliers. Lines 13-15 corre-

spond to the estimated correlations in the absence of outliers. Figures 1–3 contain the

relative errors of DCC and D-BEKK models for different sample sizes. In particular,

in Figure 1 we plot the relative bias obtained in the estimation of the correlations using

DCC and D-BEKK models for the case of isolated ALOs, whereas Figures 2–3 cor-

respond, respectively, to patches of ALOs and 1 isolated AVO. For each time t (going

from 1 to n), the plotted value is the sample mean computed from 1000 replications.

From Table 1 and Figures 1–3 we can observe that the estimated correlations are

affected by the presence of outliers and the relative errors are higher the higher is the

magnitude of the outlier, the larger the number of outliers included in the simulated

series and the smaller the sample sizes of the simulated time series. Moreover, the bi-

ases in the correlations are higher for the DCC model in comparison to the CCC and

D-BEKK models. In particular, the latter seems to be more robust to the presence of

outliers since the correlations present small relative errors over the sample size. Fi-

nally, another conclusion is that additive outliers (level or volatility) bias the estimated

correlations towards zero for the three considered models when the errors are Gaussian.

STUDENT-t ERRORS Next we perform simulations assuming that the errors follow a

Student-t distribution (see Appendix A.1). From the results of Table A we can conclude
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that, for the CCC model and N = 2, the biases are of less magnitude (in absolute value)

when considering a Student-t distribution. This was expected since the Student-t distri-

bution is more robust to outliers. With respect to DCC and D-BEKK, we also observe

that the biases are slightly smaller in absolute value when considering level outliers,

isolated or patches. However, when we consider volatility outliers we observe that the

impact on the correlations is larger in absolute value.

MORE SERIES Finally, we conduct a third simulation study considering N = 4 series

(see Appendix A.2). The main conclusions are: Firstly, the impact of the outliers on the

correlations tend to decrease for all level outliers; And secondly, regarding the volatility

outliers, passing from two to four series leads to a decrease of the impact of outliers for

the D-BEKK model, whereas for the DCC model the impact of volatility outliers on the

correlations remains almost the same.

4 Wavelet-based detection procedure

Grané and Veiga (2010) proposed a general outlier detection method based on wavelets

for the univariate case. This procedure was evaluated through an intensive Monte Carlo

study and compared to other existing competitors. The method was proven to be very ef-

fective in detecting isolated level outliers, patches of level outliers and volatility outliers

in large univariate financial time series. Additionally, the results showed the reliabil-

ity of the method (in front of other competitors), since it detected a significantly small

number of false outliers. More recently, Kamranfar, Chinipardaz and Mansouri (2017)

has extended the procedure of Franses and Ghijsels (1999) to allow for level change and

temporary change outliers.

The purpose of this work is to extend the method by Grané and Veiga (2010) to a

multivariate setting, preserving as much as possible the good properties already proven

in the univariate case, in particular, effectiveness and reliability, and also a feasible im-

plementation in large data sets. This will be achieved by applying the random projection

method (Cuesta-Albertos, Fraiman and Ransford, 2006, Cuesta-Albertos et al., 2007),

that allows to translate a multivariate problem into a univariate context. These authors

intuitively describe the random projection method in the following way. Imagine we

have to deal with a problem related to d-dimensional objects. The random projection

method consists of choosing, at random, a subspace of dimension k (where k is low

compared to d), solve the problem in the k-dimensional subspace and translate the so-

lution to the original (d-dimensional) space. In practice, k = 1,2, which is exactly con-

trary to the Projection Pursuit paradigm, avoiding implementation problems due to high-

dimensionality. Random projections have been successfully applied as a simple method

for dimensionality reduction in high-dimensional problems, in fields such as computer

science, data mining, image processing, etc. (see, for instance, Bingham and Mannila,

2001, Vempala, 2004).
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Our procedure is to be applied to the residuals of multivariate GARCH models or

other multivariate volatility models such as the stochastic volatility models, although in

this paper we focus our attention on the former class. To our knowledge, our procedure

is the first to detect outliers in multivariate volatility models.

Next in Section 4.1 we describe the proposed method to detect outliers and evaluate

its performance in Section 4.2.

4.1 The procedure

The method we propose is an extension of the procedure by Grané and Veiga (2010),

that was based on the detail wavelet coefficients resulting from the discrete wavelet

transform (DWT) of a univariate series of (standardized) residuals.

The method requires a preliminary step that consists in fitting a multivariate GARCH

model and obtaining the series of multivariate residuals. Note that our proposal is

model-dependent, but general enough to cope with a wide variety of models.

In the first step, the multivariate series of residuals is transformed into a univariate

series to which DWT will be applied. At this point two possibilities are considered

whether the conditional covariance matrix of the fitted model fulfills the decomposition

property. In case this property is satisfied, it is enough to consider only the univariate

marginals. This will be the case for conditional correlation models, such as CCC and

DCC. On the other hand, if the decomposition property is not fulfilled, like happens

in the D-BEKK model, in addition to the marginals, we consider one randomly chosen

projection (see Cuesta-Albertos et al., 2006). Therefore, we end the first step with a

vector containing the univariate marginals or either the univariate marginals plus an

extra series containing the result of the random projection. Note that only one projection

is needed regardless the number of series considered. In Section 4.3 we show that for

N = 10 series the procedure is still effective and no advantage is achieved by increasing

the number of projections.

In the second step we apply the DWT to each of the univariate series under consid-

eration and in further steps the procedure proceeds by identifying outliers as those ob-

servations in the original series whose detail coefficients are greater (in absolute value)

than a certain threshold (see more details below). This threshold is a percentile of the

distribution of a certain test statistic. The underlying idea for the threshold relies in the

fact that in the context of financial return time series it is common to assume an under-

lying model for the data. Therefore, if the fitted model has captured the structure of the

data, the residuals are supposed to be independent and identically distributed random

variables following a specified distribution. In particular, the threshold is associated to

the following test statistic: the maximum of the detail wavelet coefficients (in absolute

value) resulting from the DTW of a univariate series of (standardized) residuals. When

the univariate series under consideration is a marginal of the multivariate one, the thresh-

olds given in Grané and Veiga (2010) for the univariate case are still valid. In case the
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univariate series is the result of a random projection, the distribution of the test statistic

is obtained via Monte Carlo and the threshold is derived analogously.

Table 2: Threshold values: Percentiles of the distribution of the test statistics (with Bonferroni correction).

Gaussian distributed errors Student’s t distributed errors

marginals and marginals and

only marginals random projection only marginals random projection

n 1st level 2nd level 1st level 2nd level 1st level 2nd level 1st level 2nd level

α= 0.05 1000 4.0595 3.8827 4.1386 3.9731 5.2583 4.6062 5.2390 4.6399

3000 4.2995 4.1437 4.3885 4.2383 5.7469 5.0101 5.7214 5.0092

5000 4.4062 4.2664 4.5027 4.3503 6.0131 5.1269 5.9162 5.1953

α= 0.10 1000 3.7216 3.5280 3.9944 3.8207 4.9470 4.3384 4.9215 4.4039

3000 3.8965 3.7114 4.2319 4.0873 5.4087 4.7086 5.3850 4.7845

5000 4.2620 4.0992 4.3607 4.2012 5.6332 4.9015 5.6013 4.9383

In practice, we find that in order to detect isolated ALOs it suffices to work with the

first level detail wavelet coefficients. However, if there are patches of ALOs or isolated

AVOs, it is necessary to use both first level and second level detail wavelet coefficients.

From the simulation study (see section 4.2) we believe that a reasonable threshold to use

in the detection of isolated ALOs is the 95-th percentile, whereas for the detection of

patches of ALOs and isolated AVOs the 90-th percentile is more useful. An analogous

situation occurred in the univariate case.

Since in the multivariate case we are considering more than one series, the thresholds

proposed in Grané and Veiga (2010) for the univariate case are not directly applicable

and the union-intersection principle (Roy, 1953) with Bonferroni correction is applied.

As a reference, Table 2 contains the values of the thresholds after applying the Bon-

ferroni correction for bivariate series. The third, fourth, seventh and eighth columns

correspond to the thresholds for the case in which only the marginals are considered and

the fifth, sixth, ninth and tenth columns, to the case in which both the marginals and a

random projection are considered. The thresholds are shown for two different signifi-

cance levels α = 0.05 and 0.10, three different sample sizes n = 1000,3000, and 5000

and two different error distributions.

A brief description of the algorithm

Next we give a brief description of the procedure for detecting ALOs. Let X=(X1, . . . ,XN)

be the multivariate series of residuals of size n obtained after fitting a CCC, DCC or a

D-BEKK(1,1,1) model with normal distributed errors.

Step 1 In case the fitted model is D-BEKK(1,1,1) (or any other model in which the

decomposition property does not apply) consider a random vector h= (h1, . . . ,hN)
T

such that ‖h‖ = 1 and obtain the random projection of the multivariate series of

residuals on that direction, that is, XN+1 = h ·X. Let X∗ = (X1, . . . ,XN ,XN+1).
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Step 2 Apply the DWT to each marginal of X (or alternatively X∗) to obtain the first

level wavelet detail coefficients D j = (di, j), i = 1, . . . ,n/2, j = 1, . . . ,N (or alter-

natively j = 1, . . . ,N +1).

Step 3 Set the threshold kα equal to some percentile of the distribution of the maximum

of the first level wavelet detail coefficients (in absolute value) resulting from the

DWT of n iid random variables following a standard normal distribution, consider-

ing the Bonferroni correction. See Table 2 for some examples and other probability

distributions.

Step 4 Find S j = {i : |di, j|> kα}, for j = 1, . . . ,N (or alternatively j = 1, . . . ,N+1) and

consider S = ∪ j≥1S j the set formed by the union of all the elements in the S j’s.

Step 5 Use S to locate the exact positions of the ALOs in any of the X j’s. Let s be a

generic element in S. Let xn−2 be the sample mean of X j without observations at

locations 2s and 2s− 1. Then, set the position of the ALO equal to 2s if |X2s, j −
xn−2|> |X2s−1, j − xn−2|, or equal to 2s−1, otherwise.

The algorithms that respectively search for patches of ALOs and for AVOs differ

from the previous one in the sense that two level wavelet coefficients are computed, and

consequently there are two thresholds, one for each set of detail wavelet coefficients

D(1) = ∪ j≥1D
(1)
j and D(2) = ∪ j≥1D

(2)
j , for j = 1, . . .N (or alternatively j = 1, . . .N +1).

However, the main idea remains unchanged. These algorithms have been implemented

in Matlab and are available from the authors upon request.

4.2 Performance of the procedure

In this section we present the results of an intensive simulation study to assess the per-

formance of our detection proposal. In this study, we simulate the contaminated and

no–contaminated multivariate series following the experimental conditions described in

Section 3. We also consider D-BEKK, CCC and DCC models with Student-t distributed

errors.2

We apply the detection method described in Section 4.1 where the assumed model

is the true model used to generate the series. The results are shown in Table 3.3 The

measures used in the performance study are the percentage of times that the localization

of the outliers is correctly detected and the percentage of false outliers. The threshold

values used in the study are contained in Table 2.

The detection rate is larger for models with Gaussian errors. From Table 3 we can

see that when the magnitude of the outlier is ωωω = 10σσσy, the procedure detects more than

2. Parameter values used for models with Student-t7 distributed errors:
{vec(C) = (0.106,0.110,0,0.0371)′ ,diag(A) = (0.0571,0.050)′ ,diag(B) = (0.983,0.985)′} for the D-BEKK model,
{ααα0 = (0.010,0.013),ααα1 = (0.049,0.067),βββ1 = (0.740,0.759),ρ12 = 0.506} for the CCC model and {ααα0 =
(0.106,0.110,0.0371),ααα1 = (0.0571,0.050),βββ1 = (0.740,0.759),α = 0.015,β = 0.781} for the DCC model.

3. The Matlab codes are available from the authors upon request.
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96% of the isolated outliers, reaching the 100% in two cases. When the magnitude of the

outlier is relatively small, ωωω = 5σσσy, the detection rate goes from 36% to 43% for the D-

BEKK model and from 68% and 77% for the CCC and DCC models. Regarding patches

and volatility outliers, the detection rate also increases with the size of the outlier and

it ranges from 24.1% (AVO and D-BEKK) to 99.8% (AVO and DCC). Finally, the per-

centage of false positives is at most 0.001% in 80% of the cases and under 0.007% in the

rest (the only exception is the DCC model forωωω = 10σσσy,n = 1000). Concerning models

with Student-t distributed errors, we observe that, for example, when the magnitude of

the outlier is ωωω = 10σσσy, the procedure detects from 70.9% to 99.2% of isolated ALOs.

As expected, the detection rate is low when ωωω = 5σσσy, since it is difficult to distinguish

small size outliers from the thick tail of Student-t distribution. The percentage of false

positives is still very small, being at most 0.006% in more than 77% of the cases. These

results lead us to conclude that the method is very reliable.

Table 3: Percentage of correct detection of outliers and percentage of false outliers in 1000 replications of

size n for multivariate GARCH models with either normal or Student-t7 distributed errors.

Gaussian errors Student-t7 distributed errors

% of correct detections % of false outliers % of correct detections % of false outliers

n D-BEKK CCC DCC D-BEKK CCC DCC D-BEKK CCC DCC D-BEKK CCC DCC

1 ALO 1000 43.8 77.1 77.2 0.004 0.005 0.005 12.5 7.7 7.8 0.0130 0.0082 0.0083

ωωω = 5σσσy 3000 38.7 76.2 75.3 0.001 0.001 0.001 11.5 3.2 3.2 0.0082 0.0055 0.0056

5000 36.1 69.8 70.8 0.001 0.001 0.001 11.2 2.1 2.1 0.0067 0.0050 0.0049

1 ALO 1000 99.1 100.0 100.0 0.004 0.004 0.048 92.2 98.8 99.0 0.0127 0.1080 0.0067

ωωω = 10σσσy 3000 99.3 99.9 99.9 0.001 0.001 0.001 81.7 98.4 98.4 0.0081 0.0050 0.0050

5000 99.3 99.9 99.8 0.001 0.001 0.001 73.3 99.2 99.1 0.0068 0.0047 0.0047

3 ALOs 1000 36.7 69.6 68.9 0.003 0.004 0.004 12.3 5.6 5.6 0.0113 0.0568 0.0566

ωωω = 5σσσy 3000 36.5 71.2 71.1 0.001 0.001 0.001 10.3 2.5 2.5 0.0077 0.0050 0.0050

5000 36.1 71.5 71.4 0.001 0.001 0.001 11.4 2.2 2.2 0.0066 0.0047 0.0048

3 ALOs 1000 96.5 97.8 97.8 0.002 0.005 0.005 88.2 93.0 93.3 0.0103 0.0062 0.0059

ωωω = 10σσσy 3000 97.8 98.9 98.8 0.001 0.001 0.001 78.8 97.9 97.8 0.0075 0.0542 0.0042

5000 97.8 99.1 98.9 0.001 0.001 0.001 70.9 98.1 98.2 0.0065 0.0043 0.0043

Patch of 1000 26.4 20.5 20.4 0.0001 0 0 24.0 1.7 1.9 0 0 0.0001

3 ALOs 3000 30.5 18.8 18.8 0 0 0 26.9 0.7 0.7 0.0001 0 0

ωωω = 5σσσy 5000 33.1 17.7 18.9 0.00002 0 0 26.6 0.1 0.1 0.0001 0.00004 0.00002

Patch of 1000 73.2 89.2 88.5 0 0 0 52.3 77.8 77.8 0 0 0

3 ALOs 3000 70.4 88.1 87.6 0 0 0 44.1 71.1 71.1 0.0001 0 0

ωωω = 10σσσy 5000 70.5 86.0 85.3 0.00002 0 0 41.1 63.2 63.3 0.0001 0.00002 0.00002

1 AVO 1000 24.2 66.4 95.6 0.001 0.0001 0 3.2 46.3 70.1 0.0001 0 0

ωωω = 25σσσy 3000 24.1 66.8 94.8 0.0003 0 0 3.3 47.1 66.6 0.0001 0.0001 0

5000 24.4 66.5 95.6 0.0002 0 0 2.8 44.4 66.3 0.0002 0 0

1 AVO 1000 52.2 87.0 99.6 0.004 0 0 15.0 75.1 94.5 0.0002 0 0

ωωω = 50σσσy 3000 55.6 88.0 99.3 0.002 0 0 17.7 75.5 94.0 0.0002 0 0

5000 53.9 88.8 99.8 0.001 0 0 17.3 75.0 94.2 0.0002 0 0

No 1000 0.004 0.006 0.005 0.0142 0.0092 0.0094

outliers 3000 0.001 0.001 0.001 0.0082 0.0057 0.0058

5000 0.001 0.001 0.001 0.0068 0.0050 0.0050
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In general, the percentage of correctly detected outliers is smaller for the D-BEKK

model than for CCC and DCC and this is confirmed by the results presented in Section

3, where we observed that the effect of outliers in the estimation of the correlations was

lower for D-BEKK model than for the CCC or DCC models.

These results show the reliability of the detection method for bivariate series. A

natural question arises for higher-dimensional cases: is one random projection enough

for detecting outliers or should the number of random projections be increased with

N? As shown in what follows, our results suggest that there is no need to increase the

number of random projections considered in the algorithm.

4.3 One or more random projections?

We focus now on analysing the performance of our procedure for N = 10 series and the

D-BEKK model.4 In particular, we are interested in studying whether increasing the

number of random projections may increase the percentage of correctly detected out-

liers. In this case, threshold values are computed as suggested by Benjamini and Yekutieli

(2001), instead of Bonferroni correction, which is too conservative. Results are con-

tained in Table 4. As before, the measures used are the percentage of times that the

localization of the outliers is correctly detected and the percentage of false outliers. The

number of random projections is shown in the first column. We analyse here the case of

1 ALO of sizes ωωω = 5σσσy,10σσσy. For ωωω = 10σσσy the proportion of correct detections stays

constant when the number of random projections is increased, whereas for ωωω = 5σσσy the

increase is very low (0.2 percentage points). In contrast, the percentage of false outliers

and the computational burden increase with a raise of the number of random projections,

suggesting that it is not worth to use more than one random projection for large values

of N; Similar conclusions where found by Cuesta-Albertos et al. (2006).

Table 4: Percentage of correct detection of outliers and percentage of false outliers in 1000 replications of

size n = 1000 for a D-BEKK model with Gaussian distributed errors. Series contaminated with one ALO

of two different sizes.

1 ALO ωωω = 5σσσy 1 ALO ωωω = 10σσσy

num. of random % of correct % of false % of correct % of false

projections detections outliers detections outliers

1 21.4 0.0065 97.7 0.0241

2 21.4 0.0064 97.7 0.0178

5 21.4 0.0079 97.7 0.0212

10 21.6 0.0085 97.7 0.0280

20 21.6 0.0115 97.7 0.0377

50 21.6 0.0182 97.7 0.0672

4. Regarding the computational burden of this simulation study, we want to remark that estimating 1000 times the
D-BEKK model for 10 series took approximately one week in an ordinary computer.
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Table 5: Descriptive statistics for daily returns.

Summary statistics of daily returns

Returns Nasdaq S&P 500 MRO IBM Cola Colgate BP Micro AE

Mean 0.0366 0.0271 0.0296 0.0360 0.0418 0.0531 0.0297 0.0715 0.0419

Variance 2.2333 1.3031 4.4819 3.1945 2.1428 2.2649 2.8337 4.3696 5.1985

Skewness -0.0858 -0.2392 -0.2547 -0.0210 0.0353 -0.0230 -0.3780 -0.0101 0.0294

Kurtosis 9.1796 11.7389 10.9489 10.3444 8.6336 13.1178 12.3986 8.5061 10.5041

Results of the Kiefer and Salmon test

KSS -2.7843∗ -7.7615∗ -8.2652∗ -0.6809 1.1449 -0.7462 -12.2656∗ -0.3285 0.9542

KSK 100.2478∗ 141.7666∗ 128.9508∗ 119.1434∗ 91.3907∗ 164.1346∗ 152.4680∗ 89.3229∗ 121.7340∗

∗ Means that we reject at 1%, 5% and 10% the nulls of skewness and kurtosis similar to those of a variable that
follows a normal distribution.

From Table 5, we observe that the nine return series are in majority negatively

skewed (except Cola and AE returns) and have significant kurtosis, ranging from 8.5061

for Micro to 13.1178 for Colgate, which suggests the existence of some outliers. It is

known that this type of observations in time series leads to fat tail distributions, and

some outlier detection methods, specially in the multivariate context, are based on this

information (see for example Peña and Prieto, 2001, Galeano, Peña and Tsay, 2006).

Table 5 also contains the results of the Kiefer and Salmon (1983) test (KS), which is a

formal test of normality in the context of conditional heteroscedastic series.5 The results

of the test confirm the non Gaussianity of the nine return series.

Next, we estimate the three multivariate GARCH models considered in this work:

the D-BEKK, the CCC and the DCC with Gaussian and Student-t distributed errors, and

we proceed by applying our method to detect outliers. The degrees of freedom of the

Student-t distributions are considered endogenous (they are included in the likelihood)

and therefore estimated. Results are shown in Table 6.

Some dates are often detected as outliers or belong to a patch of outliers. Note that,

the dates identified as outliers in the conditional correlation models are also identified as

outliers in the D-BEKK model. Most of the outliers can be related to specific events. In

particular, 19-Mar-91, 20/21-Oct-99, 21-Sep-04, 27/28-Apr-06, 19-Apr-13 and 18-Jul-

13. On March 19, 1991 IBM announced that its returns were expected to decreased by

half which led to an immediate plunge of its shares. On October 21, 1999 IBM stocks

tumbled pulling the rest of the market with it. On April 28, 2006 Microsoft announces

lower-than-expected earnings due to research expenses that would hurt future results.

On September 21, 2004 CNN announced that the optimism about technologic stocks

lifted the U.S. stock market at the open on this day. On April 19, 2013 it was announced

that IBM shares posted their biggest one-day percentage drop in eight years. Finally, on

5. The Kiefer and Salmon (1983) test is given by KSN = (KSS)
2 + (KSK )

2 (test of normality), where KSS =
√

T
6

[

1
T

∑T
t=1 y∗3

t − 3
T

∑T
t=1 y∗t

]

(test of skewness),KSK =
√

T
24

[

1
T

∑T
t=1 y∗4

t − 6
T

∑T
t=1 y∗2

t +3
]

(test of kurtosis) and

y∗t are the standardized returns. If the distribution of y∗t is conditional N(0,1), then KSS and KSK are asymptotically
N(0,1) and KSN is asymptotically χ2(2).
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Figure 5: Graphical output of the wavelet-based procedure for the returns of nine time series estimated

with a D-BEKK model with Gaussian errors.

July 18, 2013 news about the European Union plans to limit fees for using credit and

debit cards pushed down the American Express company’s shares. Furthermore, other

dates like 15-Nov-91, 15-Dec-92, 22-Jul-94 and 29-Jul-08 can be related to oil shocks;

In 1990 Irak invades Kuwait and Kuwait cut crude exports until 1994; Oil prices dropped

from historic highs of $144.29 in July 2008, to $33.87 five months later.

Figure 5 shows a graphical output of the Matlab program, which corresponds to

the analysis of the multivariate residuals obtained after fitting a D-BEKK model with

Gaussian errors to nine series of returns.

All these observations correspond to important financial crashes or oil shocks that

our procedure detected successfully.
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6 Conclusion

The main contribution of this paper is the proposal of a general detection algorithm

based on wavelets that can be applied to a large class of multivariate volatility models.

The effectiveness of our method is evaluated both with simulated and real data. The sim-

ulations report evidence that our proposal is both effective and reliable since it detects

very few false outlier.

We also study the impact of outliers (isolated level outliers, patches of level outliers

and volatility outliers) on the estimation of correlations when fitting well known multi-

variate GARCH models via several simulation studies. The results of the Monte Carlo

experiments show that correlations are considerably affected by the presence of outliers.

The impact on the correlations is stronger the higher is the magnitude of the outlier, the

larger the number of outliers included in the simulated series and the smaller the sample

sizes of the simulated time series. In the simulation, we consider scenarios that try to

mimic portfolios that include asset returns and commodity returns such as oil, where

the correlation is negative and quite negative when turmoils in the oil market propagate

to stock markets. Therefore, the implications of these results are important for invest-

ments in oil commodities, as we identify several sources of impacts that are useful for

controlling international risks of investments.

Appendix

A.1 Student-t distributed errors

The simulations are conducted following the experimental conditions explained in the

beginning of section 3. In this case, the parameter values used are: for the D-BEKK

model, {vec(C) = (0.053,0.042,0,0.020)T,diag(A) = (0.161,0.164)T,diag(B) =
(0.983,0.981)T}; {ααα0 = (0.010,0.013),ααα1 = (0.019,0.027),βββ1 = (0.940,0.826),ρ12 =

−0.306)} for the CCC model and {ααα0 = (0.010,0.013),ααα1 = (0.019,0.027),βββ1 =
(0.940,0.826),α= 0.015,β = 0.981} for the DCC model.

The idea is similar to the experiments showed in Section 3. We simulate with

Student-t7 errors and estimate the CCC, DCC and D-BEKK considering the degree of

freedom of the Student-t distribution endogenous. Table A and Figures A–C contain the

results of this second simulation study.
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Figure A: Relative bias in the estimated correlations obtained from a (a) DCC model and a (b) D-BEKK

model with Student-t7 distributed errors from 1000 simulated series of size n that include ALOs of different

magnitudes.

Table A: Relative bias in the estimated correlations obtained from a CCC model from 1000 simulated

series of size n that include outliers of different magnitudes.

CCC Model with Student-t7 distributed errors
Estimated Relative Estimated Relative

n Correlation Bias n Correlation Bias

1 ALO 1000 -0.3073 0.0062 3 ALOSs 1000 -0.3106 0.0170
ωωω = 5σσσy 3000 -0.3071 0.0029 ωωω = 5σσσy 3000 -0.3086 0.0078

5000 -0.3070 0.0020 5000 -0.3079 0.0049

1 ALO 1000 -0.3093 0.0128 3 ALOs 1000 -0.3141 0.0285
ωωω = 10σσσy 3000 -0.3100 0.0124 ωωω = 10σσσy 3000 -0.3145 0.0271

5000 -0.3089 0.0082 5000 -0.3128 0.0209

Patch of 1000 -0.3075 0.0069 1 AVO 1000 -0.2918 -0.0445
3 ALOs 3000 -0.3072 0.0033 ωωω = 25σσσy 3000 -0.3006 -0.0183
ωωω = 5σσσy 5000 -0.3072 0.0026 5000 -0.3025 -0.0127

Patch of 1000 -0.3137 0.0272 1 AVO 1000 -0.2745 -0.1012
3 ALOs 3000 -0.3099 0.0121 ωωω = 50σσσy 3000 -0.2906 -0.0509
ωωω = 10σσσy 5000 -0.3089 0.0082 5000 -0.2955 -0.0356

No outliers 1000 -0.3054
3000 -0.3062
5000 -0.3064
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Figure B: Relative bias in the estimated correlations obtained from a (a) DCC model and a (b) D-BEKK

model with Student-t7 distributed errors from 1000 simulated series of size n that include patches of different

magnitudes.

0 200 400 600 800 1000
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

Number of Observations

R
e
la

ti
v
e
 E

rr
o
r 

in
 C

o
rr

e
la

ti
o
n
s

e
r
 avo, ω=25σ

y

e
r
 avo, ω=50σ

y

0 1000 2000 3000
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

Number of Observations

R
e
la

ti
v
e
 E

rr
o
r 

in
 C

o
rr

e
la

ti
o
n
s

e
r
 avo, ω=25σ

y

e
r
  avo, ω=50σ

y

0 1000 2000 3000 4000 5000
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

Number of Observations

R
e
la

ti
v
e
 E

rr
o
r 

in
 C

o
rr

e
la

ti
o
n

e
r
 avo, ω=25σ

y

e
r
 avo, ω=50σ

y

(a1) DCC, n = 1000 (a2) DCC, n = 3000 (a3) DCC, n = 5000

0 200 400 600 800 1000
−0.3

−0.28

−0.26

−0.24

−0.22

−0.2

Number of Observations

R
e
la

ti
v
e
 E

rr
o
r 

in
 C

o
rr

e
la

ti
o
n
s

e
r
 avo, ω=25σ

y

e
r
 avo, ω=50σ

y

0 1000 2000 3000
−0.3

−0.28

−0.26

−0.24

−0.22

−0.2

Number of Observations

R
e
la

ti
v
e
 E

rr
o
r 

in
 C

o
rr

e
la

ti
o
n
s

e
r
 avo, ω=25σ

y

e
r
 avo, ω=50σ

y

0 1000 2000 3000 4000 5000
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

Number of Observations

R
e
la

ti
v
e
 E

rr
o
r 

in
 C

o
rr

e
la

ti
o
n

e
r
 avo, ω=25σ

y

e
r
 avo, ω=50σ

y

(b1) D-BEKK, n = 1000 (b2) D-BEKK, n = 3000 (b3) D-BEKK, n = 5000

Figure C: Relative bias in the estimated correlations obtained from a (a) DCC model and a (b) D-BEKK

model with Student-t7 distributed errors from 1000 simulated series of size n that include 1 AVO of different

magnitudes.
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A.2 N = 4N = 4N = 4 and Student-t7 distributed errors

The simulations are conducted following the experimental conditions explained in sec-

tion 3, with N = 4. For better comparison with results of Appendix A.1, we choose the

same parameter values for the first two series.

Once again, the outliers are placed randomly across the simulated series, but in the

same position for each pair of series. We consider that the outlier affects each pair of

series at the same instant. Each scenario involves 1000 replications and series are simu-

lated from CCC, DCC and D-BEKK(1,1,1) models with Student-t7 errors. The number

of replications is selected to provide robust results. Given a model, we analysed 24 sce-

narios, that are defined from the type and number of outliers (one isolated ALO, multiple

ALOs, patches of three ALOs, one isolated AVO), the size of the outlier (ωωω = 5σσσy,10σσσy

for ALOs and ωωω = 25σσσy,50σσσy for AVOs) and the sample size of the simulated series

(n = 1000,3000,5000). Table B and Figures D–F contain the results of this simulation

study. In order to simplify the presentation, we only report the results for the correlation

between the first two simulated series.

Table B: Relative bias in the estimated correlations (first and second series) obtained from a CCC model

with errors following Student-t7 distributions from 1000 simulated series of size n that include outliers of

different magnitudes.

Estimated Relative Estimated Relative

n Correlation Bias n Correlation Bias

1 ALO 1000 -0.3076 0.0052 3 ALOSs 1000 -0.3105 0.0147

ωωω = 5σσσy 3000 -0.3069 0.0029 ωωω = 5σσσy 3000 -0.3082 0.0072

5000 -0.3061 0.0013 5000 -0.3069 0.0039

1 ALO 1000 -0.3093 0.0108 3 ALOs 1000 -0.3123 0.0206

ωωω = 10σσσy 3000 -0.3066 0.0020 ωωω = 10σσσy 3000 -0.3153 0.0304

5000 -0.3078 0.0069 5000 -0.3121 0.0210

Patch of 1000 -0.3078 0.0058 1 AVO 1000 -0.2934 -0.0411

3 ALOs 3000 -0.3065 0.0018 ωωω = 25σσσy 3000 -0.3003 -0.0186

ωωω = 5σσσy 5000 -0.3061 0.0012 5000 -0.3013 -0.0144

Patch of 1000 -0.3156 0.0314 1 AVO 1000 -0.2713 -0.1134

3 ALOs 3000 -0.3096 0.0117 ωωω = 50σσσy 3000 -0.2922 -0.0451

ωωω = 10σσσy 5000 -0.3079 0.0071 5000 -0.2962 -0.0311

No outliers 1000 -0.3060

3000 -0.3060

5000 -0.3057
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Figure D: Relative bias in the estimated correlations obtained from a (a) DCC model and a (b) D-BEKK

model with errors following Student-t7 distributions from 1000 simulated series of size n that include ALOs

of different magnitudes.
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Figure E: Relative bias in the estimated correlations obtained from a (a) DCC model and a (b) D-BEKK

model with errors following Student-t7 distributions from 1000 simulated series of size n that include

patches of different magnitudes.
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Figure F: Relative bias in the estimated correlations obtained from a (a) DCC model and a (b) D-BEKK

model with errors following Student-t7 distributions from 1000 simulated series of size n that include 1 AVO

of different magnitudes.
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