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We have used an extended scaled-particle theory that incorporates four-body correlations through the fourth-
order virial coefficient to analyze the orientational properties of a fluid of hard right isosceles triangles. This fluid
has been analyzed by computer simulation studies, with clear indications of strong octatic correlations present in
the liquid-crystal phase, although the more symmetric order tetratic phase would seem to be the most plausible
candidate. Standard theories based on the second virial coefficient are unable to reproduce this behavior. Our
extended theory predicts that octatic correlations, associated to a symmetry under global rotations of the oriented
fluid by 45◦, are highly enhanced, but not enough to give rise to a thermodynamically stable phase with strict
octatic symmetry. We discuss different scenarios to improve the theoretical understanding of the elusive octatic
phase in this intriguing fluid.
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I. INTRODUCTION

Fluids of elongated particles in two dimensions (2D) [1]
continue to unveil surprising behaviors [2]. Since the discov-
ery of crystallization in hard-disc systems, fluids made of hard
elongated particles, such as ellipsoids, have been seen to stabi-
lize nematic phases with uniaxial symmetry [3]. As common
in 2D, these phases possess quasi-long-range orientational
order [4–6], but mean-field theories can still describe large
regions where the tensor order parameter exhibits persistent
values [7,8]. Since particles interact through purely overlap
interactions, order in 2D phases made of hard elongated parti-
cles is solely governed by entropy, which shows here its most
subtle nature.

More complicated 2D particle shapes have been explored
more recently from a theoretical perspective [9–19], motivated
by the possibility to fabricate colloidal particles of virtually
any shape [20–22]. Particles with regular polygonal shapes
have been demonstrated to exhibit mesophases [9,23], with
4-atic (or tetratic, with two directors and a global symmetry
under rotation by 90◦) phases for squares, 6-atic (with three
directors and a symmetry under 60◦) for equilateral triangles
and hexagons. No further mesophases appear to get stabi-
lized for polygonal shapes with more edges: They crystallize
directly from the isotropic fluid through a KTHN-type transi-
tion, as in the case of discs [23,24]. Simulation of mixtures of
particles has also found interesting behaviors [25].
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Nonregular polygons open up exciting possibilities for fur-
ther exploration [12,26]. Here, entropy plays an even more
subtle role: Particles tend to form local clusters of oriented
particles that can be viewed as superparticles, with symme-
tries sometimes very different from that of the monomers
and therefore from the symmetry of the bulk liquid-crystal
phase that would trivially follow from the monomers. Such
is the case in fluids made of low-aspect-ratio rectangles,
which tend to form highly stable square clusters that stabi-
lize a global 4-atic phase [27]. The same behavior is found
in vibrated monolayers of granular grains [28,29] and in
experiments on colloidal particles [22]. Hard-kite-shaped par-
ticles have been studied by simulation [30] and theory [31],
and 4-atic phases were also found. The basic understand-
ing of this phase lies in the excluded area between particles
(second-order virial coefficient), an essential ingredient of
the scaled-particle theory (SPT) extension of classical On-
sager theory. Three-body correlations can be incorporated into
the theory through third-order virial coefficients [32], and the
ensuing corrections are important: The stability region of the
4-atic phase is extended to larger aspect ratios and lower
densities.

Recently, we studied a fluid made of hard right-angle
isosceles triangles (HRTs) [33]. Motivated by Monte Carlo
(MC) simulations by Gantapara et al. [34], we analyzed the
fluid using standard SPT, based on the second virial coef-
ficient (which is analytic), and an extension that includes
the third-virial coefficient, calculated using MC integration.
It turns out that none of these theories can reproduce the
behavior predicted from the simulations: As the isotropic
fluid is compressed, clustering of particles in clusters of var-
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ious shapes give rise to strong 8-atic correlations, and an
orientational distribution function with 4-atic symmetry but
high secondary peaks at 45◦ with respect to the main peaks re-
sults. The equilibrium orientational distribution function from
the theories, by contrast, shows no hint of high-order 8-atic
symmetry.

The HRT fluid seems to be a unique case where an
Onsager-type theory fails to give even a qualitative picture of a
mesophase. In previous work, we have discussed this problem.
On the one hand, the theory is strictly valid for infinitely long
rods, while here we are considering particles of low aspect
ratio. On the other, the sequence of virial coefficients in 2D
fluids is known to have peculiar behavior, and the condition
that scaled higher-order coefficients are small is not fulfilled.
Finally, a crucial property of the HRT fluid and other 2D
fluids made of hard polygonal particles is the strong cluster-
ing tendency of the fluid [12,33], with at least five types of
clusters that form in the fluid at intermediate phases (before
crystallization). Four of these clusters involve two particles
(dimers), of square, triangular, and rhomboidal shapes (with
two enantiomers in the latter case), and one involve four par-
ticles arranged in a square. The fluid can somehow be viewed
as a multicomponent mixture of dynamic superparticles and
might be more quantitatively described by association theories
than by particle (monomer)-based theories. Before undertak-
ing such a program, we speculated [12,33] that a theory based
on four-body correlations (i.e., on the fourth virial coefficient)
might give some indication as to whether high-order particle
correlations, involved in clustering tendencies of the particles,
might be important to understand the equilibrium structure of
the fluid.

In the present paper, we show the predictions of such a
theory. A resummed SPT is developed using the standard
technique [32,33,35], which allows us to systematically incor-
porate an arbitrary number of virial coefficients. These objects
are generalized virial coefficients in the sense that they are
functionals of the orientational distribution function. The third
and fourth virial coefficients are computed numerically, and
the instability of the isotropic (I) phase against orientational
orders of different symmetries is investigated. This process
allows us to analyze the effect of increasing low order, from
two- to four-particle correlations on the onset of bulk orienta-
tional order. Focusing on the 8-atic (or octatic) orientational
symmetry, we explore the tendency of the fluid to stabilize
orientational order through a bifurcation analysis. Our con-
clusion is that four-particle correlations do enhance octatic
symmetry. More definite conclusions as to the orientational
distribution of particles would require a full minimization of
the free energy. However, a more quantitative theory should
incorporate particle clustering [33], which is not possible with
the present SPT scheme, and further studies will have to wait
until a proper treatment of clusters can be formulated.

The paper is organized as follows. In Sec. II, we present the
theory and a method to extend SPT to include the fourth virial
coefficient. Also, we provide some details on the numerical
calculation of this coefficient. In Sec. III, we present the
results, along with the results obtained from extrapolations
of virial coefficients and resummations of the virial theory
in the isotropic phase, which may help to explain the role
of many-particle correlations. Some conclusions are drawn

in Sec. IV. The Appendices collect some further numerical
details and additional results.

II. THEORY

Our theory uses the same strategy followed in our previous
works on the third virial coefficient [32,33], but now the
theory is extended to an arbitrary number of virial coefficients.
We start from the following analytic expression for the equa-
tion of state, valid for a fluid of oriented particles:

βpa = η

1 − η
+

∑n
k=2 ck[h]ηk

(1 − η)q
. (1)

The parameter q in Eq. (1) controls the divergence of the
second term at close packing, η = ηcp ≡ 1. It is taken as a
free parameter and will be important to compare the resulting
equation of state with MC simulations. η = ρa is the pack-
ing fraction, with ρ and a the number density and particle
area, respectively. h(φ) is the orientational distribution func-
tion, which quantifies the average orientation of the particles,
where φ is the angle between the averaged orientation of the
main symmetry axis of a typical particle and the main director.
This function is normalized,∫ 2π

0
dφh(φ) = 1. (2)

The coefficients cn[h] are functionals of the orientational dis-
tribution function and can be related to the standard virial
coefficients by equating the low-density expansion of (1) with
the exact virial expansion up to nth order (note that the expan-
sion in Eq. (1) is truncated at this order),

cn[h] = bn[h] +
n−2∑
k=1

(−1)k
(
q

k

)
bn−k[h], (3)

where we have defined

bn[h] ≡ Bn[h]

an−1
− 1, (4)

with Bn[h] the standard nth virial coefficient. Note that these
coefficients are also functionals of h(φ). Fixing q = 0 in
Eq. (1), the exact virial expansion up to the nth order is
recovered. Also, selecting q = 2 and n = 2, we obtain the SPT
approximation, while for the same q and n = 3 the equation of
state turns out to be the same as the one used in Ref. [33] to
study fluid orientational ordering close to the I-p–atic bifurca-
tion point, henceforth called B3-SPT. This shows that Eq. (1)
is a versatile starting point to explore nonstandard approxima-
tions to the equation of state of oriented fluids in 2D.

In this paper, we start by exploring the case q = 2 and
n = 4 (henceforth called B4-SPT), and then use extrapolated
values for the first three virial coefficients, B2, B3, and B4

of the I phase to predict the value of B5, giving rise to the
B∗

5-SPT theory (the asterisk denotes an extrapolated value
for B5). Not only are the values of the virial coefficients for
the completely disordered fluid calculated but also relevant
Fourier components with respect to weak orientational order
of particular p-atic symmetries. This allows for a bifurcation
analysis of the I phase with respect to these symmetries.
Finally, the effect of q has also been assessed for n = 3, 4, and
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5, which can be used to explore the effect of the divergence of
the equation of state on the relative locations of the I-2–atic
and I-8-atic bifurcations, and, in general, on the performance
of the theory when compared with MC simulations.

To proceed, we first need to derive the free energy. As
usual, it is more convenient to obtain the excess free energy
by integrating the excess pressure, which can be written as
βpexca = βpa − η (βpid = ρ is the ideal pressure). Using
the thermodynamic relation βpexca = η2 ∂ϕexc

∂η
, with ϕexc the

excess part of the Helmholtz free-energy per particle, we can
integrate the expression above with respect to η to obtain

ϕexc[h] = − log(1 − η) +
n∑

k=2

ck[h]2F1(k − 1, q; k; η)
ηk−1

k − 1
.

(5)

The integration constant was set to zero to ensure that the
excess free energy be zero at the low-density limit. 2F1 is the
hypergeometric function:

2F1(n, q; n + 1; η)
ηn

n
=

∫ η

0

un−1

(1 − u)q
du. (6)

The ideal part of the free energy per particle has the exact form

ϕid[h] = log η − 1 +
∫ 2π

0
dφh(φ) log (2πh(φ)), (7)

giving the total free-energy functional as ϕ[h] = ϕid[h] +
ϕexc[h].

Since we will only be interested in assessing the contribu-
tion of higher-order correlations to the stability of the I phase
against p-atic symmetries, we restrict here to a stability anal-
ysis of the functional against orientational fluctuations of a
given symmetry. In practice, this means that the full Fourier
expansion of h(φ) can be truncated, keeping only the term
with the required symmetry. More specifically, close to the
I-2m-atic (m = 1, . . . , 4) bifurcation point, we approximate

h(φ) � 1

2π
[1 + hm cos(2mφ)], (8)

with hm the first Fourier amplitude with mth symmetry.
Explicitly, m = 1 (2 − atic), 2 (4 − atic), 3 (6 − atic), and
4 (8 − atic). Inserting this expression in the total free-energy
functional ϕ[h], we obtain, to lowest order in hm,

ϕ[h] = ϕI + 	ϕ[h], (9)

where

ϕI = log

(
η

1 − η

)
− 1 +

n∑
k=2

C (0)
k [h]

ηk−1

k − 1
2F1(k − 1, q; k; η)

(10)

is the free energy of the I phase, and

	ϕ[h] = h2
m

2
χm(η), m � 1, (11)

with

χm(η) = 1 + 2
n∑

k=2

C (m)
k ηk−1

(k − 1)!
2F1(k − 1, q; k; η),

m = 1, . . . , 4, (12)

TABLE I. Values of the packing fractions ηn at I-2-atic (n = 1),
I-4-atic (n = 2), I-6-atic (n = 3), and I-8-atic (n = 4) bifurcations
from the SPT, B3-SPT, and B4-SPT theories, and from the truncated
virial expansions B4 and B∗

5.

Bifurcation I-2-atic I-4-atic I-6-atic I-8-atic

ηn from SPT 0.8249 0.9928 0.9821 0.9444
ηn from B3-SPT 0.7325 0.9794 0.9328 0.8353
ηn from B4-SPT 0.7281 0.9681 0.8631 0.7399
ηn from B∗

5-SPT 0.7255 0.9590 0.8304 0.7091
ηn from B4 1.0038 3.3121 1.8485 1.2049
ηn from B∗

5 0.8715 2.1817 1.3071 0.9326

being the extra contribution associated to an orientational
fluctuation with symmetry of order m and amplitude hm. In
the expressions above, we have defined

C (m)
n = B(m)

n +
n−2∑
k=1

(−1)k
(
q

k

)
B(m)
n−k, (13)

while the coefficients B(m)
n denote the Fourier components of

the scaled virial coefficients. To quadratic order:

bn[h] = B(0)
n + h2

m

2
B(m)
n . (14)

The procedures used to calculate the B(m)
n coefficients are

described in Appendix A, while the numerical values for the
bifurcations are discussed in Sec. III. We only note here that,
to find the value of packing fraction ηm for the I-2m-atic
bifurcation, we need to solve the equation χm(η) = 0.

In this paper, we limit the maximum order of the virial co-
efficient to m = 4. However, it will be worthwhile to explore
the effect of an extrapolated fifth and possibly higher-order
virial coefficients. From Eq. (1) with n = 4 we can obtain the
relation between bm[h] for m � 5 and b2[h], b3[h], and b4[h]:

bm[h] = {2(m − 2)(m − 3)b4[h]

− 2(m − 2)(m − 4)(q − 1)b3[h]

+ (m − 3)(m − 4)(q − 1)(q − 2)b2[h]}

× q(q + 1) · · · (q + m − 5)

2(m − 2)!
. (15)

III. RESULTS

We start by comparing the values of packing fraction at the
bifurcations from the I phase to the different p-atic phases,
using an extended SPT with increasing number of virial coef-
ficients. Table I presents the results. Except B∗

5-SPT (which is
based on an extrapolated fifth virial coefficient), all of the the-
ories predict a first bifurcation to the 2-atic phase. However,
the next bifurcation is invariably the I − 8-atic bifurcation,
which shows the tendency of the HRT fluid to develop octatic
correlations. Also, the difference 	η ≡ η4 − η1 between the
I − 8-atic and I − 2-atic bifurcations tends to dramatically
decrease when the theory is extended with the fourth virial
coefficient (cf. 	η = 0.1195 for the standard SPT, based on
the second virial coefficient, with 	η = 0.0118 for B4-SPT,
but with the difference between the B3-SPT and standard SPT,
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FIG. 1. Virial Fourier components B(k)
n for k = 1, 4 (a) (the inset shows the case k = 0) and k = 2, 3 (b) together with parabolic

extrapolation to n = 5.

	η = 0.1028, hardly changing). This clearly demonstrates
the importance of four-particle correlations in this system.
These correlations are involved in the formation of very stable
tetramers of triangles with square shape, which may dominate
the properties of the system at high densities.

The HRT fluid has been examined in detail by Gantapara
et al. [34] using MC simulation. This paper predicts a
first-order phase transition from the I phase to a 4-atic
liquid-crystal phase. Our own simulations [33] indicate that
the nature of the liquid-crystal phase strongly depends on
the protocol (either compression or expansion) and starting
configurations used in the simulations, to the extent that
the equilibrium configurations may exhibit strong octatic or
purely tetratic correlations. The value of the packing fraction
at which the I phase changes to the liquid-crystal phase was
obtained to be η = 0.733. From Table I, we can see that the
B4-SPT approximation is very good at predicting the correct
density. Whether the symmetry of the liquid-crystal phase is
tetratic or octatic is a more delicate question that demands
further analysis. Note that the predicted values for η2 ∼ 1
are large in all cases due to the small values of the B(2)

n
coefficients. This may indicate that the I-4-atic transition is
of first order, as shown in Appendix B in the framework of
SPT.

To complete the picture, we have also calculated the bi-
furcations using truncated virial expansions instead of the
resummed virial series based on the SPT approximation. The
results are shown in Table I. In common with the standard
Onsager-like theories for low aspect-ratio particles in 2D, the
values of packing fractions are absurdly large and generally
unphysical for the theories based on B2 and B3 virial coeffi-
cients (not shown). But this is because density correlations
are too grossly represented, while angular correlations are
expected to be more faithfully captured by the virial coef-
ficients. Therefore, the trends in packing fraction values as
more virial coefficients are added may be relevant. In line with
the SPT-based theories, the bifurcation of the I − 8-atic transi-

tion becomes closer to the I − 2-atic bifurcation as more virial
coefficients are added, again demonstrating the importance
of the higher (especially the fourth) virial coefficients to rep-
resent the structure of the HRT fluid.

To further explore the effect of higher-order virial coeffi-
cients, we have obtained extrapolated values for the fifth virial
coefficient. Note that even though the third- and fourth-order
virial coefficients are obtained numerically with a numerical
effort which is acceptable, the fifth virial coefficient is much
harder to obtain (especially their necessary Fourier projections
are highly fluctuating with the relative angle between parti-
cles and require very detailed and costly MC integrations).
Therefore, we simply extrapolate the lower-order coefficients.
This is shown in Fig. 1, where the values of B(k)

n , for n = 2, 3,
and 4, and k = 0, · · · , 4, are shown. We can see that all the
absolute values of the coefficients are increasing functions of
n. The figures include parabolic interpolations to the data.
We take the corresponding extrapolations up to n = 5 and
examine the consequences. Coming back to the bifurcation
densities, we see from Table I that the trend for 	η as
more virial coefficients are taken into account continues to
be decreasing, actually becoming negative. This indicates that
fifth-order correlations further promote octatic ordering. This
is just a trend, since the extrapolated values for B(k)

4 , and the
resulting B∗

5-SPT theory, need not be accurate. The conclusion
is the same if one looks at the truncated virial series results,
Table I, with η2 < η4 but very close. As a side comment, it
is interesting that the first two bifurcations of the truncated
virial expansion of the fifth order are at physical packing frac-
tion values (i.e., below unity), in contrast to the lower-order
expansions.

We now turn to a discussion on the thermodynamics of the
different approximations by examining the equation of state
in the I phase. In the results presented above, the exponent
q was set to a value of 2. Now we consider flexible choices for
q and examine the consequences for the equation of state in
the whole range of densities. In all cases, we compare with the
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FIG. 2. (a) Equations of state from the second, third, fourth, and fifth virial expansions. (b) Equations of state from Eq. (1) selecting q = 2
and fixing the correct virial coefficients up to second, third, fourth and fifth orders (the latter using its extrapolated value). (c) Equations of
state from Eq. (1) using the correct Bn (n = 2, . . . , 4) and using different values of q.

MC results of Gantapara et al. [34] from the compression runs
(these data have been digitized from the original article and
presented as a smooth curve to aid in visualizing the data in
comparison with the different theoretical equations of state).

Figure 2 presents the equations of state in the I phase for
different theories and also with different values of q. Note
that, according to the simulations, the I phase is stable up
to η = 0.733, but the compression results from the simu-
lations could be taken as reproducing a metastable I phase
beyond the liquid-crystal transition. As we have shown pre-
viously [33], the structure of the fluid in this regime appears
to be quite complex, with different clusters of particles,
which give rise to sampling problems in the simulations.
Therefore, the comparison beyond this density should be
taken with caution, but we extend the density interval shown
in the figures to assess the impact of different diverging
behaviors.

We start by looking at Fig. 2(a), which shows the equa-
tions of state from truncated virial expansion. As expected,
the addition of more virial coefficients improve the re-
sults (note that only the B(0)

n coefficients are needed in the
I phase). But it is remarkable that the expansion based on
B∗

5 is very accurate in the whole density interval where the
I phase is stable. Clearly, the addition of the extrapolated
fifth virial coefficient corrects almost completely the equa-
tion of state, which demonstrates that the extrapolation may be
accurate.

Let us consider the equations of state as derived from the
resummed expansions based on SPT, i.e., selecting q = 2.
This is shown in Fig. 2(b). Although the pressure is correctly
reproduced at moderate densities by all theories, the results
are somewhat disappointing at high density when they are
compared with the simulations. This is otherwise expected, as
resummed theories are known to be relatively accurate in pre-
dicting densities of phase transitions to liquid-crystal phases,
but not so in reproducing the equations of state quantitatively.

Finally, we present an investigation which aims to ex-
plore the effect of different diverging behaviors of the
equation of state on the pressure and the bifurcation
points. This is controlled by the parameter q introduced
in Eq. (1). We present some results for the cases q = 0.5,

0.75, and 1. Figure 2(c) show the equations of state for
these cases. Clearly, as q is decreased the results improve
significantly. The best quantitative agreement is obtained
for q = 0.5.

The changes in the bifurcation points are shown in Fig. 3,
which are focused on the I-2-atic and and I-8-atic bifurcations,
represented by η1 and η4, respectively. In the different panels,
we represent the variations of both parameters as q is changed
within a wide interval, for the three resummed theories in-
corporating the third, fourth, and (extrapolated) fifth virial
coefficients. The crossover between η1 and η4 is induced as
q increases, but the crossover value decreases with the order
of the theory. Note that, for the B4-SPT theory, the critical
value of q is close to 2. Note that an optimal equation of state
requires values of q which are not optimal for the bifurcation
point, but the inclusion of higher virial coefficients may im-
prove this situation, as shown by the resummed theory based
on an extrapolated fifth virial coefficient.

IV. CONCLUSIONS

In this paper, we have examined the effect of the high-order
virial coefficients on the structure and thermodynamics of the
HRT fluid. Virial coefficients and relevant Fourier projections
up to fourth order have been evaluated by MC integration.
In addition, the fifth-order virial coefficient has been extrapo-
lated. When compared to simulations, the fifth-order truncated
virial expansion, which requires the extrapolated value of the
zeroth-order Fourier component B(0)

5 , gives a good approxi-
mation for the equation of state of the I phase up to a packing
fraction of η � 0.75. Note that this is slightly beyond the
predicted range of stability for the I phase before the liquid-
crystal phase becomes stable. In addition, it is the lowest-order
truncated virial expansion for which the I-2-atic and I-8-atic
bifurcation points occur at packing fractions below unity. The
resummed Bn-SPT approaches overestimate the pressure, but
packing fractions at bifurcation are correct as compared with
simulation for n > 2. To investigate the impact of different di-
verging behaviors of the equation of state, we explored values
of the exponent q different from the standard choice q = 2.
As q is decreased from 1 to 0.5, the resulting equation of
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FIG. 3. Packing fractions η1(q) and η4(q) resulting from (a) B3-SPT, (b) B4-SPT, and (c) B∗
5-SPT theories. In all cases, the bifurcation

condition χn(η) = 0 has been applied.

state compares quite reasonably with simulation. However,
the values of the bifurcation packing fractions η1 and η4

deviate quite significantly from simulation, and the difference
	η = η4 − η1 increases as q decreases.

As far as the resummed theories are concerned, the
B4-SPT theory gives η1 � η4, while the B∗

5-SPT theory (with
an extrapolated fifth virial coefficient) already predicts η1 >

η4. The crossover point is located between q = 1 and 1.5,
which in turn implies that the equation of state will be better
than in the standard case. An obvious outcome of this inves-
tigation is that minor changes in the form of the equation of
state may have important quantitative consequences. Overall,
the results presented in this paper point to the necessity to
include virial coefficients beyond the fourth if the equation of
state and the I-8-atic bifurcation point are to be reproduced
correctly. Unfortunately, such an effort would incur a high
computational cost, rendering the approach based on Eq. (1)
impractical. Clearly, an alternative approach is needed to ex-
plain the behavior of the HRT fluid and the correct symmetry
of its liquid-crystal phase. We are inclined to believe that this
theory should include the effect of particle clustering into
superparticles, such as square tetramers obtained by joining
four triangular monomers. These square-shaped configura-
tions will certainly stabilize the tetratic phase, while other
clusters such as square dimers, in equilibrium with tetramers,
will produce octatic correlations.
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APPENDIX A: FOURIER COMPONENTS
OF VIRIAL COEFFICIENTS

In this Appendix, we give details on the calculation of
the Fourier components of the virial coefficients Bn[h], n =
2, . . . , 4. These components are needed in the analysis of the
bifurcation points from the I fluid to the p–atic phase. The
virial coefficients are, in general, functionals of the orienta-

tional distribution function h(φ) and can be written in the
usual diagrammatic form as [36]

(A1)

(A2)

(A3)

Nodes and bonds label particles and Mayer functions, re-
spectively. The reference system is located at node 1, which
means that its position and angle are (r1, φ1) = (0, 0). There-
fore, the nodes labeled as 2–4 (in a clockwise direction) have
relative coordinates r2 − r1 ≡ r, r3 − r1 ≡ r′, r4 − r1 ≡ r′′,
φ2 − φ1 ≡ φ, φ3 − φ1 ≡ φ′, φ4 − φ1 ≡ φ′′. The spatial and
angular integrations with respect to r1 and φ1 in Bn[h] can
then be performed trivially. In particular, a factor equal to the
total area A cancels out, see Eqs. (A1)–(A3). Integration over
φ1 allows us to define the following angular functions:

�2(φ) ≡
∫ 2π

0
dφ1h(φ1)h(φ1 + φ), (A4)

�3(φ, φ′) ≡
∫ 2π

0
dφ1h(φ1)h(φ1 + φ)h(φ1 + φ′), (A5)

�4(φ, φ′, φ′′) ≡
∫ 2π

0
dφ1h(φ1)h(φ1 + φ)

× h(φ1 + φ′)h(φ1 + φ′′), (A6)

Close to the I-2n-atic bifurcation point, we can approximate
h(φ), up to first order, as

h(φ) � 1

2π
[1 + hn cos(2nφ)], n = 1, . . . , 4. (A7)
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To lowest order, the angular functions become

�2(φ) = 1

2π

{
1 + h2

n

2
cos(2nφ)

}
, (A8)

�3(φ, φ′) = 1

(2π )2

{
1 + h2

n

2
[cos(2nφ) + cos(2nφ′) + cos(2nφ) cos(2nφ′)]

}
, (A9)

�4(φ, φ′, φ′′) = 1

(2π )3

{
1 + h2

n

2
[cos(2nφ) + cos(2nφ′) + cos(2nφ′′) + cos(2nφ) cos(2nφ′)

+ cos(2nφ) cos(2nφ′′) + cos(2nφ′) cos(2nφ′′)]
}
. (A10)

The spatial integrals involved in Bn[h] can be defined to be angular kernels,

K2(φ) = −1

2

∫
dr f (r, φ), (A11)

K3(φ, φ′) = −1

3

∫
dr

∫
dr′ f (r, φ) f (r′, φ′) f (r − r′, φ − φ′), (A12)

K(1)
4 (φ, φ′, φ′′) = −3

8

∫
dr

∫
dr′

∫
dr′′ f (r, φ) f (r′′, φ′′) f (r − r′, φ − φ′) f (r′ − r′′, φ′ − φ′′), (A13)

K(2)
4 (φ, φ′, φ′′) = −3

4

∫
dr

∫
dr′

∫
dr′′ f (r, φ) f (r′, φ′) f (r′′, φ′′) f (r − r′, φ − φ′) f (r′ − r′′, φ′ − φ′′), (A14)

K(3)
4 (φ, φ′, φ′′) = −1

8

∫
dr

∫
dr′

∫
dr′′ f (r, φ) f (r′, φ′) f (r′′, φ′′) f (r − r′, φ − φ′) f (r′ − r′′, φ′ − φ′′) f (r − r′′, φ − φ′′). (A15)

Note that K2(φ) is just half the excluded area. The superindex m in the definition of K(m)
4 (· · · ) labels the empty square-diagram

(m = 1), the square-diagram with one diagonal (m = 2), and the square-diagram with two diagonals (m = 3), respectively. To
implement the bifurcation analysis, we need the following Fourier components of these kernels:

K2,n =
∫ 2π

0
dφ cos(2nφ)K2(φ), (A16)

K3,n,m =
∫ 2π

0
dφ cos(2nφ)

∫ 2π

0
dφ′ cos(2mφ′)K3(φ, φ′), (A17)

K(k)
4,n,m,l =

∫ 2π

0
dφ cos(2nφ)

∫ 2π

0
dφ′ cos(2mφ′)

∫ 2π

0
dφ′′ cos(2lφ′′)K(k)

4 (φ, φ′, φ′′). (A18)

Finally, the virial coefficients Bn[h] can be approximated, close to the bifurcation point, by using Eqs. (A1)–(A3), (A8)–(A10),
and (A11)–(A15), as

B2[h] =
2∏

k=1

(∫ 2π

0
dφkh(φk )

)
K2(φ) =

∫ 2π

0
dφ�2(φ)K2(φ) = B(0)

2 + h2
n

2
B(n)

2 ,

B3[h] =
3∏

k=1

(∫ 2π

0
dφkh(φk )

)
K3(φ, φ′) =

∫ 2π

0
dφ

∫ 2π

0
dφ′�3(φ, φ′)K3(φ, φ′) = B(0)

3 + h2
n

2
B(n)

3 ,

B4[h] =
4∏

k=1

(∫ 2π

0
dφkh(φk )

)(
3∑

m=1

K(m)
4 (φ, φ′, φ′′)

)

=
∫ 2π

0
dφ

∫ 2π

0
dφ′

∫ 2π

0
dφ′′�4(φ, φ′, φ′′)

(
3∑

m=1

K(m)
4 (φ, φ′, φ′′)

)
= B(0)

4 + h2
n

2
B(n)

4 , (A19)

with

B(0)
2 = K2,0

2π
, B(n)

2 = K2,n

2π
, B(0)

3 = K3,0,0

(2π )2
, B(n)

3 = 1

(2π )2
(2K3,n,0 + K3,n,n), B(0)

4 = 1

(2π )3

3∑
m=1

K(m)
4,0,0,0,

B(n)
4 = 1

(2π )3

{
2∑

m=1

[
2K(m)

4,n,0,0 + K(m)
4,0,n,0 + 2K(m)

4,n,n,0 + K(m)
4,n,0,n

] + 3
[
K(3)

4,n,0,0 + K(3)
4,n,n,0

]}
. (A20)
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TABLE II. Values of the coefficients B(n)
k , obtained analytically

for k = 2 from Eq. (A22), and numerically from MC integration and
Gaussian quadrature for k > 2.

k B(0)
k B(1)

k B(2)
k B(3)

k B(4)
k

2 1.8552 −0.1061 −0.0036 −0.0091 −0.0294
3 4.9158 −0.3597 −0.0148 −0.0516 −0.1662
4 8.6307 −0.6296 −0.0336 −0.1876 −0.5897

From these approximations, we define the scaled Fourier com-
ponents of the virial coefficients:

B(0)
k ≡ B(0)

k

ak−1
− 1, B(n)

k ≡ B(n)
k

ak−1
. (A21)

The second-order coefficients B(n)
2 can be calculated ana-

lytically:

B(n)
2 = − 8

π (4n2 − 1)
cos2

[
(2n − 1)π

8

]
cos2

[
(2n + 1)π

8

]
.

(A22)

The remaining coefficients have to be computed numerically.
We have used MC integration for the spatial integrals and
Gaussian quadratures for the angular integrals, using special
tricks to deal with the rapidly varying trigonometric functions
of high index. 108 configurations were used to evaluate the
spatial integrals. The results are collected in Table II.

APPENDIX B: RELATIVE STABILITY
OF THE 4–ATIC PHASE

For those nth virial theories which predict an I-2–atic bi-
furcation below the I-8–atic, one may wonder which of the
following scenarios takes place at densities above the I-8–atic
bifurcation: (i) the 8-atic and 2-atic free-energy branches cross
each other at some density or (ii) the 2–atic branch continues

to be the lowest one. To investigate this point, we have min-
imised the B2-SPT functional, considering a subset of Fourier
coefficients {hk} with k = 4 j:

h(φ) = 1

2π

[
1 +

nmax∑
k=0

hk cos(2kφ)

]
. (B1)

This choice gives a distribution h(φ) with perfect 8-atic sym-
metry. A free-energy branch was generated for a density
interval starting at the I-8-atic bifurcation point and up to
densities such that the 8-atic order parameter is Q8 � 0.97
(we checked that with this condition the truncated Fourier
series still gives correct results). The 2–atic branch was also
calculated up to densities such that Q2 � 0.97. Figure 4(a)
shows the free-energy differences 	ϕ ≡ ϕα − ϕI (α = 2,6,
8–atic) between α and I phases calculated from their re-
spective bifurcation points. As expected, the 8-atic branch is
always metastable. However, the results indicate that the first
scenario above can be discarded, as the difference between the
8-atic and 2-atic free-energy branches is huge (note that the
latter bifurcates from the isotropic at a much lower density).
The situation is even worse in the case of the metastable 6-atic
phase, as it bifurcates at even higher packing fractions (see
Table I). We note that the 4-atic phase also bifurcates from
the I phase but, unlike the 2-atic, 8-atic, and 6-atic phases, it
does so via a first-order transition. This can be demonstrated,
not via Fourier-amplitude minimization (we were unable to
obtain a metastable 4-atic solution with the proper restrictions
over {hk}), but from a simple one-parameter minimization of
the orientation distribution:

h(φ) = eλ cos(2nφ)

2π I0(λ)
, φ ∈ [0, 2π ], n = 1, · · · , 4. (B2)

I0(x) is the zeroth-order modified Bessel function of the first
kind,and λ is a variational parameter. The results are shown
in Fig. 4(b): From the bifurcation point (open circle in the

FIG. 4. Free-energy differences 	ϕ ≡ ϕα − ϕI , with α= 2-atic (dot-dashed), 8-atic (solid), 4-atic (dashed), and 6-atic (dotted), as a
function of packing fraction η, obtained from (a) the Fourier-coefficient method and (b) the one-parameter minimizations. In (a), the dot-dashed
line with a shorter step is a simple extrapolation of the 2-atic branch to higher densities. The inset in (b) shows the complete 2-atic branch. Filled
circles in (a) and (b) show the bifurcation points at second-order transitions, while the open circle in (b) indicates the first-order counterpart in
the 4-atic branch. The open square is the location of the first metastable solution with 4-atic symmetry.
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figure), located at a packing fraction η = 0.9928 (see Table I),
an unstable 4-atic branch departs towards lower densities, with
a free energy higher than that of the I phase. This branch
terminates at η ≈ 0.955 (open square in the figure), where
the 4-atic phase becomes metastable for the first time, with
a high order parameter Q4. From this point, a second T branch
develops towards higher densities, 	ϕ eventually becoming
negative at η � 0.968, indicating that the 4-atic phase is more
stable than the I phase. This is the usual scenario for a first-
order phase transition. When η further increases from this
value, the 4-atic free-energy branch also crosses the 8-atic
branch at η � 0.988. In any case, the free energy of the 2-atic
phase has by far the lowest value, as can be seen in Fig. 4.
The crossing of the 4-atic and 8-atic branches at high packing
fractions is interesting. It can be understood by invoking the
limit value of the scaled second-virial coefficient as λ → ∞:

b̃(n)
2 ≡ lim

λ→∞
b2[h]

= 1

2an

[
Aexcl(0) + Aexcl(π )

2
+

n−1∑
k=1

Aexcl

(
kπ

n

)]
− 1.

(B3)

Inserting the known analytic expression for the excluded area
Aexcl(φ), we obtain b̃(1)

2 < b̃(2)
2 � b̃(4)

2 < b̃(3)
2 for the 2-atic (n =

1), 4-atic (n = 2), 6-atic (n = 3), and 8-atic (n = 4) symme-
tries. This explains the reason for the crossing behavior: The
double-averaged excluded area with respect to h(φ) for the
4-atic symmetry, although similar in magnitude, is lower than
that obtained for the 8-atic symmetry. Obviously, this occurs
only at very high densities, when the orientational order is
almost perfect and the above asymptotic expression can be
justified. The fact that the free energy of the 8-atic phase is
lower than that of the 4-atic phase at lower densities implies
that the opposite behavior is true when the orientational distri-
bution function is less sharply peaked. nth-order virial theories
with an I-8–atic bifurcation below the I-2–atic one, with the
free energy of the former below that of the latter, are expected
to support the second scenario: After the I-8-atic bifurcation
at high packing fractions, the 4-atic energy branch crosses
the 8-atic one, and a 8-atic–4-atic first-order phase transi-
tion takes place. However, if the crossing point is relatively
close to the I-8–atic bifurcation, the two-phase coexistence
might involve the I and the 4-atic phases, as shown by the
MC simulations.
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