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Abstract

The behavior of living systems can exhibit emergent phenomena that are not present in
their individual components. Living systems are far from equilibrium, may lack conser-
vation laws and using tools from statistical physics and thermodynamics is challenging.
However, quantitative observations and experiments yield a wealth of data that allow to
design models capturing important aspects of the behavior of these systems. This thesis
focuses on two topics, the collective behavior of midge swarms and the collective behav-
ior of bacterial biofilms. Prior studies of insect swarms have focused on their formation
as an ordering phase transition, which fails to capture many qualitative and quantitative
features. In this thesis we study the Vicsek model confined by a harmonic potential.
By using dynamical systems and statistical mechanics tools, we have discovered a novel
phase transition characterized by scale free chaos, which exhibits power laws and present
qualitative features compatible with observations of swarms of male midges in nature
and in the laboratory. On the second topic, bacterial biofilms pose a challenge to theo-
rists, who must model elements on different spatial and temporal scales. We present a
hybrid model based on an architecture of immersed boundaries with a dynamic energy
budget metabolism. The model captures geometric differences between bacteria, being
able to reproduce varied patterns depending on their shapes and competence phenomena
between different types. We can study antibiotic resistance in biofilms and test cocktails
to eradicate them.

El comportamiento de los sistemas vivos puede mostrar fenómenos emergentes que
no están presentes en sus componentes individuales. Los sistemas vivos están alejados del
equilibrio, pueden carecer de leyes de conservación y es todo un reto emplear herramien-
tas de la física estadística y la termodinámica. Experimentos y observaciones cuantitativas
producen una gran cantidad de datos que permiten diseñar modelos que expliquen aspec-
tos importantes del comporamiento de estos sistemas. Esta tesis se centra en dos temas, el
comportamiento colectivo de los enjambres de insectos voladores como los mosquitos y el

v



vi

comportamiento colectivo de las biopelículas bacterianas. Los estudios previos de enjam-
bres de insectos se han centrado en su formación como una transición orden-desorden, lo
que no explica muchos aspectos tanto cualitativos como cuantitativos. En esta tesis estudi-
amos el modelo de Vicsek confinado por un potencial armónico. Usando herramientas de
sistemas dinámicos y de mecánica estadística hemos descubierto una nueva transición de
fase caracterizada por caos libre de escalas, que presenta leyes de potencias y tiene rasgos
cualitativos compatibles con las observaciones y experimentos de laboratorio de enjam-
bres de dípteros. Por otro lado, las biopelículas bacterianas plantean un reto teórico, pues
se debe modelar elementos a diferentes escalas espaciales y temporales. Presentamos un
modelo híbrido basado en una arquitectura de fronteras inmersas con un metabolismo de
presupuesto de balance energético. El modelo captura las diferencias geométricas entre
bacterias, generando patrones diversos según su forma y competencia entre bacterias de
distintos tipos. Permite estudiar la resistencia de biopelículas a antibióticos y el diseño de
cócteles para erradircarlos.
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CHAPTER 1

Introduction

In the present work, we explore collective biological behavior from a biophysics and
mathematics perspective. We show how mathematical models, computational tools, con-
tinuum mechanics and statistical physics can be used to better understand the principles
behind the dynamics of some biological systems. Our study focuses on the collective
behavior of different biological aggregates, namely insect swarms and bacterial biofilms.

Insect swarms can be considered examples of active matter because these systems
comprise self-driven units (active particles), each capable of converting stored or ambient
free energy into systematic movement (Marchetti et al. 2013). Studies of active matter
often use tools from statistical physics, dynamical systems, continuum mechanics and
assorted mathematics.

Motile bacteria can also form swarms. However, we analyze here the biofilm habitat.
In them, cells are embedded in a self-produced polymeric matrix and cannot move by
themselves. However, their biological activity responds to environmental conditions and
mechanical processes, which, in turn, respond to collective cell behavior. They are usually
considered as living soft matter and modeled as live deformable materials (Costerton et al.
1995; Parsek et al. 2005; H. C. Flemming et al. 2016).

1.1 Swarms of midges and the Vicsek model

The collective behavior of animal groupings, such as insect swarms, fish schools, bird
flocks, and human crowds (Okubo 1986; Parrish et al. 1999; Sumpter 2010; Vicsek and
Zafeiris 2012; Ouellette 2022) has always fascinated people. These groupings share com-
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1.1. SWARMS OF MIDGES AND THE VICSEK MODEL 4

mon characteristics that suggest there may be fundamental principles at play beyond just
their biological details. Opinions about what these principles might be have often re-
flected fashions of the times. At the end of the XIX century and beginning of the XXth,
alleged causes of collective behavior of animal groupings have been collective hypnosis,
(Le Bon 1895; Le Bon 1897), telepathy, (Long 1919), or the formation of a collective
individual, (Huxley 1912), or superorganism, (Wilson et al. 1989). In the same period,
researchers closer to observations argued that the spread of impulse within well-organized
groups was enough to explain the apparent existence of a collective consciousness, (Miller
1921). Recently, technological advancements in stereo videography and calibration have
provided a wealth of quantitative data for studying collective biological motion (Theriault
et al. 2014). Better data and the more recent methodologies associated to phase transitions
in statistical mechanics, chaos theory, continuum mechanics and active matter allow for
more quantitative analyses that may lead to better understanding of flocking phenomena.
The example of mating swarms of male midges that we consider in this thesis leads to a
particular model of active particles that exhibits novel phase transitions between different
forms of chaotic attractors, as we shall explain below.

Active matter encompasses all scales of living beings, from bacteria and biopolymers
to groups of people, as illustrated by Figure 1.1. We distinguish ordered patterns and dis-
ordered but strongly correlated behavior in this figure: some bacteria, flocks of birds, fish
schools and groups of people form ordered patterns, whereas no order is apparent in other
bacteria, swarms of midges and snails. Several disordered groupings have nevertheless
strong correlations between active particles, as shown by observations of midge swarms in
nature (Attanasi, Cavagna, L. Del Castello, et al. 2014; Attanasi, Cavagna, L. D. Castello,
et al. 2014).

To understand the formation of animal flocks, a paradigmatic model is due to Vicsek
et al, (Vicsek, Czirók, et al. 1995). The Vicsek model (VM) consists of N self-propelled
particles moving with constant speed in a box with periodic boundary conditions. The
particle dynamics is discrete in time, and the direction of the velocity of each particle
is given by the average velocity of particles in its neighborhood plus an alignment noise
(Vicsek and Zafeiris 2012; Vicsek, Czirók, et al. 1995). The VM describes dry active mat-
ter in which active particles are not immersed in a moving medium or fluid (Chaté 2013;
Marchetti et al. 2013). For large enough boxes, the VM undergoes an ordering transition
for noise below a critical value (or particle density above a critical value) in which a gas
of disordered particles filling the box evolves to ordered patterns such as traveling bands,
which then form an ordered “liquid” for noise below another threshold (Chaté 2013). For
smaller boxes, the phase of ordered bands does not appear, and the transition is from gas
to liquid (Chaté 2013). The order parameter of the flocking transition is the polarization,
i.e., the average velocity of all particles divided by their common speed.

Insect swarms provide particularly rich empirical data and peculiar critical behavior
(Attanasi, Cavagna, L. Del Castello, et al. 2014; Attanasi, Cavagna, L. D. Castello, et
al. 2014; Okubo 1986; Okubo and Levin 2001; Kelley et al. 2013; Puckett et al. 2014;
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Figure 1.1: (a) Active bacteria groupings from (Be’er et al. 2015). (b) Flocks
of birds taken from the website https://www.science.org/content/article/
how-bird-flocks-are-liquid-helium (“How bird flocks are like liquid helium”
2014). (c) Fish schools taken from (Lopez et al. 2012). (d) Snail swarms taken from
(Silvertown et al. 2011). (e) Trajectories of midges in the wild taken from (Cav-
agna, Conti, et al. 2017), in https://physics.aps.org/articles/v7/120, (“In-
sect Swarms Go Critical” 2014). (f) Groups of people, taken from the website https:
//crowdbehaviordotorg.wordpress.com/, (“Scene-Independent Group Profiling in
Crowd” 2014).

Cavagna, Conti, et al. 2017; Gorbonos et al. 2016; Sinhuber et al. 2017). Male midges
and other diptera form swarms near visual markers to attract females for reproductive
purposes (Okubo 1986; Okubo and Levin 2001; Puckett et al. 2014). While small swarms
track the marker shape, larger swarms are more isotropic and shape independent (Puckett
et al. 2014). In laboratory experiments, swarms form far from the walls of the enclosure
that contains them (Kelley et al. 2013). Topological data analysis of experiments shows
that the swarm can be thought of as a condensed phase (the swarm nucleus) surrounded
by a vapor phase (insects leaving and entering the nucleus (Sinhuber et al. 2017)).

Natural swarms present collective behavior and strong correlations but not global or-
der. The polarization order parameter is quite small but the correlation length (measuring
the largest distance between two insects whose velocity fluctuations still influence each
other) is proportional to the swarm size (Cavagna, Conti, et al. 2017). It is also much
larger than all other length scales, such as insect size, average separation between in-
sects, etc. Macroscopic variables, such as the correlation length, the susceptibility to
polarization changes and the dynamic correlation, follow power laws as functions of the

https://www.science.org/content/article/how-bird-flocks-are-liquid-helium
https://www.science.org/content/article/how-bird-flocks-are-liquid-helium
https://physics.aps.org/articles/v7/120
https://crowdbehaviordotorg.wordpress.com/
https://crowdbehaviordotorg.wordpress.com/


1.1. SWARMS OF MIDGES AND THE VICSEK MODEL 6

distance to criticality, with critical exponents that differ from those of equilibrium and
many nonequilibrium phase transitions (Huang 1987; Attanasi, Cavagna, L. Del Castello,
et al. 2014; Attanasi, Cavagna, L. D. Castello, et al. 2014; Cavagna, Conti, et al. 2017).
Cavagna and coworkers have shown that the characteristic timescale, static and dynamic
connected correlation functions depend on the control parameters (density, noise, . . . )
only through the correlation length. This is the finite-size scaling hypothesis, which is
similar to that found in second-order equilibrium phase transitions (Huang 1987). Finite-
size scaling allows us to extrapolate power laws of macroscopic variables obtained for fi-
nite N to the case of infinitely many particles, which characterize phase transitions (Amit
et al. 2005). Attempts to use the ordering transition of the three-dimensional (3D) VM
to explain observed critical exponents produced exponent values quite different from ex-
perimental ones (Attanasi, Cavagna, L. D. Castello, et al. 2014; Cavagna, Conti, et al.
2017).

A line of theoretical research intends to attain critical exponents close to those mea-
sured in natural swarms of midges by performing renormalization group calculations in
modified versions of the Toner-Tu hydrodynamic equations (Toner and Tue 1995; Toner,
Tu, et al. 2005; Chen, Toner, et al. 2015; Chen, Lee, et al. 2018; Cavagna, Carlo, Giar-
dina, Grigera, and Pisegna 2021; Cavagna, Carlo, Giardina, Grigera, Melillo, et al. 2021).
The idea is that critical exponents obtained from the fixed points of an appropriate renor-
malization group belong to the same universality class, no matter their peculiar features.
However, the symmetric phase of the modified Toner-Tu equations is far from observed
insect swarms.

In this thesis, we introduce more realistic features in the VM and study its underly-
ing phase transitions. In particular, (Gorbonos et al. 2016) proposed a self-gravitating
model of swarms that accounts for many observations in the laboratory (Ouellette 2022),
such as their effective Young modulus (Ni and Ouellette 2016). Inside a self-gravitating
sphere, particles are subject to a harmonic potential and we propose replacing the con-
fining periodic box of the VM by a linear spring force. A harmonic potential for swarms
was proposed earlier by (Okubo 1986; Kelley et al. 2013) and, in relation with the VM,
by (Attanasi, Cavagna, L. D. Castello, et al. 2014; Cavagna, Conti, et al. 2017). Unlike
these later authors, we do not focus in the usual VM ordering transition. Instead, we
have found hitherto unsuspected new states in the harmonically confined VM: periodic,
quasiperiodic and chaotic attractors modified by the VM alignment noise. Depending on
the scale-dependent Lyapunov exponents, we can distinguish deterministic chaos, noisy
chaos and predominantly noisy states (Gao, Hu, et al. 2006). Within the parameter region
of noisy chaos, we have found a new phase transition with scale free chaos that presents
many of the observed features of natural swarms and critical exponents compatible with
observations (González-Albaladejo et al. 2023). For finitely many particles, the confined
VM has a transition between single and multicluster swarms at which the correlation
length is proportional to the swarm size. We study this transition using numerical simula-
tions, the finite size scaling hypothesis and the tools of the statistical mechanics of phase
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transitions. Correlation length and susceptibility obey power laws with critical exponents
compatible with those observed in nature and correlation time and correlation length scale
with a dynamical exponent that is close to one. We find that the confining strength at the
critical line goes to zero as the number of particles goes to infinity. The largest Lyapunov
exponent is positive but it also goes to zero as a power law with a novel critical exponent.
Thus, we have discovered and analyzed the novel nonequilibrium phase transition of scale
free chaos (González-Albaladejo et al. 2023). The specifics of our study are explained in
Chapters 2 and 3. We have also found another phase transition with the same critical
exponents as in gravitational collapse, and we have called the resulting phase a flocking
black hole.

1.2 Bacterial biofilms

The other part of the thesis deals with soft matter or soft condensed matter, which is a
subfield of condensed matter related to systems with deformable elements. These systems
live on the energy scale of the ambient temperature, (Kleman et al. 2003), and are com-
posed of liquids, colloids, granular materials, polymers, liquid crystals, etc., within them.
The attempt to understand this matter came from Albert Einstein’s work on Brownian
motion, being the beginning of the work on colloids, (Einstein 1905). Later Pierre-Gilles
de Gennes, who is considered to be the main creator of this matter, gathered all the works
to find the universality of these materials by considering the phase transitions from disor-
der to order of simple systems in these complex systems, (De Gennes 1974). One of the
most curious examples or anecdotes of this type of matter is explained by Pierre-Gilles
de Gennes himself in (De Gennes 1991) where he tells that the indigenous people living
in the Amazon already discovered the potential of this material. They coated their feet
with tree sap and left it to dry. At first the polymeric chains are independent and flexible,
but when left in the air for a while, oxygen enters the material, creating bridges between
the chains. In this way we go from a liquid structure to a network structure that resists
tension, being what we now call rubber.

One of the systems within the large number of soft matter biomaterials are bacterial
biofilms, (Costerton et al. 1995; Parsek et al. 2005; H. C. Flemming et al. 2016), which
are important for human health such as the development of various infectious diseases
and their resistance to antibiotics, (Ciofu et al. 2022). The term biofilm was introduced in
1995 by Bill Costerton, recognised as the founder of the field, (Lappin-Scott et al. 2014).
In this first work we will focus on biofilms on a surface, i.e. the biofilm is deformable and
changes in the number of bacteria, which organise themselves keeping the whole group
practically static, see Fig. 1.2. If self-propelled bacteria were to be studied, they would
be treated as soft active matter, which we do not address in the present work. The great
difficulty of these systems is to model and capture their characteristics, so we will focus
on making a computational model that simulates this complex system in Chapter 4.
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(a) (b)

Figure 1.2: Experimental views of incipient biofilms on surfaces. Bacteria plus poly-
meric slime for (a) rod-like bacteria (Courtesy of Professor Vernita Gordon, University
of Texas at Austin (Kirsch 2017)) and (b) spherical bacteria (reprinted from (Scherberger
2018)).

Biofilms are formed by bacteria glued together by a self-produced polymeric matrix
and attached to a moist surface (H. Flemming et al. 2010). The polymeric envelop makes
biofilms extremely resistant to antibiotics, disinfectants and chemical or mechanical ag-
gressions (Høiby et al. 2010). Experiments reveal that their structure varies according to
environmental conditions. When they grow in flows (Drescher et al. 2013; Laspidou et al.
2014; Lardon et al. 2011; Sudarsan et al. 2016), we see scattered bacteria immersed in
large chunks of polymer. When they form on interfaces with air or tissue, volume frac-
tions of polymer are very small (Seminara et al. 2012; Storck et al. 2014; Grant et al.
2014) and biofilms resemble aggregates of spherical or rod-like particles, see Figure 1.2
for a view of very early stages. As they mature, three dimensional sheets are formed, see
Figure 1.3.

Figure 1.3: Scheme of a vertical slice of a biofilm seed spreading on a surface, see (Sem-
inara et al. 2012; Asally et al. 2012; Wilking et al. 2013).

Modeling bacterial growth in the biofilm habitat is a complex task due to the need
to couple cellular, mechanical and chemical processes acting on different times scales.
Many approaches have been proposed, ranging from purely continuous models (Semi-
nara et al. 2012) to agent based descriptions (Laspidou et al. 2014; Rodriguez et al. 2012;
Lardon et al. 2011; Sudarsan et al. 2016; Storck et al. 2014; Grant et al. 2014) and hybrid
models combining both (Carpio, Cebrián, and Vidal 2019; Carpio and Cebrián 2020).
Complexity increases when we aim to take bacterial geometry into account, issue that we
intend to address here borrowing ideas from immersed boundary (IB) methods (Peskin
2002). These methods have already been adapted to simulate different aspects of biofilms
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in flows, such as finger deformation (Sudarsan et al. 2016), attachment of floating bac-
teria (Dillon, Fauci, et al. 1996), and viscoelastic behavior (Stotsky et al. 2016). Cell
growth and division were addressed by removing the incompressibility constraint on the
surrounding flow and including ‘ad hoc’ inner sources (Li et al. 2012). Recent extensions
to multicellular growth consider closely packed deformable cells attached to each other
(Rejniak 2007; Dillon, Owen, et al. 2008). Biofilms growing on interfaces differ from
multicellular tissues in several respects. First, bacterial shapes are more rigid, usually
spheres or rods. Second, bacteria remain at a short, but variable, distance of each other.
To describe their evolution we need to take into account at least:

• Bacterial activities, such as growth, division and death in response to the environ-
mental conditions.

• Chemical processes, such as diffusion of oxygen, nutrients, and toxicants (waste
products, antibiotics) and production of autoinducers.

• Mechanical processes, such as the interaction of the fluid with the immersed struc-
tures and the interaction between the structures themselves.

These processes evolve in different time scales. Compared to cellular processes, which
develop in a time scale of hours, mechanical and chemical processes are quasi-stationary.
The inherent time scale for them would be seconds. Fast flow processes like adhesion
or motion carried by a flow are not relevant for biofilms spreading on a surface. Instead,
water absorption from the substrate in the time scale of growth is a factor to consider.
Variations in the biofilm are driven by cellular activities, in a time scale of hours, through
changes in the immersed boundaries due to cell growth, division, and death (Seminara
et al. 2012; Chai et al. 2011; Carpio, Cebrián, and Vidal 2019). These processes are
influenced by the secretion of autoinducers and the production of waste products and
polymers (Seminara et al. 2012; Chai et al. 2011; Carpio, Cebrián, and Vidal 2019).

Understanding the mechanisms of biofilm growth and spread is important for devel-
oping strategies to prevent or control the spread of infections caused by biofilms. In this
thesis, we present a mathematical model based on the immersed boundary method for
simulating the spread of biofilms on surfaces, with a numerical approach for solving fluid
dynamics problems that involves representing the boundaries of complex geometries as
a series of points immersed in the fluid. We use this method to simulate the growth and
spread of biofilms on surfaces and investigate the effects of different parameters such as
the fluid flow rate and the initial distribution of the biofilm. We also add an dynamic en-
ergy budget model to each bacterium that governs internal biological behaviours such as
cell division and cell death, and a system of equations that simulate different chemical or
complex substances concentrations that exist in the environment such as nutrients, poly-
mers and toxins. The results of the simulations provide insight into the mechanisms of
biofilm spread and could be used to develop new strategies for controlling the spread of
biofilms on surfaces.
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1.3 Outline

The thesis is organized as follows. Chapters 2 and 3, are devoted to study the confined
Vicsek model as applied to midge swarms, whereas bacterial biofilms are analyzed in
Chapter 4. Thus, in Chapter 2 we discuss the Vicsek model confined by a harmonic po-
tential and a novel chaotic transition for a finite number of particles, which is scale free.
Different qualitative features of single and multicluster chaotic states separated by this
transition are studied by Topological Data Analysis. In Chapter 3, we use the finite size
scaling hypothesis to study the scale-free-chaos phase transition and find different criti-
cal exponents for order parameter, correlation length, susceptibility and largest Lyapunov
exponent. We find that, for finitely many particles, there is an extended criticality region
beyond the line separating single and multicluster chaos. This region collapses to zero
confinement strength as the number of particles goes to infinity. A different phase tran-
sition for large confinement strength consists of finite regions containing an increasing
number of particles, the flocking holes. The material presented in Chapters 2 and 3 is
contained in our publication (González-Albaladejo et al. 2023). Chapter 4 is based on our
publication (Carpio and González-Albaladejo 2022). In it, we model bacterial biofilms
representing bacteria by boundaries immersed in a viscous fluid and the polymeric ma-
trix by a friction term. The interactions of the bacteria among themselves are modeled
by additional forces on the immersed boundaries. Bacterial metabolism and response to
antibiotics is described by a dynamic energy budget approach. The computational model
is solved numerically by parallelizing the codes when possible and used to investigate
antibiotic resistance. In Chapter 5 we discuss the overall results in comparison with other
theoretical models and experiments, and comment on some conclusions. Finally, at the
end we collect all the references of the thesis in alphabetical order.



CHAPTER 2

Transition from single-cluster to multi-cluster
chaos in the confined Vicsek Model

2.1 Introduction

In this chapter, we study the 3D VM confined by a harmonic potential (Attanasi, Cavagna,
L. Del Castello, et al. 2014; Attanasi, Cavagna, L. D. Castello, et al. 2014; Cavagna,
Conti, et al. 2017). Confining harmonic potentials have long been proposed as models
for swarm behavior (Okubo 1986; Okubo and Levin 2001; Gorbonos et al. 2016; Ni and
Ouellette 2016). We have made a number of discoveries. As the confinement parameter
β decreases, the VM changes from a period 2 attractor at large confinement values to
other periodic, quasiperiodic and chaotic attractors. Using β as control parameter, there
are windows of chaotic solutions followed by intervals of non-chaotic behavior. For β
and η small but nonzero, a line in the noise-β plane separates chaotic single cluster from
multicluster swarms. Similar to observations (Sinhuber et al. 2017), the single cluster
swarm consists of a ‘condensed’ nucleus and particles leaving and entering it.

The rest of the chapter is as follows. We present the confined Vicsek model in Section
2.2 and find different attractors as the confinement parameter decreases from a large value.
Among them, period 2, period 4, periodic solutions, quasiperiodic solutions, large period
solutions, and chaotic attractors with positive Lyapunov exponents. Section 2.3 discusses
algorithms to calculate the largest Lyapunov exponent (LLE) and how to distinguish de-
terministic and noisy chaos from noise, using Gao et al’s scale dependent Lyapunov ex-
ponents (Gao, Hu, et al. 2006). Section 2.4 uses topological data analysis to characterize
the phase transitions from single cluster to multicluster chaotic attractors. Section 2.5

11



2.2. CONFINED VICSEK MODEL 12

contains our conclusions whereas the Appendices are devoted to technical matters. Ap-
pendix 2.A describes our nondimensionalization of the confined Vicsek model. Appendix
2.B describes the Benettin algorithm (Benettin et al. 1980; Ott 1993; Cencini et al. 2010),
scale dependent Lyapunov exponents (Gao, Hu, et al. 2006) and the Gao-Zheng algo-
rithm to extract the largest Lyapunov exponent from high dimensional reconstructions of
the chaotic attractor using lagged coordinates (Gao and Zheng 1994).

2.2 Confined Vicsek model

We have nondimensionalized the VM governing equations using data from natural swarms
(see Appendix 2.A):

xi(t + 1) = xi(t) + vi(t + 1),

vi(t + 1) = v0Rη

⎡⎢⎢⎢⎢⎢⎢⎢⎣Θ
⎛⎜⎜⎜⎜⎜⎜⎜⎝ ∑︂
|x j−xi |<R0

v j(t) − βxi(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎦, (2.1)

where i = 1, . . . ,N, v0 = 1 is a constant speed, R0 = 1, β is the confinement strength.
The position and velocity of the ith particle at time t are xi(t) and vi(t), respectively.
In (2.1), Θ(x) = x/|x| and Rη(w) rotates the unit vector w randomly within a spherical
cone centered at its origin and spanning a solid angle in (− η2 ,

η

2 ). The 2D VM is defined
similarly. Initially, the particles are randomly placed within a sphere with unit radius and
the particle velocities point outwards.

The VM exhibits a variety of attractors for different values of confinement β and align-
ment noise η, as depicted in Fig. 2.1 for η = 0 and N = 128. For large β, the swarm
occupies the unit sphere and it is pulsating with period 2: all particles reverse their ve-
locities at each time step. The center of mass (CM) of the swarm occupies two positions
(β = 60000) or four (β = 300, period 4 attractor) as shown in Fig. 2.1(a). As β decreases,
there appear quasiperiodic attractors interspersed with periodic attractors with higher pe-
riods, and chaotic attractors, cf. Fig. 2.1(b)-(f).

Fig. 2.2(a)-(b) show how different attractors in Fig. 2.1 appear as the parameter β
changes. Periodic and quasiperiodic attractors exist for large confinement values and
quasiperiodicity turns into chaos below β ≈ 30. The chaotic attractor first looks like a
torus and its central hole is filled as β decreases, cf. Figs. 2.1(d)-(f). As shown in cf.
Fig. 2.2(c), the alignment noise increases LLE values, there are parameter regions where
noise induces chaos and there are the transition from chaos single-cluster to chaos multi-
cluster which will be discussed later.
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Figure 2.1: Center of mass trajectories of different attractors for N = 128, R0 = v0 = 1,
η = 0 and different β. (a) Period 2 (β = 60000) and period 4 (β = 300) attractors. (b)
Quasiperiodic attractor that appears at β = 2N = 256. (c) Periodic solutions with larger
periods: 6 (β = N = 128), 5 (β ≈ 177),and 13 (β ≈ 225). (d)-(e) Torus-like chaotic
attractor for β = 1 depicted for a long and a shorter time interval. (f) Chaotic attractor for
β = 0.01: the center-of-mass trajectory will fill a sphere-like body if depicted for much
longer times. Note that increasing β confines the motion to smaller volumes.

Figure 2.2: (a) Bifurcation diagram of the sum of CM coordinates in nondimensional
units and (b) largest Lyapunov exponent (LLE) versus β for η = 0. The boxes in Panel
(a) about β = N and β = 2N correspond to period 6 solutions and others interspersed with
quasiperiodic solutions, and a period 4 to quasiperiodic transition, respectively. Chaotic
solutions appear following the quasiperiodic route to chaos. In panel (a), note the large
increase of the range of CM values as β decreases. (c) Same as Panel (b) for η = 0.5.
Note how noise increases the value of the LLE and induces chaos for confinement values
that correspond to quasiperiodic attractors for η = 0. The area marked by green arrow in
Panel (c) corresponds to the change of chaos single-cluster to chaos multi-cluster. Other
parameters are as in Fig. 2.1.
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Figure 2.3: Transition from chaos single-cluster to chaos multi-cluster. (a) Phase di-
agram β vs η exhibiting regions of deterministic and noisy chaos, and of noisy disorder.
The vertical lines at η = 0.2 and 0.9 correspond to the maximum correlation length ob-
served in experiments and to the noise for which the dynamic correlation function ceases
to be flat near t = 0, respectively. Noise swamps chaos for η ≥ 1. The three lines of
critical points in the noisy chaos region correspond to critical confinement βc(N, η) for
N = 100, 150, 200. They separate multicluster (M-cluster) from single cluster (S-cluster)
chaos. This Panel is closely related to Chapter 3 defining the transition as scale-free
chaos. (b) Largest scale-dependent Lyapunov exponent as a function of the scale param-
eter ϵ for N = 100, different values of η, two lagged coordinates m = 2 and β = βc(N, η),
see Appendix 2.B. The LLE is the value of λ(ε) at a plateau (ε1, ε2) whose width satis-
fies log10(ε2/ε1) ≥ 1/2 (Appendix 2.B). The vertical lines mark the width of the critical
plateau at which: log10(ε2/ε1) = 1/2 and correspond to the grey vertical dot-dashed line
in Panel (a). The black line and arrow mark the very small slope of the SDLE for noise
values close to deterministic chaos. By convention (Gao, Hu, et al. 2006), noise swamps
chaos when log10(ε2/ε1) < 1/2. (c) Largest scale-dependent Lyapunov exponent as a
function of the scale parameter ε for N = 100, different values of η, and β = βc(N, η) with
m = 6, instead of m = 2 as in Panel (b). The averages of the oscillations corresponding to
the plateau region in Panel (b) increase with the noise η indicating that so does the LLE:
λ1(0) ∼ 0.003, λ1(0.25) ∼ 0.0075, λ1(0.5) ∼ 0.0165, λ1(0.75) ∼ 0.03, λ1(1) ∼ 0.0476.

2.3 Deterministic and noisy chaos

For small confinement values and appropriate noise, the VM exhibits chaotic attractors
characterized by positive values of the largest Lyapunov exponent (LLE). It is important
to assess the role of noise. As explained in Appendix 2.B, three methods to calculate
the LLE produce the same values and yield complementary information: (i) applying the
Benettin algorithm to Eq. (2.1) (Benettin et al. 1980; Ott 1993; Cencini et al. 2010); (ii)
using the Gao-Zheng test (Gao and Zheng 1994) on time traces of the swarm center-of-
mass (CM) motion X(t) (which could be acquired from measurements of natural swarms);
(iii) scale-dependent Lyapunov exponents from time traces, which discriminate between
chaos and noise (Gao, Hu, et al. 2006).

Fig. 2.3(a) is the phase diagram (η, β) displaying phases of deterministic, noisy chaos
and noise. Inside the noisy chaos phase we have indicated the critical lines of the transition
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from chaos s-cluster to chaos m-cluster for different N. Chaos is scale free on those lines
because the correlation length defined in the next chapter is proportional to the swarm size
for all values of N. To distinguish chaotic and noise phases, we have plotted in Fig. 2.3(b)
the scale-dependent Lyapunov exponent (SDLE) λ(ε). For εt = ε, the SDLE satisfies
ln λ(εt) = (ln εt+∆t−ln εt)/∆t, where εt and εt+∆t are the average separation between nearby
trajectories at times t and t + ∆t. Appendix 2.B explains how to calculate λ(ε) from time
traces of center-of-mass motion with m-dimensional lagged vectors (Gao, Hu, et al. 2006).
If m = 2, Fig. 2.3(b) shows that for η = 0, λ(ε) is flat at small scale and decreases for
ε ≈ 1. For nonzero noise, λ(ε) decreases, reaches a plateau and decreases again as the
scale ϵ increases. As noise increases, the curves λ(ε) permit distinguishing regions in the
phase plane (η, β) of Fig. 2.3(a) where chaos is either mostly deterministic, substantially
altered or even induced by noise (noisy chaos), and swamped by noise; see Appendix
2.B and (Gao, Hu, et al. 2006). The noise level used in the numerical simulations of
Refs. (Attanasi, Cavagna, L. Del Castello, et al. 2014; Attanasi, Cavagna, L. D. Castello,
et al. 2014; Cavagna, Conti, et al. 2017) is 5.65 in our units. Thus, it is fully inside the
noise region of Fig. 2.3(a), far from the noisy chaos parameter values we consider here.

When two lagged coordinates are sufficient to reconstruct the chaotic attractor from
CM data, the value of the SDLE λ(ϵ) at the plateau coincides with the LLE calculated
directly from the equations of the model. This occurs for the Lorenz or Rossler attractors,
as explained in (Gao, Hu, et al. 2006). However, to reconstruct safely a chaotic attractor,
the dimension of the lagged vectors should surpass twice the fractal dimension D0 (Ott
1993; Cencini et al. 2010). For the VM, we have found that properly reconstructing the
chaotic attractor requires at least 6 lagged coordinates. Six-dimensional CM trajectories
contain self-intersections in dimension 2. Fig. 2.3(c) shows that the SDLE λ(ϵ) with m = 6
displays oscillations for different noise values, not a single plateau as in Fig. 2.3(b). Thus,
we need a different algorithm to calculate the LLE from data. We have used the Gao-
Zheng algorithm (Gao and Zheng 1994) that requires constructing a quantity Λ(k) whose
slope near the origin produces the LLE, see Appendix 2.B. These LLE yield the horizontal
lines in Fig. 2.3(c), which coincide with the average values of the SDLE oscillations.
The latter coincide with LLE calculated from Eq. (2.1) and increase with noise. Thus,
noise enhances chaos in the noisy chaos region of Fig. 2.3(a), where there are the critical
lines of the transition from chaos S-cluster to chaos M-cluster, β = βc(N, η). In the next
section, we study the differences between these two chaotic regions. We note that there
are independent characteristics of N so in the limit of infinite N it will be a phase transition
defined in Chapter 3 as scale-free-chaos phase transition.

2.4 Phase transition and topological data analysis

The structure of clusters changes as β surpasses βc, the critical confinement calculated
from relaxation time. Fig. 2.4(a) shows the swarm particles and their short time trajecto-
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Figure 2.4: Chaotic swarms of N = 300 particles showing short trajectories of the parti-
cles for confinements near its critical value, β = βc(N; η) and η = 0.5: (a) Sparse single
cluster chaos for β < βc(N; η), (b) compact single cluster chaos at β = βc(N; η), multi-
cluster chaos for (c) β > βc(N; η).

ries for β < βc(N; η): the particles form a single cluster. Figs. 2.4(b) and 2.4(c) correspond
to β = βc(N; η) and β > βc(N; η), respectively. For β = βc(N; η), the particles form a sin-
gle cluster and fill a smaller volume, whereas for β > βc(N; η), the swarm has split in
several clusters. The average polarization is very small for sparse single-cluster chaos,
β < βc(N; η), and it increases with β in the multicluster chaotic region, β > βc(N; η), see
Fig. 3.6.

These findings can be rendered more precise by topological data analysis (TDA)
(Zomorodian et al. 2005; Edelsbrunner et al. 2010; Sinhuber et al. 2017). TDA bor-
rows ideas from persistent homology, traditionally used to distinguish structures in low
dimensional topological spaces (e.g., circle, annulus, sphere, torus, etc) by quantifying
their connected components, topological circles, trapped volumes. For instance, given a
point cloud x1, . . . , xN in R3, we can infer whether it represents a sphere or a torus by
calculating the homologies H0, H1, H2, and the corresponding Betti numbers b0, b1, b2.
The different homologies can be calculated regardless of the dimension of the underlying
space, as long as a distance or metric is defined (Zomorodian et al. 2005).

We consider midges (or particles) as data points from a sampling of the underlying
topological space of the swarm. Thus, we have a finite set of data points from a sampling
of the underlying topological space. We measure data homology by creating connections
between nearby data points, varying the scale over which these connections are made
(as given by the filtration parameter), and looking for features that persist across scales
(Zomorodian et al. 2005; Edelsbrunner et al. 2010). This can be achieved by building the
Vietoris-Rips complex from all pairwise distances between points in the dataset. Assume
spheres of diameter r circle each particle. For each value of the filtration parameter r > 0,
we form a simplicial complex S r by finding all gatherings of k + 1 points such that all
pairwise distances between these points are smaller than r. Each such gathering is a
k-simplex. The simplicial complex S r comprises finitely many simplices such that (i)
every nonempty subset of a simplex in S r is also in S r, and (ii) two k-simplices in S r

are either disjoint or intersect in a lower dimensional simplex. In S r, 0-simplices are the
data points, 1-simplices are edges, connections between two data points, 2-simplices are
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Figure 2.5: Simplices for filtration values r = rM
2 r̃, r̃ =

0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12 at a representative time of the swarm evo-
lution. Here rM = 150.22 is the maximum distance between two points in the cloud,
β = 0.001 < βc(300) = 0.0075. As r increases, a single dominant cluster absorbs
neighboring points and small components becoming a large ‘compact’ component.

Figure 2.6: Same as Fig. 2.5 for β = 0.025 > βc(300) with rM = 33.48. As r increases,
small separated components form and eventually connect leaving large holes.
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triangles formed by joining 3 data points through their edges, 3-simplices are tetrahedra,
and so on. See Figs. 2.5 and 2.6, which are the counterparts of Figs. 2.4(a) and 2.4(c),
respectively. These figures illustrate how TDA automatically characterizes the formation
of a loose single swarm for β < βc and of several tight smaller clusters for β > βc. In the
latter case, the single cluster resulting for sufficiently large filtration parameter contains
large holes.

Figure 2.7: (a) Time averaged Betti number ⟨b0⟩t versus filtration parameter r for βc(N; η)
and different N; (b) Same for scaled averaged Betti number ⟨b0⟩t/N versus scaled filtration
parameter r/rc where rc(N) is the inflection point of each curve marked with diamonds in
Panel (a). Here η = 0.5.

To quantify the topological structure of the swarm data points, the Betti numbers
depicted in Fig. 2.7 are useful. Within the set of all k-simplices in S r, we can distin-
guish closed submanifolds called k-cycles, and cycles called boundaries because they are
also the boundary of a submanifold. A homology class is an equivalence class of cycles
modulo boundaries. A homology class Hk is the set of independent topological holes of
dimension k, represented by cycles which are not the boundary of any submanifold. The
dimension of Hk is the kth Betti number bk. For instance, b0 is the number of connected
components shown in Fig. 2.7, b1 is the number of topological circles, b2 is the number of
trapped volumes, and so on. See Refs. (Zomorodian et al. 2005; Edelsbrunner et al. 2010)
for precise definitions. At critical confinement, we can depict average Betti numbers, ⟨b0⟩t

(number of connected clusters averaged over several time snapshots of the swarm), versus
r for different N. These Betti numbers collapse when we rescale them using the inflection
point of each curve (Sinhuber et al. 2017), rc(N); see Figs. 2.7(a) and 2.7(b).

Fig. 2.8 illustrates the trend to a more compact single swarm and to swarm splitting
as β increases past its critical value. As r increases, the number of clusters with a single
particle decrease monotonically, as seen in the upper panel of Fig. 2.8(a). However, the
upper panel of Fig. 2.8(b) shows that the number of particles in the largest cluster increase
monotonically for β < βc but it increases with plateaus and abrupt jumps for β > βc. These
abrupt features indicate that the largest cluster absorbs single particles as r increases if
β < βc, whereas several large clusters form and are abruptly absorbed by the largest
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(a) (b)

(c)

Figure 2.8: Hierarchical TDA clustering. (a) Number of clusters with 1 particle (up) and
with more than 1 particle (down) for β = 0.025 (left red points) and β = 0.001 (right blue
points) vs filtration parameter r at a single time. (b) Number of particles in (up) the largest
cluster and (down) the second largest cluster vs r. (c) Number of particles in (up) the third
largest cluster and (down) the fourth largest cluster vs r. Here N = 300 and η = 0.5.

cluster at particular values of r for β > βc. The lower panels in Figs. 2.8(a)-2.8(b) confirm
these observations. Clusters with more than one particle form gradually if β < βc and
abruptly if β > βc. The plateaus and jumps in the number of particles within the second,
third and fourth largest clusters in Figs. 2.8(b) and 2.8(c) indicate absorption thereof by
the largest cluster. These figures also illustrate the different cluster structure below and
above the critical confinement βc. When β > βc, we observe the presence of several
relevant clusters with a large number of particles. These clusters persist as the filtration
parameter increases. Note that it is possible to have more than one cluster with the same
number of particles.
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2.5 Summary

In this chapter we use dynamical systems tools to understand the 3D VM confined by a
harmonic potential. As the confinement strength decreases, the VM with fixed number of
particles N displays a variety of periodic, quasiperiodic and chaotic attractors, which may
be strongly modified by alignment noise. To distinguish chaos, we have calculated the
largest Lyapunov exponent directly from the VM using the Benettin algorithm (Benettin
et al. 1980). This is particularly well adapted to the discrete time dynamics of the VM. We
have also calculated the LLE by reconstructing the attractor from time traces of the center
of mass motion using lagged coordinates. Using only two lagged coordinates, scale-
dependent Lyapunov exponents help distinguishing deterministic and noisy chaos from
parameter regions where noise is dominant (Gao, Hu, et al. 2006). This is important be-
cause this transition exist within the noisy chaos region. While scale-dependent Lyapunov
exponents give qualitative information, we need six lagged coordinates to faithfully re-
construct the chaotic attractor and obtain (by the Gao-Zheng algorithm in (Gao and Zheng
1994) the same LLEs as provided by the Benettin algorithm. This methodology will be
important to ascertain whether a real system in nature exhibits chaotic dynamics, and even
if it displays the transition from chaos S-cluser to chaos M-cluster and scale-free-chaos
phase transitions as in the next chapter.

We find a transition from chaos to chaos never seen before. This transition for finite
N changes from a scattered swarm to a swarm with different clusters. We characterise
this transition with the TDA and observe that there is a collapse of the Betti number as
a function of the filtering parameter with respect to different N. Moreover, its inflection
point is invariant for large values of N. Thus in the limit N → ∞ we conjecture that
there is a phase transition with these characteristics. Works linking equilibrium phase
transitions to topological changes of appropriate manifolds in the thermodynamic limit
are (Franzosi et al. 2007a; Franzosi et al. 2007b; G. Pettini et al. 2019; Gori, Franzosi, G.
Pettini, et al. 2022); see also (Kastner et al. 2011; Gori, Franzosi, and M. Pettini 2018).

Appendix 2.A Nondimensionalized equations of the con-
fined Vicsek model

We consider the three-dimensional confined Vicsek model:

xi(t + ∆t) = xi(t) + ∆t vi(t + ∆t),

vi(t + ∆t) = vRη

⎡⎢⎢⎢⎢⎢⎣ ∑︁
|x j−xi |<r1R0

v j(t) − β0xi(t)⃓⃓⃓∑︁
|x j−xi |<r1R0

v j(t) − β0xi(t)
⃓⃓⃓ ⎤⎥⎥⎥⎥⎥⎦, (2.2)

where Rη(w) rotates the unit vector w randomly within a spherical cone centred at it and
spanning a solid angle in (− η2 ,

η

2 ) (Wang 1992). Initially, the particles are randomly placed
within a sphere with unit radius and the particle velocities are pointing outwards.
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We nondimensionalize the model using data from the experiments on midges reported
in the supplementary material of Refs. (Attanasi, Cavagna, L. Del Castello, et al. 2014;
Attanasi, Cavagna, L. D. Castello, et al. 2014; Cavagna, Conti, et al. 2017). We select the
event labeled 20120910_A1 in Table I (Cavagna, Conti, et al. 2017). We measure times
in units of ∆t = 0.24 s, lengths in units of the time-averaged nearest-neighbor distance of
the 20120910_A1 swarm, which is r1 = 4.68 cm, and velocities in units of r1/∆t, whereas
v = 0.195 m/s. Then Eq. (2.1) is the nondimensional version of Eq. (2.2) with ∆t = 1 and

v0 = v
∆t
r1
, β = β0∆t. (2.3)

For the example we have selected, v0 = 1, whereas other entries in the same table produce
order-one values of v0 with average 0.53. For these values, the confined Vicsek model has
the same behavior as described here. Thus, the Vicsek model describing midge swarms is
far from the continuum limit v0 ≪ 1. Cavagna et al consider a much smaller speed, v0 =

0.05, closer to the continuum limit where derivatives replace finite differences (Cavagna,
Conti, et al. 2017).

Collective consensus is quantified by the polarization W ∈ [0, 1]:

W(t; η, β) =

⃓⃓⃓⃓⃓
⃓⃓ 1
N

N∑︂
j=1

v j(t)
|v j(t)|

⃓⃓⃓⃓⃓
⃓⃓. (2.4)

The time average ⟨W⟩t coincides with the ensemble average of (2.4) by ergodicity.

Effect of the boundary conditions. In the standard VM, the particles are enclosed
in a cubic box, the boundary conditions are periodic and the system is invariant under
translations. On the other hand, in the confined VM, there are no boundaries, the particles
are confined by a harmonic potential, and translation invariance is broken. There are
many studies of the standard VM, which is not the case for the confined VM. In fact, the
confined VM has time-dependent attractors that are different from those of the standard
VM. Among them, chaotic attractors. Another qualitative difference between both VMs is
that broken translation symmetry precludes particles filling uniformly the available space
for the confined VM. Thus, the ordering transition of the periodic-box VM cannot be the
same for the confined VM.

Appendix 2.B Chaotic and noisy dynamics

We calculate the LLE in different ways that are complementary to each other: (i) directly
from the equations by using the Benettin et al (BA) algorithm (Benettin et al. 1980; Ott
1993; Cencini et al. 2010), (ii)-(iii) using from time traces of the center-of-mass motion
or the NDCCF to reconstruct the phase space of the chaotic attractor. We need model
equations to use the BA whereas time traces can be obtained from numerical simulations
of equations or from experiments and observations. To obtain the LLE from time traces,
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we have used (ii) the scale-dependent Lyapunov exponent (SDLE) algorithm (Gao, Hu, et
al. 2006) and (iii) the Gao-Zheng algorithm (Gao and Zheng 1994). The SDLE algorithm
is useful to separate the cases of mostly deterministic chaos from noisy chaos and mostly
noise even in the presence of scarce data and a reconstruction of the attractor that is not
very precise (Gao, Hu, et al. 2006) whereas the Gao-Zheng algorithm requires more data
points (Gao and Zheng 1994). We now describe these different algorithms and illustrate
the results they provide for the confined VM. In all cases, we eliminate the effects of initial
conditions by leaving out the first 30000 time steps before processing the time traces.

2.B.1 Benettin algorithm

We have to simultaneously solve Eqs. (2.1) and the linearized equations

δx̃i(t + 1) = δx̃i(t) + δṽi(t + 1), i = 1, . . . ,N, (2.5a)

δṽi(t + 1) = v0Rη

⎡⎢⎢⎢⎢⎢⎣⎛⎜⎜⎜⎜⎜⎝I3 − [
∑︁
|x j−xi |<R0

v j(t) − βxi(t)]T [
∑︁
|x j−xi |<R0

v j(t) − βxi(t)]

|
∑︁
|x j−xi |<R0

v j(t) − βxi(t)|2

⎞⎟⎟⎟⎟⎟⎠
·

∑︁
|x j−xi |<R0

δṽ j(t) − βδx̃i(t)

|
∑︁
|x j−xi |<R0

v j(t) − βxi(t)|

⎤⎥⎥⎥⎥⎦, (2.5b)

in such a way that the random realizations Rη are exactly the same for Eqs. (2.1) and (2.5).
The initial conditions for the disturbances, δx̃i(0) and δṽi(0), can be randomly selected so
that the overall length of the vector δχ = (δx̃1, . . . , δx̃N , δṽ1, . . . , δṽN) equals 1. After
each time step t, the vector δχ(t) has length αt. At that time, we renormalize δχ(t) to
χ̂(t) = δχ(t)/αt and use this value as initial condition to calculate δχ(t + 1). With all the
values αt and for sufficiently large l, we calculate the Lyapunov exponent as

λ1 =
1
l

l∑︂
t=1

lnαt, (2.6)

αt = |δχ(t)| = |(δx̃1(t), . . . , δx̃N(t), δṽ1(t), . . . , δṽN(t))|,

Fig. 2.9 plots λ1 versus l at critical confinement β = βc(N) showing convergence of
the exponent for different values of N. For N = 750, Fig. 2.10(a) depicts the LLE versus
l for different values of β whereas Fig. 2.10(b) fixes β = βc(750) = 0.0035 and shows the
LLE versus l for different values of N, including N = 750. The insets of these figures
indicate that the LLE is not a monotonic function of either β or N.

2.B.2 Scale dependent Lyapunov exponents

We use scale dependent Lyapunov exponents (SDLE) from the CM motion to characterize
deterministic and noisy chaos as different from noise (Gao, Hu, et al. 2006).
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Figure 2.9: Largest Lyapunov exponent as a function of l as given by Eq. (2.6) for η = 0.5,
β = βc(N) and different N

Figure 2.10: (a) LLE versus l as in Eq. (2.6) for N = 750 and β =

0.001, 0.0035, 0.007, 0.01, 0.05. Inset: LLE vs β; marked: βc = 0.0035. (b) LLE vs l
for β = 0.0035 and N = 100, 300, 500, 750, 1000, 1300, 1600, 2000. Inset: LLE vs N for
βc = 0.0035; marked: N = 750. Here η = 0.5.

Adding the components of X(t), we form the time series x(t) = X1(t) + X2(t) + X3(t).
To calculate the SDLE, we construct the lagged vectors: Xα = [x(α), x(α + τ̃), .., x(α +
(m − 1)τ̃)]. The simplest choice is m = 2 and τ̃ = 1 (other values can be used, see below).
From this dataset, we determine the maximum εmax and the minimum εmin of the distances
between two vectors, ∥Xα−Xβ∥. Our data is confined in [εmin, εmax]. Let ε0, εt and εt+∆t be
the average separation between nearby trajectories at times 0, t, and t + ∆t, respectively.
The SDLE is

ln λ(εt) =
ln εt+∆t − ln εt

∆t
. (2.7a)

The smallest possible ∆t is of course the time step τ̃ = 1, but ∆t may also be chosen as
an integer larger than 1. Gao et al introduced the following scheme to compute the SDLE
(Gao, Hu, et al. 2006). Find all the pairs of vectors in the phase space whose distances
are initially within a shell of radius ϵk and width ∆ϵk:

εk ≤ ∥Xα − Xβ∥ ≤ εk + ∆εk, k = 1, 2, . . . . (2.7b)
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We calculate the Lyapunov exponent as follows:

λ(εt) =
⟨ln ∥Xα+t+△t − Xβ+t+△t∥ − ln ∥Xα+t − Xβ+t∥⟩k

△t
, (2.7c)

where ⟨⟩k is the average within the shell (εk, εk +△εk). The shell dependent SDLE λ(ε) in
Fig. 2.3(b) displays the dynamics at different scales for τ̃ = 1 and m = 2. (Gao, Hu, et al.
2006) Using 2 lagged coordinates produces plateaus having a value of λ(ε) equal to the
LLE of deterministic chaos. This value differs from the LLE calculated using the BA or
a more appropriate reconstruction of the phase space involving more lagged coordinates
(see below). However, the SDLE with m = 2 yields a qualitative idea of the effects of
noise on chaos. In deterministic chaos, λ(ε) > 0 presents a plateau with ends ε1 < ε2 ≪ 1,
in noisy chaos, this plateau is preceded and succeeded by regions in which λ(ε) decays as
−γ ln ε, whereas it shrinks and disappears when noise swamps chaos. As η increases, λ(ε)
first decays to a plateau for η = 0.1. A criterion to distinguish (deterministic or noisy)
chaos from noise is to accept the largest Lyapunov exponent as the positive value at a
plateau (ε1, ε2) satisfying

log10
ε2

ε1
≥

1
2
. (2.7d)

For η = 0.5, the region where log10(ε2/ε1) = 1/2 is marked in Fig. 2.3(b) by vertical lines.
Plateaus with smaller values of log10(ε2/ε1) or their absence indicate noisy dynamics
(Gao, Hu, et al. 2006). This occurs for η = 1. The ends of the interval (0.1, 1) of noisy
chaos are marked by two vertical dashed lines in Fig. 2.3(a).

Figure 2.11: (a) Trajectory of the center of mass for η = 0.01, which corresponds to
deterministic chaos with flower shape phase portrait. (b) Same for η = 0.3, which corre-
sponds to noisy chaos: the trajectories of the center of mass cover more densely part of
the space. (c) Predominantly noisy motion for η = 5.5. The trajectories from t0 = 1000 to
t f = 50000 are depicted. Here, N = 100, β = βc for each η.

The chaotic dynamics of the swarm is reflected in quantities that depend on the posi-
tions and velocities of the particles. Important global quantities are the motion of the CM
and the NDCCF of Eq. (3.1). Figs. 2.11 displays the CM trajectory, thereby visualizing
the dynamics of the swarm. For increasing values of noise corresponding to the different
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regions in Fig 2.3(a), the CM motion goes from deterministic chaos, Fig. 2.11(a), to noisy
chaos, Fig. 2.11(b), to mostly noise, Fig. 2.11(c).

Note that all the plateaus in Fig. 2.3(b) produce the same positive value of the LLE
λ(ε). This is not very realistic because the BA yields different values of the LLE depend-
ing on the noise strength η. Why? Recall that we have used m = 2 (two lagged coordi-
nates) in the reconstruction of the attractor from the time traces. However, as shown in
Fig. 3.3, the CM chaotic attractor has fractal dimension D0 between 2 and 3, and we need
m ≥ 2D0 to faithfully reconstruct the chaotic attractor (Ott 1993; Cencini et al. 2010).
Thus, we need at least m = 6 to reconstruct it. Using m = 6 and its optimal value of τ̃
(Gao and Zheng 1994) produces Fig. 2.3(c). Now λ(ϵ) presents large oscillations whose
averages in the plateau regions coincide with the LLE as calculated by the Gao-Zheng
algorithm (Gao and Zheng 1994).

2.B.3 Largest Lyapunov exponent from high dimensional reconstruc-
tions of CM motion

As explained above, the previous reconstruction of the phase space for CM motion used
to calculate SDLE considers 2D lagged vectors (m = 2). This produces useful qualitative
phase diagrams with flat plateaus, but the dimension of this vector space is too small to
reconstruct faithfully the attractor. More realistic CM trajectories in higher dimension
contain self-intersections in dimension 2. This explains the different values of the LLE
found in the SDLE plateaus of Fig. 2.3(b) as compared with those found by the BA of
Eq. (2.6). To reconstruct safely a chaotic attractor, the dimension of the lagged vectors
should surpass twice the fractal dimension D0. (Ott 1993) For the confined VM, m = 6
is sufficient. However, the SDLE λ(ε) presents oscillations as indicated in Fig. 2.3(c) and
their average values replace the plateaus in Fig. 2.3(b). In contrast with Fig. 2.3(b), the
averaged oscillations produce LLEs that increase with noise. Averaging oscillations is not
going to produce precise values of the LLE. Thus, we calculate the LLE from the lagged
coordinates with m = 6 using the Gao-Zheng algorithm (Gao and Zheng 1994). This
requires constructing the quantity Λ(k) whose slope near the origin gives the LLE (Gao
and Zheng 1994)

Λ(k) =
⟨︄
ln
∥Xi+k − X j+k∥

∥Xi − X j∥

⟩︄
. (2.8)

Here the brackets indicate ensemble average over all vector pairs with ∥Xi − X j∥ < r∗ for
an appropriately selected small distance r∗. Fig. 2.12 displays the graph of Λ(k) given by
Eq. 2.8. The slopes of Λ(k) for different values of N at βc(N) equal the LLEs, increase
with β and agree with the averaged oscillations marked in Fig. 2.3(c).

For different particle numbers with η = 0.5, Table 2.1 lists the LLEs calculated using
the BA for the complete system as in Eq. (2.6), and using Eq. (2.8) for CM motion and
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Figure 2.12: Plot of Λ(k) vs k for different values of β. Thick dashed lines mark the slope
of Λ(k) for different values of N at βc(N).

N 100 300 500 750 1000 1300
BA 0.0118 0.0095 0.0078 0.0070 0.0067 0.0058
CM 0.017 0.0092 0.008 0.007 0.0063 0.0059
g(t) 0.0055 0.0044 0.0041 0.0038 0.0035 0.0033

Table 2.1: LLE for η = 0.5 and different N at βc(N; η) as calculated using the BA for the
complete VM equations, Eq. (2.6), and Eq. (2.8) for CM motion and for the NDCCF g(t)
defined in Chapter 3. Note that the LLE as calculated using the BA and Eq. (2.8) for CM
motion are similar whereas the LLE corresponding to the NDCCF g(t) is smaller.

for the NDCCF g(t) defined in Chapter 3. We observe that the LLE values calculated
from the CM motion are similar to those found by the BA, whereas they are noticeably
smaller if calculated for the NDCCF. While the NDCCF is still chaotic, we speculate that
the subtraction of the CM motion and ensemble average involved in two-time NDCCF
g(t) dilute chaos by lowering the LLE. We observe that the difference between LLEs
calculated from BA and CM motion and those from g(t) in Table 2.1 decreases as N
increases. Thus, it could happen that both sets of LLEs eventually converge to similar
smaller values as N → ∞ and chaos disappear.



CHAPTER 3

Scale free chaos phase transition

3.1 Introduction

In the previous chapter we found and characterised a new transition. This critical line
changes from single-cluster to multi-cluster, where both regions are chaotic. While this
change is for finite N, there may be something similar in the thermodynamic limit uncov-
ering a new chaotic phase transition.

In this chapter, we study the same 3D VM confined with large N. As the number of
particles N increases, the first chaotic window begins at smaller values of β. Inside this
window, we have found scale free chaos, for which the correlation length is proportional
to the size of the swarm for increasing N, the polar order parameter is small and macro-
scopic quantities such as correlation length, susceptibility, dynamic correlation and the
largest Lyapunov exponent exhibit power laws. The single-to-multicluster chaos line and
critical region move to β = 0 as N → ∞. Thus, we have found a scale-free-chaos phase
transition. At the end of the first chaotic window, we have found a different phase transi-
tion to infinitely dense clusters of finite size that is reminiscent of gravitational collapse
(Gundlach et al. 2007; Alberti et al. 2020; Chavanis et al. 2020). The finite size clusters
of infinitely many particles may be termed flocking black holes. As N → ∞, the critical
line for collapse to them occurs for β→ ∞.

The rest of the chapter is as follows. Section 3.2 uses ideas from statistical physics,
modified correlation functions, and finite-size scaling to obtain the main results of the first
topic of the thesis: the existence of a line of phase transitions within the noisy chaos region
of the parameter space. Section 3.3 describes a different phase transition from multicluster
chaos to the formation of clusters of finite size and infinite particle density reminiscent

27
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of gravitational collapse (Gundlach et al. 2007; Alberti et al. 2020; Chavanis et al. 2020).
Section 3.4 discusses our findings and it contains our conclusions. Section 3.5 contains a
summary of the chapter. The Appendices are devoted to technical matters. Appendix 3.A
discusses dynamic and static correlation functions, how to calculate them and different
definitions of critical lines at finite number of particles. Appendix 3.B discusses two
solvable examples illustrating the relation between susceptibility and correlation time.

3.2 Phase transitions within regions of chaos

Insect swarms have a small polarization order parameter and exhibit strong correlations
(Attanasi, Cavagna, L. Del Castello, et al. 2014; Attanasi, Cavagna, L. D. Castello, et al.
2014). To previous authors, this suggests that insect swarms may be on the disordered
side, close to the ordering transition of the standard VM with periodic boundary con-
ditions for sufficiently small box size (Attanasi, Cavagna, L. Del Castello, et al. 2014;
Attanasi, Cavagna, L. D. Castello, et al. 2014). Beyond a certain box size, the order-
ing transition changes from continuous to discontinuous (Grégoire et al. 2004; Chaté and
Mahault 2019; Chaté 2013). The reason is that the uniform ordered phase issuing con-
tinuously from the uniform disordered phase (Bertin et al. 2006; Ihle 2011; Bonilla and
Trenado 2018; Bonilla and Trenado 2019) is unstable for wavenumbers below a certain
value (Bertin et al. 2009). Consideration of the standard VM for small boxes implies
an almost uniform disordered ‘gas’ phase (Chaté and Mahault 2019; Chaté 2013), de-
spite experimental evidence that real insect swarms form a ‘condensed nucleus’ far from
walls surrounded by a ‘vapor’ phase (Sinhuber et al. 2017). We shall show later that
swarms described by the confined VM near scale-free-chaos phase transitions also have a
small polarization, have a condensed nucleus surrounded by a particle ‘vapor’, and exhibit
strong correlations.

Cavagna et al have used data extracted from observations of natural swarms to calcu-
late static and dynamic correlation functions and found power law behavior for suscepti-
bility, correlation length and the dynamic correlation function (Attanasi, Cavagna, L. Del
Castello, et al. 2014; Attanasi, Cavagna, L. D. Castello, et al. 2014; Cavagna, Conti, et al.
2017). Their work indicates that the Fourier transform of the dynamic connected cor-
relation function (DCCF) is the key tool to find power laws and critical exponents from
experimental data (Cavagna, Conti, et al. 2017; Cavagna, Giardina, et al. 2018):

Ĉ(k, t)=
⟨︄

1
N

N∑︂
i, j=1

sin(kri j(t0, t))
kri j(t0, t)

δv̂i(t0)·δv̂ j(t0 + t)
⟩︄

t0

(3.1)

Here k, ri j(t0, t), V, δvi = vi − V, δv̂i = δvi/
√︂

1
N

∑︁
j |δv j|

2 are the wavenumber, the dis-
tance between particles i and j at different times (particle positions are calculated in the
center of mass reference frame), the center of mass velocity, the relative velocity, and the
dimensionless velocity fluctuation of the ith particle, respectively. The brackets in (3.1)
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indicate an average over the earlier time t0 and an ensemble average over random initial
conditions (Cavagna, Conti, et al. 2017). See Appendix 3.A for details.

For natural swarms and their numerical simulations, conservation of the number of
particles requires adapting the statistical mechanics definitions of equilibrium correla-
tion functions, correlation length and susceptibility, (Huang 1987; Amit et al. 2005); see
(Cavagna, Giardina, et al. 2018). The equilibrium static connected correlation function
(SCCF) Ĉ(k, 0) reaches a maximum at k = 0, which is the susceptibility (Amit et al. 2005).
However, Eq. (3.1) yields Ĉ(0, 0) = 0. For finite N and near a phase transition, Ĉ(k, 0)
reaches a maximum at a critical wavenumber kc > 0. This maximum is the susceptibility
χ, which tends to infinity as N → ∞ at the critical point (Cavagna, Giardina, et al. 2018).
The FSS hypothesis implies that kcξ (ξ is the correlation length) is a number of order 1
and a possible choice is ξ = 1/kc (Cavagna, Giardina, et al. 2018).

How do we obtain the critical confinement βc(N, η)? From the theory of equilib-
rium phase transitions, we would expect: (i) the maximum and the inflection point of the
SCCF versus β tend to infinity as N → ∞ for fixed alignment noise; (ii) the correlation
(relaxation) time of the DCCF at wavenumber kc tends to infinity as N → ∞ (critical
slowing down). See two solvable examples illustrating the relation between susceptibility
and correlation time in Appendix 3.B. We will use criteria (i) and (ii) to identify lines of
transitions in the chaotic phases of the confined VM.

Numerical evidence for 100 ≤ N ≤ 5000 suggests that these lines move to β =
0 as N → ∞. Without confinement, the LLE vanishes and chaos disappears. This is
corroborated by a different argument (Bohr 1990). The correlation length ξ is bound by
the finite velocity of propagation c multiplied by the time it takes two points to move
exponentially far from each other, i.e., 1/λ1:

ξ ≤
c
λ1
. (3.2)

Thus, a phase transition with infinite correlation length can only occur for λ1 = 0 (Bohr
1990; Cross et al. 1993). As N → ∞, these lines all go to β = 0 at the same rate,
thereby characterizing a unique scale-free-chaos phase transition at N = ∞. By an abuse
of notation, we also denote βc(N, η) and the other critical lines (see below) at finite N as
“lines of phase transitions”.

3.2.1 Critical confinement from correlation time

Correlation time

For the DCCF, the dynamic scaling hypothesis implies

Ĉ(k, t)
Ĉ(k, 0)

= f
(︄

t
τk
, kξ

)︄
= g(kzt, kξ); g(t) =

Ĉ(kc, t)
Ĉ(kc, 0)

, (3.3)



3.2. PHASE TRANSITIONS WITHIN REGIONS OF CHAOS 30

with kc = argmaxkĈ(k, 0). Here z is the dynamic critical exponent and τk = k−zϕ(kξ) is
the correlation time of the normalized DCCF (NDCCF) (3.3) at wavenumber k obtained
by solving the equation: (Cavagna, Conti, et al. 2017; Halperin et al. 1969)

tmax∑︂
t=0

1
t

sin
(︄

t
τk

)︄
f
(︄

t
τk
, kξ

)︄
=
π

4
. (3.4)

In Eq. (3.4), tmax is the maximum time in experiments or in VM simulations (Cavagna,
Conti, et al. 2017). For pure exponential relaxation near an equilibrium phase transition,
τk obtained by solving Eq. (3.4) equals the relaxation time (Cavagna, Conti, et al. 2017;
Halperin et al. 1969). The NDCCF of a chaotic attractor first relaxes rapidly and then it
exhibits damped oscillations as time elapses, cf. Fig. 3.1(a). The rapid relaxation of g(t)
at short times is reminiscent of behavior near equilibrium phase transitions captured by
Eq. (3.4).

Figure 3.1: Dynamic scaling of the NDCCF. g(t) versus (a) t, and (b) kz
ct, for β = βc and

the different values of N listed in the inset and z ≈ 1. Here η = 0.5.

In simple models such as a damped harmonic oscillator forced by white noise, the
DCCF has poles whose real parts also appear as reciprocal relaxation times in time de-
pendent exponentials; see Appendix 3.B. The SCCF contains the same poles and one
of them has zero real part at the beginning of instabilities. In second order equilibrium
phase transitions, one vanishing pole corresponds to a diverging susceptibility maximum
and marks the critical temperature in the thermodynamic limit. Similarly, the reciprocal
relaxation-correlation time of the DCCF vanishes at the critical temperature and can also
be used to find it. Thus, in principle we could find the critical value of the confinement by
finding the susceptibility maximum or, equivalently, the maximum correlation time. At
the thermodynamic limit, the susceptibility becomes infinite and so does the correlation
time (critical slowing down). We now use the same ideas to find the equivalent corre-
lation time for the confined VM. A caveat is in order. Due to conservation of particles,
Ĉ(0, 0) = 0 and the definition of susceptibility used in equilibrium statistical mechanics
has to be changed for the VM; see Appendix 3.A. That the real parts of the poles of the
susceptibility are proportional to reciprocal correlation times is no longer guaranteed; see
Appendix 3.B.
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Let us endeavor to give a physical interpretation of τkc , the correlation time at kc ∼ 1/ξ.
At fixed noise η, Fig. 3.2(a) displays the smallest time tm(β,N) at which Ĉ(kc, t) = 0 and
the correlation time τkc as functions of β for N = 100, 200, 400. The time tm(β,N) seems a
reasonable choice for the correlation time but it varies with β. The maximal possible cor-
relation time tm(β,N) would correspond to the largest negative real part of the eigenvalue
posed by our hypothetical linear stability criterion. It turns out that tm(β,N) increases
abruptly for a certain value βc at which τkc is essentially minimum; see Fig. 3.2(a). Thus,
β = βc marks the largest possible correlation time based on the extension of tm(β,N) for
β ≤ βc. Alternatively, the minimum value of τkc given by Eq. (3.4) and reached for β = βc,
marks the same correlation time. Fig. 3.2(b) shows that the minimum of τkc follows a
power law τkc ∼ k−z, with exponent z = 1.01 ± 0.01. For N = 100, Fig. 3.2(c) shows
that, at β slightly larger than βc, the first local minimum of Ĉ(kc, t) becomes positive and
the minimum tm having Ĉ(kc, t) = 0 jumps to a much larger value. This explains the
abrupt jump of tm(β,N) at β = βc, which corresponds to the dashed line in Fig. 3.2(a).
As N → ∞, βc → 0 and the characteristic timescale tends to infinity (critical slowing
down). Fig. 3.2(c) also shows that the correlation length decreases and the time averaged
polarization ⟨W⟩t, where W is defined by

W(t; η, β) =

⃓⃓⃓⃓⃓
⃓⃓ 1
N

N∑︂
j=1

v j(t)
|v j(t)|

⃓⃓⃓⃓⃓
⃓⃓, (3.5)

(cf Appendix 2.A), decreases as the confinement decreases.

Figure 3.2: (a) Smallest time tm(β; N) such that g(tm) = 0 (dashed curves) and character-
istic timescale τkc(β; N) (continuous curves) as functions of β for N = 100, 200, 400. The
minimum characteristic timescale is close to the abrupt growth of tm(β; N) and marks the
scale-free-chaos phase transition. (b) Characteristic timescale, τk, computed at kc = 1/ξ
for different N, as a function of k (log-log scale): τkc ∼ k−z

c with z = 1.01 ± 0.01. (c)
Normalized DCCF vs nondimensional time for different confinement values marked and
N = 100. The inset lists the values of β, correlation length ξ and time averaged polariza-
tion ⟨W⟩t for the three curves g(t). In this figure, η = 0.5.

Collapse of the NDCCF

We have obtained a power law τkc ∼ k−z
c with z = 1.01 ± 0.01 for kcξ = 1, as shown in

Fig. 3.2(b). For this value of z, Fig. 3.1(b) illustrates how NDCCF curves g(t) collapse to
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a single one in terms of kz
ct at the scale-free chaos line for 0 < kz

ct < 4. Moreover, NDCCF
curves drop to values close to zero for kzt > 5 but they do not collapse for those larger
times unlike critical behavior near equilibrium phase transitions. What happens? We
surmize that some regions of the chaotic attractors are much more frequently visited than
others, which indicates that different length and time scales coexist within the attractor.
This can be ascertained by finding the multifractal dimension Dq. After a long transient
(30000 time steps), a set of M values of the CM position x⃗i = X(ti), i = 1, . . . ,M, form a
Poincaré map of the attractor. Then we define the multifractal dimension Dq (Grassberger
et al. 1983; Pawelzik et al. 1987; Bulashenko et al. 1999),

Dq =
1

q − 1
lim
r→0

ln[Cq(r)]
ln(r)

, (3.6)

Cq(r) =
1
M

M∑︂
i=1

⎡⎢⎢⎢⎢⎢⎢⎣ 1
M

M∑︂
j=1

θ(r − |x⃗i − x⃗ j|)

⎤⎥⎥⎥⎥⎥⎥⎦
q−1

, (3.7)

where θ(x) is the Heaviside unit step function, M ≈ 70000, and Cq(r) is the generalized
correlation function. D0, D1 and D2 are the box counting (capacity) dimension, the in-
formation dimension and the correlation dimension, respectively. As we vary q, different
regions of the attractor will determine Dq. D∞ corresponds to the region where the points
are mostly concentrated, while D−∞ is determined by the region where the points have
the least probability to be found. If Dq is a constant for all q, the CM trajectory will visit
different parts of the attractor with the same probability and the point density is uniform
in the Poincaré map. This type of attractor is called trivial, whereas a non constant Dq

characterizes a nontrivial attractor with multifractal structure. Fig. 3.3 shows that the box-
counting dimension D0 and Dq for q > 0 undergo a downward trend with increasing N
(decreasing βc). Then the dimension of the more commonly visited sites of the attrac-
tor decreases. Furthermore, we shall see below that the positive LLE tends to zero and
chaos disappears as β→ 0. However, the chaotic attractor remains multifractal: different
time scales persist (Cencini et al. 2010). Thus, a single rescaling of time as in Fig. 3.1(b)
cannot collapse the full NDCCF in our simulations. Curiously, the same collapse of the
NDCCF as a function of kz

ct only for 0 < kz
ct < 4 occurs using data from natural swarms,

as shown in Figures 2a and 2b of (Cavagna, Conti, et al. 2017) for z = 1.2 (experimental
data yield z = 1.12 ± 0.16, using the power law τkc ∼ k−z

c , (Cavagna, Conti, et al. 2017)).

Critical exponents

Having found the critical confinement βc(N; η) as the value of β for which τkc is mini-
mum, we can find the power laws and the critical exponents for the correlation length,
susceptibility, time-averaged polarization order parameter, and the LLE λ1 in terms of
β = βc(N; η):

χ(β,N, η) ≡ max
r

Q(r) ∼ β−γ, ξ ≡ argmaxrQ(r) ∼ β−ν, (3.8)

λ1 ∼ β
φ ∼ N−

φ
3ν , ⟨W⟩t ∼ βb, (3.9)
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Figure 3.3: Multifractal dimension (Bulashenko et al. 1999) Dq vs q at βc(N; η = 0.5).

as β = βc(N; η) → 0 with N ≫ 1. Here Q(r) is the cumulative real-space correlation
function, which we define below.

Real space susceptibility

To calculate the susceptibility, we have used the maximum of the cumulative real-space
correlation function (corresponding to the first zero r0 of the real-space correlation func-
tion, which is now the correlation length) at βc(N; η) (Attanasi, Cavagna, L. Del Castello,
et al. 2014; Attanasi, Cavagna, L. D. Castello, et al. 2014):

Q(r) =
1
N

N∑︂
i=1

N∑︂
j≠i

δv̂i ·δv̂ jθ(r − ri j). (3.10)

As shown in Appendix 3.A, selecting Ĉ(kc, 0) as the susceptibility does not produce a
monotonic function of βc or of N. Thus, Ĉ(kc, 0) cannot be used to fit a power law over
an extended range. However, 1/kc and r0 are linearly related, and using either one as cor-
relation length yields the same critical exponent ν; see Appendix 3.A. A similar relation
between 1/kc and r0 also holds for midge data; see Fig. SF1 of (Cavagna, Conti, et al.
2017). To calculate the LLE we can use the Benettin algorithm for the VM of Eq. (2.1)
or a convenient time series obtained from the simulations, e.g., the CM evolution or the
NDCCF; see Appendix 2.B.

Figs. 3.4(a) and 3.4(b) depict how correlation length and real-space susceptibility scale
with β and Fig. 3.4(c) confirms that the correlation length is proportional to the size of the
swarm. For η = 0.5, we obtain the critical exponents ν = 0.436±0.009 and γ = 0.92±0.05,
respectively. Fig. 3.4(d) shows that the correlation length decreases with alignment noise
at critical confinement. Correlation length values in the region of noisy chaos are ξ times
4.68 cm, and they are compatible with observations of natural swarms (Attanasi, Cavagna,
L. Del Castello, et al. 2014; Attanasi, Cavagna, L. D. Castello, et al. 2014; Cavagna, Conti,
et al. 2017).

Another feature of swarm data compatible with our numerical simulations of the con-
fined VM is that the NDCCF is flat at the origin. Referred to Eq. (3.3), we define the
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Figure 3.4: (a) Scaling of the dimensionless correlation length with β: ξ ∼ β−ν, ν =
0.436±0.009. (b) Scaling of the real-space susceptibility with β: χ ∼ β−γ, γ = 0.92±0.05
for N = 500, 750, 1000, 1100, 1200, 1300, 2500, 5000. (c) The correlation length in-
creases linearly with L. (d) Correlation length ξ = r0 and NDCCF flatness h(0.1) vs noise.
Black vertical bars delimit the region of noisy chaos, occurring for smaller noise values
than the ordering transition (Attanasi, Cavagna, L. Del Castello, et al. 2014; Attanasi,
Cavagna, L. D. Castello, et al. 2014; Cavagna, Conti, et al. 2017). Green vertical bars
are compatible with observations of natural swarms: the leftmost bar marks the largest
observed correlation length and the rightmost bar marks when NDCCF flatness ends. (e)
Time averaged polarization versus β: ⟨W⟩t ∼ βb, b = 0.58±0.01. (f) LLE vs β for different
N, λ1 ∼ β

φ, calculated by the Benettin algorithm (Benettin et al. 1980) for the complete
system (crosses), from CM motion (squares) and from the NDCCF (triangles). We get
φ = 0.43 ± 0.03 (crosses and squares), and φ = 0.24 ± 0.02 (triangles). In Panels (a), (c)
and (e), N values are as in Fig. 3.1(b), η = 0.5.

‘flatness’ function as

h(x) = −
1
x

ln f (x, 1), x =
t
τk
, (3.11)

for a fixed value of the nolise η. A perfectly flat NDCCF implies that h(0) = 0. How-
ever, h(x) from experiments changes abruptly below x = 0.1 as shown in Fig. 3b of
(Cavagna, Conti, et al. 2017). The same figure yields an upper value 0.3 of h(0.1) for
natural swarms, which we arbitrarily select as the transition value from flat to non-flat
NDCCF. For the confined VM, the transition value occurs at η = 0.9 in Fig. 3.4(d), which
is close to the change to noise from noisy chaos in Fig. 2.3(a). Fig. 3.4(d) shows that the
correlation length decreases and h(0.1) increases with increasing η. Thus, observed cor-
relation lengths and flat NDCCFs occur in the region of noisy chaos of the confined VM
that contains the scale-free-chaos phase transitions. Fig. 3.4(e) depicts the power law of
the time-averaged polar order parameter ⟨W⟩t versus β, which shows the scale-free-chaos
phase transition to be of second order with critical exponent b = 0.58 ± 0.01.
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Bound for the LLE critical exponent

The LLE λ1 decreases as βc(N; η) does according to the power law (3.9) with critical
exponent φ = 0.43 ± 0.03 provided the LLE is calculated using the Benettin algorithm
on Eq. (2.1) or time traces of the CM as explained in Appendix 2.B. See Fig. 3.4(f). For
chaotic systems with short range interactions such as the confined VM, Eq. (3.2) together
with Eqs. (3.8) and (3.9) imply that βφ−ν ≤ c. To be consistent as β→ 0, this relation then
implies

φ ≥ ν. (3.12)

Were the dynamic scaling of (3.3) to hold for all time, eλ1t would be a function of kzt;
therefore λ1 ∼ kz

c ∼ β
zν, and φ = zν. Eq. (3.12) then produces z ≥ 1, which agrees with

all our simulations carried out with the Benettin algorithm or reconstructing the chaotic
attractor from center of mass data. Thus, φ ≈ zν ≥ ν approximately holds for one-time
functions such as the center of mass trajectory with η = 0.5. However, this relation fails
for the two-time NDCCF, which has a smaller φ; see Fig. 3.4(f).

Figure 3.5: (a) Real-space susceptibility (log-log scale) for N =

300, 500, 750, 1000, 2000. (b) LLE and susceptibility versus β for N = 300, 500.
Circles, squares, triangles and asterisks mark βc, βi, βm (local χ maximum), and βM

(global χ maximum of the susceptibility, at the beginning of the third chaotic window,
marked by I3 in Panel b), respectively. (c) βc, βi, βm, and βM versus 1/N. (d) Ratios
βc/βi = 0.48 + 37.76/N and βc/βm = 0.37 − 20.48/N as N ≫ 1. (e) LLE versus β for N
marked in the inset. (f) Same as Panel (e) with axes λ1/β

φi
i and β/βi, φi = 0.33, showing

collapse of curves. Circles correspond to the critical confinement βc(N; η), squares
correspond to the inflection point of the susceptibility βi(N; η). Here η = 0.5.
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3.2.2 Critical confinement from the static correlation

At critical confinement, the susceptibility χ =maxrQ(r), given by Eqs. (3.8) and (3.10) for
fixed βc(N; η), η and N, becomes infinity as N → ∞. For given values of the alignment
noise η, we can find other values of β, e.g., the local maximum and the inflection point
of χ = χ(β,N; η) as a function of β, which also tend to infinity as N → ∞. At finite
N, these confinement values, βi(N; η) (inflection) and βm(N; η) (local maximum), are dif-
ferent from βc(N; η), as shown in Fig. 3.5(a). Fig. 3.5(b) shows that there are different
regions of positive LLE separated by non-chaotic regions. The first chaotic window starts
at very small positive values of β that cannot be appreciated at the scale of the figure. The
global maximum of the susceptibility is reached at large values of β corresponding to the
beginning of the third chaotic window in Fig. 3.5(b), which is different from the scale-free
chaos window of βc, βi, βm. Unlike the isolated βM, the values βc, βi and βm tend to 0 as
N → ∞, as observed in Fig. 3.5(c). Fig. 3.5(d) shows that the ratios βc/βi and βc/βm tend
to constant values (about 0.48 and 0.37, respectively) as N → ∞. Thus, for sufficiently
large N, the critical exponents are the same for the lines βc, βi, βm and therefore they
correspond to the same phase transition.

Figure 3.6: Time averaged polarization versus β for N marked in the inset, and η =
05. Circles correspond to the critical confinement βc(N; η), squares correspond to the
inflection point of the susceptibility βi(N; η).

Figures 3.5(e) and 3.5(f) show that the LLE versus β curve reaches a local maximum
at βi. Thus, maximum ‘chaoticity’ is reached at the line of susceptibility inflection points.
This qualitative feature of the line of inflection points is one of the reasons we have de-
cided to use them to characterize the transition at finite N, at the same level as the line of
local maxima usually selected in the statistical physics literature. The line of maxima of
the LLE is also related to the location of the phase transition in the mean field Kuramoto
model (Miritello et al. 2009). Fig. 3.6 shows the average polarization as a function of
ln β for N = 250, 500, 1000. As N increases, βc, βi, βm simultaneously decrease to zero
and so do the corresponding polarization order parameters, which suggest that these lines
represent a second order phase transition at N = ∞.
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Figure 3.7: Collapse of NDCCF data as function of (a) k1.5t at the inflection point and
of (b) k2t at the local maximum of the susceptibility on the indicated narrow interval near
t = 0. Here η = 0.5.

Figs. 3.7 (a) and 3.7(b) show NDCCF collapse of the NDCCF at βi(N; η) and βm(N; η),
respectively. The respective dynamical critical exponents are zi = 1.5 on 0 < kzt < 0.5
and zm = 2 on 0 < kzt < 0.25. These exponents have been visually fitted because
the correlation times obtained using Eq. (3.4) were unable to collapse data, unlike what
happened for the transition from single cluster to muticluster chaos at βc. Furthermore,
the minima of g(t) are all larger than 0.3, hence they are no longer close to zero as in
Fig. 3.1. The different dynamical critical exponents at the different critical lines could
be associated to different length scales in the multifractal chaotic dynamics at the three
critical lines. The connection between dynamics and susceptibility in nonequilibrium
phase transitions needs further study.

3.3 Subtracting rotation and dilation from CM velocity
and flocking black hole phase transition

The confined VM is said to experience an ordering transition at high values of noise.
In Refs. (Attanasi, Cavagna, L. D. Castello, et al. 2014; Cavagna, Conti, et al. 2017),
the noise value chosen for numerical simulations is η = 0.45 × 4π = 5.65 in our units.
This value is well inside the noise region of Fig. 2.3(a). We can expect some remnants of
coherent structures exhibiting rotation and dilation there. In equilibrium phase transitions,
the order parameter is independent of time and space, and it is defined using ensemble
averages. To mimic these transitions, in our definitions of DCCF and SCCF for large
noise, it is convenient to subtract overall rotation and dilation from the CM velocity at
each time step when defining fluctuations of the velocity, as explained in Appendix 3.A;
see also Refs. (Attanasi, Cavagna, L. Del Castello, et al. 2014; Attanasi, Cavagna, L. D.
Castello, et al. 2014). What is the effect of these operations?

Below the critical line βc(N; η) but close to it, the swarm occupies a single cluster and
it is disperse. Fig. 3.8(a) shows that βc(N; η) and βi(N; η) do not change upon subtracting
rotation and dilation from the CM velocity. However, the points on βm(N; η) are not local
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Figure 3.8: Real-space susceptibility (log-log scale) versus β for N =

300, 500, 750, 850, 1000, 2000. Circles and squares mark βc(N; η) and βi(N; η), which are
the same with or without subtraction of rotation and dilation from CM motion. Triangles
are the local maxima of susceptibility, βm, without subtractions. Lines Ii, Fi (i = 1, . . . , 4)
mark the initial and final β value of the ith chaotic window. Crosses mark βM (global χ
maximum of the susceptibility), which coincides with the line F1. (b) LLE and suscepti-
bility versus β for N = 500. Note the different chaotic windows and the lines Ii, Fi.

maxima of χ vs β in Fig. 3.8(a). The line of global maxima of susceptibility versus β
moves to the end of the first chaotic window of Fig. 3.5(b). The different chaotic windows
for N = 500 are shown in Fig. 3.8(b). When the swarm splits into several clusters, they
rotate and move with respect to each other. These effects are small at β = βi(N; η) (where
the LLE reaches a local maximum) but the local maxima of the susceptibility versus β
disappear. Thus, the lines βc(N; η) and βi(N; η) move to β = 0 as N → ∞ at the same
rate, thereby providing a finite size approximation of the scale-free-chaos phase transition.
Using β = βc(N; η), the critical exponents ν = 0.43 ± 0.01 and z = 1.00 ± 0.03 do not
change when rotation and dilation are subtracted from CM motion in velocity fluctuations.
We now have γ = 0.85± 0.04. See Appendix 3.A. What about the line βM(N; η) of global
maxima?

The correlation length is finite at βM(N; η), ξ ≈ 2.5 for η = 0.5 and N values up
to 2000. We have checked that the end of the first chaotic window (at which the LLE
becomes zero again) and the β values of all successive chaotic windows increase with N.
What happens? At the end of the chaotic window the clusters in the chaotic swarms are
confined to regions of size ξ ≈ 2.5 or smaller (recall that large β values confine all particles
to a sphere of diameter 2 with period 2 motion in the deterministic case, η = 0). As N, and
therefore βM(N; η), increase, more and more particles enter these regions, which implies
that the average minimal distance between neighbors, x, decreases to zero as N → ∞.
Thus, confinement becomes infinitely strong, the average distance between neighbors
tends to zero, and the particle density inside clusters becomes infinite. We call these
clusters flocking black holes. Qualitatively, this situation resembles gravitational collapse
of self-gravitating particles (Alberti et al. 2020; Chavanis et al. 2020). In particular, type
II gravitational collapse to a zero mass black hole is analogous to second-order phase
transitions with x→ 0 instead of ξ → ∞ (Gundlach et al. 2007). By using 1/x instead of
ξ, we can define critical exponents analogous to ν and γ for this flocking black hole phase
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transition:

x ∼ β−ν, χ ∼ βγ, τkc ∼ x−z, (3.13)

with β = βM(N; η) → ∞ as N → ∞. Subtracting rotation and dilation from CM motion,
we find the critical exponents, ν = 0.35 ± 0.08, γ = 0.97 ± 0.08. Using fluctuations about
the CM velocity without subtractions, βM(N; η) is larger and we can define similar critical
exponents with it. We find ν = 0.33 ± 0.02, γ = 1.03 ± 0.03. In both cases, the finite
correlation length takes on the value 2.5, and the dynamical critical exponent is z = 0.
The NDCCF decays at short times and it later oscillates. All curves for different N exhibit
the same initial decay but the successive oscillations are irregular and displaced from one
another.

3.3.1 Critical exponents from confined VM simulations

We have found a line of phase transitions βc(N; η) representing the change from scale-free
single to multicluster chaos. See Chapter 2. The critical line is inside the confinement re-
gion where the NDCCF is flat at the origin, which corresponds to underdamped relaxation
dynamics. For η = 0.5 (middle of the noisy chaos region), as β = βc(N; η) → 0, N → ∞,
we have obtained ν = 0.436 ± 0.009 (correlation length), γ = 0.92 ± 0.05 (real-space
susceptibility), and z = 1.01 ± 0.01 (dynamic exponent). The critical exponent for the
LLE law is approximately φ = zν. The critical exponents change little for 0.1 < η < 1.
Other critical lines based on the inflection points or local maxima of susceptibility versus
β collapse to β = 0 at the same rate as N → ∞ and therefore represent the same phase
transition; cf Fig. 3.5(d).

While βc(N; η) and βi(N; η) do not change after subtracting rotation and dilation from
the CM velocity, the values of the correlation length and time change, while still growing
with N. For the critical line βc(N; η), we have found the critical exponents ν = 0.43±0.01,
γ = 0.85 ± 0.04 and z = 1.00 ± 0.03, which change but little with respect to the previous
values.

The line of maxima of the susceptibility versus confinement curve, βM(N; η), is near
the end of the first chaotic window and the LLE are small there. βM(N; η) goes to infinity
with N and the correlation length goes to a finite constant. This phase transition at infinite
confinement strength produces a collapse of particles inside bounded and infinitely dense
clusters with vanishing LLE and critical exponents given by Eq. (3.13). For this flocking
black hole phase transition, we have found ν = 0.35 ± 0.08, γ = 0.97 ± 0.08 for η = 0.5
and N values up to 2000.
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Figure 3.9: (a) Flatness function h(x) and (b) NDCCF g(t) for N = 300, η = 0.5 and β
values indicated in Panel (b) inset.

3.3.2 Flatness function

A feature shared by swarm data and the scale-free-chaos phase transition is that the ND-
CCF is flat at small times. Fig. 3.9(a) depicts the flatness function h(x) of Eq. (3.11) for a
range of β ∈ (0, βM), where (after subtracting rotation and dilation) βM is at the end of the
first chaotic window of Fig. 3.5(b). For 0 < β ≪ βc(N; η), h(x) ∼ 1 (as x→ 0), which im-
plies exponential relaxation of the NDCCF with time, typical of overdamped dynamics.
For these small values of β, noise overwhelms coherent dynamics induced by confinement
and the LLE is negative. As β increases towards βc(N; η), h(x) decreases until it is ≈ 0 for
x → 0. Then, VM dynamics is chaotic and underdamped. Fig. 3.9(a) shows the change
in h(x) for different values of β. See Fig. SF4 of (Cavagna, Conti, et al. 2017) for exam-
ples of overdamped and underdamped dynamics in the stochastic oscillator. Fig. 3.9(b)
shows that the NDCCF exhibits oscillations for underdamped dynamics and a slower de-
cay for overdamped noisy dynamics. The lines NDCCF oscillate at positive values of
g(t) for βi(N; η) and βm(N; η) (this later line corresponds to the local maximum without
subtracting rotation and dilation from CM motion), whereas the oscillations have larger
amplitude for larger values of β and g(t) may take on negative values. Thus, the flatness
function indicates that the confined VM displays underdamped dynamics in the critical
region about βc(N; η) for the scale-free-chaos phase transition.

Inside the noise region of Fig. 2.3(a), the NDCCF decays exponentially at short times
and it is non-flat according to the definition (3.11). This is the case for the noise value
η = 5.65 (in our units) used in Refs. (Attanasi, Cavagna, L. D. Castello, et al. 2014;
Attanasi, Cavagna, L. Del Castello, et al. 2014; Cavagna, Conti, et al. 2017). This ex-
ponential decay led to the hasty conclusion that the confined VM displays overdamped
dynamics (Cavagna, Conti, et al. 2017), and to a subsequent search for convenient un-
derdamped dynamics producing a flat NDCCF near t = 0 (Cavagna, Carlo, Giardina,
Grigera, Melillo, et al. 2021). However, equations with discrete time dynamics, such as
the harmonically confined VM, may exhibit overdamped and underdamped dynamics on
different parameter ranges.

In experiments, the smallest measured value of h(x) occurs at x = 0.1 and h(0.1) < 0.3
for natural swarms (Cavagna, Conti, et al. 2017). At the VM order-disorder phase transi-
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tion, h(0.1) ≈ 1 > 0.3 (exponential decay, clearly non-flat NDCCF) (Cavagna, Conti, et
al. 2017). For the confined VM, the transition value occurs at η = 0.9 in Fig. 3.4(d) and in
Fig. 2.3(a), which is close to the change to noise from noisy chaos at η = 1 (much lower
than the noise for the order-disorder phase transition of the VM in a box with periodic
boundary conditions (Attanasi, Cavagna, L. Del Castello, et al. 2014; Attanasi, Cavagna,
L. D. Castello, et al. 2014; Cavagna, Conti, et al. 2017)). As noise increases, Fig. 3.4(d)
shows that the correlation length decreases and h(0.1) increases with increasing η. Thus,
observed correlation lengths and flat NDCCFs occur in the region of noisy chaos of the
confined VM that contains the scale-free-chaos phase transitions.

3.4 Discussion

Purpose. Here we discuss a hitherto unsuspected and unexplored phase transition of free
scale chaos in the harmonically confined 3D Vicsek model. The same model exhibits
a different phase transition to clusters of finite size containing infinitely many particles.
This work is motivated by observations of natural midge swarms, which comprise at most
hundreds of insects and form about a marker (Attanasi, Cavagna, L. D. Castello, et al.
2014; Attanasi, Cavagna, L. Del Castello, et al. 2014; Cavagna, Conti, et al. 2017; Kelley
et al. 2013; Gorbonos et al. 2016; Sinhuber et al. 2017). The validation of the scale-free-
chaos scenario by experimental data is outside the scope of this thesis.

Experiments and methodology. Cavagna et al’s observations unveiled finite size scal-
ing and power laws in swarms of male midges. They adapted definitions from statistical
physics to define correlation functions, correlation lengths and calculate critical expo-
nents from data (Attanasi, Cavagna, L. D. Castello, et al. 2014; Attanasi, Cavagna, L. Del
Castello, et al. 2014; Cavagna, Conti, et al. 2017). To interpret data, they used the ‘gas’
phase of the 3D VM confined in a finite box with periodic boundary conditions and ideas
about universality. Contrastingly, midge swarms in an enclosure form a ‘condensed’ nu-
cleus far from enclosure walls surrounded by a ‘vapor’ of insects that exit from, return to,
and hover about the nucleus (Sinhuber et al. 2017); see Fig. 2.4(b) for a similar config-
uration of the scale-free-chaos phase in our simulations. While this is different from an
gas filling a box with uniform density, definitions from correlation functions, finite size
and dynamical scaling apply to both numerical simulations of the model and experimental
data (Attanasi, Cavagna, L. D. Castello, et al. 2014; Attanasi, Cavagna, L. Del Castello,
et al. 2014; Cavagna, Conti, et al. 2017). We apply the methodology based on correla-
tion functions to our simulations of the confined VM to unveil the scale-free-chaos phase
transition.

Dynamical systems tools. As the confinement strength decreases, the VM with fixed
number of particles N displays a variety of periodic, quasiperiodic and chaotic attractors,
which may be strongly modified by alignment noise. To distinguish chaos, we have cal-
culated the largest Lyapunov exponent directly from the VM using the Benettin algorithm
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(Benettin et al. 1980). This is particularly well adapted to the discrete time dynamics
of the VM. We have also calculated the LLE by reconstructing the attractor from time
traces of the center of mass motion using lagged coordinates. Using only two lagged
coordinates, scale-dependent Lyapunov exponents help distinguishing deterministic and
noisy chaos from parameter regions where noise is dominant (Gao, Hu, et al. 2006). This
is important because the phase transitions exist within the noisy chaos region. While
scale-dependent Lyapunov exponents give qualitative information, we need six lagged
coordinates to faithfully reconstruct the chaotic attractor and obtain (by the Gao-Zheng
algorithm (Gao and Zheng 1994)) the same LLEs as provided by the Benettin algorithm.
This methodology will be important to ascertain whether a real system in nature exhibits
scale-free-chaos phase transitions.

Statistical physics tools. It is instructive to compare the scale-free-chaos phase tran-
sitions in the confined VM to the canonical para-ferromagnetic equilibrium phase transi-
tion whose universality class comprises the Ising and ϕ4 models. A phase is an ergodic
measure that exists in the thermodynamic limit (infinite volume and number of particles,
finite density) and a phase transition corresponds to a discontinuous change from one to
more than one phase as a parameter changes, i.e., to a bifurcation of the measure; see
precise definitions and proofs in (Glimm et al. 1987). Pure phases have different values
of the magnetization order parameter. At the critical point that ends a line of first order
phase transitions at zero external field, the correlation length becomes infinity in the ther-
modynamic limit (Glimm et al. 1987). The magnetization order parameter undergoes a
pitchfork bifurcation at the critical temperature with critical exponent 0.327 instead of 0.5
(Amit et al. 2005; Yeomans 1992).

The main objects to characterize critical points of second-order equilibrium phase
transitions are static and dynamic correlation functions. To study flocking and other
nonequilibrium phase transitions, we need to adapt the definitions of correlation functions,
correlation length, susceptibility, and so on, to models such as Vicsek’s. Averages over
the number of particles, time averages and averages over realizations replace the ensem-
ble averages of equilibrium statistical mechanics (Cavagna, Giardina, et al. 2018). Since
it is important that correlation functions reflect underlying dynamic attractors, velocity
fluctuations are about center of mass velocities (which may be chaotic); see (Cavagna,
Giardina, et al. 2018) for extended discussion. Subtracting an overall rotation and/or dila-
tion at each time step (Attanasi, Cavagna, L. Del Castello, et al. 2014; Attanasi, Cavagna,
L. D. Castello, et al. 2014; Cavagna, Conti, et al. 2017) does not change the critical lines
βc(N; η) and βi(N; η) but the local maxima of the susceptibility versus β curve disappear.
We still have a critical line separating single from multicluster chaos followed by a narrow
criticality region, both of which tend at the same rate to zero confinement as N → ∞ and
therefore represent the same phase transition; see Appendix 3.A.

The chaotic phases in scale-free-chaos transitions are ergodic (Ott 1993; Cencini et al.
2010). The transitions are second order: as N ≫ 1, the order parameter is close to zero in
the sparse single-cluster chaotic phase and the polarization is positive in the multicluster
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chaotic phase. Let us discuss now the different critical lines at finite N that characterize
the scale-free-chaos phase transition at N = ∞.

As discussed in Section 3.2, it would be ideal if we had a relation between the poles of
the susceptibility and the reciprocal correlation time, as it happens in simple models. Then
vanishing of the pole would be the same as the correlation time going to infinity (critical
slowing down) and this would locate the critical point. In the absence of such a relation,
we have first used the correlation time that solves Eq. (3.4) for kc = 1/ξ as a reasonable
substitute. The critical line βc(N, η) is the value of β that minimizes τkc for fixed N and
noise η. Equivalently, it is the maximum value of the continuous extension of a correlation
time defined as the first zero of the NDCCF. We have obtained a dynamic scaling exponent
z = 1.01 ± 0.01 and critical exponents ν = 0.436 ± 0.009, γ = 0.92 ± 0.05, with φ ≈ zν
(critical exponent corresponding to the decay of the largest Lyapunov exponent). For fixed
N, βc(N, η) is a line on the plane (β, η) within the region of noisy chaos in Fig. 2.3(a). We
have checked that the correlation length is proportional to the size of the swarm for all
the simulated values of N, and therefore the system is scale free on this critical line.
The critical line is inside an interval of confinement values for which the NDCCF is
flat and relaxation dynamics is underdamped. Outside this interval, the confined VM
exhibits overdamped dynamics. By using topological data analysis, we lend support to the
numerical observation that chaos is single-cluster below this critical line and multicluster
above it. The phase of single-cluster chaos has the smallest polarization order parameter
and is therefore the most symmetric. Multicluster chaos has larger polar order. As N →
∞, βc(N, η) tends to 0 and so does the LLE on that line: chaos disappears, as required by
the correlation length becoming infinity and Eq. (3.2) for finite velocity of propagation.
Further study involving the invariant measure of the chaotic attractors would be desirable
to explore analogies with the phase ergodic measures of equilibrium thermodynamics.

Using the susceptibility of the real-space static correlation function and finite size
scaling, we have found other lines βi(N; η) and βm(N; η), with βc < βi < βm, that go to
zero at the same rate as βc(N; η) for N ≫ 1, cf Fig. 3.5(d). Thus, they represent the same
phase transition and produce the same critical exponents as N → ∞. For the N values in
our simulations, we have checked that the correlation length is proportional to swarm size
(therefore they are scale free) and ν is the same. The chaotic attractors are multicluster
on the lines βi(N; η) and βm(N; η) based on the inflection point and the local maximum of
the susceptibility, respectively; see Fig. 2.4. This indicates that the swarm center of mass
experiences more important rotation and dilation effects than on the single-to-multicluster
line βc(N; η).

The critical exponent z is different on the three critical lines, which may simply point
to the multiple time and length scale involved in the mulifractal chaotic attractors of the
phase transition, cf Fig. 3.3. That different time scales are involved in the same tran-
sition is a common occurrence in codimension two bifurcations of dynamical systems
(Kuznetsov 2004); see e.g., the scaled normal form in (Dangelmayr et al. 1987). The
mean field version of the standard two-dimensional Vicsek model with periodic bound-
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ary conditions also involves two time scales near the order-disorder transition. The mean
field VM (in a box with periodic boundary conditions) can be described by a discrete-time
Enskog-type kinetic equation which preserves the overall number of particles (Ihle 2011).
The order-disorder phase transition appears as a supercritical bifurcation of the kinetic
equation when one multiplier crosses the unit circle in the complex plane; another mul-
tiplier corresponding to particle conservation is always one (Bonilla and Trenado 2018).
On the ordered side, the scaled bifurcation equations contain two time scales, one with
z = 1 (hyperbolic scaling), the other with z = 2 (parabolic scaling). At the hyperbolic
short time scale, undamped wave propagation and resonance phenomena arise (Bonilla
and Trenado 2018), whereas different band patterns appear at the parabolic time scale fur-
ther from the bifurcation point (Trenado et al. 2022). These patterns exist on the ordered
side of the ordering phase transition. They can be found in direct simulations of the stan-
dard Vicsek model and include bands (Solon et al. 2015) and crossbands (Kürsten et al.
2020).

In Section 3.3 and Appendix 3.A, we show that subtracting overall rotation and di-
lation from CM motion in velocity fluctuations does not change the lines βc(N; η) and
βi(N; η) but the line of local maxima βm(N; η) disappears. The line of global maxima,
βM(N; η), appears now at the end of the first chaotic window. On βM(N; η), the correlation
length is finite and does not change appreciably with N, the average minimal distance
between particles tends to zero and the density inside these clusters of finite extension
tends to infinity. This transition has βM(N; η) → ∞ as N → ∞ and therefore it is no
longer scale free. Instead, it is analogous to type II gravitational collapse (Gundlach et al.
2007), and it has its own critical exponents, cf Eq. (3.13). In conclusion, subtracting rota-
tion and dilation from CM motion leaves only two critical lines where the system is scale
free, namely, βc(N; η) and βi(N; η). Only these two critical lines need to be taken into
consideration when describing the phase transition based on subtracting overall transla-
tion, rotation and dilation from particle velocities to define velocity fluctuations. These
two lines illustrate the existence of a narrow criticality region following βc(N; η) that also
collapses to β = 0 as N → ∞. Numerical simulations produce the same critical exponent
ν as obtained without rotation and dilation but γ changes as explained in Appendix 3.A.

Critical exponents from experiments and theory. In observations of natural swarms,
the measured critical exponents are ν = 0.35 ± 0.10, γ = 0.9 ± 0.2 (Attanasi, Cavagna,
L. Del Castello, et al. 2014; Attanasi, Cavagna, L. D. Castello, et al. 2014), and z =
1.12 ± 0.16 (Cavagna, Conti, et al. 2017), while the real-space susceptibility is between
0.32 and 5.57 for the measured swarms (Attanasi, Cavagna, L. Del Castello, et al. 2014;
Attanasi, Cavagna, L. D. Castello, et al. 2014). More recent observations give an interval
0.93 ≤ z ≤ 1.42 of possible values of the dynamical exponent based on a resampling
procedure; see Fig. 3 of (Cavagna, Carlo, Giardina, Grigera, Melillo, et al. 2021).

Here we have discussed the scale-free-chaos phase transition of the harmonically con-
fined Vicsek model. For each adequate noise value within the interval of noisy chaos, cf
Fig. 2.3(a), three critical lines coalesce at the same rate to β = 0 as N → ∞. Thus, they
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represent the same phase transition. For βc(N, 0.5), we have found ν = 0.436±0.009 (cor-
relation length), γ = 0.92± 0.05 (real-space susceptibility), and z = 1.01± 0.01 (dynamic
exponent). The critical exponent for the LLE law is approximately φ = zν. These critical
exponents change little for 0.1 < η < 1 and are reasonably near experimentally measured
ones.

Qualitative features. In addition to reasonable critical exponents, the scale-free-chaos
phase transition produces disperse chaotic swarms below βc(N, η) that are confined to
a bounded region of space with a few particles entering and leaving the nucleus of the
swarm, cf. Fig. 2.4. This is akin to the observed condensed and vapor phases of natural
swarms (Sinhuber et al. 2017). Furthermore, as shown in Section 3.2, the normalized
dynamic correlation function coalesce to a single curve as a function of kz

ct for an interval
0 < kz

ct < 4 (cf. Fig. 3.1), which is similar to that observed in natural swarms; see Fig.
2b of (Cavagna, Conti, et al. 2017). Moreover, the flatness values given by Eq. (3.13) are
compatible with those observed in natural swarms (Cavagna, Conti, et al. 2017). Obser-
vations of midges in the laboratory indicate that the center of mass of their swarm moves
almost randomly (Kelley et al. 2013; Ni, Puckett, et al. 2015), following Lévy flights
(Reynolds and Ouellette 2016). To this respect, the connection between chaos and Lévy
flights in animal search patterns is intriguing (Reynolds, Bartomeus, et al. 2016) and could
indicate that noisy chaos is indeed present in midge swarms. These similitudes to exper-
imental observations and the involved theoretical challenges make worthwhile exploring
more fully the confined Vicsek model and the phase transition we have discovered.

Critical exponents from models in the literature. The ordering transition of the VM
confined in a finite box with periodic boundary conditions has received much attention;
see e.g, the reviews in (Chaté and Mahault 2019; Chaté 2013). Near this transition, the
particles form a gas and are distributed in the box with almost constant density (Chaté
and Mahault 2019; Chaté 2013). This contrasts with observations of natural swarms in
an enclosure where most of the swarm is far from walls (condensed phase) and individual
insects hover around the swarm nucleus, enter and exit from it (Sinhuber et al. 2017). It is
fair to say that the single-cluster chaotic phase of the confined VM resembles observations
better than the ordering transition of the standard VM. Calculated critical exponents near
the ordering transition of the VM in a box with periodic boundary conditions are also
further away from observations: γ = 1.6 ± 0.1, ν = 0.75 ± 0.02 (Attanasi, Cavagna, L. D.
Castello, et al. 2014) for noise η = 0.45 × 4π = 5.65 in our units), z = 2 (Cavagna, Conti,
et al. 2017).

Many theoretical works study hydrodynamic equations with white noise forcing terms
near a critical point which resembles that of the ordering transition of the standard VM.
The idea is that all such descriptions could be analyzed using renormalization group (RG)
theory and produce critical exponents compatible with experimental observations. This
would then show that the appropriate hydrodynamic-type description belongs to the same
universality class as the real natural swarms. These RG theories are based on weakly
nonlinear expansions about a simple symmetric state. Chen et al study incompressible
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Toner-Tu hydrodynamic equations (Toner and Tue 1995; Toner, Tu, et al. 2005) using RG
about a unidirectional velocity and produce an exponent z = 1.72 in 3D (Chen, Toner,
et al. 2015; Chen, Lee, et al. 2018). See also (Cavagna, Carlo, Giardina, Grigera, and
Pisegna 2021) for numerical confirmation. Cavagna et al consider incompressible Toner-
Tu hydrodynamics coupled to underdamped soft spin equations under white noise forces
(Cavagna, Carlo, Giardina, Grigera, Melillo, et al. 2021). They study weakly nonlinear
expansions about linear stochastic differential equations with constant coefficients and
additive noise to obtain RG equations and calculate z = 1.3. These values are within
the range of experimental observations (Cavagna, Carlo, Giardina, Grigera, Melillo, et al.
2021).

Recently, Holubec et al have studied the VM with time delay and periodic boundary
conditions. They found γ ≈ 1.53, ν ≈ 0.75 (larger than measured in midges) and z ≈ 1 for
very long delay times using an undersampled NDCCF (Holubec et al. 2021). Their ND-
CCF exhibits regular oscillations as the time delay increases, which are interpreted using
a time-delayed reaction-diffusion equation; see Supplementary Information in (Holubec
et al. 2021). It is not clear whether there is a single phase transition responsible for these
results. In time-delayed ordinary differential equations, oscillations often appear as Hopf
bifurcations at critical delays (Hale 1977) and may evolve to relaxation oscillations as
delays increase (Bonilla and Liñán 1984). Delayed reaction-diffusion equations can have
stable relaxation-type wavetrain solutions that depend on the variable (x+ ct), cf (Bonilla
and Liñán 1984). This would give a dynamic exponent z = 1. Further study of the
time-delayed VM may shed light on these connections.

A universality class comprises all physical systems that evolve to the same fixed point
of the renormalization group equations under a rescaling of space and time and therefore
have the same critical exponents (Huang 1987). We have discovered a scale-free-chaos
phase transition in the discrete time Vicsek model confined by a harmonic potential, which
has qualitative features of natural swarms, underdamped dynamics, and compatible crit-
ical exponents. At moderate N, this transition is different from the well-known period-
doubling, intermittency and quasiperiodic routes to chaos (which have RGs based on maps
(Schuster et al. 2005; Ott 1993; Cencini et al. 2010)) and from the ordering transition
of the discrete time Vicsek model confined by a box with periodic boundary conditions
(Chaté and Mahault 2019; Chaté 2013). The scale-free-chaos phase transition encom-
passes phenomena at different time scales, from dynamical exponent z ≈ 1 to larger z for
βi and βm, which might require additional theoretical tools to understand. While there are
RG calculations about Hopf bifurcations to stable oscillatory states (Bonilla 1988; Risler
et al. 2005), it would be desirable to have RG calculations about a single-cluster chaotic
attractor, instead of the ordering transition of the standard VM (or related simple states of
other models). Would it be possible to derive effective equations near the scale-free-chaos
phase transition playing roles similar to amplitude equations in bifurcation theory (Bonilla
1988)? Could these effective equations exhibit new instabilities and coexistence of sta-
ble solutions and spinodal lines akin to those found in the Vicsek model with periodic
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boundary conditions (Chaté and Mahault 2019; Chaté 2013)? Time will tell.

Summarizing, we have numerically simulated the harmonically confined Vicsek model,
which is an idealized description of insect swarms. Depending on confinement strength
β and noise η, the model exhibits different periodic, quasiperiodic and chaotic attractors.
Our results support the existence of a line of phase transitions in a noisy chaos region of
η values as the number of particles N tends to infinity and β → 0. For finite N, there is a
line βc(N; η) at which the correlation time is minimal and the correlation length is propor-
tional to the system size. Topological data analysis supports the interpretation of βc(N; η)
as a line separating single from multicluster chaos. The time averaged polarization acts
as an order parameter: near βc(N; η), it is almost zero for β < βc(N; η) and positive and
increasing with β for β > βc(N; η). On the line of scale free chaos, the dynamic critical
exponent is z ≈ 1 and the dynamic correlation function collapses on an interval of the
same length as in measured swarms. Close to the critical line βc(N; η) and for fixed N
and η, there are other critical lines obtained from the inflection point and local maximum
of the susceptibility versus confinement curve. As N → ∞, βc(N; η) ≈ 0.48βi(N; η) and
βc(N; η) ≈ 0.37βm(N; η). Thus, the three lines represent a narrow criticality region, col-
lapse at the same rate to β = 0 as N → ∞ and stand for the same phase transition. Different
exponent z on the lines may reflect the multiplicity of time and length scales involved in
the chaotic attractors. The particle swarms at the scale-free-chaos phase transition share
qualitative features and similar critical exponents of insect swarms. Our simulations also
point to a different phase transition reminiscent of gravitational collapse to clusters of
finite size containing infinitely many particles.

This work paves the way to studies in many directions. Possible directions consist of
exploring other possible transitions on chaotic and non-chaotic windows of the parame-
ter space and the effect of anisotropic confinement on the phase transition studied here.
Exploring a possible phase transition to flocking black holes in self-gravitating models of
swarms (Gorbonos et al. 2016) might be worth pursuing. On the theoretical side, can we
find the invariant measure of the chaotic attractors and characterize scale-free-chaos phase
transitions as N → ∞ in terms of the invariant measure? This could bring together dy-
namical systems and nonequilibrium statistical mechanics studies and yield fruitful new
ideas and methods.

3.5 Summary

We have found two phase transitions within the 3D Vicsek Model confined by a harmonic
potential. One of them can yield information on swarms of midges (Scale free chaos) and
the other with respect to gravitational collapse (Flocking black hole).
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Scale free chaos phase transition:

In this chapter we have found three critical lines within the noisy chaos and near transi-
tion from a single chaotic cluster to a chaotic multi-cluster. One critical line refers to the
minimum of the correlation (relaxation) time, βc, another line to the inflection point of the
susceptibility versus the control parameter β (maximum chaos), βi, and a local maximum
of the susceptibility versus β, βm. These three critical lines tend to zero with the same
exponents (they decay at the same rate) when N → ∞. We can therefore calculate the
power laws and their respective static critical exponents with any critical line for a suffi-
ciently large value of N. Calculated with respect to the betac we obtain ν = 0.436±0.009,
γ = 0.92 ± 0.05 and b = 0.58 ± 0.01 for the correlation length, susceptibility and the
time-averaged order parameter, respectively. Entering into the critical exponents calcu-
lated in the midges swarms with their errors: ν = 0.35± 0.10 and γ = 0.9± 0.2 (Attanasi,
Cavagna, L. D. Castello, et al. 2014).

Another important point is the corresponding dynamic correlation function. From
there we can obtain the dynamic critical exponent z with βc, z = 1.01± 0.01 with βi ≈ 1.5
and z with βm ≈ 2, by means of the collapse of the dynamic correlation function, or the
power law τk ∼ k−z

c for βc. Observing that the collapse only takes place at initial times,
that the critical exponents are different at different critical lines and that the chaotic attrac-
tor has multifractal dimension, we conclude that there are different temporal and spatial
scales within the chaotic attractor both theoretically and experimentally. The collapse of
the correlation function βc is identical to that of swarms of midges and the critical expo-
nent z = 1.12 ± 0.16 (Cavagna, Conti, et al. 2017) falls within the value of the exponent
with βc. Another important quality of this phase transition is the flatness at the origin
t = 0, which is an important property of swarms of midges.

By dealing with a transition from chaos to chaos, we can obtain a new power law with
respect to the Largest Lyapunov Exponent: λ1 ∼ β

φ. In this way we check that in the
thermodynamic limit the critical point is λ1 → 0. The critical exponent φ = 0.43 ± 0.03,
conjecturing that φ = zν. This critical exponent needs to be calculated experimentally.

Finally, it has been observed that the results are the same even if the correlation func-
tions are calculated by extracting the dilation and rotation modes as without extracting
them.

Flocking black hole phase transition:

This phase transition belongs to the global maximum of the susceptibility versus the con-
trol parameter β. In this case flocks of subgroups are found moving around the origin
(0,0,0). The correlation length remains constant with respect to the increase in N. That
means that the subgroups of correlated particles do not grow in size, and therefore the
density of these clusters grows to infinity as N → ∞. In this way we can capture some
critical exponents ν = 0.35 ± 0.08 and γ = 0.97 ± 0.08, being the same ones that exist in
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the literature on gravitational collapse.

Appendix 3.A Dynamic and static connected correlation
functions

Definitions. Following Refs. (Attanasi, Cavagna, L. Del Castello, et al. 2014; Attanasi,
Cavagna, L. D. Castello, et al. 2014), we define the dynamic connected correlation func-
tion (DCCF) as

C(r, t)=
⟨︄∑︁N

i=1
∑︁N

j=1, j≠i δv̂i(t0)·δv̂ j(t0+ t)δ[r− ri j(t0, t)]∑︁N
i=1

∑︁N
j=1, j≠i δ[r − ri j(t0, t)]

⟩︄
t0

(3.14)

C(r) = C(r, 0),

δv̂i=
δvi√︂

1
N

∑︁
k δvk · δvk

, δvi = vi − V,

ri j(t0, t) = |ri(t0) − r j(t0 + t)|, ri(t0) = xi(t0) −
1
N

N∑︂
j=1

x j(t),

⟨ f ⟩t0 =
1

tmax − t

tmax−t∑︂
t0=1

f (t0, t).

In these equations, δ(r− ri j) = 1 if r < ri j < r+ dr and zero otherwise, and dr is the space
binning factor. The usual dynamic correlation function and susceptibility in statistical
mechanics are

C(r, t) = ⟨(ϕ(0, 0) − ⟨ϕ(0, 0)⟩)(ϕ(r, t) − ⟨ϕ(r, t)⟩)⟩, (3.15a)

χ =

∫︂
C(r, 0) dr = Ĉ(0, 0), (3.15b)

respectively, where ⟨. . .⟩ are averages over the appropriate ensemble average and we have
set t0 = 0. In Appendix 3.B, we show two solvable examples indicating the relation
between correlation time and susceptibility for different dynamics, which may or may not
lead to thermal equilibrium.

In Eq. (3.14), we have replaced arithmetic means instead of the ensemble averages and
added a time average. Dropping the condition j ≠ i adds one term proportional to δ(r) to
numerator and denominator of Eq. (3.14), which is the choice made in Refs. (Cavagna,
Conti, et al. 2017; Cavagna, Giardina, et al. 2018).

The function C(r, t) sums all the products δvi(t0) · δv j(t0 + t) for those pairs i and j
with a distance ri j(t0, t) between r and r + dr, and then divides by the number of such
pairs (denominator). It depends only on the distance r at time t because inter-particle
interactions are local and distance dependent. The static connected correlation function
(SCCF) is the equal time connected correlation function given by Eq. (3.14). As discussed
in (Cavagna, Giardina, et al. 2018), these definitions are inspired in statistical mechanics
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taking into account
∑︁

j δv̂ j = 0 because ensemble averages have been replaced by averages
over the particles.

Susceptibility. For a SCCF that decays exponentially, the correlation length ξ is such
that C(ξ) = 1/e. In the present work, there is finite size scaling (Attanasi, Cavagna, L. Del
Castello, et al. 2014; Attanasi, Cavagna, L. D. Castello, et al. 2014; Cavagna, Conti, et
al. 2017) and C(r) or C(r, t) do not decay exponentially with r and can take on negative
values. Then the correlation length ξ is the first zero of C(r), corresponding to the first
maximum of the cumulative correlation function (Attanasi, Cavagna, L. Del Castello, et
al. 2014; Attanasi, Cavagna, L. D. Castello, et al. 2014):

Q(r) =
1
N

N∑︂
i=1

N∑︂
j≠i

δv̂i ·δv̂ jθ(r − ri j), χ = Q(ξ), (3.16)

ξ = argmaxQ(r), C(ξ) = 0 with C(r) > 0, r ∈ (0, ξ),

where θ(x) is the Heaviside unit step function. It turns out that this correlation length
ξ is proportional to the swarm size ℓ, which is the hallmark of scale free behavior. At
equilibrium, the susceptibility measures the response of the order parameter to changes
in an external field linearly coupled to it, and equals the integral of the SCCF (3.15b)
with C(r) > 0. A susceptibility thus defined would be Q(∞). However, by Eq. (3.16),
Q(∞) = Q(ℓ) = −1 because θ(ℓ − ri j) = 1 and

∑︁
i δv̂i = 0. Thus, we cannot define

susceptibility by Eq. (3.15b). Instead, we define susceptibility χ as the value of Q(r) at its
first maximum, as in Eq. (3.8), and Refs. (Attanasi, Cavagna, L. Del Castello, et al. 2014;
Attanasi, Cavagna, L. D. Castello, et al. 2014). For values of N corresponding to insects
in measured swarms, our numerical simulations produce susceptibility values defined by
Eq. (3.16) between 0.7 and 1.2, which are included in the measured interval (0.32, 5.57)
(Attanasi, Cavagna, L. Del Castello, et al. 2014; Attanasi, Cavagna, L. D. Castello, et al.
2014).

Figure 3.10: (a) Log-log scale plot of the susceptibility as given by maxkĈ(k, 0) of
Eq. (3.1) versus βc. (b) Scaled susceptibility versus scaled confinement showing data
collapse at the inflection point (square) and the local maximum (triangle) of the suscep-
tibility. The local maximum is followed by a plateau of the scaled confinement. Here
η = 0.5, νi = 0.44, γi = 1.2.
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Figure 3.11: The correlation length ξ = 1/kc computed from the static correlation function
in Fourier space as a function of the correlation length ξ = r0 computed from the static
correlation function in real space.

At equilibrium and for N = ∞, the susceptibility becomes infinity at critical points
and it marks a phase transition. The susceptibility scales as

χ(x) ∼ (x − xc)−γ, (3.17)

where x is the control parameter and xc the value thereof for N = ∞. In our case,
x = βc(N, η) and xc = βc(∞, η) = 0, which produces γ = 0.92 ± 0.05 as shown in
Fig. 3.4(b). Eq. (3.1) is related to the Fourier transform of C(r, t), as discussed in (Cav-
agna, Giardina, et al. 2018). Fig. 3.10(a) shows that Ĉ(k, 0) of Eq. (3.1) oscillates with
βc(N; η). Thus, maxk Ĉ(k, 0) is not a convenient definition of susceptibility. Contrast-
ingly, Fig. 3.4(b) plots the real-space susceptibility maxrQ(r) using many more values,
500 ≤ N ≤ 5000, which makes this fitting more reliable. Fig. 3.10(b) shows data col-
lapse of scaled susceptibility and scaled confinement at βi (susceptibility inflection point)
and βm (susceptibility local maximum). For our data, the relation between the correlation
length as defined by Eq. (3.16) and 1/kc, given by kc = argmaxkĈ(k, 0) is

1
kc
= 0.44 r0 + 0.36; (3.18)

see Fig. 3.11. Since our unit of length is 4.68 cm, the straight line in Fig. 3.11 is quite
close to that of Fig. SF1 of (Cavagna, Conti, et al. 2017) (Supplementary data) obtained
from measurements in natural midge swarms.

The global maximum of the susceptibility gives multicluster behavior as in Fig. 3.12(a).
For larger values of β, some particles start being confined in a sphere centered at the origin
and their number increases with β, as shown in Figs. 3.12(b-c).

Perception range. Instead of setting x = β, we can use the rescaled average nearest
neighbor distance x = r1/R0 (perception range, inversely proportional to density), as in
(Attanasi, Cavagna, L. Del Castello, et al. 2014; Attanasi, Cavagna, L. D. Castello, et al.
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Figure 3.12: Chaotic swarms of N = 300 particles showing short trajectories of the parti-
cles for confinements and η = 0.5: (a) β = argmax χ(β) = 19.8 (global maximum without
subtracting rotation and dilation from CM motion). (b) For β = 21, three chaotic clusters
move around a central sphere (located by a black circle) where other particles are con-
fined; and (c) for β = 25, only two chaotic clusters remain and more particles are trapped
in the central sphere.

2014). The perception range is calculated as the time average of the arithmetic mean of
the minimal distance between each particle and its closest neighbor. We find a critical
perception range xc = 2.945 ± 0.047, with (x − xc) proportional to β. This is larger
than xc = 0.421 ± 0.002 at the order-disorder transition of the standard VM (Attanasi,
Cavagna, L. Del Castello, et al. 2014; Attanasi, Cavagna, L. D. Castello, et al. 2014),
indicating a less dense swarm at critical confinement. As xc = 12.5±0.1 in natural swarms
(measured in units of the average insect size) (Attanasi, Cavagna, L. Del Castello, et al.
2014; Attanasi, Cavagna, L. D. Castello, et al. 2014), the critical perception range is 4.2
insect bodies for the scale-free chaotic transition of the confined Vicsek model versus 30
insect sizes at the ordering transition of the VM with periodic boundary conditions. At
the phase transition to clusters of finite size containing infinitely many particles, x→ 0 as
x ∼ β−ν and χ ∼ βγ, with βM → ∞ for N → ∞. The critical exponents for this transition
are ν = 0.33 and γ = 1.03.

As chaos disappears when β→ 0, it may seem surprising that an ordered chaotic phase
is less dense than the disordered phase at the larger noise of the order-disorder transition
for the standard VM with periodic boundary conditions. Recall that density is inversely
proportional to the average nearest neighbor distance (perception range). However, the
confined VM does not morph seamlessly to the standard VM as βc(N; η) → 0. Firstly,
confinement by a harmonic potential and confinement due to a large box with periodic
boundary conditions are qualitatively different and they may not produce the same swarm
patterns in the thermodynamic limit. Secondly, the standard VM with periodic boundary
conditions experiences a crossover to a discontinuous order-disorder phase transition for
N ≫ 1 (Grégoire et al. 2004; Chaté and Mahault 2019; Chaté 2013). Thirdly, the noise
values (η = 5.65 in our units) for which the confined VM and the standard VM with
periodic boundary conditions have similar critical behaviors according to (Attanasi, Cav-
agna, L. D. Castello, et al. 2014; Attanasi, Cavagna, L. Del Castello, et al. 2014; Cavagna,
Conti, et al. 2017) are much larger than the noisy chaos interval of Fig. 2.3(a). Thus, we
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think that the scale-free-chaos phase transition of the confined VM as β→ 0 is not related
to the continuous ordering transition of the standard VM.

Numerical calculation of the connected correlation functions. Fixing the parameters
N, η and β, we simulate the VM for five different random initial conditions during 10000
iterations. After a sufficiently long transient period, the polarization of Eq. (2.4) fluctuates
about a constant value. Once this regime is established, we use the last 2000 iterations to
calculate the static correlation function Ĉ(k, 0), whose first maximum provides the critical
wave number kc. Using the definition in Eq. (3.1) and averaging over the five realizations,
we obtain the time dependent correlation function.

Rotation and dilation. In Refs. (Attanasi, Cavagna, L. D. Castello, et al. 2014; At-
tanasi, Cavagna, L. Del Castello, et al. 2014), the average swarm velocity is defined sub-
tracting overall rotations and dilations from V at each time step. Note that an overall
rotation does not change the distance between trajectories (which are used to calculate
Lyapunov exponents) but an overall dilation does. To subtract an overall rotation, we
proceed as follows. The fluctuations of the velocity are

δvi(t + 1) = yi(t + 1) − yi(t), (3.19a)

yi(t) = xi(t) − X(t), (3.19b)

X(t) =
1
N

N∑︂
j=1

x j(t), (3.19c)

X(t + 1) − X(t) = V(t + 1). (3.19d)

We can define the optimal rotation matrix as the 3×3 orthogonal matrix U that minimizes

U = argminUT U=I

⎡⎢⎢⎢⎢⎢⎣1
2

N∑︂
i=1

[yi(t + 1) − Uyi(t)]2

⎤⎥⎥⎥⎥⎥⎦. (3.20a)

The optimal dilation is

Λ = argminΛ

⎡⎢⎢⎢⎢⎢⎣1
2

N∑︂
i=1

[yi(t + 1) − ΛUyi(t)]2

⎤⎥⎥⎥⎥⎥⎦. (3.20b)

From (Kabsch 1976), the optimal rotation matrix for Eq. (3.20a) is

Ui j =

N∑︂
k=1

BkiAk j, (3.21a)

Bki =

N∑︂
n=1

3∑︂
l=1

Yni(t + 1)Ynl(t)
Akl
√
µk
, (3.21b)

where Yni(t) is the N × 3 matrix formed by the components of the vector yn(t). The
orthogonal matrix Akl is formed by the orthogonalized eigenvectors of the eigenvalue
problem

N∑︂
lm=1

N∑︂
n,p=1

[Yli(t)Yln(t + 1)Ymp(t)Ymn(t + 1)]Akp = µkAki, (3.21c)

µk ≥ 0,
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for the 3 × 3 positive semidefinite symmetric matrix within square brackets appearing in
this expression. In the generic case, the three eigenvalues µk are positive. If one eigenvalue
is zero, e.g., µ3 = 0, then Eq. (3.21b) yields only two vectors, B1i, B2i, corresponding to
the eigenvectors with nonzero eigenvalues, A1i, A2i. The other eigenvector A3i and B3i are

A3i =

3∑︂
j,k=1

ϵi jkA1 jA2k, B3i =

3∑︂
j,k=1

ϵi jkB1 jB2k, (3.21d)

where ϵi jk is the completely antisymmetric unit tensor with ϵ123 = 1 (Kabsch 1976). With
these definitions of A3i and B3i, Eq. (3.21a) holds.

To subtract overall dilation, we use the optimal dilation matrix from Eq. (3.21b),

Λ =

∑︁N
j,k=1

∑︁N
i,l=1 Y jl(t + 1)BkiAklY jl(t)∑︁N

j,k=1
∑︁N

i,l=1[BkiAklY jl(t)]2
. (3.21e)

Then the fluctuations in Eq. (3.1) are (Attanasi, Cavagna, L. Del Castello, et al. 2014)

δvi(t0) = yi(t0 + 1) − ΛUyi(t0). (3.22)

Note that
∑︁

i δvi(t0) =
∑︁

i yi(t0 + 1) − ΛU
∑︁

i yi(t0) = 0. Subtracting only overall rotations,
we would use δvi(t0) = yi(t0 + 1) − Uyi(t0) instead of Eq. (3.22).

Figure 3.13: Normalized dynamic correlation function with ξ = 1/kc for different values
of β calculated from (a) Eq. (3.1) and (b) from Eq. (3.1) subtracting rotation and dilation
in the velocity fluctuations. Here, N = 300, η = 0.5.

Results. Figs. 3.13(a) and 3.13(b) compare the NDCCF g(t) calculated as in Eq. (3.1)
and the same function subtracting rotation and dilation. We observe that both functions
look alike and that subtracting rotation and dilation changes slightly the times tm(β,N)
where g(tm) = 0. Then the critical line βc(N, η) is unchanged by subtractions of rotation
and dilation; see also Fig. 3.14 for the collapse of the NDCCF with dynamical exponent
z. The relation (3.18) becomes kcr0 = 2 after subtractions. We expect small rotation and
dilation for single-cluster chaos and larger rotation and dilation for multicluster chaos.
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Figure 3.14: Same as Figure 3.1 but calculated subtracting rotation and dilation: NDCCF
g(t) versus (a) t and (b) kzt with z = 1.00 ± 0.03.

Figure 3.15: (a) Correlation time versus β at the critical line βc(N; 0.5). (b) Susceptibility
versus β at the critical line βi(N; 0.5). Both power laws calculated subtracting rotation and
dilation from CM motion.

Thus, subtracting rotation and dilation brings down g(t). In in Fig. 3.13, this effect is
largest for β = 0.025, well inside the region of multicluster chaos.

The critical lines βc(N; η) and βi(N; η) do not change by subtractions from CM motion
but the local maxima defining the line βm(N; η) disappear. The critical exponent ν =
0.45 ± 0.02 rests unchanged by subtractions. However, for N ≤ 2000, γi = 0.70 ± 0.06
(on the line of inflection points of χ vs β) drops from the value 1.2 obtained without
subtractions, cf Fig. 3.15(b). Together with the larger value of the polar order parameter,
this confirms that the critical line βi(N; η) lies in the multicluster chaos region where
rotation and dilation effects are more prominent; see Fig. 2.4(c) and Figs. 3.12 for pictures
of swarms splitting into different clusters.

The global maxima βM(N; η) of the susceptibility vs confinement curve in Fig. 3.5(a)
move to the end of the first chaotic window when subtracting rotation and dilation from
CM motion and do not correspond to scale free transitions. Fig. 3.16(a) shows that the
correlation length for these states does not change with the number of particles maxima
and is no longer proportional to the swarm size. At the line βM(N; η), chaos is multicluster
and rotation and dilation effects are stronger. As shown in Figs. 2.4 and 3.16(b), these
chaotic clusters are not connected, and their correlation length remains unchanged with
N: it takes on a value similar to the diameter of the sphere of influence (2.5 versus 2, in
nondimensional units). In conclusion, using the critical lines βc(N; η) and βi(N; η) (for
which rotation and dilation effects are very minor), and not βm(N; η), is crucial to unveil
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Figure 3.16: (a) Correlation length versus N obtained without (triangles) and with
(crosses) subtraction of rotation and dilation from CM velocity at confinements corre-
sponding to the susceptibility maximum. (b) Chaotic swarm showing short trajectories of
300 particles for βM(N; η): Subtractions shift the critical line to larger confinement well
inside the multicluster chaos region. Here, η = 0.5.

the scale-free-chaos phase transition in the limit of infinitely many particles.

Appendix 3.B Susceptibility and correlation time

Here we illustrate the relations between reciprocal correlation time and singularities of
the susceptibility by solvable examples. Note that these examples could be linearizations
of stochastic equations about a time-independent homogeneous state. Thus, they are still
far from the phase transition about a chaotic spatially non-homogeneous state and are not
directly applicable to the confined VM.

I. Consider the diffusive and noisy overdamped oscillator

∂ϕ

∂t
= D∇2ϕ − ω2

0ϕ +
√

2T ξ(x, t), (3.23a)

where ξ(x, t) is a zero mean delta correlated white noise. The equilibrium probabil-
ity density corresponding to Eq. (3.23a) is Z−1e−

∫︁
H dx/T , with hamiltonian density H =

(D|∇ϕ|2 + ω2
0ϕ

2)/2 and temperature T . The Fourier transformed solution and the Fourier
transformed correlation function are

ϕ̂(k, t) =
∫︂ t

−∞

e−(ω2
0+Dk2)(t−s)ξ̂(s, k) ds, (3.23b)

Ĉ(k, t) = 2T
∫︂ t0

−∞

e−(ω2
0+Dk2)(t0−s)e−(ω2

0+Dk2)(t0+t−s)ds

=
T

ω2
0 + Dk2

e−(ω2
0+Dk2)t. (3.23c)

Here we have taken the initial time to be −∞ and a zero initial condition. Instability of the
trivial state ϕ = 0 is reached whenω2

0 = 0, k ∝ 1/L = 0, which is pole of the susceptibility,
Ĉ(0, 0) = T/ω2

0, and, equivalently, infinite value of the maximal correlation time, 1/ω2
0.

The nonlinear version of Eq. (3.23a),

∂ϕ

∂t
= D∇2ϕ − ω2

0ϕ − ζϕ
3 +
√

2T ξ(x, t), (3.23d)
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produces an equibilibrium probability density corresponding to the Landau-Wilson hamil-
tonian density H = (D|∇ϕ|2 + ω2

0ϕ
2)/2 + ζϕ4/4, which has a paradigmatic second order

phase transition provided ω2
0 may become negative (Amit et al. 2005).

II. To ascertain the influence of dynamics, consider the underdamped version of Eq. (3.23a):

∂2ϕ

∂t2 + 2ωd
∂ϕ

∂t
= D∇2ϕ − ω2

0ϕ +
√︂

4ω′dT ξ(x, t). (3.24a)

Proceeding as before, we find

ϕ̂(k, t) =
∫︂ t

−∞

G(t − s; k)ξ̂(s, k) ds, (3.24b)

G(t; k) = e−ωdt sin[Ω(k)t]
Ω(k)

θ(t), (3.24c)

Ω(k) =
√︂
ω2

0 + Dk2 − ω2
d, (3.24d)

Ĉ(k, t) = 4Tω′d

∫︂ ∞

0
G(s; k)G(t + s; k) ds

=
Tω′de−ωdt

ω2
0 + Dk2

(︄
cos[Ω(k)t]
ωd

+
sin[Ω(k)t]
Ω(k)

)︄
, (3.24e)

χ = Ĉ(0, 0) =
Tω′d

(ω2
0 + Dk2)ωd

. (3.24f)

Here we assume Ω(k)2 > 0. For ω′d = ωd, the underdamped dynamics about thermal
equilibrium yields the same susceptibility as Eq. (3.23c). The pole of the susceptibility
is again ω0(k)2 = ω2

0 + Dk2. Allowing ω2
0 to change sign and adding a nonlinearity as in

Eq. (3.23d) leads to the same equilibrium phase transition as Eq. (3.23a). However, for
0 < ω′d ≠ ωd, ω2

0 > 0, and allowing ωd to change sign, the system cannot reach thermal
equilibrium as it did in the overdamped case. We have an additional pole of the sus-
ceptibility (3.24f), ωd, which coincides with the reciprocal relaxation time of Eq. (3.24e).
Adding a nonlinearity −ζϕ2∂ϕ/∂t to the right hand side of Eq. (3.24a) may produce a quite
different van der Pol-like instability and phase transition for ωd < 0. Certainly, the van der
Pol limit cycle appears as a supercritical Hopf bifurcation (Kuznetsov 2004) and the cor-
responding nonequilibrium phase transition would be similar to that analyzed in (Risler
et al. 2005) by RG calculations. For this nonequlibrium phase transition, vanishing of the
reciprocal relaxation time coincides with vanishing of the pole ωd = 0.





CHAPTER 4

Immersed boundary approach to biofilm spread
on surfaces

4.1 Introduction

In this chapter, we propose a computational model of bacterial biofilms (see Section 1.2)
that combines an immersed boundary (IB) description of cellular arrangements and me-
chanical interactions with a dynamic energy budget (DEB) representation of bacterial
activity and chemical processes, including the action of toxicants. Modeling biofilm re-
sponse to antibiotics is a crucial issue in their study (Høiby et al. 2010). The chapter is
organized as follows. Section 4.2 introduces the submodels for the different mechanisms.
Section 4.3 nondimensionalizes the equations. Computational issues are discussed in
Section 4.4, while presenting numerical simulations for horizontal spread of spherical
and rod-like bacteria. In configurations of spatial competition between spherical and rod-
shaped bacteria, rod-shaped bacteria seem to dominate. Rod-like bacteria tend to align.
We are able to study geometrical arrangements, formation of porous structures and in-
teractions with inner flow processes. Section 4.5 considers spread of slices on barriers.
While variations in the limiting concentration lead to finger formation, addition of toxi-
cants results in shrinking aggregates. Finally, Section 4.6 shows how biofilm extinction
can be achieved combining two types of antibiotics, one targeting active cells in the outer
layers and another one targeting dormant cells in the biofilm core. Section 4.7 summarizes
our conclusions.

59
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4.2 Model

Taking the IB point of view (Peskin and McQueen 1995; Peskin 2002), we consider
the biofilm as a collection of spherical or rod-like cells, represented by their boundaries,
immersed in a viscous fluid and subject to forces representing interactions, which are
influenced by cell activity as we describe next. We will formulate the model in 2D.

4.2.1 Immersed boundary representation

Let us first describe the basic geometrical arrangement. To fix ideas, we consider the
schematic structure depicted in Figure 1.2, a region Ω containing fluid and bacteria. We
characterize bacteria by immersed boundaries representing their membranes. We assume
the immersed boundaries have zero mass and are permeated by fluid. This liquid contain-
ing dissolved substances is considered incompressible. To simplify, we assume that the
properties of the liquid are uniform.

The governing equations are established in (Peskin and McQueen 1995; Peskin 2002).
We summarize them here, including variations to adapt them to our biofilm framework:

• Incompressible Navier-Stokes equations in Ω with friction

∂u
∂t
+ u · ∇u = ν∆u −

1
ρ
∇p +

1
ρ

f −
α

ρ
u, div(u) = 0, (4.1)

where u(x, t) and p(x, t) are the fluid velocity and pressure, while ρ, ν = µ

ρ
and α

stand for the fluid density, kinematic viscosity and friction coefficient, respectively.
The source f represents the force density, that is, force per unit volume.

• Force spread. The force f(x, t) created by the immersed boundary (IB) on the fluid
is given by

f(x, t) =
∫︂
Γ

F(q, t)δ(x − X(q, t)) dq, (4.2)

where X(q, t) is the parametrization of an immersed boundary Γ, and F(q, t) the
force density on it. The integration parameters q represent 3D angles.

• Velocity interpolation. The evolution equation for the IB

∂X
∂t
=

∫︂
Ω

u(x, t)δ(x − X(q, t)) dx + λ
(︁
(Fg · n)n + Fext

)︁
, (4.3)

is obtained correcting the no-slip condition with a term representing the contribu-
tion of the growth forces Fg on the IB. n stands for the unit outer vector. Notice that
elastic forces within the IB do not contribute to this term because they are tangent to
the normal Fe · n = 0. Fext represents additional external forces that move bacteria
as blocks, it includes at least interaction forces Fi. The adjusting factor λ has units
s

kg .
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Fluid-structure interaction is mediated by delta functions δ. In practice, the δ function
is replaced for computational purposes with approximations which scale with the mesh-
width like 1/L3 in 3D. Adequate regularizations are discussed in (Peskin and McQueen
1995; Peskin 2002). We locate the immersed boundaries far from the borders of the com-
putational domain, and enforce periodic boundary conditions for the fluid on them.

The above equations differ from standard IB models in two respects. First, we include
friction in Navier-Stokes equations (4.1) as a way to represent the presence of polymeric
threads hindering bacterial displacement. We could include threads joining the cells as
part of the immersed structures, but we have chosen to represent their influence through
friction in the fluid and interaction forces between the bacteria, to be described later.
Second, we consider that the forces on the immersed boundaries are more general than
just the elastic forces within it. This results in the addition of the term (Fg ·n)n in equation
(4.3) for their dynamics and allows to connect the growth forces to a description of cell
metabolism.

4.2.2 Forces

In our case, the IB X is composed of many disjoint boundaries X j, j = 1, . . . ,N, repre-
senting the membranes of individual bacteria. The total force density F on the IB is the
sum of several contributions.

• Elastic forces Fe. In general, the elastic forces take the form Fe = −
∂E
∂X , where E(X)

is an elastic energy functional defined on the immersed boundary configuration X.

In a two dimensional setting, and assuming the boundary is formed by Hookean
springs with zero rest length and parametrized by the angle θ, the force would be

Fe =
∂

∂θ

(︄
K
∂X
∂θ

)︄
, (4.4)

for an elastic parameter K (spring constants have units N/m). If we modify formula
(4.2) to calculate a force per unit area f

f(x, t) =
∫︂ 2π

0
F(θ, t)δ(x − X(θ, t)) dθ, (4.5)

then δ should include units 1/L2. These forces are calculated on each component
X j, j = 1, . . . ,N.

• Interaction forces Fi. Bacteria adopt typically spherical (coccus), rod-like (Bacil-
lus, Pseudomonas) or spiral (Vibrio) shapes. We focus on the first two types here.
Bacteria in a biofilm loose their cilia and flagella, that is, their ability to move on
their own. On one hand, there are repulsive forces between membranes that prevent
bacteria from colliding. On the other, polymeric threads keep bacteria together. As
mentioned earlier, we might add a thread network. However, we choose to represent
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their action by means of a friction term in Navier-Stokes equations. In this way, we
avoid adding thread networks to keep cells together. We just need to separate the
cells as they grow or divide.

When the distances between bacteria are below a critical distance, repulsion forces
act fast. The repulsion force Fi, j acting on each bacterium with boundary X j, j =
1, ...,N, depends on the distance between all pairs. For spherical bacteria, we set
the force as follows:

Fi =
∑︁N

j=1 Fi, jδ j,

Fi, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑︂
n=1,n≠ j

σ

dmin
ncm,n, j if d j,n ≤ dmin,

N∑︂
n=1,n≠ j

σ
(︂
1 + tanh

(︂ sp−d j,n

vp

)︂)︂
2d j,n

ncm,n, j if d j,n > dmin,

(4.6)

where σ is the repulsion parameter with appropriate units, d j,n is the smallest dis-
tance between the curves defining bacteria j and n, N is the number of bacteria, and
ncm,n, j =

Xc, j−Xc,n

∥Xc, j−Xc,n∥
is the unit vector that joins the centers of mass, oriented from n

to j. Here, δ j takes the value 1 at the nodes of the cell boundary X j and vanishes on
other cell boundaries. Additional parameters govern the minimum value dmin that
d j,n can take, the order of magnitude of this force sp, and the decay as the distance
decreases vp. These forces are similar for spheres and rods, changing the parameter
values, see Table 4.3.

• Growth forces Fg. Growth of spherical bacteria is described through variations in
their radius, whereas rod-like bacteria grow in length. Assuming the rate of growth
of their radius (resp. lengths) are known, the effect on each cell boundary would be,
for spheres,

dR j

dt
X j − Xc, j

∥X j − Xc, j∥
=

dR j

dt
n, j = 1, . . . ,N, (4.7)

where R j and Xc, j denote the radius and center of the bacterium X j. For rods, growth
forces act on the edges, forcing a change of length

1
2

dL j

dt
l, j = 1, . . . ,N, (4.8)

where l is an outer unit vector along the rod axis. Notice that for spheres ( dR j

dt n ·
n)n = dR j

dt n whereas for rods ( dL j

dt l · n)n ∼ 0 except on the rod edges. We take Fg

proportional to these growth factors.

Our description of cell metabolism in Section 4.2.3 provides the required equations
for the time dynamics of radii R j and lengths L j.

Finally, the total force we have to spread to the fluid through (4.2) or (4.5) is the sum
of all the forces F = Fe − Fi + Fg.
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4.2.3 Cellular activity

We describe bacterial metabolism by means of a dynamic energy budget approach (Birnir
et al. 2018; Kooijman 2008; Klanjscek et al. 2012):

• Dynamic energy budget equations for cell metabolism. Bacteria transform nutrients
and oxygen in energy, which they use for maintenance, growth and division. In a
biofilm, some cells undergo phenotypical changes and start performing new tasks.
For instance, some become producers of exopolysaccharides, that is, the extracel-
lular polymeric substances forming the biofilm EPS matrix. This is more likely for
cells with scarce resources (Høiby et al. 2010; Chai et al. 2011) to sustain normal
reproduction and growth.

Given an aggregate formed by N bacteria, their energy e j and volume V j, j =
1, ...,N, evolve according to

de j

dt
= ν′

(︂
S

S+KS
− e j

)︂
, ν′ = νe−γε

(︄
1 +

Cout

Kv

)︄−1

, (4.9)

dV j

dt
=

(︂
r j

a j

aM
− h j

)︂
V j, r j =

(︄
ν′e j − mg

e j + g

)︄+
, (4.10)

where ν is the energy conductance, ν′ the conductance modified by exposure to a
toxicant, m the maintenance rate, g the investment ratio, aM the target acclimation
energy, KS a half-saturation coefficient, KV the noncompetitive inhibition coeffi-
cient and γ the environmental degradation effect coefficient. The factor r j denotes
the bacterial production rate. The symbol + stands for ‘positive part’, which be-
comes zero for negative values. The variables S , Cout, ε denote the limiting nutri-
ent/oxygen concentration, the concentration of toxic products, and the environmen-
tal degradation, respectively. Note that, for spherical bacteria with radius R j, we
have V j =

4
3πR

3
j . In 2D, V j = πR2

j , and (4.10) implies

2
dR j

dt
=

(︂
r j

a j

aM
− h j

)︂
R j. (4.11)

For rod-like bacteria of radius R and length L j, V j ∼ πR2L j. In 2D, V j ∼ 2RL j.

For ellipsoidal approximations, V j = πbL j, where b is the small and L j the great
semi-axes, with

dL j

dt
=

(︂
r j

a j

aM
− h j

)︂
L j. (4.12)

These equations must be complemented with equations for cell response to the
degradation of the environment and the accumulation of toxicants. The cell un-
dergoes damage, represented by aging q j and hazard h j variables, as well as accli-
mation, represented by the variable a j. For j = 1, . . . ,N, these additional variables
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are governed by

dq j

dt
= e j(sGρx

V j

VT
q j + ha)(ν′ − r j) + ktoxCin, j − (r j + re, j)q j, (4.13)

dh j

dt
= q j − (r j + re, j)h j, (4.14)

dp j

dt
= −h j p j, (4.15)

dCin, j

dt
= kinCout − koutCin, j − (r j + re, j)Cin, j, (4.16)

da j

dt
= (r j + re, j)

(︄
1 −

a j

aM

)︄+
, (4.17)

where ρx is the cell density, sG a multiplicative stress coefficient, ha the Weibull
aging acceleration, and ktox, kin, kout the toxicity, influx coefficient and efflux co-
efficient of toxicants, respectively. The variable Cin, j denotes the toxicant cellular
density inside the cell and p j its probability of survival at time t. The factor re, j is
non zero only when the cell is an EPS producer (the values of the parameters m and
g may be slightly different for such cells). In that case the rate of EPS production
re, j = kr j + k′, where k is the growth associated yield whereas k′ is the non growth
associated yield. The produced EPS is then

dVe, j

dt
= re, jV j. (4.18)

A fraction 1−η of the produced EPS stays around the cell, while a fraction η ∈ (0, 1)
diffuses taking the form of a concentration of monomers Ce.

• Equations for concentrations. System (4.9)-(4.17) describes the metabolic state
of each bacterium, and is coupled to reaction-diffusion equations for the relevant
concentrations in Ω:

∂S
∂t
= −ν′

S
S + KS

ρx

∑︂
j

V j

VT
δ j + ds∆S − u · ∇S , (4.19)

∂Ce

∂t
= ηρx

∑︂
j

re, j
V j

VT
δ j + de∆Ce − u · ∇Ce, (4.20)

∂Cout

∂t
= −Cout

∑︂
j

r jδ j + dc∆Cout − u · ∇Cout, (4.21)

∂ε

∂t
= νερx

∑︂
j

(r j + νmm)
V j

VT
δ j + dε∆ε − u · ∇ε, (4.22)

where νε is the environmental degradation coefficient, νm is the maintenance respira-
tory coefficient and dε, ds, de, dc the diffusion coefficients for degradation ε, limiting
oxygen/nutrient concentration S , monomeric EPS Ce, and toxicants Cout, respec-
tively. Here δ j equals one in the region occupied by cell j, it vanishes otherwise.
VT is a reference volume. These equations are typically solved in the computational
domain with no flux boundary conditions, except for S , which has a constant supply
at the borders, and Cout which is supplied at the borders as prescribed.
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• Spread of cellular fields and interpolation of concentration fields. The system of
ordinary differential equations (4.9)-(4.18) and reaction-diffusion equations (4.19)-
(4.22) are coupled using a similar philosophy as that in IB models. However, now
we transfer information not between curves and a two dimensional region but be-
tween confined regions occupied by bacteria and the whole computational domain:

– Spread of fields defined on bacteria: Equations (4.19)-(4.22) use the cell vol-
umes and rates as sources and sinks for the concentrations.

– Interpolation of global fields on the bacteria: For each bacterium, system
(4.9)-(4.18) uses the averaged values of S , Cout, ε in the region occupied by the
cell. Cout represents the dissolved (extracellular) concentration of toxicants.

4.3 Nondimensionalization of the equations

For computational purposes, it is essential to nondimensionalize properly these sets of
equations. This allows us to identify relevant time scales for the different sets of equations,
as well as controlling parameters. To remove dimensions we have to choose characteristic
values for the different magnitudes. The characteristic length L will tell us what part of
the problem we want to focus on, that is, if we prefer to study what happens with the
whole set of bacteria and do not want to spend a lot of computational time solving for
details, or if we want to give more importance to what happens in the smaller areas. In
our case we are interested in small cell aggregates, so we will have a characteristic length
of L = 10[µm] (microns, 1µm = 10−6m), because it is about the maximum length of rod-
like bacteria. In general, it will be the size of a small group of them. Time scales vary:
microseconds for fluid processes, seconds for diffusion processes, and hours for cellular
processes.

Let us first consider the IB submodel. We set a characteristic time T = 10−6[s]. In
equation (4.1), the terms (ut + u∇u), ν∆u have the same units, regardless of dimension.
Let us set p′ = p

ρ
, α′ = α

ρ
. Then, f′ = f

ρ
has units of acceleration. Formally, one can just

suppress one dimension in the variables and derivatives and use in 2D:

∂u
∂t
+ u · ∇u = ν∆u − ∇p′ + f′ − α′u. (4.23)

As a reference acceleration, we set a0 =
E
ρL =

Es
ρsL , where Es is a longitudinal tension in

units [ N
m ] (Young modulus for springs) and ρs surface density in units [ kg

m2 ]. We know 3D
values for the parameters. The Young modulus E for bacterial membranes (Tuson et al.
2012) lies in the range 100 − 200 [MPa]. We set E = 150 MPa = 150 × 106 [ N

m2 ]. The
density of water/biomass ρ (Seminara et al. 2012) is about 103 [ kg

m3 ]. In this way, we find a
value for a0. Regarding the forces (4.2), for the elastic contribution we use (4.4) and (4.5)
in 2D, which relates force per unit area to force with δ in units of 1

L2 .
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Name Symbol Values Units
Biomass density ρ 103 [kg/m3]

Biomass viscosity µ 100 [kg/(m s)]
Bacterial membrane Young Modulus E 150 × 106 [kg/(m s2)]

Table 4.1: Values for dimensional parameters of the IB submodel expressed in their stan-
dard units taken from (Tuson et al. 2012) and (Seminara et al. 2012).

Performing the changes of variables indicated in Table 4.2 and dropping the˜symbol
for ease of notation we find the dimensionless IB system with parameters given by Tables
4.1-4.3:

∂u
∂t1
+u·∇u=

1
Re
∆u−∇p+Fcf−α0u, div(u)=0, (4.24)

f(x, t1) =
∫︂ 2π

0
F(θ, t1)δ(x − X(θ, t1)) dθ, X = ∪N

j=1X j, (4.25)

∂X
∂t1
=

∫︂
Ω

u(x, t1)δ(x − X(q, t1)) dx + λ0
(︁
(Fg · n)n + Fext

)︁
, (4.26)

F = Fe + Fg − Fi, (4.27)

Fe =
∂

∂θ

(︄
K0
∂X
∂θ

)︄
, Fext = Fi, (4.28)

Fi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑︂
j=1

N∑︂
n=1,n≠ j

σ0δ j

dmin,0
ncm,n, j if d j,n ≤ dmin,0,

N∑︂
j=1

N∑︂
n=1,n≠ j

σ0

(︂
1 + tanh

(︂ sp,0−d j,n

vp,0

)︂)︂
δ j

2d j,n
ncm,n, j if d j,n > dmin,0.

(4.29)

The growth term Fg would be noticeable in the time scale of hours. In this scale, it is
negligeable. The effect of growth would come through the boundaries, which move in the
time scale of hours due to cellular processes. Here λ0Fg ∼

T
3600 ∼ 10−10. We can remove

Fg from these equations. The effect of cell metabolism on bacterial boundaries will be
calculated directly from the dynamic energy budget (DEB) equations.

t=T t̃1 x=Lx̃ u=Uũ p
ρ
=Pp̃ F=FF̃ f

ρ
= fs
ρs
=a0f̃

δ= 1
L2 δ̃ K=K0Es U= L

T P= L2

T 2 F=EsL a0=
E
Lρ =

Es
Lρs

α=α0
ρ

T λ= λ0
EsT

d j,n=Ld̃ j,n σ=σ0EsL2 sp= sp,0L vp=vp,0L

Table 4.2: Change of variables used to nondimensionalize the IB equations. The˜symbols
are dropped for ease of notation after it. Dimensionless parameters K0, α0, σ0, λ0, sp,0,
vp,0, as well as the dimensionless numbers Re, Fc and dimensional values for ρ, µ, E are
given in Tables 4.1 and 4.3. The unknown value Es scales out. We assume E/ρ = Es/ρs.

Next, we consider the DEB equations for each cell. Recall that the variables e, a,V j, p j,Cin

are dimensionless. Hazard h and aging q have units hour−1 and hour−2, respectively. We
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Re = ρL
2

µT Fc =
T 2E
L2ρ

α0 λ0 K0 σ0 dmin,0 sp,0 vp,0

10−3 1.5 × 103 10−3 104 0.15 0.05 0.01 0.01 0.01

Table 4.3: Dimensionless control parameters for the IB submodel (4.24)-(4.29) when
L = 10−5 [m] and T = 10−6 [s].

remove the dimensions in the variables as indicated in Table 4.4. Taking into account the
parameter values listed in Table 4.5, the remaining dimensions for parameters and rates
are consistent. We work in a timescale τ = 1 hour, which is the natural step. Dropping
again the symbol ˜ for ease of notation we find for each cell j

de j

dt2
= τν′

(︂
S

S+1 − e j

)︂
, ν′ = νe−γε

(︄
1 +

CoutKS

Kv

)︄−1

, (4.30)

dV j

dt2
=

(︂
τr j

a j

aM
− h j

)︂
V j, r j =

(︄
ν′e j − mg

e j + g

)︄+
, (4.31)

and

dq j

dt2
= e j(sGρxV jq j + haτ

2)τ(ν′ − r j) + τ3ktoxCin, j − τ(r j + re, j)q j, (4.32)

dh j

dt2
= q j − τ(r j + re, j)h j, (4.33)

dp j

dt2
= −h j p j, (4.34)

dCin, j

dt2
= τkinKsCout − τkoutCin, j − τ(r j + re, j)Cin, j, (4.35)

da j

dt2
= τ(r j + re, j)

(︄
1 −

a j

aM

)︄+
. (4.36)

For round bacteria in 2D, V j = πR2
j . Equation (4.31) provides the evolution of dR j

dt2
. The

evolution of the boundary due to cell metabolism is given by

∂Xj

∂t2
=

dR j

dt2

X j(q, t2) − Xc, j(t2)
∥X j(q, t2) − Xc, j(t2)∥

. (4.37)

In a similar way, if the cell is rod-like, its boundary evolves as given by (4.12).

t = τt2 h j = h̃ jτ
−1 q j = q̃ jτ

−2 V j = Ṽ jL2 Cout = C̃outKS VT = L2

Table 4.4: Change of variables for nondimensionalization of the DEB model. We set
τ = 1 [hour].

Finally, let us consider next the diffusion problems. The variable ε is dimensionless.
The concentrations S , Ce, Cout have units mg/l. We set C = KS C̃ for all the concentrations,
t = Td t̃d and same spatial scaling as before, as indicated in Table 4.6. Removing ˜ for ease
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Symbol Values Units
ν 0.84768 [hour−1]
γ 1 [n.d.]

KV 154.82 [mg/l]
KS 0.1 [mg/l]

Cout 0.3, 0.7, 3 [mg/l]
g 0.9766 [n.d]
m 0.1266 [hour−1]
νm 0.054703 [n.d.]
aM 1.6703 [n.d.]
sG 0.8921 · 10−5 [l/mg]
ha 1.4192 · 10−4 [hour−2]
νε 0.23566/12000 [l/mg]
k 2.2371 [mgpolymer/mgcell]
k′ 0.29 [mgpolymer/(mgcellhour)]
η 1/2 [n.d.]

kout 0.17251 [hour−1]
kin 5.16 × 10−4 [ l

mg hour ]
ktox 5.416 × 103 [hour−3]
ρx 47000 [mg/l]

Table 4.5: Parameters of the DEB submodel (4.30)-(4.36) expressed in their standard
units, adapted from (Klanjscek et al. 2012) and (Birnir et al. 2018). Note that [mg/l] =
[10−6kg/10−3m3]. When inserted in the equations, all must be written in the same units of
choice. Special attention must be paid to time units, which will be either hours or seconds,
which requires multiplying or dividing by 3600.

t=Td t̃2 x=Lx̃ V j=L2Ṽ j S =KS S̃ Ce=KS C̃e Cout=KS C̃out

VT = L2 Dc=DTd
L2 ν

′∗ = ν′

3600 m∗ = m
3600 r∗j =

r j

3600 r∗e, j =
re, j

3600

Table 4.6: Change of variables used to nondimensionalize the equations for concentra-
tions. The˜symbols are dropped for ease of notation after it.

dε,0=22 ds,0=10 dc,0=5 de,0=5 Dc = 10

Table 4.7: Dimensionless parameters used in the concentration submodel (4.38)-(4.41)
when Td = 1 [s] and D = 10−9 [m2/s].

of notation again, we find the dimensionless equations:
dS
dtd
= −Tdν

′∗ S
S + 1

ρx

KS

∑︂
j

V jδ j + ds,0Dc∆S −
Td

T
u·∇S , (4.38)

dCe

dtd
= η
ρx

KS

∑︂
j

Tdr∗e, jV jδ j + de,0Dc∆Ce −
Td

T
u·∇Ce, (4.39)

dCout

dtd
= −Cout

∑︂
j

Tdr∗jδ j + dc,0Dc∆Cout −
Td

T
u·∇Cout, (4.40)

dε
dtd
= νερxTd

∑︂
j

(r∗j+νmm∗)V jδ j + dε,0Dc∆ε −
Td

T
u·∇ε, (4.41)
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with parameters given in Tables 4.5 and 4.7. Notice that ν′, m, r j and re, j have units hour−1.
To be used in these equations, they have to be expressed in units of s−1, that is, divided by
3600. We denote those values by ν′∗, m∗, r∗j and r∗e, j. The new diffusion coefficients will be
large, the same as 1

Re . Both systems for fluids and concentrations should relax fast to an
equilibrium. We are interested in stationary solutions, to be more precise, quasi-stationary,
in the sense that they change with time when the immersed boundaries grow/split/die or
the sources vary. That happens in a much longer time scale of hours.

4.4 Computational model for unconstrained spread

As said earlier, we are interested in two kinds of two dimensional reductions of three
dimensional geometries representing biofilm spread on a surface. The first one consists
of top views of early biofilm stages, see Figure 1.2. In the second one, we consider a 2D
diametral slice of a 3D biofilm, see Figure 1.3. Let us focus on the first one, which can be
handled with the equations and nondimensionalizations summarized in the previous two
sections. The second one requires additional details that we will explain later.

To fix ideas, we consider that the computational region has a reference size around
100 × 100 [µm], that is, 10L × 10L when L = 10 [µm]. We place a few bacteria at the
center of this region, and let nutrients and toxicants diffuse from the boundaries. While
a biofilm spreads on an interface with air, bacteria barely move, except when pushed
by the rest. They grow up to their division or shrink until their death. The bacterial
cluster tends to spread in the direction of the nutrient/oxygen concentration gradient. As
they divide, bacteria occupy the free space and remain at a small distance from their
neighbors. The average diameter of spherical bacteria is about 0.5 − 2.0 [µm]. For rod-
shaped or filamentous bacteria, the average length is about 1 − 10 [µm] and diameter is
about 0.25 − 1.0 [µm]. In our simulations we have taken for spheres R = 0.025 − 0.1
[µm], and for rods diameter 0.05− 0.1 [µm] and length 0.1− 1 [µm], nondimensionalized
divided by the reference length L. Figure 4.1 illustrates some simulations.

Once we have fixed an initial bacterial arrangement and set initial conditions for all
the variables we distinguish three blocks of equations. The DEB equations for each cell
(4.30)-(4.37) are solved in the time scale of hours. In that time scale, the IB equations
(4.24)-(4.29) and the equations for chemical processes (4.38)-(4.41) are quasistationary,
changes are induced by growth, division, or destruction or boundaries according to the
DEB submodel and the criteria for division, death or interaction. We solve them using
time relaxation, that is, we solve the time dependent problems until the solutions relax
to a stationary state. More precisely, we proceed as follows. First, we integrate the DEB
system for all cells. Then, we relax the Ib2d model with interaction force to a stationary
state, and finally the concentrations relax to their stationary state in the diffusion time
scale. The process is schematized in Flowcharts 4.2 and 4.3. We next give details about
the discretization and the initialization procedures.
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Figure 4.1: Snapshots of the evolution of a few bacteria with initial random sizes varying
in the ranges specified in the text. Clusters formed by (a) round and (b) rod-like bacteria,
see Video1 and Video2.

4.4.1 Discretization

We define in the computational region a square mesh xi, j = (xi, y j), i, j = 0, ...,N , with
step dx = dy = h and nodes xi = x0+ idx, y j = y0+ jdy, where x0 = y0 = 0, xN = yN = L.
We keep this mesh for all the submodels. However, the three submodels use different
time discretizations. The main time mesh is tℓ = ℓdt, ℓ = 0, ...,M, up to the final time
T = Mdt. For each cell, the systems of ordinary differential equations (4.30)-(4.37)
are discretized by a classical Runge-Kutta 2 or 4 scheme (Isaacson et al. 1994) on that
mesh with step dt = 0.01. For the other two submodels we seek stationary solutions.
We use the time dependence to implement time relaxation schemes to approximate them
with adapted time steps. The reaction-diffusion equations (4.38)-(4.41) are discretized
by classical explicit finite difference schemes (Isaacson et al. 1994). We use first order
explicit progressive differences in time and second order approximations for the diffusion
and transport terms. The whole set of equations for the immersed boundaries (4.24)-
(4.28) are discretized using the finite difference schemes, quadrature rules and discrete δh

functions described in (Peskin 2002).

The immersed boundaries are parametrized by the angle θ ∈ [0, 2π]. We use a mesh
θk = kdθ, k = 0, ...,K , on them. To prevent the distances between mesh points which
form the immersed boundaries becoming too large as they grow, we increase the num-
ber of points in each of them at a certain rate, adding single points (in the case of round
shapes) or opposite couples in the lateral walls (in the case of elongated shapes), at the
sites where the distance between two neighboring mesh points is larger. This deserves
further explanation, since it leads to work with a non uniform angle mesh and with an-
gle dependent elastic moduli, which change as points are added. Given a mesh θk for a
boundary X j, with steps dθk = θk − θk−1, k = 1, ...,K , we include a new point between
sites i − 1 and i as follows:

• Set dθi = dθi/2, dθi+1 = dθi/2, and dθi+m = dθi+m−1, 1 < m < K − i + 1.
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• Set θi = θi−1 + dθi, θi+1 = θi + dθi+1, and θi+m = θi+m−1, 1 < m < K − i + 1.

• Set X j(θi) =
X j(θi−1)+X j(θi)

2 , and X j(θi+m) = X j(θi+m−1), 0 < m < K − i + 1.

• Set K j(θi) = 2K j(θi), K j(θi+1) = 2K j(θi), and K j(θi+m) = K j(θi+m−1), 1 < m <
K − i+ 1, to prevent the reduction in the angle from changing the continuum limits.

• Set K = K + 1.

Additionally, we need rules for killing cells and dividing cells, which we detail next.
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Figure 4.2: Flowchart for cell evolution in the time scale of hours.
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Initializalize in the time
scale of seconds (Ib2d
and Concentrations)

Calculate the po-
sition of each cell

boundary at t1 + dt1/2

Calculate the fluid
velocity at t1 +

dt1/2 and t1 + dt1

Calculate the position
of the cell boundary
at t1 + dt1 with the
values at t1 + dt1/2

Erv < δ? d j,n > sl?

t1 = t1 + dt1 and repeat

Solve equations
(4.38)-(4.41) to

calculate concentrations
at td = td + dtd

td = td + dtd and repeat

Erc < δ?

Return to evaluate
the cell activity in the

time scale of hours
with t2 = t2 + dt2

yes

no

yes

no

Figure 4.3: Flowchart for the submodels governing IB and chemical processes.

4.4.2 Rules for division and death

Once the size of a bacterium X j surpasses a critical perimeter, the cell divides with prob-
ability Pd, j =

S j

S j+1 , S j being the averaged value of the limiting concentration at the cell
location, provided their aging acceleration q j is larger than a critical value qc (a way to
indicate age, not to kill newborn cells). More precisely, for each cell boundary X j:

• We check whether q j > qc = 10−8.

• We check whether its length Per j is larger than a critical perimeter Perc = 1.4 Perinit,max

for spheres and Perc = 1.5 Perinit,max for rod-like bacteria, where Perinit,max is the
maximum perimeter in the initialization step.

• We generate a random number r ∈ (0, 1) and check whether Pd, j > r.

Figures 4.4 and 4.5 illustrate the division process for spherical and rod-like bacteria. Di-
vision is completed in a few steps: the cell elongates and then splits conserving area. For
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spherical bacteria, if Vinit = πR2
init is the volume before division, we have radius Rend =

Rinit√
2

for the two daughters. For rod-like bacteria, with initial volume Vinit = πbainit, being b the
smallest semi-axis, we have aend =

ainit
2 for the two daughters, because b is constant. We

reset all the cell variables to their initial values after division, see Section 4.4.3.

Figure 4.4: Snapshots of the division of a spherical bacterium.

Figure 4.5: Snapshots of the division of a rod-like bacterium.

Figure 4.6: Snapshots of the evolution of a circular biofilm formed by 100 cells under
the same conditions but different death treatment: (a) Shrinking dead cells (represented
in red). We have 292 alive cells and 108 dead ones. (b) Erasing dead cells. We have 294
alive cells and have erased 86.

Similarly, the cell X j dies with probability defined by p j, j = 1, ...N.We kill X j when
1 − p j >

Ninit
Na
+ r

(︂
1 − Ninit

Na

)︂
, where Na is the current number of bacteria, Ninit the initial

number of bacteria and r ∈ (0, 1) a random number. The rationale behind this criterion
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is as follows. The individual probability p(t) gives the probability of a cell being alive
at time t. If we chose to kill cells with probability 1 − p(t), the final number of cells
which survive during the simulation depends on how often we check its dead or alive
status. Instead, this kind of rules removes that spurious phenomenon. These criteria can
be adjusted to reproduce experimental counts or trends of the number alive bacteria under
different environmental situations (Birnir et al. 2018; Ishida et al. 1998), as we will discuss
later.

When a bacterium dies we have two options: 1) erase the cell immediately, 2) keep it
and solve only equations (4.31) for the volume, so that it shrinks slowly due to reabsorp-
tion, see Figure 4.6. The latter option may produces a more realistic evolution in some
cases, to account for necrotic regions which otherwise would be erased. We solve the
whole set of equations (4.30)-(4.37) for the living cells, but only Eq. (4.31) for the dead
cell, fixing h = hdeath. For spheres, when the dead cell’s perimeter is below a minimum
threshold Perm = πdx, dx being the spatial discretization step, the cell disappears. For
rod-like bacteria we take Perm = 2πb, being b the shortest semi-axis. The parameter hdeath

governs the speed of the perimeter decrease. We choose to increase hdeath with the number
of alive cells surrounding the dead one, since it represents reabsorption. More precisely,
we set hdeath, j = hdeath, j + dtNcCi<Rd, where NcCi<Rd is the number of cells whose center
lies at a distance smaller than Rd = 3/L for cell j and dt = dt2.

4.4.3 Initialization and boundary conditions

A typical geometry initialization is represented in Figure 4.7(a). We define N non over-
lapping immersed boundaries (either spheres or rods) in the region 13L × 13L for sphera
and 17L × 17L for rod-like bacteria, located inside a circle of a given radius. The centers,
dimensions, axis orientation (when required), and number of points forming the bound-
aries, vary randomly about given values. Next,

• We create the cubic mesh of step dx in that region to discretize the fluid and the
reaction-diffusion equations.

• We set the initial velocity u equal to zero everywhere and periodic boundary condi-
tions for the fluid velocity.

• A reference value S 0 = 10 is fixed as initial and Dirichlet boundary condition for
the concentration at the borders of the computational region.

• We set Ce(0) = 0 and ε(0) = 0 everywhere and enforce zero Neumann boundary
conditions for them.

• For the first simulations, we set Cout(0) = 0 everywhere and enforce zero Dirichlet
boundary conditions. Once the biofilm seed has evolved for some time, we switch to
a Dirichlet boundary condition Cout = 3, 7, 30 on the borders of the computational
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Figure 4.7: (a) Initial arrangement. Evolution at (b) t = 9 h, (c) t = 12 h, (d) t = 14 h, (e)
t = 20 h. The simulation starts with 100 cells and ends up with 286 cells alive, 81 dead
(red) and 179 already erased, see Video3. Panel (f) represents the computational time for
one iteration as a function of the number of spheres, as the number of cells grows during
a simulation (coded in Matlab). An exponential fit (red) indicates that the computational
time for one whole step grows as CeγN , where C = 1.04[s], γ = 0.0106, and N is the
number of spheres. One step with 350 spheres takes about 40 seconds.

region. As initial condition for Cout we use the profile obtained by relaxation of
(4.40) with the boundary condition and without the convective term.

• For j = 1, ...,N we set V j(0) equal to the initial dimensionless areas, e j(0) =
S j(x j,0)

S j(x j,0)+1 , x j being the center of cell j, Ve, j(0) = 0, q j(0) = 0, h j(0) = 0.6, p j(0) = 1,
a j(0) = 0, and Cin, j(0) = 0. When we divide a cell, they start with the same ini-
tial conditions, except Cin, j in the presence of a toxicant, which divides a random
percentage to one and the opposite to the other.

As said earlier, we use a specific discretization of the Immersed Boundary model,
solving (4.24)-(4.29) by Fourier transforms (Peskin and McQueen 1995; Peskin 2002).
We use the time t1 as an artificial time until the system relaxes to a stationary state, with
step dt1 = 10−6. When the relative errors of the fluid-IB variables Erv fall below a toler-
ance δ, we use the time td as an artificial time until the concentration system relaxes to
a stationary state with a step dtd = 10−9 for spheres and dtd = 10−11 for rods, due to the
convection factor Td/T = 106. When the relative errors Erc fall below a tolerance δ, we
stop. We set δ = 10−3. We also demand that the cells remain at a certain distance sl, in
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Figure 4.8: Evolution of the final configuration reached in Fig. 4.7 under the action of
antibiotics. Snapshots for Cout = 3 at (a) t = 1 h, (b) t = 6 h, and (c) t = 12 h. The
simulation ends with 260 cells alive, 17 dead (red) and 419 already erased, see Video3a.
Snapshots for Cout = 7 at (d) t = 1 h, (e) t = 5 h, and (f) t = 12 h. The simulation end
with 213 cells alive, 38 dead (red) and 390 already erased, see Video3b. Snapshots for
Cout = 30 at (g) t = 1 h, (h) t = 3.5 h, and (i) t = 10 h. The simulation ends with 162 cells
alive, 6 dead (red) and 354 already erased, see Video3c. If we do not erase them, we have
a necrotic outer layer of increasing thickness.

these tests we have set sl = 0.

4.4.4 Dynamics of incipient biofilms

Figures 4.7-4.8 show a few snapshots of the evolution of an incipient circular biofilm
formed by spherical bacteria, without antibiotic and with antibiotics, respectively, see also
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Figure 4.9: Biofilm growth without cell death (h0 = 0). (a) t = 10 h, (b) t = 16 h, reaching
1116 cells. Panel (c) represents the computational time for one iteration as a function of
the number of shere, as the number of cells grows during a simulation (coded in Matlab).
An exponential fit (red) indicates that the computational time for one whole step grows as
CeγN , where C = 7.372[s], γ = 0.0054, and N is the number of cells. One step with 1000
cells takes about 28 minutes, much slower than initial stages with 300.

(a) (b) (c)

Figure 4.10: Counts of cell types versus time for different simulations: (a) Spheres in
Figure 4.7. (b) Spheres with antibiotics in Figure 4.8(d-f). The blue circles, black crosses,
red asterisks, yellow squares and green triangles represent total number of cells (live and
dead), live cells, dead cells, accumulation of new cells and accumulation of erased cells,
respectively. (c) Alive cells in Figure 4.9, without death. The solid line represents the
fitting N ∼ Ceγt, being t in hours and C = 51.5321, γ = 0.1894[h−1].

Videos 3, 3a, 3b, 3c. The action of antibiotics would vary depending on parameters we
have fixed, such as the toxicity, and the parameters governing the flux inside and outside
the cells. We see that as the antibiotic presence is increased, growth slows down, less cells
remain, and an outer necrotic region appears, that finally dissolves in the surrounding fluid
and is absorbed by the remaining cells. However, the secreted polymeric substances still
remain in that region. The dynamics of dead cells depends on the governing parameters
we choose to govern the reabsorption process. Figure 4.10 shows the evolution of the
number of alive and dead cells, as well as the cumulative numbers of erased and newborn
cells. We calibrated the death parameters to reach a certain aggregate size in the absence
of antibiotics, as a result of a balance between dead and newborn cells (as it happens in
many tissues). When we set h0 = 0, the size of the aggregate grows continuously, see
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Figure 4.11: (a) Initialization. Evolution at (b) t = 9.5 h, (c) t = 12 h, (d) t = 14 h and (e)
t = 20 h, without antibiotics. We started with 100 bacteria, and ended with 289 alive, 68
dead (red) and 267 disappeared, see Video4. Panel (f) represents the computational time
for one iteration as a function of the number of rods, as the number of cells grows during
a simulation (coded in Matlab). An exponential fit (red) indicates that the computational
time for one whole step grows as CeγN , where C = 1.86[s], γ = 0.0138, and N is the
number of rods. One step with 350 rods takes about 3−4 minutes. Oscillations are due to
variations in the time required to calculate the interactions depending on the overall rod
orientation and arrangement.

Figure 4.9. Figures 4.11-4.12 illustrate the evolution for rod-like bacteria, see also Videos
4, 4a, 4b, 4c.

The computational times indicated in Figures 4.7(f), 4.9(c) and 4.11(f) are obtained
for Matlab Codes, with partial parallelization using 12 threads. Only the resolution of
systems of ordinary differential equations for the cells, the conversions of cell positions to
vector structure used for vectorization of fluid and concentration equations, the computa-
tion of elastic forces for cells, and the membrane growth have been parallelized in these
computations. Paralellizing cell division, cell death and cell interactions is much more
involved and we have not implemented it.

We can adapt the previous framework to investigate spatial competition between spher-
ical and rod-shaped bacteria in the biofilm. To do so, we add a new variable (Type) to each
cell, which takes values 0 for spheres and 1 for rods. Then, the two previous codes for
spheres and rods are merged. We include also the interaction sphere-rod, which is calcu-
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Figure 4.12: Evolution of the final configuration reached in Fig. 4.11 under the action of
antibiotics. Snapshots for Cout = 3 at (a) t = 1 h, (b) t = 7.5 h, and (c) t = 10 h with 284
alive, 14 dead (red) and 358 erased, see Video4a. Snapshots for Cout = 7 at (d) t = 1 h,
(e) t = 7.5 h, and (f) t = 10 h with 278 alive, 40 dead (red) and 340 erased, see Video4b.
Snapshots for Cout = 30 at (g) t = 1 h, (h) t = 3 h, and (i) t = 10 h with 246 alive, 34 dead
(red) and 346 erased, see Video4c.

lated as the interaction rod-rod. Figure 4.13 shows how rod-like bacteria dominate, see
also videos Video_h1, Video_h2. Notice the tendency of rods to align. Compare Fig.
4.13, and also Fig. 4.1, to the experimental images in Fig. 1.2.
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Figure 4.13: Evolution of a hybrid aggregate formed by spherical and rod-like bacteria
starting from randomly distributed shapes (a)-(c) and from clusters of different shapes
(d)-(f). Panels (a) and (d) represent the initial configuration. Panels (b), (e) and (c), (f)
represent configurations at times 20 h , 40 h, respectively. They have been drawn ignoring
the dead cells. Rod-like bacteria conquer more space, and achieve larger numbers of alive
cells. Starting with 50 bacteria of each type, we reach 183 and 184 live rod-like bacteria
compared to 105 and 103 live spheres, in the first row and second row respectively.

4.5 Computational model in the presence of barriers

As mentioned earlier, we are interested in two kinds of two dimensional reductions. So
far, we have considered the horizontal spread of a two dimensional cluster. We focus here
on the arrangement depicted in Figure 1.3: a biofilm slice expanding on a surface. The
model equations remain the same as in Sections 4.3 and 4.4. The main change concerns
the geometry: we introduce a boundary orthogonal to the biofilm slice representing the
interface on which it grows. We place bacteria on a semi-circle on top of it, see Fig-
ure 4.14(a). We will exploit the strategy developed in Section 4.4, including additional
equations for the horizontal barrier. We impose on it the same equations as for the cell
boundaries, without the growth force, and without interaction force (bacteria do not move
the barrier). On the other hand, cells do notice the presence of the barrier and the cor-
responding interaction is included for them. Moreover, in equation (4.5), in front of the
integral, we add a factor 0.001 to account for higher density of the barrier and almost
negligible barrier mobility due to fluid.

The main variations arise when working with rod-like bacteria. We set dtd = 10−10. In
this case, forces can generate a moment that rotate bacteria. This force creates a torque,
M f , that then varies the angular momentum L, and knowing the moment of inertia L =
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Iw, we obtain the angular velocity w, I being the body’s inertia tensor.

M f = X × Fi,
dw
dt
= I−1M f . (4.42)

In two-dimensions, directions of M f and w are perpendicular to the plane. Thus, we only
need the moment of inertia of the axis perpendicular to the plane, which is I = 1

4 M(a2+b2)
for elliptical shapes, where a is the long semi-axis, and b the short one. M is the mass of
the bacteria, M = ρxV , where ρx is bacterial density and V its volume. In two-dimensions,
they become surface density and area. In this way, we can add in Eq. (4.3) the following
expression

∂X
∂t
= w × X. (4.43)

When we nondimensionalize, we need to include in the right hand side of Eq. (4.26)
the term w × x with

dw
dt
= C f I−1

0 M f , M f = x × Fi, (4.44)

where all terms are dimensionless, and C f = T 2 EsL2

ρx,sL2 =
150
47 10−6 is a dimensionless num-

ber, calculated using Es
ρx,s
= E
ρx

. Moreover, I0 =
1
4 M0(a2

0 + b2
0), where M0 = V , V = πa0b0 is

dimensionless bacterial area and a0 = a/L, b0 = b/L.

A new feature we wish to represent in this new set-up is the observation that fluid
flows upwards through the horizontal barrier because the bacterial biofilm seed swells.
We are representing the threads keeping together bacteria in the biofilm as interaction
forces keeping bacteria at a distance. When the biofilm swells, those threads swell and
elongate too. We model this fact changing the minimum distance between bacteria in the
biofilm.

For spherical bacteria, we modify the repulsive force because it is not the same to push
upwards than horizontally without the force of gravity. The force is of lesser magnitude
and the repulsion occurs more gradually:

Fi =

N∑︂
j=1

Fi, jδ j, Fi, j =

N−1∑︂
n=1,n≠ j

σb e−
d2

j,n
lsp ncm,n, j, (4.45)

σb is the repulsive parameter, and lsp sets the maximum distance, where the cells begin to
repel. The latter term changes over time, as swelling causes the strings that separate the
cells to grow. We have set

lsp = lmax

1 + tanh
(︂
vs

(︂
t − Tp

)︂)︂
2

sp2 =

√︂
− ln(vmin)lsp, (4.46)

where lmax = −
s2

max
ln(vmin) and vs is related to the growth of this distance. It saturates at a

certain time, we use an inflection point Tp, and a certain maximum length lmax. This
value depends on the maximum separation of the cells smax and a minimum variation vmin.
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Figure 4.14: (a) Initial arrangement. Evolution at (b) t = 9 h, (c) t = 12 h, (d) t = 15, (e)
t = 20 h. The simulation starts with 34 cells and ends with 97 alive cells, 27 dead cells
(red) and 58 cells already erased, see Video5.

Figure 4.15: Evolution of the final configuration reached in Fig. 4.14 under the action
of antibiotics. Snapshots for Cout = 3 at (a) t = 1 h, (b) t = 7.5 h, and (c) t = 10 h. The
simulation ends with 77 cells alive, 7 dead (red) and 120 erased, see Video5a. Snapshots
for Cout = 7 at (d) t = 1 h, (e) t = 7 h, and (f) t = 10 h. The simulation ends with 69 cells
alive, 3 dead (red) and 125 erased, see Video5b. Snapshots for Cout = 30 at (g) t = 1 h,
(h) t = 3.5 h, and (i) t = 10 h. The simulation ends with 34 cells alive, 2 dead (red) and
116 erased, see Video5c.
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Figure 4.16: (a) Initial arrangement. Evolution at (b) t = 10 h, (c) t = 14 h, (d) t = 18 h,
(e) t = 20 h. The simulation starts with 33 cells and ends with 96 cells alive, 41 dead and
75 erased, see Video6.

Figure 4.17: Evolution of the final configuration reached in Figure 4.16 under the action
of antibiotics. Snapshots for Cout = 3 at (a) t = 1 h, (b) t = 4 h, and (c) t = 10 h. The
simulation ends with 84 cells alive, 29 dead (red) and 108 erased, see Video6a. Snapshots
for Cout = 7 at (d) t = 1 h, (e) t = 4 h, and (f) t = 10 h with 58 alive, The simulation ends
with 17 cells dead (red) and 115 erased, see Video6b. Snapshots for Cout = 30 at (g) t = 1
h, (h) t = 3.5 h, and (i) t = 10 h. The simulation ends with 33 cells alive, 2 dead (red) and
105 erased, see Video6c.

All of this affects the critical distance sp2. All cells tend to be more or less equal apart.
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Removing dimensions, the interaction force is as follows:

Fi =

N∑︂
j=1

N∑︂
n=1,n≠ j

σb,0 e−
d2

j,n
lsp δ jncm,n, j, (4.47)

where σb = σb,0LEs = 20Es, so σb,0 = 20/L. And l̃sp(t1) = lsp(t1)/L2. We drop the
symbol ˜ for ease of notation. Parameters are collected in Table 4.8.

For rods there is anisotropy, the vertical direction being different from the horizontal
one. We set

sp2 = t
sp,m

Tm
, (4.48)

where sp,m

Tm
is the slope to which the distance with respect to time ascends. We do not have

to change the force because the interaction in one plane and the other are similar, the only
difference being the growth of the distance. Removing dimensions

sp2 = t2
spm,0

Tpm,0
. (4.49)

In either case, spheres or rods, we set sl = sp2 in the flowchart.

smax,0 =
smax

L lm,0 = −
s2

max
ln(vmin)L2 Tp,0 =

Tp

τdt2
vmin

0.04 − 1.6×10−3

ln(vmin)
6.5
dt2

dt2
2dt1λ0σb,0

spm,0 =
spm

L Tpm,0 =
Tpm

τdt2
vs,0 = τvs

0.04 11
dt2

5 × 10−3

Table 4.8: Additional parameters for the simulations in the presence of an horizontal
barrier.

In this second geometry, nutrients flow to bacteria from the bottom, through the hor-
izontal immersed boundary on top of which they grow, whereas toxicants flow from the
top. As for the initialization, besides the N immersed boundaries representing bacteria,
we include a lower barrier which does not touch the borders of the computational region.
Boundary conditions for concentrations change. We fix Dirichlet boundary conditions for
S and Ce on the lower computational border, and on the lateral ones up to the height of
the horizontal immersed boundary. Zero Neumann boundaries are imposed on the rest.
For Cout, the situation is reversed. Zero Neumann boundary conditions on the lower part,
and Dirichlet on the upper one.

Figures 4.14 and 4.15 illustrate the evolution in the case of spherical bacteria, with
and without antibiotics. Notice the formation of inner gaps or channels in the structure, in
agreement with (Wilking et al. 2013). These computational studies allow us to investigate
porosity variations in the inner structure, as well as the formation of inner gaps due to cell
death and reabsorption which eventually fill with fluid. When antibiotics are added, an
outer necrotic region which is finally erased appears too. Figures 4.16 and 4.17 illustrate
the evolution in the case of rod-like bacteria.
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Figure 4.18: Irregular patterns formed lowering nutrients/consumption. (a) Initial ar-
rangement, with 74 cells. (b) Configuration at t = 47.5 h, for ν∗/KS = 2.35 × 10−3 (same
values as before). (c) Same as (b) for ν∗/KS = 2.08 × 104. (d) Evolution of (c) at t = 50.5
h, showing finger formation.

Figure 4.18 considers a slightly different configuration in which nutrients flow from
the top, in the absence of toxicants, the interaction force is the same as the top view, and
the critical distance is always zero. Notice the formation of fingers due to scarceness of
resources, in agreement with previous observations (Purevdorj et al. 2002; Hermanowicz
2001). Figure 4.19 represents contour curves for substrate and toxicant fields. The geo-
metrical arrangement and the number of bacteria influence the contours, compare panel
(b) with 367 cells to (c) with 72. Also, the behavior of the fluid flow undergoes varia-
tions. While in the free spread configuration velocities remain very small, in the barrier
configuration velocities increase locally around dense areas, influencing cell groupings.

4.6 Biofilm extinction

In this Section, we consider the possibility of driving a biofilm to extinction by an ade-
quate combination of antibiotics (Høiby et al. 2010). The death criterion we employed
in the previous sections allows the biofilm to grow but it prevents the total number of
bacteria from dropping below the initial value. For decaying biofilms, the death criterion
used in (Birnir et al. 2018) is more adequate: we kill a cell X j when p j < r Na

Ninit
, being

Ninit the number of bacteria just before administering the antibiotics. In Figure 4.20, we
revisit simulations (a)-(c) and (d)-(f) from Figure 4.7 with this new criterion. Clinical
tests (Høiby et al. 2010) point out the convenience of combining antibiotics targeting dif-
ferent types of cells within the biofilm to be able to eradicate them. We consider here a
cocktail of two antibiotics. One of them targets dormant cells with little energy, which
are located in the inner biofilm core (the antibiotic colistin, for instance). We represent
that effect using a toxicity coefficient ktox,1, j which decreases wth the cell energy. The
other one targets cells with high energy, which divide actively, and tend to be located in
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(a) (b)

(c) (d)

(e) (f)

Figure 4.19: Contour fields for substrate and toxicant: (a)-(b) are toxicant contour fields
for figure 4.8(f). (c) Toxicant contour field for figure 4.15(e). (d) Substrate contours for
figure 4.7(e), Max = S 0 = 10 and Min = 0.99999997S 0. (e)-(f) Substrate contours for
figure 4.18(c)-(d).

the outer biofilm regions (penicillins, for instance). We represent that effect by a toxicity
coefficient ktox,2, j which increases with the cell energy. More precisely, we have used the
following expression

ktox,1, j = ktoxe10(em−e j), ktox,2, j = ktoxe10(e j−em), em = 0.5. (4.50)

We modify the model to include two equations similar to (4.40) for the antibiotic concen-
tration with toxicity coefficients (4.50) and the corresponding two equations (4.35) for the
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antibiotic concentration inside the cells. Also, we set Cout = Cout,1+Cout,2 in the definition
of (4.30) for ν′ and replace in eq. (4.32) the term ktoxCin, j by ktox,1, jCin,1, j + ktox,2, jCin,2, j.
Revisiting the simulations in Figure 4.7 with these new choices, we are able to drive
the biofilm to extinction, see Figure 4.20 (g)-(i). These simulations reproduce behaviors
experimentally observed, compare to Fig. 6 in Reference (Høiby et al. 2010).

Figure 4.20: Equivalent of snapshots (a)-(c) and (d)-(f) with the modified death criterion:
(a), (d), (g) t = 2.5 h, (b), (e), (h) t = 8.5 h, and (c), (f), (i) t = 10 h. Snapshots (a)-(c) for
Cout = 3 end with 184 cells alive, 66 dead (red) and 320 erased, see Video7. Snapshots
(d)-(f) for Cout = 7 end with 141 cells alive, 20 cells (red) and 327 erased, see Video8.
Finally, panels (g)-(i) represent the extinction of the same initial configuration with the
modified death criterion and a combination of two antibiotics with Cout = 3 and variable
ktox. The simulation ends with 0 cells alive, 1 dead (red) and 385 erased, see Video9.
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4.7 Summary

This chapter presents a model for bacterial biofilms that includes the geometry of the
individual bacterium, a polymeric matrix, a fluid and the concentrations belonging to the
environment. We have successfully modelled the interactions of bacteria of two different
geometries, spherical and rod-like. We have recreated the biofilm in a two-dimensional
plane with a top view, and from the front with a barrier simulating the surface.

Death probability fluctuates locally according to availability of resources and space.
When we introduce the antibiotic, small necrotic zones are generated around the biofilm.
In this way the core of the biofilm remains intact and protected because the necrotic
regions act as a shield. The model captures antibiotic resistance intrinsically. In addition,
the model also contains experimentally found patterns such as the rod-like alignment of
the bacteria and the voids generated by the fluid within the biofilm in the front view. On
the other hand, we have been able to model up to just over 1100 cells.

Other interesting things about the model is the possible simulation of a competition
between bacterial types. In this case we have represented a competition between spherical
bacteria and rod-like bacteria. We have seen that the rod bacteria capture more nutrients
by generating more agents than the other type, and that they take up more space than the
other type. So in our model the rod bacteria are dominant. We also controlled the amount
of nutrients to observe two different biofilm growths. With many nutrients we find a
single compact biofilm, and with few nutrients, a dispersion of regions with bacteria and
others without bacteria is generated, recreating a separate biofilm in different clusters.
Another interesting result is the control of antibiotics in order to extinguish the biofilm.
By adding two types of antibiotics, one for the more energetic bacteria such as penicillins,
and another for the less energetic bacteria such as colistin, we can extinguish the biofilm
as in experiments.



CHAPTER 5

Overall conclusions

In this thesis we have addressed two important issues of the collective behavior of bio-
logical aggregates. Qualitative features and power laws in swarms of male midges and
spreading bacterial biofilms and their response to environmental modifications. In this
chapter we write our final conclusions and comments on the most relevant results of each
research.

Scale free chaos and midges swarms

The first main result of this thesis is the discovery of a hitherto unsuspected and unex-
plored phase transition of free scale chaos in the harmonically confined 3D Vicsek model.
This result is discussed in Chapters 2 and 3 and it is based on our publication (González-
Albaladejo et al. 2023). The harmonically confined Vicsek model (HCVM) also exhibits
a different phase transition to clusters of finite size containing infinitely many particles,
which we have called flocking black holes. Our work is motivated by observations of nat-
ural midge swarms and of swarms in the laboratory, which comprise at most hundreds of
insects and form about a marker (Attanasi, Cavagna, L. D. Castello, et al. 2014; Attanasi,
Cavagna, L. Del Castello, et al. 2014; Cavagna, Conti, et al. 2017; Kelley et al. 2013;
Gorbonos et al. 2016; Sinhuber et al. 2017). The main conclusions and novel aspects of
the work on insect swarms are as follows.

I. For finitely many particles, the 3D HCVM exhibits periodic, quasiperiodic and
chaotic attractors modified by the alignment noise. The control parameters for the model
are confinement and noise. As confinement decreases, there is a region of chaotic attrac-
tors characterized by positive values of the largest Lyapunov exponent. Depending on
the magnitude of the noise, chaos is either deterministic, noisy, or swamped by noise, de-
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pending on the noise strength. The scale-dependent Lyapunov exponent decides the type
of chaotic attractor (Gao, Hu, et al. 2006), as explained in Chapter 2, which also explains
the Benettin and other algorithms used to calculate Lyapunov exponents (Benettin et al.
1980; Gao and Zheng 1994).

II. Inside the region of noisy chaos and for N particles, there is a line of confine-
ment versus noise that separates single cluster from multicluster chaos. These different
attractors can be distinguished using topological data analysis (González-Albaladejo et
al. 2023), as explained in Chapter 2 More quantitatively, we adopt in Chapter 3 the def-
initions of dynamic and static correlation functions used by (Attanasi, Cavagna, L. D.
Castello, et al. 2014; Cavagna, Conti, et al. 2017; Cavagna, Giardina, et al. 2018) to
calculate critical lines and critical exponents from experimental observations of natural
swarms. These definitions are adapted from those in equilibrium phase transitions (Amit
et al. 2005; Halperin et al. 1969). The critical line is found by finding the minimum of
the correlation time. On it, the correlation length is proportional to the swarm size, which
means that chaos is scale free on the critical line. Using the finite size hypothesis, we
calculate power laws and critical exponents from numerical simulations with increasing
values of N. Close to the critical line, we find another line on which the static correla-
tion function has an inflection point and the largest Lyapunov exponent is maximal. Both
critical lines collapse onto zero confinement as N goes to infinity, thereby indicating that
they correspond to the same phase transition, which we call scale-free-chaos phase tran-
sition. We find the dynamic critical exponent and critical exponents for the correlation
length, susceptibility and largest Lyapunov exponent in terms of confinement. They are
compatible with known measured values for natural swarms.

The conventional way to finding a critical line using finite size scaling is to follow
the maxima of the susceptibility calculated from the static correlation function. For the
HCVM, there are local maxima inside the region of noisy chaos and global maxima. The
local maxima disappear when we subtract overall rotation and dilation when calculating
correlation functions. The global maxima correspond to a different phase transition. Thus,
we have used the correlation time and the inflection point of the susceptibility, which are
the same whether we carry out subtractions or not.

III. In Chapter 3, we have found a different phase transition at the global maxima of the
susceptibility that is characterized by the formation of clusters of finite correlation length
admitting an ever increasing number of particles (the flocking black holes, (González-
Albaladejo et al. 2023)). This phase transition is akin to gravitational collapse (Chavanis
et al. 2020).

IV. Qualitative features captured by the HCVM. In addition to reasonable critical ex-
ponents, the scale-free-chaos phase transition produces disperse chaotic swarms below
the critical line that are confined to a bounded region of space with a few particles en-
tering and leaving the nucleus of the swarm, cf. Fig. 2.4. This is akin to the observed
condensed and vapor phases of natural swarms (Sinhuber et al. 2017). Furthermore, as
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shown in Section 3.2, the normalized dynamic correlation function coalesce to a single
curve as a function of kz

ct for an interval 0 < kz
ct < 4 (cf. Fig. 3.1), which is similar to

that observed in natural swarms (Fig. 2b of (Cavagna, Conti, et al. 2017)). Moreover, the
flatness values given in Chapter 3 are compatible with those observed in natural swarms
(Cavagna, Conti, et al. 2017). Observations of midges in the laboratory indicate that the
center of mass of their swarm moves almost randomly (Kelley et al. 2013; Ni, Puck-
ett, et al. 2015), following Lévy flights (Reynolds and Ouellette 2016). To this respect,
the connection between chaos and Lévy flights in animal search patterns is intriguing
(Reynolds, Bartomeus, et al. 2016) and could indicate that noisy chaos is indeed present
in midge swarms. These similitudes to experimental observations and the involved theo-
retical challenges make worthwhile exploring more fully the confined Vicsek model and
the phase transition we have discovered.

This work paves the way to studies in many directions. Possible directions consist of
exploring other possible transitions on chaotic and non-chaotic windows of the parame-
ter space and the effect of anisotropic confinement on the phase transition studied here.
Exploring a possible phase transition to flocking black holes in self-gravitating models of
swarms (Gorbonos et al. 2016) might be worth pursuing. On the theoretical side, can we
find the invariant measure of the chaotic attractors and characterize scale-free-chaos phase
transitions as N → ∞ in terms of the invariant measure? This could bring together dynam-
ical systems and nonequilibrium statistical mechanics studies and yield fruitful new ideas
and methods. Another interesting research venue is to explore the connection between
our topological data analysis characterization of the scale-free-chaos phase transition in
Chapter 2 and the topological characterization of equilibrium phase transitions as geo-
metrical changes in underlying manifolds (Franzosi et al. 2007a; Franzosi et al. 2007b;
G. Pettini et al. 2019; Gori, Franzosi, G. Pettini, et al. 2022).

Biofilms

Studying the dynamics of cellular aggregates such as bacterial biofilms faces the challenge
of dealing with complicated geometries and interactions. Many approaches have been
proposed to that effect, with advantages and disadvantages. Cellular automata allow us
to represent many microscopic and macroscopic processes (Laspidou et al. 2014; Carpio,
Cebrián, and Vidal 2019), but ignore bacterial shapes and interactions. Individual based
models seem effective for large biofilms growing in flows (Lardon et al. 2011), but be-
come exceedingly complicated for biofilms spreading on surfaces as the ones we consider
here (Storck et al. 2014; Grant et al. 2014). Immersed boundary methods provide a very
flexible alternative to study mechanical interactions in these complex geometries (Dillon,
Fauci, et al. 1996; Li et al. 2012; Rejniak 2007). Here, the immersed boundaries provide
the basic geometrical skeleton, while the interaction with the medium is represented by
forces governed by a set of equations coupling metabolic and physico-chemical processes.
Cell growth, division, and death, is managed through additional rules on the evolution of
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the discrete boundaries. Unlike previous IB approaches to multicellular tissues, we do not
include heuristical sources. Boundaries move as a result of cellular activity as dictated by
a dynamic energy budget model, letting flow in and out through them.

We have applied our model to reproduce initial stages of the spread of a biofilm seed
formed by a few spherical or/and rod-like bacteria in two dimensional geometries. Sim-
ulating rod-like bacteria is more expensive computationally. Computing the interactions
of rods requires small steps to let configurations adapt as cells grow and divide, avoiding
overlaps. We observe that rod-like bacteria tend to align, which is in agreement with ex-
perimental observations (Kirsch 2017; Seminara et al. 2012). In spatial competition with
spherical bacteria, rods dominate. In radial horizontal views, we see how crowded areas
trigger the death of scattered bacteria, which are reabsorbed. For vertical slices expanding
on an horizontal barrier, we see also gaps created by death bacteria near the barrier. In this
case, we have implemented a mechanism to allow water flow inside the biofilm, so that
gaps are filled with fluid and the separation between bacteria increases. When antibiotics
are applied, bacteria located in the borders are first to die, forming small necrotic regions.
We have shown that combining antibiotics which target either active or dormant cells
within the layered biofilm structure we are able to drive the biofilm to complete extinc-
tion, in agreement with experimental observations (Høiby et al. 2010). We also observe
the formation of fingering interfaces varying the uptake rates and nutrients.

The specific results of the simulations depend on the parameters we choose. Most
of parameters appearing in the model equations are taken from experimental measure-
ments and fittings to population counts for some bacteria (Seminara et al. 2012; Tuson
et al. 2012; Klanjscek et al. 2012; Birnir et al. 2018). However, there are a number of
parameters in the representation of interaction forces, division and death criteria which
are selected to produce adequate results, avoiding artifacts. Whether the whole set of
parameters can be fitted to data counts for the time evolution of biofilm seeds of bacte-
ria deserves further research. From a practical point of view, it would be important to
be able to implement control strategies using the antibiotic supply as control variables to
extinguish the whole biofilm seed in finite time.

Our model has more spatial resolution compared to cellular automata or particle based
modeling traditional techniques because we can capture individual cell deformation and
cell-fluid interactions. We can study geometrical arrangements, for instance, we identify a
tendency to align of rod-like bacteria, which might have consequences for the microstruc-
ture and emerging behaviors of biofilms. Also, we observe the formation of inner gaps
(due the cell death and reabsorption) which fill with fluid, resulting in porous structures
conditioned by geometrical interactions between cells and possible barriers, in agreement
with experiments (Asally et al. 2012; Seminara et al. 2012; Wilking et al. 2013).

The present framework is useful to investigate incipient stages of biofilm evolution
and how to eradicate or prevent them in those stages. However, it is computationally
expensive if one intends to grow large numbers of cells to see emerging behaviors at larger
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scales, eventually coupling to macroscopic mechanical descriptions (Carpio, Cebrián, and
Vidal 2019). This burden would be reduced resorting to High Performance Computing
networks or exploiting GPUs to speed up the process and allow for an increasing number
of cells.
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