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A B S T R A C T

The DNS protocol plays a fundamental role in the operation of ubiquitous networks. All devices connected to
these networks need DNS to work, both for traditional domain name to IP address translation, and for more
advanced services such as resource discovery. DNS over HTTPS (DoH) solves certain security problems present
in the DNS protocol. However, malicious DNS tunnels, a covert way of encapsulating malicious traffic in a DNS
connection, are difficult to detect because the encrypted data prevents performing an analysis of the content
of the DNS traffic.

In this study, we introduce a real-time system for detecting malicious DoH tunnels, which is based on
analyzing DoH traffic using statistical methods. Our research demonstrates that it is feasible to identify in real-
time malicious traffic by analyzing specific parameters extracted from DoH traffic. In addition, we conducted
statistical analysis to identify the most significant features that distinguish malicious traffic from benign traffic.
Using the selected features, we achieved satisfactory results in classifying DoH traffic as either benign or
malicious.
1. Introduction

The DNS (Domain Name System) is a ubiquitous protocol found in
all networks due to its indispensability in supporting various function-
alities ranging from service discovery to name resolution. However, its
ubiquitous nature also renders it a potential security threat within these
networks, as it can be leveraged by attackers to establish tunnels to
extract sensitive information or transmit malicious commands surrep-
titiously, evading detection mechanisms. In light of this, the objective
of this research is to analyze DNS traffic traces and extract metrics that
characterize the traffic, with the goal of detecting such attacks.

When it was first defined, the DNS communication protocol, known
as Do53 (DNS over port 53) [1], transmitted queries in clear, which
osed certain security problems because DNS queries could reveal sen-
itive user information. The security problems were related to integrity,
uthenticity and confidentiality [2]. DNSSEC has provided security to
he DNS, guaranteeing the integrity and authenticity of the responses
eceived, but these responses travel unencrypted over the network,
eaving the confidentiality uncovered. To solve the confidentiality is-
ue, in 2016 DNS over TLS (DoT) [3] was defined, and DNS over HTTPS
DoH) [4], in 2018. DoH is the most widespread version, which was
ntroduced in all major web browsers in 2020. In DoH, DNS messages
ravel over port 443 encrypted by TLS, and all transmitted content
s hidden. DNS over QUIC (DoQ) [5] has been defined in 2022, the
ncryption properties provided by QUIC are similar to the properties of
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TLS. Encrypted DNS protocols (DoT, DoH, DoT and DoQ) encapsulate
DNS at the encryption layer unlike Do53 as illustrated in Fig. 1.

DNS tunneling allows a DNS connection to be exploited as a hidden
communication channel between client and server, a covert way of
encapsulating data transmission. These tunnels can be detected by
analyzing the content of DNS packets. The analysis of statistical char-
acteristics is important for intrusion detection techniques against DNS.
However, in DoH tunnels [6], since DNS traffic is encrypted and not
perceptible to the client–server infrastructure, these detection methods
are rendered obsolete [7].

Attackers leverage this vulnerability to conceal their malicious ac-
tivities. According to a Netlab report, the Godlua Backdoor is the
initial malware to employ DoH as a covert communication channel for
concealing malicious traffic as DNS traffic, which was discovered in
2019 [8]. In 2020, the first known Advanced Persistent Threat (APT)
incorporating DoH appeared [9]. APT34 performed data exfiltration
through DoH using tunneling tools.

Tools are available that generate DoH tunnels, making it easier for
malicious actors to send malicious traffic within DoH connections [10].
The objective of such tools is to establish covert data tunnels that enable
traffic to be transmitted in DNS queries that are encapsulated and travel
over HTTPS. In addition, certain tools allow an attacker to create a DoH
tunnel by running a DoH proxy. Some of these tools are Iodine [11],
dns2tcp [12] and dnscat2 [13].
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Fig. 1. Communication protocol stack (DNS, DoT, DoH and DoQ).
The present study involves an analysis of feature patterns extracted
rom DoH traffic to investigate whether there exists a statistical vari-
nce between benign and malicious DoH traffic. Through this analysis,
e aim to identify the most significant features that enable us to
ifferentiate between benign and malicious traffic. To evaluate the
btained results and to determine the adequacy of the selected features,
e employ multiple machine learning classification techniques.
Furthermore, we propose a real-time malicious DoH tunnel detec-

ion system. Our aim is to detect any potential intrusion as early as
ossible, using a real-time Intrusion Detection System (IDS) classifier,
n order to mitigate DoH tunneling attacks. To develop the real-time
etection system, we rely on performing a statistical analysis of the
ifferent DoH traffic features that are available in real-time.
The rest of the paper is structured as follows: an overview of the

tate of the art related to the DNS tunnels and DoH tunnel detection is
rovided in Section 2. Section 3 describes the dataset used in this study
and Section 4 includes the analysis performed and the results obtained.
Then, in Section 5 we detail the process of implementing the real-time
system and the subsequent evaluation that was conducted. Finally, the
conclusions of this paper and future work are presented in Section 6.

2. State of the art

2.1. DNS tunnels

A DNS tunnel allows data to be encapsulated in a DNS packet for
bidirectional communication between client and server. DNS tunneling
is known as covert channels or data exfiltration. DNS tunnels are not
always malicious, but in most cases, attackers use them for malicious
intentions. DNS tunnel detection is the focus of many research pa-
pers [14,15]. One method to detect these tunnels versus benign DNS
traffic is based on the analysis of the content of DNS packets. Different
payload and packet connection features can be analyzed [16].

The characteristics extracted from the payload are, firstly, those
related to the statistical analysis of the packet size and the ratio of sent
and received data. Regarding the packet size, malicious DNS packets
are larger in size due to the transmission of upstream encapsulated data
in DNS tunnels in the domain name field. It should be considered that
the attacker could conform the traffic by reducing the amount of data
sent by increasing the number of requests made.

Secondly, there exist certain domain name characteristics that are
relevant to the detection of tunnels. Attributes such as domain name
length, number of subdomains, number of special characters in the
domain name and character entropy (the character frequencies of
a normal domain name are concentrated in a few high frequency
characters) are crucial in detecting tunnels, as discrepancies between
tunnel and legitimate domain names are unavoidable. Despite these
discrepancies, evasion techniques may be employed to disguise them
as normal domains.

Additionally, tunneling tools tend to use unusual record types, and
certain tunneling tools leave a distinct footprint in the DNS packet,
which can be an attribute in the DNS header or content in the payload.
Hence, it is also advisable to analyze these features.

On the other hand, characteristics related to DNS traffic connection
2

such as the volume of traffic to a given IP address or a given domain are
Table 1
DNS traffic features and availability in encrypted traffic.
Feature DNS Encrypted DNS

Domain name ✓ X
Packet size ✓ ✓

Record types ✓ X
Volume of traffic ✓ ✓

Domain history ✓ X
Time between queries ✓ ✓

analyzed. A long time between a query and a response can indicate the
existence of a DNS tunnel because domain name resolution uses cached
records and therefore takes less time than DNS tunneling. The domain
history is also analyzed for whether the domain name has been involved
in malicious activity or the geographic location of the authoritative
domain name server.

The characteristics extracted from the DNS traffic discussed above
are shown in Table 1. The table shows which DNS information is
still visible in encrypted DNS (DNSSEC, DoT, DoH and DoQ). The
domain name, the record types and the domain history are not visible
when DNS traffic goes over TLS, HTTPS or QUIC because this data
is encrypted [17]. Consequently, this renders the detection of DoH
tunnels more challenging. However, some of these features are still
visible, such as IP addresses and ports, packet length or timestamp [18].
This underscores the need to develop research on automatic techniques
to detect this type of traffic, such as statistical studies and machine
learning techniques.

2.2. DoH tunnel detection

The encryption of DoH traffic renders traditional methods of secu-
rity analysis and tunnel detection ineffective. Hynek et al. [19] present
research challenges for DoH abuse on the Web. Recently, research
on DoH tunnel detection has been extended. Steadman and Scott-
Hayward [20] propose an architecture that supports the analysis and
detection of malicious DoH communications to mitigate data exfiltra-
tion. The results demonstrate that DoHxP accurately identifies 99.78%
of the malicious traffic, while misclassifying only 0.22% as benign.
In terms of the benign traffic, DoHxP correctly identifies 99.22% as
benign, but misclassifies 0.78% as malicious.

The papers collected in Table 2 investigate the detection of DoH
tunnels through various machine learning techniques. Several of these
studies use a DoH traffic dataset generated by MontazeriShatoori
et al. [21] called ‘‘CIRA-CIC-DoHBrw-2020’’. Yusof et al. [22] examine
and visually analyze the dataset.

Vekshin et al. [25] develop a classifier to differentiate between
HTTPS and DoH traffic and another model to identify the DoH client
model (Chrome, Cloudflare and Firefox) regardless of IP addresses
and ports. The statistical features with the highest importance in the
classification are the connection duration and average packet delay
and the variance of the received packet size. The AdaBoost algorithm
obtains the best accuracy.

Nguyen and Park [29] propose a DoH tunnel detection system

using a semi-supervised learning technique based on a Transformer
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Table 2
Related works of DoH tunnel detection.
Reference Year Dataset Scope

MontazeriShatoori et al. [21] 2020 DoHBrw-2020 2 layers (HTTPS/DoH,
DoH/malicious DoH)

Banadaki [23] 2020 DoHBrw-2020 2 layers (HTTPS/DoH,
DoH/malicious DoH)

Singh and Roy [24] 2020 DoHBrw-2020 DoH/malicious DoH

Vekshin et al. [25] 2020 Custom HTTPS/DoH,
DoH client model

Behnke et al. [26] 2021 DoHBrw-2020 2 layers (HTTPS/DoH,
DoH/malicious DoH)

Alenezi and Ludwig [27] 2021 DoHBrw-2020 Tunneling tools
Jha et al. [28] 2021 DoHBrw-2020 DoH/malicious DoH

Nguyen and Park [29] 2022 Custom 2 layers (HTTPS/DoH,
DoH/malicious DoH)

Mitsuhashi et al. [30] 2022 DoHBrw-2020 HTTPS/DoH/
DoH-HKD malicious DoH

tunneling tools

Zebin et al. [31] 2022 DoHBrw-2020 HTTPS/DoH/
malicious DoH

Zhan et al. [32] 2022 Custom DoH/malicious DoH

architecture. Although a semi-supervised learning technique, that does
not require the data to be labeled, is used, the complexity of the
proposed model is higher than the other models.

Zhan et al. [32] use a classifier that can detect DoH tunnels with
99% accuracy in a more realistic scenario. In addition, the experiment
analyzes the influence of various characteristics like server location.

MontazeriShatoori et al. [21] studied DoH tunnel detection based
on time-related features, and achieved an accuracy of approximately
100%. The time-based traffic features used are as follows: Source IP,
source port, destination IP, destination port; time stamp; connection
duration; number and rate of bytes sent and received; mean, median,
mode, variance, standard deviation, coefficient of variation, median
and mode skew of packet length, packet time and request/response
time difference.

The following studies found similar results using the same dataset.
The results obtained by Banadaki [23] confirm that LightGBM and XG-
Boost outperform the other algorithms with an accuracy of 100%. Singh
and Roy [24] present several classifiers to detect malicious traffic, the
Random Forest (RF) and Gradient Boosting (GB) classifiers are the best
approaches obtaining an accuracy of 100%. Alenezi and Ludwig [27]
study whether the proposed machine learning approaches are capable
of classifying tunneling tools. The XGBoost and RF classifiers achieve
better than 99% accuracy.

Behnke et al. [26] introduce a feature selection method that in-
creases classification accuracy by decreasing overfitting. Considering
the accuracy and training time, LightGBM obtains better performance.
Jha et al. [28] perform feature analysis based on correlation coefficients
to obtain the most significant features. The presented deep learning
model achieves 99.5% accuracy. A balanced and stacked random forest
that identifies malicious traffic with greater than 99% accuracy is
proposed by Zebin et al. [31].

Mitsuhashi et al. [30] propose a tool to detect malicious DNS
tunnels. The performance is evaluated on two datasets, CIRA-CIC-
DoHBrw-2020 and DoH-Tunnel-Traffic-HKD. The results confirm that
the system is able to detect the tools with an accuracy of 98.02% using
the LightGBM classifier.

As mentioned above, DoH traffic enables attackers to evade existing
DNS tunnel detection mechanisms, thereby introducing new research
challenges in this area. One potential solution is to develop innovative
detection systems using approaches such as machine learning. The
majority of the papers reviewed apply machine learning techniques to
analyze all the features extracted from the traffic. Table 3 presents the
3

characteristics used in the classification of the previous studies.
Firstly, in this paper we investigate whether it is necessary to use
all features to distinguish malicious from benign traffic using statistical
feature analysis. The goal is to identify the most relevant features
that allow us to distinguish malicious from benign traffic. We analyze
whether it is possible to correctly classify traffic as benign or mali-
cious from these features by reducing the overfitting of related works.
Secondly, we present a real-time detection system for malicious DoH
tunnels. The methodology of the system is based on a statistical analysis
of the different features of DoH traffic.

3. Dataset

In our research, we used the ‘‘CIRA-CIC-DoHBrw-2020’’ [21]
dataset. This dataset includes HTTPS and DoH traffic captured through
different web browsers, along with malicious DoH traffic generated by
DNS tunneling tools. As previously discussed, this research is focused
on analyzing benign and malicious DoH traffic, hence our focus is solely
on this particular type of traffic.

The authors defined a capture scenario and implemented the nec-
essary infrastructure to generate the traffic. The traffic was generated
by browsing the top 10,000 Alexa websites using two DoH-compliant
browsers, Google Chrome and Mozilla Firefox. In contrast, the mali-
cious traffic was created using tunneling tools such as dns2tcp, dnscat2,
and Iodine. DoH traffic was captured between the DoH server and the
DoH proxy. The DoH servers used are AdGuard, Cloudflare, Google and
Quad9.

3.1. Remarks

The final dataset contains the statistical features extracted from
the traffic captured using a tool developed by the authors. The tool
produces a CSV file as output and the data is labeled according to
network flow based on IP addresses. A DoH flow is understood as a
sequence of one or more packets with the same source and destination
with the singularity that there is a time limit that can elapse between
two packets. Additionally, the dataset also contains the raw captured
traffic files, Packet Capture (PCAP). We use the PCAP files from the
dataset, which contain raw traffic and network trace information.

The dataset consists of 28 features extracted from DoH traffic, statis-
tical features on packet length and time between packets are collected
in Table 3. Although the flow information provided by the tool is
extensive, it does not provide any information about sent/received
packets. Our study is focused on TCP connections and the proposed tool
groups DoH packets into flows. PCAP files allow a grouping of packets
at TCP connection level. This is particularly relevant for the current
study, which aims to develop a real-time detection system. Therefore,
we are interested in processing the DoH traffic packets and not the
traffic statistics. Finally, we decided to use the PCAP files directly,
which contain the raw traffic.

3.2. Data processing

We use the PCAP files from the dataset containing the raw traffic,
the information from network traces. First, we filter the traffic by IP to
obtain the DoH traffic and extract its characteristics.

We obtain the IP addresses (source and destination), the ports
(source and destination), the size (in bytes) and the timestamp of each
packet from the PCAP files. We group the packets into TCP connections
based on source IP, destination IP, source port and destination port. The
number of data packets of the captured traffic contained in this dataset
can be seen in Table 4.

When grouping the packets into TCP connections, it is observed
that some connections do not contain data. Therefore, to distinguish
between the number of connections with and without data, a differ-
entiation is made. After processing, we obtain 20,063 benign data

connections and a total of 126,380 malicious data connections. The
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Table 3
Features used in related work.
Features [21] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32]

IP/ports ✓ ✓ ✓ ✓

Duration ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Bytes ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Packet length ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Packet time ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Time difference ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Table 4
Dataset details (number of connections and number of packets for each type of
traffic).
Type Web browser/

tool
Num.
connections

Num. data
connections

Num.
packets

Benign Chrome 2295 2293 673,991
Firefox 39,911 17,770 2,719,007

Malicious dns2tcp 115,437 115,228 4,200,633
dnscat2 6095 6095 3,385,446
Iodine 5058 5057 5,153,259

number of packets and the number of connections is higher in malicious
traffic.

The following section will present the main results obtained in the
traffic pattern analysis as well as a brief discussion of them.

4. Statistical analysis

In this section we present the statistical analysis of the DoH traffic
performed. The aim of this analysis is to study the pattern of DoH traffic
and to analyze whether there is a statistical difference between benign
and malicious traffic. If there is a significant statistical difference, the
malicious connections could be classified according to the statistical
features.

The features obtained are analyzed and the features of the two types
of traffic are then compared. In the statistical study performed, we
did not consider outliers in order to visually analyze the distributions
followed by the different characteristics. Although the distributions of
all the characteristics mentioned above have been analyzed, only the
histograms of the characteristics that are most relevant to this analysis,
the distributions of the features that show the greatest difference,
are shown. The histograms presented represent the distribution of
malicious and benign traffic.

4.1. Connection

First, we study the statistical features extracted from each con-
nection. The features used for the analysis of the DoH traffic pattern
are extracted at the TCP connection level. We obtain 37 statistical
characteristics related to duration, data packet size and time between
two data packets, these characteristics are summarized in Table 5.

Fig. 2 shows the distribution of connection duration. The duration
f the connection depends on the web browser or tunneling tool used,
nd the DoH server to which the requests are made. Most of the DNS
unneling tools that make malicious connections stay connected to the
oH server for a long time. Although other tools generate excessively
hort connections, as will be discussed later.
Fig. 3 shows the distribution of the ratio of received and sent

irection packets, the number of packets received between the number
f packets sent. The ratio of malicious traffic is concentrated in smaller
alues, while benign traffic has a wider distribution.
The number of packets sent per second can be seen in Fig. 3. This

distribution shows the packet frequency, in which there is a difference
between benign and malicious traffic. Tunneling attacks attempt to
transmit large volumes of information, and this is reflected in the higher
frequency values.
4

Table 5
Statistical features extracted from DoH traffic.
Category Features

Duration Connection duration

Packet size

Number of packets and bytes per connection
Bytes per packet (min, max, mean, stdev)
Number of packets and bytes sent
Bytes per packet sent (min, max, mean, stdev)
Number of packets and bytes received
Bytes per packet received (min, max, mean, stdev)
Down/up ratio
Bytes per second
Number of packets per second (total, sent and received)

Time between
two packets

Time between consecutive packets (min, max, mean, stdev)
Time between sent packets (min, max, mean, stdev)
Time between received packets (min, max, mean, stdev)

Fig. 2. Duration of benign and malicious connections in seconds.

If we look at certain statistical parameters extracted from the traffic
such as connection duration, average bytes per packet sent or time be-
tween packets sent we could differentiate benign traffic from malicious
traffic. The next step of this study is to apply more elaborate techniques
based on the analysis performed, exploiting the statistical parameters
that allow us to differentiate malicious from benign traffic. These tech-
niques will determine whether malicious traffic can be differentiated
from benign traffic based on the minimum number of features.

4.1.1. Evaluation
We apply machine learning techniques to classify benign and mali-

cious traffic based on the features identified previously. The objective is
to analyze whether the features selected by statistical analysis provide
sufficient information to differentiate malicious from benign traffic. The
classifiers used in this research are RF, DT (Decision Tree), GB and
KNN (K-Nearest Neighbors). We have studied the application of these
techniques depending on different input features extracted from the
statistical analysis. The features selected as input are the duration of
the connection and the number of packets per second in a connection.
For classification, we used 80% of the data to train the models and the
remaining 20% for testing.

In order to perform a classification, it is convenient to have balanced
classes. However, as can be seen in Table 4, the number of mali-
cious connections is 126,380 and the number of benign connections
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Fig. 3. Distribution of two features extracted from traffic.
Table 6
Results obtained in the classification of benign and malicious traffic.
Model A P R F1 TP FN FP TN

RF 0.993 0.993 0.994 0.993 3978 26 27 3995
DT 0.992 0.992 0.993 0.992 3975 29 34 3988
GB 0.987 0.990 0.983 0.986 3936 68 40 3982
KNN 0.917 0.929 0.902 0.915 3611 393 274 3748

TP = Benign, FN = Blocked, FP = Permitted, TN = Malicious.

is 20,063, so the dataset is not balanced. To obtain a balanced distri-
bution of both classes, we have selected the subsampling technique. We
randomly select a subsample of malicious connections equal in length
to the number of normal DoH traffic connections. After processing we
obtain a dataset of 40,126 connections.

According to the performance metrics used in related work, the
metrics used in this study are accuracy, precision, recall and F1-
Score [33]. These metrics depends on the True Positive (𝑇𝑃 ) rate,
False Positive (𝐹𝑃 ) rate True Negative (𝑇𝑁) rate and False Negative
(𝐹𝑁) rate. Table 6 shows the comparison between the accuracy of the
different machine learning models applied in this study and illustrate
the number of samples that were correctly classified and those that
were misclassified.

The results show that we obtain better results with the RF, DT and
GB models with an accuracy of 99%. The RF and DT models perform
better and achieve an accuracy higher than 99%. As can be seen, most
of the connections are successfully detected by the RF model. Only 27
malicious samples are predicted as benign connections. Analogous to
the previous model, the DT model has the similar performance and
34 malicious connections were not detected and permitted. GB model
also achieves almost 99% accuracy and the number of malicious con-
nections that are permitted amounts to 40. The number of undetected
malicious connections is similar for the three models above. The KNN
model is the worst performing model compared to the other models,
although it reaches an accuracy of higher than 91%. In this model, the
number of false positives increases, 393 connections are blocked and
274 connections are allowed.

The results obtained show that the selected features provide suffi-
cient information to differentiate between malicious and normal traffic.

4.2. Packets

On the other hand, we study the distribution of different features ex-
tracted from all packets, although we only consider packets containing
data for normal DoH traffic and malicious traffic.

If we examine the size of the packets, specifically the number of
bytes sent that contain data in a packet, the traffic generated by the
tools contains more bytes, which means that more data is sent. This
difference can be seen in Fig. 4. Similarly, the size of the packets re-
ceived is likely to be higher, Fig. 4, although in this case the difference
is less obvious because there is more overlap.
5

As for the time between packets, we study the time between two
consecutive packets, regardless of the direction of the message, the time
between two packets sent and the time between two packets received.
Fig. 5 shows the distribution of the time between two packets sent,
received and consecutive, respectively, for both types of traffic. The
time between two packets by tunneling tools is longer. This means that
the packets of the traffic generated by the tunneling tools are sent with
a lower frequency.

The distribution of features at packet level also shows a different
pattern. Therefore, it is possible to distinguish malicious DoH traffic
from normal DoH traffic. The next section explains the proposed system
for detecting malicious connections in real time.

5. Real-time implementation

The objective of the real-time implementation is to try to detect
an intrusion into the system as soon as possible by performing an IDS
classifier in real time.

To implement the real-time detection system, we rely on a statistical
analysis of the different features of DoH traffic. The goal is to get some
rules to discriminate TCP connections as packets arrive. To do this,
we define thresholds for certain traffic features that can be measured
in real time (size of packets, time between packets, etc.). Points are
then assigned if the packets meet the conditions to generate a traffic-
light, once the score turns red the connection is marked as malicious.
In the following we explain the feature selection process as well as
the analysis performed to define the different thresholds. We also
describe the methodology followed in the implemented system and the
evaluation of the system.

5.1. Feature selection

Feature selection is conducted by analyzing the extracted features
from the DoH traffic. These features can be at the packet level, includ-
ing the number of packets, packet length, or time intervals between
packets, as well as at the connection level, such as the duration of the
connection. However, as mentioned in the previous section, DNS mes-
sages are transmitted in an encrypted form using TLS, which restricts
the availability of certain traffic information.

Furthermore, when selecting features for real-time cyber-attack de-
tection, it is important to consider that some statistical features may not
be accessible. Statistical features like average packet size and global
features like total connection duration are not readily accessible due
to the limited information obtainable before a connection concludes.
However, partial calculations of these values can be performed, and
the values are updated as packets arrive.

On the contrary, information at the packet or packet-by-packet
level is available. The packet information encompasses packet length,
distinguishing between sent and received packets, and time intervals
between two packets, including both consecutive sent packets and

consecutive received packets.
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Fig. 4. Packet size distribution of sent and received packets for benign and malicious traffic.
Fig. 5. Distribution of time between two packets.
Fig. 6. Correlation between size of packets sent and time between two packets.

We analyze the distribution of the extracted features according to
he type of traffic, whether benign or malicious. Although the distribu-
ions of all available features were examined, the distributions of the
ost significant features are shown below. These features are the size of
he packets sent and the time between two consecutive packets. Fig. 6
shows the joint distribution of both features. Benign traffic is mainly
concentrated in the lower left quadrant, with small values for size and
time. Therefore, a threshold of size or time alone is not sufficient to
adequately distinguish benign and malicious, we need both features to
distinguish traffic.

5.2. Threshold definition

Threshold are established based on statistical analysis. To perform
6

a quantitative analysis and set the necessary thresholds, we study the
Table 7
Defined thresholds to distinguish benign and malicious traffic.
Feature Threshold

Length of packet sent 175 bytes
Time between two consecutive packets 0.05 s

distributions of the features. The objective is to find a pattern in the
data and fit all the data. From this fit we know where the data is
concentrated and at what threshold the probability of having a packet
decreases considerably.

Fig. 7 shows the distribution of the size of packets sent for both
types of traffic, normal traffic and malicious traffic. From the distri-
bution, we can see that the benign packets decrease significantly from
175 bytes, there is only a 1% probability of finding a larger packet. For
malicious packets, 30% of the packets are larger.

The distribution of the time between two consecutive packets for
both types of traffic are shown in Fig. 7, benign connections and ma-
licious connections. From the distribution, we can see that the benign
packets decrease significantly from 0.05 s, there is a 10% probability
of finding a higher time. For malicious packets, 35% of packets are
sent at a lower frequency. From the study of benign and malicious
connection data we can determine threshold levels. These threshold
levels are shown in Table 7.

These limits provide a method for distinguishing malicious traffic.
The methodology used in the proposed system is described below.

5.3. System proposed

As mentioned above, the objective is to detect malicious connections
by assessing whether the transmitted packets satisfy a predetermined
set of criteria. After establishing the criteria, we proceed to analyze
DoH traffic according to the methodology outlined in Fig. 8. As il-
lustrated in the diagram, the proposed detection system consists of
a collection of interconnected blocks: (1) traffic analysis, (2) feature
extraction, (3) grouping packets by TCP connections, (4) feature ver-
ification and score updating, (5) score verification, and (6) traffic
classification. The most important blocks are described below.
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Fig. 8. Methodology of system proposed.

.3.1. Feature verification and score updating
Fig. 9 details the verification process of the different characteristics

alues and the increase of the score if the defined limits are exceeded.
nce the data packet has been added to the connection, the various
elected features are checked. If the feature exceeds the pre-defined
imit or threshold, the score is increased. For example, if a packet of
00 bytes arrives, one point is added because it is suspected to be from
malicious connection.

.3.2. Score verification
We used a traffic-light based methodology to mark a connection as
alicious as can be seen in Fig. 10. The checking of the score obtained

in each connection has been described. Limits have been set at which
the connection is classified as malicious. A traffic-light is created with
three levels: green, orange and red. The limits have been established
based on different tests performed. The upper limit, which is limit1 in
the diagram shown, has been set at a value of 50 points. The second
limit has been set at 25 points. If the connection exceeds the upper limit
and the flag is marked as red, the connection is automatically suspicious
7

and flagged as a malicious connection. l
Table 8
Confusion matrix of the classification results.
True label Predicted label

Benign DoH Malicious DoH

Benign DoH Chrome 89.20%
1998

10.80%
242

Firefox 93.75%
11328

6.25%
755

Malicious DoH dns2tcp 96.97%
73514

3.03%
2294

dnscat2 2.15%
221

97.85%
10036

Iodine 4.40%
544

95.60%
11807

5.4. Evaluation

We implemented the proposed IDS system and evaluated its perfor-
mance using the data set ‘‘CIRA-CIC-DoHBrw-2020’’. We use the PCAP
files from the dataset containing the raw traffic. The system proposed
analyzes the captured packets one by one and simulate a real-time
analysis.

Table 8 shows the confusion matrix of the results obtained in the
lassification. High accuracy is observed in the classification of DoH
raffic connections, but many malicious DoH traffic connections were
isclassified as normal traffic. For benign traffic, 11% of Chrome
rowser connections would be blocked and 6% of Mozilla browser
onnections would be blocked.
In terms of malicious traffic, the performance of the system for

onnections from the dns2tcp tool stands out. Only 2% of connections
rom the dnscat2 tool are allowed and 4% of connections from the
odine tool. On the contrary, 97% of connections from the dns2tcp tool
ould be allowed and not marked as suspicious.
Regarding how long it takes for the system to detect a malicious

onnection, it requires an average of 80 packets, which translates into
n average time of 26 s, to detect a malicious connection.
The following section provides a detailed examination of the out-

omes and analyzes the traffic generated by the dns2tcp tool. The
oal is to gain a more comprehensive understanding of the observed
eficiencies in identifying malicious network connections.

.4.1. Discussion of the results obtained
We conducted an analysis of malicious connections, with a partic-

lar focus on the traffic generated by the dns2tcp tool. The goal was
o explore the reasons why the proposed system presents limitations in
dentifying this category of connections.
Fig. 11 shows the temporal distribution of connections, illustrating

ow connections are distributed across the time. Benign traffic exhibits
degree of randomness that is absent in malicious traffic. In fact, ma-

icious traffic is distinguished by a noticeable periodicity. Furthermore,
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Fig. 9. Methodology of the feature verification.
Fig. 10. Methodology of score checking. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Table 9
Confusion matrix.
True label Predicted label

Benign DoH Malicious DoH

Malicious DoH tuns 0.00%
0

100.00%
134

dnstt 50.00%
576

50.00%
576

tcp-over-dns 3.75%
3

96.25%
77

despite the identical time period, the number of malicious connections
is substantially greater.

When inspecting the traffic generated by the dns2tcp tool, we
observed that the connections are short, leading to a small number of
packets, as depicted in Fig. 12. This behavior complicates the identifi-
ation of such malicious connections using the proposed system, as the
onnections are unable to surpass the predetermined thresholds.
This finding demonstrates that detecting malicious connections can

rove challenging when individual connections are analyzed in iso-
ation, without considering the frequency and volume of connections
stablished within a short period of time.

.4.2. Evaluation
Additionally, we evaluate the classifier by using another data set

nd compare the results obtained. The DoH-TunnelTraffic-HKD dataset
30] contains traffic data from three emerging tunneling tools: tuns
34,35], dnstt [36], and tcp-over-dns [37]. The traffic was captured for
8 h and then, scaled up assuming 20 clients using the tools.
Table 9 shows the confusion matrix of the results obtained in the

etection of malicious DoH connections. Similar to the previous dataset,
here are two types of tools that achieve almost 100% performance.
here is one type that would allow 50% of malicious connections. The
ituation is analogous to that explained above, the connections are too
imited to detect.
In this study we have implemented a real-time DoH tunnel detection

ystem. This system analyzes DoH traffic and detects tunnels as packets
8

rrive using an approach based on a threshold definition. The proposed
system has been evaluated on dataset ‘‘CIRA-CIC-DoHBrw-2020’’. This
represents an initial step in our research, knowing that the insufficiency
of analyzing connections individually, and thus, we aim to improve
the proposed system by incorporating various additional parameters.
In the next phase of our research, we intend to examine the number
of requests initiated within a defined temporal interval, where a high
frequency may indicate the presence of malicious traffic. Furthermore,
if such traffic adheres to a regular pattern, it could potentially be
classified as suspicious and subjected to quarantine for more in-depth
analysis. These additional rules would improve detection by taking into
account the long term behavior of tunneling tools.

6. Conclusions

DoH was defined as a solution to the privacy problems associated
with the DNS protocol. While this protocol encrypts DNS queries and
mitigates attacks involving data manipulation, malicious actors exploit
the fact that DNS traffic is encrypted to conduct data exfiltration
attacks. In addition, tools that rely on data analysis to detect tunnels
have certain limitations.

This article presents a real-time system for detecting malicious DoH
tunnels. The system aims to identify potential security breaches as soon
as possible using a real IDS classifier, thereby mitigating the impact of
DoH tunnel attacks. In order to develop the detection system, we used a
statistical analysis of the various DoH traffic features that are accessible
in real-time.

We performed an analysis of benign and malicious traffic and
obtained statistical parameters by partitioning the traffic into indi-
vidual TCP connections. This facilitated the identification of patterns
characteristic of benign and malicious traffic and enabled us to es-
tablish threshold values to distinguish malicious traffic. The proposed
system performs a detection rate exceeding 95% for malicious con-
nections. With respect to the dns2tcp tool, the findings deviated from
the expected outcomes, as this tool generates a considerable volume of
connections that are too brief to be identified by the detection system
employing the proposed methodology.

The next phase of this study involves adapting the proposed system
to account for a group of TCP connections and avoid treating them as
separate and individual connections. On the other hand, the attacker
can alter the malicious traffic to imitate legitimate traffic patterns. This
can be achieved, for instance, by introducing packet padding or by
reducing the payload size of each request and increasing the overall
request frequency to mimic the distribution of DNS traffic. However, if
the attacker is forced to mimic the benign DNS traffic pattern, then the
attack will lose utility to the attacker by increasing the time it takes to
send data and decreasing the amount of data it can send undetected. A
future line of research is to study whether tunneling tools allow such

traffic shaping.
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Fig. 12. Traffic generated by the dns2tcp tool.
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