
����������
�������

Citation: Barron, A.;

Sanchez-Gallegos, D.;

Carrizales-Espinoza, D.;

Gonzalez-Compean, J.L.;

Morales-Sandoval, M. On the

Efficient Delivery and Storage of

IoT Data in Edge–Fog–Cloud

Environments. Sensors 2022, 22, 7016.

https://doi.org/10.3390/s22187016

Academic Editor: Shih-Chia Huang

Received: 28 August 2022

Accepted: 10 September 2022

Published: 16 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

On the Efficient Delivery and Storage of IoT Data in
Edge–Fog–Cloud Environments
Alfredo Barron 1 , Dante D. Sanchez-Gallegos 1,2 , Diana Carrizales-Espinoza 1,2 , J. L. Gonzalez-Compean 1,*
and Miguel Morales-Sandoval 1

1 Cinvestav Tamaulipas, Victoria 87130, Mexico
2 ARCOS Research Group, Universidad Carlos III de Madrid, 28911 Leganes, Spain
* Correspondence: joseluis.gonzalez@cinvestav.mx

Abstract: Cloud storage has become a keystone for organizations to manage large volumes of data
produced by sensors at the edge as well as information produced by deep and machine learning
applications. Nevertheless, the latency produced by geographic distributed systems deployed on
any of the edge, the fog, or the cloud, leads to delays that are observed by end-users in the form of
high response times. In this paper, we present an efficient scheme for the management and storage of
Internet of Thing (IoT) data in edge–fog–cloud environments. In our proposal, entities called data
containers are coupled, in a logical manner, with nano/microservices deployed on any of the edge,
the fog, or the cloud. The data containers implement a hierarchical cache file system including storage
levels such as in-memory, file system, and cloud services for transparently managing the input/output
data operations produced by nano/microservices (e.g., a sensor hub collecting data from sensors
at the edge or machine learning applications processing data at the edge). Data containers are
interconnected through a secure and efficient content delivery network, which transparently and
automatically performs the continuous delivery of data through the edge–fog–cloud. A prototype of
our proposed scheme was implemented and evaluated in a case study based on the management
of electrocardiogram sensor data. The obtained results reveal the suitability and efficiency of the
proposed scheme.

Keywords: cloud storage; in-memory storage; edge–fog–cloud computing; data science

1. Introduction

The amount of data produced in Internet of Things (IoT) environments has dramat-
ically increased as IoT devices are constantly producing data [1,2]. The IoT data are
hierarchically handled through the edge, the fog, the cloud, or any combination of these
infrastructures [3]. In the edge [4,5], data are collected by using sensors to measure, for ex-
ample, environmental data such as the weather [6,7] or health data (e.g., electrocardiogram
signals [8]), whereas in the fog [9,10], the data are processed to obtain insights from the
data-producing information by using data mining [11] and artificial intelligence [12] appli-
cations. Finally, in the cloud, data are stored and processed with big data and data science
applications [13] to obtain further information useful in decision-making scenarios [14].
End-users access the information produced in the fog and the cloud by using visualization
tools commonly developed as cloud services [15].

To perform the management and processing of IoT data [16–18], multiple applications
are deployed on edge–fog–cloud infrastructures, which are organized in the form of pro-
cessing structures (e.g., pipelines or workflows [19]). In these structures, the applications
are managed by using directed acyclic graphs (DAG) [20], where nodes are the applications
required for the processing/management of data (e.g., a QRS-complex detector when
processing electrocardiogram data [21] or linear regressions when working with weather
data for forecast [7]), whereas the edges represent the I/O dependencies between nodes.

Sensors 2022, 22, 7016. https://doi.org/10.3390/s22187016 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22187016
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2675-6071
https://orcid.org/0000-0003-0944-9341
https://orcid.org/0000-0002-3925-031X
https://orcid.org/0000-0002-2160-4407
https://orcid.org/0000-0003-1702-8467
https://doi.org/10.3390/s22187016
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22187016?type=check_update&version=2

Sensors 2022, 22, 7016 2 of 17

In real scenarios of processing IoT data [16–18], the applications considered in the
stages of processing structures, distributed in any of the edge, the fog, or the cloud, should
be executed in an automatic manner to create a dataflow from the sensors to the cloud (and
vice versa) [22,23] for supporting decision-making procedures [24].

In this sense, content delivery networks (CDNs) have been proposed to handle the
delivery of data between applications distributed through multiple environments (any of
the edge, the fog, or the cloud) [25,26]. Commonly, CDNs follow a centralized approach
where the contents produced by a sensor or applications are stored in large storage servers
(usually in the cloud or the fog) and then distributed to the applications/end-users that
require the data for processing or visualization [27,28].

Nevertheless, when working with edge–fog–cloud environments, this centralized
approach of traditional CDNs could produce latency costs (depending on the characteristics
of the network and hardware used for communication) [29]. This latency thus produces
delays and awaiting times, which are observed by end-users as large response times [30].
This is crucial in decision-making scenarios [31], where it is expected that the data be
available in the shortest possible time (e.g., a physician waiting for data to perform a
diagnosis) [32].

Instead of using a centralized cloud storage scheme such as traditional CDNs, in
this paper, we propose a hierarchical scheme for the management of data combined with
caching techniques to reduce the latency observed when uploading/downloading data
to/from the cloud. This hierarchical data management considers the usage of the main
memory of the machines as the first option to store and transport data of applications
deployed in any of the edge, the fog, or the cloud. This mitigates bottlenecks caused by the
allocation and location operations of data when working with distributed environments
such as the edge–fog–cloud.

In this paper, we present an efficient scheme for the management and storage of IoT
data in edge–fog–cloud environments. This scheme creates continuous dataflows for the
delivery and management of IoT data through any combination of the edge, the fog, or the
cloud. Dataflows are created by using structures called data containers.

A data container is a self-contained and reusable cache file system service, which
includes mechanisms for the management of the input/output data required by the applica-
tions considered by an organization/user for processing IoT data transported through the
edge–fog–cloud infrastructures. These data management mechanisms were implemented
as a cache hierarchical file system that includes three storage levels: in-memory (L1), the
host file system (L2), and the cloud (L3). In this sense, data produced by nano/microservices
deployed on any of the edge, the fog, or the cloud are cached in local memory as the first
option (L1), which reduces the latency costs associated with access to the data when M
applications are deployed on the same environment. When the local memory space is full,
the data containers start to use the file system of the host (managed as a volume in the data
container) to temporally store the data. The data are thus sent to the cloud storage in a
deferred manner based on caching policies.

The delivery of data through nano/microservices deployed on different environments
(any of the edge, the fog, or the cloud) is performed through a content delivery network,
which performs the location and allocation of the data required by an application, in
automatic and transparent manners.

A prototype of our proposed scheme was implemented and evaluated through a case
study, consisting of the management of electrocardiogram sensor data through processing
structures deployed on the edge–fog–cloud infrastructures. The experimental results
revealed the efficiency of the proposed scheme in comparison with a traditional storage
solution implemented using Dropbox.

In summary, the contributions of this work are:

- The design, implementation, and evaluation of an efficient scheme for the continuous
delivery and storage of IoT data in edge–fog–cloud environments;

Sensors 2022, 22, 7016 3 of 17

- A hierarchical data management mechanism, included in data containers, to reduce
the latency costs associated with the delivery of data in edge–fog–cloud environments.

The rest of the paper is organized as follows. Section 2 presents the related work.
Section 3 describes the proposed data scheme for the management of IoT data in edge–fog–
cloud environments. Section 5 presents the implementation details of a prototype based on
the scheme proposed in this work. Section 6 describes the experimental results from a case
study. Conclusions and future research lines are described in Section 7.

2. Related Work

In the literature, there are many works focused on data management (including the
storage, sharing, and delivery of data) to applications deployed through the edge, the fog,
and the cloud. For example, cloud storage solutions as a service, such as Dropbox [33], and
content delivery networks (CDN), such as SkyCDS [34] and Amazon CloudFront [35], are
storage systems that create replicas of the files that are stored through different storage
locations to ensure the availability and distribution of files to the end-users. Nevertheless,
the exchange of data through the network creates delays in the delivery of data and contents
to the end-users as a consequence of the latency produced in these types of storage solutions.

A static distribution scheme distribution such as RUSH [36] is a family of algorithms
that solves the scalability problem by facilitating the distribution of multiple replica objects
among thousands of object-based storage devices. Random Slice (RS) [37] is a data distri-
bution strategy that incorporates lessons learned from table-based and pseudo-random
hashing strategies to be fair and efficient in homogeneous and heterogeneous environments
to adapt and change storage containers. CRUSH [38] is a pseudo-random data distribu-
tion algorithm that efficiently and robustly distributes replicas across heterogeneous and
structured clusters. RS-Pooling [39] is an adaptive random data distribution strategy for
fault-tolerant, large-scale storage systems. Moreover, a scheme distribution dynamic such
as AREN [40] is a replication scheme for cloud storage based on bandwidth and a collabo-
rative cache strategy to provide a number of replicas of the popular content. DPRS [41] is
a data replication strategy that places popular files in appropriate clusters/sites to adapt
the caching of files based on the user interests considering the number of requests, and the
distribution of requests over time. CDRM [42] is a scheme for cloud storage, which builds
a model to capture the relationship between availability and replication number, taking
into account the capacity (CPU power, memory capacity, network bandwidth, etc.) and
blocking probability of each data node.

In this sense, different distribution schemes have been developed and deployed
as a middleware between the end-users applications and the cloud storage systems (e.g.,
Dropbox and SkyCDS). For example, GlusterFS [43] is a distributed file system that provides
shared and replicated storage across multiple storage locations. It implements a shared
storage system that reduces the latency to exchange data between different storage locations.
IRIS [44] is a unified and integrated storage access system implemented as a middleware
that unifies the data model and the underlying storage framework. These middlewares
abstract the access to the data by end-users and applications. Nevertheless, these tools
lack of mechanisms for the efficient management of data based on caching techniques and
in-memory data management.

Alluxio [45] provides hierarchical storage that performs the data allocation and lo-
cation tasks through distributed environments. It implements a caching mechanism that
automatically moves the data close to the applications in HDFS (Hadoop Distributed File
System) systems. Hermes [46] is a heterogeneous I/O buffering system that manages
and monitors data based on in-memory storage mechanisms. Similar, RAMCloud Stor-
age System (RCSS) [47] is an HDFS-based in-memory storage system that improves the
performance of input/output systems in HDFS [48] systems.

Table 1 presents a summary of the different distribution schemes and storage resource
management for the transportation of data through any of the edge, the fog, or the cloud.
As can be observed, most of the works are focused on the management of data in the

Sensors 2022, 22, 7016 4 of 17

fog and the cloud, where the resources available have higher computational and storage
capabilities. In turn, the work proposed in this paper considers the transporting of data
through any environment. Data containers proposed in this paper have the characteristic
of portability, which means that a container can be moved and deployed through different
platforms and infrastructures for the management of data.

Data storage management refers to how the data are stored in the storage systems.
Thus, the data can be stored as files, blocks, or objects [49]. Solutions such as RS and IRIS
store the data in the form of files by following hierarchical management of the files, where
files are organized in a tree of nested folders. Nevertheless, when working with distributed
environments, the scaling of systems based on files is complex as is required a central
component for the management of the hierarchy of files and directories. In turn, object-
oriented storage systems are easy to scale, as the metadata and an identifier of the data are
stored with the data in a single self-contained object. This reduces the complexity to locate
and allocate data through a distributed storage system. The data containers proposed in
this paper produce objects instead of files, similar to solutions such as RUSH, RS-Pooling,
AREN, and Alluxio.

In the literature, there are few solutions with hierarchical storage management of
data, including the memory, the filesystem, and the cloud, similar to that implemented
in the data containers proposed in this paper. These tools are Alluxio, IRIS, and Hermes.
To manage the caching through this hierarchy, these solutions apply two policies: last
frequently used (LFU) [50] and last recently used (LRU) [51]. In LFU, the most accessed
data are moved to the top of the hierarchy, whereas in LRU, the newest data are moved.

Table 1. Summary of storage tools for the data management and distribution schemes.

Work Scope
Infraestructure

Portability
Data Storage Management Hierarchical Storage Caching Policy

Edge Fog Cloud Files Blocks Objects Memory FS CS LRU LFU

RUSH (2004) [36] DS - X X - - - X - X - - -
RS (2014) [37] DS - X X X X - - - X - - -

CRUSH (2006) [38] DS - X X - - - X - X - - -
RS-Pooling (2016) [39] DS - X X - - - X - X X - -

AREN (2012) [40] DS X - X - X - X - X X - -
DPRS (2017) [41] DS - X - - X X - - X - X -

CDRM (2010) [42] DS - - X - X - - - X X - -
GlusterFS Container (2016) [43] SRM - X X X X - - - X - - -

Alluxio (2018) [45] SRM - - X - X X X X X X X -
IRIS (2018) [44] SRM - X X - X - X - X X X X

Hermes (2018) [46] SRM - X X - X - - X X X X X
Proposed data scheme SRM & DS X X X X - - X X X X X X

DS = Distribution scheme. CS = Cloud Storage. SRM = Storage resources management. FS = Filesystem.

3. Design Principles of an Efficient Scheme for the Management and Storage of
IoT Data

In this section, we described the proposed scheme for creating continuous dataflows to
efficiently deliver and store IoT data in edge–fog–cloud environments. These dataflows are
built by using entities called data containers, which are attached with nano/microservices
developed for the acquisition, processing, and production of data in edge–fog–cloud
environments. Sets of data containers are chained to create continuous dataflows through
edge–fog–cloud infrastructures.

This section also presents a hierarchical data management included in virtual contain-
ers to reduce the latency costs associated with the management of data in edge–fog–cloud
environments.

3.1. Data Containers for the Efficient Management and Delivery of Data in
Edge–Fog–Cloud Environments

The basic data management unit of the scheme proposed in this paper are software
entities called data containers. Data containers enable organizations to establish controls
over the exchange of IoT data produced/required by applications implemented in the form

Sensors 2022, 22, 7016 5 of 17

of nano/microservices for the management/processing of data in any of the edge, the fog,
or the cloud. The main goals of data containers are:

• To efficiently and transparently manage the data produced/managed by applications
deployed on edge–fog–cloud environments;

• To create continuous dataflow in the edge–fog–cloud by the interconnection of data
containers distributed through any of the edge, the fog, or the cloud;

• To reduce the latency costs associated with the storage of data in the cloud observed
in traditional content delivery networks (CDNs).

To achieve these goals, in this scheme, the data containers are built as self-contained soft-
ware pieces that include mechanisms for the efficient management of data produced/required
by edge–fog–cloud applications. In this scheme, a data container is implemented as a virtual
container with storage and memory limitations. A data container thus includes storage
spaces in the memory and file systems (e.g., hard disks) for temporally allocating data to
reduce the costs associated with the transference of data directly to the cloud.

Figure 1 depicts an architecture stack of a data container (DC) and its components.
The first layer includes a data transference service manager that is in charge of managing the
data arriving/departing (input/output data) to/from a data container. This layer also
includes an access control layer, which verifies that the tokens and credentials for ensuring
that only authorized users/applications have access to the input/output data managed by
the data container. Data containers also include a metadata manager, which is in charge of
establishing controls over the data allocated and located in a data container. A cache manager
implements data caching policies to add/delete data from each component considered
in the hierarchical memory manager, which is the last layer considered in the stack of a
data container.

Figure 1. Stack representation of a data container for the efficient management of data.

The hierarchical memory manager is in charge of managing the storage of data pro-
duced/required by an application. This manager implements a hierarchical file system
divided into three levels:

• Level 0 (L0) or local memory (RAM): in this level, the local memory attached to the data
container is used to temporally store data, before being written to disk (level 1). This
level is more convenient when multiple applications deployed in a single environment
are exchanging data. In this sense, application 1 must deliver the memory address to
application 2 so it can retrieve data. These operations are performed by the data con-
tainer, not by the applications. For example, in a node in the fog, a data preprocessing
application delivering contents to a deep learning application [52], the delivery and
retrieval of data are performed using the memory by a data container that performs
these operations as a middleware.

• Level 1 (L1) or local storage (host filesystem): in this level, data are stored in the file system
of the data container host (i.e., hard disk). At this level, data are temporally stored by
using a deferred data migration scheme.

• Level 2 (L2) or cloud storage: in this level, the data are stored in the cloud by using a
content delivery network (CDN), which is based on a pub/sub scheme and imple-
ments authentication and load-balancing mechanisms. Thus, the CDN is in charge of

Sensors 2022, 22, 7016 6 of 17

automatically distributing the contents required by applications deployed on any of
the edge, the fog, or the cloud.

The cache manager is in charge of caching data through this hierarchical file system.
To this end, two caching policies are available in the data containers to add/remove data
to/from each level of the hierarchical storage: last frequently used (LFU) and last recently
used (LRU). In LFU policy, the less accessed data are deleted from the cache (L0 or L1) and
sent to the next storage level (L0→ L1 | L1→ L2). In turn, in LRU policy, the most recently
used data are stored in the top levels of the hierarchical filesystem (L0 or L1), whereas the
oldest produced data are moved to the lower levels (L2).

3.2. Creating Storage Systems Based on Pools of Data Containers

At this point, we have presented the design of data containers for the efficient man-
agement of I/O data required/produced by applications deployed in any of the edge, the
fog, or the cloud. In real scenarios, applications distributed through the edge–fog–cloud
require exchanging data to process them and produce insights and information useful in
decision-making scenarios. In this scheme, data containers, deployed on edge–fog–cloud
infrastructures, are organized into a data pool that transparently manages the I/O access to
data by creating a temporal storage service based on a distributed caching system. In this
service, data are transparently exchanged among the infrastructures by using a CDN.

Figure 2 shows the stack representation of a pool of temporal storage services created
by using a pool of data containers. This is composed of a contextual data monitor, a
distributor, and the data containers.

Figure 2. Stack representation of a temporal storage service created by using a data container pool.

As it can be observed, data containers are grouped in a pool, where data alloca-
tion/location operations are managed by a data distributor. A data contextual monitor
performs the continuous monitoring of data containers as well as the applications attached
to these containers. This monitor collects performance metrics such as memory utilization,
size of the outputs produced by an application, size of the inputs required by an application,
file system utilization, and the number of accesses to a file. These metrics are delivered
to the data distributor and data container pool to manage the caching of files in the data
container file system.

The data distributor is in charge of performing the allocation and location of data in
the data container pool. This component follows a ball-into-bins metaphor to perform the
distribution (allocation) of data through the data containers available in the pool. This
distributor includes load-balancing mechanisms to produce a fair distribution of data
between data containers launched in a pool. The load-balancing algorithms available are:

• Round Robin: cyclically distributes the contents through the available data containers,
which have the same probability of being elected. The data container, where the data
will be stored, is elected as follows:

dc = (i mod N)|i ∈ N, (1)

Sensors 2022, 22, 7016 7 of 17

where dc is the data container elected, i is a numeric identifier of the file to be allocated,
and N is the total number of data containers available.

• Random: randomly, an available data container is elected to store the data. In this
algorithm, each data container has the same opportunity to be elected.

• SortingUF [53]: the utilization factor (UF) of each data container is calculated based
on the used storage and memory. The data containers are sorted based on their UF,
where the data container with the lowest UF is the one elected to store the data.

• Two Choices [54,55]: in this algorithm, two data containers are randomly elected, and
the data are stored in the data container with the lowest storage utilization.

Algorithm 1 presents the process of allocating and locating data in a pool of data
containers. This Algorithm receives as input the data (D) to be allocated in the n available
data containers of the data container pool (DP), the operation (op) of either allocation or
location, as well as the load-balancing technique to distribute data (LBalgorithm). The
output of the Algorithm 1 is a set of maps in the form of < d, dc, dataHash >, where d is
the data to allocate, dc is a data container available in the DP, and dataHash is the digital
signature of the data, which is unique for each dc.

Algorithm 1 Allocation/location of data in a pool of data containers.

Require: data (D), metadata list (ML), operation type (op), load balancer algorithm
(LBalgorithm), data container pool (DP)

Ensure: maps of data allocation/location (mapsAL)
1: dataHash = ””
2: exist← NULL
3: mapsAL← {}
4: index = 0
5: for all d ∈ D do
6: dataHash← calculateHash(d)
7: exist← data.exist(dataHash, mL)
8: if op == ”allocation” then
9: if exist == FALSE then

10: mapsAL[index]← LB(LBalgorithm, dataHash, DP)
11: data.recordD(ML, mapsAL)
12: data.allocation(d, mapsAL)
13: index ++
14: else
15: This file already exists
16: end if
17: end if
18: if op == ”location” then
19: if exist == TRUE then
20: mapsAL[index]← data.location(dataHash, ML)
21: index ++
22: else
23: This file hasn’t been located
24: end if
25: end if
26: end for
27: return mapsAL

4. Continuous Dataflows for the Delivery of Data through Data Containers
in the Edge–Fog–Cloud

In a differed manner, the data stored in a data container pool are sent to the cloud by
using a CDN based on catalog abstractions, which are basically virtual storage spaces in
multi-cloud environments. Moreover, this CDN interconnects data containers deployed in

Sensors 2022, 22, 7016 8 of 17

any of the edge, the fog, or the cloud, enabling the exchange of data and creating continuous
edge–fog–cloud dataflows.

Figure 3 shows the conceptual representation of a dataflow created with data contain-
ers in an edge–fog–cloud infrastructure. As it can be observed in Figure 3, data containers
are in charge of the management of input/output data required/produced by applications
deployed on any of the edge, the fog, or the cloud (see An ∈ edge, A1, ..., m ∈ f og1, and
Ao ∈ f ogq in Figure 3).

A =Aplication
DC = Data Container
LB = Load Balancer

Data
management

Dataflow

SN = Storage Node CS = Cloud Storage

edge
Access

App

Data

Data source

API
gateway

Auth
Pub/sub

LB

Visualization

Metadata

Access

App

Data

Access

App

Data

Figure 3. Efficient data delivery scheme for the edge–fog–cloud.

The CDN is based on a pub/sub model, where users and applications can sub-
scribe/publish catalogs storing data (e.g., ECG signals). The metadata of the data managed
by catalogs are registered in a database, and an authentication module is in charge of
managing the access control to the catalogs. The CDN also implements a load-balancing
mechanism to distribute the incoming data through the available storage nodes (see SN1,
SN2, and SNp in Figure 3). End-users can consume the data stored in the catalogs through
a visualization client, which enables them to perform subscription operations that trigger a
synchronizer, which automatically downloads the data to their computer.

5. Prototype

This section describes the implementation of a prototype for creating edge–fog–cloud
dataflows based on the proposed scheme. Data containers are managed as Docker virtual
containers and implemented in Java programming language. In this scheme, the applications
producing/consuming data to/from data containers are managed as nano/microservices
encapsulated into virtual containers. The communication of the data containers and applica-
tions is performed by using inter-process communication (IPC) through shared memory. The
exchange of messages between data containers is performed through a remote procedure
call (GRPC) [56].

The caching mechanism included in data containers is implemented in Java pro-
gramming language. The context data monitor, included in the data container pool, is
implemented by using cAdvisor, which is a tool to perform the monitoring of Docker
containers [57]. The CDN integrated in this scheme is implemented as a microservice (en-
capsulated into virtual containers) and coded by using PHP7. This CDN is thus composed
of five microservices: authentication, pub/sub, load-balancing, metadata, and visualiza-
tion, as well as services for the management of the storage nodes and an API gateway to
manage the incoming requests to the CDN. The databases of the CDN are implemented by
using PostgreSQL.

Sensors 2022, 22, 7016 9 of 17

6. Experimental Evaluation

In this section, we present the experimental evaluation conducted in the form of a case
study to evaluate a prototype based on the proposed scheme. This case study considers ap-
plications in the edge–fog–cloud for the processing and management of electrocardiogram
(ECG) data by using data analytic microservices.

Figure 4 presents the design of this case study, which considers the following microser-
vices for the management of processing and analysis of ECG data:

• ECG sensor simulator: this application receives as input a set of five real ECG traces. At
the start, a trace is randomly elected to periodically produce ECG data packages by
reading the measurements contained in the selected trace and adding a timestamp as
well as an identifier. These ECG data packages are written to a new file, which is the
output of this application. The application was developed in Python and can be tuned
to modify the total number of sensors to simulate, the number of packages to write
in the output trace, and the time in seconds to wait between the generation of each
package. This application can be deployed on any computer on the edge to simulate a
HUB receiving data from real ECG sensors.

• QRS-complex detection: this application, developed in Python, processes the ECG traces
produced with the simulator to identify QRS-complex in the data [58].

• Data indexing: this application, developed in Python, receives the ECG data and the
QRS complex generated with the previous applications. The received data are indexed
in a MongoDB database.

To conduct this experimental evaluation, we implemented the processing structure
depicted in Figure 4 to manage the exchange of data with the scheme proposed in this paper
and a traditional storage service implemented by using Dropbox. We divide this evaluation
into two phases. In the first one, a controlled evaluation was conducted by transferring
ECG sensor traces between two nodes by tuning the parallelism degree, the size of the
traces, and the number of traces to exchange. In the second one, the performance of the
proposed scheme was evaluated when managing ECG sensor data through the structure
depicted in Figure 4.

Figure 4. Conceptual representation of the structure used to perform the case study of the experimen-
tal evaluation.

6.1. Environment of Experimentation

Table 2 shows the main hardware characteristics of the infrastructure used to conduct
each experiment considered in this experimental evaluation. In experiments 1, 2, and 3, we
used two computers to evaluate and tune the performance of data containers by exchanging
data between two applications (sensor simulator and QRS detector) deployed in a fog node
labeled as Compute 1. A machine labeled as Compute 2 was used as a cloud storage node
to store the data produced by the sensor simulator. To conduct these experiments, the
sensor simulator was configured to generate trace files of 1 and 10 MB.

Sensors 2022, 22, 7016 10 of 17

Table 2. Characteristics of the infrastructure used to conduct the experimental evaluation.

Experiment Label Role
Hardware Characteristics Software Deployed

Cores CPU RAM (GB) Storage Application Role

1, 2, and 3 Compute 1 Fog node 24

Intel Xeon
CPU E5-2650

256 3.7 TB Sensor simulator Producer
QRS detector Consumer

Compute 2 Cloud node 24 128 2.7 TB Cloud storage Storage

4

Compute 3 Edge node 12 64 17.5 TB Sensor simulator Producer

Compute 4 Fog node 24 256 3.7 TB QRS detector Consumer
and Producer

Indexing Consumer
and Producer

Compute 5 Cloud node 24 128 2.7 TB Cloud storage Storage

In the fourth experiment, three machines were used to emulate the edge–fog–cloud sce-
nario depicted in Figure 4, considering applications deployed in edge (labeled as Compute 3
in Table 2) and fog (labeled as Compute 4 in Table 2) nodes. In the edge node the sensor
simulator application was deployed, whereas in the fog the QRS detector and data indexing
applications were deployed. A cloud storage node labeled as Compute 5 was used to store
the data produced by these applications considered in each stage. In this experiment, the
sensor simulator was configured to produce 10,000 packages (measurements).

6.2. Tuning the Parameters of Data Containers in a Controlled Evaluation

In this phase, we evaluated the performance of different configurations in the data
containers proposed in this scheme. This evaluation was conducted by exchanging data
between two stages (the sensor simulator uploading data and the QRS-complex detector
downloading the data). Both applications were deployed in a fog node (Compute 1).
The goal of this phase is to evaluate the behavior of the solutions evaluated by testing
different configurations varying the degree of concurrency, the size of the traces to exchange,
and the number of traces. In addition, this evaluation includes a configuration using a
traditional storage service implemented by using Dropbox. The following configurations
were evaluated:

• Data containers—Configuration 1: a solution managing data with the data containers
configured with a cache of 40 pages and 2 GB of available memory.

• Data containers—Configuration 2: a solution managing data with the data containers
configured a cache of 100 pages and 24 GB of available memory.

• Traditional storage service: a solution implemented by using a Dropbox client in
Python to exchange data between two nodes.

Figure 5a–d show, in the vertical axis, the response time of configurations processing
the exchange of 10 and 100 ECG files of 1 and 10 MB size each. Different configurations
were defined by varying the degree of parallelism (horizontal axis) defined by the number
of workers (number of microservices processing the ECG files). This means that a bigger
number of parallel workers represents more clients transferring files through the processing
structure. The ECG trace files are distributed to each worker in a parallel manner. As
expected, the bigger the parallelism degree, the greater the reduction in the response times.
For example, in Figure 5d, we can observe that the exchange of 10 ECG files of 10 MB
by using the data containers solutions with one worker spent 5.19 s, whereas with four
workers, it spent 3.01 s. This represents a performance gain of 67.23%. Similar behavior is
observed when using the different configurations of a traditional storage service and when
increasing the number of ECG files to exchange data through the structure. In Figure 5d,
it can be observed that 100 ECG files of 10 MB were exchanged in 41.40 s by using data
containers solution with one worker. Meanwhile, with four workers, the response time is
reduced to 17.88 s, representing a performance gain of 56.80%.

Sensors 2022, 22, 7016 11 of 17

 0.1

 1

 10

 100

1 2 4 6 12 24

R
e
s
p
o
n
s
e
 t
im

e
 (

s
)

Number of parallel workers

Data containers – Configuration 1
Data containers – Configuration 2

Traditional storage service

(a) 10 traces of 1 MB

0

1

10

100

1,000

10,000

1 2 4 6 12 24

R
e
s
p
o
n
s
e
 t

im
e
 (

s
)

Number of parallel workers

Data containers – Con�guration 1
Data containers – Con�guration 2

Traditional storage service

(b) 100 traces of 1 MB

 0.1

 1

 10

 100

1 2 4 6 12 24

R
e
s
p
o
n
s
e
 t
im

e
 (

s
)

Number of parallel workers

Data containers – Configuration 1
Data containers – Configuration 2

Traditional storage service

(c) 10 traces of 10 MB

0

1

10

100

1,000

10,000

1 2 4 6 12 24

R
e
s
p
o
n
s
e
 t

im
e
 (

s
)

Number of parallel workers

Data containers – Con�guration 1
Data containers – Con�guration 2

Traditional storage service

(d) 100 traces of 10 MB
Figure 5. Response time observed when transferring 10 and 100 traces of 1 and 10 MB by using a
varying number of parallel workers.

In Figure 5a–d, we can also observe that when the size of the memory and number
of cache pages available increases, the response time of the data containers is reduced as
all data is managed at the first level of the data container file system. For example, when
transferring 100 ECG files with Configuration 1 of data containers with one worker, the
response time observed was 1227.63 s, whereas when increasing the size of the memory
and cache available, the response time was reduced to 41.40 s. This is a percentage of the
performance gain of 96.62%.

In addition, in Figure 5a–d, it can be observed that the Configuration 2 of the data
containers yields a lower response time than the traditional storage service solution. For
example, the traditional storage service solution spent 777.52 s to exchange 100 ECG files of
10 MB with one worker (see Figure 5d), whereas the data container solution spent 41.40 s.
This is an acceleration of 18.77X and a percentage of performance gain of 94.67%.

6.3. Analyzing the Cache Usage in Data Containers

In this experiment, we analyzed the cache usage in data containers to perform the
operations of data allocating and locating when exchanging 10 and 100 ECG traces of 1, 10,
and 100 MB in size through two stages in a fog node. Figure 6 depict the cache hits ratio (in
a range of 0 to 1) of data requests that have been successfully served by the cache. In this
context, while the value is close to one, it means a higher success rate in the data requests
performed by the stages exchanging data.

Figure 6a,b show, in the vertical axis, the hit ratio to 10 and 100 allocated and located
files of 1, 10 and 100 MB when two different cache sizes (40 and 100 pages) are used, as well
as by using different configurations of concurrency (C) (see horizontal axis in Figure 6a,b).

A number close to or equal to 1 in the hits ratio means a higher use of the available
cache pages; thus, more memory is being used to transfer the data and the contents are
not being written in the bottom hierarchy of the file system (L1 and L2). For example,
when allocating 100 files of 100 MB with Configuration 1 of data containers with a concur-
rency equal to 1, the hit ratio was 0.4, whereas when increasing the cache pages available
(Configuration 2), the hit ratio increases to 0.99. This means that the usage of the cache is
increased by 59%. This reduces the latency observed when exchanging data between stages.

Sensors 2022, 22, 7016 12 of 17

Moreover, we can observe that when the concurrency increases, the hit ratio decreases. For
example, if the concurrency increases from 1 to 24, then the hit ratio decreases to 0.5 for the
last configuration, representing that the cache usage is increased to 43%.

 0.1

 1

1
M

B
-C

=
1

1
0

M
B

-C
=

1

1
0

0
M

B
-C

=
1

1
M

B
-C

=
2

1
0

M
B

-C
=

2

1
0

0
M

B
-C

=
2

1
M

B
-C

=
4

1
0

M
B

-C
=

4

1
0

0
M

B
-C

=
4

1
M

B
-C

=
6

1
0

M
B

-C
=

6

1
0

0
M

B
-C

=
6

1
M

B
-C

=
1
2

1
0

M
B

-C
=

1
2

1
0

0
M

B
-C

=
1
2

1
M

B
-C

=
2
4

1
0

M
B

-C
=

2
4

1
0

0
M

B
-C

=
2
4

H
IT

S
 R

a
ti

o
 (

%
)

Con�gurations

10�les Cache 40Pag
10�les Cache 100Pag

(a) 10 traces of 1, 10 and 100 MB

 0.1

 1

1
M

B
-C

=
1

1
0

M
B

-C
=

1

1
0

0
M

B
-C

=
1

1
M

B
-C

=
2

1
0

M
B

-C
=

2

1
0

0
M

B
-C

=
2

1
M

B
-C

=
4

1
0

M
B

-C
=

4

1
0

0
M

B
-C

=
4

1
M

B
-C

=
6

1
0

M
B

-C
=

6

1
0

0
M

B
-C

=
6

1
M

B
-C

=
1
2

1
0

M
B

-C
=

1
2

1
0

0
M

B
-C

=
1
2

1
M

B
-C

=
2
4

1
0

M
B

-C
=

2
4

1
0

0
M

B
-C

=
2
4

H
IT

S
 R

a
ti

o
 (

%
)

Con�gurations

100�les Cache 40Pag
100�les Cache 100Pag

(b) 100 traces of 1, 10 and 100 MB
Figure 6. Percentage of hits ratio in the cache observed when exchanging data between two fog nodes.

6.4. Evaluating the Upload and Download of Data Operations

In this experiment, we evaluate the service time to perform the operations of data
uploading and downloading. Again, to perform this experiment, we use two stages (ECG
sensor simulator and QRS-complex detector deployed in a fog node labeled as Compute 1).
The uploading of the data was evaluated using the ECG sensor simulator stage, whereas
the downloading of the data was evaluated by using the QRS-complex detection stage.
To perform this evaluation, we used the traditional storage service and Configuration 2
of data containers, which were the solutions that yield the best performance in previous
experiments.

Figures 7 and 8 depict the service time observed when uploading and downloading
10 and 100 ECG files of 1 and 10 MB with Configuration 2 of data containers and the
traditional storage service. The goal of these experiments is to show the behavior when
uploading and downloading a different number of files.

Figure 7 shows, in the vertical axis, the service time, in seconds, spent by configu-
rations to upload 10 and 100 ECG files (horizontal axis) of 1 and 10 MB (see Figure 7a,b,
respectively). Again, we can observe that when the data containers are configured with a
large amount of memory and a higher number of cache pages, the service time to upload
the data is reduced in comparison with traditional cloud storage such as Dropbox. For
example, in Figure 7b, can be observed that Data containers—Configuration 2 upload 100 ECG
files of 10 MB in 24.11 s, whereas the traditional storage service uploads the same content
in 561.09 s. This means a 95.70% reduction in the service time of the data containers in
comparison with the traditional storage service.

Sensors 2022, 22, 7016 13 of 17

 0.1

 1

 10

 100

 1000

10 100

S
e
rv

ic
e
 t
im

e
 (

s
)

Number of traces

Data containers – Configuration 2
Traditional storage service

(a) 1 MB

 0.1

 1

 10

 100

 1000

10 100

S
e
rv

ic
e
 t
im

e
 (

s
)

Number of traces

Data containers – Configuration 2
Traditional storage service

(b) 10 MB
Figure 7. Service time observed when uploading 10 and 100 traces of 1 and 10 MB.

 0.1

 1

 10

 100

10 100

S
e
rv

ic
e
 t
im

e
 (

s
)

Number of traces

Data containers – Configuration 2
Traditional storage service

(a) 1 MB

 0.1

 1

 10

 100

 1000

10 100

S
e
rv

ic
e
 t
im

e
 (

s
)

Number of traces

Data containers – Configuration 2
Traditional storage service

(b) 10 MB
Figure 8. Service time observed when downloading 10 and 100 traces of 1 and 10 MB.

Figure 8 shows in the vertical axis the service time observed when uploading 10 and
100 traces (horizontal axis) of 1 and 10 MB (see Figure 8a and Figure 8b, respectively).
Similar behavior was observed in Figure 8 when downloading contents. Again, Data
containers—Configuration 2 yields a lower service time than the traditional storage service
solution. For example, in Figure 8b, it can be observed that Data containers—Configuration 2
downloaded 100 ECG files of 10 MB in 8.44 s, whereas the traditional storage service down-
loads the same workload in 185.40 s. This represents that the data containers configuration
yields a performance gain of 95.44% in comparison with the traditional storage service.

6.5. Exchanging Data through Multiple Stages

In this experiment, we evaluate the performance of the studied solutions when manag-
ing data through a structure considering three stages: ECG sensor simulator, QRS-complex
detection, and data indexing. The ECG sensor simulator was deployed on an edge node
(labeled as Compute 3 in Table 2), whereas the QRS-complex detection and data indexing
were deployed on a fog node (labeled as Compute 4 in Table 2). In this experiment, a
cloud storage location (labeled as Compute 5 in Table 2) was configured for the storage of
the data.

Figure 9 shows in the vertical axis the response time, in seconds, observed for the
management of 10 ECG traces when varying number of workers (horizontal axis). Again,
we can observe that as more workers are added in the processing stages (ECG sensor
simulator, QRS-complex detection, and data indexing), the response time is reduced. In
addition, it can be observed that in a configuration with a higher number of pages in cache
(Data containers—Configuration 2), the response time is also reduced. For example, with
12 workers, Configuration 1 and the traditional storage service yields a response time of
10.43 and 1.85 s, respectively, whereas Configuration 2 performs the same operations in
1.29 s. This represents a reduction in the response time of 87.57% and 30.15% in comparison
with Configuration 1 and the traditional storage service solutions, respectively.

Sensors 2022, 22, 7016 14 of 17

 0.1

 1

 10

 100

 1000

1 2 4 6 12 24

R
e
s
p
o
n
s
e
 t
im

e
 (

s
)

Number of parallel workers

Data containers – Configuration 1
Data containers – Configuration 2

Traditional storage service

Figure 9. Response time when managing ECG data through a structure considering three stages:
ECG sensor simulator, QRS-complex detection, and data indexing.

7. Conclusions

In this paper, we presented the design, development, and evaluation of an efficient
scheme for the management and storage of IoT data in edge–fog–cloud environments.
This scheme includes entities called data containers, which manage the input/output data
required/produced by applications deployed on edge–fog–cloud infrastructures. These
data containers implement a hierarchical cache file system including three storage levels: in-
memory, filesystem, and the cloud. Data containers are organized in the form of data pools
to create temporal storage services to distribute contents between applications distributed
in any combination of the edge, fog, or cloud computing resources.

The experimental evaluation conducted in the form of a case study for the management
of ECG data revealed, in a direct comparison with a traditional storage service, the efficiency
of the proposed scheme to manage data in edge–fog–cloud scenarios.

We are considering as future work the conduction of large-scale study cases of the
management of medical and satellite contents by integrating a serverless scheme for the
creation of storage systems for serverless applications (e.g., function as a service [59])
deployed in endpoints on any of the edge, the fog, or the cloud. Moreover, we are working
on the integration of data preparation schemes on the client side for the management of
crucial non-functional requirements in the management of sensitive data (e.g., security,
reliability, and traceability).

Author Contributions: Conceptualization, A.B., D.D.S.-G., D.C.-E. and J.L.G.-C.; data curation, A.B.,
D.D.S.-G. and D.C.-E.; formal analysis, A.B., D.D.S.-G., D.C.-E. and J.L.G.-C.; funding acquisition,
J.L.G.-C.; investigation, A.B. and J.L.G.-C.; methodology, A.B., D.D.S.-G., D.C.-E. and J.L.G.-C.; project
administration, J.L.G.-C.; resources, J.L.G.-C.; software, A.B., D.D.S.-G. and D.C.-E.; supervision,
J.L.G.-C. and M.M.-S.; validation, A.B. and D.C.-E.; visualization, A.B.; writing—original draft, A.B.,
D.D.S.-G., D.C.-E. and J.L.G.-C.; writing—review and editing, A.B., D.D.S.-G., D.C.-E., J.L.G.-C. and
M.M.-S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the project 41756 “Plataforma tecnológica para la gestión,
aseguramiento, intercambio y preservación de grandes volúmenes de datos en salud y construcción
de un repositorio nacional de servicios de análisis de datos de salud” by the PRONACES-CONACYT.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Sensors 2022, 22, 7016 15 of 17

References
1. McAfee. Cloud Adoption and Risk Report. 2019. Available online: https://www.mcafee.com/enterprise/en-us/assets/reports/

restricted/rp-cloud-adoption-risk.pdf (accessed on 27 April 2022).
2. Shuaib, M.; Samad, A.; Alam, S.; Siddiqui, S.T. Why adopting cloud is still a challenge?—A review on issues and challenges for

cloud migration in organizations. In Ambient Communications and Computer Systems; Springer: Singapore, 2019; pp. 387–399.
3. Rydning, J.; Reinsel, D.; Gantz, J. The Digitization of the World from Edge to Core; IDC: Framingham, MA, USA, 2018.
4. Varghese, B.; Wang, N.; Barbhuiya, S.; Kilpatrick, P.; Nikolopoulos, D.S. Challenges and opportunities in edge computing. In

Proceedings of the 2016 IEEE International Conference on Smart Cloud (SmartCloud), New York, NY, USA, 18–20 November
2016; IEEE: Piscataway, NJ, USA, 2016; pp. 20–26.

5. Cao, K.; Liu, Y.; Meng, G.; Sun, Q. An overview on edge computing research. IEEE Access 2020, 8, 85714–85728. [CrossRef]
6. Talavera, J.M.; Tobón, L.E.; Gómez, J.A.; Culman, M.A.; Aranda, J.M.; Parra, D.T.; Quiroz, L.A.; Hoyos, A.; Garreta, L.E. Review

of IoT applications in agro-industrial and environmental fields. Comput. Electron. Agric. 2017, 142, 283–297. [CrossRef]
7. Barron-Lugo, J.A.; Gonzalez-Compean, J.L.; Carretero, J.; Lopez-Arevalo, I.; Montella, R. A novel transversal processing model to

build environmental big data services in the cloud. Environ. Model. Softw. 2021, 144, 105173. [CrossRef]
8. Li, H.; Boulanger, P. A survey of heart anomaly detection using ambulatory Electrocardiogram (ECG). Sensors 2020, 20, 1461.

[CrossRef] [PubMed]
9. Stojmenovic, I.; Wen, S.; Huang, X.; Luan, H. An overview of fog computing and its security issues. Concurr. Comput. Pract. Exp.

2016, 28, 2991–3005. [CrossRef]
10. Atlam, H.F.; Walters, R.J.; Wills, G.B. Fog computing and the internet of things: A review. Big Data Cogn. Comput. 2018, 2, 10.

[CrossRef]
11. Braun, P.; Cuzzocrea, A.; Leung, C.K.; Pazdor, A.G.; Souza, J.; Tanbeer, S.K. Pattern mining from big IoT data with fog computing:

models, issues, and research perspectives. In Proceedings of the 2019 19th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID), Larnaca, Cyprus, 14–17 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 584–591.

12. Rihan, M.; Elwekeil, M.; Yang, Y.; Huang, L.; Xu, C.; Selim, M.M. Deep-VFog: when artificial intelligence meets fog computing in
V2X. IEEE Syst. J. 2020, 15, 3492–3505. [CrossRef]

13. Nachiappan, R.; Javadi, B.; Calheiros, R.N.; Matawie, K.M. Cloud storage reliability for big data applications: A state of the art
survey. J. Netw. Comput. Appl. 2017, 97, 35–47. [CrossRef]

14. Jeble, S.; Kumari, S.; Patil, Y. Role of big data in decision making. Oper. Supply Chain. Manag. Int. J. 2017, 11, 36–44. [CrossRef]
15. Ray, P.P. A survey of IoT cloud platforms. Future Comput. Inform. J. 2016, 1, 35–46. [CrossRef]
16. Ma, M.; Wang, P.; Chu, C.H. Data management for internet of things: Challenges, approaches and opportunities. In Proceedings

of the 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber,
Physical and Social Computing, Washington, DC, USA, 20–23 August 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1144–1151.

17. Abu-Elkheir, M.; Hayajneh, M.; Ali, N.A. Data management for the internet of things: Design primitives and solution. Sensors
2013, 13, 15582–15612. [CrossRef]

18. Fortino, G.; Rovella, A.; Russo, W.; Savaglio, C. Towards cyberphysical digital libraries: Integrating IoT smart objects into digital
libraries. In Management of Cyber Physical Objects in the Future Internet of Things; Springer: Berlin, Germany, 2016; pp. 135–156.

19. Sanchez-Gallegos, D.D.; Gonzalez-Compean, J.; Carretero, J.; Marin, H.; Tchernykh, A.; Montella, R. PuzzleMesh: A puzzle
model to build mesh of agnostic services for edge-fog-cloud. IEEE Trans. Serv. Comput. 2022. [CrossRef]

20. Rodriguez, M.A.; Buyya, R. A taxonomy and survey on scheduling algorithms for scientific workflows in IaaS cloud computing
environments. Concurr. Comput. Pract. Exp. 2017, 29, e4041. [CrossRef]

21. Elgendi, M.; Mohamed, A.; Ward, R. Efficient ECG compression and QRS detection for e-health applications. Sci. Rep. 2017,
7, 1–16. [CrossRef] [PubMed]

22. Mohan, N.; Kangasharju, J. Edge-Fog cloud: A distributed cloud for Internet of Things computations. In Proceedings of the 2016
Cloudification of the Internet of Things (CIoT), Paris, France, 23–25 November 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–6.

23. Ortiz, G.; Zouai, M.; Kazar, O.; Garcia-de Prado, A.; Boubeta-Puig, J. Atmosphere: Context and situational-aware collaborative
IoT architecture for edge–fog–cloud computing. Comput. Stand. Interfaces 2022, 79, 103550. [CrossRef]

24. Kuntoğlu, M.; Aslan, A.; Pimenov, D.Y.; Usca, Ü.A.; Salur, E.; Gupta, M.K.; Mikolajczyk, T.; Giasin, K.; Kapłonek, W.; Sharma, S.
A review of indirect tool condition monitoring systems and decision-making methods in turning: Critical analysis and trends.
Sensors 2020, 21, 108. [CrossRef] [PubMed]

25. Carrizales-Espinoza, D.; Sanchez-Gallegos, D.D.; Gonzalez-Compean, J.; Carretero, J. FedFlow: A federated platform to build
secure sharing and synchronization services for health dataflows. Computing 2022, 1–19. [CrossRef]

26. Zhao, J.; Liang, P.; Liufu, W.; Fan, Z. Recent developments in content delivery network: a survey. In Proceedings of the
International Symposium on Parallel Architectures, Algorithms and Programming, Guangzhou, China, 12–14 December 2019;
Springer: Berlin, Germany, 2019; pp. 98–106.

27. Zolfaghari, B.; Srivastava, G.; Roy, S.; Nemati, H.R.; Afghah, F.; Koshiba, T.; Razi, A.; Bibak, K.; Mitra, P.; Rai, B.K. Content
delivery networks: state of the art, trends, and future roadmap. ACM Comput. Surv. CSUR 2020, 53, 1–34. [CrossRef]

28. Bagies, E.; Barnawi, A.; Mahfoudh, S.; Kumar, N. Content delivery network for IoT-based Fog Computing environment. Comput.
Netw. 2022, 205, 108688. [CrossRef]

https://www.mcafee.com/enterprise/en-us/assets/reports/restricted/rp-cloud-adoption-risk.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/restricted/rp-cloud-adoption-risk.pdf
http://doi.org/10.1109/ACCESS.2020.2991734
http://dx.doi.org/10.1016/j.compag.2017.09.015
http://dx.doi.org/10.1016/j.envsoft.2021.105173
http://dx.doi.org/10.3390/s20051461
http://www.ncbi.nlm.nih.gov/pubmed/32155930
http://dx.doi.org/10.1002/cpe.3485
http://dx.doi.org/10.3390/bdcc2020010
http://dx.doi.org/10.1109/JSYST.2020.3009998
http://dx.doi.org/10.1016/j.jnca.2017.08.011
http://dx.doi.org/10.31387/oscm0300198
http://dx.doi.org/10.1016/j.fcij.2017.02.001
http://dx.doi.org/10.3390/s131115582
http://dx.doi.org/10.1109/TSC.2022.3175057
http://dx.doi.org/10.1002/cpe.4041
http://dx.doi.org/10.1038/s41598-017-00540-x
http://www.ncbi.nlm.nih.gov/pubmed/28352071
http://dx.doi.org/10.1016/j.csi.2021.103550
http://dx.doi.org/10.3390/s21010108
http://www.ncbi.nlm.nih.gov/pubmed/33375340
http://dx.doi.org/10.1007/s00607-021-01044-3
http://dx.doi.org/10.1145/3380613
http://dx.doi.org/10.1016/j.comnet.2021.108688

Sensors 2022, 22, 7016 16 of 17

29. Alli, A.A.; Alam, M.M. The fog cloud of things: A survey on concepts, architecture, standards, tools, and applications. Internet
Things 2020, 9, 100177. [CrossRef]

30. Pereira, P.; Melo, C.; Araujo, J.; Dantas, J.; Santos, V.; Maciel, P. Availability model for edge–fog–cloud continuum: an evaluation
of an end-to-end infrastructure of intelligent traffic management service. J. Supercomput. 2022, 78, 4421–4448. [CrossRef]

31. Piccialli, F.; Casolla, G.; Cuomo, S.; Giampaolo, F.; Di Cola, V.S. Decision making in IoT environment through unsupervised
learning. IEEE Intell. Syst. 2019, 35, 27–35. [CrossRef]

32. Gope, P.; Gheraibia, Y.; Kabir, S.; Sikdar, B. A secure IoT-based modern healthcare system with fault-tolerant decision making
process. IEEE J. Biomed. Health Inform. 2020, 25, 862–873. [CrossRef] [PubMed]

33. Dropbox. Dropbox. 2022. Available online: https://www.dropbox.com/ (accessed on 5 September 2022).
34. González, J.L.; Perez, J.C.; Sosa-Sosa, V.J.; Sanchez, L.M.; Bergua, B. SkyCDS: A resilient content delivery service based on

diversified cloud storage. Simul. Model. Pract. Theory 2015, 54, 64–85. [CrossRef]
35. Amazon. Amazon CloudFront. 2022. Available online: https://aws.amazon.com/cloudfront/ (accessed on 5 September 2022).
36. Honicky, R.; Miller, E.L. Replication under scalable hashing: A family of algorithms for scalable decentralized data distribution.

In Proceedings of the 18th International Parallel and Distributed Processing Symposium, Santa Fe, NM, USA, 26–30 April 2004;
IEEE: Piscataway, NJ, USA, 2004; p. 96.

37. Miranda, A.; Effert, S.; Kang, Y.; Miller, E.L.; Popov, I.; Brinkmann, A.; Friedetzky, T.; Cortes, T. Random slicing: Efficient and
scalable data placement for large-scale storage systems. ACM Trans. Storage TOS 2014, 10, 1–35. [CrossRef]

38. Weil, S.A.; Brandt, S.A.; Miller, E.L.; Maltzahn, C. CRUSH: Controlled, scalable, decentralized placement of replicated data. In
Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (SC’06), Tampa, FL, USA, 11–17 November 2006; IEEE:
Piscataway, NJ, USA, 2006; p. 31.

39. Quezada-Naquid, M.; Marcelín-Jiménez, R.; Gonzalez-Compeán, J.; Perez, J.C. RS-Pooling: An adaptive data distribution strategy
for fault-tolerant and large-scale storage systems. J. Supercomput. 2016, 72, 417–437. [CrossRef]

40. Silvestre, G.; Monnet, S.; Krishnaswamy, R.; Sens, P. Aren: A popularity aware replication scheme for cloud storage. In
Proceedings of the 2012 IEEE 18th International Conference on Parallel and Distributed Systems, Singapore, 17–19 December
2012; IEEE: Piscataway, NJ, USA, 2012; pp. 189–196.

41. Mansouri, N.; Rafsanjani, M.K.; Javidi, M.M. DPRS: A dynamic popularity aware replication strategy with parallel download
scheme in cloud environments. Simul. Model. Pract. Theory 2017, 77, 177–196. [CrossRef]

42. Wei, Q.; Veeravalli, B.; Gong, B.; Zeng, L.; Feng, D. CDRM: A cost-effective dynamic replication management scheme for cloud
storage cluster. In Proceedings of the 2010 IEEE International Conference on Cluster Computing, Heraklion, Greece, 20–24
September 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 188–196.

43. Donvito, G.; Marzulli, G.; Diacono, D. Testing of several distributed file-systems (HDFS, Ceph and GlusterFS) for supporting the
HEP experiments analysis. J. Phys. Conf. Ser. 2014, 513, 042014. [CrossRef]

44. Kougkas, A.; Devarajan, H.; Sun, X.H. Iris: I/o redirection via integrated storage. In Proceedings of the 2018 International
Conference on Supercomputing, Beijing China, 12–15 June 2018; pp. 33–42.

45. Li, H. Alluxio: A Virtual Distributed File System. A Dissertation Submitted in Partial Satisfaction of the Requirements for
the Degree of Doctor of Philosophy in Computer Science in the Graduate Division of the University of California, Berkeley.
2018; pp. 1–94. Available online: https://www.proquest.com/docview/2100729503?pq-origsite=gscholar&fromopenview=true
(accessed on 5 September 2022).

46. Kougkas, A.; Devarajan, H.; Sun, X.H. Hermes: A heterogeneous-aware multi-tiered distributed I/O buffering system. In
Proceedings of the 27th International Symposium on High-Performance Parallel and Distributed Computing, Tempe, AZ, USA,
11–15 June 2018; pp. 219–230.

47. Luo, Y.; Luo, S.; Guan, J.; Zhou, S. A RAMCloud storage system based on HDFS: Architecture, implementation and evaluation.
J. Syst. Softw. 2013, 86, 744–750.

48. Shvachko, K.; Kuang, H.; Radia, S.; Chansler, R. The hadoop distributed file system. In Proceedings of the 2010 IEEE 26th
symposium on mass storage systems and technologies (MSST), Incline Village, NV, USA, 3–7 May 2010; IEEE: Piscataway, NJ,
USA, 2010; pp. 1–10.

49. Mansouri, Y.; Toosi, A.N.; Buyya, R. Data storage management in cloud environments: Taxonomy, survey, and future directions.
ACM Comput. Surv. CSUR 2017, 50, 1–51. [CrossRef]

50. Jaleel, A.; Theobald, K.B.; Steely, S.C., Jr.; Emer, J. High performance cache replacement using re-reference interval prediction
(RRIP). ACM SIGARCH Comput. Archit. News 2010, 38, 60–71. [CrossRef]

51. Ahmed, M.; Traverso, S.; Giaccone, P.; Leonardi, E.; Niccolini, S. Analyzing the performance of LRU caches under non-stationary
traffic patterns. arXiv 2013, arXiv:1301.4909.

52. Lavassani, M.; Forsström, S.; Jennehag, U.; Zhang, T. Combining fog computing with sensor mote machine learning for industrial
IoT. Sensors 2018, 18, 1532. [CrossRef] [PubMed]

53. Morales-Ferreira, P.; Santiago-Duran, M.; Gaytan-Diaz, C.; Gonzalez-Compean, J.L.; Sosa-Sosa, V.J.; Lopez-Arevalo, I. A Data
Distribution Service for Cloud and Containerized Storage Based on Information Dispersal. In Proceedings of the SOSE, Paris,
France, 19–22 June 2018; IEEE: Bamberg, Germany, 2018; pp. 86–95.

54. Beraldi, R.; Alnuweiri, H.; Mtibaa, A. A power-of-two choices based algorithm for fog computing. IEEE Trans. Cloud Comput.
2018, 8, 698–709. [CrossRef]

http://dx.doi.org/10.1016/j.iot.2020.100177
http://dx.doi.org/10.1007/s11227-021-04033-7
http://dx.doi.org/10.1109/MIS.2019.2944783
http://dx.doi.org/10.1109/JBHI.2020.3007488
http://www.ncbi.nlm.nih.gov/pubmed/32749985
https://www.dropbox.com/
http://dx.doi.org/10.1016/j.simpat.2015.03.006
https://aws.amazon.com/cloudfront/
http://dx.doi.org/10.1145/2632230
http://dx.doi.org/10.1007/s11227-015-1569-7
http://dx.doi.org/10.1016/j.simpat.2017.06.001
http://dx.doi.org/10.1088/1742-6596/513/4/042014
https://www.proquest.com/docview/2100729503?pq-origsite=gscholar&fromopenview=true
http://dx.doi.org/10.1145/3136623
http://dx.doi.org/10.1145/1816038.1815971
http://dx.doi.org/10.3390/s18051532
http://www.ncbi.nlm.nih.gov/pubmed/29757227
http://dx.doi.org/10.1109/TCC.2018.2828809

Sensors 2022, 22, 7016 17 of 17

55. Garcia-Carballeira, F.; Calderon, A.; Carretero, J. Enhancing the power of two choices load balancing algorithm using round
robin policy. Clust. Comput. 2021, 24, 611–624. [CrossRef]

56. Indrasiri, K.; Kuruppu, D. gRPC: Up and Running: Building Cloud Native Applications with Go and Java for Docker and Kubernetes;
O’Reilly Media: Newton, MA, USA, 2020.

57. Casalicchio, E.; Perciballi, V. Measuring docker performance: What a mess!!! In Proceedings of the 8th ACM/SPEC on
International Conference on Performance Engineering Companion, L’Aquila, Italy, 22–26 April 2017; pp. 11–16.

58. Sznajder, M.; Lukowska, M. Python online and offline ECG QRS detector based on the pan-Tomkins algorithm. Zenodo 2017, 2, 5.
59. Jonas, E.; Schleier-Smith, J.; Sreekanti, V.; Tsai, C.C.; Khandelwal, A.; Pu, Q.; Shankar, V.; Carreira, J.; Krauth, K.; Yadwadkar, N.;

et al. Cloud programming simplified: A berkeley view on serverless computing. arXiv 2019, arXiv:1902.03383.

http://dx.doi.org/10.1007/s10586-020-03139-6

	Introduction
	Related Work
	Design Principles of an Efficient Scheme for the Management and Storage of IoT Data
	Data Containers for the Efficient Management and Delivery of Data in Edge–Fog–Cloud Environments
	Creating Storage Systems Based on Pools of Data Containers

	Continuous Dataflows for the Delivery of Data through Data Containers in the Edge–Fog–Cloud
	Prototype
	Experimental Evaluation
	Environment of Experimentation
	Tuning the Parameters of Data Containers in a Controlled Evaluation
	Analyzing the Cache Usage in Data Containers
	Evaluating the Upload and Download of Data Operations
	Exchanging Data through Multiple Stages

	Conclusions
	References

