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ABSTRACT

The increasing penetration of renewable energy in electrical systems requires ad-
vances in increasing their controllability. Energy Storage Systems (ESSs) are one of the
solutions, since they allow the management of generated energy. Green hydrogen produc-
tion systems, on the other hand, can utilize electricity to produce hydrogen. This energy
carrier which can be sold for revenue generation and can be produced using Alkaline
Electrolyzers (AELs).

To coordinate these systems in renewable energy plants, advanced control techniques
are needed. Complex processes such as degradation, partial loading and the effect of
uncertainties must be considered. These considerations add to the complexity, which can
obstruct control process, hence a simplistic formulation is required.

This dissertation addresses this issue by implementing the effect of both ESS and AEL
degradation into short-term planning keeping a linear formulation. Moreover, electrolyzer
partial loading effect and operational states are also considered. Novel approaches in
their inclusion into short-term planning for electricity market participation are proposed,
analyzing their long-term economical significance.

Due to the nature of spot electricity markets, which require the commitment of energy
delivery beforehand, the uncertainty of renewable source and electricity prices may affect
the performance of the system. Various stochastic approaches for short-term optimization
are evaluated, with the proposal of novel strategies. The long-term impact of including
risk-aware strategies is also analyzed in a simulation framework, whose results indicate
that conservative approaches do not necessarily yield better outcomes.

The present study commences with the modelling and formulation of a standalone
ESS participating in the day-ahead market. A renewable energy source is incorporated
into this model, creating a Hybrid Farm (HF) for multi-market participation. Lastly, a
green hydrogen production system is also integrated, allowing the involvement in the
hydrogen market. A novel algorithm for operation under uncertainties is proposed, which
has been found to outperform a classical Montecarlo approach.

Throughout the research, Python was employed as the programming language of
choice. The generated code has been uploaded to a public repository. Real historical
data was used to validate the findings and provide a more realistic representation of the
systems under study.
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1. INTRODUCTION

This initial chapter begins by conducting a thorough examination of the background
information that is relevant to the present dissertation. It explores the recent develop-
ments in the field modeling and control of energy storage and green hydrogen systems.
Moreover, this chapter highlights the current research gaps and elucidates the motivations
behind this work.

Afterwards, the methodology adopted in this research study is clarified. The meth-
ods and techniques employed for data collection and analysis are detailed. This chapter
concludes with a presentation of the dissertation document outline.

1.1. Background

This section presents the main working principles of electricity markets. It continues with
the current state of renewable penetration in electrical systems and thus, these markets.
Then, a brief introduction of ESSs and green hydrogen systems is provided. Finally, the
state-of-the-art in modeling and control of energy systems is discussed.

1.1.1. Electricity markets

The operation of electricity markets is typically carried out by entities known as market
operators. In the majority of liberalized electricity markets, during the opening of the
market session, consumers and producers submit their bids to the market operator. The
final price for electricity is determined by matching these bids [1].

The market operator plays a crucial role in the functioning of electricity market by co-
ordinating the bids between producers and consumers. They also have the responsibility,
in coordination with the Transmission System Operator (TSO) of coordinating the system
power flow to ensure stability.

A majority of energy exchanges are typically conducted in the day-ahead market [2].
Within this market, negotiations for hourly energy delivery for the following day take
place. These sessions are usually scheduled to occur in the day before delivery.

Intraday electricity markets allow the possibility of trading energy closer to its de-
livery. Usually market sessions and energy delivery occur within the same day. Iberian
spot intraday electricity markets have a pricing mechanism similar to day-ahead markets,
which is through discrete auctions. This type of market has gained popularity as renew-
able penetration has increased, since it allows for greater flexibility [3].

Lastly, real-time markets allow energy trading even closer than intraday markets. Fig-
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ure 1.1 depicts an overview of the electricity market sessions and their time before deliv-
ery. The Iberian electricity market structure has been used as an example for this illustra-
tion.

Figure 1.1: Electricity markets overview.

Another important aspect is deviation management, which occurs when delivered en-
ergy differs from the original commitment. A penalty must be paid or a bonus is earned
depending in the sign of the deviation and the necessities of the system at the moment.
This calculations are made after the delivery.

The market operator is responsible for determining the penalties and bonuses, based
on the circumstances of the market when the deviation takes place. These penalties and
bonuses encourages producers to make commitments which are able to commit, and must
be carefully considered in Energy Management Systems (EMSs) short term planning
when participating in electricity markets.

1.1.2. Renewable energy sources in electrical systems

The incorporation of renewable energy sources is paramount in the decarbonization ef-
forts of the economy, as they do not emit carbon dioxide. There are various technologies
available for renewable energy generation, including but not limited to hydropower, tidal
and geothermal energy. Among them, solar and wind power are the most prevalent tech-
nologies, constituting 54.7% of the total installed renewable capacity globally in 2021,
according to the International Renewable Energy Agency [4].

EMSs play a crucial role in renewable integration. They aim to optimize the genera-
tion and consumption of energy by coordinating the different actors in the system. By im-
proving EMSs effectiveness, profitability of renewable energy projects can be increased,
thereby promoting their implementation [5].

Energy generators can generate revenues through electricity markets participation.
These markets were designed for deterministic energy sources such as coal or hydropower
plants [6]. The integration of wind and solar renewable energy sources, which exhibit a
stochastic nature, poses significant challenges from a technical perspective.

Both solar and wind energy sources have the disadvantage of their uncertainty, chal-
lenging their participation in electrical markets. Research in the field of EMSs is focused
on the development of advanced algorithms that can balance this intermittent nature. This
includes the use of forecasting techniques.

2



1.1.3. Energy storage systems

The term ESS refers to the technology and infrastructure whose purpose is to manage the
flow of energy. There are a variety of storage technologies, such as electrochemical bat-
teries, thermal storage and pumped hydro [7]. A wide variety of services can be provided
by ESS, some of them are going to be discussed in this subsection.

One of the main advantages of ESSs is their ability to support the integration of re-
newable sources providing grid stability. For example, they can operate as power supply
when renewable energy production has been interrupted or reduced. This gives renewable
generators more flexibility and allows them to behave as traditional coal or hydropower
plants.

ESSs can assist in the participation of renewable sources in electrical markets, en-
abling delivery during peak demand or high market prices for increased revenue. This
does not only support their integration in electrical systems but also increases renewable
energy projects profitability, encouraging their implementation [8].

These systems can also operate independently with the purpose of trading in energy
markets, through the process known as arbitrage. This service has raised interest amongst
researchers lately.

Fast Frequency Response (FFR) is another service the BESS can provide. It consists
in the provision or draw of energy from the grid whenever there is a mismatch between
generation and consumption. A review of grid-scale projects of ESSs providing FFR is
conducted by authors in [9].

As the capital costs of ESSs tends to be high, multi-stacking services has been pro-
posed as an alternative to increase profitability [10]. A synergy exists between arbitrage
and FFR service. This is because frequency response services mainly require power ca-
pacity headroom, rather than energy reserves [11].

One of the main challenges of ESSs is their high cost. The investment required for
their installation can be substantial in large-scale projects. Furthermore, operation, main-
tenance and replacement costs can also be important.

Currently, the most widely utilized technology for ESSs is that of pumped-storage
hydropower. While there exist a variety of storage technologies, electrochemical batteries
have emerged as the most scalable option for grid-scale storage, experiencing significant
growth in market adoption in recent years. As for 2021, there are 16GW of grid-scale
battery energy storage capacity installed worldwide [12].

Lead-acid batteries are a mature technology which has been widely utilized in the past
decades. However, lithium-ion batteries have gained popularity due to their longer life-
time and higher efficiency. Sodium-ion batteries are a newer technology with the potential
to outperform lithium-ion in terms of costs, however they are in early development stages
[13].
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Degradation is a major challenge for electrochemical batteries. It reduces energy stor-
age capacity and power output over time due to repeated charging and discharging cycles.
Effective management and understanding of degradation mechanisms is needed to extend
battery longevity.

1.1.4. Green hydrogen

Green hydrogen is produced through the electrolysis of water using renewable energy
sources. Electrolysis involves the separation of hydrogen and oxygen atoms from water
molecules using an electric current. This process emits no pollutants and yields a valuable
energy carrier. As such, green hydrogen can play a crucial role in the decarbonization of
the economy [14].

Hydrogen is a versatile energy carrier. It can be used as fuel for transportation or
in industrial processes. Furthermore, it can be transported through existing natural gas
pipelines [15].

The device used for water electrolysis is called electrolyzer. The main technologies
available are alkaline and proton exchange membrane. Alkaline electrolysis is a more
mature technology than proton exchange membrane [16]. A sketch of the hydrogen gen-
eration process is present in Figure 1.2.

Figure 1.2: Green hydrogen generation process.

The cost of the electrolysis is still relatively high. Research efforts must be put in
innovative technologies which can help to reduce the costs of green hydrogen production,
in order to stimulate its implementation. Advanced control algorithms may help to reduce
such costs by improving its coordination with renewable energy sources.

Intermittent renewable energy sources present challenges for operating electrolyzers,
since they are an unstable power supply with inconsistent production rates. To overcome
these challenges, advanced energy management strategies and optimized electrolyzer op-
eration are necessary, along with research into more flexible and robust electrolyzer tech-
nology. Energy storage systems can also mitigate these challenges by providing a stable
energy supply to the electrolyzer.
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1.1.5. Modelling and control of energy management systems

An EMS is a technological solution designed to monitor and optimize the production and
usage of energy. It can be applied in various settings, including renewable energy systems.
Its objectives can vary and may include technical, environmental or techno-economic con-
siderations. Common architectures are centralized, decentralized and hierarchical [17].

The design of control algorithms for EMSs necessitates the use of simulation tech-
niques to model and evaluate a range of possible scenarios. These simulations require
the use of digital copies of the systems they will be controlling. Therefore, modelling
techniques have been developing in conjunction with control algorithms.

One of the main challenges for EMSs design is dealing with the system complexity.
Also, the uncertainties of the input variables, such as renewable resource availability and
electricity prices are something to deal with. These uncertainties are considered in this
research.

Simulation models employed in this research are designed to capture the key charac-
teristics of the systems under study. Their degree of complexity has been adjusted to meet
the requirements of this research. It has been considered that excessively complex models
can be counterproductive, especially in long-term process simulations.

1.2. Motivation& contributions

The viability of energy storage and green hydrogen projects is contingent upon enhancing
their economic viability. To this end, EMS must optimize their operation in order to
maximize project revenues. Thus, it is imperative to have a thorough understanding and
effective management of degradation and uncertainties.

The integration of energy storage and green hydrogen projects necessitates the appli-
cation of advanced control techniques that account for the behavior of constituent compo-
nents. Additionally, it is crucial to address the uncertainties inherent in renewable energy
sources and electrical markets. The utilization of simulation and modeling techniques is
fundamental in comprehending the impact of these uncertainties.

Gaps have been found in recent research regarding both modelling and control of such
systems. This research aims to fill such gaps by proposing novel modelling and control
techniques. Simulation environments have been utilised to validate such proposals.

The main contributions of this work are:

• A new approach for the implementation of Battery Energy Storage System (BESS)
degradation into short-term operation.

• Detailed studies in the role of BESS degradation incorporation in short-term oper-
ation as a techno-economical process.

5



• A novel stochastic optimization algorithm for renewable power plants coordinated
with energy storage systems & alkaline electrolyzers participating in day-ahead
electricity markets.

• A novel algorithm for hybrid renewable-storage power plants participating in mul-
tiple energy markets.

1.3. Modelling

The characteristics of the models employed in this research are dependent on their imple-
mentation. Since energy is the time-integral of power, the latter is used as input variable.
It is considered that active power is constant in a resolution of hourly time periods.

The complexity of the models is constrainted to the desired range of detail for the
study. Transitory phenomena, which takes place in the matter of seconds or less, is ne-
glected. This is due to the fact that EMSs operate at relatively low temporal resolutions,
such as hours, these phenomena do not have a significant impact on their performance.
Therefore only low-resolution processes such as changes in stored energy or hourly hy-
drogen flows are modeled.

In addition to the modelling of these systems, this research places special emphasis
on the degradation processes of both electrochemical batteries and alkaline electrolyzers.
Degradation, which refers to a gradual loss of performance over time, is an important
process to consider especially in long-term evaluations.

The incorporation of degradation into the models will help to identify the most cost-
effective control strategies. This is motivated to the high replacement cost of the tech-
nologies considered in this study. This research aims to improve the assessment of the
long-term effects of degradation into short-term planning.

1.4. Control

The control of energy systems is examined through the manipulation of inputs, such as
active power or input current. The ultimate goal of the implemented algorithms is to
optimize energy resource allocation with the aim of maximizing profitability. These algo-
rithms also consider the dynamic behavior of the modelled energy systems.

Such techno-economic objectives are formulated as mathematical programming or
optimization problems. This is a well-established approach [18]. Optimization problems
are delimited in a solution space which is defined by an objective function. Within this
function, techno-economic objectives are formulated to be maximized or minimized.

The solution space is delimited by optimization problems constraints. These con-
straints are mathematical expressions which have to be satisfied by the problem solution.
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They may include physical limitations and are therefore fundamental for defining the sys-
tem model.

By the use of these constraints formulation, the optimization programs aim to deter-
mine this optimal solution which is constrained by the physical limitations of the systems.
The proposed control algorithms are tested by using simulation frameworks which include
real data and long-term time ranges such as years.

1.5. Data collection

The use of real data for the simulation frameworks is crucial to validate the developed
algorithm and models. Real-world data provides a realistic representation of the dynamic
behaviour of the systems. By using it, the research can ensure that the developments are
robust and can be effectively implemented in real facilities.

The data utilized in this research has been obtained from public sources, with some
exceptions. The industrial nature of this research, which has been carried out in collab-
oration with Siemens Gamesa Renewable Energy, makes compulsory to maintain confi-
dentiality of some of the utilised data, such as wind turbines power curves. Public sources
of data, such as electricity prices, are cited whenever such data is introduced.

1.6. Siemens Gamesa Renewable Energy Collaboration

This research has been conducted in collaboration with Siemens Gamesa Renewable En-
ergy. As part of the project JANO-Joint Action towards Digital Transformation. Part of
the results of this study have been obtained during the development of the aforementioned
project.

1.7. Generated code

The different modelling, forecasting and simulation tools developed during this research
have been implemented using Python programming language. Due the extension of the
generated code, an appendix displaying it has been omitted. However, a public Github
repository has been created which contains all the code written during this research:

• https://github.com/Camunatas/PhD_Thesis

1.8. Dissertation outline

The dissertation document is organized as follows: Chapter 2 covers the electrochemical
batteries working principles, their modelling and control. The mathematical formulation
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of an optimization problem for arbitrage service is presented.

Chapter 3 introduces the degradation process of a battery storage system. A litera-
ture review in techno-economic formulations for optimization problems is conducted. A
demonstration of the implementation if this process into short-term operation is provided.

In Chapter 4, the previous models are extended to incorporate uncertainties. A brief
literature review on stochastic optimization techniques is introduced. A study of risk-
management approaches into long-term benefits of a stationary BESS is conducted.

The stationary BESS model is incorporated into renewable power plant model in
Chapter 5, conforming a HF model for electricity market participation. Iberian day-ahead
and intraday electricity market rules are described. Different market participation strate-
gies are compared in a simulation framework, with the proposal of a novel algorithm for
market overlapping mitigation.

Chapter 6 introduces a green hydrogen production system into the HF. It begins de-
scribing the Alkaline Electrolyzer (AEL) working principles and a linear formulation for
optimization problems. A day-ahead and real-time optimization problem is proposed,
which is extended into a two-stage stochastic formulation. A novel bootstrap technique
implementation is proposed to overcome the computational burden of the Montecarlo al-
gorithm. A simulation framework is developed to compare both approaches, furthermore,
different future hydrogen market and supply chain scenarios are evaluated.

This dissertation concludes with Chapter 7. In this chapter, conclusions and contribu-
tions of this research work are presented. Possible future works are also outlined.
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2. DEVELOPMENT AND IMPLEMENTATION OF A
GRID-CONNECTED BATTERY ENERGY STORAGE SYSTEM

MODEL

This research begins addressing the modelling and control of an ESS. Electrochemical
batteries are the technology considered, conforming a BESS. Hence, this chapter begins
with a definition of the BESS working principles and components.

A literature review on BESS modelling is conducted afterwards. This chapter con-
cludes with the implementation of an EMS algorithm for a grid-connected BESS. The
EMS is in charge of generating commitments for trading energy in the day-ahead market.

2.1. Battery energy storage systems operation and components

This section addresses the functioning principles of an electrochemical battery. The com-
ponents of a battery cell are outlined. The state variables which indicate the performance
of an electrochemical battery are defined. Finally, the concept of BESS is introduced.

2.1.1. Electrochemical battery working principles

An electrochemical battery converts electric energy into chemical energy through a series
of reactions. These reactions involve the transfer of electrons between two materials
generating an electric current which is circulated trough an external circuit. This process
is reversible, allowing the storage of electrical energy [19].

A battery is comprised of galvanic cells, where reduction-oxidation or redox reactions
take place. In these reactions, the oxidation state of the atoms change. This state is a
measure of the electrons lost or gained by the atom.

Redox reactions can be divided between oxidation or reduction reactions, depending
on the way the atoms are moving. In the oxidation reaction, electrons are emitted, it can
be represented as:

Anion −−−→ Cation + e–

The anion is the oxidized form of the material, which has lost electrons, increasing its
oxidation state and reaching a positive charge. The cation, on the other hand, is the re-
duced form of the material, which has gained electrons, decreasing its oxidation state and
reaching negative charge. The reduction reaction, as opposite to the oxidation, involves
the acceptance of electrons, it can be represented as:
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Cation + e–
−−−→ Anion

These electrons come from the oxidation reaction through an external circuit. The
oxidation reaction takes place in the anode, whilst the reduction reaction takes place in
the cathode [19].

2.1.2. Battery cell components

A battery cell, illustrated in 2.1, consists in two main components: the electrodes and the
electrolytes. An external circuit links both electrodes enabling electron transfer. Ions are
transported the membrane connecting both electrolytes.

Figure 2.1: Battery cell diagram.

By allowing conductivity, the cell produces a current. The electrolytes contain the
dissolved ions which participate in the redox reactions. It also serves as a barrier between
both electrodes, preventing short-circuits.

2.1.3. Electrochemical battery performance

The maximum energy it is able to store, the efficiency of the energy conversion and the
maximum output power are the most important measures when defining the performance
of an electrochemical battery. The properties of the galvanic cells materials and their
design directly influence such capabilities.

The amount of ions or active materials of an electrochemical battery define the max-
imum energy the battery can store. Moreover, the electrode surface also affects energy
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capacity. The more active materials can be incorporated into the electrode surface, the
more electrons can be involved in the redox reactions [20].

The rate of chemical energy converted into electrical energy is defined through the
efficiency. This charge loss takes place in secondary processes, such as water electrolysis
or heat losses [21].

Electrode materials conductivity and reactivity directly determine maximum output
power. An electrolyte with high ionic conductivity allows for efficient ion transporta-
tion, increasing output power. The internal resistance of the components also affect the
maximum power, its effect increases with battery ageing [22].

These processes directly determine the battery capabilities of providing services. They
change during the battery lifetime, until they reach a certain point in which the device has
to be disposed [23].

2.1.4. Battery state variables

These variables define the battery characteristics at any given time, the most important
ones are:

• Voltage: The electric potential difference between the battery terminals, it is mea-
sured in volts (V).

• Current: The flow of electricity through the external circuit between electrodes, it
is measured in amperes (A).

• Capacity: It is the amount of energy the battery can store and provide. It can be
measured in Ampere-hours (Ah) or Watt-hours (Wh).

• State of Charge (SOC): Is the amount of energy that can be drawn from the battery
at any given time, over the capacity, it can be measured in percentage or per unit.

• Power: Is the rate at which electrical energy is circulated. It is measured in watts
(W).

• State of Health: The amount of useful life remaining to the device, this concept is
extended in Chapter 3.

2.1.5. Battery energy storage systems

A BESS is a specific type of ESS which uses electrochemical batteries. It consists in
several key components, the most important being the battery pack, the power converters,
and the control systems. It is illustrated in Figure 2.2, where it is connected to a wind
farm and an electrical system.
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Figure 2.2: Schematic drawing of a BESS.

The battery pack operates in Direct Current (DC), therefore the implementation of an
inverter is necessary in order to connect it to Alternate Current (AC) systems, such as
the grid. A DC/DC converter serves as interface between the battery and the inverter to
regulate the device’s voltage and thus controlling its operation.

The inverter allows both the integration of the BESS with energy sources and its con-
nection to the grid. This is because it allows to quickly adjust the output power in response
to control setpoints. Furthermore, it has built-in safety and communication features, to en-
sure a reliable BESS operation.

The control architecture of a BESS comprises two levels: the Battery Management
System (BMS) which operates at a lower level, and the EMS which operates on a higher
level. The BMS is designed to monitor and control the battery pack. It controls the
voltage, current, temperature and state of charge in real-time. It can also optimize perfor-
mance by balancing the cells and providing diagnostics to higher control levels. Lastly,
it provides protection against failures, such as overcharge, excessive temperatures and
short-circuits [22].

The EMS receives inputs from the BMS and uses this information to determine the
appropriate BESS operation. Besides, it is in charge of coordinating the BESS with other
systems. This control architecture, with the power electronics and the battery pack, com-
prises the BESS.

2.2. Battery modelling

This section covers the most common approaches for electrochemical battery modelling.
These models can be categorized attending at their degrees of complexity and accuracy
[24]. Three main approaches have been found in the literature: the energy reservoir, the
equivalent circuit and the single-particle.

Each type of model has different inputs and outputs. Most control applications use the
energy reservoir model, being the latter models less used. In the following subsections,
these approaches are defined.
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2.2.1. Energy reservoir approach

This model considers the ESS as an energy reservoir. The stored energy is the result of
the charge and discharge values during a period of time,. This model emulates a liquid
tank, and is illustrated in Figure 2.3:

Figure 2.3: Energy reservoir model.

These models are the simplest and the most used for EMS applications due their sim-
plicity and computational efficiency. As input, they receive the charge/discharge powers
during a specific time period. Then, the stored capacity is computed in units of energy. In
this case, energy is expressed in MWh, as:

E(t) = E(t − 1) +
(︄
PCh(t) · ξCh −

PDis(t)
ξDis

)︄
, (2.1)

where:

• E(t): Stored energy at the end of hour t (MWh).

• E(t-1): Stored energy at the beginning of hour t (MWh).

• PCh(t): Charging power during hour t (MW).

• ξCh: Charging efficiency.

• PDis(t): Discharging power during hour t (MW).

• ξDis: Discharging efficiency.

ESS power is divided between charging and discharging power. This is allows im-
plementing the efficiency in a different way in charging and discharging processes. Its
linearity reduces computational complexity.

An important assumption is made in this approach. Since no input voltage is consid-
ered, the BMS acts as a black box. Therefore it is feasible only at energy-level control
applications.
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2.2.2. Equivalent circuit approach

This approach considers the battery as a single circuit, with a voltage source and other
elements in series. Equivalent circuit models define stored energy in terms of charge
(Ah). It can consider various elements, which can result in different orders of complexity,
as depicted in Figure 2.4.

Figure 2.4: BESS equivalent circuit model.

Different terms can be omitted for the simpler models. Depending on the nature of
the analysis, each order is more adequate than the others. Whilst the Oth is used for
steady-state analysis, the 1st and 2nd models are used for short time-steps analysis.

The battery ohmnic resistance is represented with Ro while voc represents the open
circuit voltage, vbat is the voltage in the battery terminals and ibat the battery current. The
parallel RC elements represent different chemical reaction dynamics.

Open circuit voltage is proportional to stored charge. For the simplest model, it can
be formulated as:

voc = vbat − ibatR0. (2.2)

The open circuit voltage when fully charged and fully discharged must be known, so
it can be converted into SOC. This relationship may be not linear and it may depend on
the temperature. Offline estimation methods are often utilized to obtain this correlation
[25].

2.2.3. Single-particle approach

This approach use the active material concentration in the electrodes (mol/L) as a metric
for available capacity. It is illustrated in 2.5. It emulates the ionic conduction and the
intercalation in both the anode and cathode.

The ionic conduction consists in the movement of electrons through the external cir-
cuit and the electrolyte. Intercalation refers to the insertion of ions in the electrode ma-
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terials. The concentration of electrode j as a function of time and particle radius r is
represented as cs.

These models necessitate specific cell construction information for accurate results,
which manufacturers may not make available to the controller. Despite this, there are
methods for estimating these parameters, which often employ machine-learning models
as a basis for estimation [26].

Figure 2.5: Single-particle model.

Single-Particle models consider each electrode as a single entity, providing accurate
modeling of transport phenomena, but with less precision at high current levels. This type
of model uses Fick’s law to represent the mass balance differential equation.

SOC is a measure of the stoichiometry of a battery, wherein one electrode is at its
maximum capacity while the other is at its minimum. The stoichiometry at one electrode
is always inversely proportional to that at the other electrode. Being the stoichiometry the
relationship between the amount of redox reactions reactants and products.

The open circuit voltage of the battery is determined by the surface concentrations
of the active materials at the electrodes. When is fully charged, the anode exhibits the
maximum active material concentration, while the cathode exhibits the minimum concen-
tration [26].

2.3. Optimization model implementation

This sections demonstrates an implementation of a grid-tied BESS model providing arbi-
trage service. The formulation is suited for a Mixed-Integer Linear Programming (MILP)
model. This is a class of optimization models that combine both continuous and discrete
decision variables.

MILP models formulation consists in linear expressions on both constraints and ob-
jective functions. The decision variables can be continuous or integer-valued. The latter
enables the definition of discrete states for the device, which can be very useful for phys-
ical systems modelling.
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This subsection is divided into three main parts. The first one introduces the opti-
mization model constraints. The second one describes the objective function. Lastly, a
simulation of this implementation is presented.

Model constraints

The constraints of the optimization problem demarcate the solution space to the physical
boundaries of the device. They are formulated as follows:

1. The BESS cannot be charged over its nominal power:

PCh(t) ≤ PNom · ND(t), (2.3)

where:

• PCh(t): Charging power during hourly period t (MW).

• PNom: Nominal power (MW).

• ND(t): a boolean variable whose value is 1 when it is not discharging at period
t.

2. The BESS can’t discharge over its nominal power:

PDis(t) ≤ PNom · NC(t), (2.4)

where:

• PDis(t): Discharging power during hourly period t (MW).

• PNom: Nominal power (MW)

• NC(t): a boolean variable whose value is 1 when it is not charging at period t.

3. Charging power is always positive:

PCh(t) ≥ 0, (2.5)

4. Discharging power is also always positive. This sign criteria is kept for simplicity
on the optimization algorithm:

PDis(t) ≥ 0, (2.6)

5. The BESS cannot be charged and discharged simultaneously:

NC(t) + ND(t) ≤ 1. (2.7)

6. The resulting BESS power at period t is computed for convenience as follows:

PBat(t) = PDis(t) − PCh(t), (2.8)
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7. The energy stored at the end of the period equals the amount stored at the end of the
previous hour and the charged/discharged energy considering efficiencies. Since
active power is considered constant during each time period, it can be considered
as energy:

E(t) = E(t − 1) +
(︂
PCh(t) · ξCh −

PDis(t)
ξDis

)︂
, (2.9)

where:

• E(t): Stored energy at the end of hourly period t (MWh).

• ξCh: Charging efficiency (%).

• ξDis: Discharging efficiency (%).

8. The SOC at t = 0 is the initial SOC, S OCinit, set by the user (by default 0)

S OC(0) = S OCinit, (2.10)

Objective function for energy arbitrage in the day-ahead market

The following objective function seeks to maximize the income:

Max
{︄ 24∑︂

t=1

Price(t) · PBat(t)
}︄
, (2.11)

where:

• Price(t): Energy price during hourly period t (€/MWh).

• PBat(t): Power during hourly period t (MW).

The optimization process outcome is a 24 charge/discharge operations vector, one for
each hour of the day. These operations are then submitted to the market operator as hourly
bids for the following day. It is assumed that the market accepts all bids.

Implementation results

For simplicity, it is assumed that electricity prices are known before submitting the bids,
which may not be the real case. In a more realistic scenario, price forecasting is necessary.
This aspect will be addressed in the following chapters, in which the uncertainties of real
prices are addressed with an extension of the current implementation.

For this implementation, a battery with the parameters indicated in Table 2.1 is con-
sidered. These parameters have been chosen arbitrarily. Hourly Iberian day-ahead market
electricity prices for January the 19th 2017 are used as input.
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Table 2.1: BESS parameters.

Parameter Value

Nominal capacity 50 MWh
Maximum power 12.5 MW
Charging efficiency 95%
Discharging efficiency 90%
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Figure 2.6: Daily arbitrage program.

Results are shown in Figure 2.6. The input electricity prices have been displayed. It
is followed by the SOC during the day, and the BESS input powers. It is considered that
input power is positive for charging and the opposite for discharging.

As illustrated BESS begins charging during the early hours of the day, specifically
from 2:00 to 6:00 AM, when electricity prices are at their lowest. The BESS then marginally
discharges at 10:00 AM and recharges at 16:00 PM, taking advantage of the lower after-
noon prices. Finally, it fully discharges from 17:00 to 22:00 PM in order to use the peak
electricity prices during this time period. The relationship between power and capacity
heavily influences this behaviour, since it measures the amount of hours it is capable of
be charging or discharging.

2.4. Chapter conclusion

In this chapter, the functioning principles of BESS have been introduced. Different mod-
elling techniques with an example of implementation has been presented. This imple-
mentation is the short-term operation of a BESS participating in the day-ahead market.
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In the following chapter, the degradation processes of an electrochemical battery are
presented. The model implemented in this chapter is extended to consider degradation
as a cost in short-term operation, in order to increase long-term benefits by extending
battery’s useful life.
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3. INCORPORATING DEGRADATION EFFECTS IN
SHORT-TIME PLANNING

The loss of performance over time is a process usually caused by device usage. Is is
very important to consider when defining EMS control strategies. Reducing degradation
can extend the device’s lifetime, thus increasing long-term benefits.

This chapter addresses the degradation process of electrochemical batteries and its im-
pact on EMS control algorithms. A literature review of different approaches is introduced.
Finally, an extension of the optimization formulation introduced in Chapter 2 is proposed,
incorporating degradation as a cost in the operation of the grid-connected battery ESS.

The chapter outline is as follows: First, it describes the main factors on electrochem-
ical batteries degradation. Then, a literature review on degradation modelling and its
incorporation into short-term planning is carried out. Lastly, the BESS model presented
in the last chapter is extended to consider this ageing process.

3.1. Electrochemical batteries degradation

The degradation of an electrochemical battery can carry out a loss of available capacity,
efficiency or maximum output power [27]. This can be caused by usage, thus, understand-
ing the mechanisms of degradation and considering them in short-time planning can help
to mitigate this performance loss. When degradation is caused by usage, it is named cy-
cling degradation, then it is caused by the pass of time, it is named calendar degradation.

The deterioration of an electrochemical battery is a multifaceted phenomenon result-
ing from various factors. The electrodes are particularly susceptible to degradation. The
formation of a layer known as the Solid Electrolyte Interphase (SEI) on the negative elec-
trode being identified as a primary contributing factor [28].

The loss of active materials leads to the loss of available capacity. Maximum output
power is reduced by a loss of passive films [23]. Cycling degradation can be reduced by
controlling different aspects of the operation:

• Cycles Depth of Discharge (DOD) [29].

• Circulated current [30].

• Ambient temperature [31].

• SOC (for calendar degradation) [32].

Temperature has been neglected in control applications with the assumption that the
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battery operates in a controlled environment which maintains it at a safe range, this is
very common in stationary applications at grid-scale level [31].

3.2. Modelling of battery degradation

This section reviews the degradation models available in the literature. First, it describes
the state variable SOH, already mentioned in Chapter 2 which is used to measure the
accumulated degradation. Then, it reviews the most common approach for battery ageing
modelling.

3.2.1. State of health

The SOH is the most used indicator for battery performance measuring. It can be defined
as the proportion of available capacity over its nominal value [33]. Other factors such as
maximum output power and efficiency can be utilized in its definition, but capacity is the
most used one. A common formulation is (in per unit):

S OH =
CapAv

CaPNom
· 100, (3.1)

where:

• SOH: State of Health (%).

• CapAv: Currently available capacity (MWh).

• CaPNom: Nominal capacity (MWh).

When SOH reaches a certain value, the battery reaches its End of Life (EOL). In
some works, EOL is considered when SOH reaches 80% [34], [35]. A SOH of 60% is
contemplated in others [36].

This relationship between SOH, EOL and capacity is motivated because when avail-
able capacity reaches certain point, it starts fading faster [37].

3.2.2. Literature review on degradation modelling approaches

There is a wide variety of degradation models available in the literature. They differ
mainly in their complexity and accuracy, as with the BESS models. More complex mod-
els allows a more detailed emulation of the degradation process, however they have a
computational burden which may cause trouble during long simulations [38].
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Ampere-counter approach

The simplest approach is the Ampere-counter or cycle-counter. It is based on the assump-
tion that the battery can perform a limited amount of full cycles during its lifetime. As
input, it receives the energy cycled during a time period [30]-[39]. It can be formulated
as follows:

∆S OH(t) =
|P(t)|

nCycles · 2CaPNom
· 100, (3.2)

where:

• ∆S OH(t): State of health lost during hour t (%).

• |P(t)|: Absolute value of the power during hour t (MW).

• nCycles: Number of cycles before reaching EOL.

Considering that input power has been constant during hour t, it transforms circu-
lated energy in equivalent cycles. Then it computes the relationship between the amount
of equivalent cycles during hour t as the fraction of lifetime cycles. It is the simplest
approach, but it neglects other degradation factors.

DOD-cycles approach

As described previously, the cycle DOD has an impact in the ageing process. This ap-
proach employs the relationship between cycle DOD and lifetime cycles, which is usually
provided by the manufacturer [40]-[29]. An example is illustrated in Figure 3.1.

Since it is a non-linear relationship, it is usually transformed into a piecewise linear
function, as in [42]. Another strategy consists in using fitting techniques, as in [43],
however this approach comes with a loss in accuracy.

A prevalent issue with this methodology is determining the partial cycle DOD. To
address this challenge, A Rainflow Counting algorithm can be utilized [44], [45]. This
algorithm allows to compute partial cycles into full cycles, enabling the use of this degra-
dation model approach into optimization problems.

Other approaches

The use of an equivalent circuit model allows to a different approach in degradation mod-
elling. As presented in Chapter 2 a voltage source emulating open-source voltage in series
with a resistor emulating internal resistance are the most basic elements. This resistor can
be employed to model the available power loss over time [46].
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Figure 3.1: Relationship between DOD and useful life [41].

Ultimately, electrochemical-based models are among the less commonly utilized mod-
els. In this category, the physics-based Single Particle (SP) model is the most common
[47]. Authors in [38] conclude that these models can be very precise, however their com-
plexity is a hindrance for long-term simulations.

3.3. Literature review on battery degradation in optimization problems

The incorporation of degradation into short-term BESS operation is a complex issue that
has yet to be fully addressed in the literature. A diversity of strategies have been proposed
to consider this process, however, no clear consensus has emerged yet. Furthermore, the
topic of degradation in BESS operation has only been briefly discussed in most works.

In this section, a critical literature review of the techno-economical formulations of
degradation into short-term operation is performed. A classification of the different ap-
proaches is depicted in Figure 3.2. The different categories are presented and discussed
separately.

As it can be seen, the main distinction is between the use of constraints in the opti-
mization problem and the use of a cost of use in the objective function. The former utilizes
the constraints to consider degradation processes, the latter implements techno-economic
effect of degradation in the problem.
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DEGRADATION APPROACHES
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Figure 3.2: Classification of degradation incorporation.

3.3.1. Constrained approaches

From the EMS perspective, BESS control process is carried out by means of a constrained
optimization model [48]. Constraints in the form of equalities or inequalities, which
enclose the solution space, often represent the physical boundaries of the system. As
mentioned in the previous section, DOD and circulated current are some of the main
causes of cycling degradation [49].

In the constraints-based strategies, these two magnitudes are restricted in the opti-
mization model constraints, resulting in a reduced degradation. Nevertheless, they are
less reliable since the link between the imposed limits and the resulting profits is weaker
than in other alternatives. They are less common than the cost of use approaches presented
in a later subsection.

Circulated energy restriction

These strategies restrain the circulated energy or current during the optimization period.
The premise is to divide the circulated energy by the battery capacity to obtain the number
of equivalent cycles. An inequality constraint limits the maximum amount of circulated
energy, Equation (3.3) shows the typical expression:

EC ≤ ECMax, (3.3)

where:

• EC: Equivalent cycles during the optimization period.
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• ECMax : Maximum equivalent cycles allowed during optimization period.

Authors in [50] present an empirical study of circulated current reduction effect in a
BESS performing arbitrage during 14 years. By iterating the circulated current restriction
they obtain the amount of cycles a day the BESS should perform for maximum benefits.
This approach fails to consider how cycle profitability changes from one day to another.

In [51], cycle and calendar losses are considered. Degradation process is controlled
by both oversizing the battery capacity and using a constraint. Afterwards, the constraint
is added to the proposed optimization problem limiting daily cycles which is similar to
the approach found in [50].

SOC restriction

In this approach, the restriction is applied to the energy stored in the BESS which is
limited to a certain level. An example can be found in [32]. This restriction can be
formulated as in (3.4):

S OCMin ≤ S OC(t) ≤ S OCMax, (3.4)

where:

• S OCMin: Minimum SOC.

• S OC(t): SOC energy during hour t.

• S OCMax: Maximum SOC.

Controlling degradation by setting SOC boundaries during operation presents the
same disadvantages as restricting circulated energy. It modifies the operation without
considering the service profitability during the optimization period. Nevertheless, the
implementations are simple and straightforward.

3.3.2. Cost of use approaches

An alternative to restricting operation in the model constraints is to use the objective
function. One advantage of these strategies is that they take into account the optimization
problem inputs, which play a crucial role in determining the profitability of the service.
The term cost of use refers to the way degradation is reflected into the objective function,
which is a cost of using battery. For example, in the case of arbitrage of a standalone
BESS in the day-ahead market, the objective function can be depicted as [52]:

Max
{︄ 24∑︂

t=1

πDM(t) ·
(︂
EDis(t) − Ech(t)

)︂}︄
, (3.5)
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where:

• πDM(t): Energy price during hourly period t (€/MWh).

• EDis(t): Discharged energy during hourly period t (MWh).

• Ech(t): Charged energy during hourly period t (MWh).

The objective function expressed in (3.5) aims to maximize benefits by purchasing
energy at lower prices and selling it at higher prices. By implementing a cost related to
cycling degradation, the following expression is obtained:

Max
{︄ 24∑︂

t=1

πDM(t) ·
(︂
EDis(t) − Ech(t)

)︂
−C

}︄
, (3.6)

where:

• C: Cost of use (€).

The implementation of this strategy allows for the restriction of BESS operation to
instances where the expected profits are greater than the estimated cost of degradation. In
situations where the price spread is low, the operation of the BESS will be curtailed until
the cost of use is lower than the benefits. This approach enables the flexibility to adjust
the impact of degradation in accordance with the profitability. A similar approach is to
implement degradation effect as a reward within a reinforcement learning algorithm, such
as in [30].

As it can be seen in (3.6), the objective function is expressed in economical units. Ex-
pression (3.1) shows how degradation is expressed in a different way. Therefore, a con-
version must be made in order to implement it into the objective function. Researchers
propose different ways for expressing degradation as an economical quantity. All proce-
dures follow expression (3.7):

DegCost = ∆S OH · S OHCost, (3.7)

where:

• DegCost: Cost of degradation.

• ∆S OH: State of Health loss.

• S OHCost: Cost of SOH lost (€).

It is considered that an amount of lifetime expended due to degradation can be under-
stood as an economical cost. The S OHCost factor quantifies the relationship between this
degradation and the resulting cost. Cost of use approaches can be divided into different
categories depending on how S OHCost is defined.
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Static approaches

Static approaches are by far the most commonly used in the literature. In this category, the
factor S OHCost is constant throughout the BESS lifetime. This assumes that degradation
has the same cost at the start and at the end of life of the system.

Methodologies of this category can be distinguished attending to how the constant
factor is obtained. The most common is to consider that it depends on the capital cost.
This perspective considers that degrading the battery causes a cost proportional to the
investment. Such approach is used, for example, by authors in [53] or [54].

The idea behind using the capital cost is to amortize the investment. However, since
current battery prices make arbitrage not profitable [52], considering S OHCost equal to
the investment cost may lead into an excessive degradation cost. When costs of ageing
surpass any possible possible profitability, the BESS will never operate. This is the main
disadvantage of implementing this degradation cost. It is common in the literature to
consider only an arbitrary fraction of the investment cost to solve this issue, as in [43],
which is something difficult to justify. Besides this, capital costs are sunk costs and,
therefore they should not affect operation.

Another approach consists in using the costs of battery replacement. The idea behind
this is that since the investment is already made, the operation should seek to amortize
the replacement of the next battery. Unlike using capital cost, this method considers that
future payments can affect operation. The method for setting the replacement cost varies
between authors.

In [55] the impact of diverse replacement costs in profitability is studied. Authors in
[44] propose a method to discount the replacement cost to their present value. This per-
spective has the disadvantage that future replacement costs are unpredictable. Technical
reports such as [56] may give a perspective of how these costs will evolve, but a long-term
prediction is always uncertain.

Finally, there are authors which consider that S OHCost is an arbitrary value. In some
works, the degradation cost of use is even used as a fixed penalty unrelated to expected
degradation. For example in [57] this penalty is set at 10 $/MWh. An interesting study
is done in [52] in which a parameter sweep for the costs of use is made, to obtain the
value which returns the highest Net Present Value (NPV) for the project. In this case, it
is uncertain if it will be possible to extrapolate that optimal value to a different system, a
different market, or even a different time frame for the same system.

Dynamic approaches

The use of a dynamic cost of use considers that the value of degradation changes during
project lifetime. Literature using dynamic approaches is remarkably scarce. An example
is found in [58]. In this work a battery is coupled to a generation system, the grid and a
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residential customer which acts as a load. Authors of this work consider that the battery
looses value during its lifetime. This value is formulated as:

V =
ν

D
, (3.8)

where:

• V: Current battery value (€).

• ν: Cumulative value (€).

• D: Accumulated degradation.

The cumulative value is defined as the overall value added to the system in comparison
to the business-as-usual case in which no BESS is present. As the accumulated degrada-
tion increases, the cost of use will decrease, resulting in an increased usage of the BESS.
The enhancement of the cumulative value is contingent upon the usage conditions. Au-
thors in [58] state that empirical results indicate a convergence of battery value at the first
weeks. But it changes with operation conditions, such as users load profile.

3.4. Incorporation of degradation process into short-term operation

This section describes the conventional implementation of degradation cost, utilizing a
DOD-cycles based degradation model, which is widely adopted in the literature. The
model is applied to the standard optimization problem of a grid-connected BESS partici-
pating in arbitrage service.

In this case, the S OHCost takes the value of the capital costs. To demonstrate the short-
term impact of this degradation cost approach in short-term operations, various cases of
capital costs are considered.

3.4.1. DOD-based degradation model formulation

For simplicity, it is assumed that the BESS does not undergo more than two cycles per
day, as proposed in [24]. This assumption is reasonable, since a typical daily energy price
curve has two peaks. However, this method can be extended to accommodate more cycles.

Additionally, it is assumed that no energy is stored for the following day and that the
BESS begins and ends its operation in an empty state, thus allowing for the approximation
of DOD as SOC. The daily DOD for both cycles is calculated using the amount of energy
discharged, as expressed in the following equation. This formulation considers that active
power during each time period is constant hence it can be considered as energy:
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DODTot = ∆S OCTot =

24∑︂
h=1

|PBES S (t)|
2 · ENom

, (3.9)

where:

• DODTot: Total daily DOD in pu.

• ∆S OCTot: Total daily SOC variation.

• PBES S (t): BESS power during hourly period t (MW).

• ENom: BESS nominal capacity (MWh).

It is assumed that the first cycle reaches the maximum daily DOD, given the SOC lev-
els during the cycle. The DOD for the second cycle is calculated by subtracting the energy
consumed in the first cycle from the total energy discharged. This approximation allows
for a straightforward implementation in a linear optimization problem. The calculation is
formulated as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩DOD1 = S OCMax − S OCMin

DOD2 = min(DODTot − DOD1,DOD1)
(3.10)

where:

• S OCMax: Maximum daily SOC.

• S OCMin: Minimum daily SOC.

• DOD1: DOD of first cycle.

• DOD2: DOD of second cycle.

The SOH loss is computed using equation (3.11), which incorporates the DOD-cycles
relationship depicted in Figure 3.1.

∆S OH =
2∑︂

c=1

1
NCyc(DODc)

, (3.11)

where:

• ∆ SOH: SOH lost.

• NCyc(DODc): Cycles at each DOD before End of Life (EOL).
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3.4.2. Degradation cost formulation

In this example, capital costs are utilized to quantify the economic impact of degradation
costs, as is the most prevalent approach in the literature. Therefore, the degradation cost
quantification formulated in (3.7) is applied here. The S OHCost factor takes the value of
the BESS capital costs.

3.4.3. Optimization problem formulation

The optimization model builds on the one outlined in equations 2.3 to 2.10. The degrada-
tion process is incorporated as a piecewise constraint using the formulation discussed in
the previous subsection.

The objective function is based on expression (3.6), adapted for this specific imple-
mentation of the optimization problem. The output of this optimization model is a vector
of 24 charge-discharge operations.

Max
{︄ 24∑︂

t=1

π(t) · PBat(t) − DegCost

}︄
. (3.12)

3.4.4. Simulation results

The optimization problem and degradation cost approach outlined above are used in a
simulation of a single day of arbitrage operation. The parameters of the BESS are pro-
vided in Table 3.1.

To demonstrate the effect of various capital costs on short-term operation, multiple
costs of use are implemented for the same day in the simulation. These costs, represented
in€/kWh of nominal capacity, are incorporated into the simulation using expression (3.7).
Additionally, the scenario of zero capital costs, which effectively eliminates costs of use,
is also considered as a base case in the evaluation.

Table 3.1: BESS parameters.

Parameter Value

Capacity 10 MWh
Nominal power 5 MW

Efficiency 95%

The simulation utilizes historical electricity prices from the Iberian day-ahead market,
specifically the prices from April 4th, 2018. The results of the simulation are depicted in
Figure 3.3 and take into account the SOC in various simulation cases.
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As depicted in the figure, the market price exhibits two peaks. In the scenario where
degradation costs are not taken into account, the BESS carries out two full cycles, utilizing
these peaks. As capital costs increase, the cost of battery degradation also increases. As
a result, the optimization algorithm reduces the depth of the cycles for two reasons: First,
to widen the price spread so that the profit exceeds the degradation cost, and second, to
decrease the degradation as shown in Figure 3.1.

Figure 3.3: Daily operation results for different capital costs.

Figure 3.4: Degradation vs gross benefits.

When the capital cost reaches 50 euros per kilowatt-hour, the BESS prioritizes cycling
during the second peak pricing period, which has a wider range of prices. However, when
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the capital costs reach 300 euros per kilowatt-hour, the degradation costs become too high
to generate a profit, resulting in the system not operating. This serves as an example of
the potential inefficiency of overestimating degradation costs in control applications.

The relationship between short-term degradation and gross benefits attained with vary-
ing capital costs is illustrated in Figure 3.4. As capital costs decrease, degradation in-
creases exponentially while gross benefits increase linearly. This can be observed by the
trend in the figure.

3.5. Chapter conclusion

Different degradation factors caused by both battery operation and the pass of time have
been introduced in this chapter. An example of their implementation in the model devel-
oped in Chapter 2 has been presented. Different magnitudes of degradation costs and their
effect in short-term operation have been analyzed.

Up to this point, the assumption of perfect foresight has been taken. As outlined in
the introductory chapter, market participation requires to make decisions with price or
renewable resource uncertainty. The incorporation of these uncertainties is introduced in
the following chapter.
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4. INCORPORATING UNCERTAINTIES IN BATTERY ENERGY
STORAGE SYSTEMS PERFORMING ARBITRAGE

When participating in electricity markets, price/quantity bids must be submitted with-
out prior knowledge of the electricity prices. Usually, forecasting tools are used to obtain
a prediction of such inputs. In previous implementations, the assumption of perfect price
foresight was made for simplicity.

When an optimization problem does not consider uncertainties, it is called determin-
istic, since they use deterministic forecasts. Non-deterministic optimization problems,
on the other hand, incorporate uncertainties into their formulation and use probabilistic
forecasts. This chapter addresses both strategies.

The first section serves as introduction to EMS optimization approaches considering
uncertainties. Afterwards, the forecasting tool used in this research is presented. This
chapter concludes with a study of the relationship between degradation and uncertainties
in short-term planning, and its outcome in long-term projects.

4.1. Energy systems optimization with uncertainty

Mathematical programming models can be classified into two categories: determinis-
tic and non-deterministic. Deterministic models consider inputs as fixed, while non-
deterministic models take into account that inputs may be uncertain. Since inputs for
power system optimization, such as commodity prices or renewable energy generation,
are often unknown in advance, it is necessary to consider uncertainties in the optimization
process.

This section introduces the concepts of stochastic and robust optimization. Then, the
Montecarlo method, which is widely applied in this kind of problems, is presented.

4.1.1. Stochastic vs robust optimization

When a decision with an uncertain parameter is made, the outcome is uncertain. The range
of possible outcomes can be described as a Probability Density Function (PDF) [59].
Depending on the available data of this PDF, optimization under uncertainty techniques
can be divided between stochastic and robust [60].

In stochastic optimization approaches, the search for the optimal solution is affected
by the randomness of the outcomes [61]. If the objective is to maximize the solution, the
problem can be formulated as follows:
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f (xOpt) ≥ f (x) for all x ∈ S , (4.1)

where f is the objective function, xOpt is the optimal configuration and S is the space
of all solutions. This solution space is considered as finite, because it is assumed that
the realizations of the uncertain parameter con be predicted by using historical data [59].
As the dimension of S increases, the problem becomes harder to solve [61]. This occurs
when more than one random parameter is present, for example wind speed and electricity
prices.

On the other hand, robust optimization only considers the worst possible outcome. It
only requires the range of possible outcomes from the uncertain parameter[59].

Robust optimization approaches can produce over-conservative results, which may
cause issues in energy systems optimization [62]. Stochastic optimization approaches, on
the other hand, are viable when data can be predicted, using forecasting tools. This is the
case of renewable energy sources and electricity prices [63].

While some works, such as [59] consider hybrid approaches, in this work only stochas-
tic optimization strategies are considered. This is motivated because the uncertain pa-
rameters realizations can be estimated using forecasting tools and that risk-management
strategies can be applied under these approaches [64].

4.1.2. Montecarlo method

Montecarlo method is a statistical algorithm which consists in repeatedly sampling uncer-
tain values [65]. When applied to mathematical optimization, it allows to generate a set of
possible outcomes for a given problem [66]. Recent advances in computational processes
have allowed to apply this method in more complex problems [67].

The set of possible outcomes is generated by solving a deterministic version of the
problem under different realizations of the uncertain parameters. This set is then trans-
formed into a PDF by using a Kernel Density Estimator (KDE). This is a non-parametric
method which positions a kernel function at every data point in the set and sum them to
estimate the PDF [68].

Figure 4.1: Scheme of Montecarlo method for optimization problems.

The process of generating this PDF with a Montecarlo method in an optimization
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problem is illustrated in Figure 4.1. A set of input scenarios is used to generate a set of
outcomes samples by solving a deterministic version of the mathematical program under
each scenario. A KDE is then applied to the set of outcomes to generate a PDF.

This method can be applied to a variety of optimization problems, from financial
modeling to engineering design. However, it is important to note that the accuracy of
the results is dependent on the number of simulations performed, and as such, a large
number of simulations are necessary to reduce the level of uncertainty in the results.
Additionally, different scenario algorithm reduction techniques can be used to further
improve the results, but their feasibility depends on the complexity of the problem [69].

4.2. Time-series forecasting with SARIMA

This section introduces the Seasonal Autorregresive Integrated Moving Average (SARIMA)
model. SARIMA is commonly used for analyzing and forecasting time-series data with
seasonal patterns. It is used in this research for input parameters predictions.

4.2.1. Deterministic forecasting

Hourly energy prices can be represented as time series, with each value showing a strong
dependence on previous values and the hour of the day. A widespread forecasting tech-
nique is the Seasonal Average Auto Regressive Integrated Moving Average (SARIMA)
model. It consists in the combination of a Moving Average (MA) and Auto-Regressive
(AR) forecasting model.

An AR model of order n predicts the future value of a timeseries as a function of
the n past values. A MA model of order q predicts the future value of a timeseries as a
function of the past q error terms. The MA model can capture auto-correlation, while the
AR model can capture partial correlations. These models are combined into an ARMA
model, which is typically used for time series forecasting when the series is stationary.

The training data used for each daily price prediction is chosen to be the 100 previous
days. Using a wider time series for the training data may result in over-fitting and nega-
tively impact the model performance. Historical data from the Iberian Market from 2015
to 2020 are shown in Figure 4.2.

It can be seen that the time series changes its stationarity over time, therefore a dif-
ferentiation is required, making an ARIMA model necessary. This model consists of an
ARMA model with a differentiating component "I". Since the time series presents a linear
average trend, a differentiation order of 1 is needed, this stationarizes the time series and
allows the AR and MA components to catch the correlations within its values.

The value of the energy price for a given hour has a relationship with the values on the
same hour for previous days, as it follows daily consumption patterns. However, season-
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Figure 4.2: Electricity prices from 2015 to 2021.

ality on longer periods, such as years, is less clear as depicted in Figure 4.2. Therefore,
daily seasonality can be considered to improve the prediction performance by using a
SARIMA model. The SARIMA model has three additional components which are the
seasonal counterparts of the regular ARIMA model. The AR component of the SARIMA
model is described by equation (4.2):

ϕ(Y) = ϕ1Yt−1 + ϕ2Yt−2 + ... + ϕnYt−p, (4.2)

where:

• Yt−n: Value at n lags.

• ϕn: Coefficient used to fit the model.

• n: AR order, usually denoted as p.

The seasonal counterpart of the AR component is very similar:

Φ(YS ) = ΦYS
t−1 + ΦYS

t−2 + ... + ΦYS
t−P, (4.3)

where:

• YS
t−n: Value at n seasonal lags (n · 24h).

• Φn: Coefficient used to fit the model.

• n: Seasonal AR order, usually denoted as P.
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The MA component is described by equation (4.4):

θ(Y) = θ1ξt−1 + θ2ξt−2 + ... + θDξt−d, (4.4)

where:

• θn coefficient of past lag n prediction error.

• ξn: error of past lag n prediction error.

• n: MA order, usually denoted as d.

This component has also its seasonal counterpart similarly as:

Θ(YS ) = Θ1ξt−1 + Θ2ξt−2 + ... + ΘDξt−D, (4.5)

where:

• Yt: Error prediction.

• Θn coefficient of past n seasonal lag prediction error (n · 24h).

• ξn: error of past seasonal n lag prediction.

• D: Seasonal MA order, usually denoted as D.

Differentiation orders are denoted as d and D for the regular and the seasonal differen-
tiation respectively. The order of SARIMA model components is notated as (p,d,q)(P,D,Q).
The authors in [70] statistically show that a SARIMA with order (2, 1, 3)(1, 0, 1)24 is ap-
propriate for forecasting such prices, and the same order is used here, it is worth noting
that a seasonal period of 24 has been chosen, day-ahead market electricity prices follow
daily cycles.

Coefficient Value

ϕ1 0.0175
ϕ2 0.9825
θ1 0.0921
θ2 -0.9853
θ3 -0.1065
Φ1 0.9854
Θ1 -0.8960

Table 4.1: SARIMA model coefficients.
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The fitting is performed by using the Limited-memory BFGS (L-BFGS) algorithm.
This iterative algorithm uses only a limited amount of memory to store the history of past
iterations. It has the advantage of using limited computer memory, making it suitable for
this application. The parameters obtained by this technique are presented in Table 4.1.

As an example, a deterministic forecast for April the 16th 2018 is shown in Figure 4.3.

Figure 4.3: Day-ahead forecasting example for April the 16th 2018.

4.2.2. Probabilistic forecasting

A SARIMA model gives as outcome not only a point forecast but also the variance of
such prediction. When the model is fit as in previous subsection, it can be used to sample
different realizations, thus creating different scenarios [71].

The Montecarlo method uses this feature. This process is useful for estimating the
probability density of future events. Since Montecarlo estimation is based on a finite
number of simulations, it is subject to a certain level of error, therefore it is common to
simulate a large number of paths in order to reduce the error.

A draw of 1000 scenarios is created from the SARIMA model presented previously.
The generated price paths are shown in Figure 4.4 for January 19th, 2017 as an exam-
ple. They represent possible future prices and must be taken into account in the bidding
strategy.

Since forecast errors tend to increase with time, it can be observed that the scenario
dispersion is lower for the early hours and the results diverge for the latter ones. Other
works such as [72] propose the inclusion of a scenario reduction algorithm. However,
these methods can decrease Montecarlo method accuracy.
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Figure 4.4: Generated scenarios.

4.3. Two-stage stochastic optimization

This approach involves considering two stages in the decision-making process. In the first
stage, decisions are made considering the uncertain parameters are known, this is attained
with deterministic forecasts. In the second stage, the outcome of the first-stage decisions
based on the uncertain parameters realizations is considered as a cost.

A PDF generated in a Montecarlo simulation is used to obtain a distribution of the
second-stage costs. It allows the effective optimization of energy systems under uncer-
tainty [60]. These two-stage models can be extended into multi-stage models, which can
be useful when rolling forecasts are available and updated hourly [73].

Depending on how the risks of first-stage decisions are considered in second-stage
costs, different approaches can be found. This section introduces the risk-neutral and
risk-aware strategies. Examples found in the literature are used to present the formulations
under each approach.

4.3.1. Risk-neutral approaches.

Risk-neutral stochastic optimization problems aim to maximize the total expected benefits
without regard of first-stage decisions risks. An example of this can be found in [74], in
which an optimization algorithm is used for maximizing day-ahead market profits of a
wind farm with a hybrid energy storage system, consisting of batteries and hydrogen fuel
cells as ESSs.

The model input includes wind power and electricity prices scenarios. Day-ahead
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power commitments are generated in the first stage, which are used as input for the second
stage real-time operation. Both ESSs are used for reducing deviations. The objective
function of the optimization problem, which aims to maximize profits, is formulated as
follows:

Pro f itDa =

n∑︂
i=1

NS∑︂
sw=1

πsw

NS∑︂
sp=1

πsp · Pi,sw
d · λ

i,sp
Da , (4.6)

where:

• Pro f itDa: Day ahead market expected profits.

• i: Index for hourly interval.

• sw,sp: Index of the wind power and prices scenarios, respectively.

• πsw, πsp: Probability of each wind power and price scenario, respectively.

• Pi,sw
d : Delivered power to the network for hour i and scenario sw.

• λi,sp
Da : Day-ahead market price at hour i and scenario sp.

As shown, the algorithm has to go through all price scenarios for all wind power
scenarios, which increases the computational burden exponentially when more uncertain
parameters are considered, a common issue in stochastic optimization problems already
mentioned in a previous section. This approach assumes that the scenarios have different
probabilities, which is the case when a scenario reduction algorithm has been applied to
the original Montecarlo samples [69].

Hourly power commitments are used as decision variables in this approach. The op-
timization model searches for the hourly schedule that provides the maximum number of
benefits of all scenarios combined. An alternative approach is to use the schedule that
yields the highest mean of profits, a method named Sample Average Approximation [60],
which is described more in detail in the next section. Both strategies consider all situa-
tions to be equal, which neglects extremely adverse scenarios that may be unlikely but not
avoidable.

4.3.2. Risk-aware approaches.

These models incorporate risk management into the optimization framework by adding a
risk-awareness term to the objective function [75]. The most common term is the Condi-
tional Value-at-Risk (CVaR), also known as Expected Shortfall (ES). This term is a varia-
tion of the Value-at-Risk (VaR) which has the drawback of not providing any information
about the size of costs exceeding the threshold [60].
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The CVaR 1−β is defined as the mean of the values of all realizations of a random
variable above the 1 − β quantile. This metric provides information about the size of the
probability density function tail. By adding this term to the objective function, it takes
adverse scenarios into account.

Authors in [75] present a stochastic formulation for a hybrid plant participating in the
day-ahead market. This approach includes the CVaR in its objective function, which is
formulated as follows:

max
(︂
γE (S ) + (1 − γ) CVaR1−β (S )

)︂
, (4.7)

where:

• E(S): Expected value (mean) of the schedule.

• CVaR1−β (S ): Conditional value at risk of the schedule for a confidence level β.

• γ: Exogenous parameter 0 < γ < 1.

As shown, an exogenous parameter can be used to modulate the impact of the second
term into the solution. Changing its value modifies the algorithm robustness, modifying
the impact of risks into the operation.

4.4. Analysis of risk measures impact in a standalone BESS performing arbitrage

The optimization techniques described above are tested in this section. A simulation
framework is presented to test the final outcome of each strategy. The simulation frame-
work consists in a project of a standalone BESS providing arbitrage service in the Iberian
day-ahead market from 2016 to 2020.

The BESS model formulated in Chapter 2 is utilized. Different cases of optimization
strategies are implemented under the same conditions. Results after five years are extrap-
olated for the remaining project life, which is considered to end when the BESS EOL is
reached. This extrapolation is made in order to have a more complete evaluation of the
different strategies considered.

This section begins presenting the implementation of the SARIMA model for first
stage and second stage samples generation. Stochastic optimization formulations are pro-
posed afterwards, adapted for the current application. Lastly, the simulation framework
and results are described.

4.4.1. First stage and second stage samples generation

For each day, a set of 1000 electricity price scenarios as the one illustrated in Figure 4.4
is utilized. Each scenario is used as input for the MILP model for a BESS doing arbitrage
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considering degradation costs presented in Chapter 2, based in a DOD-cycles degradation
model. A hourly power schedule is generated for each scenario.

This process is repeated until 1000 power schedules are generated. Figure 4.5 illus-
trates a cluster of such schedules generated for January the 19th 2017. The width of the
dots represents the frequency with which the algorithm schedules that power level during
that hour under varying price scenarios.
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Figure 4.5: Charging and discharging programs on 1000 generated schedules.

As it can be observed, it is common to do a full power charge at the early hours of
the day. Additionally, it can be seen that it is less frequent for the algorithm to utilize the
midday valley in prices, potentially due to the low price spread during these hours. There
are also a lot of situations in which the BESS is not participating in the market, since
powers are kept at 0.

For generating the second-stage costs, the outcome of each schedule is calculated un-
der each scenario. This process generates a sample of 1000 expected benefits for each
schedule. A Kernel Density Estimation can be employed to estimate the probability den-
sity function for the profits of each scenario [76].

As an example, the distribution of profits under Schedule number #256 is presented
in Figure 4.6 for January 19th, 2017. This schedule was chosen at random. The 5th and
95th percentiles are also shown.

These percentiles are utilized as confidence levels for the risk-aware stochastic strate-
gies.
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Figure 4.6: Second stage samples of Schedule #256.

4.4.2. Stochastic approaches

Different strategies are implemented in order to compare the effect of risk management
in long-term profits. The same sample generation process is used in each case. Risk-
prone, risk-aware and risk-neutral strategies found in the literature are considered. A
combination of these is proposed.

Sample Average Approximation

The Sample Average Approximation (SAA) is a risk-neutral method that evaluates the
mean of the samples [77]. The average profit is calculated for each schedule. The candi-
date which yields the highest average profit is selected, a formulation for this implemen-
tation is presented as follows:

max
(︃1
n

n=1000∑︂
j=1

xi j

)︃
, (4.8)

where:

• n: Number of scenarios.

• xi j: Net profit of power schedule i under price scenario j (€).

Figure 4.7 illustrates the means of all power schedules for January the 19th 2017.
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Figure 4.7: Mean of benefits for each schedule.

The histogram in Figure 4.7 shows that many schedules have average profits close to
the maximum. Since the SAA method only considers the distribution mean, it is possi-
ble that there are other important distinctions between schedules with similar means that
should be considered. For example, some schedules may be more risky due to skewed or
thick-tailed distributions, while others may have similar means but present thicker right
tails, which could represent opportunities to gain higher profits.

Conditional Variance or Expected Shortfall approach

The use of the Expected Shortfall (ES) results in a risk-aware approach. This strategy
punishes candidate solutions which demonstrate high chance of poor outcomes, reflected
in the left tail of their distribution. The expected shortfall for a continuous probability
distribution can be obtained as follows:

ES β(X) = −
1
β

∫︂ −VaRβ(X)

−∞

x f (x) dx, (4.9)

where:

• ES β(X): Expected shortfall for percentile β.

• X: probability distribution.

• VaRβ(X): Value at risk or of percentile β.

• x: values of the distribution X.
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• f(x): Probability density for value x.

Given that the profit distribution for each schedule is discrete and all price scenarios
are assumed to have equal probability, the expected shortfall is the mean of profits that
fall below the β percentile. To favor distributions with lower risk, the expected shortfall
is added to the mean in this selection strategy, as expressed in (4.10). A multiplicative
factor K is included to adjust the impact of the expected shortfall on risk assessment. The
objective function for this approach is formulated as:

max
(︃1
n

n=1000∑︂
j=1

xi j + K · ES β(Xi)
)︃
, (4.10)

where:

• xi j: Net profit of power schedule i under price scenario j.

• Xi: profit distribution for schedule i.

• K: Multiplicative factor.

Expected Tail Return

Additionally, it may be beneficial to favor schedules with thick right tails in order to gain
higher profits. A measure of the impact of the right tail, similar to the expected shortfall,
is the Expected Tail Return (ETR):

ETRβ(X) = −
1
β

∫︂ +∞

−VaRβ(X)
x f (x) dx, (4.11)

where:

• ETRβ(X): Expected tail return for distribution X and percentile β.

The ETR, in this case, is the average of the values that exceed the β percentile. Similar
to the approach used for the expected shortfall, a multiplicative factor is added to the
mean of profits, in this case to account for the right tail of the distribution. The objective
function for this approach is formulated as:

max
(︃1
n

n=1000∑︂
j=1

xi j + K · ETRβ(Xi)
)︃
. (4.12)
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ETR & ES combined Approach

Lastly, for the sake of completeness, a combination of both expected shortfall and ex-
pected tail return is proposed. The objective function for this approach is as follows:

max
(︃1
n

n=1000∑︂
j=1

xi j + K · (ETRβ(Xi) + ·ES β(Xi))
)︃

(4.13)

4.4.3. Simulation results

The strategies formulated above are compared in a simulation from January the 1st to
December the 31th 2020. Battery degradation is implemented, hence the available battery
capacity fades from one day to the next. Simulation outcomes are extrapolated until the
end-of-life (EOL) of the project to obtain the final results for each strategy.

Simulation framework description

The power schedules presented to the market session for each BESS are generated using
six different strategies:

• The Expected Shortfall (ES) strategy, which takes into account the risk of low prof-
its by adding the expected shortfall to the mean of the profits as defined in (4.10).

• The Expected Tail Return (ETR) strategy, which favors schedules with a thick right
tail by adding the expected tail return to the mean of the profits as defined in (4.12).

• A combination of the ES and ETR strategies, which takes into account both risk
and opportunity by adding both the expected shortfall and the expected tail return
to the mean of the profits as defined in (4.13).

• The Sample Average Approximation (SAA) strategy, which selects the power sched-
ule that yields the highest average profit as defined in (4.8).

• A deterministic approach, in which the direct forecast is used to obtain the final
power schedule.

• The ideal case, as a benchmark, in which perfect price foresight is considered.

The degradation model outlined in Chapter 2 is employed to compute degradation
caused by the real operation on a daily basis. It is important to consider calendar degrada-
tion in addition to cycles, as the expected lifespan of a LFP battery is around 6000 cycles.
Research in [78] shows that LFP cells experience a 5% capacity loss when stored at 25°C
and 50% SOC over a period of 900 days. This value is used in the current study, taking
into account that the BESS has a thermal management system and SOC is kept at 0% at
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the start and end of each day. By combining this with the daily usage-induced capacity
loss, a mean of 0.0056% daily capacity loss by calendar aging is obtained, which will
result in lower profits from arbitrage due to degradation.

Five year simulation results

The parameter K is initially set to 1, but varying it does not significantly affect the com-
parison of different approaches. Figure 4.8 illustrates the accumulated cash flow after 5
years for each strategy. It can be observed that all strategies display seasonal patterns,
corresponding to the warmer months with lower price spreads and reduced BESS opera-
tion. Initially, it may appear that the ETR approach yields better results than the others,
the deterministic approach yields similar results to the SAA and ES&ETR strategies, and
the ES approach yields substantially worse results.

Figure 4.8: Accumulated benefits after 5 years.

As shown in Figure 4.9, the different strategies result in varying levels of battery
degradation. The seasonal patterns observed in Figure 4.8 are not present as calendar
degradation continues to occur even when the BESSs are not in operation. The ETR
approach results in a more aggressive use of the battery, prioritizing power schedules with
the potential for higher income, often resulting in more full daily cycles than when using
other strategies, even more than in the ideal scenario where prices are known. However, it
is not possible to determine from this simulation alone whether the increased degradation
is outweighed by the higher income. Similarly, the use of ES as a risk measure results in
both lower income and degradation, making it difficult to compare with other approaches.
It is important to note that this simulation alone does not provide enough information to
determine if the higher income from ETR compensates for the higher degradation.
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Figure 4.9: Accumulated degradation after 5 years.

The simulation results indicate that the Direct approach using the point forecast and
the SAA approach yield similar outcomes in terms of income and degradation. This
suggests that there is no benefit to using the SAA approach, which involves a higher com-
putational effort through Montecarlo analysis. The results imply that the system does not
have any non-linearities or characteristics that are not captured by the ARIMA forecast.
Therefore, the Direct approach using the point forecast is sufficient for forecasting the
prices.

Full project extrapolation

In order to evaluate the impact of each strategy in a project, an extrapolation is made of
each simulation case, until the BESS reaches its end of life, defined as when the capacity
reaches 80% of its nominal value. This is done by taking into account the average net
income per MWh of the current available capacity and the average daily capacity loss
over a 5-year simulation using real data.

The extrapolation method chosen is based on the average net income per MWh of the
current available capacity and the average daily capacity loss over the 5-year simulation
with real data. Other methods of extrapolation were tested, such as repeating the available
prices data, but no significant differences were found.

The simulation is run twice, once without incorporating the degradation costs into the
daily optimization and once by including them. The accumulated cash flow for both cases
is presented in Table 4.2.

Table 4.3 shows the end of life (EOL) time for each case. This allows for a comparison
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With degradation cost Without degradation cost

Ideal 1.24 M€ 1.17 M€
ES 0.61 M€ 0.81 M€

ETR 0.88 M€ 0.79 M€
ES & ETR 0.88 M€ 0.81 M€

SAA 0.88 M€ 0.81 M€
Deterministic 0.88 M€ 0.82 M€

Table 4.2: Accumulated cash flow with each strategy.

of the impact of the implemented degradation model on the long-term analysis.

With degradation cost Without degradation cost

Ideal 7.21 years 6.05 years
ES 8.72 years 6.67 years

ETR 6.83 years 6.14 years
ES & ETR 7.67 years 6.12 years

SAA 7.67 years 6.13 years
Deterministic 7.67 years 6.14 years

Table 4.3: EOL time for each strategy.

The results reveal substantial variations in accumulated cash flow and end-of-life time
between the evaluated strategies, particularly in regards to degradation costs, with varia-
tions of 30% in BESS lifetime. To assess these outcomes, a comparison of the Net Present
Value (NPV) of the cash flows using a 7% discount rate is conducted, as depicted in Figure
4.10 and Table 4.4.

The results indicate that the evaluated strategies are able to achieve approximately
two-thirds of the theoretically optimal NPV, represented in the results as Ideal. There is
likely potential for improvement in forecasting through the use of more advanced algo-
rithms.

With degradation cost Without degradation cost

Ideal 0.99 M€ 0.97 M€
ES 0.47 M€ 0.67 M€

ETR 0.71 M€ 0.66 M€
ES & ETR 0.69 M€ 0.67 M€

SAA 0.69 M€ 0.68 M€
Deterministic 0.70 M€ 0.69 M€

Table 4.4: NPV with each strategy.
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Figure 4.10: NPVs with each strategy with and without considering degradation costs.

When degradation costs are excluded from the optimization process, the resulting
NPV and battery lifetime are relatively similar across all strategies. The only significant
difference is observed for the ES strategy, which results in higher accumulated cash flow
but at the expense of longer end-of-life time. These variations appear to balance each
other out, resulting in similar NPV.

The effect of including degradation costs in NPV is dependent on the optimization
strategy employed. Using the ETR approach results in a 7.5% increase in NPV, high-
lighting the potential of including such costs in the objective function to enhance project
value. However, utilizing the ES approach leads to a 30% decrease in NPV, illustrating
how consideration of degradation costs can negatively impact project profitability when
utilizing a risk-averse optimization approach. The remaining strategies result in almost
insignificant increases in NPV, but with an extension in battery lifetime, requiring more
time to reach a similar NPV.

Inclusion of degradation costs results in similar NPV for all strategies except for the
ES approach. The ES strategy becomes even more conservative, resulting in reduced ac-
cumulated cash flow due to the increased weight of calendar aging, and a greatly extended
end-of-life time, resulting in a reduction in NPV. For the remaining strategies, the most
notable difference is found when using ETR, where the NPV is comparable to the others,
but achieved in a significantly shorter time frame due to more aggressive utilization of the
battery. This may be of interest when payback time is a concern.

The results presented were obtained with a fixed value of K=1. To evaluate the impact
of this parameter, a sweep analysis was conducted and the results are depicted in Figure
4.11. The ETR strategy exhibits a small peak at around K=0.5, yielding an NPV of 0.73
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M€, which is 4.3% higher than the Deterministic approach. Conversely, the NPV for the
ES strategy decreases as K increases, as it leads to a more conservative use of the battery.
Notably, the effect of increasing K is relatively insignificant for the ES & ETR strategy.

Figure 4.11: NPVs considering degradation with various values of K.

The results indicate that a conservative approach, such as the use of the ES strategy,
results in the worst outcome compared to other strategies. Therefore, there is no justifi-
cation for a risk-averse approach to battery operation, especially given that daily market
participation consists of a series of relatively small bets, resulting in minimal risk for each
transaction. This is an assumption made in the literature, and this conclusion is one of the
contributions of this work.

Furthermore, the results demonstrate that implementing a risk-prone approach to bat-
tery operation that incorporates degradation costs, such as the ETR strategy, leads to a
higher NPV (approximately 4.3% higher) and a shorter project timeline, which could be
beneficial.

4.5. Chapter conclusion

In this chapter, different risk-aware stochastic approaches have been implemented, with
the proposal of a new one. It has been concluded that a conservative approach does not
yield better results. A risk-prone approach improves results, but the exogenous parameter
which modulates it must be chosen correctly.

In the next chapter, the BESS model is incorporated in a renewable power plant, con-
forming an HF. This increases complexity and opens the BESS to new applications. The
operation of this system in multiple electricity markets is analyzed.
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5. ENERGY STORAGE SYSTEMS IN HYBRID FARMS

This chapter introduces a renewable generation system to the ESS, conforming a Hy-
brid Farm. The operation is extended from the day-ahead electricity market to include
intraday spot markets. A progressive optimization algorithm is formulated and different
market participation strategies are compared with the proposal of a novel approach which
mitigates the effect of market overlapping.

Firstly, Iberian electricity markets rules are introduced, this region has been chosen
for illustration purposes since it is consistent with other ones. Afterwards, the HF model
formulation for optimization applications is presented. Then, the proposed stochastic op-
timization algorithm for multi-market participation is described. This chapter concludes
with an implementation of this model in the Iberian electricity markets. A study is con-
ducted in the effects of multi-market participation.

5.1. Iberian electricity market rules

Before each market session opening time, the EMS needs a forecast of electricity prices
and wind power generation for its decision-making process. Since the forecast accuracy
depends on the time horizon, it is necessary to consider each market session opening
hour. Deviations costs rules must be take into account, since they reflect the impact of
forecasting errors.

This section briefly introduces the rules for Iberian day-ahead and intraday spot mar-
kets. Due the small volume of energy traded in continuous markets, they are neglected
in this study. This section concludes with the description of deviation management rules
applied by the Iberian market operator.

5.1.1. Day-ahead market

The majority of energy traded in the Iberian electricity markets is located in the day-ahead
market. In 2020, it accounted for 74% of the total [79]. Hence, it is the most important
market for arbitrage operation. The Iberian day-ahead market session takes place every
day of the year at 12:00 CET.

The price and volume of energy is determined for each hour of the following day
by the intersection of demand and supply. Market agents submit their offers through the
market operator OMIE (Operador del Mercado Ibérico de Energía) [80]. As a result,
the EMS has to submit 24 hourly offers for the following day, using price and generation
forecasts generated 12 to 36 hours prior to delivery time.
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5.1.2. Intraday markets

Intraday spot markets accounted for 14% of the energy traded in 2020. Since six times
more energy is traded compared to intraday continuous markets, only the former ones are
considered in this research [79]. In Table 5.1, the closing times and delivery hours of the
market sessions are shown.

Table 5.1: Intraday market sessions in 2018.

Session 1 2 3 4 5 6

Closing time 18:50 21:50 1:50 4:50 8:50 12:50
Delivery hours 22(D-1)-23 0-23 4-23 7-23 11-23 15-23

The closing times in Table 5.1 are the deadlines for submitting offers to the market
operator. Decisions must be made before this time. The delivery hours in the table are
the hours during which the energy negotiated in each intraday market session will be
delivered on day D.

Since Session 1 and 2 cover the same hours, Session 1 is neglected as Session 2 has
a closer opening to the delivery. Intraday markets allow agents to correct their schedule
on the day-ahead market. This can be done by purchasing energy during hours when a
deviation from the day-ahead program is expected. Arbitrage can also be performed to
gain additional liquidity. Both options are considered in the simulation cases.

5.1.3. Deviation adjustment mechanism

This mechanism is applied by the market operator the day after delivery. Depending
on the state of the electrical system at each hourly period, it calculates the economical
penalties or bonuses to the producers. The amount to be paid or receives depends on the
state of the system when the deviation occurs.

A penalty must be paid to the operator if the deviation is downwards while a bonus is
received if the deviation is upwards. These amounts also vary depending if the deviation
was against of each the system. This results in a four different deviation costs for each
hour.

The absolute value of a deviation during an hourly period t can be formulated as
follows:

λ(t) = |ED(t) − Ec(t)|, (5.1)

where:

• λ(t): Deviation during hourly period t (MWh).

• ED(t): Delivery during hourly period t (MWh).

53



• Ec(t): Commitment during hourly period t (MWh).

If the deviation is upwards and in favor of the system, the additional energy is remunerated
at the day-ahead price during hourly period t, therefore the bonus is calculated as:

β(t) = λ(t) · πDM(t), (5.2)

where:

• β(t): Bonus obtained during hourly period t (€).

• πDM(t): Day-ahead price during hourly period t (€/MWh).

If the deviation is upwards and against the system, the additional energy is remunerated
at less than the day-ahead price during hourly period t, this bonus is calculated as:

β(t) = λ(t) · πDM(t) · (1 − λCoe f (t)), (5.3)

where:

• λCoe f (t): Coefficient for deviations against the system during hourly period t.

If the deviation is downwards and in favor of the system, the energy deficit is charged
at the same price as the day-ahead price during hourly period t, therefore the penalty is
calculated as:

ρ(t) = λ(t) · πDM(t), (5.4)

where:

• ρ(t): Penalty during hourly period t (€).

If the deviation is downwards and against the system, the energy deficit is charged at more
than the day-ahead price during hourly period t, therefore the penalty is calculated as:

ρ(t) = λ(t) · πDM(t) · (1 + λCoe f (t)). (5.5)

The total deviation costs, is formulated as follows. As it can be seen, it can be negative,
this is caused when more energy is available than commited:

λCost(t) = ρ(t) − β(t), (5.6)

where:

• λCost(t) : Deviation costs during hourly period t (€).
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Figure 5.1: Deviation costs calculation.

This is summarized in Figure 5.1. The four expressions are illustrated. As it can be
seen, the calculation of the bonuses and penalties is almost identical when the deviation
is against or in favor of the system, with the sign of λCoe f (t) switched.

The coefficient λCoe f (t) represents the system’s vulnerability to deviations against it.
A higher coefficient means a higher penalty needs to be paid. As seen in (5.3), if the coef-
ficient is greater than 1, the bonus for upwards deviations can be negative, which implies
a penalty. During the same hourly period, if downwards deviations are against the system,
upwards deviations are in favor of the system, and vice versa. The deviation coefficient is
determined by the system operator and it is the same for both types of deviations.

5.2. Hybrid farm model

The HF model receives as input a deterministic forecast of electricity prices and wind
power. A three-level control architecture is implemented into the EMS for both commit-
ting energy and managing the ESS, this control system is described in a following section.
Daily profits are calculated using the formulation presented in the previous section. A
sketch of the plant configuration is shown in Figure 5.2.

In this chapter, the input generation process is presented. Then, the Wind Turbine
Generator (WTG) and the control architecture is described. Lastly, the daily profits cal-
culation process is introduced.
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Figure 5.2: HF configuration.

5.2.1. Model inputs

Model inputs are deterministic forecasts obtained using the SARIMA model presented
in Chapter 4. For each input, the SARIMA model is fitted and trained diversely. Both
models are trained with real historical data.

Wind power

Wind power forecasts are obtained with a two-stage approach as in [81]. First, hourly
wind speed is forecasted using a SARIMA, then, such prediction is fed into a function
with the power curve of a Gamesa G128 WTG. The optimization and EMS models receive
directly the forecasted and real wind power hourly values.

Wind speed historical data is taken from Sotavento experimental park on Galicia,
Spain [82]. This particular park was chosen due to its publicly available data and its
location within the Iberian market region. The data has a resolution of one hour and the
measured wind speed for the year 2018 is presented in 5.3.

Hourly wind speed forecasts are required during the opening hours of market sessions.
The first forecast is at 12:00h, when the day-ahead market commences, and subsequent
forecasts are generated during the opening hours of intraday market sessions. For real-
time operations, actual measured wind speed data is utilized. The SARIMA model em-
ployed has an order of (2, 0, 3)(2, 1, 3)12. The configuration process for the model is not
covered in this work. Figure 5.4 illustrates the 2018 average Mean Absolute Percentage
Error (MAPE) of the wind speed forecasts generated during different market sessions. It
is observed that the prediction error tends to decrease, motivated by the increasing prox-
imity between the market session and the last of the delivery hours.
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Figure 5.3: 2018 hourly wind speed historical data.

Figure 5.4: Average MAPE of each wind speed forecast for 2018.

Electricity price forecasts

The 24 hourly prices for the next day are predicted at 12:00h of the previous day. The
SARIMA model with order (2, 1, 3)(1, 0, 1)24 presented in Chapter 4 is used here. For
simplicity, perfect foresight of intraday prices is considered.
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Deviation prices

The hourly deviation coefficients derived from 2018 historical data are used to calculate
final deviation costs. However, a deviation coefficient is required for the optimization
model of intraday market offerings. Since deviation coefficients are only known after the
delivery period has ended, a forecasting technique for predicting the direction (favorable
or unfavorable) of deviation is required, but it is outside the scope of this paper. Therefore,
a deviation coefficient of 21%, the average of 2017, is considered when participating in
the intraday market.

5.2.2. Hybrid farm components parameters

Wind turbine generator

The WTG is a single Gamesa G128 WTG with a nominal power of 4.5 MW. The power
curve is taken from [83]. Only a WTG is considered for convenience. Generator converter
efficiency is considered as part of the power curve characteristic.

ESS

The storage system is composed of a 10MWh/2.5MW Lithium Iron Phosphate (LFP)
battery, this is a 4h ESS which is a requirement from the Renewable Economic Regime
[84].Its round-trip efficiency is assumed to be constant at 90% as in [85]. Calendar and
cycle degradation models presented in Chapter 3 are also implemented in this study. Table
5.2 defines this latter degradation model:

Table 5.2: Calendar degradation results at 25oC [78].

SOC (%) Capacity lost (%)

0 0.002
50 0.0055

100 0.012

5.2.3. Control architecture

The EMS control architecture is divided in three levels. Each one operates with different
inputs and in different time windows. A sketch of the architecture is illustrated in Figure
5.5:

The tertiary level operates in advance, and is responsible for the offering strategy in
various energy markets. The optimization models for market scheduling are applied at
this level.
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Figure 5.5: EMS control levels.

As input, the tertiary level receives prices and wind powers forecasts. It also receives
the BESS SOC in real-time. After generating the commitments, it sends plant setpoints
to the secondary level.

The secondary control level operates in real-time, at the beginning of each hour, and
is in charge of generating the ESS setpoints. Real-time generation and commitments
produced in the third level are used as input. The ESS setpoints calculation is formulated
as follows:

PES S (t) = PCom(t) − PGen(t), (5.7)

where:

• PES S (t): ESS setpoint during hourly period t (MW).

• PGen(t): Measured generation during hourly period t (MW).

• PCom(t): Commitment during hourly period t (MW).

As shown, when an upward deviation is anticipated, the ESS will receive a setpoint
to charge the excess. Conversely, when a downward deviation is expected, a discharging
setpoint is generated.

Lastly, the primary control level manages the energy storage system, it receives charge-
discharge setpoints from the secondary level and adjusts them based on the real-time SOC.
If the ESS is not able to cover the missing energy, a downward deviation will occur during
that hour. If the ESS is unable to store the excess energy, then an upward deviation will
occur.
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5.2.4. Daily profits calculation

Daily profits are calculated following Iberian market rules. Daily earning are formulated
in (5.8). Daily losses are formulated in (5.9).

Earnings =
24∑︂

h=1

(︃
EDM,C(t) · πDM(t) + EID,C(t) · πID(t)

)︃
, (5.8)

Losses =
24∑︂

h=1

(︃
Pφ(t) · πID(t) + λCost(t)

)︃
, (5.9)

where:

• Earnings : Daily earnings (€).

• EDM,C(t) : Energy commitment on day-ahead market during hourly period t (MWh).

• πDM(t) : Day ahead market real price during hourly period t (€/MWh).

• EID,C(t) : Energy commitment on intraday markets during hour t(MWh).

• πID(t) : intraday market real price during hourly period t (€/MWh).

• λCost(t): Deviation costs during hourly period t (€).

• Losses : Daily losses (€).

• Pφ(t): Power purchased on intraday market during hourly period t (MW).

Downwards deviations can be corrected in intraday markets in two ways:

• By purchasing the expected energy deficit in the intraday market (Pφ(t)).

• By using stored energy to cover the imbalance.

The optimization algorithm chooses how to correct expected deviations deviation depend-
ing on intraday market prices and deviation costs at each hour.

5.3. Progressive optimization algorithm

Since market sessions occur at different hours, the optimization algorithm for multi-
market participation has to be divided into different stages. This approach is known as
progressive optimization [86]. At each market session opening hour, a stage of the op-
timization problem is solved using as input not only wind speed and electricity prices
forecasts but also the solution of the previous stage.
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A sketch of this process is presented in Figure 5.6. The process starts when the Daily
Market (DM) market bidding is solved, generating an hourly power schedule vector PS ch.
This vector is updated, by each Intraday Market (ID) and SOC Emptying (SE) optimiza-
tion algorithm, and sent to secondary control level in real-time throughout the day. Each
time these algorithms are utilized, as a result, the PS ch is updated.
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Figure 5.6: Daily optimization process.

This section presents the formulation of the optimization algorithms. It begins by in-
troducing the day-ahead market operation, followed by the intraday market ones. Lastly,
an algorithm based in controlling intraday market participation splitting the ESS is pro-
posed.

61



5.3.1. Day-ahead market offering

The inputs for the day-ahead market offering include the price and power generation fore-
casts for the next day generated at 12:00 PM, the actual ESS nominal power and capacity,
and other plant parameters. The constraints of the standalone BESS optimization model
are used here.

Since a new component is added, the HF power flow must be defined. Since the WTG
is considered a black box, only this new constraint is needed. It is formulated as follows:

PGen(t) = Ps(t) + PCh(t), (5.10)

where:

• PGen(t): Total generation power during hourly period t (MW).

• Ps(t): Generation power sent directly to the grid during hourly period t (MW).

• PCh(t): Generation power sent to the storage system during hourly period t (MW).

The objective function aims to generate a vector of hourly commitments for the day-
ahead market. It will use the ESS to allocate generated energy in the most profitable
hours. It is defined as:

Max
{︄ 24∑︂

h=1

πDM(t) ·
(︂
Ps(t) + PDis(t)

)︂}︄
. (5.11)

As it can be seen, ESS does not purchase energy from the market. As per the regu-
lations of the Renewable Energy Economic Regime [84], ESS is not allowed to purchase
energy from electricity markets when operating in hybrid plants.

5.3.2. Intraday market offering

Intraday markets participation allows to correct deviations from the day-ahead market
schedule. Downwards deviations can be corrected by purchasing energy in the market.
Upward deviations can be corrected by generation excess.

The optimization algorithm takes as input the day-ahead market schedule, wind power
forecasts, deviation costs, real-time SOC and intraday market prices. Each intraday mar-
ket session occurs three hours before delivery, as shown in Table 5.1. The expected SOC
at the start of delivery is communicated by the tertiary control level.

Constraints from day-ahead scheduling are repeated here. However, new ones are
added to manage deviations. They are formulated as follows:
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1. Upwards deviations are defined separately from downwards deviations:

λ↑(t) = PPCC(t) − Psch(t), (5.12)

where:

• λ↑(t) : Upward deviation during hourly period t (MW).

• PPCC(t) : PCC power during hourly period t (MW).

• Psch(t) : Scheduled power during hourly period t (MW).

2. Downwards deviations are formulated as:

λ↓(t) = Psch(t) − PPCC(t), (5.13)

where:

• λ↓(t) : Downward deviation during hourly period t (MW).

3. Downwards deviations are considered as always positive, to separate both types:

λ↓(t) ≥ 0. (5.14)

4. The same happens with upwards deviations:

λ↑(t) ≥ 0. (5.15)

As it can be seen, when one type of deviation takes place, the other is equal to zero.

5. Hourly deviation costs are:

λCost(t) = λ↓(t) · ρ(t) − λ↑(t) · β(t). (5.16)

Deviation penalties and bonuses are calculated from expressions (5.3) to (5.5). The
intraday optimization uses real day-ahead market prices, since they are already
available at the time of the intraday market sessions. Due the complexity of fore-
casting deviation coefficient, it is set at 21%, which the average from 2017 and all
deviations are considered to be against the system. Historical deviation coefficients
are used to calculate real benefits.

6. Internal power flow constraint depicted on (5.10) is modified:

PGen(t) = Ps(t) + PCh(t) + PDel(t) + PCurt(t), (5.17)

where:

• PDel(t): Generated power used to cover deviations during hourly period t
(MW).
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• PCur(t): Generation power curtailed during hourly period t (MW).

Generated power is allocated to either cover expected deviations or maximize prof-
its in the intraday market.

7. The constraint regulating stored energy results:

E(t) = E(t − 1) +
(︂
PCh(t) · ξ −

PDis(t) + PDis,s(t)
ξ

)︂
, (5.18)

where:

• PDis,s(t): ESS power sold during hourly period t (MW).

This split of discharged power into two parts, one used to cover deviations and one
used for arbitrage, is similar to the division of generated power.

8. If arbitrage on intraday market is disabled, the following constraints are applied:

PDis,s(t) = 0. (5.19)

Ps(t) = 0. (5.20)

9. PCC output power is computed as follows:

PPCC(t) = PDel(t) + PDis(t) + Pφ(t). (5.21)

The intraday market purchased power is not physically received by the plant and
serves to fulfill commitments on the day-ahead market in case of deviations. It
is therefore not included in the PCC output power constraint, which measures ex-
pected deviations. The exchanged power is part of the scheduled power vector
input for the subsequent intraday market optimization, as shown in the constraints
represented by expressions (5.12) and (5.13).

The objective function is defined in (5.22), it aims to minimize expected deviations
and maximize profits by energy trading .

Max
{︄ IDlen∑︂

h=1

πID(t) ·
(︂
Ps(t) + PDis,s(t) − Pφ(t)

)︂
− λCost(t)

}︄
, (5.22)

where:

• IDlen: intraday market length.

The hourly commitment vector is updated using the outputs of the intraday market
optimization problem:

PS ch,new(t) = PS ch,prev(t) − Pφ(t) + (Ps(t) + PDis,s(t)), (5.23)

where:
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• PS ch,new(t): New hourly schedule (MW).

• PS ch,prev(t): Previous hourly schedule (MW).

5.3.3. State of charge emptying algorithm

As previously discussed, the secondary control level sends generated energy to the grid
when the ESS is full and hourly commitments are fulfilled, leading to an upward devia-
tion. The market operator only pays for excess energy at the day-ahead market full price
when the deviation is in favor of the system, as described in equations (5.2) and (5.3).
This can result in a missed opportunity to sell energy at higher prices when the deviation
is against the system.

Moreover, the highest calendar degradation occurs when the ESS is at full capacity,
as shown in Table 5.2. A novel optimization algorithm is proposed which involves selling
part of the stored energy on the nearest intraday market when the ESS SOC exceeds a the
threshold. This service differs from intraday market arbitrage in:

• It operates simultaneously with the intraday market optimization process.

• It only manages energy above a certain threshold, effectively splitting the ESS.

• It is limited to offering energy only in the first hours of each intraday market, to
prevent overlap with the next one.

For illustration purposes, in Figure 5.7 the operating hours of the proposed service are
shown, marked in blue over the delivery hours of intraday market, which are marked as
white bars. As it can be seen, the first hours of each intraday market are not repeated in
the following ones, hence no market overlapping occurs when operating here.

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 15:0014:0013:0012:0011:0010:0009:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00

INTRADAY 2

INTRADAY 3

INTRADAY 4

INTRADAY 5

INTRADAY 6

Figure 5.7: SE service operating hours.

This service splits the ESS into two Virtual Energy Storage Systems (VESS), one for
profit generation and the other for deviation reduction. The stored energy is divided with
a threshold of 75% set for the SE service. This value was determined through testing
various values in the study and was found to be the optimal balance between profits and
deviation reduction.
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S OC = S OCi − S OCS E, (5.24)

where:

• S OCS E: SOC threshold (%).

• S OCi: Initial SOC (%).

The SE service is managed as an optimization problem identical to the one for intra-
day market participation, but limited to the first hours of the next intraday market. The
variables used for deviation coverage are disabled as the objective of this service is solely
profit generation. The objective function is:

Max
S Elen∑︂
h=1

πID · PS E(t)
)︂
, (5.25)

where:

• S Elen: SE length for the next intraday market .

• PS E(t): Power sold during hourly period t (MW).

As evident, the goal is to sell available energy at the most expensive hours. The
scheduled power vector is updated as in (5.23).

PS ch,new(t) = PS ch,prev(t) + PS E(t). (5.26)

5.4. Market participation strategies

In this section, different case studies are presented, each showcasing a different approach
to using the ESS on the HF. Each case involves simulating the HF with the respective
approach operating during 2018 in the Iberian electricity markets. The aim is to com-
pare and assess whether revenue-stacking is more efficient than focusing on individual
services, and the performance of the proposed service.

At the end of each day, accumulated degradation and SOC serve as initial value for the
following day’s operation. The average daily profits and degradation under each scenario
are used in a full project extrapolation for a comprehensive view of the different cases.

5.4.1. Simulation cases

The simulation use cases are the following:
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• Ideal: Perfect foresight of prices and power generation; operates only in day-ahead
market.

• DM: The plant only participates in the day-ahead market, the ESS is used for cov-
ering deviations in real time.

• DM + SE: Similar to the DM case, but the SE service is also enabled.

• DM + ID: Similar to the ID case, but the plant also trades energy in the intraday
markets.

• ID: Only participates in intraday markets for covering deviations.

• SE: Only participates in intraday markets to cover deviations and performs SE ser-
vice.

• CF: Similar to the DM case, but the ESS does not participate in the day-ahead
market optimization.

5.4.2. Simulations results

The simulation was conducted using the same input data in each case. Expected profits
were calculated by summing the expected earnings from day-ahead and intraday mar-
ket commitments. Real profits were calculated as the difference between daily earnings
equation (5.8) and daily losses (Equation 5.9) using historical data of electricity prices
and deviation coefficients. Figure 5.8 displays the accumulated profits and costs for each
scenario and Table 5.3 shows the numerical results.

Table 5.3: Numerical results.

Case
Expected

profits
(M€)

Deviation
costs
(M€)

Purchases
costs
(M€)

Real
profits
(M€)

Ideal 0.614 0 0 0.614
DM + ID 1.677 0.031 1.309 0.336

ID 1.671 0.029 1.305 0.338
DM 0.488 -0.277 0.256 0.509

DM + SE 0.581 -0.201 0.276 0.507
SE 0.568 -0.195 0.255 0.508
CF 0.482 -0.27 0.244 0.509

The results indicate that expected profits increase with intraday market arbitrage, as
anticipated. These profits are calculated based on the delivery of all committed energy to
the market, resulting in higher profits in scenarios with intraday market participation as
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Figure 5.8: Simulations results.

all expected energy excess can be sold. The worst expected outcomes occur in scenar-
ios without intraday market participation and similar results are observed when the ESS
performs capacity firming.

The deviation costs are negative in almost all scenarios, indicating that upward de-
viations are more frequent. Purchasing energy in the intraday market effectively avoids
downward deviations. The fewer services the ESS provides, the greater the negative de-
viation costs, suggesting that the ESS tends to be fully charged most of the time, leading
to upward deviations.

Purchases in the intraday market are the primary source of profitability loss. These
costs are significantly higher when selling energy in the intraday market is enabled. The
fact that intraday market purchases occur when the ESS cannot cover expected deviations
highlights that increased ESS involvement in markets can have negative effects.

Committing more energy to various markets increases the risk of having to make
corrections by purchasing energy in the intraday market. The best results seem to be
achieved by letting the ESS operate solely on the day-ahead market or providing capacity
firming services. As shown in Figure 5.9, intraday market participation has resulted in the
need to cover up to 40% of committed energy through intraday market purchases.

Figure 5.10 displays the accumulated degradation. In the scenarios where the ESS
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Figure 5.9: Committed energy covered with purchases on intraday markets.

provides the most services, it tends to be emptier, which reduces calendar degradation
and results in lower overall aging of the ESS.

Figure 5.10: Degradation under each case.

Figure 5.11 shows the comparison between real profits and degradation. As it can be
seen, the case in which the BESS solely performs the proposed SE service and real-time
deviation management yields the best benefits per degradation. This indicates that that
reserving the ESS for SOC emptying and capacity firming yields the best outcome when
profits are compared to capacity loss, which is a more efficient usage of the ESS.
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Figure 5.11: Real profits per 1% of capacity lost.

5.4.3. Full project extrapolation results.

The trade-off between maximizing short-term profits and stretching the life of the energy
storage system is a crucial factor to consider. The NPV is a useful metric that takes into
account future cash flows and discount rate to determine a project’s overall profitability.

In the table, NPV of each case is calculated, discounting daily cash flow and the
purchase cost of the ESS. The results show that the best NPV is achieved when the ESS
is reserved for SE and capacity firming. When only participating on day-ahead market,
NPV is not very different, but participating on intraday market s significantly lowers the
NPV, indicating lower project profitability.

The results of each simulation scenario are extrapolated for the entire project. The
average daily cash flow is determined from the average daily results of 2018, and daily
degradation is similarly calculated to estimate project completion. The project ends when
the accumulated degradation of the ESS reaches 20%, a commonly used value in relevant
literature (e.g. [34], [35]). The average values and estimated project lifetimes for each
case are presented in Table 5.4.

It is worth noting that the ESS is not operated in the ideal scenario. In this case, the
ESS is only utilized for allocating generated energy when prices are the highest. However,
due to degradation costs and the ESS efficiency, this operation is not profitable

The SE has lower daily profits but higher NPV compared to the case with CF. The
NPV of each project is calculated using a 7.5% discount rate and presented in Table 5.5.
The results show that using the ESS for SE service and capacity firming provides the
highest NPV.

70



Table 5.4: Project extrapolation under each case.

Case
Average daily
capacity loss

(%)

Average daily
profits

(€)

Lifetime
(years)

Ideal 2.08 · 10−3 1682.28 26.31
DM + ID 7.48 · 10−3 921.44 7.32

ID 7.56 · 10−3 925.11 7.25
DM 1.06 · 10−2 1394.37 5.12

DM + SE 1.02 · 10−2 1389.89 5.36
SE 1 · 10−2 1392.7 5.48
CF 1.05 · 10−2 1394.74 5.18

Table 5.5: Project extrapolation under each case.
Case NPV (M€)
Ideal 7.226

DM + intraday market 1.912
intraday market 1.905

DM 2.179
DM + SE 2.253

SE 2.299
CF 2.2

5.5. Chapter conclusion

An HF model formulation has been presented in this chapter. This model is made for
operating in multiple electricity markets. A three-level control system has been proposed
for market bids origination in the market sessions, as well as real-time deviation manage-
ment. A novel control algorithm for mitigating the effect of market overlapping has been
proposed.

In the next chapter, the fundamentals of green hydrogen production are presented.
A green hydrogen production system model is incorporating into the HF model. This
new system enables participation in the hydrogen market. The effect of uncertainties is
studied, as well as different future scenarios of hydrogen market and supply chain which
are evaluated with a proposed simulation framework.
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6. USE OF ALKALINE ELECTROLYZERS IN HYBRID WIND
AND ENERGY STORAGE SYSTEMS

The incorporation of an electrolyzer into the HF enables the participation in the hy-
drogen market. This device is used for generating hydrogen whenever electricity prices
are low or there is a surplus. The incorporation of a green hydrogen production system
increases complexity and requires the implementation of more advanced EMS control
algorithms.

This chapter introduces the fundamentals of green hydrogen production, specifically
with AELs. The formulation for an AEL for EMS applications is introduced. Day-ahead
market participation and real-time management is proposed as a MILP optimization prob-
lem, the effect of uncertainties is incorporated into a two-stage stochastic algorithm. The
comparison of different approaches, with the proposal of a novel one, is evaluated in an
implementation.

6.1. Green hydrogen production

The term Green Hydrogen refers to the hydrogen generated by low-emission energy
sources. This is achieved by splitting water molecules using electricity. This process
is called water electrolysis, and it is performed by a device called electrolyzer.

This section describes the electrolysis process. Afterwards, AELs working principles
are presented. This technology has been chosen over Polymer Electrolyte Membrane
(PEM) and Solid Oxide Electrolyzers (SOE) due its maturity [87].

6.1.1. Water electrolysis

The process of water electrolysis, consists in applying a voltage to water. This is per-
formed in an electrochemical cell, as the one illustrated in Figure 6.1. Hydrogen and
oxygen gas bubbles evolve at the cathode and anode respectively [88].

When an electric current is applied across the electrodes, the water molecules at the
anode are oxidized, releasing oxygen gas and protons. These protons then migrate through
the diaphragm to the cathode, where they combine with electrons to form hydrogen gas
[89]. The reactions involved are [90]:

Anode: 4 OH− −−−→ O2 + 2 H2O + 4 e−

Cathode: 4 H2O− + 4 e− −−−→ 2 H2 + 4 OH−

Overall: 2 H2O −−−→ 2 H2 + O2
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Figure 6.1: Water electrolysis.

The efficiency of the electrolysis depends on the electrode materials, current density
and temperature, among other factors. This is a well-established process which has been
used over two centuries, the device in which this process occurs is called electrolyzer.
There are three main water electrolyzer technologies:

• AELs: Using an alkaline electrolyte solution [89].

• Proton Exchange Membrane (PEM) electrolyzers: Using a solid polymer elec-
trolyte membrane at low temperatures and pressures [91].

• Solid Oxide Electrolyzers (SOE): Using a solid oxide electrolyte at high tempera-
tures [92].

AEL are the most widespread technology for industrial applications. They operate at
relatively low temperatures and pressures and use economical materials. This technology
has been applied at large scales and it is considered as the most mature [87].

6.1.2. Alkaline electrolyzers working principles

AEL electrolyzers use an alkaline electrolyte solution, usually potassium hydroxide (KOH).
The electrodes are typically made of nickel or steel. The hydroxide ions move from the
cathodic to the anodic chamber through a diaphragm while the hydrogen protons are col-
lected [93].
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One of the main drawbacks of these devices is the effect of partial loads. Hydrogen
purity in oxygen decreases at lower current densities. This leads to the formation of
explosive gases, as reported in [94]. After reaching a 2% of H2 concentration in O2, the
AEL is shut down as a safety measure. After this shut down, the electrolyzer has to be
purged with a noble gas, such as Argon [95].

Figure 6.2 illustrates the relationship between input power and H2 concentration in
O2. This has been obtained empirically by authors on [94]. As it can be seen, at higher
input powers such concentration remains stable.

Figure 6.2: Relationship between oxygen contamination and active power [94].

Furthermore, an AEL can only generate hydrogen at nominal pressure and tempera-
ture conditions [96]. This requires to spend time and energy in switching on the elec-
trolyzer into this state. Cold starts are possible, however it is common to also keep the
electrolyzer in standby mode for a faster hot start [97].

Nevertheless, there is a lack of empirical data for examining the AEL operation impact
in this ageing process. Authors in [98] argue that the deterioration of the electrolyte
is a result of the dissolution of elements, as well as the detachment and coalescence of
catalysts. The degradation process results in a decline in efficiency, as reported in [87].

6.2. Alkaline electrolyzer model

The literature on AEL modelling is limited in comparison to the literature on BESS. A
common approach is the use of current-voltage models, as first proposed by Ulleberg
in [99]. However, these models are not efficient for long-range simulations due to their
non-linear nature and excessive complexity.

Authors in [100] introduce a model for mixed-integer dynamic optimization, with a
high degree of nonlinearity. In [101], the nonlinearities caused by the relationship be-
tween the modelling of heat production caused by electrolysis. The framework uses an
auxiliary advanced AEL model to update a fixed electrolysis efficiency in order to avoid
non-linearities and improve accuracy.
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A linear formulation, suitable for MILP, is presented in [96]. This model incorporates
operational states and startup times, which are very important in alkaline electrolyzers.
Authors study the effect of variable wind energy on Power-to-H2 using a fluctuating wind
energy source.

The model presented in this work is linear, its input variable is active power and its
output is hydrogen flow. This approach is based in an extension of the formulation pre-
sented in [96] that considers degradation caused by usage and start/stop cycles. The effect
of partial loads in O2 purity is also incorporated, as a contribution of this work.

Authors in [98] argue that the deterioration of the electrolyte is a result of the dissolu-
tion of elements, as well as the detachment and coalescence of catalysts. The degradation
process results in a decline in efficiency, as reported in [87].

Nevertheless, there is a lack of empirical data for examining the AEL operation impact
in this ageing process. This makes the incorporation of degradation into AEL modelling
less common. A fixed rate of 1% efficiency loss per year is considered in [102]. Authors
in [87] follow a similar strategy.

The degradation model proposed in this work follows a semi-empirical approach,
which gives an approximation operation effect in useful life loss. To quantify the degra-
dation caused by intermittent operation, a start-stop cycle counter is utilized, as a limited
number of cycles have been reported in reference [103]. Additionally, a working hours
model is taken into account, recognizing that the loss of efficiency is also proportional to
the limited lifetime hours, as reported in reference [104].

This semi-empirical model integrates manufacturer’s data in useful life into short-term
operation analysis. As with the BESS model, the lost of useful lifetime by operation is
computed using the units-of-production method, [105]:

∆Li f eAEL(t) =
Hours(t)
EOLhours

+
Cycles(t)
EOLCycles

, (6.1)

where:

• Li f eAEL(t): AEL remaining useful lifetime t (p.u.).

• Hours(t): Hours of operation during hour t.

• EOLhours: Lifetime hours.

• Cycles(t): Start/stop cycles performed during hour t.

• EOLCycles: Start/stop lifetime cycles.

Finally, the effect of partial loads on operation is considered. Hydrogen purity in
oxygen decreases at lower current densities. This leads to the formation of explosive
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gases, as reported in [94]. After reaching a 2% of H2 concentration in O2, the AEL is shut
down as a safety measure.

In the approach outlined in [106], a minimal load threshold is established to control the
purity of hydrogen in oxygen. This approach does not consider the contamination process
at variable loads, which results in a less flexible operation. In this work, empirical data
from [94] is used to develop an oxygen contamination model.

The results obtained by experiments conducted by authors in [94] are depicted in
Figure 6.2. As illustrated, at 25% of rated power the 2% safety limit is reached in less
than one hour. It is worth noting that this process is not reversible, once the limit is
reached, the AEL needs to be shut down for purging. The oxygen contamination model
proposed in this work follows calculates the level of hydrogen purity present in oxygen
based on the operational conditions, it is formulated as follows:

∆H2(h) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩ 3.5 − 5 · P(t) if 0.3 ≤ P(t) ≤ 0.7

0 if P(t) > 0.7
(6.2)

where:

• ∆H2(h): Hydrogen contamination growth during hourly hour t (p.u.).

• P: AEL input power during hourly hour t (p.u.).

The current approach employs electrolyzer’s input power as decision variable. The
device generates hydrogen only in nominal pressure and temperature conditions [106].
Reaching and maintaining such conditions requires energy. In absence of this energy, the
device begins to cool, ultimately reaching a fully cold state. Consequently, the system’s
operational modes are defined as follows:

• On mode: The AEL is producing hydrogen and operating at nominal conditions.

• Idle mode: Nominal conditions are maintained, but the AEL is not producing hy-
drogen.

• Off mode: The AEL is not generating hydrogen and no energy is being applied to
maintain nominal conditions, resulting in a gradual cooling until reaching a fully
cold state.

Transitioning from off mode to on mode necessitates a starting power proportional
to the discrepancy between the electrolyzer’s current pressure and temperature and the
conditions required for hydrogen production [97]. Both off and idle modes entail active
power consumption, although power usage during off mode is minimal, in this work such
power consumption is neglected.

As with the BESS model, the optimization constraints align with the physical limita-
tions of the device, limiting the solution space. These constraints are outlined as follows:
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1. The total electrolyzer power output for each time period is derived from the sum of
the various operating modes:

Pon (t) + Pidle (t) + Pstart (t) = PAEL (t) , (6.3)

where:

• Pon (t): Power employed in producing hydrogen during hour t (MW).

• Pidle (t): Power consumed in the idle mode during hour t (MW).

• Pstart (t): Cold starting power consumed during hour t (MW).

• PAEL (t): Total power consumption during hour t (MW).

2. Binary variables are used to determine the AEL operation mode at each hour, only
one mode is allowed at a time:

On (t) + O f f (t) + Idle (t) = 1, (6.4)

where:

• On (t): Binary variable for on mode.

• O f f (t): Binary variable for off mode.

• Idle (t): Binary variable for the idle mode.

Each binary variable takes value 1 when its respective mode is enabled.

3. An additional mode is used to define the cooling process, which appears only when
the AEL is off:

Cool (t) ≤ O f f (t) , (6.5)

where: Cool (t) is a binary variable which defines cool mode. It equals 1 when its
temperature and pressure state has gone colder.

4. The pressure & temperature state of the electrolyzer is updated at each hour as
follows:

τ (t) = τ (t − 1) + υ(t) · to f f −Cool(t), (6.6)

where:

• τ (t): State at the end of hour t, this variable is limited between 0 and to f f .

• to f f : Number of hours it takes to get fully cold when off.

• υ(t): The fraction of the starting power required to a cold start.

5. The cooling process stops when it reaches a fully cold state:⎧⎪⎪⎪⎨⎪⎪⎪⎩Cool(t) ≤ τ(t−1)
to f f
+ 0.9

Cool(t) ≥ τ(t−1)
to f f
− 1 + O f f (t)

, (6.7)

the 0.9 in the first term prevents the binary variable Cool(t) from reaching a value
of 0 until τ(t−1)

to f f
is 0.
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6. Idle mode hourly power consumption is defined as:

Pidle = Idle (t) · Pidle , (6.8)

where Pidle is the hourly power consumption during idle mode in MW.

7. On mode hourly power consumption is limited as:

Pon,min · On(t) ≤ Pon (t) ≤ Pon,max · On(t) , (6.9)

where:

• Pon,min: Minimum AEL on mode active power (MW).

• Pon,max: Maximum AEL on mode active power (MW).

8. The cold start power factor is defined as:

υ(t) ≤
to f f (t) − τ (t − 1)

to f f
. (6.10)

9. The cold start power consumption is defined as:

Pstart (t) = S tart f actor (t) · tstart · AELPmax, (6.11)

where:

• tstart: Cold start time in hours.

• AELPmax: Maximum electrolyzer power (MW).

10. The hydrogen generation process is defined as:

Q (t) = Pon ·
AELe f f

HHV
, (6.12)

where:

• Q (t): Hydrogen flow during hour h (kg).

• AELe f f : AEL efficiency (p.u.).

• HHV: Hydrogen high heating value (kg/MWh).

11. The operation cost of the AEL, defined with the degradation models described
above, is formulated as:

DegCost,AEL(t) =
(︄

On (t)
EOLhours

+
Pstart(t)

AELPmax · tstart · EOLCycles

)︄
· K, (6.13)

where:

• DegCost,AEL(t): Degradation cost during hour t (€).

• K: Electrolyzer replacement cost (€).
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12. The oxygen contamination process is formulated as:

imp (t) = imp (t − 1) + cont (t) − 2 · purg(t), (6.14)

where:

• imp (t): Oxygen impurity level at the end of hour t (%).

• cont (t): Oxygen contamination during hour t (%).

• purg(t): A binary variable which defines the AEL purging.

13. The purging mode is enabled when no H2 is being produced:

purg (t) ≤ o f f (t) + idle(t). (6.15)

An inequality constraint is applied to allow for the possibility of off and idle modes
to be non-zero when no purge is in progress. This scenario occurs, for instance,
when the AEL is in a clean state and does not intend to generate hydrogen, enabling
the off or idle binary variables to have a value of 1.

14. When oxygen contamination reaches 2%, the AEL is shut down:

imp (t − 1) − o f f (t) ≤ 2. (6.16)

15. Purging mode is disabled when contamination value reaches 0:

purg (t) ≤ imp(t − 1). (6.17)

16. A piecewise constraint is used to regulate the contamination process, derived from
(6.2):

cont(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0 if Pon(t)

AELPmax
< 0.3

3.5 − 5 · Pon(t)
AELPmax

if 0.3 ≤ Pon(t)
AELPmax

≤ 0.7

0 if Pon(t)
AELPmax

> 0.7

(6.18)

Plant model

The plant model combines the previously formulated model constraints. Additional ones
define the interactions between the plant components. Figure 6.3 illustrates the plant
architecture.

As illustrated, the system operates within the hydrogen and electricity markets. En-
ergy generated by the wind turbine can be sent to the AEL, the BESS, and the grid. The
BESS can supply energy to both the AEL and the grid. The AEL can receive energy from
all other agents.

These additional constraints are used to determine the aforementioned interactions.
Active powers during each hourly period are considered constant, thus active power can
be treated as energy. These constraints are defined as follows:
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Figure 6.3: Plant architecture.

1. The generated power by the wind farm is defined as:

PGen (t) = PWTG,BES S (t) + PWTG,Grid(t) + PWTG,AEL(t) + PWTG,Curt(t), (6.19)

where:

• PGen (t): Generated power during hour t (MW).

• PWTG,BES S (t): Generated power sent to the BESS during hour t (MW).

• PWTG,Grid(t): Generated power sent to the grid during hour t (MW).

• PWTG,AEL(t): Generated power sent to the AEL(MW).

• PWTG,Curt(t): Curtailed power during hour t (MW).

2. The BESS discharging power is divided as follows:

PD (t) = PBES S ,Grid (t) + PBES S ,AEL (t) , (6.20)

where:

• PBES S ,Grid (t): BESS power sent to the grid during hour t (MW).

• PBES S ,AEL (t): BESS power sent to the AEL during hour t (MW).

3. The AEL power flow is defined as follows:

PAEL (t) = PBES S ,AEL(t) + PGrid,AEL(t) + PWTG,AEL(t) . (6.21)

As it can be seen, these constraints formulation just relates the different plant compo-
nents power flow. The assumption that no losses caused by power converters or lines is
taken. The effect of such losses could be modelled by incorporating efficiency factors to
this formulation, which is beyond the scope of this work.
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6.3. Day-ahead operation optimization model

The constraints from the previous section are applied in two optimization models: one
for generating day-ahead electricity market commitments and the other for reducing de-
viations and producing hydrogen from electricity. In this section, the formulation of the
objective functions of both models are introduced. As example, the operation for a single
day is shown.

6.3.1. Day-ahead market bidding

This optimization model receives as inputs hourly prices and wind speed forecasts. This
model generates hourly day-ahead market commitments. Its objective function is formu-
lated as follows:

maximize
24∑︂
t=1

[︄
πEl, f ore (t) ·

(︁
PWTG,Grid (t) + PBES S ,Grid (t) − PGrid,BES S (t) − PGrid,AEL (t)

)︁
+ πH2 · Q (t) − DegCost,AEL (t)

]︄
− DegCost,BES S , (6.22)

where:

• πEl, f ore (t): Hourly forecasted electricity price (€/MWh).

• πH2: Hydrogen price (€/kg).

As it can be seen the objective function has two terms: one for the operation in the
electricity market and other for the operation in the hydrogen market.

6.3.2. Real-time operation

Real-time operation is based on the assumption that actual electricity and wind speed are
know and available at the start of the day. An optimization model is used to allocate
resources to minimize deviation and maximize revenues by also producing hydrogen. An
additional constraint, which calculates deviation costs, needs be added to this model:

DevCosts (t) =
[︂
PCom,DM (t) −

(︁
PWTG,Grid (t) − PBES S ,Grid(t)

)︁ ]︂
· λ · πEl,real (t) , (6.23)

where:

• PCom,DM (t): Day-ahead market power commitment for hour t (MW).
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• πEl,real (t): Real electricity price for hour t (€/MWh).

• λ: Deviation costs factor for hour t.

The objective function of this optimization problem is formulated as follows:

maximize
24∑︂
t=1

[︂
πH2 · Q (t) − DevCosts (t)

]︂
− DegCost(t) . (6.24)

The primary objective at this stage is to optimize profits through the implementation
of measures aimed at minimizing deviation costs and utilizing surplus energy for the
production of hydrogen.

6.4. Two-stage stochastic optimization algorithms

This section introduces the approaches of stochastic optimization for this application. The
common Montecarlo approach is compared to a proposed Bootstrapping approach. The
formulation for both strategies is presented.

6.4.1. Montecarlo approach

In this approach, 10 wind speed and electricity prices scenarios are generated for each
day using a SARIMA model. Historical electricity prices from DKK1 are used as input.
The authors in [70] statistically show that a SARIMA with order (2, 1, 3)(1, 0, 1)24 is ap-
propriate for forecasting such prices, and the same order is used here too. The previous
100 days of hourly electricity prices are used as training data.

Hourly wind speed data, obtained for Merra-2 Database [107], located in Brande,
Denmark, is used as input for wind speed prediction. In its first stage, a SARIMA of
is used to generate a deterministic forecast of wind speed, which is then computed as
wind power using the curve of the Siemens SWT-3.0-113 wind turbine generator. The
SARIMA model has an order of (2, 0, 1)(2, 0, 3)12, which has been obtained through test-
ing. Wind speed data from previous 5 days is used as training data.

In Figure 6.4, deterministic forecasts for price and wind speed on March the 25th 2020
are shown, this day has been selected arbitrarily for illustration purposes. The figure
shows that forecast errors grow over time, with electricity prices overestimated in later
hours and wind speed underestimated for this specific day.

The scenarios, generated using historical data in the forecasting model, are used to
obtain a probability density function of the realization of the uncertain parameters. A set
of 10 wind speed and electricity prices scenarios for March the 25th 2020 is shown, for
both wind speed and electricity prices is shown in 6.5.
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Figure 6.4: Deterministic forecasts for March the 25th 2020.

Figure 6.5: Probabilistic forecast example for March the 25th 2020.

For each combination of scenarios, a candidate solution is generated using the day-
ahead optimization model. Therefore, in the first stage 100 candidate solutions are gen-
erated. The power commitments of each candidate solution are sent to the real-time opti-
mization model.

The real-stage optimization is solved for each candidate solution under each combi-
nation of wind and price scenario. This results in 100x100 evaluations for each day. The
costs of each candidate under each combination of scenarios are calculated as follows:
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Cost(i, j) = DevCosts(i, j) + ∆EBen(i, j), (6.25)

where:

• Cost(i, j): The second-stage costs under wind speed scenario j and electricity price
scenario i (€).

• DevCosts(i, j): Deviation costs under wind speed scenario j and electricity price sce-
nario i (€).

• ∆EBen(i, j): Difference between expected and real electricity market benefits under
wind speed scenario j and electricity price scenario i (€).

A sample of 100 second-stage costs is generated for each candidate solution. Figure
6.6, illustrates an example.

Figure 6.6: Sample of 100 second-stage costs.

Negative costs result from certain combinations of scenarios, indicating more energy
was available than expected. The accuracy of Montecarlo-based stochastic algorithms
depends on the number of simulations, so a large number of simulations should be per-
formed to reduce uncertainty in the results. This stochastic optimization problem can be
formulated as follows:

max E1(S ) −CVaR1−β
(︁
E2(S )

)︁
, (6.26)

where:
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• E1(S ): Expected benefits for candidate solution S (€).

• CVaR1−β
(︁
E2(S )

)︁
: Conditional variance of the second-stage costs for candidate so-

lution S, for the confidence interval β (€).

The current implementation faces a challenge in regards to increasing the number of
available samples. Each sample requires solving an additional optimization problem, and
therefore, for 100 candidate solutions, 10.000 optimization problems must be solved for
each day. This can result in the requirement to solve a million optimization problems in
order to obtain 1000 samples for 1000 candidate solutions, which may render the problem
computationally infeasible due to the amount of computational time required.

6.4.2. Bootstrapping approach

Bootstrapping is a re-sampling method which allows to estimate parameters using sam-
pled data [108]. It is used when the sampling process is difficult, for example in clinical
studies [109]. It is also used when the available input data is scarce, which is the common
case in some forecasting applications [110].

This method involves re-sampling the original population randomly, generating a new
sample. A statistical quantity of the new sample is calculated, such as the mean. By re-
peating this process, a distribution of estimates is obtained, which can be used to calculate
variability measures.

Bootstrapping is often computationally simpler than Montecarlo. Besides, it can pro-
vide more accurate estimates when the sample size is small or the distribution is not
normal [111]. Also, obtaining a confidence interval of a statistical quantity allows for a
more robust approach with a smaller population of samples.

In this application, the second-stage costs are re-sampled with repetition, and the mean
of each re-sample is stored. This process is repeated 10.000 times, creating new bootstrap
sample. An example of a bootstrap sample obtained with this procedure is shown in
Figure 6.7.

As it can be seen, this distribution presents a more normal shape. The formulation
presented in (6.26) can be adapted to this approach as follows:

max E1(S ) −CVaR1−β
(︁
E2(S )

)︁
, (6.27)

where CVaR1−β
(︁
E2(S )

)︁
is the conditional variance of the second-stage costs means

for candidate solution S, in € for the confidence interval β. A 95% confidence interval is
used in this case.
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Figure 6.7: Second-stage costs means bootstrap sample.

6.5. Simulation results

A demonstration of the introduced model is presented in this section. Afterwards, the sim-
ulation framework for evaluating the performance of the proposed optimization method is
described. Different simulation scenarios are run on the same plant model, in each case a
different approach for generating day-ahead market commitments is considered. Results
under each approach are presented and compared.

6.5.1. Single-day demonstration

This subsection presents a demonstration of the formulated plant model operation for
March the 25th 2020. The demonstration employs a deterministic forecast of electricity
prices and generated power as input for the day-ahead stage. The power commitments are
subsequently inputted into the real-time optimization problem, the primary objective of
which is to minimize deviation resulting from forecasting errors.

The plant’s components parameters are introduced in Table 6.1.

The inputs for the day-ahead scheduling optimization problem is the predicted wind
and electricity prices, shown in Figure 6.4. The optimal solution is depicted in Figure
6.8, which shows the hourly active powers from the plant components and the power
exchanges with the grid.

The electrolyzer starts at full power later in the first hour by taking cold start power
from the grid and runs at full power all day. The battery schedules an arbitrage operation
using price spread. When electricity prices are low, some power generated from the wind
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Table 6.1: Plant parameters.

Parameter Value Parameter Value

AEL Nominal Power 1 MW AEL cooling time 5 hours
AEL Minimum Power 0.3 MW Hydrogen HHV 0.0394 kg ·MWh
AEL efficiency 75% AEL Idle mode power 0.04 MW
AEL replacement cost 500 €/kW BESS capacity 10 MWh
AEL Lifetime 100000 hours BESS nominal power 2.5 MW
AEL Lifetime cycles 50000 BESS efficiency 90%
AEL cold start time 12 minutes BESS replacement cost 50 €/KWh

Figure 6.8: Day-ahead commitment example for March the 25th 2020.

turbine is sent to the electrolyzer for hydrogen production.

The hourly commitments generated in this stage are sent to the real-time stage. The
optimization problem takes as input the real electricity prices, wind speed from day and
day-ahead hourly power commitments. Figure 6.9 illustrates the results:

The optimization problem uses the BESS to cover deviations since real generated
power is lower than expected (as shown in Figure 6.4). Wind turbine generated power is
stored during low electricity price hours, when deviation costs are low, and released by
the BESS during price peaks at the end of the day. Hydrogen production is kept constant
during the day.
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Figure 6.9: Real-time operation example for March the 25th 2020.

6.5.2. Cases of study

Different cases of study are performed with the simulation framework. The simulation
goes from January the 1st 2020 to December the 31st 2020. AEL and BESS states at the
end of a day are considered as the initial for the next one. For simplicity, perfect price &
wind power foresight are assumed.

The plant participates in two different markets, but future hydrogen prices are uncer-
tain. The first case study examines the effects of various hydrogen prices. Figure 6.10
illustrates the accumulated benefits at the end of the year attained in both electricity and
hydrogen market.

The figure shows that the hydrogen market benefits become noticeable only when
hydrogen prices exceed 1.5€ per kg. As the hydrogen prices increase further, the plant
starts to use more energy for hydrogen production and as a result, the electricity market
participation decreases. When the hydrogen price reaches 3.5€/kg, the benefits from the
hydrogen market surpass the ones from the electricity market.

Various green hydrogen supply chain configurations exist. One option involves a
pipeline infrastructure, where the plant unloads the produced hydrogen in real-time [112].
Another option, particularly in the case of remote plant locations such as offshore, in-
volves the storage of hydrogen in a tank, which is unloaded periodically using trucks or
vessels [113], adding an extra constraint to green hydrogen production.

In this case of study, different tank capacities at and different tank unloading schedules
are evaluated, both scenarios of low and high hydrogen prices are considered. Moreover,
the scenario of a hydrogen pipeline is also evaluated. Figure 6.11 illustrates the accumu-
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Figure 6.10: Hydrogen price effect on markets benefits.

lated benefits at the end of the year in each case.

Figure 6.11: Hydrogen supply chain effect on benefits.

Results demonstrate how the pipeline scenario yields the best results. Increasing tank
unloading regularity allows to operate with smaller tanks. This constraint needs to be
carefully considered when sizing the plant, in order to attain the best balance between
unloading schedule and tank capacity. This requirement is present in both low-price and
high price scenarios.
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6.5.3. Stochastic algorithms comparison

For validating the proposed stochastic optimization model, a simulation framework of the
plant participating in hydrogen and day-ahead electricity markets is developed, a hydro-
gen price of 4€/kg is considered. The plant components parameters are the ones depicted
in Table 6.1.

Four different simulation scenarios are considered:

• Ideal scenario: The plant receives perfect forecasts.

• Stochastic Montecarlo scenario: The Montecarlo algorithm is used.

• Stochastic Bootstrap scenario: The proposed bootstrap algorithm is used.

• Deterministic scenario: A direct approach, considering deterministic forecasts.

The total revenues for each simulation case are presented in Figure 6.12:

Figure 6.12: Final results for 2020 simulation.

As it can be seen, the Montecarlo approach yields the worst results, close to the de-
terministic case. This is caused by the low amount of samples used in the process, since
this method performs better with higher populations. However, as mentioned above, the
generation of samples with requires a high computational burden.

This issue is overcome with the use of bootstrap sampling in the second-stage samples.
As it can be seen, by using the same original population and applying this re-sampling
process, the results are improved. This proposed method has proven to outperform the
Montecarlo and deterministic approaches used in the literature.
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6.6. Chapter conclusion

A mathematical optimization model has been proposed for the integration of an AEL into
the HF model outlined in Chapter 5. A linear formulation has been proposed to ensure its
efficiency in EMS optimization applications, yet considering complex processes.

The effect of wind speed and energy price uncertainties has been addressed with the
proposal of a two-stage stochastic optimization model. A comparison between a classical
Montecarlo approach against the proposed Bootstrapping implementation demonstrate
how this algorithm yields better outcome than the use of a Montecarlo strategy using
the same data. Case studies of different plant configuration and hydrogen supply chain
structures have been studied.

Results demonstrate how at low hydrogen prices, plant configuration must be carefully
addressed in order to attain optimal income. Moreover, AEL interactions with the electri-
cal market are detrimental at low hydrogen prices. As future works, authors propose the
extension of this algorithm for intraday market participation. The BESS participation in
frequency response services is also suggested.
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7. CONCLUSIONS, CONTRIBUTIONS AND FUTURE WORKS

This chapter serves as the culminating point of this thesis dissertation, providing a
summary of the conclusions and contributions made through the course of the research.
Subsequently, it presents suggestions for future research and potential areas of expansion
based on the findings of this study.

7.1. Conclusions& contributions

This research commenced with the implementation of degradation caused by operation
into a standalone BESSs optimization framework. Two main approaches have been spot-
ted in the literature for adapting the optimization problem formulation: implementing
constraints to limit the operation or formulating the degradation as a cost in the objective
function. It has been concluded that the methods based on using a degradation cost allow
to better regulate the operation depending on the problem inputs.

The implementation of this degradation cost reduces short-term benefits increasing
them in the long-term, by extending the BESS useful life. It has been demonstrated how
the formulation of this degradation cost affects operation. Oversizing degradation impact
in the operation can be detrimental, since it may prevent the BESS to operate in any
scenario.

Risk-aware stochastic optimization strategies combined with this degradation cost
have been compared in different use cases of BESS operating until reaching end of life.
The importance of considering the full battery lifetime when evaluating these approaches
has been demonstrated. The presence of a degradation cost has demonstrated to slightly
improve the long-term profits, however these results have been found to be dependant on
the stochastic approach.

By using an exogenous parameter, the robustness of the different stochastic strategies
has been modulated. It has been found that a risk-averse approach does yields worst
results for all values of that parameter, since income at the beginning of the lifetime is
not as valuable as income at the end. Implementing a risk-prone approach to battery
operation has demonstrated better results in the long-term, this is an important advantage
found for risk measures-based stochastic strategies over deterministic schemes, which is
a contribution of this work. Nevertheless, this requires to select the correct value for the
exogenous parameter.

A three-level control system for a wind-storage hybrid system which participates in
multiple Iberian electricity markets has been presented. The model has incorporated ad-
justments based on Iberian market regulations to account for committed power correction
impacts. A simulation framework has been proposed to assess various market participa-
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tion strategies.

The results show that using the ESS in all electricity markets not necessarily yields
higher income, challenging the common belief that ESS revenue stacking is always ben-
eficial. Market overlapping has been found to be the main cause of this issue. A new
market participation strategy has been proposed, which has demonstrated to improve ESS
benefits per degradation, this is an indicator of a more efficient usage.

Lastly, green hydrogen production has been incorporated into the hybrid system. A
linear optimization model with an alkaline electrolyzer has been proposed. This formu-
lation considers complex processes such as degradation and partial loading effect, along
with the electrolyzer’s operational states.

The effect of wind speed and energy price uncertainties has been addressed with the
proposal of a two-stage stochastic optimization model. The state-of-the-art Montecarlo
approach has been compared to a proposed Bootstrap-based algorithm. Results demon-
strate how incorporating bootstrap sampling improve results using the same sampled data.

Case studies including different plant configurations and hydrogen supply chain struc-
tures have been studied. It has been found how at low hydrogen prices, plant configuration
must be carefully addressed in order to attain optimal income. The structure of the hy-
drogen supply chain has shown to have more impact in project benefits at high hydrogen
prices.

7.2. Future works

Future works should aim to improve current BESS degradation cost as a dynamic value,
which changes over time and considers the remaining useful life. This dynamic approach,
presented in Chapter 3, has been barely proposed in the literature.

Whilst revenue stacking in energy markets presents drawbacks, as outlined in Chapter
5, it is established that using BESSs for auxiliary services such as frequency response
increases benefits. This topic has raised interest in recent literature and future research
streams should explore control solutions for combining both applications.

Lastly, more data is required in understanding electrolyzer degradation caused by op-
eration. The degradation model formulation presented in this article is a simplistic appli-
cation of manufacturers data. Future researchers should develop more detailed degrada-
tion models, unfortunately, lack of available data causes a bottleneck in this topic.
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