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Abstract—Superimposed Training (ST) with orthogonal fre-
quency division multiplexing (OFDM) scheme has become an
attractive solution to meet the goals of the fifth generation (5G)
of mobile communications, by improving the channel estimation
performance, which is one of the main challenge in multiple input
multiple output (MIMO) systems. This technique does not hinder
the throughput, however, it introduces an intrinsic interference
since the data and the reference symbols are sent together. In
order to mitigate it, several studies propose a time averaging
over several OFDM received symbols, where the optimal length
of this averaging can be analytically computed by solving a
transcendental equation. In this paper, this optimal averaging
is approximated by a low complexity parametric approach
based on a multiple linear regression model that inputs two
parameters, the signal-to-noise ratio (SNR) and the relative speed
between the transmitter and receiver, which effectively represents
the variability of the channel in time. Results show that the
approximated solutions give an error of 0.05% on average and
7% at most in terms of the provided mean square error (MSE)
of the channel estimation.

Index Terms—OFDM, Superimposed Training, Time-Variant
Channel, Channel Estimation, Least Squares, Averaging, Multi-
ple Linear Regression.

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is the
selected scheme to meet the goals of the 5-th generation
(5G) of wireless communications [1]. In conjunction with the
millimeter wave (mmWave) technique and massive multiple
input multiple output (MIMO) layout, a very robust and
reliable transmission with high throughput can be achieved [2],
[3]. The main problem with this deployment is the channel
estimation stage, which is mandatory in order to effectively
transmit data. The massive number of channel links to be
estimated forces the system to set apart a lot of reference
symbols, also known as pilots, which, at the end, hinder the
capacity [4].

For this reason, superimposed training (ST) technique has
become an appealing solution because the pilot symbols are
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added over the data symbols, and the transmission of both is
performed at the same time-frequency resource [5]. The main
benefit of this scheme is the improvement of the throughput,
since there is not an exclusive allocation of resources for
signalling. However, as a downside, an intrinsic interference
due to the superimposed pilot existence cannot be avoided.

In order to mitigate this interference, a general approach to
ST stipulates that before estimating the channel, a mandatory
averaging of the received signal must be performed in the
time domain [5]–[8]. Thus, the power of the noise and the
interference can be significantly reduced, yielding a much
better channel estimation.

Thanks to the channel correlation and its high resemblance
over time, the length of the averaging can be optimized analyt-
ically, as [8] proved. Nonetheless, these optimal solutions have
to be computed by solving a transcendental equation, which
sometimes, it may imply an increase of the computational cost
of the system. With that in mind, in this paper, a parametrical
approach, based on a multiple linear regression model, aims
to fit the optimum averaging values and provide approximate
solutions.

The paper contributions are summarized as follows:
• The trend and intrinsic relationships between the op-

timum averaging solutions and the coherence number
of symbols has been illustrated. Also, a multiple linear
regression model has been proposed to approximate them
in terms of two parameters, the signal-to-noise ratio
(SNR), and the relative speed between the transmitter and
the receiver.

• The boundary where valid input parameters can be em-
ployed, so the regression polynomial is fitted to the
original values has been defined. Also, the cleansed data
points from this region have been used to estimate the
weights of the model.

• The performance and accuracy of the model has been
addressed, and the parametric solutions have been com-
pared in terms of the error between the mean square error
(MSE) of the channel estimation at the approximated
averaging values and the minimum state-of-the-art MSE.
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The remainder of this paper is organized as follows.
In Section II, it is defined the system model where a channel
model with a realistic correlation in the time domain is intro-
duced. In Sections III and IV, the optimum averaging of the
MSE is addressed analytically and parametrically, respectively.
Then, in Section V some numerical results verify the analysis
and illustrate the accuracy of the multiple linear regression
model. Finally, in Section VI, the conclusions are summarized.

Notation: x, x and X represent a scalar, a vector, and a
matrix, respectively, where

[
X
]
(m,:)

are the elements from the
m-th row; (·)T and (·)−1 denote the transpose and the inverse
operation of a matrix, respectively; ⊗ is the matrix Kronecker
product and || refers to the concatenation of two vectors; E {·}
is the mean, and ⌊·⌉ is the nearest integer operation; N0,
R>0 and R≥0, are the sets of non-negative integers, positive
and non-negative real numbers, respectively; and, (·)c is the
complementary of a set. In addition, any reference to the
logarithmic scale is defined with “log” in base 10.

II. SYSTEM MODEL

In this section, the transmitted and received signal of the
ST scheme are described, and the realistic channel model
is presented. This analysis is intended for a downlink (DL)
transmission scheme of a system with K subcarriers.

A. Transmitter

To start with, the ST technique is uniformly implemented
within all the resources of the OFDM grid. The transmitted
signal xkm for the k-th subcarrier and m-th OFDM symbol
is computed as the addition of the data symbols skm over
superimposed pilot symbols ckm ,

xkm = skm + ckm ,

{
∀ k ∈ [0, · · · ,K − 1]

∀m ∈ N0

, (1)

where the power of the complete symbol is P . Then, the
ratio between the power of data symbols (Ps) and superim-
posed pilots (Pc) is defined with the power allocation factor(
β ∈ [0, 1]

)
as follows,

P = Ps + Pc

{
Ps = (1− β)P

Pc = βP
. (2)

Once the signal is generated, it enters the OFDM transmitter
scheme where some guardbands are appended in order to
avoid intercarrier interference (ICI), an inverse discrete Fourier
transform (IDFT) converts the signal in the time domain, and
the cyclic prefix is added in order to mitigate the intersymbol
interference (ISI).

B. Receiver

An OFDM receiver scheme with perfect synchronization
of the received signal is considered, in which the CP of each
OFDM symbol is removed, a discrete Fourier transform (DFT)
converts the signal back into the frequency domain and the
previously appended guardbands are extracted, too. Then, the
k-th subcarrier and m-th OFDM received symbol is obtained,

ykm = Hk
mx

k
m + wk

m = Hk
ms

k
m +Hk

mc
k
m + wk

m , (3)

with Hk
m being the channel and wk

m being the additive
white Gaussian noise (AWGN) coefficients, both in the
frequency domain. Also, these random variables behave
as complex Gaussian processes that obey the statistics of
Hk

m ∼ CN
(

0, σ
2
h

K

)
and wk

m ∼ CN
(
0, σ2

w

)
, with σ2

h and σ2
w

being the powers of the channel model and the AWGN,
respectively. As it can be seen, the multiplicative nature of the
OFDM scheme shows how the data symbols interfere over the
pilots, thus, complicating the channel estimation process.

For this reason, it is common to perform an averaging of
the received signal in order to reduce the noise power, and
mitigate the data interference [5]–[8]. Since this operation
is performed at each subcarrier, the averaging of Nt OFDM
symbols (Nt ∈ N0) in the time domain for the k-th subcarrier
can be expressed as follows,

ȳk =

Nt−1∑
m′=0

1

Nt
ykm′ . (4)

Then, the least squares (LS) algorithm computes the channel
estimation minimizing the following cost function [9],

Jcost(Ĥ
k
LS) =

∣∣∣∣ c∗βP ȳk − Ĥk
LS

∣∣∣∣2 → Ĥk
LS =

c∗

βP
ȳk , (5)

where the previously averaged signal provides the channel
estimation estimation Ĥk

LS for all the averaged symbols of
the k-th subcarrier. Moreover, the linear and logarithmic
expression of SNR are defined, respectively, as follows,

SNR =
Pσ2

h

σ2
w

, SNR dB = 10 log
(
SNR

)
. (6)

C. Channel model

The channel model employed in this analysis follows the
realistic correlation profile in the time domain. Its general
expression [8] between the m-th and m′-th OFDM symbol,
where any correlation model (ρt) can be used, is simplified
as,

E
{(
Hk

m

)∗
Hk

m′

}
=
σ2
h

K
ρt (γ∆m) , (7)

∆m = |m−m′| , γ = 2π
fd
∆f

(
1 +

Lcp

K

)
where γ is a variable that takes into account the effect of the
OFDM scheme, with ∆f being the subcarrier spacing, Lcp

being the number of samples of the CP, and fd the Doppler
frequency. Implicitly, the speed between the user equipment
(UE) and the base station (BS), defined as v, in km/h, is
involved in this correlation since the fd = v

3.6 cfc, where c
is the speed of light constant and fc is the carrier frequency
at which the signal is modulated.
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MSE = Ψv(Nt) =
σ2
h

K

(
1− 1

(Nt)
2

Nt−1∑
m1=0

Nt−1∑
m2=0

ρt (γ |m1 −m2|)

)
+

1

Ntβ

(
σ2
h

K
(1− β) +

σ2
w

P

)
(9)

ψv(nt) =
σ2
h

K

(
1− 2

(γ nt)
2

(
cos (γ nt) + γ nt Si (γ nt)− 1

))
+

1

ntβ

(
σ2
h

K
(1− β) +

σ2
w

P

)
(10)

In the literature, an approximation of the coherence time
(Tcoh) [10], or equivalently the coherence number of symbols
(Nc), is defined as,

Tcoh ∼ 0.423

fd
, Nc ∼

⌊
Tcoh
Tsym

⌉
=

⌊
κ

v

⌉
∼ Nc(v) , (8)

Tsym =

(
1 +

Lcp

K

)
∆f

, κ =
0.423 · 3.6 c

fc

∆f(
1 +

Lcp

K

)
where Nc is computed after applying a unit conversion to
Tcoh, in which the factor is the symbol duration of the OFDM
scheme (Tsym), and κ is a constant that gathers all the pre-
vious parameters. This rule-of-thumb computation determines
the duration such that the channel coefficients remain fairly
constant with a correlation, at least, higher than 70% [11]. It
must be noted the dependency of Nc to v, henceforth, any
reference to this value will be equivalent to Nc(v).

III. OPTIMAL AVERAGING BASED ON SOLVING A
TRANSCENDENTAL EQUATION

In this section, the optimal length of OFDM symbols to
be averaged is presented. This analytical solution, which
is computed following a calculus approach, guarantees the
minimum MSE of the channel estimation.

First of all, as the analysis in [8] showed, the MSE
expression of the channel estimation is presented in (9).
This MSE takes into account the correlation of the channel
coefficients (ρt) since it is integrated inside the parenthesis.
Additionally, the number of symbols to be averaged (Nt)
is an important feature because it defines how much of
the integration must be computed. Thus, if the averaging
is performed within very correlated channel coefficients, the
integration term is almost equal to N2

t , and the overall MSE
is reduced, as expected.

From this expression, the MSE can be computed with
any correlation profile, e.g. ρt (γ∆m) = sinc (γ∆m), which
is an approximation of the realistic correlation model from
[12], that can simplify the MSE formula as (10) [8]. In this
case, it is worth noting that the MSE has been extended into
the continuous domain (Ψv → ψv), as well as its argument
(Nt → nt ∈ R>0). Then, following a calculus approach, ana-
lytical solutions of the optimum averaging can be obtained by
solving the transcendental equation,

Si
(
γ nopt

t

)
− γ nopt

t sinc2
(γ
2
noptt

)
−
γ
(
1 + K

SNR − β
)

2β
= 0 .

(11)

Finally, the optimum averaging can be computed after
applying the closest integer value to the continuous solution,
Nopt

t =
⌊
noptt

⌉
, so the minimum MSE can be achieved.

IV. PROPOSED PARAMETRIC APPROXIMATION BASED ON
A MULTIPLE LINEAR REGRESSION

As previous Section III presented, the optimum solutions
Nopt

t are computed by finding the roots of a transcendental
equation for a given γ and SNR parameters. Implicitly, since
γ depends on v (7), the obtention of the optimum solutions
implies that for each input pair of parameters (v, SNR), a
root-finding algorithm, e.g. the Newton method, must be exe-
cuted. In fact, its computational cost depends on the effectivity
of the initial point introduced in the algorithm [13].

For this reason, it is proposed a pragmatic and low-complex
approach based on approximating the optimum averaging
solutions through a regression model that depends on the
input arguments. As the results from [8] showed, the op-
timum averaging values (Nopt

t ) follow an almost log-log
linear relationship with two parameters: the SNR, and the
coherence number of symbols (Nc). Thus, the implementation
of these parametric curves will enhance the cost effectivity of
computing approximated averaging solutions, and overall, it
will improve the energy saving of the system.

It is well-known that regression models are widely em-
ployed in machine learning (ML), which try to fit curves to
observed data points by describing a relationship between de-
pendent and independent variables [14]. Although the multiple
linear regression model is not the most popular model due to
its multiple downsides [15], e.g. the high influence that far
points may interfere in the regression, or the difficuties that
polynomials show by not achieving rapid turns, it has been
selected as the best approach. The main reason to employ
this model is that in very predictible and well-conditioned
regions, it can provide accurate approximations with very low
computational complexity.

Then, for a set of given data points of size n, which are the
points that the parametric approach aims to fit, the complete
multiple linear regression model expression is [16],

yi = log(Nopt
t,i ) = α0 +

p∑
j=1

αj xi,j + εi (12)

∀ i = 1, 2, ..., n , with p < n

where, the given polynomial is dependent on p input variables,
also known as explanatory variables. Therefore, for the i-th
data point, Nopt

t,i and yi are its linear and logarithmic averaging
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values, respectively, εi is its error value, and, xi,j is its j-th
explanatory variable, with αj , as the associated j-th weight(1).

From this expression, the estimation of the weights is
performed with an LS computation of the following matrix
definition [16],

y = Xα+ ε → α̂ =
(
XTX

)−1
XTy , (13)

where the previously indexed values are gathered as vectors,

y =
[
y1 · · · yn

]T
ε =

[
ε1 · · · εn

]T
α =

[
α0 · · · αp

]T
α̂ =

[
α̂0 · · · α̂p

]T
X =

1 x1,1 · · · x1,p
...

...
. . .

...
1 xn,1 · · · xn,p

 . (14)

As previously mentioned, SNR dB and Nc are going to
be the basis of the independent explanatory variables of the
model. Then, the complete input variables of the regression
model can be constructed with the following general expres-
sion [17],

xi = [X](i,:) =
(
x2i ⊗ x1i

)T
(15)

where


x1i =

[
1 log

(
Nc(vi)

)
· · · log

(
Nc(vi)

)p′ ]T
x2i =

[
1 SNR dB

i · · ·
(
SNR dB

i

)p′ ]T
with p′ being the highest order of any parameter within the
polynomial. Since there are cross-terms between components
of x1i and x2i, also known as interaction terms, the final order
of the polynomial is p = (p′ + 1)2. In order to reduce this
order, these cross-terms can be neglected with the following
input parameter definition,

xi =
(
x1i ||x2′

i

)T
(16)

with x2′
i =

[
SNR dB

i · · ·
(
SNR dB

i

)p′ ]T
.

which reduces the order of the polynomial to p = 2 p′ + 1.
At last, the final fitted averaging values

(
N̂opt

t,i

)
for the

i-th data point are obtained after applying the operation of
rounding the closest integer to the approximated solution(
n̂optt,i

)
, which is computed with the estimated weights,

ŷi = log(n̂optt,i ) = α̂0 +

p∑
j=1

α̂j xi,j , N̂opt
t,i =

⌊
n̂optt,i

⌉
. (17)

V. NUMERICAL RESULTS

In this section, the multiple linear regression model is
implemented. The weights of the model (α̂) are estimated with
a set of valid data points computed from a realistic system
model. After that, the accuracy of the approximated solutions
is addressed in terms of the error between their respective
MSE and the analytical MSE.

(1)Even though, the variable notation coincides with the transmitted and
received signal variables, from now on, any reference to x and y will refer
to the regression model notation.

0 10 20 30 40 50 60 70 80
10

-5

10
-4

10
-3

10
-2

10
-1

M
S

E

Averaged symbols in time (      )

Fig. 1. Representation of the MSE curves for different SNR values and a
relative speed between UE and BS of 90 km/h.

To start with, the system model is implemented in the
mmWave regime with a fc = 28 GHz. The subcarrier spacing
is ∆f = 120 kHz and the overhead of the cyclic prefix is
approximately 7% (Lcp/K).

A. State of the Art Optimal MSE

First of all, as Fig. 1 shows, the MSE from expression (9)
is plotted for a system model with relative speed of 90 km/h,
and a range of SNR values from -10 to 30 dB. As it can
be seen, the theoretical curves (blue lines) that employ the
approximated correlation of ρt (γ∆m) = sinc (γ∆m), match
the simulated curves (blue stars) computed with the realistic
channel model from [12]. Additionally, the minimum MSE
values (green triangles) are achieved at the optimal averagings,
which have been computed by solving the transcendental
equation (11).

From this picture, two kind of curves can be distinguished:
in the first one, at high SNR values, a change of slope is shown,
where the minimum solution can be obtained before the MSE
rises up again until the error floor; and, in the second one,
at low SNR values, a downward trend is maintained, which
flattens asymptotically. In the first type of curve, in general, it
is fulfilled Nopt

t < Nc, where the minimum MSE is enhanced
almost one order of magnitude in contrast to the MSE at Nc .
Whereas in the second type of curve, the best strategy is to
average at Nopt

t → ∞ .

B. Selection of Valid Input Parameters Set

In Fig. 2, the optimum solutions from the transcendental
equation are plotted against Nc. In this case, the averaging
results are computed for a wider range of Nc values (bottom
axis) or equivalently a range of speeds (top axis). Clearly, there
exists a linear relationship in log-log scale between Nopt

t and
Nc(v), which is consistently sustained for all the range of SNR
values (plotted with different symbols at specific values and a
colour gradient from violet to red at intermediate values).
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Fig. 2. Relation between optimal averaging solutions and the coherence
number of symbols, for different SNR values.
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Fig. 3. Illustration of valid input parameters for the multiple linear regression
model defined with YA and YB .

As it can be seen, there are some outlier data points (top-
left solutions) that must be excluded in the training of the
weights in order to perform a proper regression. Thus, the
solutions from the, previously mentioned, first kind of the
MSE curves, i.e. the solutions that fulfill Nopt

t < Nc, and fall
below Nc (black dashed line), are the valid data points that
guarantee accurate approximations. Specifically, this region
can be slightly extended (black dash-dotted line) with the ratio
of a constant value, like r ∈ R.

As Fig. 3 shows, these valid data points are addressed from
a different point of view, where the input parameters, placed in
a grid, are shaded depending on the nature of their respective
data point. To start with, the set of valid parameters that
provide Nopt

t < rNc (green area) are defined as,

YA =

{
vi ∈ R≥0

SNR dB
i ∈ R

∣∣∣Nopt
t (vi, SNR

dB
i ) < rNc

}
, (18)

In contrast to this set, the rest of parameters which give
outlier data points

( (
YA
)c )

are shaded in yellow. The main
issue about this set definition is that in order to check if the
input parameters provide a valid data point, the condition to be
fulfilled employs Nopt

t , which in turn, is the solution pretended
to be approximated.

Alternatively, as it can be seen in the figure, the boundary
between YA and

(
YA
)c

(blue line) can be approximated
with another linear regression (dotted magenta line). The
formal definition of this approximated set of cleansed input
parameters (shaded area with red stripes) is,

YB =

{
vi ∈ R≥0

SNR dB
i ∈ R

∣∣∣ a log(vi) + b− SNR dB
i < 0

}
(19)

where, a ∈ R and b ∈ R are the slope and the offset of
the linear boundary, respectively, which have been computed
employing two, already known, valid parameters from the
green region,

a =
SNR dB

2 − SNR dB
1

log(v2)− log(v1)
, b = SNR dB

2 − a log(v2) (20)

Obviously, the approximation of YA with YB is considered
to be accurate since the shaded area with red stripes covers all
the green region. Henceforth, in order to compute approximate
solutions with the parametric approach, the input parameters
must belong to YB .

C. Validation of the Proposed Parametric Approach

Once the data set is cleansed and the valid input parameters
are determined, the regression model can be implemented.
In Fig. 4, it has been plotted the regressive curves for a
range of SNR values (coloured lines from red to green).
The model weights (α) are estimated when the explanatory
variables contain interaction terms, as in (15), and the order
of dependency is p′ = 4. Similarly to Fig. 2, the boundaries of
Nc with and without the threshold r (dashed-dotted and dashed
lines, respectively), are plotted, too. After running some tests,
r has been extended up to r = 2, which guarantees a well-
conditioned region of valid data points (filled blue dots).

As the figure depicts, the regression model fits with accuracy
the trend of the optimum averagings within the region of
valid data points. However, in order to analyze the accuracy
of the model, it has to be compared with the true optimum
averagings. In fact, it has to be compared in terms of the
final MSE, since it is the metric to be optimized. Then, the
accuracy in percentage is computed for the maximum and the
mean error between the MSE at the approximated averaging
and the minimum MSE, as follows,

ϵMax =
max(ϵ)

Ψv

(
Nopt

t

) · 100 , ϵAvg =
E {ϵ}

Ψv

(
Nopt

t

) · 100
with ϵ =

∣∣∣Ψv

(
Nopt

t

)
−Ψv

(
N̂opt

t

)∣∣∣ . (21)

In Fig. 5, the values of ϵMax (blue left axis) and ϵAvg (red
right axis) are plotted for regression models with different p′

values, which, as previously mentioned, represent the highest
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Fig. 4. Representation of the multiple linear regression model over cleansed
data points. The input variables contain interaction terms following (15), with
order p′ = 4.
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Fig. 5. Accuracy in terms of ϵMax (blue left axis) and ϵAvg (red right axis)
for different order p′.

order any input parameter can take. The curves show the per-
formance when the explanatory variables employ interaction
terms (solid line), as in (15), or when they do not use them
(dotted line), like in (16).

This figure shows that the minimum error is achieved when
p′ = {4, 5, 6}, with ϵMax = 7%, and ϵAvg = 0.05% and 0.1%
for a model with and without interaction terms, respectively.
Otherwise, if p′ = 2, the regression model is very inaccurate
with ϵMax = 35% and ϵAvg = 2.5%. Finally, the downside of
the interaction terms appears when p′ = 7, since the high order
polynomial overfits the data points increasing the maximum
error up to 12%.

VI. CONCLUSION

In this paper, the optimal averaging in time for an ST
scheme has been computed from a parametric approach. The
proposed low complexity approximation avoids the analytical
solution, which must solve a transcendental equation. It has
been defined the multiple linear regression model which re-
quires, as input parameters, the speed between the UE and the

BS, and the SNR of the system. Also, the region where these
parameters provide robust approximations has been addressed.

At the end, the accuracy between the minimum MSE and
the MSE computed from the proposed solutions shows a
maximum error of 7%, and a mean error of 0.05%. With
this parametric approach, an almost optimal ST with a robust
performance can be easily deployed in practical systems where
the computational cost is critical.
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