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Extended computation of the viscous Rayleigh-Taylor instability in a horizontally confined flow
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In this article, the classical Rayleigh-Taylor instability is extended to situations where the fluid is completely
confined, in both the vertical and horizontal directions. This article starts with the two-dimensional (2D) viscous
periodic case with finite height where the effect of adding surface tension to the interface is analyzed. This
problem is simulated from a dual perspective: first, the linear stability analysis obtained when the Navier-Stokes
equations are linearized and regularized in terms of density and viscosity; and second, looking at the weakly
compressible version of a multiphase smoothed particle hydrodynamics (WCSPH) method. The evolution and
growth rates of the different fluid variables during the linear regime of the SPH simulation are compared to the
computation of the eigenvalues and eigenfunctions of the viscous version of the Rayleigh-Taylor stability (VRTI)
analysis with and without surface tension. The most unstable mode, which has the maximal linear growth rate
obtained with both approaches, as well as other less unstable modes with more complex structures are reported.
The classical horizontally periodic (VRTI) case is now adapted to the case where two additional left and right
walls are included in the problem, representing the cases where a two-phase flow is confined in a accelerated
tank. This 2D case where no periodic assumptions are allowed is also solved using both techniques with tanks of
different sizes and a wide range of Atwood numbers. The agreement with the linear stability analysis obtained
by a Lagrangian method such as multiphase WCSPH is remarkable.
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I. INTRODUCTION

In many aircraft models, the fuel is transported inside tanks
placed along the wing structures. Due to the great extreme
accelerations on the aircraft wings, violent fluid movement
and strong impacts with the tank walls are produced. This
complex fluid phenomenon is known as sloshing [1]. In the
analysis of vertically excited sloshing cases, violent sloshing
is of great interest for airplane manufacturers, where very
interesting hydrodynamic phenomena are found, such as the
free surface instabilities that appear at the first stages of
the movement. These instabilities are an extended version of
Rayleigh-Taylor instabilities, where fluid properties such as
viscosity and surface tension play a role.

Normally the Rayleigh-Taylor instability (RTI) appears
when a heavy fluid overlies a lighter fluid [2,3] and gravity
is oriented towards the light fluid; in other words, the density
gradient and gravity are opposed. This situation is present in
a wide variety of applications: ferrofluids [4], tectonics [5],
exploding foils [6], aerobreakup [7], and astrophysics [8,9].
An original extension of the RTI appears in the sloshing
phenomena when two different fluids are confined in a ac-
celerated tank. In this case, the light fluid overlies a heavier
fluid when gravity is present, but the RTI appears when a
larger acceleration than gravity is applied to both fluids in the
opposite direction to the force of gravity. As explained before,
the density gradient is opposed to the difference between the
inertial force and gravity.

Mikaelian [10] analyzed the Rayleigh-Taylor instability
in two finite-thickness fluids taking viscosity effects into
account. A numerical dispersion relation was obtained for
different thicknesses and Atwood numbers. He performed
a one-dimensional (1D) analysis based on two fluids sepa-
rated with a sharp interface using homogeneous Dirichlet and
Neumann conditions for the velocity at the top and bottom
boundaries and compatibility conditions at the interface. The
two-dimensional (2D) extension presented in this work allows
the analysis of more complex flows and includes the possibil-
ity of studying diffuse interfaces, the sharp interface being just
a particular case.

Obied Allah [11] investigated the finite-thickness effect of
a slab of incompressible fluid with exponentially increasing
density supported by a fluid of constant density in the presence
of surface tension. He found that the finite thickness has a
stabilizing effect on the RTI.

Morgan et al. [12] studied the behavior of the most unsta-
ble VRTI mode initiated with a diffuse interface. The results
exhibit good agreement with the dynamic diffusion model of
Duff et al. [13] for small wave numbers, but produces larger
growth rates for large wave number perturbations.

Yu et al. [14] investigated the inviscid RTI for a fluid
with an hyperbolic tangent density distribution. They obtained
the multiple eigenvalues for the growth rates of the RTI and
the corresponding eigenfunctions which may have potential
applications in comprehending the mixing behavior existing
in many areas. Moreover, they obtained a fitting expression
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for those eigenmodes in the dimensionless form, which agrees
well with the numerical results for limited Atwood numbers
Aρ � 0.8. Dong et al. [15] revisited the physical problem
that was studied in [14] by developing a short-wavelength
asymptotic solution. Based on the Wentzel-Kramers-Brillouin
(WKB) approximation, the growth rates of the RTI were ob-
tained for Atwood numbers close to unity.

However, to the best of our knowledge no numerical study
on the eigenvalue problem associated with the VRTI in a
confined tank has been performed. Therefore, we need to
carry out this research study in the case of 2D geometries
where the no-slip boundary conditions are imposed on the
top and bottom walls but also on the lateral walls. Simi-
larly to [16], a hyperbolic tangent distribution for the density
and viscosity profiles is imposed, which allows skipping the
compatibility conditions when sharp interfaces are simulated.
Starting with the additional step introduced by the pres-
ence of the lateral walls, the development of the RTI inside
more complex geometries, for example, including interme-
diate vertical baffles, could also be studied using the same
methodology.

In order to confirm the findings, the VRTI is also re-
produced using the meshless Lagrangian method smoothed
particle hydrodynamics (SPH), which is gaining significant
attention in recent decades according to its ability to deal
with complex physics and complex geometries, such as the
field of fluid dynamics involving free-surface flows. SPH
exhibits significant advantages when compared to other meth-
ods, such as finite elements or finite volumes when dealing
with multiphase flow, because density is transported by the
particles and there is no need to include an additional scalar
transport equation. The transport of scalar functions by ad-
vection equations performed in formulations such as volume
of fluid (VOF) or level set is not a numerically trivial prob-
lem that normally implies dispersion and diffusion numerical
errors and loss of interface sharpness. This particular sit-
uation where multiphase formulation is compulsory seems
to be a perfect opportunity to test the modern and robust
WCSPH version presented in [17]. Most of the literature
addressing the Rayleigh-Taylor problem with SPH normally
focuses on the evolution of the flow and the robustness of
the numerical formulation, but very few authors compare the
growth rates with other results from the stability analysis.
Some of the first attempts correspond to Refs. [18,19], using
incompressible (ISPH) and weakly compressible (WCSPH)
approaches respectively. Works on multiphase SPH developed
by Ref. [20], [21], or [22] present results for the Rayleigh-
Taylor problem to validate their different multiphase SPH or
surface tension formulations, but these are analyzed only from
a qualitative perspective in terms of free-surface evolution at
certain characteristic instants in time.

A further step is performed in [23], where some com-
parison with approximate solutions of the classical stability
analysis is performed. In contrast to the work presented here,
the initial free surface is deformed instead of initialized with
a velocity field. In that study, a quantitative analysis of the
growth rate of the VRTI in a confined geometry is carried out
for a single instability mode and a single Atwood number. The
analysis focuses on the dependence of the problem with the
surface tension.

In this paper the following ideas are proposed: first,
a general 2D formulation is presented to analyze the
RTI that considers the possibility of using density-and
viscosity-regularized fluids, geometrical flexibility, alternative
boundary conditions, and surface tension implementation. In
particular, the possibility of using no-slip lateral boundary
conditions allows for the analysis of a completely confined
tank, and also the quantification of the differences with the
well-known periodic VRTI spectrum. Finally, we want to
confirm that a meshless Lagrangian numerical method such
as WCSPH is able to reproduce the dynamics observed in this
particular multiphase problem with reasonable accuracy.

The paper is organized as follows: in Sec. II the general
description to the RTI is explained and the general equations
are presented. In Sec. III both solution methodologies, the
linear stability analysis and the SPH formulation, are detailed.
In Sec. IV the results obtained by both methodologies for
the VRTI problem with different boundary conditions are
monitored and compared. Finally, conclusions are presented
in Sec. V.

II. PROBLEM SETUP

The strategies to perform the linear stability analysis are
presented in this section. To study the viscous version of the
Rayleigh-Taylor instability, we assume a zero velocity base
flow and regularized density and viscosity distributions that
represent two fluids separated by a common interface. We
analyze the evolution of the perturbations by the assumed
base flow. In particular, we are interested in the development
of two-dimensional flow structures and the growth rates of
the different unstable modes. The calculations have been per-
formed in a 2D computational domain. Previous validations of
the viscous and inviscid cases without surface tension in 1D
and 2D geometries can be found in [16].

Let ρ1, μ1, ν1 and ρ2, μ2, ν2 be the densities and the kine-
matic and dynamic viscosities of the top (heavy) and bottom
(light) fluids, respectively. The two-phase flow is governed by
the incompressible Newtonian Navier-Stokes equations in a
domain � in the presence of gravity g, which imply mass
and momentum conservation, and a density transport equa-
tion. As the velocity base flow is zero, the viscosity transport
equation is not necessary in this VRTI formulation; see [24].
The domain will be a rectangle of height 2H and width 2L
contained on the XY plane, mathematically expressed as � =
[−L,L]x[−H,H].

Similarly to [25], the characteristic time, length, velocity,
pressure, density, and viscosity scales used to transform the
problem to its nondimensional version are defined as

ρo = ρ1 + ρ2

2
, μo = μ1 + μ2

2
, νo = ν1 + ν2

2
, (1)

to = (ν0/g
2)1/3, lo = (

ν2
0/g

)1/3
, uo = (gν0)1/3, (2)

ko = (
ν2

0/g
)−1/3

, po = ρ0g
(
ν2

0/g
)1/3

. (3)

The nondimensional version of this set of equations reads

ρ
∂u
∂t

+ ρu · ∇u = −∇p+ ρug + ∇[μ(∇u + ∇uT )], (4)
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∇ · u = 0, (5)

∂ρ

∂t
+ u · ∇ρ = 0, (6)

where ρ, u, p, t , ∇, μ, τ , ug are the nondimensional den-
sity, velocity, pressure, time, nabla operator, viscosity, viscous
stress tensor, and unity vector representing gravity.

A steady nonparallel basic flow (ui, ρ, p) is perturbed by
small-amplitude velocity ũi, density ρ̃, and pressure p̃ pertur-
bations, as follows:

ui(x, y, z, t ) = ui(x, y) + εũi(x, y, z, t ) + c.c., (7)

p(x, y, z, t ) = p(x, y) + ε p̃(x, y, z, t ) + c.c., (8)

ρ(x, y, z, t ) = ρ(x, y) + ερ̃(x, y, z, t ) + c.c., (9)

where ε � 1, and c.c. denotes the conjugate of the complex
quantities ũi, ρ̃, and p̃. As base flow, we consider two super-
posed fluids at rest ui = 0 separated by a regularized interface
at y = 0 and subjected to a constant gravitational acceleration
pointing downwards the vertical direction y.

Therefore, in order to describe the Rayleigh-Taylor (RT)
instability of a sharp interface, it seems more consistent to
attempt to solve the problem for a transition layer of finite
thickness, and then take the limit when the thickness tends to
zero. Similarly to the sharp jump implementation used in [16],
we adopt the density and viscosity profiles

ρ = 1 + Aρ tanh(y/Ls), μ = 1 + Aμ tanh(y/Ls), (10)

where Ls is the gradient scale length of the density and viscos-
ity layers and Aρ,Aμ the Atwood numbers given by

Aρ = ρ1 − ρ2

ρ1 + ρ2
, Aμ = μ1 − μ2

μ1 + μ2
. (11)

Taking account of Eqs. (10), typical air-water hydrody-
namic instabilities in the presence of a sharp interface can be
recovered by setting Ls → 0. When Eqs. (7), (8), and (9) are
substituted into the Navier-Stokes equations (4), (5), and 6,
assuming zero base flow ui = 0 and neglecting second-order
terms, the linearized Navier-Stokes equations for the pertur-
bation quantities are obtained:

ρ
∂ ũi
∂t

= − ∂ p̃

∂xi
+ μ�ûi +

(
∂ ũ j

∂xi
+ ∂ ũi

∂x j

)
∂μ

∂x j
+ ρ̃ugi (12)

∂ρ̃

∂t
+ ũ j

∂ρ

∂x j
= 0, (13)

∂ ũi
∂xi

= 0. (14)

Since the coefficients of ũi, ρ̃, and p̃ do not depend on z and
t , the perturbation quantities can be written as normal modes:

ũi(x, y, z, t ) = ûi(x, y)eikzzeγ t + c.c., (15a)

p̃(x, y, z, t ) = p̂(x, y)eikzzeγ t + c.c., (15b)

ρ̃(x, y, z, t ) = ρ̂(x, y)eikzzeγ t + c.c., (15c)

where the complex conjugate (c.c.) is required to render the
perturbations real. Additionally, γ = σ + iω ∈ C is the com-
plex growth or decay rate σ and oscillation frequency ω.

Let us add the presence of the surface tension on the
free surface that separates both fluid phases to this perturbed
system. Following [25], the surface tension presence adds
the term −2(∂xx ξ̂s − k2

z ξ̂s)Sδs(y − ys) to the y projection of
Eq. (12). Here ξ̂s = ξ̂ (x, ys)ekzzeγ t is the vertical displacement
of the free surface at y = ys, δs(y − ys) is the Dirac’s δ func-
tion, and S is the nondimensional surface tension, which can
be expressed as

S = Ts
(ρ1 + ρ2)(gν4)1/3

, (16)

where Ts is the dimensional surface tension. In order to pro-
ceed with the numerical integration, the Dirac δ function will
be regularized and the term ξ̂ can be related to the vertical
velocity perturbation v̂ as

v̂ = ∂ξ̂

∂t
= γ ξ̂ . (17)

In Sec. III, a 2D variational formulation of the equations
using a second-order finite element discretization is per-
formed. A Taylor-Hood triangular element where the density
perturbation was also approximated by second-order polyno-
mials is used to solve the linearized Navier-Stokes equations
around the base flow; see [26] for details.

III. MATHEMATICAL MODELS

A. Linear stability: 2D eigenvalue-problem formulation and
solution methodology

We are particularly interested in the temporal stability anal-
ysis on a 2D computational domain (kz = 0). The fluids are
confined in the vertical direction, and consequently homo-
geneous Dirichlet boundary conditions are used on the top
and bottom boundaries y = ±H . On the right and left bound-
aries x = ±L either periodic boundary conditions (periodic
configuration) or homogeneous Dirichlet boundary conditions
(tank configuration) will be used; see both configurations in
Fig. 1. Consequently, this framework does not contain any
explicit z-coordinate. A 3D generalization of this framework,
where the perturbations assume a spanwise periodic length
(i.e., homogeneous direction) and Lz is defined through the
real wave number kz = 2π

Lz
∈ R is performed in [26].

In the classical 1D instability analysis of the VRTI, a peri-
odic solution with unlimited wavelength in both the horizontal
x and spanwise z directions [14] is assumed. In the periodic
boundary case (see the top part of Fig. 1), the BiGlobal
EVP [27] represented by Eqs. (12)–(14) has been solved
without the explicit assumption of the periodic structure in
the horizontal x direction, but with limited wavelength for the
computed eigenvectors in the horizontal direction kx > π

L and
infinite spanwise length. For the horizontally confined case
studied here (see the bottom part of Fig. 1), no periodicity
assumption is possible, and the 2D formulation is compulsory.

Substitution of the ansatz (15) into the perturbation equa-
tions (12)–(14) yields

−μ∇2û + ∂ p̂

∂x
− dμ

dy

(
∂ v̂

∂x
+ ∂ û

∂y

)
= −γ ρû, (18)

−μ∇2v̂+ ∂ p̂

∂y
−2

dμ

dy

∂ v̂

∂y
+ρ̂ − 2(∂xx ξ̂ )Sδs(y − ys) = −γ ρv̂,

(19)
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FIG. 1. Schemes of the computational geometry used for the
Rayleigh-Taylor simulations. A dashed line at y = 0 indicates
the interface between fluids. The boundary conditions are also
written at each boundary for both cases: periodic (a) and tank
(b) configurations.

−μ∇2ŵ − dμ

dy

(
∂ŵ

∂y

)
= −γ ρŵ, (20)

v̂
d ρ̄

dy
= −γ ρ̂, (21)

∂ û

∂x
+ ∂ v̂

∂y
= 0, (22)

where ∇2 is the Laplacian operator limited to our XY 2D
domain. As the present study is 2D, kz = 0, the eigenvalue
problem given by Eqs. (18)–(22) is real. As consequence, the
projection of the momentum equation (20) on the Z direction
is the only one that contains the velocity perturbation compo-
nent ŵ and can be decoupled from the rest. This system can be
simplified from six to five differential equations, eliminating
the vertical displacement ξ̂ . Combining Eqs. (21) and (17)
the free surface perturbation can be related to the density
perturbation as

ξ̂ = − 1
d ρ̄

dy

ρ̂. (23)

We also express the Dirac δ function regularized as

δs(y − ys) = 1

2Aρ

dρ̄

dy
. (24)

This converts system (18)–(22) into a real generalized eigen-
value problem:

A · X = −γB · X , (25)

where X = (û, v̂, ŵ, ρ̂, p̂)T with real linear operators A and B
that can be expressed as

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

L − dμ

dy ∂x 0 0 ∂x

0 L − dμ

dy ∂y 0 1 + S
Aρ

∂xx ∂y

0 0 L 0 0

0 d ρ̄

dy 0 0 0

∂x ∂y 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(26)

being the operator L

L = −μ∇2 − dμ

dy
∂y, (27)

where the matrix B

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

ρ 0 0 0 0

0 ρ 0 0 0

0 0 ρ 0 0

0 0 0 1 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (28)

The boundary conditions for the lateral periodic boundaries
are

û(−L, y) = û(L, y), (29)

v̂(−L, y) = v̂(L, y), (30)

û(x,±H ) = 0, (31)

v̂(x,±H ) = 0; (32)

when no-slip lateral boundaries at x = ±L are used, condi-
tions (29) and (30) are both equal to zero.

In general, the eigenvalues γ of such a real eigenvalue
problem are either real, or they arise as pairs of complex con-
jugate eigenvalues. Adopting the existing nomenclature from
the literature (see, e.g., Theofilis et al. [28]), the correspond-
ing eigenvectors describe either stationary modes (γ = 0) or
traveling waves (γ = ±iω �= 0).

To discretize the equations, we use a triangular-element-
based unstructured mesh. The eigenvalue problem is solved
using the Arnoldi method based on a Krylov-subspace it-
eration, originally proposed in [29] and discussed in detail
in [27]. In order to check the accuracy of the results during
the stability analysis, the number of mesh nodes was increased
until three significant digits of the most unstable eigenvalue
converged.

In the case that the horizontal periodicity is assumed in
the whole domain, the problem could be reduced to the 1D
formulation; see [16] for details. In that case, the problem
could be solved by the quadratic eigenvalue problem for the
vertical velocity perturbation v̂:

(Aγ 2 + Bγ +C)v̂ = 0, (33)
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where operators A and B are identical to the ones in [16] and
operatorC changes due to the surface tension term as follows:

C = −k2 dρ

dy

(
I − k2 S

Aρ

)
, (34)

where k is the wave number associated with the assumed
horizontal periodicity.

B. SPH formulation

One of the objectives of this work is to prove that the SPH
formulation is a valid tool to perform a stability analysis of
the VRTI. For that purpose, we are going to discretize the set
of equations (4) using the multiphase δ-WCSPH formulation
detailed in [17]. The software used is AQUAgpusph [30],
an open source SPH code based on GPU capabilities. The
discretized set of equations reads

dVi
dt

= Vi(ui − uj) · ∇Wi jVi + δhc0χ

∑
jεχ

DV
ij · ∇Wi jVj,

(35)

ρi
dui
dt

= −
∑
j

(pi + pj )∇Wi jVj + ρig

+μχ

∑
jεχ

πij∇Wi jVj + �, (36)

dri
dt

= ui, (37)

ρi =
∑
jεχ

mjW
S
i j , (38)

pi =
ρ0χ

c2
0χ

γχ

[(
ρi

ρ0χ

)γχ

− 1

]
+ pb. (39)

This set of equations is composed of a volume conservation
equation (35), a momentum conservation equation (36), a time
evolution of the trajectory of each particle (37), an evaluation
of the density field (38), and an equation of state (39). HereVj

accounts for the volume of the neighbor particles j, andWi j =
W (r j − ri, h) and ∇iWi j = ∇W (r j − ri, h) represent the ker-
nel function and its derivative with respect to the ith particle,
at constant h, respectively. In this work, a Wendland C2 kernel
with h/dr = 2 is used, where h and dr correspond to the
smoothing length and the particle distance, respectively. The
dissipation effects due to viscosity are modeled through the
function πij, which is defined as

πij = (u j − ui ) · (r j − ri )
‖ r j − ri ‖2

. (40)

In the volume conservation equation, an additional term is
added to avoid spurious high-frequency pressure oscillations,
following the work in [31] and extended to the multiphase for-
mulation in [17]. An additional term of this form has actually
become a standard in SPH, and this particular model is the
so-called δ-SPH. The term DV

ij is defined as

DV
ij =Vi

[
2

(
1 − ρ j

ρi

)
− 1

ρi

(〈∇ρ〉Lj + 〈∇ρ〉Li
) · (r j − ri )

]

× (r j − ri )
‖r j − ri‖2

, (41)

where 〈∇ρ〉Li represents the renormalized density gradient, as
defined in [32]. The value for δ is set always to 0.1, following
the value used in [33] based on the study carried out in [31].
Note that the sum of the neighbors is extended to neighboring
particles of the same phase jεχ .

In the momentum conservation equation, ρ is the fluid
density, g represents the gravity, � the surface tension force,
p the pressure, and μχ the dynamic viscosity of phase χ . The
flow velocity, u, is defined as the material derivative of a fluid
particle position, r.

In order to close the system of equations in (35)–(38) a
stiff equation of state (39) is needed. In this work a poly-
tropic equation of state is used where γχ is the polytropic
exponent of phase χ , ρ0χ

represents the reference density of
phase χ , and pb represents the background pressure that is
set to pb = 1 Pa in all simulations presented in this work.
The compressibility of the phase can be adjusted artificially
by changing the speed of sound of the phase c0χ

[34].
As the continuity equation is expressed in terms of volume,

density is evaluated with a summation formula (38) within
phase χ . According to this, the kernel WS

i j is defined for each
phase as

WS
i j = Wi j∑

k∈χ WikVk
. (42)

Time integration is performed by means of a predictor-
corrector scheme [30]. The Courant-Friedrichs-Lewy (CFL)
condition is set to 0.1 to ensure time stability.

When surface tension is taken into account an additional
term � is added to the momentum equation in Eq. (36) to deal
with effects at the interface. This force has been included in
SPH in the same fashion as in [35], and the expression reads

� = −Ts
ρi

∑
j

(n j − ni ) · ∇Wi jVj ni, (43)

where Ts is the surface tension coefficient and ni represents
the local normal vector to the interface of particle i.

Both periodical and wall boundary conditions are set in the
corresponding numerical tests carried out in this work.

Periodical boundary conditions are defined such that every
generic field f satisfies

f (x)|∂�1
= f (x)|∂�2

. (44)

For wall boundary conditions, either slip or no-slip conditions
can be imposed.

Boundary integral methodology is used in this work. The
formulation employed here is based on the work in [36]
solving these numerically as explained in [30] with the semi-
analytical expressions for the kernel obtained in [37] based
on [38]

No-slip boundary conditions are imposed at the discrete
level in the same fashion as described in [39] for the boundary
integrals formulation, such that〈

∂u
∂n

〉
=

∑
j∈BE

[
(I − n j ⊗ n j ) u ji

|ri j · n j |
]
Wi j Vi S j . (45)
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IV. RESULTS

The generalized eigenvalue problem given by expres-
sion (25) is numerically solved using the respective boundary
conditions. The solution of this problem gives the dominant
eigenvalues and their corresponding eigenfunctions. In par-
allel, the corresponding SPH simulations are also completed
with the same parameters, and both results are compared in
this section.

First, as the preliminary case, we will solve the viscous
2D Rayleigh-Taylor stability analysis problem with periodic
lateral boundary conditions and surface tension. The results
will be compared to the well-known 1D solution found in the
literature.

Hereafter, we will compare the growth rate obtained as be-
ing the largest eigenvalue of the linear stability analysis with
the growth rate of the velocity interpolation in a fixed point
of the SPH simulation. The comparison will be performed for
several Atwood numbers, a wide range of wave numbers, and
typical surface tension values.

The completely confined problem, where the lateral bound-
ary conditions will be changed to the no-slip case, is solved by
both methodologies. This problem is motivated by the VRTI
that appears during the first stage of a vertically accelerated
fuel tank typically found in the transport industry. In this
particular confined case, the discussion about the meniscus
shape and the contact angle will be avoided by assuming no
surface tension in the fluid, and consequently the initial SPH
and the base flow interfaces will both be flat everywhere. In
this case the dominant part of spectrum and the correspond-
ing eigenvectors obtained after the solution of the eigenvalue
problem will be compared for both types of lateral boundary
conditions. This change of the spectrum confirms the impor-
tance of the 2D formulation, capable of implementing both
boundary conditions. This problem will be fully simulated
with SPH, and the growth rate of the linear part also will be
compared to the results of the eigenvalue problem.

A. VRTI with surface tension and periodic lateral boundary
conditions

1. Linear stability analysis

In the present section, a linear stability analysis will be per-
formed for the VRTI when the surface tension is added to the
problem and quantified by the parameter S. This complete 2D
analysis (dominant eigenvalue spectrum and corresponding
eigenvectors are computed) includes viscosity, surface ten-
sion, and finite height and periodic width. Regarding this, we
should mention that [10] determined an approximated analyt-
ical expression of the dispersion relation for the 1D case that
included viscosity, surface tension, and finite height, but no
eigenvector was represented. The nondimensional dispersion
relation can be expressed as

σ = −k2 +
√
k4 − k(k2S − Aρ ) tanh(kH ), (46)

which gives good results for large wave numbers. All the
computations are performed in a computational domain H =
1 and L = 4. The number of quadratic mesh nodes and

FIG. 2. Mesh used for the 2D viscous simulation.

triangular elements is 23 145 and 11 458, respectively, where
the mesh has been refined around the x axis; see Fig. 2.

In Figs. 3 and 4 the growth rate has been represented for
Ls = 0.01 and H = 1 as a function of the wave number k
for two different cases: the first with Aρ = Aμ = 0.2 and S =
0.003, and the second with larger density and viscosity gra-
dients Aρ = Aμ = 0.6 and more surface tension S = 0.01. In
both cases, the dispersion relation for the 1D spectral Cheby-
shev formulation previously presented in [16], but adding the
surface tension term as indicated at the end of Sec. III A,
was also computed solving the quadratic eigenvalue problem.
These results were included as a reference in order to confirm
the accuracy of the current 2D formulation and to evaluate
the effect of the surface tension in the problem. Similarly,
in the case without surface tension (see [16]), all density
and viscosity ratios computed present a local maximum that
increases with the Atwood number. It can be observed (see
Fig. 10 in [16]) that the higher the Atwood number, the larger
the difference between the computed value in 2D and the
reference value obtained in the 1D case due to numerical
errors caused by the discretization of the density gradient.

In Fig. 5 the amplitude perturbations corresponding to the
eigenvalue are represented for all the fluid variables for an
interface scale length Ls = 0.01. The horizontal periodicity
of the structure is clearly observable. The wave number is
obtained after measuring the wave length of the structure
λx = 2 in the picture, and then computing the wave number
as k = 2π/λx = π .

2. SPH simulation of the VRTI

In this section the VRTI will be simulated using the
nonlinear SPH multiphase formulation; see Sec. III B. Most

FIG. 3. Growth rate instability as a function of the wave number,
for Aρ = Aμ = 0.2, Ls = 0.01, H = 1, S = 0, and S = 0.003.
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FIG. 4. Growth rate instability as a function of the wave number,
for Aρ = Aμ = 0.6, Ls = 0.01, H = 1, S = 0, and S = 0.01.

numerical approaches to the simulation of the VRTI are
normally limited to visually correct snapshots of the flow
evolution and the confirmation of the robustness and speed of
the multiphase formulation. Very few SPH approaches [23,40]
contain a detailed quantitative comparison to other classical
numerical formulations where well-established results such as
the growth rate of the linear part of the VRTI are monitored.
Consequently, the objective of this section is not only to
present the results of the SPH formulation, but also to com-
pare the initial evolution of the SPH solution with the results

FIG. 5. Perturbation amplitude for the case k = π , 2H = 2,
2L = 8, Aμ = Aρ = 0.2, and S = 0.003. From top to bottom the am-
plitude perturbations are represented for the density (a), pressure (b),
horizontal velocity (c), and vertical velocity (d). All computations
were performed using the interface parameter Ls = 0.01.

presented by the 1D spectral and the 2D finite element vali-
dated formulations in terms of growth rate. The comparison
will be performed for a wide range of Atwood and wave
numbers, with and without surface tension.

To perform this task, a fixed point with coordinates (x, y) =
(0,H/10), is selected to monitor the evolution of the inter-
polated velocity of the surrounding particles. To trigger the
VRTI, an initial perturbation v̂0(x, y) of magnitude ε � √

gH
is added to the initial flow. This perturbation is horizontally
periodic with a wave number k and exponentially decaying
on the vertical axis, and consequently we expect to trigger the
instability associated with that particular wave number. The
expression of the initial vertical velocity perturbation is

v̂0(x, y) = ε cos(kx) exp

(
−

∣∣∣∣ y

(y + H )(y − H )

∣∣∣∣
)

. (47)

In Fig. 6 a snapshot of the evolution of the pressure, density
and velocity fields is shown at time t/t0 = 5, when the initial
flow is excited with k = π and both Atwood numbers are
equal, Aρ = Aμ = 0.6. At this time step, the velocity field
is immersed in the linear regime after the initial oscillations
caused by the combination of the particle setup and the weakly
compressible assumption. It is worth noting that the velocity
perturbations correspond to the most unstable mode obtained
after the linear stability analysis (see Fig. 5), matching well
the velocity snapshots of the SPH simulation. Pressure and
density include the nonzero initial field and consequently are
not directly comparable.

An example of the time evolution of the velocity for the
case with Aρ = Aμ = 0.6 and wave numbers k = 3π/4 and
k = π is shown in Fig. 7. As can be seen, at the beginning
the initial perturbation is hidden behind the noise created by
the pressure field trying to satisfy the weakly compressible as-
sumption, which creates a few oscillations. Once the particles
have settled down and the pressure field stabilizes t/t0 ∼ 1.5,
the perturbation triggers the VRTI and the system evolves in
time with a clean, growing linear regime. As can be observed
in the figure, the slope of this signal is parallel to the growth
rate computed by the linear stability analysis, which indicates
excellent matching with the linear theory.

A complete comparison between the growth rates ob-
tained from the transient slopes of the SPH simulations
and the corresponding values obtained from the linear sta-
bility analysis is shown in Fig. 8. The comparison is
performed using eight wave numbers in the interval k ∈
[0, 2π ] and four density-viscosity Atwood numbers Aρ =
Aμ = 0.2, 0.4, 0.6, 0.8. With the exception of a very few
points obtained for the largest Atwood number, the agreement
obtained is reasonable and the maximum of each curve is
always detected at k ≈ 3π/4. The detection and identification
of the slopes of the linear intervals during the SPH simulation
is a numerically sensitive task that can also be considered a
source of error.

Figure 9 represents what occurs when the wave number
of the initial perturbation k = π/4 is not close to the wave
number kmax ≈ 3π/4 that gives the maximum growth rate
of the instability. After the adaptation interval, three clearly
distinguishable slopes are present with a transient between
them showing that the dynamical evolution of the linear sys-
tem jumps from the perturbed mode to the next most unstable
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FIG. 6. Snapshots of the SPH simulation at t/t0 = 5 for the case k = π , 2H = 2, 2L = 8, and Aμ = Aρ = 0.6. The 2D fields are represented
for the density (a), pressure (b), vertical velocity (c), and horizontal velocity (d).

mode until it reaches kmax. The first slope matches the growth
rate of the initial excitation k = π/4, but around time t/t0 ∼
7.4, the system evolves to the second mode with k = π/2,
and then at t/t0 ∼ 12 it finally jumps to the wave number that
gives the maximum growth rate at k = kmax = 3π/4.

In Fig. 10 the growth rate of the perturbation is represented
against the density Atwood number Aρ ∈ [0.1, 0.9] for the
case 2H = 2, 2L = 8 and k = 3π/4, being the viscosity equal
to 1 in both phases and consequently Aμ = 0. As can be
appreciated, the agreement with the results presented in [10]
is excellent. A similar computation is performed in the same
Atwood range but in this case Aρ = Aμ and k = 3π/4, and
the results predicted by SPH approximate the linear stability
calculations well.

0 5 10 15 20

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

FIG. 7. Comparison of the evolution of the velocity at (x, y) =
(0,H/10) when the SPH simulations are compared to the linear
stability analysis results represented by the dotted lines for Aρ =
Aρ = 0.6 and k = π (red) and k = 3π/4 (blue).

When the SPH surface tension model described in
Sec. III B is added to the problem, the SPH results still obtain
a good prediction and capture the instability reduction due to
the surface tension contribution; see Fig. 11. Alternatively, a
second simplified implementation of the surface tension based
on Eqs. (19), (23), and (24) was also performed in SPH.
Combining those equations, we can consider that the presence
of surface tension is equivalent to a gravity reduction given by
the equation

gS = g

(
1 − k2S

Aρ

)
, (48)

where gS is the gravity value when the surface tension S is
included in the model and the second derivative has been

0 1 2 3 4 5 6 7
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

FIG. 8. Growth rate of the vertical velocity at the fixed point x =
0, y = H/10 versus wave number for different values of the density
and viscosity Atwood numbers Aρ = Aμ, 2H = 4, and 2L = 1. The
growth rate is compared to the values predicted by the linear stability
analysis theory [10].
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FIG. 9. Comparison of the evolution of the velocity at (x, y) =
(0,H/10) when the initial state of the SPH simulation is perturbed
with k = π/4. Results are compared to three reference results of
the linear stability analysis represented by the dotted lines for Aρ =
Aρ = 0.6 and k = π/4, π/2, and 3π/4.

replaced by −k2 assuming during this linear stage a horizontal
periodicity of the flow with the same wave number as the
initial excitation. This simplification is valid only for compar-
ing the results during the linear regime also computed by the
stability analysis, and no realistic results are expected during
the nonlinear evolution of the SPH simulation. However, the
results obtained by this simplified implementation of the sur-

FIG. 10. Growth rate versus density Atwood number obtained in
a computational domain 2H = 8, 2L = 2. (a) Aμ = 0 and k = π/4;
note that since Aμ = 0 the growth rate σ has to be adimensional-
ized with t0. (b) Aμ = Aρ , and k = 3π/4. The values predicted by
Ref. [10] are also plotted for comparison.

0 1 2 3 4 5 6 7
0

0.02

0.04

0.06

0.08

0.1

FIG. 11. Growth rate versus wave number for Aρ = Aμ = 0.6
with and without surface tension. The growth rate is compared to
the values predicted by the linear stability analysis theory.

face tension approximate the ones from the linear theory very
well, with little underprediction for the largest growth rate.

In Fig. 11 the case without surface tension has been added
to the graph to observe the stability decreases for large wave
numbers when surface tension is present, showing that the
surface tension has a stabilizing effect on the VRTI.

B. VRTI in a confined tank with no-slip lateral boundary
conditions

1. Linear stability analysis

In this section the same linear stability analysis that has
been performed in Sec. IV A 1 with periodic boundary condi-
tions is now solved with no-slip velocity boundary conditions
in the right and left boundaries at x = ±L; see the bottom
part of Fig. 1. As a nonperiodic assumption is allowed in
the horizontal direction, the results of this analysis cannot be
computed anymore using the classical 1D spectral stability
analysis (see [16]) and can be performed only using a 2D
formulation. In Figs. 12 and 13 the spectrum obtained in this
no-slip case is compared to the previous periodic case for two
different geometries, the first one being (2H, 2L) = (2, 8) and
the second being (2H, 2L) = (4, 1). As can be observed, the

FIG. 12. Comparison of the spectrum and the vertical velocity
perturbations associated to the most unstable eigenvalues when peri-
odic and homogeneous no-slip lateral boundary conditions are used
for Aρ = Aμ = 0.2, 2H = 2, and 2L = 8.
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FIG. 13. Comparison of the spectrum and the vertical velocity
perturbations associated with the most unstable eigenvalues when
periodic and homogeneous no-slip lateral boundary conditions for
Aρ = 0.7621, Aμ = 0, 2H = 4, and 2L = 1.

values of the most unstable modes and the vertical velocity
perturbation associated with those eigenvalues clearly trans-
formed when the lateral boundary conditions are changed.
As expected, the velocity modes associated with the confined
case studied in this section satisfy the no-slip boundary con-
ditions imposed, and the modes are attenuated close to the
lateral walls.

An important observation when no slip boundary condi-
tions are used in a domain with horizontal fixed length is
that we cannot assume a clear spatial periodicity in the hor-
izontal direction, and consequently no wave number can be
associated with the different modes. This clearly indicates that
changing the lateral boundary conditions implies the absence
of horizontal periodicity.

2. SPH simulation of the VRTI in a confined tank

In this section, the SPH formulation will be applied to the
tank case. Despite having shown in the previous section that
when lateral boundaries are changed to no-slip no clear wave
number is identified in the eigenvectors of the linear stability
analysis, and an approximate wave number is necessary to
build the initial condition of the SPH problem. In order to
compare this with the linear stability analysis (see Figs. 12
and 13), the base flow is excited according to the following
expression:

v̂0(x, y) = ε sin(kx) exp

(
−

∣∣∣∣ y

(y + H )(y − H )

∣∣∣∣
)

, (49)

where the initial perturbation v̂0 has been selected in order to
satisfy the no-slip boundary condition at x = ±L.

In Fig. 14 the growth rates obtained measuring the slope of
the linear velocity growth at (x, y) = (0,H/10) are compared,
for different Atwood numbers, to the most unstable eigen-
value obtained from the linear analysis of both geometries
previously analyzed in Sec. IV B 1. For the sake of simplic-
ity, both the viscosity and density Atwood numbers were
equal, Aρ = Aμ. As can be observed, excellent agreement is
obtained for all Atwood numbers. In order to confirm the
reduction in terms of growth rate, the previous results with
periodic boundary conditions are also plotted in Fig. 14. As
expected from the comparison performed using the linear

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

FIG. 14. Growth rate of the vertical velocity at the fixed point
(x, y) = (0,H/10) for different values of the density and viscosity
Atwood numbers Aμ = Aρ , 2H = 2 and 4, 2L = 8 and 1. The growth
rate is compared to the values predicted by the linear stability analy-
sis theory.

stability analysis in Figs. 12 and 13, the linear part presents
a lower growth rate (smaller eigenvalue) than the periodic
version. We conclude that the presence of the lateral walls
decreases the growth rate of the VRTI as they increase the
viscous action.

V. CONCLUSIONS

The most important conclusions obtained in this work are
the following:

(1) The RTI instability has been numerically studied in
2D with regularized density and viscosity according to a hy-
perbolic tangent function. The Navier-Stokes equations are
linearized and discretized using the finite element method, and
the final generalized eigenvalue problem obtained is solved
using the Arnoldi method. The model introduces the possibil-
ity of confining the fluid either in the vertical or horizontal
directions, adding viscosity to both phases and introducing
surface tension to the interface.

(2) The classical 1D formulation is limited to those cases
where the horizontal coordinate is periodic, in contrast with
the 2D formulation assumed here, which permits studying
more general cases, as, for example, those cases where the
fluids are confined and no-slip boundary conditions are neces-
sary for the lateral walls. This situation appears in engineering
applications as a Rayleigh-Taylor instability, which is fre-
quently found in accelerating fuel tanks.

(3) The VRTI instability has been also been simulated
with a Lagrangian particle method called the multiphase WC-
SPH. This method is clearly nonlinear but is able to capture
the linear regime that is present at the first stage of the sim-
ulation. The multiphase SPH formulation presents a robust
stability for a wide range of densities and viscosities, gives the
possibility of implementing both the no-slip and the periodic
boundary conditions, and contains a surface tension model for
the interface.

(4) The matching between both formulations is very good
in a relevant range of wave numbers, indicating that a La-
grangian formulation not only is able to predict the growth
rate values and the corresponding structures identified with
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the eigenvalues and the eigenvectors of the generalized LNSE,
but also captures the evolution of the internal dynamics of
the different growing modes involved in the Rayleigh-Taylor
instability.

(5) Both formulations were also compared with the results
provided in [10] obtaining very good agreement for a wide
range of density and viscosity ratios.

(6) The 2D formulation allows for performing the same
analysis in geometries more complex than the simple
rectangular tank used here, or even in realistic baf-
fled fuel tanks like the ones used in the aircraft
industry.
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