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Chapter 1

Introduction

1.1 Motivation
Withdraw balls sequentially, without replacement, from an urn that contains Np “plus” balls
and Nm “minus” balls. Each plus ball gives you δ dollars. Each minus ball takes δ dollars from
you. At time tn, when you have just made the n-th withdrawal, you can decide whether to stop
the game and claim the current capital Xtn , or to withdraw another ball. What is the “best”
“stopping strategy”? This problem dates back to Shepp (1969). A version of it, formulated with
cards instead of balls, is also featured in Crack (2014, Question 1.46).

It seems reasonable to stop the game at time tn if the reward Xtn exceeds a threshold b(tn),
which must depend on the number of plus (or minus) balls you have already withdrawn, and
the number of trials Np +Nm−n left until you run out of balls. Reasoning like that, a stopping
strategy boils down to setting a sequence b = {b(tn)}Np+Nm

n=0 of real numbers, and Xτ(b) denotes
the associated (random) profit, where τ(b) := min {tn : Xtn ≥ b(tn)}. Figure 1.1 illustrates the
mechanics of the game for different values of Np and Nm.
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Figure 1.1: Visual sketch of the reward associated with stopping the process according to b(tn) ∝√
1− tn, and different values of Np and Nm. The red line is the stepwise function b(t) and

the black one represents the evolution of Xtn . We used δ =
√

1/(Np +Nm), tn = nδ2, n =
1, . . . , Np +Nm, and X0 = 0.

1



2 Chapter 1. Introduction

The evolution of the capital {Xtn}
Np+Nm

n=0 , appropriately rescaled like in Figure 1.1, converges
to a Brownian Bridge (BB) as Np and Nm increase. In such a case, it is more convenient to
work out the BB asymptotic approximating solution, rather than the discrete-time original one,
to ease the computational burden and rounding errors.

Besides Shepp’s illustrative urn game, the question of optimally stopping a BB finds many
applications in finance. For instance, Boyce (1970) considered the problem of optimally selling
a bond before maturity. Ekström and Wanntorp (2009) motivated the model for optimally
exercising an American option in the presence of the so-called stock-pinning effect. Baurdoux
et al. (2015) generalized Boyce’s idea by interpreting bonds as perishable commodities and
maturity dates as deadlines after which the item becomes useless. In many of these applications,
however, the decision of using a BB model is rooted in its simplicity rather than in financial
arguments, and other models, which are also deterministically anchored to a terminal point, are
arguably better fits.

A good approach to add flexibility without compromising tractability might be to keep the
fundamental features behind the BB simplicity, that is:

Continuity. The value of the process evolves continuously over time, meaning that no “jumps”
are allowed.

Markovianity. Given historical data of the process until time t, its future evolution depends
only on the value at t and not on previous ones.

Gaussianity. The process’s values at every finite collection of times follow a multivariate normal
distribution.

Processes that meet these conditions are called (continuous-time) Gauss–Markov (GM) processes
and, when they degenerate at a specific value in a terminal time, as the BB does, they are referred
to as Gauss–Markov Bridges (GMBs).

This thesis studies when it is advantageous to stop a GM process and a GMB to claim an
optimal reward. Before exploring the tools that allow doing so, we motivate the use of these
types of processes by giving a glimpse of their reach and applications from different perspectives.

1.1.1 (Non-degenerated) Gauss–Markov processes

GM processes include the class of BMs with time-dependent drifts and volatilities (Buonocore
et al. (2013)). Attempting to comprehensively list the applications of these processes would be a
futile endeavor, since they are ubiquitous in many applied and theoretical fields. Nevertheless, we
highlight the works of Revuz and Yor (1999), Rogers and Williams (2000a), Rogers and Williams
(2000b), and Burdzy (2013). The handbook by Gardiner (2004) is also worth mentioning, as it
gathers formulae and facts for a convenient manipulation of BMs and related processes.

The Ornstein–Uhlenbeck (OU) process also falls into the class of GM processes. It was
first formulated by Langevin in 1908 (see Lemons and Gythiel (1997)) and later formalized
by Uhlenbeck and Ornstein (1930) to model motion under friction. Ever since, the classic
time-homogeneous OU process has found a plethora of applications in many different fields. In
finance, it is used under the name of Vasicek model for stochastic interest rates (see, e.g., Vasicek
(1977), Korn and Kraft (2002), and Mamon (2004)), and to represent asset’s price exhibiting a
mean-reverting behavior, such as in pair trading (see Leung and Li (2015a) for the theory and
empirical evidence, and Gatev et al. (2006) for a practitioner perspective). Other applications
include modeling neuronal activity (see, e.g., Ricciardi and Sacerdote (1979) and Lánský and
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Rospars (1995)), phylogenetic processes (see Felsenstein (1988) and Garland et al. (1993)), the
dynamics of human microbiome (Kenney et al., 2020), and humans’ running endurance (Billat
et al., 2018).

Despite its diverse applications, the classic OU process does not capture the effect of time,
which makes it a poor model for some real-world dynamics. Noticing this, many authors opted
for time-dependent versions. The Vasicek model evolved into the Vasicek–Hull–White (time-
dependent OU) model (see Hull and White (1990) and Hunt and Kennedy (2004)), which is
far more used by practitioners. Option pricing departed from the classic Black–Scholes model
to adopt time-dependent OU processes (see, e.g., Goldenberg (1991), Wildman (2016), Sko-
rupa (2018), and Carr and Itkin (2021)). Similarly, studies in neuronal activity, phylogenetics,
environmental research, deteriorating systems, anomalous diffusions, and many others, started
using this model to incorporate the influence of time (see Burkitt (2006), Buonocore et al.
(2014), Albano and Giorno (2020), Hansen (1997), Gutiérrez et al. (2012), Deng et al. (2016),
and Palamarchuk (2018)). An analytic study of time-dependent OU processes can be found in
Gardiner (2004), whereas a discussion on efficient parameter estimation is given by Albano and
Giorno (2020).

Beyond considering time-inhomogeneity, the next natural extension of OU processes is to
keep the main traits that make them tractable and flexible: continuity, Gaussianity, and Marko-
vianity. This leads to the class of GM processes. Although more general, these processes do not
significantly widen the class of time-dependent OU processes. They are time-inhomogeneous
linear-drifted diffusions. That is, strong solutions of the Stochastic Differential Equation (SDE)

dXt = (a(t)Xt + b(t))dt+ c(t)dBt,

for suitable functions a : R+ → R, b : R+ → R, and c : R+ → R+, and a standard Brownian
Motion (BM) {Bt}t∈R+

. Mehr and McFadden (1965), Borisov (1983), and Buonocore et al.
(2013) provide further characterizations and theoretical results about GM processes.

On top of the already mentioned applications of time-dependent BMs and OU processes,
which are inherited by GM processes, we highlight their applicability in the context of first-
passage-time problems with time-dependent boundaries (see Mehr and McFadden (1965), Nobile
et al. (2008), Molini et al. (2011), Buonocore et al. (2013), Buonocore et al. (2014), and Giorno
and Nobile (2019)). This is relevant in biology to model neurons’ firing and study population’s
dynamics (see, e.g., Ricciardi et al. (1999) and Buonocore et al. (2013)), and in finance, for
designing optimal strategies of buying/selling assets and pricing derivatives (Patie, 2004). Other
applications are listed in Suwansantisuk et al. (2012), Pavliotis (2014), and Redner (2001).

1.1.2 Gauss–Markov bridges

We regard GMBs as processes that result after anchoring non-degenerated GM processes to hit
deterministic values at a terminal time. GMBs are appealing models whenever GM processes
arise and future information is disclosed.

In finance, BB-like models are often used to capture the viewpoint of insider traders: in
trading perishable commodities like flight tickets or contingent claims, where there is a deadline
after which the item becomes useless; to represent the convergence of futures’ price to spots’
price that should theoretically take place at maturity in non-arbitrage markets; in modeling
predictions of experts and incorporating algorithms’ forecasts; when trading mispriced assets
that could rapidly return to their fair price, like it may happen when companies release financial
reports or some public market information is disclosed; in the presence of the stock-pinning



4 Chapter 1. Introduction

effect that some heavily traded options tend to exhibit (see Krishnan and Nelken (2001); Ni
et al. (2005), Golez and Jackwerth (2012), and Ni et al. (2021) for empirical evidence). Works
on these and other insider trading situations include Boyce (1970), Kyle (1985), Brennan and
Schwartz (1990), Back (1992), Campi and Çetin (2007), Campi et al. (2011), Campi et al. (2013),
Cetin and Xing (2013), Sottinen and Yazigi (2014), Cartea et al. (2016), Angoshtari and Leung
(2019), and Chen et al. (2021).

Non-financial applications of a BB include, among many others, the modeling of human
and other animals’ movement (see Horne et al. (2007), Venek et al. (2016), Kranstauber (2019)
and Krumm (2021)). Its connection with the Kolmogorov–Smirnov test (Chow, 2009) makes
it particularly important in the theory of empirical processes and goodness-of-fit tests (Vaart
and Wellner, 1996). Also, a BB comes up as the limit of sequentially drawing elements without
replacement from a large population (Rosén, 1965), which makes it the standard model in many
versions of Sheep’s urn problem commented in Section 1.1 (see Chen et al. (2015) and Andersson
(2012)).

Ornstein–Uhlenbeck Bridges (OUBs) are also canonical examples of GMBs, and they feature
in a considerable volume of papers. We remark their financial usage to model arbitrage situations
(see Hilliard and Hilliard (2015), Hilliard and Hilliard (2017), and Hilliard et al. (2021)), and their
application in biology to capture the dynamics of animal movement when there is interaction
within groups (Niu et al., 2016).

Works that linger on the theoretical aspects of GMBs in general, and comment on their
applications, are due to Buonocore et al. (2013), Abrahams and Thomas (1981), Barczy and
Kern (2013), Hildebrandt and Rœlly (2020), Chen and Georgiou (2016), Barczy and Kern (2011),
and Gasbarra et al. (2007).

1.2 Optimal stopping theory

1.2.1 Foundations and early developments

When to take an action to maximize a reward? Answering this question is, in a nutshell, the
purpose of Optimal Stopping Theory (OSTh). The only restriction is that, at any time, either
you execute the action or lose the opportunity in the hope of a better future one. Problems
like these permeate our daily life: buy an item at today’s price, or wait for potentially lower
upcoming prices (Baumann et al., 2018); accept that job offer or keep on the search; make
another bet or quit gambling and leave with your current gains (Hill, 2009); take that parking
slot or go hunting for a better one (Tamaki (1982) and Bogoslavskyi et al. (2015)); settle down
with a spouse or keep dating until a better match (Lee and Courey, 2021).

The first rigorous mathematical treatment of timing problems like these came in the midst
of World War II, fostered by the necessity of more efficient ordnance tests. Abraham Wald
conceived a new statistical hypothesis-test method in which the sample size is not given in
advance, but observations come over time and one has to determine, at any given moment,
whether more observations are needed or there is already enough evidence to render a decision.
The technique was proved so effective that it was classified by the USA army until 6 months
after the war ended, when the army itself alluded that its dissemination throughout the industry
was “imminent and necessary” (Wallis, 1980).

Wald’s technique gave birth to the newborn theory of sequential analysis in Wald (1947),
which was later leveraged by Snell (1952). He formulated Wald’s sequential testing method as
a problem of finding the best stopping random variable for a discrete-time stochastic process.
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A stopping random variable formalizes the notion of a valid stopping strategy by meeting two
principles: the decision to stop should be based only on the present and past knowledge; the
game cannot be indefinitely prolonged in time. Snell also gave the celebrated characterization of
the value function as the smallest super-martingale greater than the gain process, known as the
Snell envelope. Methods that follow Snell’s approach are referred to as “martingale method”.
They are extensively developed in Chow et al. (1971) and Shiryaev (2008) in a discrete-time
setting, while Fakeev (1970) delves into the continuous-time version.

The three-page report of Dynkin (1963) marked the next milestone in OSTh. He studied
Snell’s stopping problem when the discrete-time stochastic process is Markovian, and commented
on the continuous-time extension. We also owe him the first version of the modern formulation
of an Optimal Stopping Problem (OSP):

For a Markov process X = {Xt}t≥0 with state space E and defined on the filtered
probability space (F , {F}t≥0 ,Px), where Px(X0 = x) = 1, find a stopping time τ∗

(a random variable τ∗ ≥ 0 such that {τ ≤ t} ∈ Ft, for all t ≥ 0) that maximizes the
mean gain. That is, provide a tractable characterization of the (value) function

V (x) = sup
τ

Ex [G(Xτ )] , (1.1)

where the supremum is taken among all stopping times of X, G : E → R is the (gain)
function that outputs the reward for different values of the process, and Ex is the
mean operator with respect to Px, for x ∈ E .

Dynkin proved, within the Markovian setting, that V is the smallest superharmonic function
(twice continuously differentiable with negative Laplacian) that dominates G, and that the first
(random) time τ∗ the process enters the (stopping) region

D = {x ∈ E : V (x) = G(x)}

is an Optimal Stopping Time (OST), meaning that V (x) = Ex [G(Xτ∗)]. Dynkin’s approach is
known as “Markovian method”, and it is thoroughly explored in Shiryaev (2008) and Peskir and
Shiryaev (2006).

Dynkin’s work unlocked a powerful connection between OSTh and Partial Differential Equa-
tion (PDE) theory. Indeed, in the 60s, several authors started to connect Markovian OSPs
to Free-Boundary Problems (FBPs). See Chernoff (1961), Lindley (1961), Bather and Walker
(1962), Whittle (1964), and Samuelson (1965). However, most of these early works ran into
problems when trying to prove the extra boundary condition required for the FBP to have a
unique solution, and they either derived it from heuristic principles or conveniently assumed it.
The first rigorous proof of its validity came by McKean (1965), for a linear gain function and a
geometric BM underneath. In a more general setting, Grigelionis and Shiryaev (1966) (extended
by Grigelionis (1967) to time-discontinuous Markovian processes) proved that, for E = Rn with
n ≥ 1, V and D solve the FBP

LV = 0 in E − D,
LV < 0 in D,
V ≡ G in D,

∂xiV = ∂xiG in ∂D, i = 1, . . . , n.
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Above, L stands for the infinitesimal generator of the underlying Markov process, and ∂xi refers
to the partial derivative with respect to the ith coordinate of x ∈ E . ∂D is the boundary of
D, known as the Optimal Stopping Boundary (OSB). The first two conditions rely on Dynkin’s
superharmonic characterization and the strong Markov property, the third one reflects the defi-
nition of D, and the last one is the extra boundary condition, known as “smooth pasting”, “high
contact”, or “smooth fit”.

The smooth-fit condition has its own history and specific importance in OSTh’s evolution.
It allows treating OSPs as FBPs, which unlocks the variational inequality viewpoint of OSPs.
Besides obvious theoretical advantages, the variational inequality approach brought up powerful
computational methods into OSTh. This link was first noticed by Fleming (1969), Tobias (1973),
and Bensoussan and Lions (1973), and it was established in solid grounds by Friedman (1976)
and Bensoussan and Lions (1978). The work of Brekke and Øksendal (1990) is also a reference
worth mentioning.

OSTh can also be embedded into the more general theory of controlled processes, for which
the book of Krylov and Aries (1980) is a canonical reference.

The number of works on OSPs exponentially exploded from the late 60s on as the theory
grew solid. For a deep dive into its history and technical details, we recommend the books
of Chow et al. (1971), Shiryaev (2008), Peskir and Shiryaev (2006), and Karatzas and Shreve
(1998, Appendix D).

1.2.2 The dimension of the OSP

Dynkin’s superharmonic characterization of the value function is a powerful tool to verify the
validity of a candidate solution of the OSP. Actually, a common recipe for solving OSPs goes as
follows:

i. Prove the connection between the OSP and the FBP (sometimes, this step involves guess-
ing the form of the stopping set and/or imposing a regularity pasting condition at the
boundary, like the smooth-fit condition).

ii. Solve the FBP.

iii. Verify that the solution of the FBP also solves the OSP (the usual methods involve the use
of extended Itô’s formulae and the stopping sampling theorem to check the superharmonic
characterization).

This guess-and-verify method has been used, among others, by Grigelionis and Shiryaev (1966),
Shepp (1969), Salminen (1985), Pederson and Peskir (2000), Dayanik and Karatzas (2003), and
Ekström and Wanntorp (2009). However, the methodology involves solving an FBP, which is
mathematically challenging.

The dimension of an FBP largely determines its degree of complexity. The FBP associ-
ated with the OSP inherits its dimension from that of the underlying process. Introducing time
dependencies in the OSP typically adds an extra dimension to the FBP. Some of these dependen-
cies include considering discounting factors, time-dependent gain functions, time-inhomogeneous
processes, and finite horizons. We discuss next some of these time dependencies and how they
affect the dimension of the FBP.
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Exponential discount

In finance, discounting factors reflect the idea that tomorrow’s money is worth less than today’s.
An exponential discount was already used in the work of McKean (1965), where he priced an
American option framed as an OSP. Other early implementations of discounts include those of
Taylor (1968), Fakeev (1971), Mucci (1978), Salminen (1985), and Beibel and Lerche (1997).
More recent contributions, like those of Beibel and Lerche (2001) and Dayanik (2008), explored
stochastic discounting rates.

Adding a deterministic exponential discount fundamentally changes the differential operator
in the FBP, rather than just increasing its dimension. Indeed, it is possible to bring the OSP back
to the non-discounted case by considering the (exponentially) killed version of the underlying
process (see Peskir and Shiryaev (2006) and Øksendal (2010)), which adds an extra zero-degree
term in its infinitesimal generator.

Time-dependent gain function

Oftentimes the gain function is time-dependent to reflect the profit variation over time. However,
one can consider the time-space process (t,Xt) to treat the time coordinate as a spatial one, which
brings the OSP back to the canonical time-homogeneous formulation (1.1). This technique,
which is formally elaborated in Krylov and Aries (1980) and Babilua et al. (2009), increases the
dimension of the FBP.

Some time dependencies can be brought back to the original dimension. For instance, we
already discussed the case of adding an exponential discount. Also, convenient time transforma-
tions can get rid of some types of time dependencies. Pederson and Peskir (2000) fairly describe
this method and offer several examples. More complex time dependencies, however, cannot be
managed in a straightforward way. The work of Peskir and Uys (2003) in pricing an Asian-type
option is an example of this. Studies that deal with time-dependent gain functions include the
works of Shepp (1969), Mucci (1978), Jacka and Lynn (1992), Pederson and Peskir (2000), and
Babilua et al. (2009).

Finite horizon

When stopping must happen before a deadline, it is said that the OSP has a finite horizon. In
this case, even when working with a time-homogeneous process and a time-independent gain
function, the OSB becomes time-dependent and the associated FBP increases its dimension.
Typical OSPs dealing with finite horizons include sequential testing (Gapeev and Peskir, 2006)
and quickest detection problems (Gapeev and Peskir, 2004), as well as the valuation of different
types of options (Peskir and Uys (2003), Peskir (2005a), and Peskir (2005b)). In some finite-
horizon cases, however, the burden of a higher dimension can be avoided. Take the example
of Shepp (1969), who transformed the OSP of a BB into that of BM and used a time-scaling
argument to solve the latter. The same technique was applied by Ekström and Wanntorp (2009)
and D’Auria and Ferriero (2020) to handle a wider class of bridge processes. This trick, however,
does not necessarily add simplicity, and more often than not the degree of complexity remains
the same, now reallocated into the time dependency of the new transformed gain function and/or
the underlying process.
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Time inhomogeneity

By using the time-space process (t,Xt) and extending the domain of the gain function to include
the time coordinate, one can transform a time-inhomogeneous OSP into a homogeneous one.
Dochviri (1995) formalizes this transformation, although the idea was around way before, in early
works like the one of Taylor (1968) and the 1976 edition of the book by Shiryaev (2008). This
homogenization technique increases the dimension of the underlying process and, consequently,
that of the FBP.

There are exceptions. We already mentioned how adding exponential discounts and dealing
with a time-dependent gain function does not always increase the dimension. Authors like Shepp
(1969), Ekström and Wanntorp (2009), Ernst and Shepp (2015), and D’Auria and Ferriero
(2020) have succeeded in reducing the dimension by linking time-inhomogeneous OSPs to time-
homogeneous ones.

However, there is no trivial way to deal with time-inhomogeneous OSPs in a general setting.
Indeed, one-dimensional time-homogeneous OSPs had already been solved by the early works
of Dynkin and Yushkevich (1969) and Salminen (1985), and with greater generality in more
recent years by Dayanik and Karatzas (2003) and Lamberton and Zervos (2013). In contrast,
most of the available results in time-inhomogeneous schemes are either partial or address specific
cases of simplified time-dependencies (see Krylov and Aries (1980), Oshima (2006), Yang (2014),
Friedman (1975b), Jacka and Lynn (1992), Friedman (1975a), and Peskir (2019)).

Among the few, full results in time-inhomogeneous settings, we mention the work of Gapeev
and Stoev (2017), who solved the quickest detection problem for a BM with a smooth time-
dependent drift and constant volatility, and Carr and Itkin (2021), who optimally exercised an
American option under a time-dependent OU process.

1.3 State of the art
To properly describe the contributions of this thesis, we offer here a clear picture of the current
level of developments in those areas of OSTh that are relevant to our settings. In contrast
to the previous section, where we discussed the landscape of OSTh in terms of different time
dependencies of the OSP, this section surveys the connection between OSPs and GM processes,
and its applicability to optimally exercising American-type options. More details, tailored for
the specifics of each model, are provided in each chapter’s introduction.

1.3.1 Optimal stopping and (non-degenerated) GM processes

Every application of GM processes is a potential niche for OSPs whenever the variable of interest
is the time to execute an action. However, besides the classic BM and OU processes, we are not
aware of many solutions of OSPs with GM processes in a general setting. Nor have we found
many applications outside the financial realm. Since a BM can be considered a special case of
an OU process (with null drift), and due to the large volume of papers addressing it, we exclude
the BM case from the following survey.

To the best of our knowledge, the first treatment of OU processes related to OSTh was
due to Taylor (1968). He proved that, with the identity as the gain function, an exponential
discount, and an infinite horizon, it is optimal to stop the OU process as soon as it hits the
interval [b,∞), for b ≈ 0.8399. Mucci (1978) and Salminen (1984) revisited the same problem
from different perspectives, and Pederson and Peskir (2000) extended it to different functionals
of an OU process. Other works are motivated by the phenomenon of mean-reversion in finance.
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Levendorskii (2005) found the optimal time to exercise a perpetual (infinite-horizon) American
option when the underlying stock price behaves like the exponential of an OU process, and
compared the result with that of a BM. Ekström et al. (2011) found the best time to liquidate
the spread in pair-trading in the presence of a stop-loss level. In the same context, Leung and
Li (2015b) used a discounted double OSP to compute the optimal buy-low-sell-high strategy in
a perpetual frame. Kitapbayev and Leung (2017) extended Leung’s work to finite-horizon cases.
Recently, Carr and Itkin (2021) found the optimal exercise strategy of an American option when
a time-dependent OU process models the asset price.

In the more general framework of GM processes, we highlight the work of Babilua et al.
(2011) and Babilua et al. (2018) on OSPs under limited information.

1.3.2 Optimal stopping and GMBs

GMBs account for two fundamental layers of complexity when it comes to OSPs. First, they
are time-inhomogeneous processes, even when the unconditioned GM process is not. Moreover,
their drifts explode as the time approaches the horizon, hence they fail to meet the common
assumption of Lipschitz continuity (see Krylov and Aries (1980, Chapter 3) and Jacka and Lynn
(1992)).

Shepp (1969) pioneered the study of OSPs with GMBs by solving the OSP of a BB. He used
a guess-and-verify solution method, but left unaddressed the verification part and added com-
ments on how to solve it. A verification theorem was later provided by Ekström and Wanntorp
(2009) and Ernst and Shepp (2015), who revisited Shepp’s problem also in a guess-and-verify
fashion, reducing the related FBP to an ordinary differential equation. The latter authors devel-
oped an argument based on the Taylor expansion of the value function to heuristically back up
the guessing part, while the former expanded the methodology to treat different functionals of a
BB, including odd powers, reflections, and integrals. De Angelis and Peskir (2020) contributed
to widen the class of gain functions by solving the OSP of the exponential of a BB. Instead of
proposing a candidate solution and verifying its validity, they used a direct approach in which
the free-boundary equation is derived and proved to have the OSB as its unique solution. Chen
et al. (2015) added an element of risk aversion to Shepp’s problem by considering an absorbing
lower boundary for the BB, which is interpreted as a stop-loss level for a more conservative
trader. Glover (2019) and Glover (2020) introduced uncertainty in the horizon and used a
Bayesian framework to address it. The former considered different prior distributions, including
gamma, beta, and Bernoulli ones, and provided closed-form solutions for some of these cases.
The latter worked with the randomness coming from allowing a chance of replacing balls in
Shepp’s urn game. Föllmer (1972), Leung et al. (2018), and Ekström and Vaicenavicius (2020),
on the other hand, considered the randomization of the BB pinning point. Motivated by em-
pirical evidence in the work of Boyce (1970), Föllmer (1972) consider a Gaussian prior for the
pinning-point distribution. Leung et al. (2018) adopted the perspective of a trader who wants
to liquidate a European option before maturity, and numerically solved the OSP via variational
inequality techniques. By using a Bayesian methodology, Ekström and Vaicenavicius (2020)
derived smoothing properties of the value function when the prior distribution of the pinning
point is fairly general, and obtained richer results for Gaussian and Bernoulli priors.

Apart from financial applications, Lisovskii (2019) found the Bayes sequential testing of two
simple hypotheses about the mean of a BB. In a more general setting, D’Auria and Ferriero
(2020) solved the OSPs related to a class of GMBs, which includes, but is not limited to, BBs
and α-Wiener bridges.
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1.3.3 American options and GM processes

American options are among the most traded financial derivatives. They give their holders the
right (but not the obligation) to exercise the option at any time before the expiration date. This
extra flexibility makes their valuation particularly challenging.

The arbitrage-free price of an American contingent claim under a complete market was first
proved to be the solution of an OSP in the mid-1980s (see Bensoussan (1984, Lemma 3.1)
and Karatzas (1988, Theorem 5.4)). However, up to 20 years earlier, American-type options
were already connected to OSPs in the work of Samuelson (1965), where the underlying stock
is modeled by a geometric BM. As an addendum to the same paper, a solution method was
proposed by McKean (1965), who also pioneered the linkage of OSPs and FBPs. However,
even with the simple geometric BM model, it took almost 40 years to reach a complete and
rigorous derivation of its solution. This was given in Peskir (2005a), where the optimal exercise
strategy was characterized as the unique solution of a type-two Volterra integral equation. A
good historical survey on the topic can be found in Myneni (1992) and Barone-Adesi (2005).

Black–Scholes’s time-homogeneity has been long criticized (see, e.g., Dupire (1994), Derman
and Kani (1994), Fortune (1996), and Dumas et al. (1998)). However, working with time-
inhomogeneity often hindrances subsequent derivations of analytical results, and leads to tackling
only the pragmatical aspect of option pricing through numerical methods, such as binomial trees,
Monte Carlo simulations, finite differences methods, and neural network approaches (see Zhao
(2018) and Ruf and Wang (2020)). Among the few analytical results, it is worth mentioning
that of Ekström (2004) in a time-dependent volatility scheme, later extended by Rehman and
Shashiashvili (2009), who additionally considered time-dependent interest rates. Jaillet et al.
(1990) and Blanchet et al. (2006) addressed time-dependent diffusions from the variational
inequality and the partial differential equation perspectives. The recent paper of Carr and
Itkin (2021) also works within the time-inhomogeneous scenario. This paper distances itself
from the geometric BM setup by solving the American pricing problem when the underlying
asset behaves like a time-dependent OU process. This is one of the scanty incursions into the
analytical valuation of American options with time-dependent GM processes. Actually, to the
extent of our knowledge, it is the only one that considers such processes to model assets’ prices
instead of interest rates, as it is customary (see, e.g., Galluccio (1999) and Cai et al. (2022)).

Many authors have attempted more model-free approaches, but often at the cost of reducing
the completeness of results. For example, Detemple and Tian (2002) treated general diffusions
and proved that the optimal strategy satisfies the free-boundary equation, but it left the unique-
ness of the solution unaddressed. Also in great generality, Zhao and Wong (2012) expressed the
optimal stopping strategy in terms of Maclaurin series, which has great theoretical value but
lacks computational power. As Detemple and Tian (2002), they required a boundedness as-
sumption on the process’s drift that excludes the class of GMBs.

In finance, GMBs have attracted attention to model situations where future information
is disclosed. See, e.g., Pikovsky and Karatzas (1996), Schweizer et al. (2003), Biagini and
Øksendal (2005), and D’Auria and Salmerón (2020). However, these results are more focused
on quantifying the value of the insider information and do not deal with its effect on the option
execution strategy. The work of Hilliard and Hilliard (2015) is a recent exception, which used an
OUB to model the interest rate in the presence of short-lived arbitrage, although it only provides
numerical results based on a binomial-tree algorithm. As far as we are aware, besides the work
of Hilliard and Hilliard (2015), the valuation of American options with GMBs has been limited
to the study of a BB (Shepp, 1969) and some modifications of it (see Ekström and Wanntorp
(2009) and D’Auria and Ferriero (2020)).
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1.4 Contributions

This section portrays the thesis contributions within the OSTh landscape in terms of the four
types of time dependencies discussed in Section 1.2.2. It also provides a summary of the most
relevant OSBs properties obtained and the techniques employed to do so. An additional third
perspective is given in financial terms.

The two classes of processes we work with, GM processes and bridges derived from them,
are non-homogeneous in time. More than that, the latter does not account for the ubiquitous
Lipschitz-continuity assumption on the diffusion coefficients. We work in (exponentially) dis-
counted and non-discounted scenarios, and infinite and finite-horizon ones. Our settings yield
non-monotonic OSBs, which makes it particularly difficult to prove the smooth-fit principle.

With an approach that is mostly probabilistic and is inspired by the work of Peskir (2005a),
we find enough smoothness on the value function and the OSB to apply a relaxed Itô lemma and
come up with the free-boundary equation, given in terms of a second-type, non-linear Volterra
integral equation with a unique solution. Among these smoothing conditions, the Lipschitz
continuity (and, thus, differentiability almost anywhere) of the OSB away from the horizon
stands out as a remarkable property both in theoretical and practical terms. The method to
obtain such a degree of smoothness, which is an adaptation of the work of De Angelis and Stabile
(2019) to meet our settings in each different chapter, consists in proving that the OSB is the
uniform limit of Lipschitz continuous functions defined on closed intervals excluding the horizon.
The smooth-fit principle, upon which the uniqueness of the solution of the OSP relies, is then
derived from the local Lipschitz continuity of the OSBs.

The numerical aspect of solving the free-boundary equation, being fundamentally a fixed-
point problem, is discussed and addressed by implementing different algorithms, which are then
used to shed light on the OSBs’ shape for a varying set of values of the parametrizations of
the processes. In particular, the non-monotonicity of the OSBs is revealed with numerical
experiments. GitHub repositories are provided with all the R code necessary to reproduce the
numerical studies.

The particular contributions of each chapter are reported as follows and, in a deeper view,
in each chapter’s introduction.

Chapter 2

In this chapter we offer the solution of the exponentially-discounted finite-horizon OSP when
the underlying process behaves like a time-dependent OU, and the gain function is that of an
American put option. The time-inhomogeneity of the process adds the challenge of dealing
with a non-monotonic OSB. We develop a comparison argument to obtain the boundary lower-
boundedness from the solution of a discounted infinite-horizon OSP with a BM underneath. A
put-call parity formula extends all previous results to the call option case.

We show numerical evidence on the OSB continuity with respect to the process coefficients.
This is done by showing the convergence of the OSBs of non-degenerated GMBs to those of the
BB and the OUB.

Chapter 3

In this chapter we obtain the optimal time to exercise an American put option written on top
of a BB. Framed as an OSP, we depart from Shepp (1969) and Ekström and Wanntorp (2009)
by including an exponential discount, which is more financially realistic, especially for options
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with long maturity periods. The discount disables Shepp’s scaling argument to reduce the OSP
dimension, producing a two-dimensional FBP. It also challenges the guess-and-verify method
used in Ekström and Wanntorp (2009). Furthermore, by adding an exponential discount we
step into the realm of non-monotonic OSBs.

This chapter accounts for the most comprehensive numerical study, in both simulated and
real-data situations. We estimate by maximum likelihood the unknown volatility of the BB,
asymptotically quantify the estimation error, and extend the inference to the OSB via the delta
method by creating (point-wise) confidence curves. Investors with access to discrete data can
benefit from this inference method. It also allows incorporating a risk-preference element by
stopping nearest the lower (risk-lover) or upper (risk-averse) confidence curves.

Tested on a real data set comprised of Apple’s and IBM’s financial options, we show that
our model is competitive when compared with the Black–Scholes one. As intuition dictates, the
best performances are obtained when the stock price exhibits a strong pinning-at-the-strike.

Finally, we comment on how continuity and piecewise monotonicity of the OSB suffice for
the smooth-fit condition to hold true, hence providing an alternative potential path to obtain
this property rather than relying on the local Lipschitz continuity of the OSB. We numerically
show that some values of the discounting rate produce a non-monotonic OSB, where the change
of monotonicity occurs just once. Specifically, in those cases, the OSB evolves decreasingly,
reaches a minimum, and increases afterward until hitting the horizon with an infinite slope.

Chapter 4

In this chapter we solve the non-discounted, finite-horizon OSP of an OUB. Similarly to Shepp
(1969), our methodology relies on a time-space change that casts the original problem into an
infinite-horizon OSP with a BM underneath. Differently, the dimension of the new problem can-
not be reduced and, thus, it is required to deal with a two-dimensional FBP. The solution, given
in terms of the free-boundary (Volterra integral) equation, is provided in both the original and
transformed coordinates. This allows choosing the most convenient representation for numerical
computations and theoretical analysis.

We bypass the added challenge of not having a monotonic OSB by proving its Lipschitz
continuity and then obtaining the smooth-fit condition. Furthermore, we develop a comparison
argument that obtains an explicit upper bound for our OSB from the exact solution of the OSB
for the BB case, featured in Shepp (1969). It is worth mentioning that our framework includes
that of the BB as a limit case.

Chapter 5

This chapter is the natural extension of Chapters 3 and 4, and the perfect complement of
Chapter 2. Here, we work out the solution of OSPs with GMBs. We first provide a throughout
characterization of these types of processes from different perspectives. One of these viewpoints
generalizes Shepp’s change-of-variable technique (Shepp, 1969), and allows studying an easier
infinite-horizon OSP with a BM underneath. An equivalence result allows switching between
the solution in original (GMB) terms or transformed (BM) ones.

The comparison argument developed in Chapter 4 to prove the OSB (upper) boundedness
is extended to fit GMBs in general, as it was the methodology used to prove the boundary’s
Lipschitz continuity.
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1.5 Structure

To conclude, we outline next the content of the thesis and its structure. Each chapter is self-
contained and presents the same structure and content as the article on which it is based.

Chapter 2 solves the problem of optimally executing an American put option when a time-
dependent OU process runs underneath. We introduce the notation and model definition re-
quired for a proper formulation of the problem in Section 2.2. Section 2.3 contains all the
technical work, including the regularities of the value function and the stopping boundary that,
later in Section 2.4, lead to the free-boundary equation and the pricing formula. Numerical
results showing the shape and changes of the OSB for different sets of drifts and volatilities are
given in Section 2.5.

Chapter 3 offers the solution of the finite-horizon discounted OSP with a BB as the underlying
process and the gain function related to an American put option. We set the problem in
Section 3.2, along with convenient notation and necessary definitions. Section 3.3 accounts for
the theoretical results and the derivation of the free-boundary equation. Section 3.4 provides the
mechanism to construct (point-wise) confidence curves for the OSB, when the stock volatility is
unknown and estimated via maximum likelihood. Our model is compared in Section 3.5 against
the geometric BM by using real data that exhibits pinning-at-the-strike with different degrees
of intensity. We study the nature of the non-monotonicity of the OSB and its implications in
Section 3.6. We relegate to Appendices 3.A and 3.B all the proofs and auxiliary lemmas required
for Section 3.3.

Chapter 4 addresses the problem of optimally stopping an OUB. Section 4.2 presents the
OSP and introduces some useful notation. The auxiliary time-space transformed OSP is derived
in Section 4.3, where its equivalence to the original one is proved. Section 4.4 gathers the
heaviest technical part of the chapter. There, we derive the solution of the reformulated OSP.
Section 4.5 expresses the solution back in terms of the original OSP, and remarks that a BB,
and an OUB with a general slope coefficient and terminal time, are extensions of our settings.
Numerical insights into the OSB’s shape are given in Section 4.6 by exploring illustrative cases
for different values of the OUB’s parameters.

Chapter 5 takes up Chapters 3 and 4 by embedding them into a unifying framework. It
solves the OSP of a GMB in great generality. Four different characterizations of these types of
processes are offered in Section 5.2. One of these representations allows establishing, in Section
5.3, the equivalence between the original OSP and one in terms of a time-space transformed BM.
The latter is solved in Section 5.4, and the solution is then expressed in original coordinates in
Section 5.5. A (fixed-point) numerical approach to compute the OSB is explored in Section 5.6.

Global concluding remarks, discussions on future work, and possible extensions are relegated
to Chapter 6.
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Chapter 2

Optimal exercise of American
options under time-dependent
Ornstein–Uhlenbeck processes

Abstract

We study the barrier that gives the optimal time to exercise an American option written on
a time-dependent Ornstein–Uhlenbeck process, a diffusion often adopted by practitioners to
model commodity prices and interest rates. By framing the optimal exercise of the American
option as a problem of optimal stopping and relying on probabilistic arguments, we provide
a non-linear Volterra-type integral equation characterizing the exercise boundary, develop a
novel comparison argument to derive upper and lower bounds for such a boundary, and prove
its Lipschitz continuity in any closed interval that excludes the expiration date and, thus, its
differentiability almost everywhere. We implement a Picard iteration algorithm to solve the
Volterra integral equation and show illustrative examples that shed light on the boundary’s
dependence on the process’s drift and volatility.

Reference

Azze, A., D’Auria, B., and García-Portugués, E. Optimal exercise of American options under
time-dependent Ornstein–Uhlenbeck processes. arXiv e-print 2022,
https://arxiv.org/abs/2211.04095

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Formulation of the problem . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Regularities of the boundary and the value function . . . . . . . . . 32

2.4 The value formula and the free-boundary equation . . . . . . . . . . 44

2.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

27



28
Chapter 2. Optimal exercise of American options under time-dependent

Ornstein–Uhlenbeck processes

2.1 Introduction

The extra flexibility of being able to exercise at any time before maturity makes American
options a popular financial instrument among traders, but it makes these types of vanilla options
significantly harder to price when compared to their European counterparts. Indeed, while the
arbitrage-free price of the European option written on a geometric Brownian motion was settled
down in the notorious works of Merton (1973) and Black and Scholes (1973), the valuation of
the American option had to go through a much longer process that took 40 years to complete,
starting from the early works of Samuelson (1965) and McKean (1965), reaching important
milestones in the works of Kim (1990), Jacka (1991), and Carr et al. (1992), and concluding in
Peskir (2005b). This pricing journey is registered in the surveys of Myneni (1992) and Barone-
Adesi (2005).

The classic geometric Brownian motion is not a suitable model in many financial contexts.
Examples are the so-called mean-reverting strategies that arise when trading assets that tend to
revert to an average price. Pair-trading strategies are the most popular of these scenarios. They
take place when the spread between correlated assets is pulled towards a baseline level. In such
a case, it is common to model the spread by means of an Ornstein–Uhlenbeck (OU) process to
capture the mean-reverting behavior. See Leung and Li (2015) for theory and empirical evidence,
Gatev et al. (2006) for a practitioner perspective, and the handbook of Ehrman (2006) for a quick
reference guide. Mean-reverting strategies also find room when trading options. Indeed, imagine
that a trader holds two American options, one put and one call, written on two different stocks
whose price at time t is X(1)

t and X
(2)
t , with the same maturity date T and strike prices given

by A1 and A2. At any time t before maturity, the trader can exercise both options, thus making
the profit

(
α1X

(1)
t −A1

)
+
(
A2 − α2X

(2)
t

)
= (A2 −A1)−

(
α2X

(2)
t − α1X

(1)
t

)
, where α1 and α2

represent the shares of each asset held by the trader in each American option position. The
trader can then carve out a new American put option written on the spread Xt = X

(2)
t −X

(1)
t

and with strike price given by A = A2−A1, and the spread could be modeled as an OU process
by conveniently choosing α1 and α2 (see Chapter 2 in Leung and Li (2015)).

An OU process has also been shown convenient for modeling certain commodity prices (see,
e.g., Chaiyapo and Phewchean (2017) and Ogbogbo (2018)). However, it is far more common
to use it to model log-prices (see, e.g., Schwartz (1997), Boyarchenko and Levendorskii (2007),
Zhang et al. (2012), and Mejía Vega (2018)), which removes the drawback of allowing negative
prices. Further flexibility can be added to the OU model if its parameters are time-dependent.
Some authors, for instance, have relied on a time-dependent OU process to capture the effect of
seasonality on commodity prices (see, e.g., Zapranis and Alexandridis (2008), Back et al. (2013),
and Tong and Liu (2021)) and to cope with predictable assets (Lo and Wang, 1995; Carmona
et al., 2012). A time-dependent OU process is also a go-to for practitioners when modeling
interest rates, as it accommodates the popular Hull–White model (Hull and White, 1990), an
iteration of the Vasicek model (i.e., an OU process with constant parameters).

The analytical valuation of American options is fundamentally an Optimal Stopping Problem
(OSP), as McKean (1965) established, and Bensoussan (1984) and Karatzas (1988) later proved
for the geometric Brownian motion case. The solution of the OSP is both the option’s price,
often called the value function, and the Optimal Stopping Boundary (OSB), that is, the optimal
exercise barrier that sets the rule for deciding, at any time before maturity, whether it is optimal
or not to exercise. Due to the connection between OSPs and free-boundary problems that
started to be noticed in the 1960s by works like McKean (1965), Grigelionis and Shiryaev
(1966), and Grigelionis (1967), and later detailed, among others, in the book by Peskir and
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Shiryaev (2006), the valuation of an American option can also be seen through the lens of
partial differential equations and, consequently, embedded into the well-consolidated theory of
variational inequalities. The works by Jaillet et al. (1990) and Blanchet et al. (2006) go in that
direction. The downside of variational inequality methods, compared to probabilistic ones, is
that they tend to lead to less explicit solutions of both the value function and the OSB.

To bypass the complexity of pricing American options analytically, a plethora of numerical
methods based on Monte Carlo simulation, finite differences, and binomial/trinomial trees have
been developed. Zhao (2018) performs a comparison between eight of the most popular of
these methods. Nevertheless, if available, analytical approaches are typically preferred over
(pure) numerical ones, as the former are generally more precise and computationally expedient.
Working out analytical solutions is not trivial, even if the American option is written on top
of relatively simple models like the plain geometric Brownian motion. It becomes even harder
when the coefficients of the underlying process are time-dependent. In this case, the OSB
cannot be guaranteed to be monotonic or convex, and proving the so-called smooth-fit condition
(the extra boundary condition that is required to offset not knowing the boundary in advance)
becomes mathematically challenging. Under a geometric Brownian motion scheme, Ekström
(2004) worked with a time-dependent volatility and proved smoothing properties of the price
function. Rehman and Shashiashvili (2009) took Ekström’s work further by also allowing a
time-dependent interest rate and providing the fair price of the American option in terms of
the early exercise premium characterization, that is, the price of the European option plus the
early exercise premium associated with the possibility of exercising before maturity. They did
not prove the smooth-fit condition, which led to a somewhat difficult proof of the vanishing of
the local-time term that the Itô–Tanaka formula yields for the pricing formula. Escaping the
framework of a geometric Brownian motion, Detemple (2005, Section 4.6) provided the early
exercise premium characterization of the American option’s price written on a diffusion with
time- and space-dependent coefficients, these having somehow restrictive conditions that lead
to a monotonic OSB. Using variational inequalities and partial differential equation techniques,
Jaillet et al. (1990) and Blanchet et al. (2006) also worked with time-inhomogeneous diffusions.

In pricing American options, OU processes have been mostly used as a model for interest rates
and discounting factors, rather than to model the underlying asset price. To consolidate their
use in the latter case, we offer in this paper the solution to the problem of optimally exercising
an American put option written on top of a time-inhomogeneous OU process with continuously
differentiable coefficients. The associated OSB is given in terms of a non-linear Volterra-type
integral equation that holds an explicit and relatively simple dependency on the OU parameters,
which allows deriving a clean intuition on how those affect the OSB shape. We comment on two
algorithms and implement one of them to work out the solution of the integral equation. The
solution method we used, which is primarily probabilistic, yields important properties about
the OSB, such as its local Lipschitz continuity and, thus, differentiability almost everywhere.
This order of smoothness of the OSB, which goes beyond its typical differentiability almost
everywhere, is usually difficult to prove, especially for non-convex OSBs and non-differentiable
gain functions. We also derive explicit upper and lower bounds for the OSB by relying on a
comparison method that, to the best of our knowledge, has not been used within the framework
of optimal stopping and could potentially be used in generic processes with drifts that are
monotone in the space component. The value function is characterized by means of the early-
exercise premium representation, which has a clear economic interpretation. The shape of
the OSB is explored numerically for different sets of values of the drift and volatility of the
OU process. We also cover the American call option scenario by proving that its OSB is the
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reflection of the OSB of its put counterpart with respect to the strike price.
Recently, by using a different approach, Carr and Itkin (2021) also tackled the problem of

optimally exercising an American option with an OU process with differentiable time-dependent
coefficients underneath. They performed time-space transformations to cast the partial differ-
ential operator of the associated free-boundary problem into that of the heat equation, which
they solved by means of the heat potential method; the recent paper of Lipton and Kaushansky
(2020) explains this method within the context of the American put option for a geometric Brow-
nian motion. As a result, the OSB is proved to satisfy an integral equation of Fredholm type,
although the uniqueness of the solution was not addressed, nor numerical methods for finding
approximate solutions were discussed. In addition, the dependence of the integral equation with
respect to the process’s coefficients does not seem to be evident, as neither is the interpretation
of the value formula in financial terms. Remarkably, Carr and Itkin (2021) also allow for a
time-dependent discount rate and repulsion drifts, which we do not account for in our setting.

The rest of the paper is structured as follows. Section 2.2 sets the problem and introduces
the basic notation. Section 2.3 gathers all the properties required to come up, in Section 2.4,
with the value formula and the free-boundary equation. Numerical experiments are displayed
in Section 2.5, while concluding remarks are relegated to Section 2.6.

2.2 Formulation of the problem
Define µ : [0, T ] × R → R such that µ(s, x) := θ(s)(α(s) − x), where θ, α : [0, T ] → R are
continuously differentiable functions, and θ(s) > 0 for all s ∈ [0, T ]. Let X = (Xs)s∈[0,T ] be
the unique strong solution (see, e.g., Daniel and Marc (2010, Theorem 2.1, Chapter IX)) of the
stochastic differential equation

dXs = µ(s,Xs) ds+ dWs, 0 ≤ s ≤ T, (2.1)

in the filtered space (Ω,F ,P, (Fs)s∈[0,T ]), where (Fs)s∈[0,T ] is the natural filtration of the under-
lying standard Brownian motion (Ws)s∈[0,T ]. We refer to θ and α as the slope and pulling level
(functions), respectively.

From (2.1), we get that the infinitesimal generator L of the process ((s,Xs))s∈[0,T ] is given by

(Lf)(s, x) = ∂tf(s, x) + θ(s)(α(s)− x)∂xf(s, x) + 1
2∂xxf(s, x). (2.2)

Above and henceforth, we use ∂t and ∂x to denote, respectively, the usual partial derivatives with
respect to time and space of a function with arguments (t, x), and ∂xx is used as a shorthand
for ∂x∂x.

Consider the finite-horizon, discounted Optimal Stopping Problem (OSP)

V (t, x) = sup
0≤τ≤T−t

Et,x
[
e−λτG(Xt+τ )

]
, (2.3)

where V is the value function,

G(x) := (A− x)+ (2.4)

is the gain function for some A ∈ R that represents the strike price of the option, and λ ≥ 0 is
the discounting rate. The supremum above is taken over all random times τ such that t+ τ is a
stopping time in (Fs)s∈[0,T ] and Et,x represents the expectation under the probability measure
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Pt,x defined as Pt,x (·) := P (· | Xt = x). For simplicity and in an abuse of notation, in the sequel,
we will refer to τ as a stopping time while keeping in mind that t+ τ is the actual stopping time
in the filtration (Fs)s∈[0,T ]. The particular form of G implies that

−(y − x)− ≤ G(x)−G(y) ≤ (y − x)+ (2.5)

for all x, y ∈ R, inequalities which will be recurrently used throughout the paper.
It is useful to keep track of the condition Xt = x in a way that does not change the probability

measure whenever t or x changes. To do so, we denote the process Xt,x = (Xt,x
s )s∈[0,T−t] in the

filtered space (Ω,F ,P, (Fs)s∈[0,T−t]) as the unique solution of{
dXt,x

s = µ(t+ s,Xt,x
s ) ds+ dWs, 0 ≤ s ≤ T − t,

Xt,x
0 = x,

where the underlying Brownian motion (Ws)s∈R+
remains the same for all t ∈ [0, T ]. Theorem 38

from Chapter V in Protter (2003) guarantees that Xt,x is well defined and continuous with
respect to x.

Theorem 39 from Chapter V in Protter (2003) ensures that Xt,x is continuously differentiable
with respect to x and t, and combined with (2.1), it states that the processes ∂tXt,x = (∂tXt,x

s )s∈[0,T−t]
and ∂xX

t,x = (∂xXt,x
s )s∈[0,T−t], defined as the following P-a.s. limits

∂tX
t,x
s := lim

ε→0

(
Xt+ε,x
s −Xt,x

s

)
ε−1 and ∂xX

t,x
s := lim

ε→0

(
Xt,x+ε
s −Xt,x

s

)
ε−1,

take the form

∂tX
t,x
s =

∫ s

0

(
∂tµ(t+ u,Xt,x

u ) + ∂xµ(t+ u,Xt,x
u )∂tXt,x

u

)
du

=
∫ s

0

(
θ′(t+ u)(α(t+ u)−Xt,x

u ) + θ(t+ u)(α′(t+ u)− ∂tXt,x
u )

)
du (2.6)

and

∂xX
t,x
s = 1 +

∫ s

0
∂xµ(t+ u,Xt,x

u )∂xXt,x
u du

= 1−
∫ s

0
θ(t+ u)∂xXt,x

u du. (2.7)

Mind the difference between the differential operators ∂t and ∂x and the processes ∂tXt,x
s and

∂xX
t,x
s . From (2.7), it follows that the process ∂xXt,x

s is deterministic, i.e.

∂xX
t,x
s = exp

{
−
∫ s

0
θ(t+ u) du

}
, (2.8)

and that ∂xXt,x
s ∈ (0, 1] for all s ∈ [0, T − t].

The results in Section 2.2 from Peskir and Shiryaev (2006), along with the fact that X is a
Feller process (see, e.g., Daniel and Marc (2010, Theorem 2.5, Chapter IX)), give us the existence
and characterization of a stopping time that is optimal in (2.3). Specifically, if we denote by
D := {V = G} and C := Dc = {V > G} to the so-called stopping set and continuation set,
respectively, then, if

Et,x
[

sup
0≤s≤T−t

e−λsG(Xt+s)
]
<∞ (2.9)
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for all (t, x) ∈ [0, T )×R, we can guarantee that, under Pt,x, the first hitting time of (Xt+s)s∈[0,T−t]
into D, denoted by τ∗ = τ∗(t, x), satisfies

V (t, x) = Et,x
[
e−λτ∗

G(Xt+τ∗)
]
. (2.10)

If there is another Optimal Stopping Time (OST) τ , then τ∗ ≤ τ Pt,x-a.s. (see Equation 2.2.1
from Peskir and Shiryaev (2006)). Solving the OSP (2.3) means to provide tractable expressions
for both the value function V and the OST τ∗.

The boundary of D (or C), denoted by ∂D (or ∂C), is called the Optimal Stopping Boundary
(OSB). It turns out that both the value function V and the OSB ∂D are the solution of a Stefan
problem with the infinitesimal generator L being the differential operator acting on V in C. For
this reason, the OSB is also referred to as the free boundary; see Peskir and Shiryaev (2006) for
more information on the relation between OSPs and free-boundary problems. If the OSB can
be depicted by the graph of a function b : [0, T ]→ R, i.e., if ∂D = {(t, b(t)) : t ∈ [0, T ]}, then b
is referred to as the OSB too.

Finally, it is convenient to recall the martingale and supermartingale properties of V :

Et,x [V (t+ τ∗ ∧ s,Xt+τ∗∧s)] = V (t, x), (2.11)
Et,x [V (t+ s,Xt+s)] ≤ V (t, x), (2.12)

for all 0 ≤ s < T − t, as they will be used to prove results in Section 2.3.

2.3 Regularities of the boundary and the value function

In this section we derive regularity conditions about the OSB and the value function. These
conditions allow obtaining a solution for the OSP (2.3), later addressed in Section 2.4, by using
an extension of the Itô formula to derive a characterization of the OSB via a Volterra integral
equation.

We first point out that (2.9) holds true, as it is a consequence of Lemma 2.1 below. This
allows us to prove the existence of the OST as well as its characterization in terms of the
stopping set claimed in Section 2.2. We then shed light on the geometry of the stopping and
continuation regions in the next proposition, which entails that the stopping set lies below the
continuation set and that the boundary between them can be seen as the graph of a bounded
function. We highlight the comparison argument used to derive the lower bound of the OSB.
Besides its simplicity, it relies only on the monotonicity of the drift with respect to the space
component, which makes it usable beyond the specifics of the OU process.

Proposition 2.1 (Boundary existence and shape of the stopping set).
There exists a function b : [0, T ] → R such that −∞ < b(t) < A for all t ∈ [0, T ) and
D = {(t, x) ∈ [0, T )× R : x ≤ b(t)} ∪ ({T} × R), where A is as in (2.4). Moreover, b(t) ≤ γ(t)
for all t ∈ [0, T ), where

γ(t) := (θ(t) + λ)−1(θ(t)α(t) + λA) (2.13)

and b(T ) := limt→T b(t) = min{A, γ(T )}.

Proof. Define b : [0, T ]→ R such that b(t) := sup{x ∈ R : (t, x) ∈ D} for all t ∈ [0, T ) and b(T ) =
limt→T b(t). We first prove that b(t) < A for all t ∈ [0, T ). Let (t, x) ∈ A := [0, T )× [A,∞) and
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define the stopping time τδ := inf{s ∈ [0, T − t] : Xt+s ≤ A− δ} for some δ > 0, assuming that
inf{∅} = T − t. Since τδ ≤ T − t and P (τδ < T − t) > 0,

V (t, x) ≥ Et,x
[
e−λτδG(Xt+τδ

)
]
≥ e−λ(T−t)P (τδ < T − t) δ > 0 = G(x),

that is, (t, x) ∈ C. Therefore, A ⊂ C.
We now prove that D = {(t, x) ∈ [0, T ]×R : x ≤ b(t)}∪({T} × R). The fact that {T}×R ⊂ D

is a straightforward consequence of the definition V (T, x) = G(x) for all x ∈ R. Moreover, if
(t, x1) ∈ D, then, for any x2 < x1 we have that, for τ∗ = τ∗(t, x2),

V (t, x2)− V (t, x1) ≤ E
[
e−λτ∗ (

G
(
Xt,x2
τ∗

)
−G

(
Xt,x1
τ∗

))]
≤ E

[
Xt,x1
τ∗ −Xt,x2

τ∗

]
= (x1 − x2)E

[
∂xX

t,x
τ∗

]
(2.14)

≤ x1 − x2 = G(x2)−G(x1),

where in the second inequality we used (2.5) and the fact that x 7→ Xt,x
s is an increasing function

for all s ∈ [0, T − t) (∂xXt,x
s ≥ 0 for all s according to (2.8)). We also used the mean value

theorem alongside (2.8) to come up with the equality. Since V (t, x1) = G(x1), it follows from
(2.14) that (t, x2) belongs to D. Finally, being D closed, (t, b(t)) ∈ D for all t ∈ [0, T ), which
guarantees that D has the claimed shape.

We now use the Itô–Tanaka formula to get that, for all (t, x) ∈ [0, T )× R,

e−λsG(Xt,x
s ) = G(x) +

∫ s

0
Ft
(
u,Xt,x

u

)
1(Xt,x

u < A) du (2.15)

−
∫ s

0
e−λu

1(Xt,x
u < A) dBu + 1

2

∫ s

0
e−λu

1(Xt,x
u = A) dlAu (Xt,x),

where Ft(u, x) = −e−λu (λG(x) + µ(t+ u, x)), and lAs (X) is the local time of the process X at
A and up to time s, that is,

lAs (X) = lim
h↓0

1
2h

∫ s

0
1(A− h ≤ Xu ≤ A+ h) d⟨X,X⟩u.

We have already proved that b(t) ≤ γ(t) whenever γ(t) ≥ A, so we will assume that γ(t) < A.
Fix (t, x) such that γ(t) < x < A and notice that, in such a case,

Ft(u, x) > 0 if x > γ(t+ u),
Ft(u, x) < 0 if x < γ(t+ u).

Take a ball B ⊂ [0, T ]× (−∞, A) centered at (t, x) and sufficiently small such that Ft(u, y) > 0
for all (u, y) ∈ B. In (2.15), replacing s by the first exit time from B (denoted by τBc), taking
Pt,x-expectation (cancels the martingale term), and noticing that Xt+u never touches A for
u ≤ τBc under Pt,x (i.e., the local-time term is null), we get

V (t, x) ≥ Et,x
[
e−λτBcG(Xt+τBc )

]
= G(x) + Et,x

[∫ t+τBc

t
Ft
(
u,Xt,x

u

)
du
]
> G(x),

meaning that (t, x) ∈ C and, therefore, that b(t) ≤ γ(t) for all t ∈ [0, T ).
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We now prove that (t, x) ∈ D for all x < min {A, γ(T )} and all t sufficiently close to T .
This, along with the fact that b(t) ≤ min {A, γ(t)} that we have already proved, shows that
limt→T b(t) exists and takes the claimed value. Notice that

Et,x
[∫ s

0
Ft
(
u,Xt,x

u

)
1(Xt,x

u < A) du
]
≤ sEt,x

[
sup

0≤u≤s
Ft
(
u,Xt,x

u

)
1(Xt,x

u < A)
]

≤ s (K1p(t, x, s, ε) +K2(1− p(t, x, s, ε))) (2.16)

and

Et,x
[∫ s

0
e−λu

1(Xt,x
u = A) dlAu (Xt,x)

]
≤ s(1− p(t, x, s, ε)), (2.17)

with

p(t, x, s, ε) := P
(

sup
0≤u≤s

Xt,x
u < x+ ε

)

and

K1 := sup
0≤u≤s

Ft (u, x+ ε) < 0, K2 :=
(

sup
0≤u≤s

Ft (u,A)
)+

,

for ε > 0 and t ∈ [0, T ) such that x + ε ≤ min
{
A,minu∈[0,T−t] γ(t+ u)

}
. This selection of ε

and t is possible, as the continuity of γ, inherited from the same level of smoothness of θ and α,
guarantees that γ(T ) gets arbitrarily close to γ(T ) as t converges to T . Likewise, t close enough
to T yields p(t, x, s, ε) ≥ (K2 + 1)/(K2 + 1−K1). Indeed,

lim
t→T

P
(

sup
0≤u≤s

Xt,x
u < x+ ε

)
≥ lim

t→T
P
(

sup
0≤u≤T−t

Xt,x
u − x− ε < 0

)

= lim
t→T

P
(

sup
0≤u≤T−t

Xt,x
u − x− ε

2u ln(ln(1/u)) < 0
)

= P
(

lim
t→T

sup
0≤u≤T−t

Xt,x
u − x− ε

2u ln(ln(1/u)) < 0
)

= P
(

lim sup
u→0

Xt,x
u − x− ε

2u ln(ln(1/u)) < 0
)

= 1,

where the last inequality comes after (2.44) below. Therefore, after using (2.15) along with
(2.16) and (2.17), we get that

V (t, x)−G(x) ≤ sup
s∈[0,T−t]

s (K1p(t, x, s, ε) + (K2 + 1)(1− p(t, x, s, ε))) ≤ 0,

meaning that (t, x) ∈ D. Hence, we conclude that b(T ) := limt→T b(t) = min{γ(T ), A}.
The lower boundedness of b is now addressed. Define m := inft∈[0,T ] α(t). The following

inequalities hold P-a.s.:

Xt,x
s ≥ Zt,xs ≥ α(t+ s)− |α(t+ s)−Bx

s | ≥ m− |m−Bx
s | , (2.18)
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where Zt,xs := α(t+ s)−
∣∣α(t+ s)−Xt,x

s

∣∣, Bx
t = x+Wt and (Wt)t≥0 is the underlying standard

Brownian motion in (2.1). The second inequality holds since the drift of Zt,x := (Zt,xs )s∈[0,T−t]
is greater than the drift of the reflection of Bx with respect to α for all (t, x) ∈ [0, T )× R, and
therefore we can assume that the first process is greater than the last one pathwise P-a.s. (see
Peng and Zhu, 2006, Corollary 3.1). Indeed, for ε > 0, define the function

gε(x, α) :=
{
|x− α|, if |x− α| ≥ ε,
1
2
(
ε+ ε−1(x− α)2) , if |x− α| < ε

and the processes

Y
(1),ε
t := α(t)− gε (Xt, α(t)) , Y

(2),ε
t := α(t)− gε (Wt, α(t)) .

Denote by µ(i),ε the drift of Y (i),ε, i = 1, 2. By using the Itô formula, we obtain that

(µ(1),ε − µ(2),ε)(t, x) =
{
θ(t)|α(t)− x|, if |α(t)− x| ≥ ε,
ε−1θ(t)(α(t)− x)2, if |α(t)− x| < ε.

Therefore, µ(1),ε ≥ µ(2),ε, which allows us to use Corollary 3.1 from Peng and Zhu (2006) to
state that Y (1),ε

t ≥ Y (2),ε
t for all t ∈ [0, T ] P-a.s. and obtain the claimed result after taking ε→ 0

and realizing that, in such a case, gε(c, x) ↓ |c− x|. Indeed,

P
(

sup
s∈[0,T−t]

{
Zt,xs − (α(t+ s)− |α(t+ s)−Bx

s |)
}
< 0

)

= Pt,x

(
lim
n→∞

sup
s∈[0,T−t]

{
Y

(1),1/n
t+s − Y (2),1/n

t+s

}
< 0

)

= Pt,x

 ⋃
N≥0

⋂
n≥N

{
sup

s∈[0,T−t]

{
Y

(1),1/n
t+s − Y (2),1/n

t+s

}
< 0

} = 0.

In the first equality, the interchange of the limit and supremum operators is justified since
the convergence of gε is uniform, while the last equality comes since we are considering the
probability of a numerable union and intersection of Pt,x-null sets.

The inequalities in (2.18), and the fact that G(x) is a decreasing function, guarantee that
the value function (2.3) is lower than the value function associated with the infinite-horizon,
discounted OSP of a reflected (with respect to m) Brownian motion. Thus, the respective OSBs
hold the reverse inequality, that is, the stopping region of the latter process is contained in the
stopping region of the former. It is easy to show that the free boundary for the infinite-horizon,
discounted OSP with the gain function G and a m-reflected Brownian motion, is finite. Actually,
one can explicitly obtain the (constant) OSB by directly solving the associated free-boundary
problem. Therefore b is bounded from below.

The value function satisfies the regularity properties listed in the next proposition. The
method used to obtain the Lipschitz continuity of V , based on properties (2.11) and (2.12), is
a powerful technique to solve OSPs framed within Markovian processes. For example, the work
of De Angelis and Stabile (2019) provides Lipschitz continuity of the value function in a similar
fashion, but for differentiable gain functions.
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Proposition 2.2 (Regularity of V ).
The value function V satisfies the following properties:

(i) V is locally Lipschitz continuous.

(ii) V is C1,2 on C and on D, and LV = λV on C.

(iii) x 7→ V (t, x) is decreasing for all t ∈ [0, T ). Moreover, for x ̸= b(t),

0 ≥ ∂xV (t, x) ≥ −E
[
e−λτ∗

∂xX
t,x
τ∗

]
, (2.19)

where τ∗ = τ∗(t, x). Additionally,

∂tV (t, x) ≤ E
[∣∣∂tXt,x

τ∗
∣∣] , (2.20)

∂tV (t, x) ≥ −E
[∣∣∂tXt,x

τ∗
∣∣]− LP (τ∗ = T − t) , (2.21)

for some positive constant L.

Proof. (i) Fix (t, x) ∈ [0, T ] × R. Since τ∗ = τ∗(t, x) is optimal for the OSP with initial
conditions (t, x) and suboptimal for any different initial condition, and due to inequality (2.5),
it follows that, for δ > 0 small enough,

V (t, x)− V (t− δ, x) ≤ E
[
G
(
Xt,x
τ∗

)
−G

(
Xt−δ,x
τ∗

)]
≤ E

[(
Xt−δ,x
τ∗ −Xt,x

τ∗

)+
]

= δE
[(
−∂tXtδ,x

τ∗

)+
]
≤ δLx, (2.22)

where the last equality holds for a certain (random) time tδ ∈ (t − δ, t) due to the mean value
theorem. In (2.22) and thereafter we use the notation

Lx := sup
t∈[0,T ]

E
[

sup
s≤T−t

∣∣∣∂tXt,x
s

∣∣∣ ].
By (2.43) below, the value of Lx is bounded. Applying similar arguments as those used in (2.22),
relying on the martingale and supermartingale properties of the value function, and noticing that
τ∗ ∧ (T − t− δ) is admissible for V (t− δ, x), we have

V (t+ δ, x)− V (t, x)

≥ E
[
V
(
t+ δ + τ∗ ∧ (T − t− δ), Xt+δ,x

τ∗∧(T−t−δ)

)]
− E

[
V
(
t+ τ∗, Xt,x

τ∗

)]
= E

[
1(τ∗ ≤ T − t− δ)

(
V
(
t+ δ + τ∗, Xt+δ,x

τ∗

)
− V

(
t+ τ∗, Xt,x

τ∗

))]
+ E

[
1(τ∗ > T − t− δ)

(
V
(
T,Xt+δ,x

T−t−δ

)
− V

(
t+ τ∗, Xt,x

τ∗

))]
≥ E

[
1(τ∗ ≤ T − t− δ)

(
G
(
Xt+δ,x
τ∗

)
−G

(
Xt,x
τ∗

))]
+ E

[
1(τ∗ > T − t− δ)

(
G(Xt+δ,x

T−t−δ)−G(Xt,x
T−t−δ)

)]
+ E

[
1(τ∗ > T − t− δ)

(
G(Xt,x

T−t−δ)− V (t+ τ∗, Xt,x
τ∗ )

)]
≥− E

[
1(τ∗ ≤ T − t− δ)

(
Xt,x
τ∗ −Xt+δ,x

τ∗

)−
]



2.3. Regularities of the boundary and the value function 37

− E
[
1(τ∗ > T − t− δ)

(
Xt,x
T−t−δ −X

t+δ,x
T−t−δ

)−
]

+ E
[
1(τ∗ > T − t− δ)

(
G(Xt,x

T−t−δ)− E
[
V

(
T − δ + ρ∗, X

T−δ,Xt,x
T −t−δ

ρ∗

)])]
≥− δLx + E

[
1(τ∗ > T − t− δ)

(
G(Xt,x

T−t−δ)− V (T − δ,Xt,x
T−t−δ)

)]
, (2.23)

where ρ∗ := τ∗(T − δ,Xt,x
T−t−δ

)
and, in the second inequality, we added and subtracted the term

G(Xt,x
T−t−δ). For the third inequality, we used the tower property of the expectation along with

the Markovian nature of X, to get

E
[
1(τ∗ > T − t− δ)

(
V (t+ τ∗, Xt,x

τ∗ )− E
[
V

(
T − δ + ρ∗, X

T−δ,Xt,x
T −t−δ

ρ∗

)])]
= 0.

We now analyze the last term in (2.23) in detail. By the definition of V in (2.3), using the
Itô–Tanaka formula, and acknowledging that

(
T − δ,Xt,x

T−t−δ
)
∈ C in the set {τ∗ > T − t − δ},

we derive the following inequality for ρ∗ in {τ∗ > T − t− δ} and Yu = X
T−δ,Xt,x

T −t−δ
u :

V (T − δ, Xt,x
T−t−δ)−G(Xt,x

T−t−δ)

= E
[
e−λρ∗

G (Yρ∗)
]
−G(Xt,x

T−t−δ)

= E
[

1
2

∫ ρ∗

0
e−λu

1 (Yu = A) dlAu (Y )

−
∫ ρ∗

0
e−λu

1 (Yu < A) (λ (A− Yu) + µ (T − δ + u, Yu)) du
]

≤ E
[

1
2

∫ ρ∗

0
1 (Yu = A) dlAu (Y )−

∫ ρ∗

0
e−λu

1 (Yu < A)µ (T − δ + u, Yu) du
]

≤ δL, (2.24)

where L = 1
2 + max{|µ(t, x)| : 0 ≤ t ≤ T, b(t) ≤ x ≤ A} <∞.

Plugging (2.24) into (2.23), we obtain

V (t+ δ, x)− V (t, x) ≥ −δ (Lx + LP (τ∗ > T − t− δ)) . (2.25)

Now consider τδ = τ∗(t − δ, x) for 0 ≤ δ ≤ t ≤ T , and notice that we get the following
from (2.25):

V (t, x)− V (t− δ, x) ≥ −δ (Lx + L) .

For 0 ≤ δ ≤ T − t and τ δ = τ∗(t+ δ, x) one gets the following by proceeding as in (2.22):

V (t+ δ, x)− V (t, x) ≤ δLx.

So far, since Lx is finite (see Lemma 2.1), we have proved that, for any x ∈ R, t 7→ V (t, x)
is Lipschitz continuous on [0, T ]. We will now prove that V is also Lipschitz continuous with
respect to x ∈ R for all t ∈ [0, T ], which will complete the proof of (i).
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Since G is decreasing and x 7→ Xt,x
s is increasing for all s ∈ [0, T − t) and t ∈ [0, T )

(∂xXt,x
s ≥ 0), then x 7→ V (t, x) is decreasing for all t ∈ [0, T ). Fix (t, x) ∈ [0, T )× R and δ > 0.

Consider τ∗ = τ∗(t, x), recall (2.8), and argue as in (2.14) to get

0 ≥ V (t, x+ δ)− V (t, x) ≥ −δE
[
e−λτ∗ exp

{
−
∫ τ∗

0
θ(t+ u) du

}]
≥ −δ. (2.26)

Then, x 7→ V (t, x) is Lipschitz continuous for all t ∈ [0, T ], which, alongside the Lipschitz
continuity of t 7→ V (t, x) for all x ∈ R, allows us to conclude that V is Lipschitz continuous on
[0, T ]× R.

(ii) Since V is continuous on C (see (i)), µ in (2.1) is Lipschitz continuous (actually, it
suffices to require local α-Hölder continuity) in [0, T ]×R, and the diffusion coefficient is constant,
one can borrow a classic result from the theory of parabolic partial differential equations (see
Friedman, 1964, Section 3, Theorem 9) to guarantee that, for an open rectangle R ⊂ C, the first
initial-boundary value problem

Lf − λf = 0 in R, (2.27)
f = V on ∂R, (2.28)

has a unique solution f ∈ C1,2(R). Fix (t, x) ∈ R and let τRc be the first time Xt,x
s exits R.

Therefore, we can use the Itô formula on f(Xt,x
s ) at s = τRc , together with (2.27) and (2.28),

to get the equality Et,x[V (Xt+τRc )] = f(t, x). Finally, notice that, due to the strong Markov
property, Et,x[V (Xt+τRc )] = V (t, x), meaning that f = V (see Peskir and Shiryaev, 2006, Section
7.1, for further details). The fact that V is C1,2 on D follows straightforwardly from V = G
on D.

(iii) We already mentioned that x 7→ V (t, x) is decreasing since G is decreasing as well
and x 7→ Xt,x

s is increasing. For (t, x) ∈ [0, T ) × R such that x ̸= b(t), (2.19) follows after
recalling that V is differentiable with respect to x in C and D, dividing by δ in (2.26), and
taking δ → 0, while using the dominated convergence theorem. The same procedure used in
(2.22) and (2.25) yields (2.20) and (2.21).

Next, we look for smoothness of the free boundary in order to prove the smooth-fit condition
on which relies the uniqueness of the solution of the free-boundary problem associated to the
OSP (2.3). The works of De Angelis (2015), Peskir (2019), and De Angelis and Stabile (2019)
are a good compendium on the smoothness of the OSB. For time-homogeneous processes and
smooth gain functions, De Angelis (2015) provides the continuity of the free boundary for one-
dimensional processes with locally Lipschitz-continuous drift and volatility. The two-dimensional
case (including time-space diffusions) is addressed by Peskir (2019) in fairly general settings,
which proves the impossibility of first-type discontinuities of the OSB for Mayer–Lagrange OSPs.
Unfortunately, continuity of the OSB is not enough to prove the smooth-fit condition. Local
Lipschitz continuity, however, suffices to derive the smooth-fit condition in our settings, as we
prove later in Proposition 2.4.

In De Angelis and Stabile (2019), the local Lipschitz continuity of the free boundary in a high-
dimensional framework is obtained, also for Mayer–Lagrange OSPs. However, some restrictive
conditions are imposed that are not met in our setting, like C3 smoothness of the gain function
and a particular relation between the partial derivatives of LG (see conditions (D), (F) and (G)
in De Angelis and Stabile (2019)).

The next proposition proves the local Lipschitz continuity of the OSB by adapting the
methodology used by De Angelis and Stabile (2019) to deal with our settings.
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Proposition 2.3 (Lipschitz continuity of b).
The OSB b : [0, T ]→ R is Lipschitz continuous on any closed interval in [0, T ).

Proof. Consider the function W (t, x) = V (t, x) − G(x) and the closed interval I = [ t, t̄ ] ⊂
[0, T ). Proposition 2.1 guarantees that b is bounded from above and, hence, we can choose
r > sup {b(t) : t ∈ I}. Hence, I × {r} ⊂ C, and then W (t, r) > 0 for all t ∈ I. Since W is
continuous on C (see Proposition 2.2), there exists a constant a > 0 such that W (t, r) ≥ a for
all t ∈ I. Therefore, for all δ such that 0 < δ ≤ a, the equation W (t, x) = δ has a solution in
C for all t ∈ I. This solution is unique for each t, as ∂xW > 0 in C (see (2.19)). Hence we can
denote it by bδ(t), where bδ : I → (b(t), r]. Away from the boundary, W is regular enough to
apply the implicit function theorem, which guarantees that bδ is differentiable and

b′
δ(t) = −∂tW (t, bδ(t))/∂xW (t, bδ(t)). (2.29)

Notice that bδ is increasing in δ and therefore it converges pointwise to some limit function b0,
which satisfies b0 ≥ b in I as bδ > b for all δ. Since W (t, bδ(t)) = δ and W is continuous, it
follows that W (t, b0(t)) = 0 after taking δ ↓ 0, which means that b0 ≤ b in I and hence b0 = b
in I.

For (t, x) ∈ C such that t ∈ I and x < r, consider the stopping times τ∗ = τ∗(t, x) and

τr = τr(t, x) := inf{s ≥ 0 : Xt,x
s /∈ I × (−∞, r)}.

Using (2.42) from Lemma 2.1, alongside the fact that τ∗ ≤ T − t, it readily follows after (2.20)
that

∂tW (t, x) ≤ E
[∣∣∂tXt,x

τ∗
∣∣] ≤ L (1 + (T − t)eL(T−t)

)
m(t, x), (2.30)

where L is a positive constant coming from the Lipschitz continuity of ∂tµ and m is the function
defined as

m(t, x) := E
[∫ τ∗

0

(∣∣∣Xt,x
u

∣∣∣+ 1
)

du
]
.

Due to the tower property of conditional expectation and the strong Markov property, we have
that

m(t, x) = E
[∫ τ∗∧τr

0

(∣∣∣Xt,x
u

∣∣∣+ 1
)

du+ 1(τr ≤ τ∗)m (t+ τr, Xt+τr )
]
. (2.31)

Notice that, for b(t) < x < r,
(
t + τr, X

t,x
t+τr

)
∈ Γt :=

(
(t, t̄)× {r}

)
∪
({
t̄
}
× (b(t̄), r]

)
on the

set {τr < τ∗}. Then, we get the following upper bound on {τr < τ∗}:

m (t+ τr, Xt+τr ) ≤ sup
(s,y)∈Γt

m (s, y) = sup
(s,y)∈Γt

E
[∫ τ∗(s,y)

0
(|Xs,y

u |+ 1) du
]

≤ T sup
(s,y)∈Γt

√
E
[

sup
u≤T−s

(|Xs,y
u |+ 1)2

]
≤ T sup

(s,y)∈Γt

√
M

(1)
T−s (|y|2 + 1)

≤ T
√
M

(1)
T

(
max

{
|b(t̄)|2, |r|2

}
+ 1

)
, (2.32)
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where we used the Cauchy–Schwarz inequality and (2.40) from Lemma 2.1. Plugging (2.32)
into (2.31), recalling (2.30), and noticing that, for u ≤ τ∗ ∧ τr, |Xt,x

u | ≤ max{|b|, r} with
b := inf{b(t) : t ∈ [0, T ]}, we get that

∂tW (t, x) ≤ K(1)
I E [τr ∧ τ∗ + 1(τr ≤ τ∗)] (2.33)

for some positive constant K(1)
I .

Using (2.19) and (2.41) from Lemma 2.1, and proceeding in the same way as for (2.31), we
get the following lower bound for ∂xW (t, x):

∂xW (t, x) ≥M (2)
T−tE [τ∗] = M

(2)
T−tE

[
(τr ∧ τ∗) + 1(τr ≤ τ∗)E

[
τ∗
(
t+ τr, X

t,x
τr

)]]
. (2.34)

Now, by combining equations (2.29), (2.33), and (2.34), we obtain the following inequalities
for a constant K(2)

I > 0, xδ = bδ(t), τδ = τ∗(t, xδ), and τr = τr(t, xδ):

b′
δ(t) ≥−K

(2)
I

E [τδ ∧ τr + 1(τr ≤ τδ)]
E
[
τδ ∧ τr + 1(τr ≤ τδ)E

[
τ∗(t+ τr, X

t,xδ
τr

)]]
≥−K(2)

I

(
1 + P (τr ≤ τδ)

E
[
τδ ∧ τr + 1(τr ≤ τδ)E

[
τ∗(t+ τr, X

t,xδ
τr

)]])

≥−K(2)
I

(
1 + P

(
τr ≤ τδ, τr = t̄− t

)
E [τδ ∧ τr]

+ P
(
τr ≤ τδ, τr < t̄− t

)
E
[
1(τr ≤ τδ)E

[
τ∗(t+ τr, X

t,xδ
τr

)]])

≥−K(2)
I

(
1 + P

(
τr ≤ τδ, τr = t̄− t

)
E
[
1(τr ≤ τδ, τr = t̄− t)(τδ ∧ τr)

]
+ P

(
τr ≤ τδ, τr < t̄− t

)
E
[
1(τr ≤ τδ, τr < t̄− t)E

[
τ∗(t+ τr, X

t,xδ
τr

)]])

≥−K(2)
I

(
1 + 1

t̄− t
+ 1

inft∈I E [τ∗(t, r)]

)
, (2.35)

where in the last inequality we used that Xt,xδ
τr

= r in the set
{
τr ≤ τδ, τr < t̄− t

}
.

Since I × {r} ⊂ C, there exists ε > 0 such that Rε := [ t, t̄ + ε] × (r − ε, r + ε) ⊂ C. Notice
that τ∗(t, r) > τε(t, r) for all t ∈ I, with τε(t, r) = inf

{
u ≥ 0 :

(
t+ u,Xt,r

u

)
/∈ Rε

}
. Hence,

inf
t∈I

E [τ∗(t, r)] ≥ inf
t∈I

E [τε(t, r)]

≥ inf
t∈I

{
(t̄+ ε− t)P

(
sup

u≤t̄+ε−t

∣∣∣Xt,r
u − r

∣∣∣ < ε

)}

≥ ε inf
t∈I

P
(

sup
u≤t̄+ε−t

∣∣∣Xt,r
u − r

∣∣∣ < ε

)
=: KI,ε > 0.

Therefore, going back to (2.35), we have that, for all t ∈ I ′ = [ t, t̄ − ε] and ε > 0 small
enough,

b′
δ(t) ≥ −K

(2)
I

(
1 + ε−1 +KI,ε

)
. (2.36)

To find a bound in the opposite direction that is also uniform with respect to δ and for all
t ∈ I ′, we consider (2.21) and (2.30) and use the Markov inequality to get

∂tW (t, xδ) ≥− L
(
1 + (T − t)eL(T−t)

)
E
[∫ τδ

0

(∣∣∣Xt,xδ
u

∣∣∣+ 1
)

du
]
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− L̃(T − t)−1E [τδ] (2.37)

for some positive constant L̃. Hence, relying on the same arguments as those used to get (2.36),
but with (2.37) instead of (2.33), we obtain

b′
δ(t) ≤ K

(
1 + ε−1 +KI,ε

)
+ L̃(T − t̄)−1. (2.38)

We have proved that |b′
δ(t)| is bounded by a constant, uniformly in δ and for all t ∈ I ′. Then

the Arzelà–Ascoly’s theorem gives that bδ converges uniformly to b in I ′ as δ → 0, which implies
that b is Lipschitz continuous on I ′.

The next proposition gives the smooth-fit condition for our OSP. Its proof relies on Lemma 2.2
and the fact that b is locally Lipschitz continuous. These two combined results imply that the
process Xt,x enters the interior of D immediately for x = b(t) (see Remark 4.5 in De Angelis
and Stabile (2019)). The work in De Angelis and Peskir (2020), specifically Corollary 6, is then
used to obtain τ∗(t, b(t)+ε)→ 0 P-a.s. when ε ↓ 0, from which the smooth-fit condition follows.

Proposition 2.4 (Smooth-fit condition).
The smooth-fit condition holds, i.e., ∂xV (t, b(t)) = −1 for all t ∈ [0, T ).

Proof. Take a point (t, b(t)) for t ∈ [0, T ) and consider δ > 0. Since (t, b(t)) ∈ D and (t, b(t) +
δ) ∈ C, we get that δ−1(V (t, b(t)+δ)−V (t, b(t))) ≥ δ−1(G(b(t)+δ)−G(b(t))) = −1. Therefore,
∂+
x V (t, b(t)) ≥ −1.

Besides, reasoning as in (2.26), we get that

δ−1(V (t, b(t) + δ)− V (t, b(t))) ≤ −E
[
e−λτδ∂xX

t,xδ
τδ

]
≤ sup

x∈(b(t),A)
E
[

sup
s≤T−t

∂xX
t,x
s

]
<∞,

where τδ = τ∗(t, b(t) + δ) and xδ ∈ (b(t), b(t) + δ). From (2.8), it is easy to see that the
supremum is finite (actually, it is lower than 1) since ∂xµ < 0. Then, we can apply the dominated
convergence theorem to obtain

∂+
x V (t, b(t)) ≤ −E

[
e−λτ0∂xX

t,b(t)
τ0

]
(2.39)

with τ0 := limδ→0 τδ (τ0 is well-defined since the sequence τδ decreases with respect to δ P-a.s.).
We now prove that Pt,b(t) (τ0 = 0) = 1. We do so by summoning Corollary 6 from De An-

gelis and Peskir (2020) and proving that (t, b(t)) is probabilistically regular for Do, that is,
Pt,b(t) (τDo = 0) = 1, where

τDo := inf {u ≥ 0 : (t+ u,Xt+u) ∈ Do} .

Indeed,

Pt,b(t) (τDo = 0) = lim
ε↓0

Pt,b(t) (τDo < ε)

= lim
ε↓0

Pt,b(t)

(
inf

u∈(0,ε)
(Xt+u − b(t+ u)) < 0

)

= lim
ε↓0

Pt,b(t)

(
inf

u∈(0,ε)

Xt+u − b(t+ u)√
2u ln(ln(1/u))

< 0
)



42
Chapter 2. Optimal exercise of American options under time-dependent

Ornstein–Uhlenbeck processes

≥ lim
ε↓0

Pt,b(t)

(
inf

u∈(0,ε)

Xt+u − b(t) + Lu√
2u ln(ln(1/u))

< 0
)

= Pt,b(t)

(
lim inf
u↓0

Xt+u − b(t) + Lu√
2u ln(ln(1/u))

< 0
)

= 1,

where, in the first inequality, L is a positive constant that comes from the local Lipschitz
continuity of b (see Proposition 2.3), and the last equality holds due to (2.45). Hence, (2.39)
yields ∂+

x V (t, b(t)) ≤ −1 and, consequently, ∂+
x V (t, b(t)) = −1.

The smooth-fit condition arises by recalling that ∂−
x V (t, b(t)) = −1 since V = G on D.

We conclude this section with two technical lemmas. One on the boundedness of several
functionals of the underlying process X that have been used throughout the previous proofs,
and another on a law of the iterated logarithm for X.

Lemma 2.1 (Some bounds on functionals of X).
The following inequalities hold for positive constants L, M (i)

s , i = 1, 2, 3, and (t, x) ∈ [0, T )× R
and s ∈ (0, T − t]:

E
[
sup
u≤s

(∣∣∣Xt,x
u

∣∣∣+ 1
)2
]
≤M (1)

s

(
|x|2 + 1

)
, (2.40)

∂xX
t,x
s ≤ 1−M (2)

s s, (2.41)

E
[
sup
u≤s

∣∣∣∂tXt,x
u

∣∣∣] ≤ L (1 + seLs
)
E
[∫ s

0

(∣∣∣Xt,x
u

∣∣∣+ 1
)

du
]

(2.42)

≤M (3)
s (|x|+ 1) . (2.43)

Moreover, s 7→M
(i)
s is an increasing function for i = 1, 3, and is decreasing for i = 2.

Proof. Since (a+ b+ c)2 ≤ 3(a2 + b2 + c2) and due to the Lipschitz continuity of x 7→ µ(t, x),(∣∣∣Xt,x
s

∣∣∣+ 1
)2
≤ 3 (|x|+ 1)2 + 3

∫ s

0

(
µ(t+ r,Xt,x

r )
)2

dr + 3 (Ws)2

≤ 3 (|x|+ 1)2 + 3L
∫ s

0

(∣∣∣Xt,x
r

∣∣∣+ 1
)2

dr + 3 (Ws)2

for some positive constant L. Hence, using the maximal inequalities in Theorem 14.13 (d) from
Schilling et al. (2012), it follows that

E
[
sup
u≤s

(∣∣∣Xt,x
u

∣∣∣+ 1
)2
]
≤ 3 (|x|+ 1)2 + 3L

∫ s

0
E
[(∣∣∣Xt,x

r

∣∣∣+ 1
)2
]

dr + 3E
[
sup
u≤s

(Wu)2
]

≤ 3 (|x|+ 1)2 + 12s+ 3L
∫ s

0
E
[
sup
u≤r

(∣∣∣Xt,x
u

∣∣∣+ 1
)2
]

dr.

Therefore, Gronwall’s inequality (Schilling et al., 2012, Theorem A.43) guarantees that

E
[
sup
u≤s

(∣∣∣Xt,x
u

∣∣∣+ 1
)2
]
≤ 3 (|x|+ 1)2 + 12s+ 3L

∫ s

0

(
3 (|x|+ 1)2 + 12u

)
e3L(s−u) du

≤ 3 (|x|+ 1)2 + 12s+ 3Le3Ls
(
3 (|x|+ 1)2 s+ 6s2

)
,
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from which (2.40) follows.
To obtain (2.41), we use that µ is Lipschitz continuous and ∂xµ < 0, together with repre-

sentation (2.8) and (2.19), leading to

1− ∂xXt,x
s =

∫ s

0
−∂xµ(t+ u,Xt,x

u )∂xXt,x
u du

=
∫ s

0
−∂xµ(t+ u,Xt,x

u ) exp
{∫ u

0
∂xµ(t+ r,Xt,x

r ) dr
}

du

≥ exp
{∫ s

0
∂xµ(t+ u,Xt,x

u ) du
}∫ s

0
−∂xµ(t+ u,Xt,x

u ) du

≥ e−Ls
∫ s

0
−∂xµ(t+ u,Xt,x

u ) du

≥ e−Ls min
u∈[0,T ]

{−µ̄(u)} s,

where L is the Lipschitz constant.
Let us prove now (2.43). To do so, notice first that (2.6) implies∣∣∣∂tXt,x

s

∣∣∣ ≤ a1(s, t, x) +
∫ s

0
a2(u, t, x)

∣∣∣∂tXt,x
u

∣∣∣ du,

with

a1(s, t, x) :=
∫ s

0

∣∣∣∂tµ(t+ u,Xt,x
u )

∣∣∣ du, a2(u, t, x) :=
∣∣∣∂xµ(t+ u,Xt,x

u )
∣∣∣ .

Therefore, an application of Gronwall’s inequality yields∣∣∣∂tXt,x
s

∣∣∣ ≤ a1(s, t, x) +
∫ s

0
a1(u, t, x)a2(u, t, x) exp

{∫ s

u
a2(r, t, x) dr

}
du.

Hence, due to the Lipschitz continuity of µ and ∂tµ, and using (2.40) alongside the Cauchy–
Schwarz inequality, we have that

E
[
sup
u≤s

∣∣∣∂tXt,x
u

∣∣∣] ≤ E
[
a1(s, t, x)

(
1 +

∫ s

0
a2(u, t, x) du exp

{∫ s

0
a2(u, t, x) du

})]
≤ L

(
1 + seLs

)
E
[∫ s

0

(∣∣∣Xt,x
u

∣∣∣+ 1
)

du
]

≤ L
(
1 + seLs

)
s

√√√√E
[
sup
u≤s

(∣∣∣Xt,x
u

∣∣∣+ 1
)2
]

≤ L
(
1 + seLs

)
s

√
M

(1)
s (|x|2 + 1),

which entails (2.42) and (2.43).

Lemma 2.2 (Law of the iterated logarithm for X). The following relations hold for all (t, x) ∈
[0, T ]× R:

Pt,x

(
lim sup
u↓0

Xt+u − x√
2u ln(ln(1/u))

= 1
)

= 1, (2.44)

and

Pt,x

(
lim inf
u↓0

Xt+u − x√
2u ln(ln(1/u))

= −1
)

= 1. (2.45)



44
Chapter 2. Optimal exercise of American options under time-dependent

Ornstein–Uhlenbeck processes

Proof. Let mt,x(u) := Et,x [Xt+u], ft(u) = exp
{
−
∫ t+u
t θ(r) dr

}
, and ht(u) =

∫ t+u
t f−2

t (u) du. It
is known (see, e.g., Buonocore et al. (2013)) that, under Pt,x, Xt+u admits the representation
Xt+u = mt,x(u) + ft(u)Bht(u), where (Bt)t∈R+ is a standard Brownian motion. Hence, the law
of the iterated logarithm for the Brownian motion establishes that

Pt,x

(
lim sup
u→0

(Xt+u −mt,x(u))/ft(u)√
2ht(u) ln(ln(1/ht(u)))

= 1
)

= 1.

Then, (2.44) is proved after realizing that mt,x(u) → x, ft(u) → 1, and ht(u)/u → 1, as u ↓ 0.
Relation (2.45) follows identical steps.

2.4 The value formula and the free-boundary equation
Our main result is collected in the following theorem. It gives a characterization of the OSB as
the unique solution, up to regularity conditions, of a type-two Volterra integral equation. It also
provides a formula for the value function, which can be regarded as the fair price of the American
option under the natural measure of the OU process. This contract might find application from
the point of view of small investors who, due to their limited capital and impossibility to trade in
continuous time (also due to transaction costs), cannot perform hedging strategies to reproduce
the conditions of a risk-free measure settings under which the valuation of options is typically
done to keep the market free of arbitrage opportunities.

The value formula is given in terms of the early-exercise premium representation. That is,
the sum of the price of the European put option written on the same asset and expiring on the
same date, and the early-exercise premium, i.e., the cost of being able to exercise the option
before maturity.

Theorem 2.1 (Free-boundary equation and value formula).
The OSB related to the OSP (2.3) satisfies the integral equation

b(t) = A−Kλ(A, 1, t, b(t), T, A)

−
∫ T

t
Kλ(λA+ θ(u)α(u), λ+ θ(u), t, b(t), u, b(u)) du, (2.46)

where, for c1, c2, x1, x2 ∈ R and t1, t2 ∈ [0, T ] such that t2 ≥ t1,

Kλ(c1, c2, t1, x1, t2, x2) := e−λ(t2−t1)Et1,x1 [(c1 − c2Xt2)1(Xt2 ≤ x2)] (2.47)

= e−λ(t2−t1)
{

(c1 − c2ν(t1, x1, t2))Φ
(
x2 − ν(t1, x1, t2)

γ(t1, t2)

)
+ c2γ(t1, t2)ϕ

(
x2 − ν(t1, x1, t2)

γ(t1, t2)

)}
,

where ϕ and Φ are the density and distribution functions of a standard normal, and ν and γ
depend on the time-dependent OU parameters:

ν(t1, x, t2) = exp
{
−
∫ t2

t1
θ(r) dr

}
x+

∫ t2

t1
exp

{
−
∫ t2

r
θ(s) ds

}
θ(r)α(r) dr, (2.48)

γ2(t1, t2) =
∫ t2

t1
exp

{
−2
∫ t2

r
θ(s) ds

}
dr. (2.49)
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Moreover, (2.46) has a unique solution among the class of continuous functions of bounded
variation c : [0, T ]→ R that satisfy c(t) < A for all t ∈ [0, T ).

Also, the associated value function is given by

V (t, x) = Kλ(A, 1, t, x, T,A) (2.50)

+
∫ T

t
Kλ(λA+ θ(u)α(u), λ+ θ(u), t, x, u, b(u)) du.

Proof. Propositions 2.1–2.4 allow applying an extension of the Itô formula to e−λsV (t+s,Xt+s).
This extension is derived in Peskir (2005a) and is reformulated in Lemma A2 from D’Auria et al.
(2020) in a way that fits our settings more straightforwardly. After setting s = T − t, taking
Pt,x-expectation, and shifting the integrating variable t units, it follows that

V (t, x) = e−λ(T−t)Et,x [G(XT )]−
∫ T

t
Et,x

[
e−λ(u−t)(LV − λV )(u,Xu)

]
du, (2.51)

where the martingale term vanishes after taking Pt,x-expectation, and the local time term does
not appear due to the smooth-fit condition. Recall that LV = λV on C and V = G on D.
Therefore, (2.51) turns into the value formula

V (t, x) = e−λ(T−t)Et,x [(A−XT )1 (XT ≤ A)] (2.52)

+
∫ T

t
Et,x

[
e−λ(u−t) (λ (A−Xu) + µ(u,Xu))1 (Xu ≤ b(u))

]
du.

By taking x ↑ b(t) in (2.52) we get the free-boundary equation

b(t) = A− e−λ(T−t)Et,b(t) [(A−XT )1 (XT ≤ A)] (2.53)

−
∫ T

t
Et,b(t)

[
e−λ(u−t) (λ (A−Xu) + µ(u,Xu))1 (Xu ≤ b(u))

]
du.

The uniqueness of the solution of (2.53), up to the conditions stated in the theorem, follows
well-known arguments derived by Peskir (2005b, Theorem 3.1).

We can provide a more tractable expression for both the value formula (2.52) and the free-
boundary equation (2.53) by taking advantage of the Gaussianity of X. Indeed, it is easy to
get (see, e.g., Gardiner, 2004, Section 4.4.9) that, under Pt,x, Xu has a normal distribution with
mean and variance given by (2.48) and (2.49) for all u ∈ [t, T ]. This leads, after some algebraic
manipulation, to equations (2.46) and (2.50).

Further flexibility of the underlying process can be achieved by allowing time-dependent
volatility, like in the popular Hull–White model. We show in the next remark that such an
extension requires no extra analysis, as it can be reduced to the constant-volatility model (2.1)
by means of a time change.

Remark 2.1 (Time-dependent deterministic volatility).
Let Xt(θ, α, σ, T ) = (Xt)t∈[0,T ] be a stochastic process satisfying the stochastic differential equa-
tion

dXt(θ, α, σ, T ) = θ(t)(α(t)−Xt(θ, α, σ, T )) dt+ σ(t) dWt, 0 ≤ t ≤ T, (2.54)

where θ, α, σ : [0, T ] → R are continuously differentiable functions such that θ(t) > 0 and
σ(t) > 0 for all t ∈ [0, T ], and

∫ T
0 σ2(t) dt < ∞. Define the time change t̃ = h̃(t) =

∫ t
0 σ

2(u) du
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and the inverse transformation h = h̃−1. Consider the time-changed process X̃ =
(
X̃t̃

)
t̃∈[0,T̃ ]

defined by X̃t̃ = Xh(t̃)(θ, α, σ, T ) and T̃ = h̃(T ). Then,

X̃t̃ = X0(θ, α, σ, T ) +
∫ h(t̃)

0
θ(u)(α(u)−Xu(θ, α, σ, T )) du+

∫ h(t̃)

0
σ(u) dWu.

The process W̃t̃ =
∫ h(t̃)

0 σ(u) dWu is a standard Brownian motion. Hence, X̃ solves

dX̃t̃ = h′(t̃)θ(h(t̃))
(
α(h(t̃))−Xh(t̃)(θ, α, σ, T )

)
dt̃+ dW̃t̃

= θ̃(t̃)
(
α̃(t̃)− X̃t̃

)
dt̃+ dW̃t̃,

where θ̃(t̃) = σ−2(h(t̃))θ(h(t̃)) and α̃(t̃) = α(h(t̃)), that is, X̃ is a time-dependent OU process
with constant volatility. Hence, we can rely on equations (2.50) and (2.46) to compute the value
function and OSB associated with X̃, Ṽ , and b̃, from where we can simply obtain the value
function and OSB related to X(θ, α, σ, T ) as V (t, x) = Ṽ (h(t̃), x) and b(t) = b̃(h(t̃)).

The optimal exercise of the put and the call American options is fundamentally the same
problem due to their symmetry with respect to the strike price, as shown in the next remark.

Remark 2.2 (Put-call parity).
Let Vp be the value function associated with an American put option written on the time-
dependent OU processes X(p) =

(
X

(p)
t

)
t∈[0,T ] and with strike price A. Then,

Vp(t, x) := sup
τ≤T−t

Et,x
[
e−λτ

(
A−X(p)

t+τ

)+
]

= sup
τ≤T−t

Et,x
[
e−λτ

((
2A−X(p)

t+τ

)
−A

)+
]

= sup
τ≤T−t

Et,2A−x

[
e−λτ

(
X

(c)
t+τ −A

)+
]

=: Vc(t, 2A− x),

where X(c) =
(
X

(c)
t

)
t∈[0,T ] is the time-dependent OU process such that X(c) = 2A − X(p), and

Vc is the value function of the American call option with strike price A and written on X(c).
Similarly, the optimal exercise strategy for the call option is to stop the process X(c) the first
time it is below the function bc : [0, T ] → R such that bc(t) = 2A − bp(t), where bp is the OSB
associated to Vp.

2.5 Numerical experiments
Non-linear Volterra-type integral equations are hard to solve, and the free-boundary equation
(2.46) is not an exception. Mainly, there are two methods to solve these types of integral
equations arising from OSPs, both relying on the contraction principle: (1) a backward induc-
tion approach that recursively builds the boundary by leveraging that b(t) depends only on
{b(s)}s∈[t,T ]; and (2) the well-known method of Picard iterations that, given an initial candi-
date boundary b0, consequently computes subsequent boundaries until a convergence criterion
is fulfilled. See Detemple (2005, Chapter 8) for more details on the method of backward in-
duction and Pedersen and Peskir (2002) for implementations. The Picard iteration scheme has
been used by, e.g., Detemple and Kitapbayev (2020) and De Angelis and Milazzo (2020). As
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far as we know, the convergence of both approaches has not been formally addressed in general
settings, and authors tend to provide numerical evidence of the error decreasing as the number
of iterations grows. This happens because the kernel of the integral equation is typically highly
non-linear and, hence, it becomes challenging to prove the contracting mapping principle for the
integral operator that characterizes the OSB, which is the most obvious and immediate strategy
to follow to get the convergence of Picard’s iteration algorithm. We adopted the Picard method
to display visual insight into the OSB’s shape, as our numerical experiments suggested similar
accuracy and faster computations compared to the backward induction approach (within the
set of explored settings).

Take the partition 0 = t0 < t1 < · · · < tN = T for N ∈ N. We initialize the Picard scheme by
starting with the constant boundary b(0)(t) = b(T ) for all t ∈ [0, T ]. Recall from Proposition 2.1
that b(T ) = min{A, γ(T )} is known, with γ(T ) as in (2.13). Each iteration of the algorithm
updates the boundary according to the following formula, which is a right Riemann sum version
of the integral in (2.46):

b(k)(ti) = A−Kλ

(
A, 1, ti, b(k−1)(ti), T, A

)
(2.55)

−
N∑

j=i+1
Kλ

(
λA+ θ(tj)α(tj), λ+ θ(tj), ti, b(k−1)(ti), tj , b(k−1)(tj)

)
.

We stop the iterations of the fixed-point algorithm (2.55) at the first k = 1, 2, . . . such that
the (squared) distance dk :=

∑N
i=0

(
b(k)(ti) − b(k−1)(ti)

)2 is less than δ = 10−3. Computational
experiments suggested that a mesh that is denser at the terminal time T performs better and
that it is preferable that the distances between consecutive nodes narrow smoothly. For that
reason, we used the logarithmically-spaced partition ti = ln (1 + i(e− 1)/N) with N = 200
(unless otherwise specified).

For Figures 2.1–2.3, the images on top show computer drawings of the obtained OSB from
the Picard iteration (2.55). The images below represent the sequences of errors of the algorithm,
that is, the x-axis accounts for the iteration number k = 1, 2, . . . and the y-axis for dk. The
decrease in these error sequences empirically corroborates the convergence of the algorithm.

Figure 2.1 provides insights into the shape of the OSB for different sets of slopes and pulling
levels. We also allow the process to have non-constant volatility, as discussed in Remark 2.1.
In each image, two of the three functions that define the dynamics in (2.54) are fixed, and
the remaining one varies to make clear the marginal effect it has on the OSB’s shape. We use
the functions Φ and ϕ to model abrupt changes in a smooth fashion. Figure 2.1(a) models a
regime change of the stock price, where the switching happens smoothly, deterministically, and
depends only on the time variable. It also reflects the attracting behavior of the OSB towards
α. Figure 2.1(b) exemplifies how this attraction strengthens as θ increases, and also depicts a
sudden increase of the pulling strength, which could represent a sharp increase of confidence in
a belief of the price evolution. Figure 2.1(c) introduces periods where the volatility spikes to
unusual levels before returning to a baseline. It also shows how the OSB is repelled from the
pulling level as the volatility increases, which, in agreement with Remark 2.1, coincides with the
effect of reducing the slope.

Recent interest in OSPs related to diffusion bridges whose drift is linear in the space com-
ponent (see, e.g., D’Auria et al. (2020) and D’Auria et al. (2021)) led us to investigate the
applicability of our OSB within this context. The difficulty of dealing with these processes is
that their slopes θ explode as the time approaches the horizon, hence they do not fit our assump-
tion of a bounded slope. However, we suggest in Figure 2.2 that this inconvenience could be
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(c) θ(t) = 1, α(t) = sin(2πt).

Figure 2.1: For the images on top, the solid colored lines represent the OSBs for the different
choices of the α, θ, and σ functions shown in the legend. The dashed lines represent the pulling
level α and the dotted line is placed at the strike price level A. Φ and ϕ represent the distribution
and density functions of a standard normal. We set T = 1, λ = 1, and A = 0. The smaller
images below provide the errors log10(dk) between consecutive boundaries for each iteration
k = 1, 2, . . . of (2.55).

circumvented in practice by arbitrarily approximating the explosion with non-exploding smooth
drifts of time-dependent OU processes. We do so by relying on the OSB of a Brownian Bridge
(BB) and an Ornstein–Uhlenbeck Bridge (OUB) in the non-discounted scenario, whose solutions
are available for some particular settings.

The OSB for the BB with pinning point A and gain function x 7→ (A − x)+ takes the
form A − Bσ

√
T − t, for B ≈ 0.8399, a result that goes back to the work of Shepp (1969)

and its connection to the American option by D’Auria et al. (2020). We use, in Figure 2.2(a),
the Taylor-expansion approximation (at t = 0) of the BB slope (1 − t)−1, namely,

∑n
i=0 t

i, for
different values of the order n indicated in the legend. The results in Figure 2.2(a) show that the
application of the Picard iteration (2.55) on the time-dependent OU that order-n approximates
a BB converges to the expected, known, OSB.

The OSB of the OUB is not known in closed-form, but rather as a characterization via the
free-boundary equation provided in D’Auria et al. (2021), which can be also solved by means
of a Picard algorithm. In that paper the authors treated the OUB case with the identity
as the gain function. However, a simple translation with respect to A provides the OSB for
x 7→ (A − x)+ as the gain function whenever the pinning point is lower than A. This is
easy to note as both gain functions, x 7→ A − x and x 7→ (A − x)+ coincide for all x ≤ A.
Then, there is no fundamental difference in both OSPs (for λ = 0) whenever the boundary
associated with the OUB lies below A. In Figure 2.2(b), to avoid the explosion of the OUB slope,
t 7→ a coth(a(1−t)), we use instead the smooth function t 7→ 1(t ≤ 1−ε)

{
a coth(a(1−t))

}
+1(t >

1−ε)
{
1−exp{−a2(t−1+ε)/ sinh2(aε)}+a coth(aε)

}
, for a = 5, and different values of ε specified

in the legend. Figure 2.2(b) shows that the application of (2.55) on the time-dependent OU
that approximates an OUB with pinning point z = 2 converges to the (numerically-computed)
OSB of the OUB.

Finally, Figure 2.3 illustrates how the algorithm’s output seems to converge as the partition
size increases. Observe the relatively good performance with just a few points in the parti-
tion. Additionally, we show how changing the discounting rate affects the OSB’s shape: larger
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Figure 2.2: For the images on top, the solid colored lines represent the OSBs for different n and ε (see
main text). The dotted line is placed at the strike price level A, while the dashed line stands for the
pulling level α, and the dotted-dashed lines are the OSBs of the BB (a) and the OUB (b). We set A = 0,
λ = 0, and T = 1. The smaller images below are analogous to those in Figure 2.1.

discounts decrease the separation of the OSB with respect to the strike price.
The repository https://github.com/aguazz/AmOpTDOU contains all the required R scripts

to reproduce the numerical experiments.

2.6 Concluding remarks

If a time-dependent Ornstein–Uhlenbeck model fits well the price of the underlying asset, the
strategy that maximizes the mean gain of a holder of an American put option on that asset is
that of exercising once the price lies below the solution of the integral equation in Theorem 2.1.
This integral equation can be solved numerically using the algorithm from Section 2.5.

We rely on a probabilistic methodology similar to that used in Peskir (2005b). That is,
we obtained enough regularity conditions on the value function and on the optimal stopping
boundary to apply an extension of the Itô formula and come up with the free-boundary (Volterra
integral) equation. Contrary to Peskir (2005b) and many papers that followed the same approach
(see, e.g., Peskir and Uys (2003); Peskir (2005c); Glover et al. (2010, 2011); Kitapbayev (2014);
De Angelis and Milazzo (2020)), our optimal stopping boundary is not necessarily monotonic
(see Figure 2.1), which makes more complicated the derivation of certain properties, especially
the smooth-fit condition. To overcome this handicap, we obtained the Lipschitz continuity of
the boundary by adapting the work of De Angelis and Stabile (2019) to fit our non-differentiable
gain function and relax other restrictive assumptions. We then proved that Lipschitz continuity
suffices to obtain that the underlying process enters the stopping set immediately after starting
on the optimal stopping boundary and, then, by relying on the work of De Angelis and Peskir
(2020), we derived the smooth-fit condition. It is worth highlighting the comparison method
used to get the lower bound of the optimal boundary in Proposition 2.1, as it seems to be
extensible to other settings.
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(b) N = 20.
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Figure 2.3: For images on top, the solid colored lines represent the OSBs for different values of the
discounting rate specified in the legend, while the dashed line is placed at A = 0. We set θ(t) = 1,
α(t) = 0, σ(t) = 1, A = 0, and T = 1. The smaller images below are analogous to those in Figure 2.1.

Numerical experiments performed in Section 2.5 revealed a wide flexibility in the shape of
the optimal boundary generated by changing the form of the time-dependent parameters. It also
showed that the errors produced by the Picard iteration algorithm decrease, suggesting that the
fixed-point operator in the free-boundary equation (2.46) could be a contracting map. Figure
2.2 suggests that the limiting boundedness assumption on the process’s coefficients (they are
continuous on [0, T ]) can be escaped to approximate the optimal boundary of a Brownian bridge
and an Ornstein–Uhlenbeck bridge, and, potentially, other diffusion bridges whose drift is linear
in the space component.
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Chapter 3

Discounted optimal stopping of a
Brownian bridge, with application to
American options under pinning

Abstract

Mathematically, the execution of an American-style financial derivative is commonly reduced to
solving an optimal stopping problem. Breaking the general assumption that the knowledge of
the holder is restricted to the price history of the underlying asset, we allow for the disclosure
of future information about the terminal price of the asset by modeling it as a Brownian bridge.
This model may be used under special market conditions. In particular, we focus on what in
the literature is known as the “pinning effect”, that is, when the price of the asset approaches
the strike price of a highly-traded option close to its expiration date. Our main mathematical
contribution is in characterizing the solution to the optimal stopping problem when the gain
function includes the discount factor. We show how to numerically compute the solution and
we analyze the effect of the volatility estimation on the strategy by computing the confidence
curves around the optimal stopping boundary. Finally, we compare our method with the optimal
exercise time of a geometric Brownian motion by using real data exhibiting pinning.

Reference

D’Auria, B., García-Portugués, E., and Guada, A. Discounted optimal stopping of a Brownian
bridge, with application to American options under pinning. Mathematics 2020, 8(7), 1159,
https://doi.org/10.3390/math8071159

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2 Problem setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3 Optimally exercising American put options for a Brownian bridge . 59
3.4 Boundary computation and inference . . . . . . . . . . . . . . . . . . 62

3.4.1 Solving the free-boundary equation . . . . . . . . . . . . . . . . . . . . . 62
3.4.2 Estimating the volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4.3 Confidence intervals for the boundary . . . . . . . . . . . . . . . . . . . 65
3.4.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

55



56
Chapter 3. Discounted optimal stopping of a Brownian bridge, with application to

American options under pinning

3.5 Pinning-at-the-strike and real-data study . . . . . . . . . . . . . . . . 68
3.6 Non-monotonicity of the OSB . . . . . . . . . . . . . . . . . . . . . . . 72
3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.A Main proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.B Auxiliary lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.1 Introduction
American options are a special type of vanilla option that can be considered among the most
basic financial derivatives. By allowing for the possibility to exercise at any time before the day
of expiration, they add a new dimension to their valuation that escapes the consolidated hedging
and arbitrage-free pricing frameworks. The methodology to value an American option can be
traced back to McKean (1965), which suggested transforming this problem into a free-boundary
problem. However, even in the simplest case first proposed by Samuelson (1965), where the
underlying stock is modeled by a geometric Brownian motion, it took almost 40 years to reach a
complete and rigorous derivation of its solution. This was given in Peskir (2005b), where it was
finally proved that the free-boundary equation characterizes the optimal stopping boundary. A
good historical survey on the topic can be found in Myneni (1992).

The literature on the valuation of American options is considerable, and there have been
many attempts to extend the classes of stochastic processes that could model the dynamics
of the underlying stock. However, sometimes this has been achieved at the cost of reducing
the completeness of the result. For example, Detemple and Tian (2002) treats more general
diffusion processes and proves that the optimal strategy satisfies the free-boundary equation,
but it leaves open the proof of the uniqueness of the solution. The more recent work Zhao
and Wong (2012) provides a closed-form expression of the optimal stopping boundary for a
fairly general class of diffusion processes by expressing it in terms of Maclaurin series. How-
ever, as in Detemple and Tian (2002), it requires a boundedness assumption on the derivative
of the drift term that excludes the class of Gaussian bridges. This class of processes has recently
attracted attention to model situations where some future knowledge about the dynamics of
the underlying assets is disclosed to the trading agent, see, e.g., Pikovsky and Karatzas (1996),
Schweizer et al. (2003), Biagini and Øksendal (2005), and D’Auria and Salmerón (2020). How-
ever, these results focus mainly on quantifying the value of the disclosed information and do not
address its effect on the execution strategy of a held option.

In the area of option pricing, a first analysis of the Brownian bridge was done in Shepp
(1969) by exploiting a time transformation that converts the problem into one about the more
tractable Brownian motion. Later, the applicability of this work in the problem of optimally
selling a bond was highlighted in Boyce (1970). Successively, in Ekström and Wanntorp (2009),
the authors take up the problem in Shepp (1969) by reframing it into the wider context of the
free-boundary problem and extend its solution to a wider class of gain functions. In particular,
in Ekström and Wanntorp (2009), the Brownian bridge process is presented as a possible model
for financial applications under special market conditions, such as the so-called “pinning effect”.

The pinning effect refers to the situation in which the price of a given stock approaches the
strike price of a highly-traded option close to its expiration date. Evidence for the pinning effect
was first reported in Krishnan and Nelken (2001), where the authors employ a bridge process to
model stock pinning by tuning a geometric Brownian motion. In Avellaneda and Lipkin (2003),
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the authors postulate that the pinning behavior is mainly driven by delta-hedging of long option
positions and consider, as a model for the stock price, a stochastic differential equation with
a drift that pulls the price toward a neighborhood of the strike price. Later, the results in
Avellaneda et al. (2012) add real data evidence in support of this model. In Ni et al. (2005), the
same assumption is validated and a comprehensive set of evidence for the pinning phenomenon
is reported. The model of Avellaneda and Lipkin (2003) is generalized in Jeannin et al. (2008)
by adding a diffusion term that shrinks the volatility near the strike price.

Motivated by these findings, we study in this paper the best strategy for executing an Amer-
ican put option in the presence of stock pinning. Similarly to Ekström and Wanntorp (2009), we
model the underlying stock by a Brownian bridge. Differently, we include a discount factor that
makes the problem more realistic, yet significantly more challenging, as the optimal stopping
boundary is no longer monotonic, making it more difficult to obtain the smooth-fit condition. To
bypass this added challenge, we obtain the local Lipschitz continuity of the boundary and prove
that it suffices for the smooth-fit condition to hold. We solve the optimal stopping problem, in
the spirit of Peskir (2005b) and De Angelis and Milazzo (2020), by characterizing the optimal
stopping boundary as the unique solution of a Volterra integral equation, up to some regularity
conditions.

Besides contributing to the solution to this original problem, we also explore its applicability
in real situations. The studied model may be too simple to be applied with real data, but it
allows computing exact solutions and easily quantifying the uncertainty about the knowledge of
its parameters. For this reason, we describe an algorithm to numerically compute the optimal
strategy and inferential method that provide the confidence curves around the optimal stop-
ping boundary when the stock volatility is estimated via maximum likelihood. This inferential
method is potentially relevant for an investor that only has access to discrete data. We test
our results on a real dataset comprised by financial options on Apple and IBM equities. Our
model is competitive when compared with a model based on a geometric Brownian motion and,
in accordance with the motivation of our work, the best performance is obtained when the stock
price exhibits a pinning-at-the-strike behavior.

Finally, we support with numerical evidence the conjecture that the boundary is not mono-
tone and has at most one change of monotonicity, and compute the time at which this change
happens as a function of the discounting rate. This numerical study might be convenient as
a starting point to obtain the piecewise monotonicity of the boundary, which, along with its
continuity, is known to produce the smooth-fit condition (see Example 7 from De Angelis and
Peskir (2020) and Corollary 8 from Cox and Peskir (2015)), hence offering an alternative way
to get this property rather than the one based on the Lipschitz continuity of the boundary.

We conclude by mentioning related works using similar models. In Föllmer (1972), the
authors tackle the non-discounted problem for a Brownian bridge with a normally-distributed
ending point. More recently, Ekström and Vaicenavicius (2020) solves the same problem for small
values of the variance, finding bounds for the value function when the pinning point follows a
general distribution with a finite first moment. A double-stopping problem, for which the aim
is to maximize the mean difference between two stopping times, is analyzed in Baurdoux et al.
(2015). The recent paper De Angelis and Milazzo (2020) solves the non-discounted problem
using the exponential of a Brownian bridge to model the stock prices. A Brownian bridge with
unknown pinning random distribution and a Bayesian approach is advocated by Glover (2020).
The analytical results in Ekström and Wanntorp (2009) are extended in D’Auria and Ferriero
(2020) by looking at a class of Gaussian bridges that share the same optimal stopping boundary.
The discounted problem of a Brownian bridge with a random pinning point is addressed in Leung
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et al. (2018), under regularity assumptions on the gain function that allow for an application of
the standard Itô’s formula (something that does not hold in our setting).

The rest of the paper is structured as follows. In Section 3.2, we introduce the model along
with notations and definitions. Section 3.3 provides the theoretical results required to obtain the
free-boundary equation. Section 3.4 deals with the problem of computing the optimal stopping
boundary and quantifying the uncertainty associated with the estimation of the stock volatility.
Section 3.5 compares our method with the optimal exercise time based on a geometric Brownian
motion by using real data exhibiting various degrees of pinning. Section 3.6 comments on
the non-monotonicity of the optimal stopping boundary and, finally, Section 3.7 offers some
conclusions.

Proofs and technical lemmas required to back up Section 3.3 are relegated to Appendix 3.A
and 3.B, respectively.

3.2 Problem setting

We next introduce the model of the financial asset and we define the optimal stopping problem
whose solution constitutes the best strategy to exercise an American put option based on that
asset.

We assume that the financial option has a strike price S > 0 and a maturity date T > 0.
To model the pinning effect, we use a Brownian bridge process for the dynamics of the underlying
asset. Indeed, this process may be seen as a Brownian motion conditioned to terminate at a
known terminal value that in our case is fixed to the strike price S (see Remark 3.3 for a discussion
on the relaxation of this assumption). That is, by calling X [t,T ] = (Xt+s, 0 ≤ s ≤ T − t) to the
asset price process, with 0 ≤ t < T , we assume it satisfies the SDE:

Xt = x, dXt+s = S −Xt+s
T − t− s

ds+ σ dWs, (3.1)

with 0 ≤ s ≤ T − t or, equivalently, it has the explicit expression

Xt+s = x
T − t− s
T − t

+ S
s

T − t
+ σ(T − t− s)

∫ s

0

dWu

T − t− u
, (3.2)

again with 0 ≤ s ≤ T − t and where, in both equations, (Ws, 0 ≤ s ≤ T − t) denotes a standard
Brownian motion. To emphasize that the process almost surely satisfies the relation Xt = x, we
will use the notation Pt,x and Et,x to denote the corresponding probability and mean operators.

Denoting by G(x) = (S−x)+ the gain function of the put option and by λ ≥ 0 the discounting
rate, we can finally write the optimal expected reward for exercising the American option as the
Optimal Stopping Problem (OSP)

V (t, x) = sup
0≤τ≤ T−t

Et,x
[
e−λτG(Xt+τ )

]
. (3.3)

The function V is called the value function and the supreme above is taken over all the
stopping times τ of X [t,T ] with respect to its natural filtration (Fs)Ts=0.

Under mild conditions, namely V being lower semi-continuous and G upper semi-continuous
(see Corollary 2.9 by Peskir and Shiryaev (2006)), it is guaranteed that the supremum in (3.3) is
achieved. The Optimal Stopping Time (OST), τ∗(t, x), is defined as the smallest stopping time
attaining the supremum (3.3) and can be characterized as the hitting time of a closed set D,
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referred to as the stopping set. Since these conditions on V and G are satisfied in our settings
(see Remark 2.10 in Peskir and Shiryaev (2006)), we can write

τ∗(t, x) := inf{0 ≤ s ≤ T − t : Xt+s ∈ D | Xt = x}, (3.4)

where D is defined as

D := {(t, x) ∈ [0, T ]× R : V (t, x) = G(x)} . (3.5)

We then define the continuation set C as the complement of the set D and we denote by ∂C
its boundary.

The OST, defined in (3.4), can be interpreted as the best exercise strategy for the American
option, and it allows for rewriting the value function V in the simplified form

V (t, x) = Et,x
[
e−λτ∗(t,x)G

(
Xt+τ∗(t,x)

)]
. (3.6)

To solve the OSP given in (3.3), we follow the well-known approach of reformulating it
as a free-boundary problem for the unknowns V and ∂C. The latter is commonly called the
Optimal Stopping Boundary (OSB). Our OSP is a finite-horizon problem that involves a time-
non-homogeneous process, with its associated free-boundary problem being

∂tV + LXV = λV on C, (3.7a)
V > G on C, (3.7b)
V = G on D, (3.7c)

∂xV = ∂xG on ∂C, (3.7d)

where LX is the infinitesimal generator of the Brownian bridge X [0,T ]. Given a suitably smooth
function f : [0, T ]× R→ R, the application of the operator LX to it returns the function

(LXf) (t, x) = S − x
T − t

∂xf(t, x) + σ2

2 ∂x2f(t, x). (3.8)

Equations (3.7a), (3.7b), and (3.7c) easily come from the definitions of D, C, and τ∗(t, x)
(see Proposition 3.2 below), whereas (3.7d), generally known as the smooth-fit condition, depends
on how well-behaved the OSB is for the underlying process. The regularity of the OSB is an
important factor in finding and characterizing the solution of the problem itself, and for this
reason we will study it in detail in later sections. An in-depth survey on the optimal stopping
theory that exploits the free-boundary approach can be found in Peskir and Shiryaev (2006).

3.3 Optimally exercising American put options for a Brownian
bridge

We present in this section the main result, consisting of the solution of the problem (3.3).
In particular, we solve the free-boundary problem defined in (3.7) by showing that the OSB can
be written in terms of a function b such that ∂C = {(t, b(t)) : t ∈ [0, T ]}, and that this function
can be computed as the solution to a Volterra integral equation.

From an application perspective, the function b defines the optimal strategy to follow in order
to maximize the profit from the execution of the American put option. It is best to exercise
the option the first time the price of the underlying financial asset crosses at time t ∈ [0, T ] the
level b(t).
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Theorem 3.1. The optimal stopping time in (3.4) can be written as

τ(t, x) = inf{s ∈ [0, T − t] : Xt+s ≤ b(t+ s)}, x ∈ R, 0 ≤ t ≤ T,

where the function b is defined as the unique solution, among the class of continuous functions
of bounded variation lying below S, of the integral equation

b(t) = S −
∫ T

t
Kσ,λ(t, b(t), u, b(u)) du. (3.9)

In addition, the value function V in (3.6) can be expressed as

V (t, x) =
∫ T

t
Kσ,λ(t, x, u, b(u)) du. (3.10)

The kernel Kσ,λ in (3.9) and (3.10) is defined as

Kσ,λ(t, x1, u, x2) := e−λ(u−t) 1 + λ(T − u)
T − u

[
(S − µ(t, x1, u))Φ(zσ(t, x1, u, x2))

+ νσ(t, u)ϕ(zσ(t, x1, u, x2))
]
,

(3.11)

where Φ and ϕ are, respectively, the distribution and density functions of a standard normal
random variable,

µ(t, x, u) := x
T − u
T − t

+ S
u− t
T − t

, (3.12)

νσ(t, u) := σ

√
(u− t)(T − u)

T − t
, (3.13)

and zσ(t, x1, u, x2) := (x2 − µ(t, x1, u))/νσ(t, u).

The proof of the theorem makes use of some important partial results that we state in the
following propositions. All of the proofs are deferred to Appendix 3.A.

The next result sheds some light on the shapes of the sets D and C by showing that their
common border can be expressed by means of a function b that satisfies some regularity condi-
tions. In the proof, we focus on regions where it is easy to prove that the value function either
exceeds or equals the immediate reward, thus revealing subsets of C and D, respectively. These
regions come from the facts that G is null above S and positive below, that the paths of the
process decrease with x (for a fixed realization), and that V is non-increasing with respect to x,
t, and λ.

Proposition 3.1. There exists a function b : [0, T ] → R such that b(t) < S for all t ∈ [0, T ),
b(T ) = S, and D = {(t, x) ∈ [0, T ]× R : x ≤ b(t)}.

The following proposition analyzes some regularity properties of the value function. It ex-
ploits the regularity properties of the function b proved in Proposition 3.1. We later use these
results in Proposition 3.3 to show the local Lipschitz continuity of b. Part (i) comes from stan-
dard arguments on parabolic partial differential equations in conjunction with the Markovian
property of the Brownian bridge. The rest of the proposition employs different methods, but
they all rely on the fact that the OST for a pair (t, x) is sub-optimal under different initial
conditions.
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Proposition 3.2. The value function V defined in (3.3) satisfies the following conditions:

(i) V is C1,2 on C and on D, and ∂tV + LXV = λV on C.

(ii) x 7→ V (t, x) is convex and strictly decreasing for all t ∈ [0, T ]. Moreover,

∂xV (t, x) = −E
[
e−λτ∗(t,x)T − t− τ∗(t, x)

T − t

]
. (3.14)

(iii) V is continuous.

From the previous proposition we are able to get a stronger result on the smoothness of
b, namely its Lipschitz continuity on any interval that excludes the horizon. The proof is an
adaptation of Proposition 6 from D’Auria et al. (2021), and it relies on the same Brownian
motion representation that was originally used by Shepp (1969) to solve the OSP of a BB
without discount. This higher smoothness of b allows obtaining the smooth-fit condition and,
consequently, the uniqueness of the solution of the OSP.

Proposition 3.3. The optimal stopping boundary b for the problem (3.3) is Lipschitz continuous
on any closed interval I ⊂ [0, T ).

Local Lipschitz continuity of the OSB suffices for the smooth-fit condition to hold true, as
we show in the following proposition.

Proposition 3.4. The smooth-fit condition holds, i.e., ∂xV (t, b(t)) = −1 for all t ∈ [0, T ].

Finally, the next proposition shows that the OSB satisfies the Volterra integral equation
(3.9), and that it is the only solution up to some regularity conditions. The proof follows well-
known procedures based on probabilistic arguments (seePeskir (2005b)) rather than relying on
integral equation theory, which usually uses some variation of the contraction mapping principle.

Proposition 3.5. The optimal stopping boundary b for the problem (3.3) can be characterized
as the unique solution of the second-type nonlinear Volterra integral equation (3.9), within the
class of continuous functions of bounded variation c : [0, T ] → R such that c(t) < S for all
t ∈ (0, T ).

Remark 3.1. All the results in this section have their own analog when it comes to optimally
exercising American call options, that is, when the gain function in (3.3) is substituted with
G(x) = (x−S)+. Indeed, exploiting the symmetry of the Brownian bridge and the gain functions,
it is easy to check that the relation bc(t) = 2S − bp(t) holds, where bc and bp stand for the OSBs
for the call and the put option, respectively.

Remark 3.2. The OSB for λ = 0, that is, the one that maximizes the mean of a Brownian
bridge, can be obtained from the early work of Shepp (1969); see also Ekström and Wanntorp
(2009) and Ernst and Shepp (2015). Its explicit expression is b0(t) = S − σB

√
T − t, with

B ≈ 0.8399.

Remark 3.3. We have worked under the assumption that the pinning point of the BB equals
the strike price of the American option. Relaxing such an assumption, however, does not seem
to bring up fundamental extra challenges, and the same methodology could be used to obtain the
new free-boundary equation, which, in such a case, should take the form

b(t) = S − e−λ(T−t)(S −A)+ −
∫ T

t
Kσ,λ(t, b(t), u, b(u)) du, (3.15)
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where A and S are the pinning point and the strike price, respectively, and with

Kσ,λ(t, x1, u, x2) := e−λ(u−t)
[(

S

T − u
+ λA−

( 1
T − u

+ λ

)
µ(t, x1, u)

)
Φ(zσ(t, x1, u, x2))

+ νσ(t, u)ϕ(zσ(t, x1, u, x2))] .

3.4 Boundary computation and inference
3.4.1 Solving the free-boundary equation

The lack of an explicit solution for (3.9) requires a numerical approach to compute the OSB.
Let (ti)Ni=0 be a grid in the interval [0, T ] for some N ∈ N. The method we consider builds on a
proposal by Pedersen and Peskir (2002). They suggested approximating the integral in (3.9) by
a right Riemann sum, hence enabling the computation of the value of b(ti), for i = 0, . . . , N − 1,
by using only the values b(tj), with j = i + 1, . . . , N . Therefore, by knowing the value of the
boundary at the last point (b(tN ) = b(T ) = S), one can obtain its value at the second last point
b(tN−1) and recursively construct the whole OSB evaluated at (ti)Ni=0.

Under our settings, the right Riemann sum is no longer a valid option because we know
from (3.11) that, depending on the shape of the boundary b near the expiration date, K(ti, b(ti),
u, b(u)) could explode as u→ T , so we cannot evaluate the kernel K at the right point in the last
subinterval (tN−1, T ]. To deal with this issue, we employ a right Riemann sum approximation
along all the subintervals except the last one, ending up with the following discrete version of
the Volterra integral equation (3.9):

b(ti) ≈ S −
N−1∑
j=i+1

(tj − tj)Kσ,λ(ti, b(ti), tj , b(tj))− I(ti, tN−1), (3.16)

for i = 0, 1, . . . , N − 1, where I(ti, tN−1) :=
∫ T
tN−1

Kσ(ti, b(ti), u, b(u)) du. It can be shown that
0 ≤ I(ti, tN−1) ≤ H(ti, tN−1), where

H(ti, tN−1) := e−λ(tN−1−ti)
∫ T

tN−1
(1 + λ(T − u))

(
S − b(ti)
T − ti

+ σ

√
1

2π(T − u)

)
du

= e−λ(tN−1−ti)
(

(S − b(ti))
T − tN−1
T − ti

(
1 + λ

2 (T − tN−1)
)

+

σ

√
2(T − tN−1)

π

(
1 + λ

3 (T − tN−1)
) ,

by using (3.12) and (3.13), the form of the kernel (3.11), and the fact that Φ(x) ≤ 1 and ϕ(x) ≤
(2π)−1/2 for all x ∈ R. Therefore, I(ti, tN−1) ≈ H(ti, tN−1)/2 can be seen as a reasonable ap-
proximation, admitting an upper bound for the error ε(ti, tN−1) := |H(ti, tN−1)/2− I(ti, tN−1)|,
namely ε(ti, tN−1) ≤ H(ti, tN−1)/2. Moreover, H(ti, tN−1) = O(

√
T − tN−1) as tN−1 → T .

After substituting I(ti, tN−1) for H(ti, tN−1)/2 in (3.16), we get

b(tN−1) ≈
(1

2 −
λ

4 (T − tN−1)
)−1

×

S
2

(
1− λ

2 (T − tN−1)
)
− σ

√
T − tN−1

2π

(
1 + λ

3 (T − tN−1)
) , (3.17)
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b(ti) ≈
(

1− 1
2e

−λ(tN−1−ti)
(

1 + λ

2 (T − tN−1)
)
T − tN−1
T − ti

)−1

×

S − N−1∑
j=i+1

(tj − tj)Kσ,λ(ti, b(ti), tj , b(tj))

− 1
2e

−λ(tN−1−ti)
(
S
T − tN−1
T − ti

(
1 + λ

2 (T − tN−1)
)

+ σ

√
2(T − tN−1)

π

(
1 + λ

3 (T − tN−1)
) . (3.18)

The procedure for computing the estimated boundary according to the previous approxi-
mations is laid down in Algorithm 3.1. From now on, we will use b̃ to denote the cubic-spline
interpolating curve that goes through the numerical approximation of the boundary at the points
(ti)Ni=0 via Algorithm 3.1.

Algorithm 3.1: Optimal stopping boundary computation
Input: S, λ, (ti)Ni=0, δ
Output: (b̃(ti))Ni=0
Code:
b̃(T )← S
Update b̃(tN−1) according to (3.17)
for i = N − 2 to 0 do

b̃(ti)← b̃(ti+1)
ε← 1
while ε > δ do

b̃old(ti)← b̃(ti)
Update b̃(ti) according to (3.18)
ε← |b̃old(ti)− b̃(ti)|/|b̃old(ti)|

end
end

Recall from Remark 3.2 that our OSB for λ = 0 takes the form b0(t) = S − Bσ
√
T − t.

Having the explicit form of b0 allows us to validate the accuracy of Algorithm 3.1 and tune its
parameters. We empirically determined that δ = 10−3 offers a good trade-off between accuracy
and computational time. This value was considered every time Algorithm 3.1 was employed.

We decided to use a logarithmically-spaced grid that is ti = log(1+ i
N (eT −1)), i = 0, . . . , N ,

with N = 200, after systematically observing that uniform partitions tend to misbehave near
the expiration date T . In addition, it is preferable that the partition gets thinner close to T in
a smooth way. Figure 3.1 shows how precise the Algorithm 3.1 is by comparing the computed
boundary b̃0 versus its explicit form for S = 10, T = 1, λ = 0, and σ = 1.

3.4.2 Estimating the volatility

We assume next that the volatility of the underlying process is unknown, as it may occur in real
situations. It is well known that, under model (3.1), one can exactly compute the volatility if
the price dynamics are continuously observed. However, investors in real life have to deal with
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Figure 3.1: Boundary estimation via Algorithm 3.1 for different partition sizes and for the
parameters S = 10, T = 1, λ = 0, and σ = 1.

discrete-time observations and thus they would have to estimate σ to obtain the OSB.
We start by assuming that we have recorded the price values at the times t0 = 0 < t1 <

· · · < tN−1 < tN = T , for N ∈ N, so at tn, with n ∈ {0, 1, . . . , N}, we have gathered a sample
(Xti)ni=0 from the historical path of the Brownian bridge (Xt)Tt=0 with XT = S. From (3.2), we
have that

Xti | Xti−1 ∼ N
(
µ(ti−1, Xti−1 , ti), ν2

σ(ti−1, ti)
)
, i = 1, . . . , n,

and the log-likelihood function of the volatility takes the form

ℓ(σ | (ti, Xti)ni=0) = C − n log(σ)− 1
2σ2

n∑
i=1

(
Xti − µ(ti−1, Xti−1 , ti)

ν1(ti−1, ti)

)2
,

where C is a constant independent of σ. The maximum likelihood estimator for σ is given by

σ̂n =

√√√√ 1
n

n∑
i=1

(
Xti − µ(ti−1, Xti−1 , ti)

ν1(ti−1, ti)

)2
.

Under an equally spaced partition (ti = i TN , i = 0, 1, . . . , N), standard results on maximum
likelihood (see Dacunha-Castelle and Florens-Zmirou (1986)) give that

√
n(σ̂n − σ)⇝ N

(
0, σ

2

2

)
,

when n → ∞ (hence N → ∞) and T → ∞ such that ti − ti−1 = T/N remains constant, with
i = 1, . . . , N .



3.4. Boundary computation and inference 65

3.4.3 Confidence intervals for the boundary

We present as follows the uncertainty propagated by the estimation of σ to the computation of
the OSB. In order to do so, we assume that the OSB is differentiable with respect to σ, so we
are allowed to apply the delta method, under the previous asymptotic conditions. This entails
that

√
n(bσ̂n

(t)− bσ(t))⇝ N
(

0,
(
∂bσ
∂σ

(σ, t)
)2 σ2

2

)
, (3.19)

where bσ represents the OSB defined at (3.9) associated with a process with volatility σ. Plugging
the estimate σ̂n into (3.19) gives the following asymptotic 100(1 − α)% (pointwise) confidence
curves for bσ:

(
c1,σ̂n

(t), c2,σ̂n
(t)
)

:=
(
bσ̂n

(t)±
zα/2

σ̂n
√
n/2

∣∣∣∣∂bσ∂σ (t)
∣∣∣
σ=σ̂n

∣∣∣∣
)
, (3.20)

where zα/2 represents the α/2-upper quantile of a standard normal distribution. Algorithm 3.1
can be used to compute an approximation of the term ∂bσ

∂σ (·) by means of (bσ̂n+ε(·)−bσ̂n
(·))/ε for

some small ε > 0. We denote by
(
c̃1,σ̂n

(t), c̃2,σ̂n
(t)
)

the approximation of the confidence interval
(3.20) coming from this approach at t ∈ [0, T ]. Through the paper, we use ε = 10−2, as has
been empirically checked to provide, along with δ = 10−3 for Algorithm 3.1, a good compromise
between accuracy, stability, and computational speed in calculating the confidence curves. Figure
3.2 illustrates, for one path of a Brownian bridge, how the boundary estimation and its confidence
curves work. Figure 3.3 empirically validates the approximation of the confidence curves by
marginally computing for each tn the proportion of trials, out of M = 1000, in which the true
boundary does not belong to the interval delimited by the confidence curves.
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Figure 3.2: Inferring the boundary using one third (n = 66, N = 200) of the Brownian bridge
path, for T = 1, S = 10, X0 = 10, λ = 0, and σ = 1. The solid curves represent the true
boundary bσ (red curve), the estimated boundary b̃σ̂n

(blue curve), the upper confidence curve
c̃1,σ̂n

(orange curve), and the lower confidence curve c̃2,σ̂n
(green curve).
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The spikes visible in Figure 3.3 near the last point tN = T = 1 indicate that the true
boundary rarely lies within the confidence curves at those points. This happens because the
confidence curves have zero variance at the maturity date T (actually c̃1,σ̂n

(T ) = c̃2,σ̂n
(T ) = S),

and the numerical approximation of b(tN−1) given at (3.17) is slightly biased. This affects
the accuracy of the estimated boundary by frequently leaving the true boundary outside the
confidence curves near maturity. This drawback is negligible in practice, since the estimated
boundary and the confidence curves are very close to the true boundary in terms of absolute
distance.
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Figure 3.3: Pointwise proportion of trials, out of M = 1000, in which the true boundary does not
belong to the interval delimited by the confidence curves. We use S = 10, X0 = 10, T = 1, λ = 0,
σ = 1, and a significance level α = 0.05, and a number M = 1000 of sample paths. For each path,
one third (a) or two thirds (b) of the observations were used to compute σ and then to estimate
the confidence curves by (3.20). The continuous line represents the proportion of non-inclusions,
the dashed line stands for α, and the dotted lines are placed at α ± z0.025

√
α(1− α)/M . The

spikes at T = 1 are numerical artifacts due to the null variance of b̃σ̂n
(T ).

3.4.4 Simulations

The ability to perform inference for the true OSB rises some natural questions: how much
optimality is lost by b̃σ̂n

when compared to bσ? How do the stopping strategies associated with
the curves c̃i,σ̂n

, i = 1, 2, compare with the one for b̃σ̂n
? For example, a risk-averse (or risk-lover)

strategy would be to consider the upper (lower) confidence curve c̃1,σ̂n
(c̃2,σ̂n

) as the stopping
rule, this being the most conservative (liberal) option within the uncertainty on estimating bσ.
A balanced strategy would be to consider the estimated boundary b̃σ̂n

.
In the following, we investigate how these stopping strategies behave, assuming σ = 1, T = 1,

S = 10, X0 = 10, and λ = 0. We first estimate the payoff associated with each of them, and
then we compare these payoffs with the one generated by considering the true boundary in its
explicit form (see Remark 3.2). The choice of σ = 1 is not restrictive, as it is enough to rescale
time by 1/σ and space (i.e., the price values) by 1/

√
σ.

To perform the comparison, we defined a subset of [0, T ]×R where the payoffs were computed.
We carried out the comparison along the pairs

(
ti, X

(q)
ti

)
, for i = 1, . . . , N , N = 200, and q =

0.2, 0.4, 0.6, 0.8, where ti = i TN and X
(q)
ti represents the q-quantile of the marginal distribution

of the process at time ti that is N (0, ti(T − ti)/T ) (see Figure 3.4).
For each i and q, we generated M = 1000 different paths (sj , Xsj )rNj=0 of a Brownian bridge
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with volatility σ = 1 going from (0, 0) to (1, 0). Each path was sampled at times sj = j Trn ,
for j = 0, 1, . . . , rN , for r = 1 and r = 25. The idea behind this setting is to tackle both the
low-frequency scenario, which regards investors with access to daily prices or less frequent data,
and the high-frequency scenario, addressing high volumes of information as it happens to be
when recording intraday prices. We forced each path to pass through

(
ti, X

(q)
ti

)
(see Figure 3.4),

and used the past (sj , Xsj )rij=0 of each trajectory to estimate the boundary and the confidence
curves. The future (sj , Xsj )rNj=ri was employed to gather M observations of the payoff associated
with each stopping rule, whose means and variances are shown below in Figures 3.5 and 3.6,
respectively.
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Figure 3.4: X(q)
t for q = 0.2, 0.4, 0.6, 0.8, where X(q)

t is the q-quantile of a N (0, t(1 − t)), the
marginal distribution at time t of a Brownian bridge with unit volatility and X0 = X1 = 10. The
green and orange lines refer to the paths of

(
Xt | X0.2 = X

(0.2)
0.2

)1
t=0 and

(
Xt | X0.8 = X

(0.8)
0.8

)1
t=0

respectively, with X0.2
0.2 ≈ 9.6649 and X0.8

0.8 ≈ 10.3382.

Figure 3.5 shows the value functions associated with each stopping rule, the red curve being
the one associated with the OSB. An important fact revealed by Figure 3.5 is that in both the
low- and high-frequency scenarios the estimate b̃σ̂n

behaves almost indistinguishably to bσ in
terms of the mean payoff after just a few initial observations.

Despite the variance payoff not being an optimized criterion in (3.3), it is worth knowing
how it behaves for the three different stopping strategies, as it represents the risk associated
with adopting each stopping rule as an exercise strategy. As expected, for any pair (t, x), a
higher stopping boundary implies a smaller payoff variance.

Figure 3.6 not only reflects this behavior by suggesting the upper confidence curve as the best
stopping strategy, but also reveals that the variance does exhibit considerable differences for the
stopping rules in the low-frequency scenario. These differences increase when the time gets closer
to the initial point t = 0 and also when the quantile level q decreases. In the high-frequency
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scenario, this effect is alleviated.
Figures 3.5 and 3.6 also reveal that both the mean and the variance of the payoff associated

with the estimated boundary b̃σ̂ converge to the ones associated with the true boundary as more
data are taken to estimate σ.

The pragmatic bottom line of the simulation study can be summarized in the following
rules-of-thumb: if 15 < n < 1000, it is advised to adopt the upper confidence curve as the
stopping rule because c̃1,σ̂n

has almost the same mean payoff as all the other stopping rules
while having considerable less variance; if n ≥ 1000, the means and the variances of the payoff
of the three stopping rules are quite similar, being the most efficient option to just assume b̃σ̂n

without computing the confidence curves.
For n ≤ 15, the best candidate for the execution strategy is not obvious, and it would depend

on which criterion is chosen to measure the mean-variance trade-off of the three strategies.

3.5 Pinning-at-the-strike and real-data study

In this section, we compare the performance of the optimal stopping strategy using the Brownian
bridge model with a classical approach that uses the geometric Brownian motion (Peskir, 2005b).
The latter does not take into account the pinning information of the asset’s price at maturity.
We do so by a real data study analyzing various scenarios showing different degrees of intensity
of pinning-at-the-strike.

The pinning behavior is more likely to take place among heavily traded options, as shown
in Ni et al. (2005) and Krishnan and Nelken (2001). This is why we consider the options based
on Apple and IBM expiring within the span of January 2011–September 2018, in particular
8905 options for Apple and 4833 for IBM. We denote by M the total number of options of each
company and, for the j-th option, we let

(
X

(j)
ti

)Nj

i=0 be the 5-min tick close price of the underlying
stock divided by the strike price Sj . In order to quantify the strength of the pinning effect, we
define the pinning deviance as pj :=

∣∣X(j)
tNj
− 1

∣∣, j = 1, . . . ,M . Therefore, under perfect pinning,
we should expect X(j)

tNj
= 1 and pj = 0.

We perform the following steps in the real data application:

i. We split each path
(
X

(j)
ti

)Nj

i=0 into two subsets by using a factor ρ ∈ P = {0.1, 0.2, . . . , 0.9}.
We call historical set to the first ρ100% values of the prices

(
X

(j)
ti

)⌊ρNj⌋
i=0 and future set to

the remaining part (including the present value)
(
X

(j)
ti

)Nj

i=⌊ρNj⌋. Here, j = 1, . . . ,M while
1− ρ represents the proportion of life time of the option.

ii. We use the historical set to estimate the volatility as described in Section 3.4.2.

iii. We compute the risk-free interest rate λj,ρ as the 52-week treasury bill rate (extracted from
U.S. Department of the Treasury (2018)) held by the market when the split of

(
X

(j)
ti

)Nj

i=0
was done.

iv. We set the drift of the geometric Brownian motion to the risk-free interest rate such that
the discounted process is a martingale.

v. We compute the OSBs using Algorithm 3.1 for the Brownian bridge model (3.9) and use
the method exposed in Pederson and Peskir (2000, p. 12) for the geometric Brownian
motion model studied in Peskir (2005b). Both numerical approaches are similar, the
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Figure 3.5: Mean of the payoff associated with: the true boundary bσ (red curve), the estimated
boundary b̃σ̂n

(blue curve), the upper confidence curve c̃1,σ̂n
(orange curve), and the lower

confidence curve c̃2,σ̂n
(green curve). The left column shows the low-frequency scenario (r = 1),

while the right one stands for the high-frequency scenario (r = 25). We use σ = 1, T = 1,
S = 10, X0 = 10, and λ = 0.
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Figure 3.6: Variances of the payoff associated with: the true boundary bσ (red curve), the
estimated boundary b̃σ̂n

(blue curve), the upper confidence curve c̃1,σ̂n
(orange curve), and lower

confidence curve c̃2,σ̂n
(green curve). The left column shows the low-frequency scenario (r = 1),

while the right one stands for the high-frequency scenario (r = 25). We use σ = 1, T = 1,
S = 10, X0 = 10, and λ = 0.
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only subtle difference relies on the Brownian bridge requiring the last part of the integral
to be computed as in Algorithm 3.1, while the geometric Brownian motion needs no
special treatment. The OSBs are computed with S = 1 (the stock prices were previously
normalized by using the strike prices), T = 1 (all the maturity dates were standardized to
1), and 201 nodes for the time partitions described in Section 3.4.1.

vi. We compute the profit generated by optimally exercising the option within the remain-
ing time by using the future set. This is done by calculating e−λj,ρτ

j,ρ
BB
(
1 − X(j)

t⌊ρNj ⌋+τ j,ρ
BB

)
and e−λj,ρτ

j,ρ
GBM

(
1−X(j)

t⌊ρNj ⌋+τ j,ρ
GBM

)
, where τ j,ρBB and τ j,ρGBM are the OSTs associated, respec-

tively, to the Brownian bridge and geometric Brownian motion strategies under the initial
condition

(
t⌊ρNj⌋, X

(j)
t⌊ρNj ⌋

)
.

vii. We compute the “ρ-aggregated” cumulative profit, as defined below, to measure the good-
ness of both models (BB stays for Brownian bridge while GBM stays for geometric Brow-
nian motion):

BB(p) = 1
|P||J (p)|

∑
j∈J (p)

∑
ρ∈P

e−λj,ρτ
j,ρ
BB
(
1−X(j)

t⌊ρNj ⌋+τ j,ρ
BB

)
,

GBM(p) = 1
|P||J (p)|

∑
j∈J (p)

∑
ρ∈P

e−λj,ρτ
j,ρ
GBM

(
1−X(j)

t⌊ρNj ⌋+τ j,ρ
GBM

)
,

where J (p) := {j = 1, . . . ,M : pj < p}, and |P| and |J (p)| are the number of elements in
P and J (p), respectively.

viii. We finally compute the relative mean profit (BB(p)−GBM(p)) /GBM(p).

ix. We plot the pinning deviances p versus the relative mean profit (see Figure 3.7).

The Brownian bridge model behaves better than the geometric Brownian motion for options
with low pinning deviance. This advantage fades away as we take distance from an ideal pinning-
at-the-strike scenario, that is, when the pinning deviance increases. While the Brownian bridge
model outperforms the geometric Brownian motion when applied to the Apple options along
the whole dataset, when we consider the IBM options, the advantage is only present in 60% of
the options with lower pinning deviances.

Remark 3.4. Besides using the OSB, we also considered in the analysis the confidence curves
described in Section 3.4.3. However, since this is a high-frequency sampling scenario, both
confidence curves provided almost indistinguishable results and were omitted to avoid redundancy.

Remark 3.5. We did not consider the prices to buy the options when computing the profits
in Figure 3.7, as we are interested in when it is optimal to exercise the option rather than in
whether it is profitable to buy the option held.

It is clear that an application of the Brownian bridge model is profitable in the presence of
pinning-at-the-strike effect. However, it is far from being trivial to know beforehand if a stock
will pin or not. Even if pinning forecasting is not the scope of this paper (for a systematic
treatment, we refer to Avellaneda and Lipkin (2003), Jeannin et al. (2008), and Avellaneda
et al. (2012)), we provide some basic evidence about the possibility to predict the appearance
of the pinning effect by means of the trading volume of the options associated with a stock. For
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that, we study the association between the pinning deviances (pj)Mj=1 and the number of open
contracts for a given option that we call the Open Interest (OI). In particular, we compute the
weighted OI for options expiring during the year 2017. Its definition is wOIj :=

∑Kj

k=0wj,koj,k,
where oj,k is the OI of the j-th option at day k after it was opened, Kj is the total number
of days the option remained available, and the weights wj,k := e−(1−k/Kj)/

∑Kj

i=0 e
−(1−i/Kj),

j = 1, . . . ,M , place more importance to OIs closer to the maturity date. We highlight that the
wOI is an observable quantity. The Spearman’s rank correlation coefficient between the wOI
and the pinning deviances scored −0.5932 for Apple and −0.4281 for IBM, thus revealing a
significant (p-values < 10−16) positive dependence between wOI and the pinning strength.
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Figure 3.7: Results of the real data application. The black curve is the relative mean profit
(BB(p)−GBM(p)) /GBM(p) for a pinning deviance p, while the blue dashed curve represents
the kernel density estimation of the pinning deviances.

3.6 Non-monotonicity of the OSB

In Proposition 3.3, we proved the local Lipschitz continuity of b off the horizon to later obtain
the smooth-fit condition, which leads to the free-boundary equation (3.9). An alternative path
to achieve the same result is to obtain the monotonicity and continuity of the OSB. Monotonicity
of the OSB is guaranteed in many finite-horizon OSPs, especially for those whose underlying
process is time-homogeneous (see, e.g., Peskir and Uys (2003); Peskir (2005b,c); Glover et al.
(2010, 2011); Kitapbayev (2014))), but it might be compromised when time-inhomogeneity or
a discount factor is introduced. Our setting features a non-monotonic OSB (see Figure 3.8)
due to the exponential discount (the non-discounted version does yield a monotonic boundary,
as shown in Shepp (1969)). Continuity and piecewise monotonicity of the OSB, however, also
suffice for the smooth-fit condition to hold (see Example 7 from De Angelis and Peskir (2020)
and Corollary 8 from Cox and Peskir (2015)).

The continuity of the OSB has been extensively studied in a wide variety of frameworks. See,
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for instance, the work of De Angelis (2015) and Peskir (2019). In particular, Peskir (2019) can be
applied straightforwardly to our settings to show that b cannot have first-order discontinuities.

Second-order discontinuities could be ruled out by proving the piecewise monotonicity of the
OSB. However, this property resisted all our attempts to prove it, and the related literature
addressing it is scant. To our knowledge, the soundest work on piecewise monotonic OSBs dates
back to Friedman (1975), but only tackles a non-discounted OSP with time-dependent gain
function and time-homogeneous process.

We include here evidence supporting the conjecture that b changes its monotonicity at most
once. The OSB seems to be either increasing everywhere, or to start at the origin in a decreasing
mode, reaching a global minimum, and going increasing afterward, until it hits the pinning point
at the horizon with a positive infinite slope. Figure 3.8 illustrates this behavior.
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Figure 3.8: The image on the left shows four boundaries (continuous lines) for different values of
λ. The dotted curve represents the (unique) pair (t, bλ(t)) where each boundary bλ changes its
monotonicity, computed for a mesh of equally-spaced 5000 points going from λ = 0 to λ = 2500.
The smallest value of λ where a change of monotonicity was observed was λ = 37.5. The dashed
line is placed at the level of the pinning point (S = 0). We set σ = 1 for the volatility and
N = 5000 for the logarithmically-spaced grid. The smaller images on the right zoom in the four
boundaries for a better appreciation of their change of monotonicity.

3.7 Conclusions

In this work we solved the problem of optimally exercising an American put option, in the
presence of a discount, by modeling the stock price with a Brownian bridge terminating at
the strike price. The OSP was translated into a free-boundary problem shown to have a unique
solution within a certain class of functions. We used a recursive fixed-point algorithm to compute
the OSB in practice, corroborating its accuracy in the case without discount. Using a maximum
likelihood estimation for the volatility, we computed pointwise confident curves around the
estimated OSB, and we analyzed some correlated alternative stopping rules. The simulation
study done for the non-discounted case showed that the lower confidence curve is the most
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appealing stopping decision because of the resulting reduced variance of the optimal profit.
Finally, we performed a real data study that empirically concluded that the Brownian bridge
model behaves considerably better than a classical geometric Brownian motion when the stock
prices exhibit the pinned-at-the-strike effect.

Our model not only requires accurate insider information on the final value, but is also
limited to the case in which the final value coincides with the strike price (but see Remark 3.3).
A natural extension would be to admit randomness at the pinning point. Another interesting
extension would be to use a model that excludes negative values of the stock price, like, for
instance, the exponential of a Brownian bridge or a geometric Brownian bridge.

Supplementary materials

All the code required to implement Algorithm 3.1 and reproduce the results in Section 3.4 is
available at https://github.com/aguazz/AmOpBB.
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3.A Main proofs

Proof of Proposition 3.1. Take an admissible pair (t, x) satisfying x ≥ S and t < T , and consider
the stopping time τε := inf {0 ≤ s ≤ T − t : Xt+s ≤ S − ε | Xt = x} (assume for convenience
that inf{∅} = T − t), for ε > 0. Notice that Pt,x [τε < T − t] > 0, which implies that V (t, x) ≥
Et,x

[
e−λτεG(Xt+τε)

]
> 0 = G(x), from where it comes that (t, x) ∈ C.

Define b(t) := sup {x ∈ R : (t, x) ∈ D}. The above arguments guarantee that b(t) < S for all
t ∈ [0, T ), and we get from (3.3) that b(T ) = S. Furthermore, from (3.3), it can be easily seen
that, as λ increases, V (t, x) decreases, and b(t) increases. Hence, since b(t) is known to be finite
for all t when λ = 0 (see Remark 3.2), then we can guarantee that b(t) > −∞ for all values of λ.

Notice that, since D is a closed set, b(t) ∈ D for all t ∈ [0, T ]. To prove that D has the
form claimed in Proposition 3.1, let us take x < b(t) and consider the OST τ∗ = τ∗(t, x).
Then, relying on (3.3), (3.2), and (3.6), we get

V (t, x)− V (t, b(t)) ≤ Et,x
[
e−λτ∗

G(Xt+τ∗)
]
− Et,b(t)

[
e−λτ∗

G(Xt+τ∗)
]

(3.21)

≤ Et,0

[(
Xt+τ∗ + b(t)T − t− τ

∗

T − t
−Xt+τ∗ − xT − t− τ

∗

T − t

)+]

= (b(t)− x)E
[
T − t− τ∗

T − t

]
≤ b(t)− x,
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where we used the relation

G(a)−G(b) ≤ (b− a)+, (3.22)

for all a, b ∈ R, for the second inequality. Since V (t, b(t)) = S − b(t), we get from the
above relation that V (t, x) ≤ S − x = G(x), which means that (t, x) ∈ D and therefore
{(t, x) ∈ [0, T ]× R : x ≤ b(t)} ⊂ D. On the other hand, if (t, x) ∈ D, then x ≥ b(t), which
proves the reverse inclusion.

Proof of Proposition 3.2. (i) Half of the statement relies on the results obtained by Peskir and
Shiryaev (2006, Section 7.1) relative to the Dirichlet problem. It states that ∂tV + LXV = λV
on C. In addition, it indicates how to prove that V is C1,2 from a solution of the parabolic
Partial Differential Equation (PDE){

∂tf + LXf − λf = 0 in R,

f = V on ∂R,

where R ∈ C is a sufficiently regular region. If we consider R as an open rectangle, since
V is continuous by (iii) below, and both µ and σ are locally Hölder continuous, then the
above PDE has a unique solution (see Theorem 9, Section 3, Friedman (1983)). Finally, since
V (t, x) = G(x) = S − x for all (t, x) ∈ D, V is C1,2 also on D.

(ii) We easily get the convexity of x 7→ V (t, x) by plugging (3.2) into (3.3). To prove (3.14),
let us fix an arbitrary point (t, x) ∈ [0, T ] × R, and consider τ∗ = τ∗(t, x) and ε > 0. Arguing
similarly to (3.21), we get

ε−1(V (t, x+ ε)− V (t, x)) ≥ −E
[
e−λτ∗ T − t− τ∗

T − t

]
. (3.23)

For ε < 0, the reverse inequality emerges, giving us, after taking ε→ 0, the relation ∂−
x V (t, x) ≤

−E
[
e−λτ∗ T−t−τ∗

T−t

]
≤ ∂+

x V (t, x), which, due to the continuity of x 7→ ∂xV (t, x) on (−∞, b(t)) and

on (b(t),∞) for all t ∈ [0, T ] (V is C1,2 on C and on D), turns into ∂xV (t, x) = −E
[
e−λτ∗ T−t−τ∗

T−t

]
for all (t, x) where t ∈ [0, T ] and x ̸= b(t). For x = b(t), Equation (3.14) also holds and becomes
the smooth-fit condition, later proved in Proposition 3.4.

Furthermore, since Pt,x [τ∗ < T − t] > 0, (3.14) shows that ∂xV < 0 and therefore x 7→
V (t, x) is strictly decreasing for all t ∈ [0, T ].

(iii) Let (X [ti,T ]
ti+s )[0,T−ti]

s≥0 be a Brownian bridge going from Xti = x to XT = S for any x ∈ R,
with i = 1, 2. Notice that, according to (3.2), the following holds:

X
[t2,T ]
t2+s′

d= r1/2X
[t1,T ]
t1+s + (1− r1/2)(S − x) s

T − t1
, (3.24)

where r = T−t2
T−t1 , s ∈ [0, T − t1], and s′ = sr ∈ [0, T − t2].

Take 0 ≤ t1 < t2 < T , consider τ1 := τ∗(t1, x), and set τ2 := τ1r. Since t 7→ V (t, x) is
decreasing for every x ∈ R, then

0 ≤ V (t1, x)− V (t2, x)

≤ Et1,x
[
e−λτ1G

(
X

[t1,T ]
t1+τ1

)]
− Et2,x

[
e−λτ2G

(
X

[t2,T ]
t2+τ2

)]
≤ E

[
e−λτ2

(
G
(
X

[t1,T ]
t1+τ1

)
−G

(
X

[t2,T ]
t2+τ2

))]
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≤ E
[(
X

[t2,T ]
t2+τ2 −X

[t1,T ]
t1+τ1

)+
]

= E
[((

r1/2 − 1
)(

X
[t1,T ]
t1+τ1 + (S − x) τ1

T − t1

))+
]

≤
((
r1/2 − 1

)
(S + 1(x ≤ S)(S − x))

)+
,

where the first equality comes after applying (3.24) and the last inequality takes place since
r < 1 and X

[t1,T ]
t1+τ1 ≤ S.

Hence, V (t1, x) − V (t2, x) → 0 as t1 → t2, i.e., t 7→ V (t, x) is continuous for every x ∈ R.
Thus, to address the continuity of V , it is sufficient to prove that, for a fixed t, x 7→ V (t, x) is
uniformly continuous within a neighborhood of t. The latter comes after the following inequality,
which comes right after applying similar arguments to those used in (3.21):

0 ≤ V (t, x1)− V (t, x2) ≤ (x2 − x1)E
[
e−λτ∗ T − t− τ∗

T − t

]
≤ x2 − x1,

where x1, x2 ∈ R are such that x1 ≤ x2 and τ∗ = τ∗(t, x1).

Proof of Proposition 3.3. We set S = 0 and σ = T = 1 for the proof. These restrictions are
merely for notation sobriety. Working out the general case follows identical steps. For the proof,
we import the notation and results from Lemma 3.1. Also, note that the Lipschitz continuity
of b in closed intervals of R implies that of b in closed intervals within [0, T ). In this proof we
tackle the former statement.

Consider the function H : I × R → R+, for a closed interval I ⊂ R+, defined as H(s, y) =
W (s, y)−G(s, y). Take a constant r ∈ R such that 0 > r > sup {b(s) : s ∈ I}. Since I×{r} ⊂ C,
H is continuous and H|I×{r} > 0. Then, there exists a > 0 such that H(s, r) > a for all s ∈ I.
Therefore, for all δ such that 0 < δ ≤ a, the equation H(s, y) = δ has a solution in C for all
s ∈ I. Moreover, this solution is unique for each s since ∂xH < 0 in C, and we denote it by
bδ(s), where bδ : I → R. Away from the boundary, H is regular enough to apply the implicit
function theorem that guarantees that bδ is differentiable and

b′
δ(s) = −∂tH(s, bδ(s))/∂xH(s, bδ(s)). (3.25)

Notice that bδ is increasing in δ and therefore converges pointwise to some limit function b0,
which satisfies b0 ≥ b in I as bδ > b for all δ. Since H(s, bδ(s)) = δ and H is continuous, it
follows that H(s, b0(s)) = 0 after taking δ → 0, which means that b0 ≤ b in I and hence b0 = b
in I.

Take (s, y) ∈ C such that y < r. Set σ∗ = σ∗(s, y) and consider

σr = σr(s, y) := inf {v ≥ 0 : (s+ v, Y s,y
v ) /∈ I × (−∞, r)} .

Recalling (3.47), it is easy to check that there exists a constant K(1)
I > 0 such that

|∂tH(s, y)| ≤ K(1)
I m(s, y) (3.26)

with

m(s, y) := Es,y
[∫ s+σ∗

s

(
1 + |Yv|

(1 + v)2

)
dv
]
.
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Using the tower property of conditional expectation, alongside the strong Markov property, we
get that

m(s, y) = Es,y
[∫ s+σ∗∧σr

s

(
1 + |Yv|

(1 + v)2

)
dv + 1 (σr ≤ σ∗)m(s+ σr, Ys+σr )

]
. (3.27)

Notice that, for r > y > b(s), (s + σr, Ys+σr ) ∈ Γs Ps,y-a.s. whenever σr ≤ σ∗, with Γs :=
{(s, s̄)× {r}} ∪ {s̄× (b(s̄), r]} and s̄ := sup {s : s ∈ I}. Hence, the following holds true Ps,y-a.s.
on the set {σr ≤ σ∗}:

m (s+ σr, Ys+σr ) ≤ sup
(t,x)∈Γs

m (t, x) ≤ sup
(t,x)∈Γs

Et,x
[∫ ∞

t

(
1 + |Yv|

(1 + v)2

)
dv
]

≤ sup
(t,x)∈Γs

∫ ∞

t

(
1 + |x|

(1 + v)2

)
dv +

∫ ∞

t

Es,0 [|Yv|]
(1 + v)2 dv

≤
∫ ∞

0

(
1 + |b(s̄)|

(1 + v)2

)
dv +

∫ ∞

0

√
2
π

√
v

(1 + v)2 dv <∞ (3.28)

By plugging (3.28) into (3.27), after observing that
(
1 + |Yv| /(1 + v)2) ≤ 1 + | infs∈I b(s)| for

v ∈ (s, s+ σ∗ ∧ σr), and recalling (3.26), we obtain the following for some constant K(2)
I > 0:

|∂tH(s, y)| ≤ K(2)
I Es,y [σδ ∧ σr + 1 (σr ≤ σδ)] . (3.29)

Arguing as in (3.27) and setting fs(v) := e−Λ(s,s+v)

1+(s+v) , we get that

|∂xH(s, y)| = Es,y [fs(0)− fs(σ∗)] = Es,y
[∫ s+σ∗

s
f ′
s(v) dv

]
(3.30)

= Es,y
[∫ s+σ∗∧σr

s
f ′
s(v) dv + 1 (σr ≤ σ∗) |∂xH(s+ σr, Ys+σr )|

]
, (3.31)

Take ε > 0 such that Rε := [s, s + ε] × (r − ε, r + ε) ⊂ C, and consider the stopping time
σε = inf {v ≥ 0 : (s+ v, Ys+v) /∈ Rε}. Observe that σ∗ = σ∗(s, r) > σε for all s ∈ I. Then,

|∂xH(s+ σr, r)| ≥ inf
s∈I
|∂xH(s, r)| = inf

s∈I
Es,r [fs(0)− fs(σ∗)]

≥ inf
s∈I

Es,r [fs(0)− fs(σε)]

≥ inf
s∈I

(fs(0)− fs(s+ ε− s)) Ps,r (σε = s+ ε− s)

≥ (fs(0)− fs(ε)) Ps,r
(

sup
u≤s+ε−s

|Ys+u| < ε

)
> 0, (3.32)

where we used the fact that s 7→ fs(0) − fs(v) is decreasing for all v ≥ 0. After noticing that
f ′
s is positive and decreasing, which means that f ′

s(s + v) ≥ f ′
s(s) > 0 for all v ≤ σr, and by

plugging (3.32) into (3.31), we obtain, for a constant K(3)
I,ε > 0,

|∂xH(s, y)| ≥ K(3)
I Es,y [σ∗ ∧ σr + 1 (σr ≤ σ∗, σr < s− s)] . (3.33)
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Therefore, using (3.29) and (3.33) in (3.25) yields the following bound for some constant K(4)
I >

0, yδ = bδ(s), and σδ = σ∗(s, yδ):∣∣b′
δ(s)

∣∣ ≤ K(4)
I

Es,yδ
[σδ ∧ σr + 1 (σr ≤ σδ)]

Es,yδ
[σδ ∧ σr + 1 (σr ≤ σδ, σr < s− s)]

≤ K(4)
I

(
1 + Ps,yδ

(σr ≤ σδ)
Es,yδ

[σδ ∧ σr + 1 (σr ≤ σδ, σr < s− s)]

)

≤ K(4)
I

(
1 + Ps,yδ

(σr ≤ σδ, σr = s̄− s)
Es,yδ

[σδ ∧ σr]
+ Ps,yδ

(σr ≤ σδ, σr < s̄− s)
Es,yδ

[1 (σr ≤ σδ, σr < s− s)]

)

≤ K(4)
I

(
2 + Ps,yδ

(σr ≤ σδ, σr = s̄− s)
Es,yδ

[1 (σr ≤ σδ, σr = s̄− s) (σδ ∧ σr)]

)

≤ K(4)
I

(
2 + 1

s̄− s

)
. (3.34)

If we set Iε = [s, s̄ − ε] for ε > 0 small enough, then, by relying on (3.34), we obtain the
existence of a constant LIε > 0, independent from δ, such that |b′

δ(s)| < LIε for all s ∈ Iε and
0 < δ ≤ a. We are thus able to use the Arzelà–Ascoly’s theorem to guarantee that bδ converges
to b uniformly with respect to δ in Iε, meaning that b is Lipschitz continuous on Iε.

Proof of Proposition 3.4. Take a pair (t, x) ∈ [0, T ) × R lying on the OSB, i.e., x = b(t), and
consider ε > 0. Since (t, x) ∈ D and (t, x+ε) ∈ C, we have that V (t, x) = G(x) and V (t, x+ε) >
G(x + ε). Thus, taking into account the inequality (3.22), we get ε−1(V (t, x + ε) − V (t, x)) >
ε−1(G(x+ ε)−G(x)) ≥ −1, which, after taking ε→ 0 turns into ∂+

x V (t, x) ≥ −1. On the other
hand, consider the OST τε := τ∗(t, x+ ε) and follow arguments similar to (3.21) to get

ε−1(V (t, x+ ε)− V (t, x)) ≤ −E
[
e−λτε

T − t− τε
T − t

]
. (3.35)

Since b is locally Lipschitz continuous (see Proposition 3.3), there exists Lt > 0 such that

lim
ε↓0

Pt,b(t)

(
inf

u∈(0,ε)
(Xt+u − b(t+ u)) < 0

)
= lim

ε↓0
Pt,b(t)

(
inf

u∈(0,ε)

Xt+u − b(t+ u)√
2u ln(ln(1/u))

< 0
)

≥ lim
ε↓0

Pt,b(t)

(
inf

u∈(0,ε)

Xt+u − b(t) + Ltu√
2u ln(ln(1/u))

< 0
)

= Pt,b(t)

(
lim inf
u↓0

Xt+u − b(t) + Ltu√
2u ln(ln(1/u))

< 0
)

= 1,

where the last inequality comes after the law of the iterated logarithm and representation (3.48).
Hence, (t, b(t)) is probabilistically regular for the interior of D, that is, Xt+u falls below the
boundary immediately Pt,b(t)-a.s. and, therefore, Corollary 6 from De Angelis and Peskir (2020)
entails that τε → 0 a.s., which, along with the dominated convergence theorem and (3.35) give us
that ∂+

x V (t, b(t)) ≤ −1. Since V = G in D, it follows straightforwardly that ∂−
x V (t, b(t)) = −1,

and hence the smooth-fit condition holds.

Proof of Proposition 3.5. Assume we have a function c : [0, T ]→ R that solves (3.9) and define

V c(t, x) :=
∫ T

t
e−λ(u−t)

( 1
T − u

+ λ

)
Et,x [(S −Xu)1 (Xu ≤ c(u))] du (3.36)
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=
∫ T

t
Kσ,λ(t, x, u, c(u)) du,

where X = {Xs}Ts=0 is a Brownian bridge with σ volatility that ends at XT = S, and Kσ,λ is
defined at (3.11). It turns out that x 7→ Kσ,λ(t, x, u, c(u)) is twice continuously differentiable and
therefore differentiating inside the integral symbol at (3.36) yields ∂xV c(t, x) and ∂x2V c(t, x),
and furthermore ensures their continuity on [0, T )× R.

Let us compute the operator ∂t + LX acting on the function V c:

∂tV
c + LXV c(t, x) = lim

h↓0

Et,x[V c(t+ h,Xt+h)]− V c(t, x)
h

.

Define the function

I(t, u, x1, x2) := e−λ(u−t)
( 1
T − u

+ λ

)
(S − x1)1 (x1 ≤ x2) (3.37)

and notice that

Et,x[V c(t+ h,Xt+h)] = Et,x

[
Et+h,Xt+h

[∫ T

t+h
I(t+ h, u,Xu, c(u)) du

]]

= Et,x

[
Et,x

[∫ T

t+h
I(t+ h, u,Xu, c(u)) du

∣∣∣ Ft+h
]]

= Et,x

[∫ T

t+h
I(t+ h, u,Xu, c(u)) du

]
,

where (Fs)Ts=0 is the natural filtration of X. Therefore,

∂tV
c + LXV c(t, x)

= lim
h↓0

Et,x
[∫ T
t+h I(t+ h, u,Xu, c(u)) du

]
− Et,x

[∫ T
t I(t, u,Xu, c(u)) du

]
h

= lim
h↓0

1
h
Et,x

[∫ T

t+h

(
eλh − 1

)
I(t, u,Xu, c(u)) du

]
− lim

h↓0

1
h
Et,x

[∫ t+h

t
I(t, u,Xu, c(u)) du

]

= λV (t, x)− (S − x)
( 1
T − t

+ λ

)
1(x ≤ c(t)).

From this result, alongside with (3.8) and the fact that V c, ∂xV c, and ∂x2V c are continuous
on [0, T )× R, we get the continuity of ∂tV c on C1 ∪ C2, where

C1 := {(t, x) ∈ [0, T )× R : x > c(t)}, C2 := {(t, x) ∈ [0, T )× R : x < c(t)}.

Now, define the function F (t)(s, x) := e−λsV c(t+s, x) with s ∈ [0, T−t), x ∈ R, and consider

Ct1 := {(s, x) ∈ C1 : t ≤ s < T}, Ct2 := {(s, x) ∈ C2 : t ≤ s < T}.

We claim that F (t) satisfies the (iii-b) version of the hypothesis of Lemma 3.2 taking C = Ct1
and D◦ = Ct2. Indeed: F (t), ∂xF (t), and ∂x2F (t) are continuous on [0, T )×R; it has been proved
that F (t) is C1,2 on Ct1 and Ct2; we are assuming that c is a continuous function of bounded
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variation; and (∂tF (t) + LXF (t))(s, x) = −e−λs(S − x)
(

1
T−t−s + λ

)
1(x ≤ c(t + s)) is locally

bounded on Ct1 ∪ Ct2.
Thereby, we can use the (iii-b) version of Lemma 3.2 to obtain the following change-of-

variable formula, which is missing the local time term due to the continuity of Fx on [0, T )×R:

e−λsV c(t+ s, Xt+s)

= V c(t, x)−
∫ t+s

t
e−λ(u−t)(S −Xu)

( 1
T − u

+ λ

)
1(Xu ≤ c(u)) du+M (1)

s , (3.38)

with M
(1)
s =

∫ t+s
t e−λ(u−t)σ∂xV

c(u,Xu) dBu. Note that (M (1)
s )T−t

s=0 is a martingale under Pt,x.
In the same way, we can apply the (iii-b) version of Lemma 3.2 using the function F (s, x) =

e−λsG(Xt+s), and taking C = {(s, x) ∈ [0, T − t)×R : x > S} and D◦ = {(s, x) ∈ [0, T − t)×R :
x < S}, thereby getting

e−λsG(Xt+s) = G(x)−
∫ t+s

t
e−λ(u−t)(S −Xu)

( 1
T − u

+ λ

)
1(Xu < S) du (3.39)

−M (2)
s + 1

2

∫ t+s

t
e−λ(u−t)

1(Xu = S) dlSs (X),

where M (2)
s = σ

∫ t+s
t e−λ(u−t)

1(Xu < S) dBu, with 0 ≤ s ≤ T − t, is a martingale under Pt,x.
Consider the following stopping time for (t, x) such that x ≤ c(t):

ρc := inf {0 ≤ s ≤ T − t : Xt+s ≥ c(t+ s) | Xt = x} . (3.40)

In this way, along with assumption c(t) < S for all t ∈ (0, T ), we can ensure that 1(Xt+s ≤
c(t + s)) = 1(Xt+s ≤ S) = 1 for all s ∈ [0, ρc), as well as

∫ t+s
t e−λ(u−t)

1(Xu = S) dlSs (X) = 0.
Recall that V c(t, c(t)) = G(c(t)) for all t ∈ [c, T ) since c solves (3.9). Moreover, V c(T, S) = 0 =
G(S). Hence, V c(t+ ρc, Xt+ρc) = G(Xt+ρc). Therefore, we are able now to derive the following
relation from equations (3.38) and (3.39):

V c(t, x) = Et,x[e−λρcV c(t+ ρc, Xt+ρc)]

+ Et,x
[∫ t+ρc

t
e−λ(u−t)(S −Xu)

( 1
T − u

+ λ

)
1(Xu ≤ c(u)) du

]
= Et,x

[
e−λρcG(Xt+ρc)

]
+ Et,x

[∫ t+ρc

t
e−λ(u−t)(S −Xu)

( 1
T − u

+ λ

)
1(Xu ≤ S) du

]
= G(x).

The vanishing of the martingales M (1)
ρc and M

(2)
ρc comes after using the optional stopping

theorem (see, e.g., Section 3.2 from Peskir and Shiryaev (2006)). Therefore, we have just proved
that V c = G on C2.

Now, define the stopping time

τc := inf{0 ≤ u ≤ T − t : Xt+u ≤ c(t+ u) | Xt = x}

and plugging it into (3.38) to obtain the expression

V c(t, x) = e−λτcV c(t+ τc, Xt+τc)
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+
∫ t+τc

t
e−λ(u−t)(S −Xu)

( 1
T − u

+ λ

)
1(Xu ≤ c(u)) du−M (1)

τc
.

Notice that, due to the definition of τc, 1(Xt+u ≤ c(t+ u)) = 0 for all 0 ≤ u < τc whenever
τc > 0 (the case τc = 0 is trivial). In addition, the optional sampling theorem ensures that
Et,x[M (1)

τc ] = 0. Therefore, the following formula comes after taking Pt,x-expectation in the
above equation and considering that V c = G on C2:

V c(t, x) = Et,x[e−λτcV c(t+ τc, Xt+τc)] = Et,x
[
e−λτcG(Xt+τc)

]
,

for all (t, x) ∈ [0, T )× R. Recalling the definition of V from (3.3), the above equality leads to

V c(t, x) ≤ V (t, x), (3.41)

for all (t, x) ∈ [0, T )× R.
Take (t, x) ∈ C2 satisfying x < min{b(t), c(t)}, where b is the OSB for (3.3), and consider

the stopping time ρc defined as

ρb := inf {0 ≤ s ≤ T − t : Xt+s ≥ b(t+ s) | Xt = x} .

Since V = G onD, the following equality holds due to (3.42) and from noticing that 1(Xt+u ≤
b(t+ u)) = 1 for all 0 ≤ u < ρb:

Et,x[e−λρbV (t+ ρb, Xt+ρb
)] = G(x)− Et,x

[∫ t+ρb

t
e−λ(u−t)(S −Xu)

( 1
T − u

+ λ

)
du
]
.

On the other hand, we get the next equation after substituting s for ρb at (3.38) and recalling
that V = G on C2:

Et,x[e−λρbV (t+ ρb, Xt+ρb
)] = G(x)− Et,x

[∫ t+ρc

t
e−λ(u−t)(S −Xu)

( 1
T − u

+ λ

)
1(Xu ≤ c(u)) du

]
.

Therefore, we can use (3.41) to merge the two previous equalities into

Et,x
[∫ t+ρb

t
e−λ(u−t)(S −Xu)

( 1
T − u

− λ
)
1(Xu ≤ c(u)) du

]
≥ Et,x

[∫ t+ρb

t
e−λ(u−t)(S −Xu)

( 1
T − u

− λ
)

du
]
,

meaning that b(t) ≤ c(t) for all t ∈ [0, T ] since c is continuous.
Suppose there exists a point t ∈ (0, T ) such that b(t) < c(t) and fix x ∈ (b(t), c(t)). Consider

the stopping time

τb := inf{0 ≤ u ≤ T − t : Xt+u ≤ b(t+ u) | Xt = x}

and plugging it both into (3.42) and (3.38) replacing s before taking the Pt,x-expectation. We
obtain

Et,x[e−λτbV c(t+ τb, Xt+τb
)]

= Et,x[e−λτbG(Xt+τb
)]
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= V c(t, x)− Et,x
[∫ t+τb

t
e−λ(u−t)(S −Xu)

( 1
T − u

+ λ

)
1(Xu ≤ c(u)) du

]
and

Et,x[e−λτbV (t+ τb, Xt+τb
)] = Et,x[e−λτbG(Xt+τb

)] = V (t, x).

Thus, from (3.41), we get

Et,x
[∫ t+τb

t
e−λ(u−t)(S −Xu)

( 1
T − u

+ λ

)
1(Xu ≤ c(u)) du

]
≤ 0.

Using the fact that x > b(t) and the time-continuity of the process X, we can state that τb >
0. Therefore, the previous inequality can only happen if 1(Xs ≤ c(s)) = 0 for all t ≤ s ≤ t+ τb,
meaning that b(s) ≥ c(s) for all t ≤ s ≤ t+ τb, which contradicts the assumption b(t) < c(t).

Proof of Theorem 3.1. Propositions 3.1–3.4 give the required conditions to apply the Itô’s for-
mula extension exposed in the supplement to the function F (s, x) = e−λsV (t+s, x), from where
we get that

e−λsV (t+ s,Xt+s) = V (t,Xt) +
∫ s

0
e−λu(∂tV + LXV − λV )(t+ u,Xt+u) du (3.42)

+
∫ s

0
σe−λu∂xV (t+ u,Xt+u) dBu.

Notice that the above formula is missing the local time term due to the continuity of x 7→
∂xV (t, x) for all t ∈ [0, T ].

Recalling that ∂tV +LXV = λV on C and (∂tV +LXV −λV )(t, x) = −(S−x)
(
(T − t)−1 + λ

)
for all (t, x) ∈ D, taking Pt,x-expectation (causing the vanishing of the martingale term), setting
s = T−t, and making a simple change of variable in the integral, we get from (3.42) the following
pricing formula for the American put option:

V (t, x) =
∫ T

t
e−λ(u−t)

( 1
T − u

+ λ

)
Et,x [(S −Xu)1 (Xu ≤ b(u))] du. (3.43)

We know from (3.2) that, for u ∈ [t, T ], X [t,T ]
u ∼ N

(
µ(t, x, u), ν2

σ(t, u)
)

under Pt,x, where µ
and νσ are given in (3.12) and (3.13), respectively.

For any random variable Y , we have that E [Y 1(Y ≤ a)] = P[Y ≤ a]E [Y | Y ≤ a]. In
addition, if Y ∼ N (µ, ν2), then E [Y | Y ≤ a] = µ − νϕ(z)/Φ(z), where z = (a − µ)/ν, and ϕ
and Φ denote, respectively, the density and distribution functions. Then, the more tractable
representation (3.10) for V follows.

Since V (t, x) = S − x for all (t, x) ∈ D, we can take x ↑ b(t) on both sides in (3.10) in order
to obtain the type two Volterra nonlinear integral Equation (3.9) for the OSB b.

Finally, due to Proposition 3.5, we obtain that the solution of Equation (3.9) is unique up
to the regularity conditions considered in Theorem 3.1.

3.B Auxiliary lemmas
Lemma 3.1. Consider the OSP

W (s, y) := sup
σ≥0

Es,y
[
e−Λ(s,s+σ)G(s+ σ, Ys+σ)

]
, (s, y) ∈ R+ × R, (3.44)
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where Λ and G are the time-dependent discount and gain functions, respectively, given by,

G(s, y) =
( −y

1 + s

)+
; Λ(s, s+ v) =

∫ s+v

s
r(ρ) dρ; r(ρ) := λ

1 + ρ
,

where the process {Yv}v∈R+
, defined on the probability space (Ω,F ,P), is a BM. For (s, y) ∈

R+ × R, the probability Ps,y is such that Ps,y (Ys = y) = 1, and Es,y represents the expectation
operator with respect to Ps,y.

Then, for S = 0 and σ = T = 1, the OSP (3.3) is equivalent to (3.44). Specifically,

W (s, y) = V (t, x), (3.45)

for s = t/(1− t) and y = x(1 + s).
Furthermore, denote by C and D to the continuation set and the stopping set of (3.44), and

by σ∗ = σ∗(s, y) and b to its OST and OSB, respectively. Then:

(i) b is bounded and D = {(s, y) : y ≤ b(s)}.

(ii) W is continuous.

(iii) W is C1,2 on C and on D, and LW = λW on C, L = ∂t + 1
2∂xx.

(iv) y 7→W (s, y) is convex and strictly decreasing for all s ∈ R+. Moreover,

∂xW (s, y) = −Es,y
[
e−Λ(s,s+σ∗)

1 + (s+ σ∗)

]
. (3.46)

(v) For (s, y) ∈ C,

∂tW (s, y)− ∂tG(s, y) = Es,y
[∫ s+σ∗

s

e−Λ(s,v)

(1 + v)3

(
2Yv + λ(1 + v)− λ(1 + v)2

)
1 (Ys+v < 0) dv

]

+ 1
2Es,y

[∫ s+σ∗

s

e−Λ(s,v)

1 + v
1 (Yv = 0) dl0v

]
, (3.47)

where l0v is the local-time measure of a Brownian motion B = {Bv}v∈R+
starting at y under

Ps,y, that is,

l0v = lim
ε→0

∫ v

0
1 (−ε ≤ Br ≤ +ε) dr.

Proof of Lemma 3.1. Relation (3.45) is a straightforward consequence of the following BM rep-
resentation of the BB (3.2):

Law
(
{Xt+u}u∈[0,1−t] ,Pt,x

)
= Law

(
{G (s+ v, Ys+v)}v∈R+

,Ps,y
)
, (3.48)

for s+ v = (t+ u)/(1− (t+ u)).
From (3.2) and the results already obtained for V and b in Propositions 3.1 and 3.2, it readily

follows (i), (ii), (iii), and (iv).
To obtain (3.47), take (s, y) ∈ C and set F (s, v, y) := e−Λ(s,v)G(v, y). Notice that, for ε > 0

and σ∗ = σ∗(s, y),

ε−1 (W (s, y)−W (s− ε, y)) ≤ ε−1Es,y [F (s, s+ σ∗, Ys+σ∗)− F (s− ε, s− ε+ σ∗, Ys+σ∗)] .
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Hence, by letting ε→ 0 and setting

f(s, v, y) := (∂1 + ∂2)F (s, v, y) = e−Λ(s,v) (∂tG(v, y)− (ρ(v)− ρ(s))) ,

where ∂i refers to the partial derivative with respect to the i-th coordinate, we get that

∂tW (s, y) ≤ Es,y [f (s, s+ σ∗, Ys+σ∗)] (3.49)

= ∂tG(s, y) + Es,y
[∫ s+σ∗

s
Lf(s, v, Yv)1 (Ys+v < 0) dv

]

+ 1
2Es,y

[∫ s+σ∗

s

e−Λ(s,v)

1 + v
1 (Yv = 0) dl0v

]
,

In the same fashion, we obtain

ε−1 (W (s+ ε, y)−W (s, y)) ≥ ε−1Es,y [F (s, s+ σ∗, Ys+σ∗)− F (s− ε, s− ε+ σ∗, Ys+σ∗)] .

Thus, by arguing as in (3.49) we get the reverse inequality and, therefore, (3.47) is proved after
computing Lf(s, v, y).

To get (3.46), notice that, for ε > 0 small enough,

ε−1 (W (s, y)−W (s, y − ε))

≤ ε−1Es,y
[
e−Λ(s,s+σ∗)G (s+ σ∗, Ys+σ∗)

]
− Es,y−ε

[
e−Λ(s,s+σ∗)G (s+ σ∗, Ys+σ∗)

]
= −Es,y

[
e−Λ(s,s+σ∗)

1 + (s+ σ∗)

]
,

while the same reasoning yields the inequality ε−1 (W (s, y + ε)−W (s, y)) ≥ −Es,y
[
e−Λ(s,s+σ∗)

1+(s+σ∗)

]
,

and then, by letting ε→ 0, we get (3.46).

For the sake of completeness, we formulate the following change-of-variable result by taking
Theorem 3.1 from Peskir (2005a) and changing some of its hypotheses according to Remark
3.2 from Peskir (2005a). Specifically, the (iii-a) version of Lemma 3.2 comes after changing, in
Peskir (2005a), (3.27) and (3.28) for the joint action of (3.26), (3.35), and (3.36). The (iii-b)
version relaxes condition (3.35) into (3.37) in Peskir (2005a).

Lemma 3.2. Let X = (Xt)Tt=0 be a diffusion process solving the SDE

dXt = µ(t,Xt) dt+ σ(t,Xt) dBt, 0 ≤ t ≤ T,

in Itô’s sense. Let b : [0, T ] → R be a continuous function of bounded variation, and let F :
[0, T ]× R→ R be a continuous function satisfying

F is C1,2 on C,

F is C1,2 on D◦,

where C = {(t, x) ∈ [0, T ]× R : x > b(t)} and D◦ = {(t, x) ∈ [0, T ]× R : x < b(t)}.
Assume there exists t ∈ [0, T ] such that the following conditions are satisfied:

(i) ∂tF + µ∂xF + (σ2/2)∂x2F is locally bounded on C ∪D◦;
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(ii) the functions s 7→ ∂xF (s, b(s)±) := ∂xF (s, lim
h→0+

b(s)± h) are continuous on [0, t];

(iii) and either

(iii-a) x 7→ F (s, x) is convex on [b(s)−δ, b(s)] and convex on [b(s), b(s)+δ] for each s ∈ [0, t],
with some δ > 0;

(iii-b) ∂x2F = G1 + G2 on C ∪ D◦, where G1 is non-negative (or non-positive) and G2 is
continuous on C̄ and D̄◦.

Then, the following change-of-variable formula holds:

F (t,Xt) = F (0, X0) +
∫ t

0
(∂tF + µ∂xF + (σ2/2)∂x2F )(s,Xs)1(Xs ̸= b(s)) ds

+
∫ t

0
(σ∂xF )(s,Xs)1(Xs ̸= b(s)) dBs

+ 1
2

∫ t

0
(∂xF (s,X+

s )− ∂xF (s,X−
s ))1(Xs = b(s)) dlbs(X),

where dlbs(X) is the local time of X at the curve b up to time t, i.e.,

lbs(X) = lim
ε→0

∫ t

0
1(b(s)− ε ≤ Xs ≤ b(s) + ε) d⟨X,X⟩s, (3.50)

where ⟨X,X⟩ is the predictable quadratic variation of X, and the limit above is meant in prob-
ability.
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Chapter 4

Optimal stopping of an
Ornstein–Uhlenbeck bridge

Abstract

Markov bridges may be useful models in finance to describe situations in which information
on the underlying processes is known in advance. However, within the framework of opti-
mal stopping problems, Markov bridges are inherently challenging processes as they are time-
inhomogeneous and account for explosive drifts. Consequently, few results are known in the
literature of optimal stopping theory related to Markov bridges, all of them confined to the
simplistic Brownian bridge.

In this paper we make a rigorous analysis of the existence and characterization of the free
boundary related to the optimal stopping problem that maximizes the mean of an Ornstein–
Uhlenbeck bridge. The result includes the Brownian bridge problem as a limit case. The
methodology hereby presented relies on a time-space transformation that casts the original
problem into a more tractable one with an infinite horizon and a Brownian motion underneath.
We conclude by commenting on two different numerical algorithms to compute the free-boundary
equation and discuss illustrative cases that shed light on the boundary’s shape. In particular,
the free boundary does not generally share the monotonicity of the Brownian bridge case.
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4.1 Introduction

Since their first appearance in the seminal monograph of Wald (1947), Optimal Stopping Prob-
lems (OSPs) have become ubiquitous tools in mathematical finance, stochastic analysis, and
mathematical statistics, among many other fields. Particularly, OSPs that are non-homogeneous
in time are known to be mathematically challenging and, compared to the time-homogeneous
counterpart, the literature addressing this topic is scarce, non-comprehensive, and often heavy
on smoothness conditions. Markov bridges are not only time-inhomogeneous processes, but they
also fail to meet the common assumption of Lipschitz continuity of the underlying drift (see,
e.g., Krylov and Aries (1980, Chapter 3), or Jacka and Lynn (1992)), as their drifts explode
when time approaches the horizon, thus inherently adding an extra layer of complexity.

The first result in OSPs with Markov bridges was given by Shepp (1969), who circumvented
the complexity of dealing with a Brownian Bridge (BB) by using a time-space transformation
that allowed reformulating the problem into a more tractable one with a Brownian motion
underneath. Since then, more than fifty years ago, the use of Markov bridges in the context of
OSPs has been narrowed to extending the result of Shepp (1969): Ekström and Wanntorp (2009)
and Ernst and Shepp (2015) studied alternative methods of solutions; Ekström and Wanntorp
(2009) and De Angelis and Milazzo (2020) looked at a broader class of gain functions, Glover
(2020) randomized the horizon while Föllmer (1972), Leung et al. (2018), and Ekström and
Vaicenavicius (2020) analyzed the randomization of the bridge’s terminal point.

In finance, the use of a BB in OSPs has been motivated by several applications. Boyce
(1970) applied it to the optimal selling of bonds; Baurdoux et al. (2015) suggested the use
of a BB to model mispriced assets that could rapidly return to their fair price, or perishable
commodities that become useless after a given deadline; and Ekström and Wanntorp (2009)
used a BB to model the stock-pinning effect, that is, the phenomenon in which the price of a
stock tends to be pulled towards the strike price of one of its underlying options with massive
trading volumes at the expiration date. While these motivations encourage the investor to rely
on a model with added information at the horizon, none of them are exclusive to a BB, its usage
being rather driven by tractability issues. Thus, in those same scenarios, other bridge processes
could be more appealing than the over-simplistic BB. In particular, we drive our attention to
an Ornstein–Uhlenbeck Bridge (OUB) process, since its version without a fixed terminal point,
the Ornstein–Uhlenbeck (OU) process, is often the reference model in many financial problems.

Indeed, OU processes are a go-to in finance when it comes to modeling assets with prices
that fluctuate around a given level. This mean-reverting phenomenon has been systematically
observed in a wide variety of markets. A good reference for either theory, applications, or
empirical evidence of mean-reverting problems is Leung and Li (2015a). An example is given by
the pair trading strategy, which consists on holding a position in one asset as well as the opposite
position in another, both assets known to be correlated in a way that the spread between their
prices shows mean reversion. Recently, many authors have tackled pair trading by using an
OSP approach with an OU process. Ekström et al. (2011) found the best time to liquidate
the spread in the presence of a stop-loss level; Leung and Li (2015b) used a discounted double
OSP to compute the optimal buy-low-sell-high strategy in a perpetual frame; and Kitapbayev
and Leung (2017) extended that result to a finite horizon and took the viewpoint of investors
entering the spread either buying or shorting.

In this paper we solve the finite-horizon OSP featuring the identity as the gain function and
an OUB as the underlying process. The solution is provided in terms of a non-linear, Volterra-
type integral equation. Similarly to Shepp (1969), our methodology relies on a time-space
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change that casts the original problem into an infinite-horizon OSP with a Brownian motion as
the underlying process. Due to the complexity of our resulting OSP, we use a direct approach
to solve it rather than using the common candidate-verification scheme. We then show that
one can either apply the inverse transformation to recover the solution of the original OSP or,
equivalently, solve the Volterra integral equation reformulated back in terms of OUB. It is worth
highlighting that the BB framework is included in our analysis as a limit case.

The rest of the paper is structured as follows. Section 4.2 introduces the main problem and
some useful notation. In Section 4.3 we derive the transformed OSP and establish its equivalence
to the original one. The most technical part of the paper is relegated to Section 4.4, in which we
derive the solution of the reformulated OSP. From it, we use the reverse transformation to get
the solution back to the original OSP in Section 4.5, where we also remark that both a BB and
an OUB with general pulling level and terminal time are immediate consequences of our results.
An algorithm for numerical approximations of the solution is given in Section 4.6, along with
a compendium of illustrative cases for different values of the OUB’s parameters. Concluding
remarks are relegated to Section 4.7.

4.2 Formulation of the problem

Let X = {Xt}t∈[0,1] be an OUB with terminal value X1 = z, z ∈ R, and defined in the filtered
space (Ω,F ,P, {Ft}t∈[0,1]). That is, for an OU process X̃ = {X̃t}t∈[0,1], take X such that
Law(X,P) = Law(X̃, P̃z), where P̃z := P

(
· |X̃1 = z

)
. It is well known (see, e.g., Barczy and

Kern (2013)) that X is the unique strong solution of the Stochastic Differential Equation (SDE)

dXt = µ(t,Xt)dt+ γdBt, 0 ≤ t ≤ 1, (4.1)

with γ > 0 and

µ(t, x) = α
z − cosh(α(1− t))x

sinh(α(1− t)) , α ̸= 0. (4.2)

Note that we can take {Ft}t∈[0,1] as the natural filtration of the underlying standard Brownian
motion {Bs}t∈[0,1] in (4.1).

Consider the finite-horizon OSP

V (t, x) := sup
τ≤1−t

Et,x [Xt+τ ] , (4.3)

where V is the value function and Et,x represents the expectation under the probability measure
Pt,x defined as Pt,x(·) := P(·|Xt = x). The supremum above is taken under all random times τ
in the underlying filtration, such that t+ τ is a stopping time in {Ft}t∈[0,1]. Henceforth, we will
call τ a stopping time while keeping in mind that t+ τ is the actual stopping time.

4.3 Reformulation of the problem

Barczy and Kern (2013) provide the following space-time transformed representation for X:

Xt = a1(t,X0, z) + a2(t)Bψ(t),
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where the functions a1 and a2 take the form

a1(t, x, z) := x
sinh(α(1− t))

sinh(α) + z
sinh(αt)
sinh(α) , a2(t) := γeαt

κ(1)− κ(t)
κ(1) ,

and ψ : [0, 1) → R+ is the time transformation ψ(t) := κ(t)κ(1)/(κ(1) − κ(t)), with κ(t) :=
(2α)−1(1−e−2αt). Notice that t = κ−1 (ψ(t)κ(1)/(ψ(t) + κ(1))) , where κ−1(s) = −(2α)−1 ln(1−
2αs). The following identities can be easily checked:

a1(t, x, z) =
(
x+ z

ψ(t)e−α

κ(1)

)
1

f
(
ψ(t)e−α

κ(1)

) , a2(t) = γ

f
(
ψ(t)e−α

κ(1)

) ,
with

f(s) :=
√

(eα + s) (e−α + s). (4.4)

Therefore, if we set the time change s = ψ(t)e−α/κ(1), we get the space change

Xt = X0 + zs

f(s) + γ

f(s)Bsκ(1)eα = zs+ γ
√
κ(1)eα

f(s)

(
Bs + X0

γ
√
κ(1)eα

)
. (4.5)

Let Y = {Ys}s≥0 be a Brownian motion starting at Y0 = y under the probability measure
Py, that is, Py (Y0 = y) = 1. Consider the infinite-horizon OSP

Wc(s, y) := sup
σ

Ey [Gc(s+ σ, Yσ)] , (4.6)

with gain function

Gc(s, y) := cs+ y

f(s) (4.7)

and c ∈ R. The operator Ey emphasizes that we are taking the mean with respect to Py, and
the supremum in (4.6) is taken over all the stopping times σ in the natural filtration of {Ys}s≥0.

Solving an OSP means giving a tractable expression for the value function and finding a
stopping time in which the supremum is attained. Thereby, we show in the next proposition the
equivalence between (4.3) and (4.6), by providing formulae that relate V to W , and switch from
a stopping time that is optimal in the former problem (if it exists) to one optimal in the latter.

Proposition 4.1. (Time-space equivalence)
Consider the time change υ : [0, 1]→ R such that υ(t) = ψ(t)e−α/κ(1). Take (t, x) ∈ [0, 1)× R
and set s = υ(t), cz := z/(γ

√
κ(1)eα), and y = cx. Then:

(i) The following equation holds:

V (t, x) = z

cz
Wcz (s, y) . (4.8)

(ii) The stopping time σ∗(s, y) is optimal in (4.6) under Py for c = cz if and only if

τ∗(t, x) := υ−1 (σ∗(s, y)) (4.9)

is optimal in (4.3) under Pt,x.
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Proof. (i) We have already proved this part of the proposition. Indeed, (4.8) follows trivially
from (4.3) and (4.5)–(4.7).

(ii) Suppose that σ∗ = σ∗(s, y) is optimal in (4.6) under Py for c = cz. Assume that there
exists a stopping time τ ′ = τ ′(t, x) that outperforms τ∗ = τ∗(t, x) defined in (4.9), and set
σ′ = σ′(s, y) := υ−1(τ ′). Then, by relying on (4.5), we get that

Ey
[
Gcz

(
s+ σ′, Yσ′

)]
= Et,x [Xt+τ ′ ] > Et,x [Xt+τ ′ ] = Ey [Gcz (s+ σ∗, Yσ∗)] ,

which contradicts the fact that σ∗ is optimal in (4.6). Then, we have proved the only if part of
the statement. The if direction follows by similar arguments.

4.4 Solution of the reformulated problem: a direct approach
In this section we will work out a solution for the OSP (4.6). For the sake of briefness and since
there is no risk of confusion, throughout the section we will use the notations W = Wc and
G = Gc, so that (4.6) can be rewritten as

W (s, y) = sup
σ

Ey [G(s+ σ, Yσ)] . (4.10)

Notice that 0 ≤ s/f(s) ≤ 1 and f(s) ≥
√

1 + s2 for all s ∈ R+, f(0) = 1, and f is increasing.
Hence, the following holds for M := E

[
sup0≤u≤1 |Bu|

]
and all (s, y) ∈ R+ × R:

Ey

[
sup
u≥0
|G (s+ u, Yu)|

]
≤ |c|+ Ey

[
sup
u≥0

|Yu|
f(u)

]
≤ |c|+ |y|+ E

[
sup
u≥0

|Bu|√
1 + u2

]

≤ |c|+ |y|+M + E
[
sup
u≥1

|Bu|√
1 + u2

]

= |c|+ |y|+M + E
[
sup
u≥1

u√
1 + u2

∣∣∣B1/u

∣∣∣]

≤ |c|+ |y|+M + E
[
sup
u≥1

∣∣∣B1/u

∣∣∣] = |c|+ |y|+ 2M, (4.11)

where we used the time-inversion property of a Brownian motion in the first equality. Thereby,
since M < ∞ and G is continuous, we get that (see, e.g., Corollary 2.9, Remark 2.10, and
Equation (2.2.80) in Peskir and Shiryaev (2006)) the first hitting time

σ∗(s, y) = inf {u ≥ 0 : (s+ u, Yu) ∈ D} (4.12)

into the stopping set D := {W = G} is optimal for (4.10). That is,

W (s, y) = Ey
[
G
(
s+ σ∗(s, y), Yσ∗(s,y)

)]
. (4.13)

After applying Itô’s lemma to both (4.6) and (4.13) we get the following alternative representa-
tions of W :

W (s, y)−G(s, y) = sup
σ

Ey
[∫ σ

0
LG (s+ u, Yu) du

]
= Ey

[∫ σ∗(s,y)

0
LG (s+ u, Yu) du

]
, (4.14)
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where L = ∂t + 1
2∂xx is the infinitesimal generator of {(s+ u, Yu)}u≥0. Here and thereafter,

∂t and ∂x will stand, respectively, for the differential operator with respect to time and space,
while ∂xx is a shorthand for ∂x∂x. Note that LG = ∂tG. Since many of the proofs rely on the
first-order partial derivatives of the gain function, we display them next for quick reference:

∂tG(s, y) = c (f(s)− sf ′(s))− f ′(s)y
f2(s) , (4.15)

∂xG(s, y) = 1
f(s) . (4.16)

To keep track of the initial condition in a way that does not change the underlying probability
measure, we introduce the process Y y = {Y y

s }s≥0 such that

Law
(
{Y y

s }s≥0 ,P
)

= Law
(
{Ys}s≥0 ,Py

)
.

Notice that the characterization of the Optimal Stopping Time (OST) in (4.12) is too abstract
to work with. In the next proposition we characterize σ∗(s, y) by means of a function called
the Optimal Stopping Boundary (OSB), which is the frontier between D and its complement
C := {W > G}. We also derive some properties about the shape of the OSB that shed light on
the geometry of D and C.

Proposition 4.2 (Existence and shape of the optimal stopping boundary).
There exists a function b : R+ → R such that D = {(s, y) : y ≥ b(s)}. Moreover, c(f(s) −
sf ′(s))/f(s) < b(s) <∞ for all s ∈ R+.

Proof. The claimed shape for the stopping set, D = {(s, y) : y ≥ b(s)}, is a straightforward
consequence of the fact that y 7→ (W −G)(s, y) is decreasing for all s ∈ R+, which follows after
(4.4), (4.14), and (4.15).

We now see that b(s) > c(f(s) − sf ′(s))/f(s) for all s > 0. Fix a pair (s, y) such that
∂tG(s, y) > 0. Then, the continuity of ∂tG allows to pick a ball B such that (s, y) ∈ B and
∂tG > 0 in B. After recalling (4.14) and setting σB as the first exit time of {(s+ u, Y y

u )}u≥0
from B, we get that

W (s, y)−G(s, y) ≥ Ey
[∫ σB

0
∂tG (s+ u, Yu) du

]
> 0.

We conclude then that (s, y) ∈ C. Finally, the claimed lower bound for b comes after using (4.15)
to realize that ∂tG(s, y) > 0 if and only if y < c(f(s)− sf ′(s))/f(s).

We now prove b(s) < ∞ for all s > 0. Let X̃ =
{
X̃t
}
t∈[0,1] be a BB with pinning point

X̃1 = z. The drift of X̃ has the form µ̃(t, x) = (z − x)/(1− t). Define mz : [0, 1)→ R such that

mz(t) = z
sinh(α(1− t))− α(1− t)

sinh(α(1− t))− α(1− t) cosh(α(1− t)) ,

and notice that µ(t, x) ≤ µ̃(t, x) if and only if x ≥ mz(t). Take M z := supt∈[0,1)mz(t) <∞ and
notice the following relation:

Xt ≤ mz(t) + |Xt −mz(t)| ≤ mz(t) + |X̃t −mz(t)| ≤M z + |X̃t −M z|.

The second inequality holds since the drift of the process t 7→ mz(t) + |Xt − mz(t)| is lower
than the drift of t 7→ mz(t) + |X̃t−mz(t)|, and therefore we can ensure that, pathwise, the first
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process is lower than the last one P-a.s. (see Corollary 3.1 by Peng and Zhu (2006)). The third
inequality is straightforward from the definition of M z. Therefore, if we consider the OSP

ṼMz
(t, x) = sup

τ≤1−t
Et,x

[
M z + |X̃t+τ −M z|

]
,

we are allowed to state that V ≤ ṼMz
. If we take a pair (t, x) ∈ [0, 1] × [M z,∞) within the

stopping set related to VMz
, then V (t, x) ≤ VMz

(t, x) = x, meaning that (t, x) lies in the stopping
set of V . Since it is known that the OSB related to VMz

is finite (actually, this is one of the few
cases in which the explicit form of the OSP with a finite horizon is available; see, e.g., Theorem
3.2 in Ekström and Wanntorp (2009)), so is the one related to V . Then, using (4.8), we conclude
that b is bounded from above.

We next show that W is Lipschitz continuous on sets of the type R+ ×R, where R stands
for a compact set in R.

Proposition 4.3 (Lipschitz continuity of the value function).
For any compact set R ⊂ R, there exists a constant LR > 0 such that

|W (s1, y1)−W (s2, y2)| ≤ LR (|s1 − s2|+ |y1 + y2|) ,

for all (s1, y1), (s2, y2) ∈ R+ ×R.

Proof. Take (s1, y1), (s2, y2) ∈ R+ ×R and realize that

W (s1, y1)−W (s2, y2) = sup
σ

Ey1 [G(s1 + σ, Yσ)]− sup
σ

Ey2 [G(s1 + σ, Yσ)]

+ sup
σ

Ey2 [G(s1 + σ, Yσ)]− sup
σ

Ey2 [G(s2 + σ, Yσ)] .

Notice from (4.15) that the following relation holds:

|∂tG(s, y)| ≤ K
(

1 + |y|
f(u)

)
.

Then, since | supσ aσ − supσ bσ| ≤ supσ |aσ − bσ|, alongside Jensen’s inequality, and (4.15) and
(4.16), we get that∣∣∣ sup

σ
Ey1 [G(s1 + σ, Yσ)]− sup

σ
Ey2 [G(s1 + σ, Yσ)]

∣∣∣
≤ sup

σ
E [|G(s1 + σ, Y y1

σ )−G(s1 + σ, Y y2
σ )|]

= sup
σ

E
[ |Y y1

σ − Y y2
σ |

f(s1 + σ)

]
= |y1 − y2|

f(s1) ≤ |y1 − y2|,

and ∣∣∣ sup
σ

Ey2 [G(s1 + σ, Yσ)]− sup
σ

Ey2 [G(s2 + σ, Yσ)]
∣∣∣

≤ sup
σ

E [|G(s1 + σ, Y y2
σ )−G(s2 + σ, Y y2

σ )|]

= |s1 − s2| sup
σ

E [|∂tG(ξ, Y y2
σ )|]

≤ |s1 − s2|K
(

1 + E
[
sup
s≥0

|Y y2
s |

f(s)

])
,
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where ξ ∈ (min {s1, s2} ,max {s1, s2}) follows from the mean value theorem. Since we already
proved in (4.11) that E

[
sups≥0 |Y y2

s | /f(s)
]
< ∞, the Lipschitz continuity of W in R+ × R

follows.

Beyond Lipschitz continuity, it turns out that the value function attains a higher smoothness
away from the boundary. While this assertion is trivial in the interior of the stopping region,
where W = G, we prove in the next proposition that it also holds in the continuation set. In
addition, we show that LW vanishes in C, which establishes the equivalence between (4.10) and
a free-boundary problem.

Proposition 4.4 (Higher smoothness of the value function and the free-boundary problem).
W ∈ C1,2(C) and LW = 0 in C.

Proof. The fact that LW = 0 in C comes right after the strong Markov property of {(s+ u, Yu)}u≥0;
see Peskir and Shiryaev (2006, Section 7.1) for more details.

Since W is continuous on C (see Proposition 4.3) and the coefficients in the parabolic operator
L are smooth enough (it suffices to require local α-Hölder continuity), then standard theory from
parabolic partial differential equations Friedman (1964, Section 3, Theorem 9) guarantees that,
for an open rectangle R ⊂ C, the first initial-boundary value problem

Lf = 0 in R, (4.17a)
f = V on ∂R (4.17b)

has a unique solution f ∈ C1,2(R). Therefore, we can use Itô’s formula on f(s + u, Yu) at
u = τRc , that is, the first time (s + u, Yu) exits R, and then take Py-expectation with y ∈ R,
which guarantees the vanishing of the martingale term and yields, together with (4.17a) and
(4.17b), the equality Ey[W (s+ τRc , YτRc )] = f(t, x). Finally, due to the strong Markov property,
Ey[W (s+ τRc , YτRc )] = W (s, y).

Not only the gain function has continuous partial derivatives away from the boundary, but
we can provide relatively explicit forms for those derivatives, as shown in the next proposition.

Proposition 4.5 (Partial derivatives of the value function).
Let σ∗ = σ∗(s, y), for (s, y) ∈ C, and a := e−α + eα. Then,

∂tW (s, y) = ∂tG(s, y) + E
[∫ s+σ∗

s

1
f3(u)

(
−c (a+ 3u) + 3 (a+ 2u)2

4f2(u) − Y y
u−s

)
du
]

(4.18)

and

∂xW (s, y) = E
[ 1
f(s+ σ∗)

]
. (4.19)

Proof. Take (s, y) ∈ C and ε > 0. Due to (4.10) and (4.13), we get the following for σ∗ = σ∗(s, y):

ε−1 (W (s, y)−W (s− ε, y)) ≤ ε−1E [G(s+ σ∗, Y y
σ∗)−G(s− ε+ σ∗, Y y

σ∗)] .

Hence, by letting ε→ 0 and recalling that W ∈ C1,2(C) (see Proposition 4.4), we get that

∂tW (s, y) ≤ E [∂tG(s+ σ∗, Y y
σ∗)] = ∂tG(s, y) + E

[∫ s+σ∗

s
L∂tG(u, Y y

s−u) du
]
. (4.20)
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In the same fashion, we obtain

ε−1 (W (s+ ε, y)−W (s, y)) ≥ ε−1E [G(s+ ε+ σ∗, Y y
σ∗)−G(s+ σ∗, Y y

σ∗)] .

Thus, by arguing as in (4.20) we get the reverse inequality, and therefore (4.18) is proved after
computing L∂tG(u, Y y

s−u) = ∂ttG(u, Y y
s−u).

To get the analog result for the space coordinate, notice that

ε−1 (W (s, y)−W (s, y − ε)) ≤ ε−1E
[
W (s+ σ∗, Y y

σ∗)−W (s+ σ∗, Y y−ε
σ∗ )

]
≤ ε−1E

[
G(s+ σ∗, Y y

σ∗)−G(s+ σ∗, Y y−ε
σ∗ )

]
= E

[ 1
f(s+ σ∗)

]
,

while the same reasoning yields the inequality ε−1 (W (s, y + ε)−W (s, y)) ≥ E [1/f(s+ σ∗)],
and then, by letting ε→ 0, we get (4.19).

So far we have proved that solving (4.10) is equivalent to solving the free-boundary problem

LW (s, y) = 0 for y < b(t), (4.21a)
W (s, y) > G(s, y) for y < b(t), (4.21b)
W (s, y) = G(s, y) for y ≥ b(t). (4.21c)

However, an additional condition for the value function on the free boundary is required to
guarantee a unique solution. Roughly speaking, this condition comes in the form of smoothly
binding the value and the gain functions with respect to the space coordinate, provided that the
optimal boundary is (probabilistically) regular for the interior of D, that is, if after starting at
a point (s, y) ∈ ∂C, the process enters the interior of D immediately Py-a.s. (see De Angelis and
Peskir (2020)). This type of regularity can be obtained for locally Lipschitz continuous OSBs
(see Proposition 4.7 ahead).

In the next proposition we show that the boundary is Lipschitz continuous on any bounded
interval. The proof is inspired by Theorem 4.3 from De Angelis and Stabile (2019), which states
the boundary’s local Lipschitz continuity for high-dimensional processes with some regularity
conditions. Our settings do not satisfy Assumption (D) in De Angelis and Stabile (2019), which
establishes a relation between the partial derivatives of G.

Proposition 4.6 (Lipschitz continuity of the optimal stopping boundary).
For any closed interval I := [s, s] ⊂ R+, there exists a constant LI > 0 such that

|b(s1)− b(s2)| ≤ LI , (4.22)

whenever s1, s2 ∈ I.

Proof. Consider the function H : I×R→ R+, for a closed interval I ⊂ R+, defined as H(s, y) =
W (s, y)−G(s, y). Proposition 4.2 entails that b is bounded from below, and thus we can choose
a constant r ∈ R such that r < inf {b(s) : s ∈ I}. Since I × {r} ⊂ C, H is continuous (see
Proposition 4.3) and H|I×{r} > 0. Then, there exists a > 0 such that H(s, r) > a for all s ∈ I.
Therefore, for all δ such that 0 < δ ≤ a, the equation H(s, y) = δ has a solution in C for all
s ∈ I. Moreover, this solution is unique for each s since ∂xH < 0 in C (see Proposition 4.5),
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and we denote it by bδ(s), where bδ : I → R. Away from the boundary, H is regular enough to
apply the implicit function theorem that guarantees that bδ is differentiable and

b′
δ(s) = −∂tH(s, bδ(s))/∂xH(s, bδ(s)). (4.23)

Note that bδ is decreasing in δ and therefore converges pointwise to some limit function b0, which
satisfies b0 ≤ b in I as bδ < b for all δ. Since H(s, bδ(s)) = δ and H is continuous, it follows that
H(s, b0(s)) = 0 after taking δ → 0, which means that b0 ≥ b in I and hence b0 = b in I.

Take (s, y) ∈ C such that y > r. Set σ∗ = σ∗(s, y) and consider

σr = σr(s, y) := inf {u ≥ 0 : (s+ u, Y y
u ) /∈ I × (r,∞)} .

Recalling (4.18), it is easy to check that there exists a constant K(1)
I > 0 such that

|∂tH(s, y)| ≤ K(1)
I m(s, y) (4.24)

with
m(s, y) := Ey

[∫ σ∗

0

(
1 + |Yu|

f2(s+ u)

)
du
]
.

Using the tower property of conditional expectation, alongside the strong Markov property, we
get

m(s, y)

= Ey

[∫ σ∗∧σr

0

(
1 + |Yu|

f2(s+ u)

)
du+ 1 (σr ≤ σ∗)

∫ σ∗

σr

(
1 + |Yu|

f2(s+ u)

)
du
]

= Ey

[∫ σ∗∧σr

0

(
1 + |Yu|

f2(s+ u)

)
du+ 1 (σr ≤ σ∗)Ey

[∫ σr+σ∗(σr,Yσr )

σr

(
1 + |Yu|

f2(s+ u)

)
du
∣∣∣Fσr

]]

= Ey

[∫ σ∗∧σr

0

(
1 + |Yu|

f2(s+ u)

)
du+ 1 (σr ≤ σ∗)EYσr

[∫ σ∗(σr,Yσr )

0

(
1 + |Yu|

f2(s+ σr + u)

)
du
]]

= Ey

[∫ σ∗∧σr

0

(
1 + |Yu|

f2(s+ u)

)
du+ 1 (σr ≤ σ∗)m(s+ σr, Yσr )

]
. (4.25)

Notice that, for c < r < y < b(s), (s + σr, Y
y
σr

) ∈ Γs on the set {σr ≤ σ∗}, with Γs :=
{(s, s̄)× {r}} ∪ {s̄× [r, b(s̄))} and s̄ := sup {s : s ∈ I}. Hence, the following holds true on the
set {σr ≤ σ∗}:

m
(
s+ σr, Y

y
σr

)
≤ sup

(t,x)∈Γs

m (t, x)

≤ sup
(t,x)∈Γs

Ex
[∫ ∞

0

(
1 + |Yu|

f2(t+ u)

)
du
]

≤ sup
(t,x)∈Γs

∫ ∞

0

(
1 + |x|

f2(t+ u)

)
du+

∫ ∞

0

E [|Bu|]
f2(t+ u) du

≤
∫ ∞

0

(
1 + |b(s̄)|

f2(u)

)
du+

∫ ∞

0

√
2
π

√
u

f2(u) du <∞. (4.26)

By plugging (4.26) into (4.25), after observing that
(
1 + |Yu| /f2(s+ u)

)
≤ 1+max {| sups∈I b(s)|, |r|},

and recalling (4.24), we obtain the following for some constant K(2)
I > 0:

|∂tH(s, y)| ≤ K(2)
I Ey [σδ ∧ σr + 1 (σr ≤ σδ)] . (4.27)
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Arguing as in (4.25) and recalling (4.16) along with (4.19), we get that

|∂xH(s, y)|

= Ey
[ 1
f(s) −

1
f(s+ σ∗)

]
= Ey

[∫ σ∗

0
−∂t(1/f)(s+ u) du

]

= Ey

[∫ σ∗∧σr

0
−∂t(1/f)(s+ u) du+ 1 (σr ≤ σ∗) |∂xH(s+ σr, Yσr )|

]

≥ Ey

[∫ σ∗∧σr

0
−∂t(1/f)(s+ u) du+ 1 (σr ≤ σ∗, σr < s− s) |∂xH(s+ σr, r)|

]
. (4.28)

Take ε > 0 such that Rε := [s, s + ε] × (r − ε, r + ε) ⊂ C, and consider the stopping time
σε = inf [u ≥ 0 : Y r

u /∈ Rε]. Observe that σ∗(s, r) > σε for all s ∈ I. Then,

|∂xH(s+ σr, r)| ≥ inf
s∈I
|∂xH(s, r)| = inf

s∈I
Er
[ 1
f(s) −

1
f(s+ σ∗(s, r))

]
≥ inf

s∈I
Er
[ 1
f(s) −

1
f(s+ σε)

]
≥ inf

s∈I

( 1
f(s) −

1
f(s+ ε)

)
Pr (σε = s+ ε− s)

=
( 1
f(s) −

1
f(s+ ε)

)
P
(

sup
u≤s+ε−s

|Bu| < ε

)
> 0, (4.29)

where we used the fact that s 7→ 1/f(s)− 1/f(s+ u) is decreasing for all u ≥ 0. After noticing
that −∂t(1/f) is positive and decreasing, which means that −∂t(1/f)(s+ u) ≥ −∂t(1/f)(s) > 0
for all u ≤ σr, and by plugging (4.29) into (4.28), we obtain, for a constant K(3)

I,ε > 0,

|∂xH(s, y)| ≥ K(3)
I Ey [σ∗ ∧ σr + 1 (σr ≤ σ∗, σr < s− s)] . (4.30)

Therefore, using (4.27) and (4.30) in (4.23) yields the following bound for some constant K(4)
I >

0, yδ = bδ(s), and σδ = σ∗(s, yδ):∣∣b′
δ(s)

∣∣ ≤ K(4)
I

Eyδ
[σδ ∧ σr + 1 (σr ≤ σδ)]

Eyδ
[σδ ∧ σr + 1 (σr ≤ σδ, σr < s− s)]

≤ K(4)
I

(
1 + Pyδ

(σr ≤ σδ)
Eyδ

[σδ ∧ σr + 1 (σr ≤ σδ, σr < s− s)]

)

≤ K(4)
I

(
1 + Pyδ

(σr ≤ σδ, σr = s̄− s)
Eyδ

[σδ ∧ σr]
+ Pyδ

(σr ≤ σδ, σr < s̄− s)
Eyδ

[1 (σr ≤ σδ, σr < s− s)]

)

≤ K(4)
I

(
2 + Pyδ

(σr ≤ σδ, σr = s̄− s)
Eyδ

[1 (σr ≤ σδ, σr = s̄− s) (σδ ∧ σr)]

)

≤ K(4)
I

(
2 + 1

s̄− s

)
. (4.31)

If we set Iε = [s, s̄ − ε] for ε > 0 small enough, then, by relying on (4.31), we obtain the
existence of a constant LIε > 0, independent from δ, such that |b′

δ(s)| < LIε for all s ∈ Iε and
0 < δ ≤ a. We are thus able to use the Arzelà–Ascoly’s theorem to guarantee that bδ converges
to b uniformly with respect to δ in Iε.
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Once we have the Lipschitz continuity of the boundary on bounded sets, we proceed to
illustrate in the following proposition how to obtain the principle of smooth fit, which, as we
highlighted before, is required to provide a unique solution to the associated free-boundary
problem (4.21a)–(4.21c).

Proposition 4.7 (The smooth-fit condition).
For all s ≥ 0, y 7→W (s, y) is differentiable at y = b(s). Moreover, ∂xW (s, b(s)) = ∂xG(s, b(s)).

Proof. Recall that we have already obtained in (4.19) an explicit form for ∂xW away from the
boundary, namely,

∂xW (s, y) = E
[ 1
f(s+ σ∗(s, y))

]
, (s, y) ∈ C.

The principle of smooth fit is just validation of this formula whenever y = b(s), s ∈ R+.
We have that ∂xW (s, b(s)+) = ∂xG(s, b(s)) = 1/f(s), as σ∗(s, y) = 0 for all y ≥ b(s). By

relying on the law of the iterated logarithm alongside the local Lipschitz continuity of b, we get
that (s, b(s)) is probabilistically regular for the interior of D, that is,

lim
ε↓0

P
(

inf
u∈(0,ε)

(
Y s,b(s)
u − b(s+ u)

)
< 0

)
= lim

ε↓0
P
(

inf
u∈(0,ε)

Y
s,b(s)
u − b(s+ u)√
2u ln(ln(1/u))

< 0
)

≥ lim
ε↓0

P
(

inf
u∈(0,ε)

Y
s,b(s)
u − b(s) + Lsu√

2u ln(ln(1/u))
< 0

)

= P
(

lim inf
u↓0

Y
s,b(s)
u − b(s) + Lsu√

2u ln(ln(1/u))
< 0

)
= 1,

for some Ls > 0. Corollary 6 from De Angelis and Peskir (2020) then provides that σ∗(s, b(s)−) =
σ∗(s, b(s)) = 0 P-a.s. and, hence, the dominated convergence theorem entails that ∂xW (s, b(s)−) =
1/f(s) = ∂xG(s, b(s)), thus concluding that the smooth-fit condition holds.

We are now in the position of getting a tractable characterization of both the value function
and the OSB. Propositions 4.2–4.7 allow us to use an extension of Itô’s lemma on the function
W (s+t, Yt) for t ≥ 0. This extension was originally derived by Peskir (2005a) and later restated,
in a way that applies more directly to our framework, in Lemma A2 from D’Auria et al. (2020).
Recalling that LW = 0 on C and W = G on D, and after taking Py-expectation (which cancels
the martingale term), we get

W (s, y) = Ey [W (s+ t, Yt)]− Ey
[∫ t

0
(LW ) (s+ u, Yu) du

]
= Ey [W (s+ t, Yt)]− Ey

[∫ t

0
∂tG (s+ u, Yu)1 (Yu ≥ b(s+ u)) du

]
, (4.32)

where the local-time term does not appear due to the smooth-fit condition.

Lemma 4.1. For all (s, y) ∈ R+ × R,

lim
u→∞

Ey [W (s+ u, Yu)] = c.

Proof. The Markov property of Y , together with the fact that both s 7→ s/f(s) and s 7→ f(s)
are increasing and s/f(s)→ 1 as s→∞, implies that

Ey [W (s+ u, Yu)] = Ey
[
sup
σ

EYu [G (s+ u+ σ, Yσ)]
]
≤ Ey

[
EYu

[
sup
r≥0

G (s+ u+ r, Yr)
]]
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= Ey

[
EYu

[
sup
r≥0

{
c
s+ u+ r

f(s+ u+ r) + Yr
f(s+ u+ r)

}]]

≤ c
(
1(c > 0) + s+ u

f(s+ u)1(c ≤ 0)
)

+ Ey

[
sup
r≥0

Yu+r
f(u+ r)

]
, (4.33)

and

Ey [W (s+ u, Yu)] ≥ Ey
[
EYu

[
inf
r≥0

G (s+ u+ r, Yr)
]]

≥ c
(
1(c < 0) + s+ u

f(s+ u)1(c ≥ 0)
)

+ Ey
[
inf
r≥0

Yu+r
f(s+ u+ r)

]
. (4.34)

Notice that

lim
u→∞

Ey

[
sup
r≥0

Yu+r
f(u+ r)

]
= Ey

[
lim
u→∞

sup
r≥u

Yr
f(r)

]
= Ey

[
lim sup
u→∞

Yu
f(u)

]
= 0,

where in the first equality we applied the monotone convergence theorem and in the third one
we used the law of the iterated logarithm as an estimate of the convergence of the process in
the numerator. A similar argument yields

lim
u→∞

Ey
[
inf
r≥0

Yu+r
f(s+ u+ r)

]
= 0.

Thus, we can take u→∞ in both (4.33) and (4.34) to complete the proof.

By taking t → ∞ in (4.32) and relying on Proposition 4.1, we get the following pricing
formula for the value function:

W (s, y) = c− Ey
[∫ ∞

0
(LW ) (s+ u, Yu) du

]
= c− Ey

[∫ ∞

0
∂tG (s+ u, Yu)1 (Yu ≥ b(s+ u)) du

]
. (4.35)

We can obtain a more tractable version of (4.35) by exploiting the linearity of y 7→ ∂tG(s, y)
(see (4.15)) as well as the Gaussianity of Yu. Specifically, since Yu ∼ N (y, u) under Py, then
Ey [Yu1 (Yu ≥ x)] = Φ̄((x − y)/

√
u)y +

√
uϕ((x − y)/

√
u), where Φ̄ and ϕ denote the survival

and the density functions of a standard normal random variable, respectively. By shifting the
integrating variable s units to the right, we get that

W (s, y) = c−
∫ ∞

s

1
f(u)

cΦ̄s,y,u,b(u) −
(a+ 2u)

(
(y + cu)Φ̄s,y,u,b(u) +

√
u− sϕs,y,u,b(u)

)
2f2(u)

 du,

(4.36)

where a = e−α + eα and

Φ̄s1,y1,s2,y2 := Φ̄
(
y2 − y1√
s2 − s1

)
, ϕs1,y1,s2,y2 := ϕ

(
y2 − y1√
s2 − s1

)
, y1, y2 ∈ R, s2 ≥ s1 ≥ 0.

Take now y ↓ b(s) in both (4.35) and (4.36) to derive the free-boundary equation

G(s, b(s)) = c− Eb(s)
[∫ ∞

0
∂tG (s+ u, Yu)1 (Yu ≥ b(s+ u)) du

]
, (4.37)
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alongside its more explicit expression

G(s, b(s))

= c−
∫ ∞

s

1
f(u)

cΦ̄s,b(s),u,b(u) −
(a+ 2u)

(
(b(s) + cu)Φ̄s,b(s),u,b(u) +

√
u− sϕs,b(s),u,b(u)

)
2f2(u)

 du.

It turns out that there exists a unique function b that solves (4.37), as we state in the next
theorem. The proof of such an assertion follows from adapting the methodology used in Peskir
(2005b, Theorem 3.1), where the uniqueness of the solution of the free-boundary equation is
addressed for an American put option with a geometric Brownian motion.

Theorem 4.1. The integral equation (4.37) admits a unique solution among the class of con-
tinuous functions β : R+ → R of bounded variation and such that β(s) > c for all s ∈ R+.

Proof. Suppose there exists a function β : R+ → R solving the integral equation (4.37), and
define W β as in (4.35), but with β instead of b. We can conclude from (4.35) that the integrand
is twice continuously differentiable with respect to y and, therefore, we can obtain ∂xW

β and
∂xxW

β by differentiating inside the integral symbol and ensure they are continuous functions
on R+ × R. Besides, the following expression for LW β can be easily computed from (4.35):

LW β(s, y) = ∂tG(t, y)1(y ≥ β(s)).

Define the sets

Cβ := {(s, y) ∈ R+ × R : y < β(s)} , Dβ := {(s, y) ∈ R+ × R : y ≥ β(s)} .

It turns out that, on both sets, W β is regular enough to apply the extension of Itô’s formula
given in D’Auria et al. (2020, Lemma A2), which yields

W β(s, y) = Ey
[
W β(s+ t, Yt)

]
− Ey

[∫ t

0
∂tG (s+ u, Yu)1 (Yu ≥ β(s+ u)) du

]
, (4.38)

where the martingale term is canceled after taking Py-expectation and the local time term is
missing due to the continuity of ∂xW β on ∂Cβ. In addition,

G(s, y) = Ey [G(s+ t, Yt)]− Ey
[∫ t

0
∂tG (s+ u, Yu) du

]
. (4.39)

Consider the first hitting time σCβ
into Cβ, fix (s, y) ∈ Dβ, and notice that Py(Yu ≥ β(t+s)) =

1 for all 0 ≤ u ≤ ρCβ
. Recall that W β(s, β(s)) = G(s, β(s)) for all s ∈ R+, as β solves (4.37).

Due to the law of the iterated logarithm, the dominated convergence theorem, the fact that W β

satisfies (4.35) with β instead of b, and recalling (4.7), we get

lim
u→∞

W β(s+ u, Yu) = lim
u→∞

G(s+ u, Yu) = c

Py-a.s. for all y ∈ R. Hence, W β
(
s + σCβ

, YσCβ

)
= G

(
s + σCβ

, YσCβ

)
. From (4.38) and (4.39) it

follows that

W β(s, y) = Ey
[
W β(s+ σCβ

, YσCβ

)]
− Ey

[∫ σCβ

0
∂tG (s+ u, Yu) du

]
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= Ey
[
Gβ
(
s+ σCβ

, YσCβ

)]
− Ey

[∫ σCβ

0
∂tG (s+ u, Yu) du

]
= G(s, y),

which proves that W β = G on Dβ.
Define now the first hitting time σDβ

into Cβ. Note that either σDβ
= 0 for (s, y) ∈ Dβ, on

which W β = G, or Yu < β(s+ u) for all 0 ≤ u < σDβ
. We derive from (4.38) that

W β(s, y) = Ey
[
W β

(
s+ σDβ

, YσDβ

)]
= Ey

[
G
(
s+ σDβ

, YσDβ

)]
for all (s, y) ∈ R+×R, which, after recalling the definition of W in (4.6), proves that W β ≤W .

Take (s, y) ∈ Dβ ∩ D and consider the first hitting time σC into the continuation set C.
Since W = G on D and W β = G on Dβ, by relying on (4.35), (4.38), and the fact that
Py (Yu ≥ b(s+ u)) = 1 for all 0 ≤ u < σC , we get

Ey [W (s+ σC , YσC )] = G(s, y) + Ey
[∫ σC

0
∂tG (s+ u, Yu) du

]
,

Ey
[
W β (s+ σC , YσC )

]
= G(s, y) + Ey

[∫ σC

0
∂tG (s+ u, Yu)1 (Yu ≥ β(s+ u)) du

]
.

After recalling that W β ≤W , we can merge the two previous equalities into

Ey
[∫ σC

0
∂tG (s+ u, Yu)1 (Yu ≥ β(s+ u)) du

]
≤ Ey

[∫ σC

0
∂tG (s+ u, Yu) du

]
,

which, alongside the fact that ∂tG(s, y) < 0 for all (s, y) ∈ D (otherwise we get from (4.32)
that the first exit time from a ball around (s, y) small enough will yield a better strategy than
stopping immediately) and the continuity of β, implies that b ≥ β.

Suppose that there exists a point s ∈ R+ such that b(s) > β(s) and fix y ∈ (β(s), b(s)).
Consider the stopping time σ∗ = σ∗(s, y) and plug it into both (4.35) and (4.38) to obtain

Ey
[
W β (s+ σ∗, Yσ∗)

]
= Ey [G (s+ σ∗, Yσ∗)]

= W β(s, y) + Ey

[∫ σ∗

0
∂tG (s+ u, Yu)1 (Yu ≥ β(s+ u)) du

]

and

Ey [W (s+ σ∗, Yσ∗)] = Ey [G (s+ σ∗, Yσ∗)] = W (s, y).

Thus, since W β ≤W , we get

Ey

[∫ σ∗

0
∂tG (s+ u, Yu)1 (Yu ≥ β(s+ u)) du

]
≥ 0.

Using the fact that y < b(s), the continuity of b, and the time-continuity of the process Y ,
we can state that σ∗ > 0 Py-a.s. Therefore, since ∂tG(s, y) < 0 for all (s, y) ∈ Dβ (the same
arguments used to prove that ∂tG < 0 in D lead to this conclusion) the previous inequality can
only stand if 1 (Yu ≥ β(s+ u)) = 0 for all 0 ≤ u ≤ σ∗, meaning that b(s+ u) ≤ β(s+ u) in the
same interval, which contradicts the assumption b(s) > β(s) due to the continuity of both b and
β.
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4.5 Solution of the original problem and some extensions
Recall that the OSPs (4.6) and (4.3) are equivalent, meaning that the value functions and the
OSTs of both problems are linked through a homeomorphic transformation. Details on how
to actually translate one problem into the other were given in Proposition 4.1. It then follows
that the stopping time τ∗(t, x) defined in (4.9) is optimal for (4.6) and it admits the following
alternative representation under Px:

τ∗(t, x) = inf {u ≥ 0 : Xt+u ≥ β(t+ u)} , β(t) = z

cz
Gcz (s, b(s)) , (4.40)

where β is the OSB associated to (4.3), and s = υ(t) and cz are defined in Proposition 4.1. We
can obtain both V and β without requiring the computation of W and b. Indeed, consider the
infinitesimal generator of {(t,Xt)}t∈[0,1], LX , and set y = cx, sε = s + ε, and tε = υ−1(sε) for
ε ∈ R. By means of (4.8) and the chain rule, we get that

z

cz
(LWcz ) (s, y) := lim

ε→0
ε−1

(
Ey
[
z

cz
Wcz (sε, Yε)

]
− z

cz
Wcz (s, y)

)
= lim

ε→0
ε−1 (Et,x [V (tε, Xtε)]− V (t, x))

= (LXV ) (t, x)
(
υ−1)′(s).

Hence, after multiplying both sides of (4.32) by z/cz, integrating with respect to υ−1(u) instead
of u, and recalling that LXV (t, x) = 0 for all x ≤ β(t) and V (t, x) = x for all x ≥ β(t), we get
the pricing formula

V (t, x) = z − Et,x
[∫ 1−t

0
(LXV )(t+ u,Xt+u) du

]
= z − Et,x

[∫ 1−t

0
µ(t+ u,Xt+u)1(Xt+u ≥ β(t+ u)) du

]
. (4.41)

In the same fashion we obtained (4.36), we can take advantage of the linearity of x 7→ µ(t, x)
and the Gaussian marginal distributions of X to come up with the following refined version of
(4.41):

V (t, x) = z −
∫ 1

t
K(t, x, u, β(u)) du, (4.42)

where, for x1, x2 ∈ R and 0 ≤ t1 ≤ t2 ≤ 1,

K(t1, x1, t2, x2) := α
zΦ̃t1,x1,t2,x2 − cosh(α(1− t2))(mt2(t1, x1)Φ̃t1,x1,t2,x2 + vt2(t1)ϕ̃t1,x1,t2,x2)

sinh(α(1− t2)) ,

(4.43)

with

Φ̃t1,x1,t2,x2 := Φ̄
(
x2 −mt2(t1, x1)

vt2(t1)

)
, ϕ̃t1,x1,t2,x2 := ϕ

(
x2 −mt2(t1, x1)

vt2(t1)

)
and

mt2(t1, x1) := Et1,x1 [Xt2 ] = x1 sinh(α(1− t2)) + z sinh(α(t2 − t1))
sinh(α(1− t1)) ,
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vt2(t1) :=
√
Vart1 [Xt2 ] =

√
γ2

α

sinh(α(1− t2)) sinh(α(t2 − t1))
sinh(α(1− t1)) .

Consequently, by taking x ↓ β(t) in (4.41) (or by directly transforming (4.37) in the same way
we obtained (4.41) from (4.35)), we get the free-boundary equation

β(t) = z − Et,β(t)

[∫ 1−t

0
(LXV )(t+ u,Xt+u) du

]
= z − Et,β(t)

[∫ 1−t

0
µ(t+ u,Xt+u)1(Xt+u ≥ β(t+ u)) du

]
,

which may also be expressed as

β(t) = z −
∫ 1

t
K(t, β(t), u, β(u)) du. (4.44)

The next three remarks broaden the scope of applicability of the OUB as the underlying
model in (4.3). In particular, the two first reveal that setting the terminal time to 1 and the
pulling level (coming from the asymptotic mean of the OU process underneath) to 0 does not
take a toll on generality, while the last one shows that the OSP for the BB arises as a limit case
when α→ 0.

Remark 4.1 (OUB with a general pulling level). Let X̃θ =
{
X̃θ
t

}
t∈[0,1] be an OU process satisfy-

ing the SDE dX̃θ
t = α(X̃θ

t −θ) dt+γ dBt. That is, Xθ,z is pulled towards θ with a time-dependent
strength dictated by α. Denote by Xθ,z =

{
Xθ,z
t

}
t∈[0,1] the OUB process built on top of X̃θ and

such that Xθ,z
1 = z. It is easy to check that Xθ,z = X0,z−θ + θ, whenever X0,z−θ

0 = Xθ,z
0 − θ.

Denote by V θ,z and βθ,z the value function and the OSB related to the OSP (4.3) with X replaced
by Xθ,z. Then V θ,z(t, x) = V 0,z−θ(t, x− θ) + θ and bθ,z(t) = b0,z−θ(t) + θ.

Remark 4.2 (OUB with a general horizon). Denote by Xα,γ,T =
{
Xα,γ,T
t

}
t∈[0,T ] an OUB

with slope α, volatility γ, and horizon T . Likewise, let V α,γ,T and βα,γ,T be the correspond-
ing value function and the OSB. By relying on the scaling property of a Brownian motion,
one can easily verify that Xαr,γ,T

t = Xα,γr−1/2,rT
rt Px-a.s. for any r > 0. Consequently,

V αr,γ,T (t, x) = V α,γr−1/2,rT (rt, x) and βαr,γ,T (t) = βα,γr
−1/2,rT (rt). Thereby, by taking r = 1/T ,

one can derive V α,γ,T and βα,γ,T for any set of values α, γ, and T from the solution of the OSP
in (4.3).

Remark 4.3 (BB from an OUB). To emphasize the dependence on α, denote by X(α), Vα,
and βα, respectively, the OUB solving (4.1), the value function in (4.13), and the corresponding
OSB. The process Xt(α) has the following integral representation under Px (Barczy and Kern,
2013):

Xt = x
sinh(α(1− t))

sinh(α) + z
sinh(αt)
sinh(α) + σ

∫ t

0

sinh(α(1− t))
sinh(α(1− u)) dBu,

from where we can conclude, after taking α → 0 and using the DCT, that Xt(α) → X̃t Px-a.s.
for all t ∈ [0, 1), where X̃ is a BB process with final value X̃1 = z. Then, by applying Theorem
5 from Coquet and Toldo (2007) we have that Vα → Ṽ , and hence βα → β̃, as α→ 0, where Ṽ
and β̃ are the value function and the OSB related to X̃.
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4.6 Numerical results

The free-boundary equation (4.44) does not admit a closed-form solution and thus numerical
procedures are needed to compute an approximate boundary. By exploiting the fact that the
OSB at a given time t depends only on its shape from t up to the horizon, one can discretize the
integral in (4.44) by means of a right Riemann sum and, since the terminal value β(1) is known,
the entire boundary can be computed in a backward form. This method of backward induction
is detailed in Detemple (2005, Chapter 8) and examples of its implementation can be found, e.g.,
in Pedersen and Peskir (2002). Another approach to solve (4.44) is by using Picard iterations,
that is, by treating (4.44) as a fixed-point problem in which the entire boundary is updated
in each step. The works of Detemple and Kitapbayev (2020) and De Angelis and Milazzo
(2020) use this approach to solve the associated Volterra-type integral equation characterizing
the OSB. To the best of our knowledge, when it comes to non-linear integral equations arisen
from OSPs, the convergence of both the Picard scheme and the backward induction technique
are numerically checked rather than formally proved. Therefore, we chose to use the Picard
scheme since empirical tests suggested a faster convergence rate while keeping a similar accuracy
compared to the backward induction approach.

Define a partition of [0, 1], namely, 0 = t0 < t1 < · · · < tN = 1 for N ∈ N. Given
that β(1) = z, we will initialize the Picard iterations by starting with the constant boundary
β(0) : [0, 1]→ R with β(0) ≡ z. The updating mechanism that generates subsequent boundaries
is laid down in the following formula, which comes after discretizing the integral in (4.44) by
using a right Riemann sum:

β
(k)
i = z −

N−2∑
j=i

K
(
ti, β

(k−1)
i , tj+1, β

(k−1)
j+1

)
(tj+1 − tj), k = 1, 2, . . .

We neglect the (N − 1)-addend and allow the sum to run only until N − 2 since K(t, x, 1, z) is
not well defined, and therefore the last integral piece cannot be included in the right Riemann
sum. As the overall integral is finite, the last piece vanishes as tN−1 approaches 1.

We chose to stop the fixed-point Picard algorithm after the m-th iteration if m = min
{
k >

0 : maxi=1,...,N |βk−1
i − βki | < ε

}
for ε = 10−4. Empirical evidence suggested that the best

performance of the algorithm was achieved when using a non-uniform mesh whose distances
ti − ti−1 smoothly decrease as i increases. In our computations, we used the logarithmically-
spaced partition ti = ln (1 + i(e− 1)/N), where N = 500 unless otherwise specified.

Figures 4.1, 4.2, and 4.3 reveal how the OSB’s shape is affected by different sets of values
for the slope α, the volatility γ, and the anchor point z.

The code implementing the boundary computation is available at https://github.com/
aguazz/OSP_OUB.

4.7 Conclusions

In this paper we solved the finite-horizon OSP for an OUB process with the identity as the gain
function. To the best of our knowledge, so far the only Markov bridge addressed by the optimal
stopping literature has been the BB and some slight variations of it (see, e.g., Shepp (1969);
Föllmer (1972); Ekström and Wanntorp (2009); Ernst and Shepp (2015); Leung et al. (2018);
De Angelis and Milazzo (2020); Glover (2020); Ekström and Vaicenavicius (2020); D’Auria et al.
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Figure 4.1: Optimal stopping boundary estimation for different values of α. The boundary is
pulled towards 0 with a strength that increases as both |α| (values of α with equal absolute
values yield the same boundary) and the residual time to the horizon 1− t increases. As α→ 0,
the boundary estimation is shown to converge towards the OSB of a BB (dashed line), which is
known to be z + L

√
1− t, for L ≈ 0.8399.
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Figure 4.2: Optimal stopping boundary estimation for different values of γ. The boundary
exhibits an increasing proportional relationship with respect to γ.

(2020)). Markov bridges are potentially useful in mathematical finance as they allow including
additional information at some terminal time.

Arguing as Shepp (1969) for the BB, we worked out the OUB case by coming up with an
equivalent OSP having a Brownian motion as the underlying process after time-space trans-
forming the OUB. Contrary to Shepp (1969), the complexity of our problem did not allow us
to guess a candidate solution, and we directly characterized the value function and the OSB by
means of the pricing formula and the free-boundary equation. However, the equivalence between
both OSPs was used only to facilitate technicalities along the proofs, and it is not necessary to
compute the solution, since both the pricing formula and the free-boundary equation are also
provided in the original formulation. We discussed how to use a Picard iteration algorithm to
numerically approximate the OSB and displayed some examples to illustrate how different sets
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Figure 4.3: Optimal stopping boundary estimation for different values of z and N . We display
t 7→ β(t) − z to allow a clearer comparison across the different values of z. As N increases the
boundary estimation is seen to converge.

of values for the OUB’s parameters rule the shape of the OSB.
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Chapter 5

Optimal stopping of Gauss–Markov
bridges

Abstract

We solve the non-discounted, finite-horizon optimal stopping problem of a Gauss–Markov bridge
by using a time-space transformation approach. The associated optimal stopping boundary is
proved to be Lipschitz continuous on any closed interval that excludes the horizon, and it is
characterized by the unique solution of an integral equation. A Picard iteration algorithm is
discussed and implemented to exemplify the numerical computation and geometry of the optimal
stopping boundary for some illustrative cases.
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5.1 Introduction

The problem of optimally stopping a Markov process to attain a maximum mean reward dates
back to Wald’s sequential analysis (Wald, 1947) and is consolidated in the work of Dynkin
(1963). Ever since, it has received increasing attention from numerous theoretical and practi-
cal perspectives, as it is comprehensively compiled in the book of Peskir and Shiryaev (2006).
However, Optimal Stopping Problems (OSPs) are mathematically complex objects, which makes

111
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it difficult to obtain sound results in general settings, and typically lead to requiring smooth-
ness conditions and simplifying assumptions for their solution, being time-homogeneity of the
Markovian process among the most popular ones.

Time-inhomogeneous diffusions can be cast back to time-homogeneity (see, e.g., Taylor
(1968), Dochviri (1995), Shiryaev (2008)) at the cost of increasing the dimension of the OSP,
which results in an increased complexity, hampering subsequent derivations or limiting stud-
ies to tackle specific, simplified time dependencies. Take, as examples, the works of Krylov
and Aries (1980), Oshima (2006), and Yang (2014), which proved different types of continuities
and characterizations of the value function; or those of Friedman (1975b) and Jacka and Lynn
(1992), which shed light on the shape of the stopping set; and Friedman (1975a) and Peskir
(2019), who studied the smoothness of the associated free boundary. To mitigate the burden of
time-inhomogeneity, many of these works ask for the process’s coefficients to be Lipschitz contin-
uous or at least bounded. This usual assumption excludes important classes of time-dependent
processes, such as that of diffusion bridges, whose drifts explode as time approaches a terminal
point.

In a broad and rough sense, bridge processes, or bridges for short, are stochastic processes
“anchored” to deterministic values at some initial and terminal time points. Formal definitions
and potential applications of different classes of bridges have been extensively studied. Bessel
and Lévy bridges are respectively described by Pitman and Yor (1982) and Salminen (1984),
and by Hoyle et al. (2011) and Erickson and Steck (2022). A canonical reference for Gaussian
bridges can be found in the work of Gasbarra et al. (2007), while Markov bridges are addressed
in great generality by Fitzsimmons et al. (1993), Chaumont and Bravo (2011), and Çetin and
Danilova (2016).

In finance, diffusion bridges are appealing models from the perspective of a trader who wants
to incorporate his beliefs about future events, like in trading perishable commodities, modeling
the presence of arbitrage, incorporating algorithms’ forecasts and experts’ predictions, or trading
mispriced assets that could rapidly return to their fair price. Works that consider models based
on a Brownian Bridge (BB) to address these and other insider trading situations include Kyle
(1985), Brennan and Schwartz (1990), Back (1992), Liu and Longstaff (2004), Campi and Çetin
(2007), Campi et al. (2011), Campi et al. (2013), Cetin and Xing (2013), Sottinen and Yazigi
(2014), Cartea et al. (2016), Angoshtari and Leung (2019), and Chen et al. (2021). The early
work of Boyce (1970) had already suggested the use of a BB after taking the perspective of
an investor who wants to optimally sell a bond. Recently, D’Auria et al. (2020) applied a BB
to optimally exercise an American option in the presence of the so-called stock-pinning effect
(see Krishnan and Nelken (2001), Ni et al. (2005), Golez and Jackwerth (2012), and Ni et al.
(2021)), obtaining competitive empirical results when compared to the classic Black–Scholes
model. Taking distance from the BB model, Hilliard and Hilliard (2015) used an Ornstein–
Uhlenbeck Bridge (OUB) to model the effect of short-lived arbitrage opportunities in pricing
an American option, although they recurred to a binomial-tree numerical method instead of
providing analytical results.

Non-financial applications of BBs include their usual adoption to model animal movement
(see Horne et al. (2007); Venek et al. (2016), Kranstauber (2019), and Krumm (2021)), and their
construction as a limit case of sequentially drawing elements without replacement from a large
population (see Rosén (1965)). The latter connection makes BBs good asymptotic models for
classical statistical problems, like variations of the urn’s problem (see Ekström and Wanntorp
(2009), Andersson (2012), and Chen et al. (2015)).

Whenever the goal is to optimize the time to take an action, all the previous situations in
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which a BB, an OUB, or diffusion bridges have applications can be intertwined with optimal
stopping theory. However, within the time-inhomogeneous realm, diffusion bridges are particu-
larly challenging to treat with classical optimal-stopping tools, as they feature explosive drifts.
It comes as no surprise, hence, that the literature addressing this topic is scarce when com-
pared with its non-bridge counterpart. The first incursion into OSPs with diffusion bridges is by
Shepp’s work (Shepp, 1969), who solved the OSP of a BB by linking it to that of a simpler Brow-
nian Motion (BM) representation. After Shepp’s result, the more recent studies of OSPs with
diffusion bridges still revolve around modifications of the BB. Ekström and Wanntorp (2009)
and Ernst and Shepp (2015) revisited Shepp’s problem with novel solution methods. Ekström
and Wanntorp (2009) and De Angelis and Milazzo (2020) widened the class of gain functions;
D’Auria et al. (2020) considered the (exponentially) discounted version; while Föllmer (1972),
Leung et al. (2018), Glover (2020), and Ekström and Vaicenavicius (2020), introduced random-
ization in either the terminal time or the pinning point. To the best of our knowledge, the only
solution to an OSP with diffusion bridges that steps outside the BB, came recently in D’Auria
et al. (2021), which extends Shepp’s technique to embrace an OUB.

Both the BB and the OUB belong to the class of Gauss–Markov Bridges (GMBs), that
is, bridges that simultaneously exhibit the Markovian and Gaussian properties. Due to their
enhanced tractability and wide applicability, these processes have been in the spotlight for some
decades, especially in recent years. A good compendium of works related to GMBs can be found
in Abrahams and Thomas (1981), Buonocore et al. (2013), Barczy and Kern (2013a), Barczy
and Kern (2013b), Barczy and Kern (2011), Chen and Georgiou (2016), and Hildebrandt and
Rœlly (2020).

In this paper we solve the finite-horizon OSP of a GMB. In doing so, we generalize not only
Shepp’s result for the BB case, but also its methodology. Indeed, the same type of transformation
that casts a BB into a BM is embedded in a more general change-of-variable method to solve
OSPs, which is detailed in Peskir and Shiryaev (2006, Section 5.2) and exemplary used in
Pederson and Peskir (2000) for non-linear OSPs. When the GM process is also a bridge, such
a representation presents regularities that we show useful to overcome the bridges’ explosive
drifts. Loosely, the drift’s divergence is equated to that of a time-transformed BM, and then
explained in terms of the laws of iterated logarithms. This trick allows working out the solution
of an equivalent infinite-horizon OSP with a time-spaced transformed BM underneath, and then
casting the solution back into original terms. The solution is attained, in a probabilistic fashion,
by proving that both the value function and the Optimal Stopping Boundary (OSB) are regular
enough to meet the premises of a relaxed Itô’s lemma that allows deriving the free-boundary
equation. Among these regularities, the local Lipschitz continuity of the OSB off the horizon
stands out, which implies its differentiability almost everywhere. We prove that such a degree of
smoothness of the OSB suffices to obtain the smooth-fit condition. The free-boundary equation
is given in terms of a Volterra-type integral equation with a unique solution. For enriched
perspectives and full sight of the reach of GMBs, we provide, besides the BM representation, a
third angle from which GMBs can be seen: as time-inhomogeneous OUBs. Hence, our work also
extends the work of D’Auria et al. (2021) for a time-independent OUB. This OUB representation
is arguably more appealing to numerically explore the OSB’s shape, which is done by using a
Picard iteration algorithm that solves the free-boundary equation. The OSB exhibits a trade-off
between two pulling forces, the one towards the mean-reverting level of the OUB representation,
and that which anchors the process at the horizon.

The rest of this paper is organized as follows. Section 5.2 establishes four equivalent defini-
tions of GMBs, including the time-spaced transformed BM representation. Section 5.3 introduces
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the finite-horizon OSP of a GMB and proves its equivalence to that of an infinite-horizon, time-
dependent gain function, and a BM underneath. The auxiliary OSP is then treated in Section
5.4 as a standalone problem. This section also accounts for the main technical work of the
paper, where classical and new techniques of optimal stopping theory are combined to obtain
the solution of the OSP. This solution is then translated back into original terms in Section
5.5, where the free-boundary equation is provided. Section 5.6 discusses the practical aspects
of numerically solving the free-boundary equation, and shows computer drawings of the OSB.
Final remarks are given in Section 5.7.

5.2 Gauss–Markov bridges

Both Gaussian and Markovian processes exhibit features that are appealing from a theoretical,
computational, and applicable viewpoint. Gauss–Markov (GM) processes, that is, processes
that are Gaussian and Markovian at the same time, merge the advantages of these two classes.
They inherit the convenient Markovian lack of memory and the Gaussian processes’ property
of being characterized by their mean and covariance functions. Additionally, the Markovianity
of Gaussian processes is equivalent for their covariances to admit a certain “factorization”. The
following lemma collects such a useful characterization, whose proof follows from the lemma on
page 863 from Borisov (1983), and Theorem 1 and Remarks 1–2 in Mehr and McFadden (1965).

Lemma 5.1 (Characterization of non-degenerated GM processes).
A function R : [0, T ]2 → R such that R(t1, t2) ̸= 0 for all t1, t2 ∈ (0, T ) is the covariance function
of a non-degenerated GM process in (0, T ) if and only if there exist functions r1, r2 : [0, T ]→ R,
that are unique up to a multiplicative constant, such that

(i) R(t1, t2) = r1(t1 ∧ t2)r2(t1 ∨ t2);

(ii) r1(t) ̸= 0 and r2(t) ̸= 0 for all t ∈ (0, T );

(iii) r1/r2 is positive and strictly increasing.

Moreover, r1 and r2 take the form

r1(t) =
{
R(t, t′), t ≤ t′,
R(t, t)R(t′, t′)/R(t′, t), t > t′,

r2(t) =
{
R(t, t)/R(t, t′), t ≤ t′,
R(t′, t)/R(t′, t′), t > t′,

(5.1)

for some t′ ∈ (0, T ). Changing t′ is equivalent to scaling r1 and r2 by a constant factor.

We say that the functions r1 and r2 in Lemma 5.1 are a factorization of the covariance
function R. The lemma provides a simple technique to construct GM processes with ad hoc
covariance functions that are not necessarily time-homogeneous. This is particularly useful given
the complexity of proving the positive-definiteness of an arbitrary function to check its validity as
a covariance function. GM processes also admit a simple representation by means of time-space
transformed BMs (see, e.g., Mehr and McFadden (1965)), which results in higher tractability.
Moreover, viewed through the lens of diffusions, GM processes account for space-linear drifts
and space-independent volatilities, both coefficients being time-dependent (see, e.g., Buonocore
et al. (2013)).

We call Gauss–Markov Bridge (GMB) a process that results after “conditioning” (for a
formal definition see, e.g., Gasbarra et al. (2007)) a GM process to start and end at some
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initial and terminal points. It is straightforward to see that the Markovian property is preserved
after conditioning. So it is the Gaussianity (see, e.g., Williams and Rasmussen (2006, Formula
A.6), or Buonocore et al. (2013)). Hence, the above-mentioned conveniences of GM processes
are inherited by GMBs. In particular, the time-space transformed BM representation adopts
a specific form that characterizes GMBs and forms the backbone of our main results. The
following proposition sheds light on that representation and serves to formally define a GMB as
well as to offer different characterizations.

Proposition 5.1 (Gauss–Markov bridges).
Let X = {Xu}u∈[0,T ] be a GM process defined on the probability space (Ω,F ,P), for some T > 0.
The following statements are equivalent:

(i) There exists a time-continuous, non-degenerated GM process defined on (Ω,F ,P), denoted
by X̃ = {X̃u}u∈R+, whose mean and covariance functions are twice continuously differen-
tiable, and such that

Law(X,P) = Law(X̃,Px,T,z),

with Px,T,z(·) = P(· |X̃0 = x, X̃T = z) for some x ∈ R and (T, z) ∈ R+ × R.

(ii) Let m(t) := E [Xt] and R(t1, t2) := Cov [Xt1 , Xt2 ], where E and Cov are the mean and
covariance operators related to P. Then, t 7→ m(t) is twice continuously differentiable, and
there exist functions r1 and r2 that are unique up to multiplicative constants and such that:

(ii.1) R(t1, t2) = r1(t1 ∧ t2)r2(t1 ∨ t2);
(ii.2) r1(t) ̸= 0 and r2(t) ̸= 0 for all t ∈ (0, T );
(ii.3) r1/r2 is positive and strictly increasing;
(ii.4) r1(0) = r2(T ) = 0;
(ii.5) r1 and r2 are twice continuously differentiable;
(ii.6) r1(T ) ̸= 0 and r2(0) ̸= 0.

(iii) X admits the representation Xt = α(t) + βT (t)
(

(z − α(T ))γT (t) +
(
BγT (t) + x− α(0)

βT (0)

))
, t ∈ [0, T ),

XT = z.

(5.2)

where {Bu}u∈R+
is a standard BM, and α : [0, T ]→ R, βT : [0, T ]→ R+, and γT : [0, T )→

R+ are twice continuously differentiable functions such that:

(iii.1) βT (T ) = γT (0) = 0;
(iii.2) γT is monotonically increasing;
(iii.3) limt→T γT (t) =∞ and limt→T βT (t)γT (t) = 1.

(iv) X is the unique strong solution of the OUB Stochastic Differential Equation (SDE)

dXt = θ(t)(κ(t)−Xt) dt+ ν(t) dBt, t ∈ (0, T ), (5.3)

with initial condition X0 = x. {Bt}t∈R+
is a standard BM, and θ : [0, T ) → R+, κ :

[0, T ]→ R, and ν : [0, T ]→ R+ are continuously differentiable functions such that:
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(iv.1) limt→T
∫ t

0 θ(u) du =∞;

(iv.2) ν2(t) = θ(t) exp
{
−
∫ t

0 θ(u) du
}

or, equivalently, θ(t) = ν2(t)
/ ∫ T

t ν2(u) du.

Proof. (i) =⇒ (ii). X is a non-degenerated GM process in (0, T ), as it arises by conditioning
a process with the same qualities to take deterministic values at t = 0 and t = T . Hence,
Lemma 5.1 guarantees that R̃(t1, t2) := Cov

[
X̃t1 , X̃t2

]
meets conditions (ii.1 )–(ii.3 ). Since X

degenerates at t = 0 and t = T , and due to (ii.1 ), condition (ii.4 ) holds true. From the twice
continuous differentiability (with respect to both variables) of the covariance function of X,
alongside representation (5.1), it follows (ii.5 ).

We now prove (ii.6 ). Let m̃, r̃1, r̃2 : [0, T ]→ R be the mean and the covariance factorization
of X̃. Hence (see, e.g., Williams and Rasmussen (2006, Formula A.6) or Buonocore et al. (2013)),

m(t) = m̃(t) + (x− m̃(0)) r2(t)
r2(0) + (z − m̃(T ))r1(t), t ∈ [0, T ), (5.4)

and r1(t) = r̃1(t)r̃2(0)− r̃1(0)r̃2(t)
r̃1(T )r̃2(0)− r̃1(0)r̃2(T ) ,

r2(t) = r̃1(T )r̃2(t)− r̃1(t)r̃2(T ).
(5.5)

Property (ii.3 ) implies that r̃1(T )r̃2(0) − r̃1(0)r̃2(T ) > 0 and, hence, (5.5) results in r1(T ) = 1
and r2(0) > 0. This does not mean that r1(T ) and r2(0) must be positive, as −r1 and −r2 are
also a factorization of R, but it does imply (ii.6 ).

(ii) =⇒ (i). Consider the functions

m̃(t) := m(t)− (x−m1) r2(t)
r2(0) − (z −m2)r1(t), t ∈ (0, T ), (5.6)

with m̃(0) := m1 and m̃(T ) := m2 for m1,m2 ∈ R, and

r̃1(t) := ar1(t) + br2(t); r̃2(t) := cr1(t) + dr2(t), t ∈ [0, T ], (5.7)

for a, b, c > 0 and d = (1 + ac)/a, such that bc/a− da/c > 0. This relation is met, for instance,
by setting a = b = 1 and c = 2. Note that dividing by r2(0) in (5.6) is allowed since (ii.6 ) is
assumed. Let h(t) := r1(t)/r2(t) and h̃(t) := r̃1(t)/r̃2(t). We get that h̃(t) = a+(b/a)h(t)

c+(d/c)h(t) from
(5.7). Hence,

h̃′(t) > 0⇐⇒ h′(t)
(
b

a
c− d

c
a

)
> 0.

Condition (ii.3 ) along with our choice of a, b, c, and d guarantees that the right hand side of the
equivalence holds. Therefore, h̃(t) is strictly increasing. Since h̃ is also continuous and positive,
R̃(t1, t2) := r̃1(t1 ∧ t2)r̃2(t1 ∨ t2) is the covariance function of a non-degenerated GM process, as
Lemma 5.1 states, which we denote by X̃ = {X̃t}t∈[0,T ] and whose mean is set to be equal to
m̃(t). From the twice continuous differentiability of m, r1, and r2, alongside (5.6) and (5.7), it
follows that of m̃, r̃1, and r̃2 (and R̃).

One can check, after some straightforward algebra and in alignment with (5.4)–(5.5), that
the mean and covariance functions of the GMB derived from conditioning X̃ to go from (0, x)
to (T, z) coincide with m and R.
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(i) =⇒ (iii). Let m̃(t) := E[X̃t] and R̃(t1, t2) := Cov
[
X̃t1 , X̃t2

]
. As a result of conditioning

X̃ to have initial and terminal points (0, x) and (T, z), X is a GM process with mean m given
by (5.4) and covariance factorization r1 and r1 given by (5.5). Although not explicitly denoted,
recall that m depends on x, T , and z, and r1 and r2 depend on T .

Therefore, X admits the representation

Xt = m(t) + r2(t)Bh(t), 0 ≤ t < T, (5.8)

where t 7→ h(t) := r1(t)/r2(t) is a strictly increasing function such that h(0) = 0 and limt→T h(t) =
∞. Since limt→T r2(t)h(t) = r1(T ) = 1 (see (5.5)), the law of the iterated logarithm allows us
to continuously extend Xt to T as the P-a.s. limit XT := limt→T Xt = z. Then, representation
(5.2) and properties (iii.1 )–(iii.3 ) follow after taking α = m̃, βT = r2, and γT = h. It also
follows that α, βT , and γT are twice continuously differentiable, like m̃, r̃1, and r̃2 as well.

(iii) =⇒ (ii). Assuming that X = {Xt}t∈[0,T ] admits representation (5.2) and that properties
(iii.1 )–(iii.3 ) hold, then X is a GMB with covariance factorization given by r1(t) = βT (t1)γT (t1)
and r2(t) = βT (t). It readily follows that r1(t) and r2(t) meet conditions (ii.1 )–(ii.6 ). It is also
trivial to note that X has a twice continuously differentiable mean.

(i) =⇒ (iv). Let Et,x be the mean operator with respect to the probability Pt,x such that
Pt,x(·) = P(·|Xt = x). Recall that X admits representation (5.8), with m, r1, and r2 coming
from (5.4) and (5.5), and h = r2/r1. Then,

lim
u↓0

u−1Et,x [Xt+u − x] = m′(t) + (x−m(t))r′
2(t)/r2(t),

lim
u↓0

u−1Et,x
[
(Xt+u − x)2

]
= r2

2(t)h′(t).

By comparing the drift and volatility terms, X is the unique strong solution (see Example 2.3
by Çetin and Danilova (2016)) of the SDE (5.3) for

θ(t) = −r′
2(t)/r2(t),

κ(t) = m(t)−m′(t)r2(t)/r′
2(t),

ν(t) = r2(t)
√
h′(t).

(5.9)

It follows from (5.9) (or by directly deriving it from (5.3)) that

m(t) = φ(t)
(
x+

∫ t

0

κ(u)θ(u)
φ(u) du

)
(5.10)

= φ(t)
(
x+

∫ t

0

m̃(u)θ(u)− m̃′(u)
φ(u) du+ (z − m̃(T ))

∫ t

0

r1(u)θ(u)− r′
1(u)

φ(u) du
)

(5.11)

and

r1(t) = φ(t)
∫ t

0

ν2(u)
φ2(u) du, r2(t) = φ(t), (5.12)

for t ∈ [0, T ), with φ(t) = exp
{
−
∫ t

0 θ(u) du
}

. Since X is degenerated at t = T , r2(T ) = 0,
which implies (iv.1 ). By comparing (5.11) with (5.4),

r1(t) = φ(t)
∫ t

0

r1(u)θ(u)− r′
1(u)

φ(u) du = 2φ(t)
∫ t

0

r1(u)θ(u)
φ(u) du− r1(t),
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which, after using (5.12), leads to

∫ t

0

ν2(u)
φ2(u) du =

∫ t

0

r1(u)θ(u)
φ(u) du.

Differentiating with respect to t both sides of the equation above, and relying again on (5.12),
we get

ν2(t)
φ2(t) = θ(t)

∫ t

0

ν2(u)
φ2(u) du.

The expression above is an ordinary differential equation in f(t) =
∫ t

0 ν
2(u)/φ2(u) du whose

solution is f(t) = C1 + 1/φ(t) for some constant C1. Hence, f ′(t) = θ(t)/φ(t). Therefore, some
straightforward algebra leads us to the first equality in (iv.2 ), which implies that

∫ t

0
ν2(u) du = C2 +

∫ t

0
θ(u)φ(u) du = C2 + 1− φ(t),

for a constant C2 ∈ R. Since limt→T φ(t) = 0, then C2 =
∫ T

0 ν2(u) du− 1. Hence,

∫ t

0
θ(u) du = − ln

(
C2 + 1−

∫ t

0
ν2(u) du

)
,

from where it follows the second equality in (iv.2 ) after differentiating.
Finally, from the smoothness of m̃, r̃1, and r̃2, which implies that of m, r1, and r2, it follows

that θ, κ, and ν are continuously differentiable.
(iv) =⇒ (ii). Functions θ, κ, and ν are sufficiently regular to prove, by using Itô’s lemma,

that

Xt = φ(t)
(
X0 +

∫ t

0

κ(u)θ(u)
φ(u) du+

∫ t

0

ν(u)
φ(u) dBu

)

is the unique strong solution (see Example 2.3 by Çetin and Danilova (2016)) of (5.3), where
again φ(t) = exp

{
−
∫ t

0 θ(u) du
}

. That is, X is a GM process with mean m and covariance
factorization r1 and r2 given by (5.10) and (5.12), respectively.

Relations (ii.2 ) and (ii.3 ) are trivial to check. From (iv.1 ), it follows (ii.4 ). The continuous
differentiability of θ, κ, and ν implies (ii.5 ). Using (iv.2 ) and integrating by parts we get that

r1(t) = 1− φ(t). (5.13)

Then, (ii.6 ) holds, as r1(T ) := limt→T r1(t) = 1 and r2(0) = 1.

Remark 5.1. Notice that, after condition (iv.2 ) and relation (5.9), we get that r′
2(t)r2(t) < 0

for all t ∈ (0, T ). Hence, since r2 is continuous and does not vanish in [0, T ), it can be chosen
as either positive and decreasing, or negative and increasing. In (5.5), the positive decreasing
version is chosen, which is reflected by the fact that βT > 0 is assumed in representation (5.8).
Since βT = r2, then βT is also decreasing. Likewise, (5.5) and (5.13) indicate that r1 is chosen
as positive and increasing.
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One could argue that defining a GMB should only require the process to degenerate at
t = 0 and t = T , which is equivalent to (ii.1 )–(ii.4 ). GMBs defined in this way are not
necessarily derived from conditioning a GM process, as it is assumed in representation (i).
Indeed, consider the Gaussian process X = {Xt}t∈[0,1] with zero mean and covariance function
R(t1, t2) = r1(t1 ∧ t2)r2(t1 ∨ t2) for all t1, t2 ∈ [0, 1], where r1(t) = t2(1 − t) and r2(t) =
t(1− t). Lemma 5.1 entails that R is a valid covariance function and X is Markovian. Moreover,
since r1(0) = r2(1) = 0, X is a bridge from (0, 0) to (1, 0). However, r1(0) = r2(0) = 0.
That is, (ii.6 ) fails and, hence, X does not satisfy definition (ii). Recognizing the differences
between both definitions of GMBs, we adopt that in which a GM process is conditioned to take
deterministic values at some initial and future time, since representation (5.2) is key to our
results in Section 5.4. It reveals the (linear) dependence of the mean with respect to x and z,
and it clarifies the relation between OUBs and GMBs in (iv).

Notice that a higher smoothness of the GMB mean and covariance factorization is assumed in
all alternative characterizations in Proposition 5.1. Clearly, this is a useful assumption to define
GMBs, but not necessary. We discuss it in Remark 5.3. Finally, although easily obtainable from
(5.9), for the sake of reference we write down the explicit relation between the BM representations
(5.2) and the OUB representation (5.3), namely:

θ(t) = −β′
T (t)/βT (t),

κ(t) = α(t)− βT (t)/β′
T (t)(α′(t) + (z − α(T ))βT (t)γ′

T (t)),

ν(t) = βT (t)
√
γ′
T (t).

(5.14)

It is also worth mentioning that condition (iv.2 ), which is necessary and sufficient for an OU
process to be an OUB, was also recently found in Hildebrandt and Rœlly (2020, Theorem 3.1)
for the case in which κ is assumed constant.

5.3 Two equivalent formulations of the OSP

For 0 ≤ t < T , let X = {Xu}u∈[0,T ] be a real-valued, time-continuous GMB with XT = z, for
some z ∈ R. Define the finite-horizon OSP

VT,z(t, x) := sup
τ≤T−t

Et,x [Xt+τ ] , (5.15)

where VT,z is the value function and Et,x is the mean operator with respect to the probability
measure Pt,x such that Pt,x(Xt = x) = 1. The supremum in (5.15) is taken among all random
times τ such that t+ τ is a stopping time for X, although, for simplicity, we will refer to τ as a
stopping time from now on.

Likewise, for (s, y) ∈ R+ ×R and a BM Y = {Ys+u}u∈R+ on the probability space (Ω,F ,P),
define the infinite-horizon OSP

WT,z(s, y) := sup
σ≥0

Es,y [GT,z (s+ σ, Ys+σ)] , (5.16)

where Ps,y, and Es,y have analogous definitions to those of Pt,x and Et,x, and the supremum is
taken among the stopping times of Y . The (gain) function GT,z takes the form

GT,z(s, y) := α(γ−1
T (s)) + βT (γ−1

T (s)) ((z − α(T ))s+ y) , (5.17)
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for α, βT , and γT as in (iii.1 )–(iii.3 ) from Proposition 5.1.
Solving (5.15) and (5.16) means both providing a tractable expression for V (t, x) andW (s, y),

as well as finding stopping times (if they exist) τ∗ = τ∗(t, x) and σ∗ = σ∗(s, y) such that

VT,z(t, x) = Et,x [Xt+τ∗ ] , WT,z(s, y) = Es,y [GT,z (s+ σ∗, Ys+σ∗)] .

In such a case, τ∗ and σ∗ are called Optimal Stopping Times (OSTs) for (5.15) and (5.16),
respectively.

We claim that the OSPs (5.15) and (5.16) are equivalent in the sense specified in the following
proposition.

Proposition 5.2 (Equivalence of the OSPs).
Let V and W be the value functions in (5.15) and (5.16). For (t, x) ∈ [0, T ] × R, let s = γT (t)
and y = (x− α(t)− βT (t)γT (t)(z − α(T ))) /βT (t). Then,

VT,z(t, x) = WT,z (s, y) . (5.18)

Moreover, τ∗ = τ∗(t, x) is an OST for VT,z if and only if σ∗ = σ∗(s, y), defined such that
s+ σ∗ = γT (t+ τ∗), is an OST for W .

Proof. For every stopping time τ of {Xt+u}u∈[0,T−t], consider the stopping time σ of {Ys+u}u∈R+

such that s+ σ = γT (t+ τ). Representation (5.2) implies that

Law
(
{Xt+u}u∈R+

,Pt,x
)

= Law
({
GT,z

(
γT (t+ u), YγT (t+u)

)}
u∈R+

,Ps,y
)
.

Hence, (5.18) follows from the following sequence of equalities:

VT,z(t, x) = sup
τ≤T−t

Et,x [Xt+τ ] = sup
σ≥0

Es,y [GT,z (s+ σ, Ys+σ)] = WT,z (s, y) .

Furthermore, suppose that τ∗ = τ∗(t, x) is an OST for (5.15) and that there exists a stopping
time σ′ = σ′(s, y) that performs better than σ∗ = σ∗(s, y) in (5.16). Consider τ ′ = τ ′(t, x) such
that t+ τ ′ = γ−1

T (s+ σ′). Then,

Et,x [Xt+τ ′ ] = Es,y
[
Gt,T (s+ σ′, Ys+σ′)

]
> Es,y [Gt,T (s+ σ∗, Ys+σ∗)] = Et,x [Xt+τ∗ ] ,

which contradicts the fact that τ∗ is optimal. Using similar arguments, we can obtain the reverse
implication, that is, if σ∗ is an OST for (5.16), then τ∗ is an OST for (5.15).

5.4 Solution of the infinite-horizon OSP
We have shown that solving (5.15) is equivalent to solving (5.16), which is expressed in terms of
a simpler BM. In this section we leverage that advantage to solve (5.16) but, first, we rewrite it
with a cleaner notation that hides its explicit connection with the original OSP, and allows us
to treat (5.16) as a standalone problem.

Let Y := {Ys+u}u∈R+
be a standard BM on the probability space (Ω,F ,P). Define the

probability measure Ps,y such that Ps,y(Ys = y) = 1. Consider the OSP

W (s, y) := sup
σ≥0

Es,y [G(s+ σ, Ys+σ)] = sup
σ≥0

E [G(s+ σ, Yσ + y)] , (5.19)
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where E and Es,y are the mean operators with respect to P and Ps,y, respectively. The supremum
in (5.19) is taken among the stopping times of Y . The (gain) function G takes the form

G(s, y) = a1(s) + a2(s) (c0s+ y) , (5.20)

where c0 ∈ R and a1, a2 : R+ → R are assumed to be such that:

a1 and a2 are twice continuously differentiable, (5.21a)
a1, a

′
1, a

′′
1, a2, a

′
2, and a′′

2 are bounded; (5.21b)
there exists c1 ∈ R such that lim

s→∞
a1(s) = c1; (5.21c)

for all s ∈ R, a2(s) > 0; (5.21d)
there exists c2 ∈ R such that lim

s→∞
a2(s)s = c2; (5.21e)

for all s ∈ R, a′
2(s) < 0. (5.21f)

Remark 5.2. Equation (5.20), as well as assumptions (5.21c)–(5.21e), come after (5.17) and
(iii.1 )–(iii.3 ) from Proposition 5.1. Indeed, the constant c0 and the functions a1 and a2 are
taken such that c0 = z − α(T ), a1(s) = α(γ−1

T (s)), and a2(s) = βT (γ−1
T (s)).

Remark 5.3. Although (5.21a) and (5.21b) are derived from the twice continuous differen-
tiability of α, βT , and γT , this degree of smoothness is not required to define GMBs. These
assumptions are only used to prove smoothness properties of the value function and the OSB.
The assumptions on the first derivatives are used to prove the Lipschitz continuity of the value
function (see Proposition 5.3), while the ones on the second derivatives are required to prove the
local Lipschitz continuity of the OSB (see Proposition 5.7).

Remark 5.4. The following relation, which we use recurrently throughout the paper, comes
after (5.21a), (5.21b), and (5.21e):

lim
s→∞

a′
2(s)s = 0. (5.22)

Alternatively, (5.22) can be directly derived from (5.5) and the fact that lims→∞ a2(s) = 0.
Indeed,

lim
s→∞

a′
2(s)s = lim

s→∞
a′

2(s)s+ a2(s) = lim
s→∞

∂s [a2(s)s] = lim
s→∞

∂sr1(γ−1
T (s)) = lim

t→T

r′
1(t)
γ′
T (t)

= lim
t→T

r′
1(t)r2

2(t)
r′

1(t)r2(t)− r1(t)r′
2(t) = 0,

where ∂s denotes the derivative with respect to the variable s ∈ R+. In the last equality we used
that 0 ≤ r′

1(t)/r′
2(t) ≤ r1(t)/r2(t), which comes after r1 and r2 being, respectively, an increasing

and a decreasing function (see Remark 5.1).
Likewise, (5.22) along with the L’Hôpital rule implies that

lim
s→∞

a′′
2(s)s2 = − lim

s→∞
a′

2(s)s = 0. (5.23)

Again, (5.23) can be obtained from its representation in terms of the covariance factorization
given by r1 and r2,

lim
s→∞

a′′
2(s)s2 = lim

s→∞
∂ss [a2(s)s] s = lim

s→∞
∂ssr1(γ−1

T (s))γT (γ−1
T (s))
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= lim
s→∞

∂s
r′

1(γ−1
T (s))

γ′
T (γ−1

T (s))
γT (γ−1

T (s)) = lim
t→T

(
r′′

1(t)
(γ′
T (t))2 −

r1(t)γ′′
T (t)

(γ′
T (t))3

)
γT (t)

= lim
t→T

(
r2

1(t)r3
2(t)

(
r′

1(t)r′′
2(t)− r′′

1(t)r′
2(t)

)(
r′

1(t)r2(t)− r1(t)r3
2(t)

) −
2r1(t)r2

2(t)
(
r′

1(t)
)2(

r′
1(t)r2(t)− r1(t)r′

2(t)
)2
)

= 0,

where ∂ss indicates the second derivative with respect to s.

Remark 5.5. Assumption (5.21f) is needed to derive the boundedness of the OSB (see Proposi-
tion 5.6 and Remark 5.6). Similarly to Assumptions (5.21a)–(5.21e), Assumption (5.21f) can be
obtained from the regularity of the underlying GMB already used in Section 5.2, and does not im-
pose any further restrictions. Specifically, Assumption (5.21f) is equivalent to condition θ(t) > 0
for all t ∈ [0, T ], in the OUB representation (iv) from Proposition 5.1, and to βT (t) = r2(t) > 0
and β′

T (t) = r′
2(t) < 0, in terms of representations (iii) and (ii) (see Remark 5.1).

Notice that (5.21c), (5.21e), and (5.22), together with the law of the iterated logarithm,
imply that, for all (s, y) ∈ R+ × R,

Ps,y- lim
u→∞

G(s+ u, Ys+u) = c1 + c0c2. (5.24)

For later reference, let us introduce the notation

A1 := sup
s∈R+

|a1(s)| , A′
1 := sup

s∈R+

∣∣a′
1(s)

∣∣ , A′′
1 := sup

s∈R+

∣∣a′′
1(s)

∣∣ ,
A2 := sup

s∈R+

|a2(s)| , A′
2 := sup

s∈R+

∣∣a′
2(s)

∣∣ , A′′
2 := sup

s∈R+

∣∣a′′
2(s)

∣∣ ,
A3 := sup

s∈R+

|a2(s)s| , A′
3 := sup

s∈R+

∣∣a′
2(s)s

∣∣ , A′′
3 := sup

s∈R+

∣∣a′′
2(s)s

∣∣ .


(5.25)

In addition, we will often require the expression of the partial derivatives of G, namely,

∂tG(s, y) = a′
1(s) + c0a2(s) + a′

2(s)(c0s+ y), (5.26)
∂xG(s, y) = a2(s). (5.27)

Here and thereafter, ∂t and ∂x stand, respectively, for the differential operator with respect to
time and space.

Notice that (5.21e) guarantees the existence of m > 0 such that |a2(s)| ≤ (1 + m)/s for all
s ≥ 1, which, combined with the boundedness of a1, a2, and s 7→ a2(s)s, entails the following
bound with A = max{A1 + |c0|A3, A2}:

Es,y
[

sup
u∈R+

|G (s+ u, Ys+u)|
]

≤ sup
u∈R+

|a1(u) + a2(u)(c0u+ y)|+ E
[

sup
u∈R+

|a2(s+ u)Yu|
]

≤ A(1 + |y|) + E
[

sup
u∈R+

|a2(s+ u)Yu|
]

≤ A(1 + |y|) + max
u≤1∨(1−s)

|a2(s+ u)|E
[

sup
u≤1∨(1−s)

|Yu|
]

+ E
[

sup
u≥1∨(1−s)

|a2(s+ u)Yu|
]
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≤ A(1 + |y|) + max
u≤1
|a2(u)|E

[
sup
u≤1
|Yu|

]
+ (1 +m)E

[
sup
u≥1
|Yu|

/
u

]

= A

(
1 +

(
|y|+ E

[
sup
u≤1
|Yu|

]))
+ (1 +m)E

[
sup
u≥1

∣∣∣Y1/u

∣∣∣]

= A

(
1 +

(
|y|+ E

[
sup
u≤1
|Yu|

]))
+ (1 +m)E

[
sup
u≤1
|Yu|

]
<∞. (5.28)

In the last equality, the time-inversion property of the BM was used.
The continuity of G alongside (5.28) implies the continuity of W . However, given the as-

sumptions (5.21a)–(5.21e), one can obtain higher smoothness for the value function, namely its
Lipschitz continuity, as shown in the proposition below.

Proposition 5.3 (Lipschitz continuity of the value function).
For any bounded set R ⊂ R there exists LR > 0 such that

|W (s1, y2)−W (s2, y2)| ≤ LR(|s1 − s2|+ |y1 − y2|), (5.29)

for all (s1, y1), (s2, y2) ∈ R+ ×R.

Proof. For any (s1, y1), (s2, y2) ∈ R+ ×R, the following equality holds:

W (s1, y1)−W (s2, y2) = sup
σ≥0

Es1,y1 [G (s1 + σ, Ys1+σ)]− sup
σ≥0

Es1,y2 [G (s1 + σ, Ys1+σ)]

+ sup
σ≥0

Es1,y2 [G (s1 + σ, Ys1+σ)]− sup
σ≥0

Es2,y2 [G (s1 + σ, Ys2+σ)] .

Since | supσ aσ − supσ bσ| ≤ supσ |aσ − bσ|, and due to Jensen’s inequality,∣∣∣∣ sup
σ≥0

Es1,y1 [G (s1 + σ, Ys1+σ)]− sup
σ≥0

Es1,y2 [G (s1 + σ, Ys1+σ)]
∣∣∣∣

≤ E
[
sup
u≥0
|G (s1 + u, Yu + y1)−G (s1 + u, Yu + y2)|

]
= sup

u≥0
|a2(s1 + u)(y1 − y2)|

≤ A2 |y1 − y2| . (5.30)

Likewise,∣∣∣∣ sup
σ≥0

Es1,y2 G (s1 + σ, Ys1+σ)]− sup
σ≥0

Es2,y2 [G (s2 + σ, Ys2+σ)]
∣∣∣∣

≤ E
[
sup
u≥0
|G (s1 + u, Yu + y2)−G (s2 + u, Yu + y2)|

]

= E
[
sup
u≥0
|∂tG (ηu, Yu + y2) (s1 − s2)|

]

≤
(
A′

1 + (A′
3 +A2)|c0|+A′

2

(
sup
y∈R
{y}+ E

[
sup
u≥0
|Yu|

]))
|s1 − s2|, (5.31)

where ηu ∈ (s1 ∧ s2 + u, s1 ∨ s2 + u) comes from the mean value theorem, which, along with
(5.26), was used to derive the last inequality. Constants A′

1, A2, A′
2, and A′

3 were defined in
(5.25). We finally get (5.29) after merging (5.30) and (5.31).
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Define σ∗ = σ∗(s, y) := inf {u ∈ R+ : (s+ u, Ys+u) ∈ D}, where the closed set

D := {(s, y) ∈ R+ × R : W (s, y) = G(s, y)} ,

is called the stopping set. The continuity of W and G (it suffices lower semi-continuity of W
and upper semi-continuity of G) along with (5.28) and (5.24), guarantees that σ∗ is an OST for
(5.19) (see Corollary 2.9 and Remark 2.10 in Peskir and Shiryaev (2006)), meaning that

W (s, y) = Es,y [G(s+ σ∗, Ys+σ∗)] . (5.32)

We get the following alternative representations of W after applying Itô’s lemma to (5.19) and
(5.32):

W (s, y)−G(s, y) = sup
σ≥0

Es,y
[∫ σ

0
LG (s+ u, Ys+u) du

]
= Es,y

[∫ σ∗(s,y)

0
LG (s+ u, Ys+u) du

]
, (5.33)

where L := ∂t+ 1
2∂xx is the infinitesimal generator of the process {(s, Ys)}s∈R+

and the operator
∂xx is a shorthand for ∂x∂x. Note that LG = ∂tG.

Denote by C the complement of D,

C := {(s, y) ∈ R+ × R : W (s, y) > G(s, y)} ,

which is called the continuation set. The boundary betweenD and C is the OSB and it determines
the OST σ∗.

In addition to the Lipschitz continuity, higher smoothness of the value function is achieved
away from the OSB, as stated in the next proposition. We also determine the connection between
the OSP (5.19) and its associated free-boundary problem. For further details on this connection
in a more general setting we refer to Section 7 of Peskir and Shiryaev (2006).

Proposition 5.4 (Higher smoothness of the value function and the free-boundary problem).
W ∈ C1,2(C), that is, the functions ∂tW , ∂xW , and ∂xxW exist and are continuous on C.
Additionally, y 7→W (s, y) is convex for all s ∈ R+ and LW = 0 on C.

Proof. The convexity of W with respect to the space coordinate is a straightforward consequence
of the linearity of Ys+u with respect to y under Ps,y, for all s ∈ R+. Indeed, it follows from
(5.19) that W (s, ry1 + (1− r)y2) ≤ rW (s, y1) + (1− r)W (s, y2), for all y1, y2 ∈ R and r ∈ [0, 1].

Since W is continuous on C (see Proposition 5.3) and the coefficients in the parabolic operator
L are smooth enough (it suffices to require local α-Hölder continuity), then standard theory of
parabolic partial differential equations (Friedman, 1964, Section 3, Theorem 9) guarantees that,
for an open rectangle R ⊂ C, the initial-boundary value problem{

Lf = 0 in R,
f = W on ∂R,

(5.34)

where ∂R refers to the boundary of R, has a unique solution f ∈ C1,2(R). Therefore, we can
use Itô’s formula on f(s+ u, Ys+u) at u = σR, that is, the first time (s+ u, Ys+u) exits R, and
then take Ps,y-expectation with (s, y) ∈ R, which guarantees the vanishing of the martingale
term and yields, along with (5.34) and the strong Markov property, the equalities W (s, y) =
Es,y [W (s+ σR, Ys+σR)] = f(s, y). Since W = G on D, it follows that W ∈ C1,2(D).
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In addition to the partial differentiability of W , it is possible to provide relatively explicit
forms for ∂tW and ∂xW by relying on representation (5.33) and the fact that a1 and a2 are
differentiable functions.

Proposition 5.5 (Partial derivatives of the value function).
For any (s, y) ∈ C, consider the OST σ∗ = σ∗(s, y). Then,

∂tW (s, y) = ∂tG(s, y) + Es,y
[∫ s+σ∗

s

(
a′′

1(u) + 2c0a
′
2(u) + a′′

2(u)(c0u+ Yu)
)

du
]

(5.35)

and

∂xW (s, y) = Es,y [a2(s+ σ∗)] . (5.36)

Proof. Since σ∗ = σ∗(s, y) is suboptimal for any initial condition other than (s, y), then

ε−1 (W (s, y)−W (s− ε, y)) ≤ ε−1E [G(s+ σ∗, Yσ∗ + y)−G(s− ε+ σ∗, Yσ∗ + y)] ,

for any 0 < ε ≤ s. Hence, by letting ε → 0 and recalling that W ∈ C1,2(C) (see Proposition
5.4), we get that, for (s, y) ∈ C,

∂tW (s, y) ≤ Es,y [∂tG(s+ σ∗, Ys+σ∗)] = ∂tG(s, y) + Es,y
[∫ σ∗

0
L∂tG(s+ u, Ys+u) du

]
. (5.37)

In the same fashion, we obtain that

ε−1 (W (s+ ε, y)−W (s, y)) ≥ ε−1E [G(s+ ε+ σ∗, Yσ∗ + y)−G(s+ σ∗, Yσ∗ + y)] ,

which, after letting ε→ 0, yields (5.37) in the reverse direction. Therefore (5.35) is proved after
computing L∂tG(s+ u, Ys+u) = ∂ttG(s+ u, Ys+u).

To get the analog result for the space coordinate, notice that

ε−1 (W (s, y)−W (s, y − ε)) ≤ ε−1E [W (s+ σ∗, Yσ∗ + y)−W (s+ σ∗, Yσ∗ + y − ε)]
≤ ε−1E [G(s+ σ∗, Yσ∗ + y)−G(s+ σ∗, Yσ∗ + y − ε)]
= Es,y [a2(s+ σ∗)] ,

while the same reasoning yields the inequality

ε−1 (W (s, y + ε)−W (s, y)) ≥ Es,y [a2(s+ σ∗)] ,

and then, by letting ε→ 0, (5.36) follows.

Besides the regularity of the value function, that of the OSB is also key to solving the OSP.
However, defined as the boundary between D and C, the OSB admits little space for technical
manipulations. The next proposition gives a handle on the OSB by showing that it is the graph
of a bounded function of time, above which D lies.

Proposition 5.6 (Shape of the OSB).
There exists a function b : R+ → R such that

D = {(s, y) ∈ R+ × R : y ≥ b(s)} .

Moreover, g(s) < b(s) <∞ for all s ∈ R+, where g(s) := (−a′
1(s)− c0(a2(s) + a′

2(s)s))/a′
2(s).
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Proof. Define b as

b(s) := inf {y : (s, y) ∈ D} , s ∈ R+. (5.38)

The claimed shape for the stopping set is a straightforward consequence of the decreasing be-
havior of y 7→ (W −G)(s, y) for all s ∈ R+, which comes after (5.21f), (5.26), and (5.33).

To derive the lower bound for b, notice that, for all (s, y) such that ∂tG(s, y) > 0, we can
pick a ball B such that (s, y) ∈ B and ∂tG > 0 on B. After recalling (5.33) and by letting
σB = σB(s, y) to be the first exit time of Y s,y from B, we get that

W (s, y)−G(s, y) ≥ Es,y
[∫ σB

0
∂tG (s+ u, Ys+u) du

]
> 0,

which means that (s, y) ∈ C. Finally, the claimed lower bound for b comes after using (5.26)
and (5.21f) to realize that ∂tG(s, y) > 0 if and only if y < g(s).

We now prove that b(s) <∞ for all s ∈ R+. Let X =
{
Xt
}
t∈[0,T ] be the OUB representation

of the process s 7→ G(s, Ys), given in (iv) from Proposition 5.1, with drift µ(t, x) = θ(t)(κ(t)−x)
and volatility (function) ν. In addition, define the OUBs X(i), for i = 1, 2, with volatility ν and
drifts

µ(1)(t, x) = θ(t)(K − x), µ(2)(t, x) = ν

ν(T − t)(K − x),

respectively, where K := max{κ(t) : t ∈ [0, T ]}, ν := max{ν(t) : t ∈ [0, T ]}, and ν := min{ν(t) :
t ∈ [0, T ]}. Consider the OSPs

V (0)(t, x) := sup
τ≤T−t

Et,x [Xt+τ ] ,

V (1)(t, x) := sup
τ≤T−t

Et,x
[
X

(1)
t+τ

]
,

V
(2)
K (t, x) := sup

τ≤T−t
Et,x

[
K + |X(2)

t+τ −K|
]
,

alongside their respective stopping sets D(0), D(1), and D(2)
K .

Notice that µ(t, x) ≤ µ(1)(t, x) for all (t, x) ∈ [0, T ) × R. Hence, Xt+u ≤ X
(1)
t+u Pt,x-a.s. for

all u ∈ [0, T − t], as Corollary 3.1 in Peng and Zhu (2006) states. This implies that D(1) ⊂ D(0).
On the other hand, it follows from (iv.2 ) that θ(t) ≥ ν/(ν(T − t)), meaning that µ(t, x) ≤

µ(2)(t, x) if and only if x ≥ K. By using the same comparison result in Peng and Zhu (2006),
we get the second inequality in the following sequence of relations:

X
(1)
t+u ≤ K + |X(1)

t+u −K| ≤ K + |X(2)
t+u −K|,

Pt,x-a.s. for all u ∈ [0, T − t]. Hence, for a pair (t, x) ∈ D(2)
K , we get that V (0)(t, x) ≤

V
(2)
K (t, x) = x, that is, (t, x) ∈ D(1) and, therefore, D(2)

K ⊂ D(0). The OSP related to V (2)
K can

be shown to account for a finite OSB. Specifically, it is a multiple of that of a BB (see Section 5
from D’Auria and Ferriero (2020)). Then, D(0)∩({t} × R) is non-empty for all t ∈ [0, T ), and the
equivalence result in Proposition 5.2 guarantees that so are the sets of the form D ∩ ({t} × R),
meaning that the OSB b is bounded from above.

Remark 5.6. Note that the same reasoning we used to derive the lower bound of b in the proof
of Proposition 5.6 also implies that, if a′

2(s) > 0 for some s ∈ R+, then (s, y) ∈ C for all
y > (−a′

1(s)− c(a2(s) + a′
2(s)s))/a′

2(s), meaning that b(s) = ∞. To avoid this explosion of the
OSB we impose a′

2(s) < 0 for all s ∈ R+ in (5.21f).
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Summarizing, we have proved that W satisfies the free-boundary problem

LW (s, y) = 0 for y < b(t),
W (s, y) > G(s, y) for y < b(t),
W (s, y) = G(s, y) for y ≥ b(t).

In order to guarantee the uniqueness of its solution, since b(t) is unknown, an additional condition
is needed. When b is regular enough, this smooth-fit condition comes by making the value and
the gain function coincide smoothly at the free boundary.

The works of De Angelis (2015), Peskir (2019), and De Angelis and Stabile (2019) address the
smoothness of the free boundary. For one-dimensional, time-homogeneous processes with locally
Lipschitz-continuous drift and volatility, De Angelis (2015) provides the continuity of the free
boundary. Peskir (2019) works with the two-dimensional case in a fairly general setting, proving
the impossibility of first-type discontinuities (second-type discontinuities are not addressed).
De Angelis and Stabile (2019) go further by proving the local Lipschitz continuity of the free
boundary in a higher-dimensional framework. In particular, local Lipschitz continuity suffices for
the smooth-fit condition to hold (see Proposition 5.8 ahead), which is the main drive to tailor the
method of De Angelis and Stabile (2019) to fit our settings in the next proposition. Specifically,
the relation between the partial derivatives imposed on Assumption (D) by De Angelis and
Stabile (2019) excludes our gain function, but Equation (5.43) overcomes this issue.

Proposition 5.7 (Lispchitz continuity of the OSB).
The OSB b is Lipschitz continuous on any closed interval of R+.

Proof. Let H(s, y) := W (s, y) − G(s, y), and consider the closed interval I = [ s, s̄ ] ⊂ R+.
Proposition 5.6 guarantees that b is bounded from below and, hence, we can choose r <
inf {b(s) : s ∈ I}. Then, I × {r} ⊂ C, meaning that H(s, r) > 0 for all s ∈ I. Since H is
continuous (see Proposition 5.3) on C, there exists a constant a > 0 such that H(s, r) ≥ a for
all s ∈ I. Therefore, for all δ such that 0 < δ ≤ a, and all s ∈ I, there exists y ∈ R such that
H(s, y) = δ. Such a value of y is unique, as ∂xH < 0 on C (see (5.36)). Hence, we can denote it
by bδ(s) and define the function bδ : I → (b(s), r]. H is regular enough away from the boundary
to apply the implicit function theorem, which states the differentiability of bδ along with

b′
δ(s) = −∂tH(s, bδ(s))/∂xH(s, bδ(s)). (5.39)

Since the function bδ decreases in δ and is upper-bounded uniformly in s ∈ I, it converges
pointwise to some limit function b0 as δ → 0. It follows that b0 ≤ b on I, as bδ < b for all δ. The
reverse inequality follows from

H(s, b0(s)) = lim
δ→0

H(s, bδ(s)) = lim
δ→0

δ = 0,

meaning that (s, b0(s)) ∈ D. Hence, b0 = b on I.
For (s, y) ∈ C such that s ∈ I and y > r, consider the stopping times σ∗ = σ∗(s, y) and

σr = σr(s, y) = inf{s ≥ 0 : (s+ u, Ys+u) /∈ I × (r,∞)}.

By recalling (5.35), it readily follows that

|∂tH(s, y)| ≤ K(1) m(s, y) (5.40)
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for K(1) = max {A′′
1 + 2c0A

′
2 + c0A

′′
3, 1} and

m(s, y) := Es,y
[∫ σ∗

0

(
1 +

∣∣a′′
2(s+ u)Ys+u

∣∣) du
]
.

Due to the tower property of conditional expectation and the strong Markov property, we have
that

m(s, y) = Es,y
[∫ σ∗∧σr

0

(
1 +

∣∣a′′
2(s+ u)Ys+u

∣∣) du+ 1 (σr ≤ σ∗)m(s+ σr, Ys+σr )
]
. (5.41)

On the set {σr ≤ σ∗}, (s + σr, Ys+σr ) ∈ Γs Ps,y-a.s. whenever r < y < b(s), with Γs :=
((s, s̄)× {r}) ∪ ({s̄} × [r, b(s̄)]). Hence, if σr ≤ σ∗, then

m (s+ σr, Yσr ) ≤ sup
(s′,y′)∈Γs

m(s′, y′)

≤ sup
(s′,y′)∈Γs

Es′,y′

[∫ ∞

0

(
1 +

∣∣a′′
2(s′ + u)Ys+u

∣∣) du
]

≤ sup
(s′,y′)∈Γs

∫ ∞

0

(
1 +

∣∣a′′
2(s′ + u)y′∣∣) du+

∫ ∞

0
E
[∣∣a′′

2(s′ + u)Yu
∣∣] du

≤
∫ ∞

0

(
1 +

∣∣a′′
2(u)b(s̄)

∣∣) du+
∫ ∞

0
a′′

2(u)
√

2u/π du <∞. (5.42)

We can guarantee the convergence of both integrals since (5.23) implies that |a′′
2(s)| is asymp-

totically equivalent to s−2. By plugging (5.42) into (5.41), recalling (5.40), and noticing that
1 + |a′′

2(s+ u)Ys+u| ≤ 1 +A′′
2 max [| sups∈I b(s)|, |r|] whenever u ≤ σ∗ ∧ σr, we obtain that there

exists K(2)
I > 0 such that

|∂tH(s, y)| ≤ K(2)
I Es,y [σδ ∧ σr + 1 (σr ≤ σδ)] . (5.43)

Arguing as in (5.41) and relying on (5.27), (5.36), and (5.21f), we get that

|∂xH(s, y)|

= Es,y [a2(s)− a2(s+ σ∗)] = Es,y
[∫ σ∗

0
−a′

2(s+ u) du
]

= Es,y
[∫ σ∗∧σr

0
−a′

2(s+ u) du+ 1 (σr ≤ σ∗) |∂xH(s+ σr, Ys+σr )|
]

≥ Es,y
[∫ σ∗∧σr

0
−a′

2(s+ u) du+ 1 (σr ≤ σ∗, σr < s− s) |∂xH(s+ σr, r)|
]
. (5.44)

Since I × {r} ⊂ C, we can take ε > 0 such that Rε := [s, s + ε] × (r − ε, r + ε) ⊂ C. Thereby,
σ∗ > σε Ps,r-a.s. for all s ∈ I, where

σε = σε(s, r) := inf {u ≥ 0 : (s+ u, Ys+u) /∈ Rε} .

Hence,

|∂xH(s+ σr, r)| ≥ inf
s∈I
|∂xH(s, r)| = inf

s∈I
Es,r [a2(s)− a2(s+ σ∗)]

≥ inf
s∈I

Es,r [a2(s)− a2(s+ σε)]
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≥ inf
s∈I

(a2(s)− a2(s+ ε))Ps,r (σε = s+ ε− s)

≥ (a2(s)− a2(s+ ε))P
(

sup
u≤s+ε−s

|Yu| < ε

)
> 0, (5.45)

where we use that a2 is decreasing. Recalling that a′
2 is a bounded function and plugging (5.45)

into (5.44), we get that, for a constant K(3)
I,ε > 0,

|∂xH(s, y)| ≥ K(3)
I,ε Es,y [σ∗ ∧ σr + 1 (σr ≤ σ∗, σr < s− s)] . (5.46)

Substituting (5.43) and (5.46) into (5.39) we get the following bound for the derivative of b by
some constant K(4)

I,ε > 0, yδ = bδ(s), and σδ = σ∗(s, yδ):

∣∣b′
δ(s)

∣∣ ≤ K(4)
I,ε

Es,yδ
[σδ ∧ σr + 1 (σr ≤ σδ)]

Es,yδ
[σδ ∧ σr + 1 (σr ≤ σδ, σr < s− s)]

≤ K(4)
I,ε

(
1 + Ps,yδ

(σr ≤ σδ)
Es,yδ

[σδ ∧ σr + 1 (σr ≤ σδ, σr < s− s)]

)

≤ K(4)
I,ε

(
1 + Ps,yδ

(σr ≤ σδ, σr = s̄− s)
Es,yδ

[σδ ∧ σr]
+ Ps,yδ

(σr ≤ σδ, σr < s̄− s)
Es,yδ

[1 (σr ≤ σδ, σr < s− s)]

)

≤ K(4)
I,ε

(
2 + Ps,yδ

(σr ≤ σδ, σr = s̄− s)
Es,yδ

[1 (σr ≤ σδ, σr = s̄− s) (σδ ∧ σr)]

)

≤ K(4)
I,ε

(
2 + 1

s̄− s

)
. (5.47)

Let Iε = [s, s̄−ε] for ε > 0 small enough. By (5.47), there exists a constant LI,ε > 0, independent
from δ, such that |b′

δ(s)| < LI,ε for all s ∈ Iε and 0 < δ ≤ a. Hence, Arzelà–Ascoly’s theorem
guarantees that bδ converges to b uniformly in δ ∈ Iε.

For locally Lipschitz continuous OSBs, the proof of the smooth-fit condition comes relatively
easy from the law of the iterated logarithm (see Remark 4.5 by De Angelis and Stabile (2019))
and the work of De Angelis and Peskir (2020). The proposition below provides the details.

Proposition 5.8 (The smooth-fit condition).
For all s ∈ R+, y 7→W (s, y) is differentiable at y = b(s). Moreover, ∂xW (s, b(s)) = ∂xG(s, b(s)).

Proof. On the one hand, since W = G on D, we get that ∂xW (s, b(s)+) = ∂xG(s, b(s)) = a2(s).
On the other hand, the law of the iterated logarithm alongside the local Lipschitz continuity of
b yield the following for all s ∈ R+ and some constant Ls > 0 that depends on s:

Ps,b(s) (inf {u > 0 : Ys+u < b(s+ u)} = 0)

= lim
ε↓0

Ps,b(s) (inf {u > 0 : Ys+u < b(s+ u)} < ε) = lim
ε↓0

Ps,b(s)

(
inf

u∈(0,ε)
(Ys+u − b(s+ u)) < 0

)

= lim
ε↓0

Ps,b(s)

(
inf

u∈(0,ε)

Ys+u − b(s+ u)√
2u ln(ln(1/u))

< 0
)
≥ lim

ε↓0
Ps,b(s)

(
inf

u∈(0,ε)

Ys+u − b(s) + Lsu√
2u ln(ln(1/u))

< 0
)

= Ps,b(s)

(
lim inf
u↓0

Ys+u − b(s) + Lsu√
2u ln(ln(1/u))

< 0
)

= 1,
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that is, {(s+ u, Ys+u)}u∈R+
immediately enters the interior of D Ps,b(s)-a.s. and, hence, Corol-

lary 6 from De Angelis and Peskir (2020) guarantees that σ∗(s, b(s)−) = σ∗(s, b(s)) = 0 P-a.s.
Therefore, the dominated convergence theorem and (5.36) allow concluding the proof by showing
∂xW (s, b(s)−) = a2(s) = ∂xG(s, b(s)).

Finally, we are able to provide the solution for the OSP (5.19). Indeed, so far we have
gathered all the regularity conditions needed to apply an extended Itô’s formula to W (s+u, Ys+u)
to obtain characterizations of the value function and the OSB. The former is given in terms of
an integral of the OSB, while the latter is proved to be the unique solution of a type-two, non-
linear, Volterra integral equation. Both characterizations benefit from the Gaussianity of the
BM, yielding relatively explicit integrands. Theorem 5.1 dives into details. Its proof needs the
following lemma.

Lemma 5.2. For all (s, y) ∈ R+ × R,

lim
u→∞

Es,y [W (s+ u, Ys+u)] = c1 + c0c2.

Proof. Let su := s+ u for s, u ∈ R+. Denote by Ŷ a version of Y . Hence, the Markov property
of Y implies that

lim
u→∞

Es,y [W (su, Ysu)]

= lim
u→∞

Es,y

[
sup
σ≥0

Esu,Ysu
[G (su + σ, Ysu+σ)]

]

≤ lim
u→∞

Es,y

[
Esu,Ysu

[
sup
r≥0

G (su + r, Ysu+r)
]]

= lim
u→∞

Es,y

[
sup
r≥0
{a1(su + r) + c0a2(su + r)(su + r) + c0a2(su + r)Ysu+r}

]

= Es,y
[

lim
u→∞

sup
r≥0
{a1(su + r) + c0a2(su + r)(su + r) + c0a2(su + r)Ysu+r}

]
= Es,y

[
lim sup
u→∞

{a1(su) + c0a2(su)su + c0a2(su)Ysu}
]

= c1 + c0c2,

where the interchangeability of the limit and the mean operator is justified by the monotone
convergence theorem. The last equality comes after (5.21c) and (5.21e), along with the law of
the iterated logarithm, which guarantees that lim supu→∞ a2(u)Ysu = 0.

Likewise, we have that

lim
u→∞

Es,y [W (su, Ysu)] ≥ lim
u→∞

Es,y
[
Esu,Ysu

[
inf
r≥0

G (su + r, Ysu+r)
]]

= Es,y
[
lim inf
u→∞

{a1(su) + c0a2(su)su + c0a2(su)Ysu}
]

= c1 + c0c2,

which concludes the proof.
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Theorem 5.1 (Solution of the OSP).
The OSB related to the OSP (5.19) satisfies the free-boundary (integral) equation

G(s, b(s)) = c1 + c0c2 −
∫ ∞

s
K(s, b(s), u, b(u)) du, (5.48)

where the kernel K is defined as

K(s1, y1, s2, y2) :=
(
(a′

1(s2) + c0a2(s2) + c0a
′
2(s2)(s2 + y1)

)
Φ̄s1,y1,s2,y2

+ c0a
′
2(s2)

√
s2 − s1ϕs1,y1,s2,y2

with 0 ≤ s1 ≤ s2, y1, y2 ∈ R, and

Φ̄s1,y1,s2,y2 := Φ̄
(
y2 − y1√
s2 − s1

)
, ϕs1,y1,s2,y2 := ϕ

(
y2 − y1√
s2 − s1

)
.

The functions ϕ and Φ̄ are, respectively, the density and survival functions of a standard normal
random variable. In addition, the integral equation (5.48) admits a unique solution among the
class of continuous functions f : R+ → R of bounded variation such that f(s) > c1 + c0c2 for all
s ∈ R+.

The value function is given by the formula

W (s, y) = c1 + c0c2 −
∫ ∞

s
K(s, y, u, b(u)) du. (5.49)

Proof. Propositions 5.3–5.8 provide the required regularity to apply an extended Itô’s lemma
(see Peskir (2005a) for an original derivation and Lemma A2 in D’Auria et al. (2020) for a
reformulation that better suits our settings) to W (s + h, Yh) for s, h ≥ 0. Since LW = 0 on C
and W = G on D, after taking Ps,y-expectation (which cancels the martingale term) it follows
that

W (s, y) = Es,y [W (s+ h, Yh)]− Es,y

[∫ h

0
(LW ) (s+ u, Ys+u) du

]

= Es,y [W (s+ h, Yh)]− Es,y

[∫ h

0
∂tG (s+ u, Ys+u)1 (Ys+u ≥ b(s+ u)) du

]
, (5.50)

where the local time term does not appear due to the smooth-fit condition. Hence, by taking
h→∞ in (5.50) and relying on Lemma 5.2, we get the following formula for the value function:

W (s, y) = c1 + c0c2 − Es,y
[∫ ∞

0
(LW ) (s+ u, Ys+u) du

]
= c1 + c0c2 − Es,y

[∫ ∞

0
∂tG (s+ u, Ys+u)1 (Ys+u ≥ b(s+ u)) du

]
. (5.51)

We can obtain a more tractable version of (5.51) by exploiting the linearity of y 7→ ∂tG(s, y)
(see (5.26)) as well as the fact that Ys+u ∼ N (y, u) under Ps,y. Then,

Es,y [Ys+u1 (Ys+u ≥ x)] = Φ̄((x− y)/
√
u)y +

√
uϕ((x− y)/

√
u).

Hence, by right-shifting the integrating variable s units, we get equation (5.49).
Take now y ↓ b(s) in both (5.51) and (5.49) to derive the free-boundary equation

G(s, b(s)) = c1 + c0c2 − Es,b(s)
[∫ ∞

0
∂tG (s+ u, Ys+u)1 (Ys+u ≥ b(s+ u)) du

]
, (5.52)

alongside its more explicit expression (5.48).
The uniqueness of the solution of equation (5.52) follows a well-known methodology first

developed by Peskir (2005b, Theorem 3.1) that we omit here for the sake of briefness.
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5.5 Solution of the original OSP
In this section we continue with the notation used in Section 5.3.

Recall that Proposition 5.2 dictates the equivalence between the OSPs (5.15) and (5.16),
and gives explicit formulae to link their value functions and OSTs. Consequently, it follows that
the stopping time τ∗(t, x) defined in Proposition 5.2 in terms of σ∗(s, y) is not only optimal for
(5.15), but it holds the following representation under Pt,x:

τ∗(t, x) = inf {u ≥ 0 : Xt+u ≥ bT,z(t+ u)} , bT,z(t) := GT,z(s, bT,z(s)), (5.53)

where bT,z and bT,z are, respectively, the OSBs related to (5.15) and (5.16), and s is defined, in
terms of t, in Proposition 5.2. Note that bT,z coincides with the function defined in (5.38), with
constants c0, c1, and c2, from (5.20), (5.21c), and (5.21e), taking the values

c0 = z − α(T ), c1 = α(T ), c2 = 1. (5.54)

Moreover, it is not necessary to compute WT,z and bT,z to obtain VT,z and bT,z. By consid-
ering the infinitesimal generator of {(t,Xt)}t∈[0,T ], L, letting sε = s + ε and tε = γ−1

T (sε) for
ε > 0, and using (5.18) alongside the chain rule, we get that

(LWT,z) (s, y) := lim
ε→0

ε−1 (Es,y [WT,z (sε, Ysε)]−WT,z(s, y))

= lim
ε→0

ε−1 (Et,x [VT,z(tε, Xtε)]− VT,z(t, x))

= (LVT,z) (t, x)
[
γ−1
T

]′(s). (5.55)

We recall the relation between s and t, and y and x, in Proposition 5.2. After integrating with
respect to γ−1

T (u) instead of u in (5.50), keeping in mind (5.54) and (5.55), and recalling that
LVT,z(t, x) = 0 for all x ≤ bT,z(t) and VT,z(t, x) = x for all x ≥ bT,z(t), we get the formula

VT,z(t, x) = z − Et,x
[∫ T−t

0
(LVT,z)(t+ u,Xt+u) du

]

= z − Et,x
[∫ T−t

0
µ(t+ u,Xt+u)1(Xt+u ≥ bT,z(t+ u)) du

]
, (5.56)

where, in alignment to (5.14),

µ(t, x) := lim
u↓0

u−1Et,x [Xt+u − x] = θ(t)(κ(t)− x)

= α′(t) + (x− α(t)) β
′
T (t)
βT (t) + (z − α(T ))βT (t)γ′

T (t).

As we did to obtain (5.49), the linearity of x 7→ µ(t, x) and the Gaussian marginal distributions
of X, allow us to produce a refined version of (5.56):

VT,z(t, x) = z −
∫ T

t
K(t, x, u, bT,z(u)) du, (5.57)

where

K(t1,x1, t2, x2)
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:= θ(t2)
(

(κ(t2)− Et1,x1 [Xt2 ])Φt1,x1,t2,x2 −
√

Vart1 [Xt2 ]β
′
T (t2)
βT (t2)ϕt1,x1,t2,x2

)
(5.58)

=
(
α′(t2) + (Et1,x1 [Xt2 ]− α(t2)) β

′
T (t2)
βT (t2) + (z − α(T ))βT (t2)γ′

T (t2)
)

Φt1,x1,t2,x2

+
√

Vart1 [Xt2 ]β
′
T (t2)
βT (t2)ϕt1,x1,t2,x2 , (5.59)

with 0 ≤ t1 ≤ t2 < T , x1, x2 ∈ R, and

Φt1,x1,t2,x2 := Φ̄
(
x2 − Et1,x1 [Xt2 ]√

Vart1 [Xt2 ]

)
, ϕt1,x1,t2,x2 := ϕ

(
x2 − Et1,x1 [Xt2 ]√

Vart1 [Xt2 ]

)
,

and, as stated in (5.10), (5.12), and (5.14),

Et1,x1 [Xt2 ] = φ(t2)
(

x

φ(t1) +
∫ t2

t1

κ(u)θ(u)
φ(u) du

)
(5.60)

= α(t2) + βT (t2)
(

(z − α(T ))γT (t2)− x1 − α(t1)− βT (t1)γT (t1)(z − α(T ))
βT (t1)

)
,

Vart1 [Xt2 ] = φ2(t2)
∫ t2

t1

ν2(u)
φ2(u) du (5.61)

= βT (t1)γT (t1)βT (t2),

with φ(t) = exp
{
−
∫ t

0 θ(u) du
}

. Hence, after taking x ↓ b(t) in (5.56) (or by directly expressing
(5.52) in terms of the original OSP, as we did to obtain (5.56) from (5.51)), we get the free-
boundary equation

bT,z(t) = z − Et,bT,z(t)

[∫ T−t

0
(LXVT,z)(t+ u,Xt+u) du

]

= z − Et,bT,z(t)

[∫ T−t

0
µ(t+ u,Xt+u)1(Xt+u ≥ bT,z(t+ u)) du

]
,

which is also expressible as

bT,z(t) = z −
∫ T

t
K(t, bT,z(t), u, bT,z(u)) du. (5.62)

The uniqueness of the solution of the Volterra-type integral equation (5.62) comes after that of
(5.48).

Remark 5.7. We highlight some smoothness properties that the value function V and the OSB
b inherit from W and b, based on the equivalences (5.18) and (5.53).

From the Lipschitz continuity of W on compact sets of R+ × R (see Proposition 5.3), it
follows that of V in compact sets of [0, T ) × R. Higher smoothness of V is also attained away
from the boundary, (t, b(t)) for all t ∈ [0, T ), as it follows from Proposition 5.4. The smooth-
fit condition proved in Proposition 5.8 implies that of V , namely, ∂xV (t, b(t)) = b(t), for all
t ∈ [0, T ).

The OSB b is Lipschitz continuous on any closed subinterval of [0, T ), which is a consequence
of Proposition 5.7.
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5.6 Numerical results
In this section we shed light on the OSB’s shape by using a Picard iteration algorithm to solve
the free-boundary equation (5.62). This approach is commonly used in the optimal stopping
literature; see, e.g., the works of Detemple and Kitapbayev (2020) and De Angelis and Milazzo
(2020).

A Picard iteration scheme approaches (5.62) as a fixed-point problem. From an initial
candidate boundary, it produces a sequence of functions by iteratively computing the integral
operator in the right-hand side of (5.62), until the error between consecutive boundaries is
below a prescribed threshold. More precisely, for a partition 0 = t0 < t1 < · · · < tN = T of
[0, T ], N ∈ N, the updating mechanism that generates subsequent boundaries follows after the
discretization of the integral in (5.62) by using a right Riemann sum:

b(k)
i = z −

N−2∑
j=i

K
(
ti, b(k−1)

i , tj+1, b(k−1)
j+1

)
(tj+1 − tj), i = 0, 1, . . . , N − 2, (5.63)

b(k)
N−1 = b(k)

N = z, (5.64)

for k = 1, 2, . . . and with b(k)
i standing for the value of the boundary at ti output after the

k-th iteration. We neglect the (N − 1)-addend of the sum, and instead consider (5.64), since
K(t, x, T, z) is not well defined. As the integral in (5.62) is finite, the last piece vanishes as
tN−1 approaches T . Given that b(T ) = z, we set the initial constant boundary b(0)

i = z for
all i = 0, . . . , N . We stop the fixed-point algorithm when the relative (squared) L2-distance
between the consecutive discretized boundaries, defined as

dk :=
∑N
i=1

(
b(k)
i − b(k−1)

i

)2
(ti − ti−1)∑N

i=1

(
b(k)
i

)2
(ti − ti−1)

,

is lower than 10−3.
To the best of our knowledge, no formal proof has been provided to address the conver-

gence of Picard iterations within the context of the free-boundary equations that typically arise
when solving OSPs. We thereby show empirical evidence of its convergence in Figures 5.1–5.2.
For each computer drawing of the OSB, we provide smaller images at the bottom with the
(logarithmically-scaled) errors dk, which tend to decrease at a steep pace, making the algorithm
converge (dk < 10−3) after few iterations.

We perform all boundary computations by relying on the SDE representation of the kernel
K defined at (5.58), (5.60), and (5.61), since we adopted the viewpoint of a GMB derived from
conditioning a time-dependent OU process to degenerate at the horizon. The relation between
the “parent” OU process and the resulting OUB is neatly stated in Buonocore et al. (2013,
Section 3), although we include here a modified version that fits our notation better. That is, if
X̃ = {X̃t}t∈[0,T ] solves the SDE

dX̃t = θ̃(t)(κ̃(t)− X̃t) dt+ ν̃(t) dBt, t ∈ [0, T ], (5.65)

then, the corresponding GMB is an OUB that solves the SDE

dXt = θ(t)(κ(t)−Xt) dt+ ν(t) dBt, t ∈ (0, T ), (5.66)
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with 

θ(t) = θ̃(t) + ν̃2(t)
φ̃2(t)

∫ T
t ν̃2(u)/φ̃(u) du

,

κ(t) = κ̃(t) + ν̃2(t)
θ(t)

x− φ̃(T )
∫ T
t κ̃(u)θ̃(u)/φ̃(u) du

φ̃(t)φ̃(T )
∫ T
t ν̃2(u)/φ̃(u) du

,

ν(t) = ν̃(t),

(5.67)

and where φ̃(t) = exp{−
∫ t

0 θ̃(u) du}. We choose representations (5.65) and (5.66) for GM
processes and GMBs, over those given in Lemma 5.1 and (iii) from Proposition 5.1, as they
have a more intuitive meaning. Indeed, recall that θ (θ̃) indicates the strength with which the
underlying process is pulled towards the mean-reverting level κ (κ̃), while ν (ν̃) regulates the
intensity of the white-noise.

Figure 5.1(a) empirically validates the Picard algorithm’s accuracy, as it is tested against
the OSB of a BB, whose closed-form solution is given by z +Kσ

√
T − t, for K ≈ 0.8399. This

result was originally due to Shepp (1969). Notice in Figure 5.1(b) how the numerical boundary
approaches the real one as the time partition becomes thinner.

For all boundary computations, T = 1 and N = 500 were set unless otherwise stated. We
used the logarithmically-spaced partition ti = ln (1 + i(e− 1)/N), since numerical tests sug-
gested that the best performance is achieved when using a non-uniform mesh whose distances
ti − ti−1 smoothly decrease. Figure 5.1(c) illustrates such an effect of the mesh increments by
comparing the performance of the logarithmically-spaced partition against an equally-spaced
one and another that is also equally spaced until the second last node, where it suddenly shrinks
the distance to a fourth of the regular space. Note how the first partition significantly outper-
forms the other two with a lower overall L2-error due to its better accuracy near the horizon.
Intuition might dictate that introducing the sudden shrink at the horizon may derive in a bet-
ter performance by diminishing the error that arises when considering (5.64), yet Figure 5.1(c)
indicates otherwise.

Figure 5.2 shows how changing the coefficients of the process affects the OSB shape. In the
first two rows of images, we visually represent the transformation of coefficients (5.67). The
volatility is excluded as it remains the same after “bridging” the OU process. To compare the
slopes we rely on 1/θ̃(t) and 1/θ(t), as θ(t)→∞ as t→∞ (see (iv) in Proposition 5.1) and, thus,
its explosion would have obscured the shape of the bounded function θ̃, had they been plotted
in the same graph. In alignment with the meaning behind each time-dependent coefficient, the
OSB is pulled towards κ̃ with a strength directly proportional to θ̃. This pulling force conflicts
with the much stronger one towards the pinning point of the bridge process, resulting in an
attraction toward the “bridged” mean-reverting level κ with strength dictated by θ. We recall
that modifying ν̃, and thus ν, is equivalent to change θ due to (iv.2 ). We remind that the
functions Φ and ϕ in Figure 5.2 stand for the distribution and the density of a standard normal
random variable. The former is used to smoothly represent sudden changes of regimes, while
the latter introduces smooth temporal anomalies. For instance, κ̃(t) = 2Φ(50t− 25)− 1 rapidly
changes the mean-reverting level of the underlying process from −1 to 1 around t = 0.5, and
ν̃(t) = 1 +

√
2πϕ(100t − 25) introduces a brief period of increased volatility around t = 0.25,

before and after which the volatility remains at (constant) baseline levels. Periodic fluctuations
of the parameters were also considered, as they typically arise in problems that account for
seasonality.
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(c) θ̃ ≡ 0, ν̃ ≡ 1, N = 20.

Figure 5.1: For the images on top, the solid colored lines represent the computed OSBs for the different
choices of the volatility coefficient ν̃ (image (a)), the partition length N (image (b)), and the type of
partition considered (image (c)). Black dashed, dotted, and dashed-dotted lines stand for the OSB of
a BB associated with the different values of ν̃. Specifications are shown in the legend and caption of
each image. Image (c) accounts for a subplot that shows, as a function of the partition size N (x axis),
the evolution of the relative L2 error between the different computed boundaries and the true one (y
axis). The smaller images below display the log-errors log10(dk) between consecutive boundaries for each
iteration k = 1, 2, . . . of the Picard algorithm.
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Figure 5.2: The first row of three plots shows 1/θ̃ (continuous line) versus 1/θ (dashed line) for the
different choices of the slope θ̃ (image (a)), the mean-reverting level κ̃ (image (b)), and the volatility ν̃
(image (c)) functions. Specifications of the functions are given in the legend and caption of each image.
The second row does the same for κ̃ and κ. The main plot, in the third row, shows in solid colored
lines the computed OSBs. The smaller images at the bottom display the log-errors log10(dk) between
consecutive boundaries for each iteration k = 1, 2, . . . of the Picard algorithm.
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Notice that, after Proposition 5.1, it readily follows that all coefficients θ, κ, and ν used in
this section meet assumptions (5.21a)–(5.21f), as they are twice continuous derivable, θ(t) > 0
for all t ∈ [0, T ), and satisfy conditions (iv.1 ) and (iv.2 ).

The R code in the public GitHub repository https://github.com/aguazz/OSP_GMB imple-
ments the Picard iteration algorithm (5.63)–(5.64). The repository allows for full replicability
of the above numerical examples.

5.7 Concluding remarks

We solved the finite-horizon OSP of a GMB by proving that its OSB uniquely solves the Volterra-
type integral equation (5.62).

GMBs were comprehensively studied in Section 5.2, where four equivalent definitions were
presented, making it easier to identify, create, and understand them from different perspectives.
One of these representations allows bypassing the challenge of working with diffusions with
non-bounded drifts and, instead, working with an equivalent infinite-horizon OSP with a BM
underneath. Equations (5.53) explicitly relate both OSTs and OSBs, while (5.57) and (5.62)
give the value formula and free-boundary equation in the original OSP.

The method of solving the alternative OSP consisted in solving the associated free-boundary
problem. To do so, several regularity properties about the value function and the OSB were
obtained in Section 5.4, among which the local Lipschitz continuity of the OSB stands out as a
remarkable property.

Finally, we approached the free-boundary equation as a fixed-point problem in Section 5.6
to numerically explore the geometry of the OSB. This provided insights about its shape for
different sets of coefficients of the underlying GMB, seen as bridges derived from conditioning a
time-dependent OU process to hit a pinning point at the horizon. The OSB shows an attraction
toward the mean-reverting level, which fades away as time approaches the horizon, where the
boundary hits the OUB’s pinning point.
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Chapter 6

Final thoughts and extensions

6.1 Conclusions

In this thesis we contribute to the optimal stopping theory literature, in the time-inhomogeneous
framework, by solving Optimal Stopping Problems (OSPs) related to Gauss–Markov (GM)
processes, both when they are non-degenerated, and when they are pinned to a deterministic
value at a terminal time. For pinned processes, we bypassed the challenge of their explosive
drifts by equating them to a time-space-transformed Brownian Motion (BM). For each OSP, we
characterized the free-boundary equation as the unique solution of a type-two Volterra integral
equation. The value functions were, then, expressed as an integral of the OSBs.

We used a solution methodology in the spirit of Peskir (2005). That is, a direct, probabilistic
approach that harvests sufficient smoothness of the value function and the Optimal Stopping
Boundary (OSB) to solve the associated free-boundary problem by using an extended Itô’s
lemma. In doing so, we proved the Lipschitz continuity of the OSB away from the horizon. This
result extends the technique in De Angelis and Stabile (2019) and blueprints a methodology to
obtain similar smoothness on other OSPs. Another highly customizable technique was the one
we employed to obtain the OSB’s boundedness. By comparing the non-degenerated GM process
and the Gauss Markov Bridge (GMB) with a BM and a Brownian Bridge (BB), respectively, we
found bounds for the OSBs of the former two processes from those of the latter two.

Two different fixed-point algorithms were presented and implemented to solve the free-
boundary equation. One based on backward induction (see Section 3.4) and one based on
the Picard iteration method (see Sections 2.5, 4.6, and 5.6). With the aid of these algorithms,
we illustrated the geometry of the OSB for different forms of the processes’ drift and volatility
(see Figures 2.1, 3.1, 4.1–4.3, and 5.2).

It is worth mentioning the statistical inference study we perform on the OSB in the BB
case (see Section 3.4), as this is not a typical subject addressed in optimal stopping theory,
and it is potentially extensible to tackle more general settings where likelihood theory is worked
out. Indeed, the methodology consists in using the asymptotic normality of the BB volatility’s
maximum-likelihood estimate to extend, by using the delta method, such property to the OSB
plugin estimator. This allowed us to provide (point-wise) confidence curves for the OSB.

We also offer a financial perspective of our work in Chapters 2 and 3, by linking the OSPs to
the problem of optimally exercising American options. Remarkably, in Section 3.5, we show the
competitiveness of the BB model against the geometric BM in this regard, when the option is
written on IBM’s and Apple’s stocks, and in the presence of the pinning-at-the-strike effect. In
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addition, the confidence curves computed in Section 3.4 provide traders with a mechanism to in-
troduce a risk-preference element.

6.2 Future work

We conclude this thesis by discussing some specific extensions that are worthwhile to mention
as future research paths.

All of the OSPs we addressed live in the realm of non-monotonic OSBs, which makes it
complicated to prove the smooth-fit condition. Our workaround to solve this issue was to prove
the local Lipschitz continuity of the OSBs and then rely on the law of the iterated logarithm to
obtain their probabilistic regularity (see Corollary 6 from De Angelis and Peskir (2020)) for the
interior of the stopping set. Lipschitz continuity of the OSB, however, is a demanding property
and might become difficult to obtain under certain settings. An alternative way to prove the
smooth-fit condition is based on the continuity and piecewise monotonicity of the OSB (see
Example 7 from De Angelis and Peskir (2020) and Corollary 8 from Cox and Peskir (2015)).
However, all our attempts to try to obtain the boundary’s piecewise monotonicity failed. We
consider that further investigations into this smoothing property are worthwhile, as they might
result in extending some of the results hereby presented to a wider class of processes, such as
general diffusion bridges.

The likelihood-based inferential methodology used in Section 3.4 falls apart when the esti-
mators of the process’ parameters cannot be readily obtained and proved to be asymptotically
normal. This disables the application of the delta method and increases the difficulty of obtain-
ing confidence curves. Non-readily usable likelihood inference is ubiquitous in diffusive models,
with the notable exceptions of the OU and other Gaussian models. For these cases, a similar
approach to Section 3.4, with added technical complexities on the estimators and the asymptotic
variances, could be thus achieved. More flexible inferential approaches, like bootstrap resam-
pling, could be explored to address the non-tractable likelihood inference case, especially to
tackle time-dependent GM processes and GMBs in a non-parametric fashion. That approach
would imply performing multiple computations of the (numerically-computed) OSB, which con-
siderably increases the associated computational load.

In line with the previous point, the advance of statistical inference for the OSB of the time-
dependent OU, OUB, and GMB processes (Chapters 2, 4, and 5) would allow their empirical
study in real-data applications, similar to that in Section 3.5 for the OSB of the BB. In partic-
ular, such real data applications would help to illustrate the practical usability of these OSBs,
their flexibilities, their different stopping strategies once uncertainty is incorporated, and their
potential benefits against, for example, the OSB of the classical geometric BM or other standard
models.

Due to the aforementioned computational cost, and as a stand-alone problem with value in
itself, efficient methods to compute the OSB are required. We saw the effect of considering a
partition that gradually gets thinner as time approaches the horizon, which drove us to work with
a logarithmically-spaced partition. However, other settings could yield more accurate boundary
approximations, and a theoretical and numerical study on optimal partition settings could be
carried out. Likewise, the fixed-point algorithms used to solve the Volterra integral equation
characterizing the OSB are the state-of-the-art method to address this numerical problem, yet
their convergence remains an open problem in general frameworks. It would be worthwhile
to treat this problem through the lens of the Banach fixed-point theorem by proving that the
integral operator is a contraction mapping.
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From a financial point of view, Figures 3.5 and 3.6 reveal the importance of including the
variance, and not only the mean, in the analysis of optimally exercising an American option,
as strategies similar to the optimal one could be found in average profit terms, but with a
significantly lower variance, meaning less risk. To this end, risk-adjusted measures could be used
as the gain function, including the Sharpe and Sortino ratios and the risk-adjusted return on
capital. The quadratic non-linearity of the variance makes Mean-variance OSPs fundamentally
more challenging than classical ones. These types of problems have been studied in Pedersen
and Peskir (2016) and Pedersen and Peskir (2017). The first one works out the solution for a
geometric BM, while the latter does it for a wealth process that results from holding a risky
stock (whose price follows a geometric BM) and a riskless bond with exponential growth.
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