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Abstract: Constant evolution of technology is leading to the improvement of electronical devices.
Smaller, lighter, faster, are but a few of the properties that have been constantly improved, but these
developments come hand in hand with negative downsides. In the case of miniaturization, this
shortcoming is found in the inherent property of conducting materials—the limit of current density
they can withstand before failure. This property, known as ampacity, is close to reaching its limits
at the current scales of use, and the performances of some conductors such as gold or copper suffer
severely from it. The need to find alternative conductors with higher ampacity is, therefore, an urgent
need, but at the same time, one which requires simultaneous search for decreased density if it is to
succeed in an ever-growing electronical world. The uses of these carbon nanotube-based materials,
from airplane lightning strike protection systems to the microchip industry, will be evaluated,
failure mechanisms at maximum current densities explained, limitations and difficulties in ampacity
measurements with different size ranges evaluated, and future lines of research suggested. This
review will therefore provide an in-depth view of the rare properties that make carbon nanotubes
and their hybrids unique.

Keywords: ampacity; carbon-nanotubes; composites; interconnects; electromigration; diffusion;
current carrying capacity; miniaturization; electronics

1. Introduction

Electromigration has been occurring for hundreds of years, but it wasn’t until the appearance of
integrated circuits in 1966 that the problem became a concern for the industry [1]. Electromigration
occurs whenever there is a current flow through a conductor, but the conditions for electromigration
to cause failure in a conductor could not be met at the time; for instance, the bulk wires used for
conducting current at home would have a maximum current density of about 104 A/cm2, but the
failure of these cables would occur due to Joule heating and not the electromigration process as
such. However, with the irruption of integrated circuits [2] came new problems which no one had
predicted, and as the conductor strips were being placed in contact with heat sinks, Joule heating
failure mechanism was relegated to a second place, which gave way to the main failure mechanism we
still experience today—electromigration.

The first integrated circuits were made from very thin aluminium lines, a material, which due to its
low melting temperature (660 ◦C) and many small grain boundaries, caused very rapid metal diffusion
when enough current densities were passed through. This was the effect of electromigration, although
at the time, it was still not completely understood. However, to understand why electromigration
is such an important phenomenon in metallic interconnects, it is important to understand the whole
process and failure mechanism. When a current is passed through a conductor, the metal ions are
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exposed to two different forces, which act in opposite direction to each other [3]. One of these forces is
due to the electric field and the charge of the metal ions, which causes the positively charged metal
ions to be attracted to the negatively charged electrode. However, the shielding of the electrons in the
conductor makes this force neglectable for most of the models that have been considered through the
years. This, therefore, leaves us with one force, which acts in the same direction as the current flow,
and occurs due to the exchange of momentum between the moving electrons and the metal ions. In
the case of a perfect lattice, such as those which occur in a homogeneous crystalline structure, there is
hardly any exchange in the momentum between the moving electrons and the metallic ions.

However, above 0 K, this perfect lattice cannot occur due to the many defects that can be found [4];
point defects, such as vacancies, caused by the movement of atoms in the lattice, or impurities, due
to the material purifications methods which are not 100% effective; planar defects, such as grain
boundaries which are caused by two separately growing crystals coming into contact, and causing two
different crystallographic directions at the juncture; and linear defects, such as dislocations (both edge
and screw type) due to the misalignment of the lattice atoms. Apart from these defects, there is also
the fact that above 0 K atomic vibration occurs, and the metal atoms are placed out of their perfect
lattice position about 1013 times each second [5]. This causes the metal ions to move into the path of
the electrons periodically, causing the momentum exchange due to electron scattering, and in turn
initiating diffusion of metallic atoms away from that point. This eventually causes a thinning of the
conductor, leading to a short-circuit in places such as grain boundaries, or vacancy defects, where there
is free space available for the moving atoms. At the same time, in grain boundaries, there is a change
in the symmetry that characterizes the bulk crystal lattice, making the collisions between the moving
electrons and the metallic atoms more frequent. Grain boundaries are also known for having weaker
bonds than the rest of the crystal, so all these factors makes them preferential sites for electromigration.

Although metal behaviour is the one being referred to constantly, it is important to mention that
electromigration has also been seen to occur in semiconductors that have been heavily doped [6].
In n-type semiconductors, where electrons are the main charge carriers, the diffusion occurs in the
same direction as the current flow, whereas in p-type semiconductors, where the charge is being carried
mostly by holes, the diffusion phenomenon occurs in the opposite direction to the flow.

Interconnects, as is possible to deduce from the explanation above, being the place where the
current pathways change from being macroscopic to being usually smaller, is one of the first places for
failure to happen. The conductor dimensions usually change at this point, making the current density
to be much higher once it enters the smaller circuit’s cross section areas. If the power required for
these electronical devices is always increasing, and the dimensions of the conductors are constantly
being decreased, it is easy to figure out that a limit will be soon reached and will not be long until
electromigration becomes the limiting factor. As well as miniaturization, there has been an increased
research interest in finding materials that can withstand huge current densities in the aeronautical
industry. Current lightning strike protection systems are made of copper expanded foils, and if they
are to withstand the 200 kA that a lightning can produce [7], they must have a thick cross section area.
If a different material, such as a carbon nanotube-copper composite, was to be used in modern trains or
commercial aircrafts, it would be possible to reduce the weight by one third, which would mean more
than 25,000 tons of fuel saved and a reduction of CO2 emissions of around 78,000 tons per year [8].
According to the international roadmap for devices and systems [9], it is of utmost importance to find
non-Cu solutions to cope with the increased electromigration risk due to the decreased volume of
metal and the ramping of the current densities used, and one of the proposed solutions is the use of
carbonaceous materials, such as carbon nanotubes, which will be the common factor of this review,
being the final aim of this work to explain with ease a complicated phenomenon that is, and will be, a
barrier for technological advances.
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2. Calculating Ampacity Theoretically

In 1961, Huntington and Grone [10] reported the electromigration phenomenon for the first time
by using light scratches on the surface of a gold wire, to which they applied a current density of 10 kA
for days and observed how these markers moved. This was evidence enough to believe there was a
driving force which had to do with the current density and the self-diffusion constant. This gave birth,
to the famous Huntington and Grone’s equation (Equation (1) below) which is used today:

J =
ND
kT

Z∗eρj =
ND0

kT
exp (− φ

kbT
)Z∗eρj (1)

where J is the particle flux, N is the particle density, D the diffusion coefficient, kb and T Boltzmann
constant and temperature, respectively. Z* is the effective valence also known as the effective charge,
e the charge of an electron, ρ resistivity and j current density. Lastly, φ is the activation energy of
diffusion and D0 is a factor that expresses the frequency of the collisions. From this equation, it is
possible to deduce that the sign of the effective valence will give the direction of movement for the
atomic migration. If migration occurs for example in the same direction as the electron flow, then the
effective valence value will be negative. From Equation (1), it is possible to observe that the mass flux
caused by electromigration is directly proportional to the current density, the diffusion coefficient and
the concentration of diffusing atoms.

This equation was used for years, until 1968, when James R. Black [11] found that the
electromigration driving force was not proportional to the current density, but to the square of current
density. In his opinion, the first models that had appeared for electromigration were not sufficiently
exact, as they had used a very narrow distribution of current densities, so he tried to replicate the
measurements with a wider range of current densities and soon realized that the mean time for failure
of the conductors depended inversely on the square of the current density. This gave way, for Black’s
law as seen in Equation (2), which is the one used up until today for electromigration measurements:

1
MTF

= Aj2 exp (
φ

kbT
) (2)

where MTF is the mean time to failure; A, the cross-section area of the film; j, the current density; φ, the
activation energy; kb Boltzmann constant and T the film temperature. In this same study, it was also
observed that the mass transport during electromigration occurred preferentially through the grain
boundaries and the surface of the conductor and could be measured through their activation energies:
in the case of an aluminium conductor with fine grains, the activation energies that were calculated
from the equation above were in the order of 0.48 eV, whilst in well-ordered, large-grained aluminium
the activation energy raised to 0.84 eV. This increase in the activation energy was quickly attributed to
the higher energy surface and bulk diffusion pathways, which the atoms had to follow when the low
energy grain boundary diffusion pathways had been severely reduced. It was also noticed, that above
275 ◦C, the predominant diffusion was through the lattice and therefore grain and surface diffusions
were not important. However, things were not so simple, and it was soon realized that both Black’s
law and Huntington’s law were right, and it all depended on the type of failure that occurred, if it
was nucleation or growth dominated, which depends strongly on the method used to construct the
line. Most aluminium lines for instance, are often placed on top of a refractory metal known as shunt.
Through these shunt layers, the electric current can bypass the void formed in the conducting line
when electromigration occurs, and in these cases the failure mechanism is growth dominated, and
failure occurs once the void is too big and breaks connection, and in this case a 1/j kinetics must be
used. However, if there is no shunt layer, then the failure is nucleation and migration dominated and
follows Black’s law instead. On some occasions, it is even possible to have both nucleation and growth
kinetics at the same time, and a power on the current density cannot be used to explain it. These two
mechanisms are represented on Figure 1.
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On the other hand, microstructure is another factor that greatly affects mass transport. A film 
with a uniform size of grain will have a network of grain boundaries, which will meet at triple points 
[12]. A representation of this triple points can be observed in Figure 2. 

Figure 1. Two different mechanisms of void formation in copper during electromigration stress for (A)
and (B) which is due to growth dominated failure, and (C) and (D) which corresponds to nucleation
and migration.

There are several diffusion paths available through a conductor, namely lattice, grain boundary,
material interfaces and dislocation cores. Lattice diffusion has the highest activation energy [12], which
means that the mass transport through this pathway will be the slowest, whilst grain boundaries and
interfaces have lower activation energies, which means that mass transport will be predominately
through these paths. On the lowest activation energy level, we have surface diffusion. However, this
diffusion mechanism is blocked whenever there is a passivation layer on the surface of the conducting
line, so it will not be available for metals such as aluminium or copper that form passivation layers,
whenever exposed to air. Therefore, to account for the effective diffusion (total diffusion occurring),
it is necessary to add all of these individual diffusion pathways with their corresponding fraction of
atoms that diffuse through them. This can be seen in Equation (3) below:

De f f = Dlattice + fgbDgb + fiDi + fcDc (3)

where Deff is the effective diffusion coefficient; Dlattice, Dgb, Di and Dc the diffusion coefficients for
lattice, grain boundary, material interface and dislocation cores, respectively; fgb, fi and fc, are the
fraction of atoms diffusing through grain boundary, material interface and material cores respectively.
For a dual damascene interconnect, the effective diffusivity according to bibliography [13] can be
expressed in terms of thickness of grain boundaries (δgb) and interfaces (δi), average grain diameter (d),
dislocation density (ρc), cross section area of the dislocation core (ac), line width (w) and line height (h).

De f f = Dlattice + δgb

(
w− d

wd

)
Dgb + δi

(
w + h

wh

)
Di + ρcacDc (4)

The diffusion coefficients are expressed by Arrhenius law. From Equation (4), one can observe
that the effective diffusivity depends strongly on factors such as the microstructure, temperature
and quality of the interface between the conducting layer and other layers. At higher temperatures,
the diffusion rate increases whilst the opposite happens with lower temperatures. Also, if there is
a temperature gradient along the line there will be regions with different diffusion rates resulting
in hillocks and void formation indistinctly. Thus, temperature has a huge effect on mass diffusion
during electromigration.

On the other hand, microstructure is another factor that greatly affects mass transport. A film with
a uniform size of grain will have a network of grain boundaries, which will meet at triple points [12].
A representation of this triple points can be observed in Figure 2.
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Figure 2. A triple point region is the junction where crystallographic directions change from one grain
to the next. These points are the usual spots where regions of depletion or accumulations occur, and
it depends on the structure of the triple point. (A) Two grain boundaries leading to a single grain
boundary will lead to mass accumulation and therefore to hillock formation. (B) If one grain boundary
leads to two grain boundaries, there will be an area of depletion of mass causing voids.

At this triple points, crystallographic directions change from one grain to the next, so it is easier
to find divergences in mass transport at these points. Depending on the type of triple point found, it is
possible that one grain boundary leads to two other grain boundaries, in which case there will be more
mass leaving the triple point than entering, so a void will form (causing eventually an open circuit if
no shunt layer is present), or two grain boundaries joining with a single grain boundary, leading to a
mass accumulation and a hillock formation (causing a short circuit between adjacent lines). Following
this idea, smaller grain sized metals will lead to the formation of more grain boundaries (and therefore
triple points) than bigger grained metals.

From Equation (4), it is also possible to observe some design rules that should be taken into
consideration. As illustrated in Figure 3, if the line width is larger than the grain size, it will
contribute to the overall electromigration by creating pathways of grain boundaries throughout
the line (polycrystalline line), but oppositely, interfacial diffusion will become the preferred diffusion
pathway when the linewidth is smaller than the average grain size, as there will be no continuous path
of grain boundaries throughout the line (bamboo-like structure).
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Figure 3. Different kinds of crystal structures which contribute to different preferred diffusion pathways
during electromigration. Polycrystalline lattice has many small grain boundaries and therefore diffusion
would be dominated by grain boundary diffusion although other types of diffusion also occur. On the
other extreme, near-bamboo or bamboo structures will have lattice diffusion as its primary diffusion
pathway, although near bamboo would also present grain boundary diffusion depending on the size of
the line diameter with respect to the grain size.

This fact is specially observed in contacts and vias, as there is an impossibility of the diffusing
metallic atoms to cross the materials used in them, and therefore there are voids and hillocks formed at
the contact. An example of hillocks formation when the maximum ampacity is reached can be observed
in Figure 4. This image was obtained during an experiment with a graphene-copper composite, which
was synthesized by our research group.
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Figure 4. Failure due to electromigration in a graphene-copper composite. (A) is the line prior to
applying a high current density whilst (B) is the same line after the failure. The image belongs to
the authors.

Electromigration, however, does not only depend on the current density as it was shown by
Blech [14] and depends also on a critical length of the line being used. Blech effect consists of three
separate concepts—Blech product, blech length and blech condition, all of them are related to the stress
gradients which opposes the mass flow during electromigration. As stress gradients build up in the
lines to oppose the electromigration force, hillocks and voids help relieve these stresses (also known
as back stress). However, after some time, the formation of a void might cause an open circuit if a
shunt layer is not present to bypass this point, and a hillock might cause two separate lines to come
into contact, causing a short circuit. This stress factor was therefore incorporated into Equation (1) to
account for this new observed parameter and this way, Equation (5) was obtained:

J =
ND
kT

(Z∗epj−Ω
∆σnn

∆σl
) (5)

where Ω is the atomic volume, σnn the stress normal to the grain boundaries and l is the distance
along the line. From this equation comes the first of Blech concepts, the “Blech condition“ as shown in
Equation (6), which when satisfied, the overall electromigration driving force will be 0 and therefore
no electromigration would occur.

Z∗epj = Ω
∆σnn

∆σl
(6)

If one integrates the Blech condition over the length of the line, one would be able to observe that
the stress varies linearly along the line when the backflow flux equals the electromigration flux. Given
that there is a limit of stress that a conductor can withstand before failure (σth), a critical product for
electromigration failure could be stated as:

(jl)critical =
∆σnnΩ
Z∗eρ

(7)

where ∆σnn = σth − σ0, being σ0 the stress at length 0. This is known as “Blech product”. From this
equation, for a given current density j, one would be able to determine a critical length at which no
electromigration would be able to occur. This is the third of Blech conditions, known as “Blech length”,
and was observed whenever the line length reached a critical value, as in these cases, electromigration
could be avoided. Blech length equation can be observed in Equation (8) below:

lB = Ω
∆σnn

|Z∗|eρj
(8)
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3. Determining Ampacity Experimentally

The review has been centred on explaining the electromigration process; however, no importance
has yet been given to the term “ampacity”. Ampacity is the maximum current density that a material
can withstand before failure occurs. Electromigration, as it has been explained before, starts the
moment the first electron passes through. However, there must be enough “wind force” [15] to create
momentum exchange to make the lattice atoms move. The term “ampacity” therefore refers to the
point at which movement of lattice atoms occur, and therefore resistivity begins to increase. This
was defined perfectly by Subramaniam [16] as “the maximum current density at which the resistivity
remains constant”. Ampacity, as it has been explained above, could be theoretically calculated using
the above formulas, but for most of the new emerging materials, some parameters such as activation
energies would be unknown. Therefore, there is an emerging necessity to develop methods that would
allow to measure ampacity at any size scale.

Generally, with microwires, the way to measure ampacity is straightforward. However, a
4-point-probe measuring method is always recommended, as this would remove any error that
could arise from the cabling being used. By running a current-voltage cycle, one would be able to
determine (by using Ohm’s law) the resistance of the material at each different current. This would
allow the user to determine resistivities for each current measured during the test. The current at
which the value for this resistivity increases would be the one to use for calculating the current density,
by dividing by the cross section of the material.

This kind of measurement has been done in the micrometre and sub-micrometre scale before, and
even simultaneous characterization of the material can be done by using techniques such as STM or
AFM, which allow for the live visualization of how the morphology changes with current [17].

A good guidance for determining the kind of diffusion that is occurring (lattice, surface or grain
diffusion) is that one would require to know the activation energy of the composite material. Higher
activation energies would suggest that the diffusion pathways chosen by atoms for electromigration
would be less energetically favourable such as lattice diffusion, whilst smaller values would suggest
grain diffusion. Determining activation energies can be done with any conducting material, by plotting
an Arrhenius plot, in which the slope would correspond to the activation energy.

However, it is important to notice that size would be a big limitation when choosing the right
power unit, as bigger cross sections would require more current to be able to reach the ampacity
point. If we take bibliographical values for copper ampacity [18], we would need to apply a current
of approximately 75 KA to reach the failure point of a line with a cross section of 400 micrometres.
One way to avoid these huge currents would be to diminish the cross section of the desired material,
but then other phenomena could come into play, such as changes in crystalline structure (from
polycrystalline to bamboo type for instance) or going below Blech length, changing thus the diffusion
process, which would result in an erroneous ampacity measurement. On the other hand, if instead of
using a line, there was a requirement for measuring the ampacity of a bigger 2D material, the difficulty
would be even higher. Our group is currently working on optimizing a method we have developed
for measuring ampacity in thicker layers of material.

The system, which can be observed in Figure 5, consists on creating a laboratory-made “lightning
strike”, by using a set-up of 12 capacitors in parallel. The laminated sample is placed on a wooden
surface, and a collector ring (made of thick copper) is placed on the outside of the sample to prevent
any possible over-currents. A sharp copper electrode is placed above the surface of the sample and a
drop of salt water is used to create a conducting channel between the tip and the sample. A Rogowski
probe is used to measure the current that passes through the electrode once the safety switch is turned
on. As soon as the circuit is closed, the current will cause copper to migrate away from the contact
zone, creating a small gap that will become bigger together with the radial propagation of the current.
The final size of the gap would give the user the cross section of material that the current could not
move, therefore giving a value of maximum current density. It has been observed, in materials with a
known ampacity, that there is a relation between the damage zone and the maximum current density of
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the material. However, optimizations must be done, as there is energy being lost through Joule heating,
sound, light and small projection of material, giving variable errors in the measurements. Even though
measurements are still being carried out, this is a good starting point to be able to measure in the near
future the ampacity of materials with other sizes and shapes, other than microwires.
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4. CNT as High Ampacity Material

4.1. Pure CNTs as High Ampacity Materials

The first interconnects, as it was explained at the beginning, were fabricated with aluminium,
but by the end of the 1960s Blech exposed the idea that aluminium ICs were failing due to
electromigration [19]. Black [11], several years later, systematically studied the phenomenon varying
several parameters and came up with an equation by which, theoretically, one could construct
aluminium lines with infinite lifetime, by taking into consideration current densities, conductor
temperatures and conductor cross sectional areas. However, it was soon discovered that these infinite
lifetime lines could not really avoid electromigration due to grain structures and other defects, and soon
many articles related to this electromigration phenomenon topic appeared [19–21], which explained
the relation that was observed between the aggregates that were being formed at exactly different grain
sizes transition points. Exactly two-thirds of the defects that were being found in the aluminium lines
were at these transition points. This can be easily understood by looking at the activation energies for
the different kinds of diffusion in aluminium; bulk diffusion had an activation energy of 1.2 eV whilst
surface diffusion was 0.8 eV. On the other hand, grain boundary diffusion had an activation energy of
0.7 eV, which meant that this diffusion path was the most favourable energetically speaking [22].

Soon, copper was found to be a good replacement for aluminium, both by doping aluminium
with copper, and by using pure copper as the line material. Copper, in comparison to aluminium
has different diffusion activation energies—bulk, grain-boundary and surface diffusion were in the
order of highest to lowest activation energies, making surface diffusion the preferred mechanism in
copper (2.3, 1.2 and 0.8 eV, respectively) [22]. However, copper in contact with air rapidly oxidizes,
which prevents diffusion through the surface, and therefore grain boundary becomes the primary
diffusion pathway. Copper, however, is only a temporary measure, as miniaturization is pushing
the cross-section areas of the copper lines to new limits, which exceeds the ampacity values of the
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metal. As a point to consider, the technology used for the fabrication of copper, namely damascene
technology [14], has also been seen to affect the quality of the copper lines produced, as due to the
high temperatures used, diffusion of copper ions into the neighbouring silicon or silicon dioxide has
been observed [23]. Therefore, further steps are necessary to prevent this diffusion problem, which
would mean an increase in the total costs for the process.

A new field has emerged over the last few years, by which ampacity can be improved by using
carbon nanotubes. Carbon nanotubes are one of the several structures that elemental carbon can form
in its sp2 hybridization. In 1991, Iijima observed this kind of tubular structure and gave them the
name by which we know them today [24], and since then many new techniques have been developed
to produce multi-walled carbon nanotubes [25–27], single walled carbon nanotubes [28–30], carbon
nanotube yarns [31–33], films [34,35] and composites [16,36–41], to name a few. Some examples of
the structures that can be obtained with carbon nanotubes are shown in Figure 6. Even though this
review is centred around electrical properties of the nanotubes, it is important to mention that there
is also a close relation between crystal structure the mechanical properties of these tubes, which
must be understood if they are to be used effectively on their own or as part of a composite material.
Salvetat et al. [42] demonstrated that the orientation of the carbon nanotubes had a great impact
on mechanical properties. Highly ordered nanotubes, produced by arc discharge method, were
seen to possess high elastic moduli of around 810 GPa. However, other nanotubes, which had been
produced by catalytic methods, showed a steep decrease of these values and were close to 50 GPa. The
explanation was that the elastic behaviour of disordered nanotubes could involve shear deformation,
which is much more sensitive to any defects or dislocations present that the highly ordered nanotubes.
These highly ordered nanotubes showed no change in elastic modulus, even when subjected to
thermal anneals to reduce point defects. This led the author to the conclusion, that in highly ordered
carbon nanotubes, point defects have no effect on mechanical properties, which makes these kinds
of nanotubes the best option to use for industrial purposes, as we have been mentioning throughout
the review. It is important to mention that in such ordered cases, the diameter of the nanotubes seem
to have no effect on the elastic modulus. Other articles, such as the one by Yamamoto et al. [43], also
showed that the elastic modulus could be enhanced by using thermal annealing methods. MWCNTs
were annealed at 1800 ◦C, 2200 ◦C and 2600 ◦C and these showed improved strengths by a factor of
5.4, 5.1 and 15.6, and their elastic moduli by a factor of 5.9, 13.2 and 18.9, respectively. Their conclusion
was that by annealing at such high temperatures, the degree of orientation of the 002 graphitic planes
was improved, and the number of defect concentrations was severely reduced. Also, the undulated
and disordered structures changed to a nearly perfect cylindrical structure when annealed at such
temperatures, which changed the kind of fracture from clean break type, to sword-in-sheath failure.
These factors, as well as affecting the mechanical properties, also affect the electrical properties, as
perfect lattices improve conductivity greatly as there is no defect to oppose the flow of electrons
through the nanotube structure. As has been explained in the sections above, defects are usually the
points at which electromigration preferentially occurs. However, it is a different, and equally important
property of these nanotubes that will require our attention in this review—their resistance to high
current densities, or in other words, their ampacity.

Carbon nanotubes exhibit a high tolerance to electromigration, due to the strongly bonded system
that occurs naturally between carbon atoms [44]. To give an exact number, the ampacity of carbon
nanotubes has been found to be close to 1 × 109 A/cm2, three order of magnitude lower than those of
copper or gold (1 × 106 A/cm2 approximately) [45]. Not less important is the fact that the thermal
conductivity of carbon nanotubes exceeds that of copper by a factor of 15, which makes them the
perfect option for dissipating heat from sensitive areas such as interconnects [46]. However, these
conductivities may vary greatly with the structure of the carbon nanotube, as was observed in 1996 by
Ebbesen et al. [47], when they discovered that even carbon nanotubes that had been prepared at the
same time and with the same method (by arc discharge method) exhibited different electrical properties
from one tube to the next. This came as a big surprise, as the tubes even behaved differently when
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subjected to temperature variations. Some tubes had a metallic temperature dependence whilst others
were clearly semiconducting, and it was concluded that helicity and interlayer interactions played an
important role in these electrical properties. Carbon nanotubes present a type of conduction which
can only be compared to superconductors, as it has been proved that electrons move through them by
ballistic transport, meaning that there is no resistance to the flow of electrons [48]. Ballistic transport
occurs when the length of a conductor is smaller than the electron means free path (approximately
40nm), and in these cases each conducting channel would contribute to the total conductance with a
unit known as conductance quantum and usually denoted by G0 (G0 = 2e2/h, where e, is the charge
of an electron and h, Plank’s constant) [48]. This has been proved in single walled carbon nanotubes
easily by standard measuring methods (2 and 4 terminal sensing) and shows that as single walled
carbon nanotubes have two bands crossing the Fermi level, the total conductance would be given as
expected in a metallic nanotube, by 2G0. However, some measurements in MWCNTs have shown that
the conductance of SWCNTs cannot be applied to each shell of a MWCNT individually, as it has been
observed with a conductance below 2G0 in most cases. The cause for these low conductance quantum
measurements can be found in the current probing methods, as these will only consider the outer shell
of the MWCNTs and not every layer [49,50], and it is well documented that the interaction between
successive walls of the tube reduces the total conductance [51].
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One would say that, knowing this conductance quantum properties, SWCNTs would be the best
possible solution for interconnects. However, due to the synthesis methods used to produce these
nanotubes, their chirality changes and with it the electrical properties they exhibit [47,52], making
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it possible to have either metallic or semiconducting type single-walled nanotubes. As it is easy to
understand, it is the former kind that is of interest to improve the current metallic interconnects [53–57].
On the other hand, multi-walled carbon nanotubes usually show a metallic behaviour with most of the
synthesis methods that are used [58]. It is interesting to notice that multi-walled carbon nanotubes
do not fail at high current densities via electromigration, as has been explained before, but fail in
a series of sharp steps associated with the destruction of individual nanotube shells [45], as has
been observed via AFM, showing how multi-walled carbon nanotubes changed their diameter with
increased current densities.

However, carbon nanotube technology has a few problems when researchers try to use these
nanotubes on their own as interconnects. One of the first issues found when producing single or
multi-walled carbon nanotubes are the high temperatures required for the synthesis and deposition on
the substrate, as it affects the transistors and doping profiles. Many efforts are directed towards process
engineering in order to try and reduce the temperatures being used for this synthesis. Advances
have been achieved recently and temperatures closer to 350 ◦C have been proven to be enough to
this end [59] by using cobalt as the catalyst and obtaining good uniformity with no apparent yield
loss compared to higher temperature synthesis. However, some difficulties must be overcome if these
CNTs are to be used, as resistivity values of the nanotubes produced at low temperatures are still
above those exhibited by high temperature synthesis.

More difficulties have been observed when using carbon nanotubes as interconnects due to the
problems that occur when contacting them to other materials, usually caused by the fermi energy
differences between both and to the metal-carbon nanotube interface chemistry [60]. This causes very
high contact resistance (usually greater than 6.5 KΩ for SWCNTs [61]), which severely reduces their
lifetime. Carrier tunnelling across the interface of nanotubes and metals due to the very different work
functions between the two is the main cause of these high contact resistances. However, other causes
such as defects (which include impurities) on either the nanocarbon or the metal would also cause
higher contact resistance. To this end, constant research in this field is being carried out, looking to
improve the contact resistance, as no matter how good the conductivity of the nanotubes or the metal,
this will limit the overall performance for interconnects [60].

Another consideration for making carbon nanotubes a viable material for interconnects is that
the nanotubes must have a metallic behavior, as has been mentioned above. Although usually to this
end, and due to ease of production, multi-walled carbon nanotubes are used, it has been found that
although contact resistance is indeed reduced with metallic type nanotubes, resistivity remains two
orders of magnitude above the one of copper [46], as was mentioned above, due to the interaction of
each of the MWCNT walls. To reduce this resistivity, there have been some recent advances whereby
using titanium particles as catalysts, the metal remains at the tip of the nanotube after the growth
process and brings all the layers into contact. This causes a big decrease in their resistance, making this
process interesting for research in the near future [46].

Finally, but not less important, longer lengths than the ones exhibited by a single nanotube must
be connected, therefore needing not a single nanotube that is far too short, but a bundle of nanotubes
instead. As has been mentioned, controlling chirality in carbon nanotubes is very difficult; therefore,
in a bundle, it is possible to find both metallic and semiconducting nanotubes, which would not
contribute to the overall current conduction. This, together with the fact that in between the nanotubes
there will also be a contact resistance makes longer CNT bundles less efficient than shorter CNTs if
a higher ampacity is searched for. However, and even with these problems, there are some authors
who claim to have developed high-ampacity power cables, made of closely packed and aligned carbon
nanotubes [62], with values of ampacity close to 1 × 105 A/cm2. Other recent results have shown that
by using a radial densification process, it is possible to obtain cables with a diameter up to 1 cm in
size [63]. A densified core of CNTs is first produced, and then successive layers of CNTs are wrapped
and densified on top. This method produced a conducting cable that can withstand much-higher Joule
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heating temperatures than normal copper cables, which would make it an outstanding material for
high current cables in air.

This result shows how promising the field of carbon nanotubes as high ampacity material is, and
surely, soon, the drawbacks that are being encountered will be overcome, granting technology with
a cheap and effective substitute for copper. However, advances are yet to reach this point, and until
then, and even though carbon nanotubes by themselves are interesting as has been explained above, it
is their use as composites that has garnered great attention in recent years.

4.2. CNT Composites as High Ampacity Materials

The possibility of using the outstanding conductivity values of metals, together with the great
ampacity behaviour of carbonaceous materials, might be the solution to cope with the future needs in
miniaturized electronics. However, there are some issues when synthesizing carbon nanotubes—metal
composites due to the poor adhesion that metals have shown with CNTs [64]. The very strong
covalent bonds that carbon atoms show towards each other prevent the need to bond to other kinds
of atoms, such as the ones in outside metals. However, treating these carbonaceous materials with a
pre-oxidation, acid or a heating stage after producing them have shown improvements in adhesion [37].
Metals surface tension plays an important role when trying to wet the carbon nanotubes, and only
liquids with surface tensions below 100–200 mN/m can wet this carbonaceous material [65].

For achieving these composite materials, several techniques have been used [40]; the technique
that is most utilized is powder metallurgy [66–68], followed closely by electrodeposition and electroless
deposition (being nickel and copper the two metals which have been most used) [69–76]. An example
of the kind of structures that can be obtained by using electrodeposition on carbon nanotube can be
observed in Figure 7, where the author synthesized a CNT-Cu structure by this kind of electrochemical
growth. For metals with a low melting temperature, a viable option is melting and solidifying them in
the presence of carbon nanotubes [77–79]. In addition to processes for synthesizing these composites,
there are many metals that have been used in order to improve different properties. However, and
due to the scope of this review, we will be centering our attention on the composites that pursue the
improvement of ampacity as its end goal. These composites are composed of carbon nanotubes and
copper, which is the metal that has proven to exceed any others in conductivity, and the one that is
used up until today for interconnects and most current conductors.Nanomaterials 2019, x, x FOR PEER REVIEW  13 of 20 
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Although CNT-Copper composites were synthesized several times with success [75,80–84], it was
not until 2008 [85] when the idea of how this composite could behave under high current densities was
presented. In this paper, a low-density CNT matrix was synthesized by CVD, and the voids in between
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tubes were filled up with copper by electrodeposition. After the annealing of the composite material, it
was observed that the average growth rate of voids caused by electromigration was four times smaller
than the one observed for pure copper. Several years later, in 2013 [16], Subramaniam et al. went
further and stated that their copper-SWCNT composite showed a 100-fold increase in the ampacity
when compared to pure copper and showing no decrease in conductivity. Their composite material was
made by depositing vertically aligned carbon nanotubes (densified by liquid densification technique),
which when subjected to shear force became horizontally oriented. Then, in a two-stage growth process,
organic electrodeposition followed by a second phase of aqueous electrodeposition, SWCNT-copper
composite was achieved. It is very important to explain that the organic phase was used to wet the
CNTs so that the copper would be able to adhere and nucleate on the nanotubes. A second important
lesson was obtained from this article—that the rate-limiting step had to be the copper nucleation and
not ion diffusion during electrodeposition. To this end, a slow deposition rate had to be used in order
to achieve ion diffusion towards the interior of the CNT structure and prevent deposition like this on
the outside only (as that would have made a coating of copper and not a proper composite material).
As was stated, CNTs seemed to prevent low energy diffusion pathways or, in other words, diffusion
through surface and grain boundaries, forcing diffusion through the bulk of the lattice. This was
proved by plotting experimental results, and using Black’s law to calculate the slope, giving a value of
diffusion which was the same as the activation energy of lattice diffusion in pure copper (2.03 eV).

This same composite material was researched in other articles [86], showing as well as the
mentioned outstanding properties, a metal like thermal conductivity (395 W m−1 K−1) and a silicon-like
thermal expansion. This expansion coefficient is of utmost important, as this is one of the main
reasons for overheating of semiconductor-based electronics. At the interface of the heat sink (made
of metals such as copper or aluminium) and the substrate (silicon) is a huge mismatch in thermal
expansion coefficients (approximately 300% mismatch), which causes failure at these points due to
delamination [87]. In order to prevent this from occurring, similar thermal expansion coefficients
must be present for both the heat sink and the conducting heat sink, which can be obtained (only
a 10% mismatch in comparison) by using a copper-carbon nanotube composite material, making it
once again the best option for microelectronics. Other properties, such as outstanding performance to
nanoindentation when compared to copper, have also been achieved for these composites [88].

Several electrical models have been made [89,90] to analyse how this composite material would
behave in real chips. The obtained results show that with increasing length, CNT-Copper composite
can outperform both pure copper and carbon nanotubes.

All these results show that in micro-scale carbon nanotube-copper composites are probably
unrivalled. However, ampacity does not only occur at this scale, and therefore macroscopic properties
of this composite must also be studied. For instance, if new materials are to be found for lightning
strike protection to substitute the current expanded copper foil technology used in aircrafts, other
scales of production must be studied, as CVD would not be able to cope with industrial scaling of
the mentioned technology. Other techniques have appeared recently, which allows a much bigger
production of CNT ropes and yarns than the methods mentioned above. One of those methods starts
from the same point as the ones above, and CVD must be used to grow a vertically aligned forest of
CNTs [31,91]. From this point, one is able, by a pulling method, to create a fibre of oriented CNTs.
However, this method has its limitations in industrialization, as again chemical vapor deposition
would be the limiting scaling factor. However, other options to create this same CNT films by industrial
methods have recently appeared [92–95]. These films as well can be condensed by using any alcohol to
create a densified CNT fibre, an outstanding start for industrial CNT-copper composites.

At the microscale, several properties such as the size of grain in comparison to the line diameter,
or the total conducting path length, can cause drastic changes in the ampacity values. So as to speak,
the articles that have been named above have found the optimal parameters for outstanding ampacity
values in their composite material. However, this optimization had to be done at macroscopic levels
too, where grain size would cause a much-smaller effect on the overall electromigration values when
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compared to the much-bigger diameter of the conducting path. Some other effects, related with the
starting CNT matrix, can also be a drawback when synthesizing the final copper-CNT composite
material by the electrodeposition methods. As mentioned in several papers, with growing sizes
of the CNT lines being used for electrodeposition comes a decrease in the distribution of charge
when undergoing electrodeposition [96]. The area closest to the electrodes would show a higher
copper deposition rate than the areas further from the electrode. It was demonstrated that only CNT
cables of maximum 10 cm in length could be used to produce uniformly distributed CNT-Copper
composites. Further insight must be given to this issue if a continuous production of CNT-Cu
composite is intended, although several articles have moved towards this direction [97]. The ampacity
value of this macroscopic composite material, however, showed a severe decrease when compared
to the microscopic version of the same material. The current carrying capacity at this size level
showed only slight improvement, when compared to pure copper. Other articles have mentioned
that ampacity could even be slightly reduced by the addition of carbon nanotubes, probably due
to the low average conductivity of the carbon nanotubes used [98]. Either way, one thing is for
sure; large and homogeneous conductivity along the transport direction in interconnects is of vital
importance to avoid electromigration [99]. Adding an intermediate layer of Nickel has proved
beneficial for improving the adhesion and deposition of copper, which in term increases the effective
strength of the composite, quality of the deposited layer, conductivity and ultimately ampacity [100].
A short summary of some of these studies is presented in Table 1, where, for comparative reasons,
pure metals, pure carbonaceous materials and metal-carbonaceous composite materials are placed
together to demonstrate how composite materials seem to be the way forward in improving most
electrical properties.

Table 1. This table summarizes the ampacity values of several materials for comparative reasons. Two
purely metallic references are placed at the beginning, to illustrate how carbon nanotube technology
can improve greatly on the ampacity of these materials. Both, pure carbonaceous and composite
materials exhibit ampacity properties higher than any other metal reported to date.

Type of CNT Metal Form of Material Ampacity
A/cm2 Synthesis Method Reference

Number

Non Copper Polycrystalline 8–18 × 106 Various methods [18]
Non Aluminium Polycrystalline 5 × 104 Vacuum deposition [20]

SWCNT Non Individual tube 1 × 109 Suspension deposition [101]
CNT Non Fibre 1 × 105 Wet spinning method [62]

MWCNT Non Individual tube 1 × 106 Catalytic process [102]
MWCNT Non Individual tube 1 × 107 CVD deposition [103]
MWCNT Non Individual tube 1 × 109 Arc discharge method [104]
MWCNT Non Single tube 3 × 106 CVD deposition [105]

CNT Nickel Test solder joint 1 × 104 Ni coating on CNT [106]
MWCNT Nickel Ni filled tube 1 × 107 MPCVD method [105]
MWCNT Copper Microscopic line 1 × 108 Electroplating [96]
SWCNT Copper Test line 6 × 108 Electroplating [16,107]

CNT Copper Fibre 1 × 107 CNT aerogel + electroplating [108]

5. Conclusions

In this review, we have tried to present an insight into this emerging field of carbon nanotubes
and carbon nanotube-composites as high ampacity materials. Alternatives to the current copper or
aluminium components must be found before the limit of current carrying capacity is reached. That
limit seems to be very close according to analysed trends, so any field that seems promising must be
studied. One of them, carbon nanotubes, seems to be the most promising of them all, and this is shown
by the many bibliographical references to both CNTs and ampacity that can be found on the web, in
books and research articles. CNT, together with copper, seems to be the most promising composite
material up to date. However, there are still many areas open to discussion, as some articles have
found contradicting results on the quantification of the ampacity of such composites. In most cases, a
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significant improvement has been observed, whilst in a few cases, the composite material exhibited
lower ampacities than those shown initially by copper on its own. Special attention should be given to
the fact that this technology is mostly centred on the micro-scale; however, there is also a wide field
of interest on macroscopic-sized composite materials, for their use in aeronautical or rail industries.
Research on this size range is scarce, and therefore offers great margin for improvement. Ultimately,
this will open the doors for future technologies, where carbon-based conductors will replace metallic
conductors, as we know them.
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