Hindawi

Complexity

Volume 2019, Article ID 2952304, 16 pages
https://doi.org/10.1155/2019/2952304

Research Article

WILEY

Hindawi

Hybridizing Evolutionary Computation and Deep Neural
Networks: An Approach to Handwriting Recognition Using
Committees and Transfer Learning

Alejandro Baldominos (), Yago Saez

, and Pedro Isasi

Computer Science Department, Universidad Carlos III de Madrid. Avenida de la Universidad, 30. 28911 Leganes, Madrid, Spain

Correspondence should be addressed to Alejandro Baldominos; abaldomi@inf.uc3m.es

Received 3 December 2018; Revised 12 February 2019; Accepted 3 March 2019; Published 26 March 2019

Academic Editor: Michele Scarpiniti

Copyright © 2019 Alejandro Baldominos et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Neuroevolution is the field of study that uses evolutionary computation in order to optimize certain aspect of the design of neural
networks, most often its topology and hyperparameters. The field was introduced in the late-1980s, but only in the latest years
the field has become mature enough to enable the optimization of deep learning models, such as convolutional neural networks.
In this paper, we rely on previous work to apply neuroevolution in order to optimize the topology of deep neural networks that
can be used to solve the problem of handwritten character recognition. Moreover, we take advantage of the fact that evolutionary
algorithms optimize a population of candidate solutions, by combining a set of the best evolved models resulting in a committee of
convolutional neural networks. This process is enhanced by using specific mechanisms to preserve the diversity of the population.
Additionally, in this paper, we address one of the disadvantages of neuroevolution: the process is very expensive in terms of
computational time. To lessen this issue, we explore the performance of topology transfer learning: whether the best topology
obtained using neuroevolution for a certain domain can be successfully applied to a different domain. By doing so, the expensive
process of neuroevolution can be reused to tackle different problems, turning it into a more appealing approach for optimizing the
design of neural networks topologies. After evaluating our proposal, results show that both the use of neuroevolved committees
and the application of topology transfer learning are successful: committees of convolutional neural networks are able to improve
classification results when compared to single models, and topologies learned for one problem can be reused for a different
problem and data with a good performance. Additionally, both approaches can be combined by building committees of transferred
topologies, and this combination attains results that combine the best of both approaches.

1. Introduction

Deep Learning encompasses a broad set of techniques that
are able to infer “deep” models to solve diverse machine
learning problems. From these techniques, convolutional
neural networks (CNNs) are probably the most well-known,
extensively studied and widely used. CNNs are a type of
neural network that most typically comprises two different
parts: first, convolutional layers are in charge of automatically
extracting relevant features from the input; then, fully-
connected layers are responsible for performing supervised
learning. While other architectures exist, such as residual
networks [1] or fully convolutional networks [2], the one
described is the most commonly found in the literature.

The advantage of CNNs is that all the network parameters,
from both the feature extractor and the classifier, can be
learned using backpropagation. CNNs have been widely
used for computer vision, achieving an outstanding perfor-
mance, but have also been applied to a variety of problems
with remarkable success: natural language processing, signal
classification, human activity recognition, or even music
generation.

While CNNs have been proved to work well in a very
diverse number of domains, one downside is that the net-
work topologies can be very complicated, involving a large
number of hyperparameters from both the convolutional
layers, the fully-connected layers, and the training process
itself. Generally, the topologies are manually designed, by

http://orcid.org/0000-0002-8906-7572
http://orcid.org/0000-0002-0998-2907
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/2952304

either choosing the most suitable one after some trial-and-
error or using domain-specific expertise to infer what would
constitute a good topology for the problem. Unfortunately,
the first approach is very time-consuming, while the second
one requires an expertise which may not always be available.

While there are no analytic procedures for automatically
determining the optimal CNN topology and hyperparame-
ters for a certain problem, in recent years some works have
focused on developing mechanisms to automatically search
for them. An important subset of these mechanisms involve
neuroevolution, a concept that arose in the late 1980s to
apply evolutionary computation for optimizing some aspects
of neural networks and that, only in very recent years, with
the improvement of hardware technology and efficient GPU-
based deep learning frameworks, is starting to be applied to
deep and convolutional neural networks.

In this work, we will first use a previously described
evolutionary algorithm [3] to optimize the topology of con-
volutional neural networks. This procedure includes mecha-
nisms specifically devoted to preserving the diversity of the
population during evolution. Besides, in this paper, we will
focus in the study on two aspects that arise naturally from
the neuroevolutionary process itself.

The first of such aspects is the fact that evolutionary
computation can output not just one solution, but rather
a whole population of candidate solutions resulting from
the optimization procedure. In this paper take advantage
of the evolutionary process in order to obtain not just an
optimized CNN but rather a set of outperforming CNNs that
can be combined within an ensemble. This whole process is
enriched by the diversity-enhancing techniques mentioned
before, which will lead to a higher variance in the models
conforming the ensemble.

Regarding the second aspect, it must be noticed that
neuroevolution is a very expensive task in computational
terms. This high cost is due to the fact that, in every
generation of the genetic algorithm, each candidate CNN
topology must be evaluated, thus requiring first learning its
parameters using some training data and then computing its
performance (fitness) using some validation data. For this
reason, in this paper, we study the process of transferring the
topologies optimized for one domain to a different domain.
A successful outcome in this topology transfer learning task
would make neuroevolution a more appealing tool since most
of the knowledge could be reused between different problems.

The main contribution of this paper is therefore to address
these two aspects, showing how ensembles of neuroevolved
and diverse CNNs can significantly outperform individual
models and how the knowledge acquired during evolution
can be then transferred to a different problems with successful
results.

The remainder of this paper is structured as follows:
first, Section 2 introduces the context of this paper, describes
related works, and elaborates on the contribution of this
paper when compared with these works. The proposal of
this paper is described in Sections 3 and 4, which describe
the procedure for building committees of CNNs and for
performing topology transfer learning and report and discuss
the results attained after a systematic evaluation. Finally,

Complexity

Section 5 provides some conclusive remarks about the work
carried out in this paper.

2. Background and Related Work

CNNs were first introduced by LeCun et al. in 1998 [4,
5] as an approach to achieve outperforming classification
of different types of documents and information, such as
images, speech, or time series. The most common CNN
architecture comprises two distinct parts: first, a sequence of
convolutional layers is in charge of automatically extracting
relevant features from input data. This stage is known as
“feature learning” or “representation learning” and replaces
the procedure in which an expert or group of experts perform
manual feature engineering to convert some unstructured
information into a set of valuable features. Then, once
these features have been extracted, the second part of the
CNN, often known as “dense layers”, will be in charge of
performing classification. This classifier module will com-
monly comprise a fully-connected feedforward or recurrent
neural network. The backpropagation mechanism is used
both for learning the parameters of the dense layers (as in
classical neural networks) and also for the convolutional
layers, in order to minimize a loss function defined over the
output of the neural network and the expected classification
output.

Nowadays, CNNs have become one of the most
widespread techniques in the field known as “deep learning”.
Many frameworks have arisen in recent years in order to
easily train CNN models over very different types of input
data, supporting a large variety of tensor algebra operations
and automatic differentiation. Examples of widely used deep
learning frameworks are Theano [6], Caffe [7], or TensorFlow
[8] and some other libraries that have been also published
to ease the design of convolutional neural networks, such as
Lasagne [9] or Keras [10]. CNNs are becoming ubiquitous
at solving a variety of artificial intelligence problems due
to the availability of high-end hardware (mostly graphics
processor units, GPUs, and specific hardware for tensor
processing) and the ease of implementation provided by such
frameworks and libraries. Nevertheless, the right topology
and hyperparameters of a CNN for solving a problem
are still a challenging design decision which in some cases
requires expert knowledge and in most of the cases expensive
trial-and-error to be done.

The problem of designing the topology of a neural
network is not new: it goes back as far as the mid-1980s, when
the backpropagation algorithm was introduced by Rumelhart
el al. [11]. Backpropagation enabled a fast and reliable way
of learning the parameters of a neural network, and it was
a key discovery for settling the field of neural networks;
however, the topology of the network should be known prior
to the start of the training process. Unfortunately, no analytic
procedure exists which determines the optimal topology of a
neural network, and the common way to design it involves
either trying different architectures until one satisfies our
expected quality or reusing topologies that have been proved
to be successful for very similar problems.

Complexity

However, by the end of the 1980s, a new approach
arose: neuroevolution. This paradigm uses evolutionary algo-
rithms in order to optimize the topology, and in some
cases also the weights, of a neural network. Evolutionary
algorithms are a set of biologically inspired, metaheuristic
search techniques that can optimize a population of indi-
viduals in order to maximize a certain fitness metric. In
neuroevolution, the population comprises the description of
the neural network topologies and/or hyperparameters, and
the fitness function is a certain machine learning metric to
be optimized (e.g., accuracy, precision or recall, F1 score,
etc.).

Neuroevolution has been applied successfully to deter-
mine optimal neural network topologies for almost three
decades. However, its application to CNNs has been marginal,
and only in very recent years a significant amount of works
have been published proposing different approaches to per-
form an evolutionary optimization of CNN topologies. A
very recent survey has been provided by Stanley et al. early
in 2019 [12].

One of the earliest approaches was proposed by Koutnik
et al. [13] in 2014, where an architecture of four convolutional
layers with max-pooling and a small recurrent network with
three hidden units is fixed. All parameters are evolved by
encoding them in a real-valued genome. However, as it can
be seen, this work do not perform architecture optimization.

Other work was presented in 2015 by Verbancsics and
Harguess [14], proposing an update to HyperNEAT [15] to
support the evolution of CNNs, by learning the weights of a
feature extractor consisting on convolutional layers. Also this
year, Young et al. [16] introduced MENNDL (multi-node evo-
lutionary neural networks for deep learning), where a genetic
algorithm was used to optimize only six hyperparameters of
a CNN, focusing on high performance computing. A more
recent version was presented in 2017 [17], where the number
of evolved hyperparameters was increased to eleven.

Some relevant works were also published during 2016. It is
the case of the work by Loshchilov and Hutter [18], where an
evolution strategy is used to evolve 19 hyperparameters from
a CNN, most of which belong to the learning process, using
an architecture with a fixed number of layers. Other work
was published by Fernando et al. [19], where they propose
the introduction of a differentiable compositional pattern
producing network (DPPN), a type of network which can be
evolved using approaches based on augmenting topologies.
An interesting novelty of this approach is that the topology
and the initial weights can be evolved altogether and later
optimized using backpropagation.

Most works in this field started to arise in 2017. A
representative example is GeNet, introduced by Xie and Yuille
[20], whose approach consists of evolving a graph connect-
ing different stages (each corresponding to a convolutional
layer), and which allows for the optimization of complex
nonsequential networks. Also relevant is CoDeepNEAT by
Miikkulainen et al. [21], which consists of a modification
of NEAT to support the evolution in CNNs, with support
to nonsequential architectures and improved with a co-
evolutionary approach. In EXACT, proposed by Desell [22],
another NEAT-approach is used to evolve the filter sizes of

convolutional layers and their connectivity. Real et al. [23]
from Google Brain also proposed an approach where a graph
was evolved, with each node corresponding to a convolu-
tional layer, allowing for complex topologies. Moreover, Sun
et al. [24] described the application of a GA to the evolution
of CNNs, innovating with the introduction of variable-length
chromosomes. Also, Dufourq and Bassett [25] introduced
EDEN, which relied on a genetic algorithms with two genes
for encoding the network architecture and the learning
rate.

In the works proposed by Suganuma et al. [26] and
by Davison [27], genetic programming is used instead for
evolving the architecture of the CNN. Meanwhile, Bochinski
et al. [28] proposed IEA-CNN, an approach using an evo-
lutionary strategy, innovating by sorting the evolved layers
by descending complexity, effectively reducing the search
space factorially on the number of layers. Additionally,
they extend their contribution by building ensembles out
of evolved models, using a fitness function that takes the
global classification error of the population, and naming this
alternative CEA-CNN.

State-of-the-art works have been also presented during
2018. For example, Baldominos et al. [3] conducted a research
where two implementations of evolutionary algorithms were
successfully used to evolve the topologies of CNNs for
improving the performance of handwritten digit recognition.
Liu etal. [29] suggested using a genetic algorithm for evolving
individuals using mutation by adding, removing, or editing
edges in a computation graph which can be translated into a
convolutional neural network. Finally, first Kramer [30] and
later Prellberg and Kramer [31] have presented an approach
based on an evolutionary algorithm that relies only on the
mutation operator and have introduced a mechanism to
support parameters inheritance, so that descendants during
the evolutionary process do not need to learn weights from
scratch. Assuno et al. [32] have presented DENSER, a work
where a multi-level encoding of candidate solutions allow
for the optimization of the topology of the network and the
activation functions, with authors claiming that it can be used
also to evolve the hyperparameters of the learning process as
well as of the data augmentation stage. In late 2018, Wang
et al. [33] used differential evolution to optimize different
hyperparameters of both convolutional and fully-connected
layers. Sun et al. [34] have recently proposed the application
of a genetic algorithm where two building blocks (ResNet and
DenseNet) are used to evolve the CNN architecture.

In this promising field, there are still many research lines
that are worth being explored. As we already described in
the previous section, in this paper we expect to contribute to
the field of knowledge by working in two different subjects of
study that arise naturally from the advantages and limitations
of neuroevolution. First, given that evolutionary algorithms
evolve not only a single individual but rather a population
of them, we hypothesize that the output of the optimization
process can be combined altogether to build a committee of
neural networks that perform better than any single model.

The idea of ensembling several neural network models
into a commiittee is not new and has been extensively carried
out in the literature. For example, in the field of image

classification, Cirean et al. [35] attained an improvement of
0.8 percentage points over the best result reported in the state
of the art of the MNIST database by using committees of
CNNes. In recent years, this idea has been applied to a variety
of fields, such as facial expression analysis [36], astrophysics
[37], pose estimation [38], or medical imaging [39]. However,
the idea of building an ensemble out of a population of
neuroevolved CNN topologies is less common and, to the
best of our knowledge, has been only explored before by
Real et al. [23] and by Bochinski et al. [28] in 2017. In the
former work, the ensemble is built by choosing the top-2
models of the evolved population based on validation accu-
racy. When testing over the CIFARIO dataset, the ensemble
attains an accuracy of 95.6%, versus 94.6% of the best single
model. Beyond neuroevolution, the process of ensembling
automatically determined CNN topologies is also used in
MetaQNN [40], where reinforcement learning is used to
determine optimal topologies. As a result, ensembles attain a
test accuracy over the MNIST dataset of 99.68%, compared
to 99.56% when using a single model. In the latter text,
ensembles are evolved using a fitness function that considers
the global classification error of the population, and authors
report a classification accuracy of 99.76% with an ensemble
of 34 CNNs, compared to 99.66% with a single model, a very
competitive performance among the state of the art.

Regarding the second subject of study, since neuroevo-
lution is an expensive process, we believe that it is worth
exploring whether the best topology evolved for a problem
can be reused for a similar problem, even when the data are
different. The deep learning literature has studied transfer
learning before, but understood as the application of a trained
machine learning model to a different domain with very
few additional trainings [41]. In the case of neural networks,
the learned parameters (weights) are reused for a different
problem. In some cases, only the feature representations
(i.e., the parameters of the convolutional layers) may be
used, training the classifier from scratch. In this paper,
however, we will be focusing on topology transfer learning.
Thus, we are interested in transferring knowledge not of
the CNN model weights but rather of its architecture and
learning hyperparameters. In other words, once the expensive
process of determining the best CNN topology for solving
a certain problem is completed, we are interested in testing
whether this evolved topology is useful for training a CNN
model in a different machine learning problem. In the case
of being useful, then plenty of computation time could
be saved by avoiding the repetition of the evolutionary
process. This approach contrasts with the one followed
by Real et al. [23], where they run again the complete
neuroevolutionary process for the CIFAR-100 dataset, using
the same encoding and hyperparameters that they used for
CIFAR-10.

In this paper, we will explore both alternatives separately
and then combine both of them together to put the robustness
of these improvements in the neuroevolutionary process to
the test. To the best of our knowledge, the study of the use
of ensembles along with topology transfer learning within
the context of neuroevolution is novel and has not been
addressed earlier in the literature.

Complexity

3. Committees of Convolutional
Neural Networks

A committee of machine learning models, commonly
referred to as an “ensemble”, is a set of models that operate
together in order to provide a single response. In a classifi-
cation problem, each model will return a class and then all
responses will be considered to produce a single outcome.

In this paper, we will rely on the neuroevolutionary
process described in the work by Baldominos et al. [3],
which already implement specific mechanisms to preserve
the diversity of the population of CNN topologies. This
mechanism consists in a niching strategy where individuals
more similar to others in the population are penalized. To
do so, an adjusted fitness (f,) for the i-th individual (i;) is
computed as follows, being f(i;) the non-adjusted fitness for
such individual:

|P| -1

£106) = £, x (1 Zyergasim (i)) n

In the previous equation, sim(i;i;) is a value that rep-
resents the similarity of two individuals and is computed as
follows:

sim (1,-, 1j>

|P (i)np (ij)l
= el

0, otherwise

Cifln] = ln] and i [n] = [n]

In the formula for computing similarity, n, refers to
the number of convolutional layers and 7, refers to the
number of fully connected layers. We can see that individuals
with a different number of layers are considered completely
different. When the number of layers coincide, then the
formula looks for the fraction of hyperparameters whose
value is equal between both individuals. From this formula,
it is easy to check that the image of the similarity function
is in the range [0, 1], where 0 means that two individuals are
completely different and 1 means that they share the exact
same setup.

By wusing this niching strategy, we expect the
increase in diversity to result in better ensembles, since
models are guaranteed to be very different from each
other.

During the neuroevolutionary process, the top 20 topolo-
gies found during the evolution are stored in a hall-of-
fame and then trained for a longer time to come up with
competitive models. Then, we will build committees of CNNs
from the best models found during the neuroevolutionary
procedure. To do so, we will sort the models based on their
performance and then build committees by adding models
one at a time, up to a maximum of 20 models. The committee
will work based on a majority voting policy; that is, its
response will correspond to the class returned by the majority
of the models comprising the committee. In case of a tie, it
will be resolved by choosing the class decided by the most
competitive model involved in the tie.

Complexity

3.1. Evolution of CNN Models. Following the procedure
described by Baldominos et al. [3], we will use both genetic
algorithms (GA) and grammatical evolution (GE) to auto-
matically determine the topology and hyperparameters of
CNN s that maximize the classification performance.

The GA encoding consists in a 69-bit binary string using
Gray encoding. The chromosome encodes the following
parameters:

(i) Input configuration: batch size from 25 to 200.

(ii) Convolutional layers: number of convolutional layers,
and, for each convolutional layer, number of kernels,
kernel size, pooling size (or no pooling), and activa-
tion function.

(iii) Dense layers: number of dense layers, and, for
each dense layer, type of the layer (feedforward or
recurrent), number of neurons, activation function,
weights regularization (L1 or L2), and dropout rate.

(iv) Learning process: gradient descent function (stochas-
tic gradient descent, Adam, Adamax, etc.) and learn-
ing rate.

In GE, the approach is similar but the individuals’
phenotype is defined by a language generated by a grammar
specified in Backus-Naur form (BNF), which can be found
in Algorithm 1. The genotype in GE consists in a sequence
of integers which are used to choose production rules from
the grammar until a valid string is generated (i.e., there are
no remaining non-terminal symbols). The set of valid strings
(the language) correspond to the search space of candidate
solutions. This encoding provides better flexibility than the
GA since it reduces redundancy.

The learning procedure takes place as follows: the net-
works represented by each chromosome have been trained
only for 5 epochs and using a random 50% sample of the
training set in each epoch. This allows generating fairly tight
estimates of the performance of the networks, saving the time
necessary for the evaluation of individuals without whom the
evolutionary process would be unfeasible. When evaluating
the fitness of an individual, the niching strategy described
earlier is used to compute the adjusted fitness.

The complete procedure for evaluating each candidate
solution is as follows:

(1) Translate the genotype into a phenotype by creating
a CNN topology with the parameters specified by the

genotype.

(2) Randomly initialize the network’s weights.

(3) Train the network during 5 epochs, using a random
50% of the data in each epoch.

(4) Compute the classification error of the network on a
set that is different from the training set and assign the
obtained error as the individual fitness, which must be
minimized.

(5) Compute the adjusted fitness provided the niching
strategy.

030 030 030 030 030

1 234567 8 91011121314151617 1819 20
Ensemble Size

FIGURE 1: Error rate of CNNs committees with up to 20 models from
GA with MNIST.

Throughout the execution of the evolutionary system, the
best individuals found thus far are stored such that at the
end of the process we will have a set called hall-of-fame, with
the 20 best architectures found throughout the evolutionary
process. The hyperparameters of each of the top 10 topologies
for the GA are detailed in Table 1. Each of these architectures
is trained for 30 epochs and without sampling. To avoid
biases resulting from the stochastic nature of the process, each
topology is trained 20 times. The results of this full training
stage are summarized in Table 2 (each row corresponds to
each topology in the hall of fame, whereas columns describe
the distribution of performance of fully trained models).

3.2. Results and Discussion of Committees of CNNs. For
the sake of clarity and economy, throughout this section,
we will be more exhaustive when describing the results
obtained using GA, which are slightly better, with a very small
difference, than those attained by GE.

For the ensemble, we use the 20 models generated at
the end of the evolutionary process (we only choose the
best for each different topology) and will follow a majority-
voting policy: for each instance in the validation set, the class
predicted by the 20 models is calculated, and the one that
obtains the largest consensus is generated.

The error rates of the 20 ensembles are shown in Figure 1
in the dark line. It is worth recalling that we are testing
different ensembles size by adding models one at a time,
adding first those with better performance. Light-colored
diamonds in the figure show, just for reference, the average
error rate of all the models included in the ensemble. Because
classifiers are sorted by ascending error, this average increases
as more classifiers are added.

Aswe expected, the error rate of a committee is lower than
the average error rate of its components in all cases. It can
be seen how the introduction of a few models decreases the
error down to 0.28% (when 7 classifiers are used) and then
stabilizes for a while, around 0.3%, until it starts to increase
again when using more than 14 classifiers. In the case of GE,
the best committee found led to an error rate of 0.29%.

It is worth noting that the best committee found in our
research is the one involving the best 7 classifiers. As said
before, this ensemble classifies the MNIST test set with just
an error rate of 0.28%. To the best of our knowledge, when
considering those works where no data augmentation is used

Complexity

< dnn >
<input>

< batch_size >
<conv_lys >

= <input> < conv_lys > < dense_lys > < opt_setup >

= < batch_size >

== 25|50 | 100 | 150
= < conv> | <conv><conv>|<conv><conv> < conv >
= <n_kernels > <k_size > <act_fn > <pooling>

:= <dense> | <dense> <dense> | <dense> <dense> <dense>

== <d_type > <n_units > <act_fn > <reg_fn > < dropout_r >

< conv >

<nkernels> == 8| 16|32 |64 | 128|256

<k size > a= 23|4|5(6|7]8]9
<pooling> z= null | < p_size >

<p.size > = 2|3|4|5]6

< dense_lys >

<dense>

< d_type > ==rnn | lstm | gru | feedforward
<nunits> == 32|64 128|256 | 512 | 1024
<act_fn> :=relu | linear

<reg fn> == null | 11]12] 1112

< dropout_r >
< opt_setup >

== 0]0.5
== < opt_type > < learn._rate> <batch_size>

<opt_type > :=sgd | nesterov | momentum | adagrad | adamax | adam | adadelta | rmsprop
<learn rate > == BE-1 | 1E-1 | 5E-2 | 1E-2 | BE-3 | 1E-3

ALGORITHM I: Definition of the grammar in Backus-Naur Form for the MNIST dataset. Source: Baldominos et al. [3].

0 10 0o 0o 0o 0 1 1 0
1] o o 0 0o o0 0 0 0 0
210 1 o 0 0 0 0 0 0
310 o 1 o 1 0 0 1 0

b

Bog|lo0 0o 0 o0 0o 0 0 o 1

=

v

55 0o 0 0 3 0 10 0 o0
6/ 1 2 0o o 0 1 0o 0 o0
710 2 0o o 0o 0o o0 o 1
glo o 1 0 0o 0o 0 0 1
9|0 o o o 4 2 0o o0 1

o 1 2 3 4 5 6 7 8 9
Predicted digit

F1GURE 2: Confusion matrix of the best committee found for MNIST.

at all, this result is only outperformed by the works by Chang
and Chen [42] and by Bochinski et al. [28], whose proposals
have both resulted in a test error rate of 0.24%.

An error rate of 0.28% over a test set of 10000 samples
translates into 28 incorrectly classified samples. The confu-
sion matrix of the best model is shown in Figure 2. The
interpretation of this confusion matrix is very interesting: we
can see how the most frequent error involves the number ‘9’
being classified as a ‘4’ Some other common mistakes involve
recognizing ‘3’ instead of 5" or ‘I’ instead of 7. Mixing up
these numbers may be acceptable if they are poorly written,
as is the case of these samples. To be more specific, the 28
images that were misclassified are depicted in Figure 3. We
can see how those manuscript digits are indeed very unclear
or poorly written. For example, the fourth image in the first
row could be either a ‘4’ or a ‘9’ the third image in the second
row could be a ‘3’ or a ‘5’ etc. It can difficult even for humans
to recognize these numbers properly.

1

~ D P

<
] 3
& L
/ >
5 /

Ve Y=

1"\:'

SO 0D

A 3

FIGURE 3: The 28 misclassified images in the MNIST test set with the
best committee found.

It is remarkable that the best classifier obtained using a
single model translates into a test error rate of 0.40% (see
Table 2), whereas using ensembles of neuroevolved models
makes it possible to reduce this error rate down to 0.28%. This
makes the use of evolutionary systems even more interesting,
since it allows not only the automatic generation of the
architectures and parameters of CNNs, already a complex and
sophisticated task, but also a considerable improvement of the
performance of the CNNs through the use of an ensemble
of the evolved models, which manually would be almost
impossible to attain.

4. Topology Transfer Learning

The second objective of this work is to verify whether a CNN
model or committee optimized for a certain domain can
be transferred directly to a different (but similar) domain,

Complexity 7

TaBLE 1: Top 10 topologies in the hall-of-fame for the GA in the MNIST dataset. ¢ (convolutional), d (dense), ck; (kernels in the i-th conv.
layer), cs; (kernel size in the i-th conv. layer), cp; (pooling size after the i-th conv. layer-1 means no pooling), ca; (activation in the i-th conv.
layer), dt; (type of the i-th dense layer), dn; (number of neurons in the i-th dense layer), dd; (dropout in the i-th dense layer), da; (activation
in the i-th dense layer), dr; (regularization in the i-th dense layer), B (batch size), f (optimizer), 5 (learning rate).

Architecture
B=25 f = AdaMax n =0.001
ck, =64 cs; =6 cpp =1 ca, = linear
1 C ck, =128 cs, =5 cpy =1 ca, = ReLU
cky =128 cs; =8 cpy =1 cay = ReLU
D dt, = feed-forward dn, =128 dd, =0 da, = ReLU dr, = none
B =50 f = Nesterov n =0.001
ck, =64 csy =4 cp =1 ca, = ReLU
C ck, = 128 cs, =4 cp, =1 ca, = ReLU
2 cky =256 csy =4 cps =2 cay = ReLU
D dt, = feed-forward dn, =128 dd, =0.5 da, = linear dr, = none
dt, = feed-forward dn, =512 dd, =0 da, = linear dr, = none
B =150 f = Nesterov n =0.05
3 C ck, =128 cs; =5 cpp =2 ca, = ReLU
ck, = 256 cs, =5 cp, =4 ca, = linear
D dt, = feed-forward dn, =32 dd, =0 da, = linear dr, = none
B =50 f = RMSProp n =0.001
ck, =32 cs; =3 cp =1 ca, = ReLU
4 C ck, = 64 cs, =5 cpy, =1 ca, = ReLU
cky =32 cs; =8 cpy =1 ca, = ReLU
D dt, = feed-forward dn, =256 dd, =0.5 da, = linear dr, = none
B=25 f = Momentum n=0.01
ck, =64 cs; =4 cpp =1 ca, = ReLU
5 C ck, =256 cs, =8 cpy =1 ca, = ReLU
cky =128 csy=7 cps=3 cay = linear
D dt, = feed-forward dn, =128 dd, =0 da, = linear dr, = none
B =50 f = AdaMax n = 0.005
c ck, =8 cs; =4 cp =1 ca, = ReLU
6 ck, =128 cs, =6 cp, =5 ca, = linear
d dt, = feed-forward dn, =512 dd, =0 da, = ReLU dr, = none
B=25 f = AdaGrad n =0.01
c ck, =32 cs; =6 cpp =2 ca; = ReLU
7 ck, =128 cs, =4 cp, =2 ca, = linear
d dt, = rnn dn, =32 dd, =0 da, = linear dry =12
dt, = feed-forward dn, = 1024 dd, =0.5 da, = ReLU dr, = none
B =50 f = AdaGrad n =0.01
ck, =128 cs; =7 cp =1 ca, = ReLU
¢ ck, = 256 cs, =2 cp, =2 ca, = ReLU
8 cky =128 cs3=9 cpy =2 ca; = ReLU
d dt, = feed-forward dn, =32 dd, =0 da, = linear dr, = none
dt, = feed-forward dn, = 64 dd, =0 da, = linear dr, = none
B=25 f = AdaGrad n =0.01
c ck, =64 cs; =8 cpp =2 ca, = ReLU
o ck, = 256 cs, =5 cp, =3 ca, = ReLU

d dt, = feed-forward dn, = 256 dd, =0.5 da, = ReLU dr, = none

8 Complexity
TaBLE 1: Continued.
Architecture
B=50 f=SGD 5 =0.05
c ck, =64 cs; =7 cp =1 ca, = ReLU
10 ck, =128 cs, =7 cp, =4 ca, = linear
d dt, = feed-forward dn, = 256 dd, =0 da, = linear dr, = none
dt, = feed-forward dn, =512 dd, =0.5 da, = linear dr, = none
TABLE 2: Summary of errors (in %) of the best 20 GA and GE individuals after full training in MNIST. Source: Baldominos et al. [3].
GA GE
Mean Best Mean Best
1 0.5130 0.41 0.4680 0.41
2 0.5380 0.49 0.4765 0.42
3 0.5485 0.49 0.5310 0.47
4 0.5875 0.50 0.4300 0.37
5 0.6115 0.46 0.5545 0.47
6 0.5010 0.45 0.5265 0.42
7 0.5760 0.50 0.4615 0.40
8 0.6085 0.53 0.5830 0.50
9 0.4795 0.40 0.5530 0.48
10 0.6090 0.57 0.5330 0.48
1 0.5600 0.49 0.4985 0.44
12 0.5850 0.54 0.4815 0.42
13 0.7095 0.60 0.5090 0.42
14 0.6045 0.54 0.5680 0.50
15 0.5780 0.47 0.5095 0.48
16 0.6265 0.51 0.5245 0.45
17 0.6010 0.51 0.5525 0.48
18 0.6815 0.62 0.6015 0.52
19 0.4805 0.40 0.5100 0.46
20 0.5930 0.52 0.5525 0.48

resulting in a performance that is good enough. This would
prove the robustness of the models generated by evolution
and would allow extending them to new data, without being
forced to repeat the whole process again. In order to validate
those transfer capabilities, we decide to use the EMNIST
database, which shares structure with MNIST, the one used
for evolving the models, and comprises a similar problem:
handwriting recognition. We hypothesize that topologies that
performed well with MNIST should also be able to attain
reasonably good results with EMNIST. In this section, we will
explore the problem of transferring a CNN topology learned
using neuroevolution.

4.1. The EMNIST Database. EMNIST (Extended MNIST)
database was introduced in 2017 by Cohen et al. [43] and
consists of a set of handwritten characters (both digits and
letters).

Figure 4 shows ten samples for each letter in the EMNIST
dataset, including both uppercase and lowercase variants, and
two samples for each digit (in the last two columns).

EMNIST database is derived from NIST Special Database
19 [44], which contains NIST’s (National Institute of Stan-
dards and Technology of the US) entire corpus of training
materials for handprinted document and character recogni-
tion. It contains over 810,000 isolated characters from 3,699
writers [45] who filled a form. These characters have been
labelled after manually checking.

Authors releasing EMNIST admit that, in the past
years, deep learning and convolutional neural networks have
allowed scientists to achieve accuracies over 99.7% in the
MNIST dataset, stating that at that point “the dataset labeling
can be called into question” [43]. For this reason, they suggest
that MNIST has become a non-challenging benchmark.

Even though NIST Special Database 19, from which
EMNIST was extracted, was available since 1995, it has
remained mostly unused. The main reason was that this
dataset was difficult to access and challenging to use in
modern computers. Recently, in 2016, NIST has released a
second edition of this database [45] which is much easier to
access.

Complexity 9
FBCAEFS LN Jk/mNoPGRCHUVI/ARY 200
ALbCDEeFfG /I ITVLMNeP AFS fuy wX x| |
ALCDESAQNIT LM OPAYSLUVwWXY R Q2
cbCDEFINISL/ #NOPLAICSTUVWXYZ32
ARCLAerGAIIRIZAVOFPRCS T UV WY ZYY
2BCAECEGRhITRI{MNOAINST UV WX SZS S
ABLAECFEL) K Lw2r0PRPFFTLWH I Y2606
AbAACFEAATK | MNP TRSEUNWXY ZT7N
Qe deF74 | IR/ MNOAFY oWV w)Yry=21%
AECIeRTI A IJRKImNOPEZrSTUUWXYYZ97?

FIGURE 4: Samples of all letters and digits in the EMNIST dataset.

In order to make both compliants in terms of structure,
authors have performed a processing similar to the one done
with the MNIST database. The result is a dataset that contains
more instances than MNIST, includes letters apart from
digits, and, in consequence, is a more challenging benchmark
for evaluating the performance of character recognition
systems. This processing comprises the next steps:

(1) Original images in the NIST Special Database 19 are
stored as 128x128-pixel BW images.

(2) A Gaussian blur filter with o = 1 is applied to soften
the edges.

(3) Blank padding is removed, reducing the image to the
region of interest (the actual digit).

(4) The image is then centered in a square image while
preserving the aspect ratio, padding it with a 2-pixel
border.

(5) The image is downsampled to 28x28 pixel using bi-
cubic interpolation.

As a result, each instance in the EMNIST database is a
28x28-pixel grayscale image, where each pixel is a number
between 0 and 255.

In this paper we will use two different taxonomies
provided by the EMNIST dataset:

(i) Digits: similar to MNIST, but with four times more
instances (280,000 instead of 70,000).

(ii) Letters: this dataset contains only letters, and a dis-
tinction between uppercase and lowercase is not
made. As a result, the dataset contains 26 classes and
a total of 145,600 samples.

To the best of our knowledge, the EMNIST dataset is
so new that there are not published works using it as a
benchmark. The original EMNIST paper by Cohen et al.
[43] includes a baseline using a linear classifier and OPIUM
(Online Pseudo-Inverse Update Method), a classifier intro-
duced by van Schaik and Tapson [46]. It is worth noting that
the performance in the original EMNIST paper is reported in
terms of accuracy instead of error rate. For this reason, in this
section, we will use this metric for reporting the performance
of each work.

More recently, Peng and Yin [47] have used Markov
random field-based CNN achieving an accuracy of 95.44%

in the letters dataset and of 99.75% in the digits dataset.
Also, Singh et al. [48] reported an accuracy of 99.62% in
EMNIST Digits, using a CNN with three convolutional layers
and two fully connected layers. In EDEN [25], authors also
tested their neuroevolution approach against the EMNIST
Digits test set, obtaining an accuracy of 99.3%. The dataset
has also been used by Netftci et al. [49] for testing the
performance of event-driven random backpropagation when
training neuromorphic deep neural networks, although they
have combined letters and digits data for classification, and
therefore its performance cannot be compared with the
results obtained in this work; and by Shu et al. [50] albeit with
the purpose of pairwise classification.

Despite the fact of EMNIST not being used so far in other
published works, some researchers have used NIST Special
Database 19 in the past. It should be noted that these works are
not directly comparable, because the database is not identical;
however, results can be extrapolated. For example, Milgram
et al. [51] reported an accuracy of 98.75% using SVMs with
sigmoid function, Granger et al. [52] attained an accuracy
of 96.49% using particle swarm optimization to evolve the
topology of neural networks, and Oliveira et al. [53] reported
an accuracy of 98.39% with a multi-layer perceptron.

Other authors have used also letter from NIST Special
Database 19. For example, Radtke et al. [54] used record-
to-record travel (accuracy of 96.53% for digits and 93.78%
for letters), Koerich and Kalva [55] tested a multi-layer
perceptron only with the letters dataset (accuracy of 87.79%.),
and Cavalin et al. [56] used hidden Markov models (accuracy
of 98% for digits and up to 90% for letters, though this result
is only using uppercase letters, and the accuracy decreases to
87% when lowercase letters are also considered).

Finally, to the best of our knowledge, Ciresan et al. [35]
are the only authors to have used this database for testing the
performance of committees of CNNss, attaining accuracies of
88.12% for the whole database, 92.42% for letters, and 99.19%
for digits.

A summary of the reviewed works is shown in Table 3.
The upper side of the table shows the performance of
classical machine learning models and non-convolutional
neural networks, whereas the lower side shows those works
involving CNNss. Best results are boldfaced.

4.2. Transfer of Evolved CNN Topologies. In order to evaluate
the performance of the neural models obtained in the MNIST

10

Complexity

TABLE 3: Side-by-side comparison of the results for the EMNIST dataset along with the reported accuracy, including works using similar

datasets from NIST Special Database 19.

Technique Letters Digits
Linear classifier [43] 55.78% 84.70%
OPIUM [43] 85.15% 95.90%
SVMs (one against all + sigmoid) [51] - 98.75%
Multi-layer perceptron [53] - 98.39%
Hidden Markov model [56] 90.00% 98.00%
Record-to-record travel [54] 93.78% 96.53%
PSO + fuzzy ARTMAP NN [52] - 96.49%
Multi-layer perceptron [55] 87.79% -
Markov random field CNN [47] 95.44% 99.75%
Parallelized CNN [48] - 99.62%
EDEN [25] - 99.30%
Committee of 7 CNNs [35] 92.42% 99.19%
domain, when directly transferred to the EMNIST domain, 95,5 -
the 20 best topologies, obtained by neuroevolution, are ool &

selected and then transferred into the new domain where
they will follow a standard learning procedure to check
their performance. We have performed this task for both
evolutionary algorithms (GA and GE) and for both the letters
and digit domains. However, in this paper, we will report only
the results obtained by GE, being similar and slightly better
than those using GA, for clarity and efficiency reasons.

After full training of the neuroevolved topologies, a
statistical summary of the accuracies for each architecture
is shown in Table 4 for the Letters dataset and Table 5
for the Digits dataset, showing the mean, median, standard
deviation, and maximum and minimum values. It should be
recalled that the results shown correspond to the accuracies
obtained, over the test set, by the networks transferred from
the MNIST domain to the Letters and Digits domains. We
have reported the performance in terms of accuracy instead
of error for consistency with most works in the state of the
art.

It can be seen that first individuals do not behave
better than the rest, pointing out that these topologies are
not explicitly optimized for the EMNIST dataset. However,
results are very good: both in the Digits and in the Letters
datasets; the maximum accuracies obtained are over 99.7%
and 95%, respectively. If we compare the results obtained
with our evolutionary system (refer to Tables 5 and 4) with
those of the state of the art (shown in Table 3), the enormous
efficacy of the evolved models can be appreciated, even
when the neuroevolution was carried out for a different (yet
similar) domain. In the Letters domain, the accuracy of our
approach (95.19% for Letters and 99.73% for Digits) is only
outperformed by the work by Peng and Yin [47] (95.44% and
99.75%, respectively).

Moreover, the distributions of accuracies for each topol-
ogy after full training with the EMNIST training set are
depicted in Figure 5 for the Letters domain and Figure 6
for the Digits domain. It is interesting to realize that results
are very homogeneous for most individuals, and variance is

Accuracy (%)
R
(93]
: iR
. HAH
3 =HH
CoH
. . HEH
L
il
S
© HIk
L H
3 HIH
. v
Hik
i
] HEH

)
b
o

©

@

5
-
HEH

—{
i

1234567 8 91011121314151617 181920
Individual #

FIGURE 5: Boxplot showing the distribution of accuracies of the best
20 GE individuals after full training in the EMNIST Letters dataset.

very small in all cases. This points out the robustness of the
method: it is easy to obtain competitive models even in one or
few executions of the neuroevolution and full training phases.
The variance is higher in the Letters dataset, since the domain
is more complicated and the number of classes is larger (26
against 10), although the same conclusions apply to a lesser
extent.

It is also worth realizing that performance is consistent
across both datasets. When a topology behaves especially well
in one domain, it has a particular good behavior in the other
as well. For example, in the Letters domain, the three best
models are 4, 6, and 2, and so are in the Digits domain, too.

4.3. Topology Transfer with Committees of Evolved CNNG.
Additionally, we find it interesting to explore how both mech-
anisms introduced in this paper perform when combined, i.e.,
whether committees for the EMNIST database can be built
and obtain successful results given models whose topologies
were designed for the MNIST dataset.

Figure 7 shows the accuracy evolution for the Letters
dataset as new models are included. The best result in
EMNIST Letters is an accuracy of 95.35% (error rate of
4.65%), with 10 CNNs, with an ensemble involving 20 CNNGs.

Complexity

TABLE 4: Summary of accuracies of the best 20 GE individuals after full training in EMNIST Letters.

Mean Std. Dev. Min. Median Max.
1 94.6585 0.074004 94.665 94.51 94.76
2 94.7300 0.070934 94.740 94.61 94.86
3 94.5635 0.084870 94.580 94.41 94.70
4 95.1215 0.049553 95.120 95.02 95.19
5 94.2790 0.064880 94.275 94.16 94.38
6 94.7230 0.068832 94.710 94.63 94.88
7 94.6540 0.053646 94.650 94.53 94.74
8 93.7270 0.094429 93.705 93.60 93.93
9 93.6515 0.070058 93.645 93.50 93.75
10 94.5305 0.139075 94.550 94.18 94.75
1 94.6890 0.045410 94.690 94.61 94.78
12 94.4335 0.071545 94.440 94.28 94.55
13 94.4330 0.075888 94.435 94.28 94.61
14 94.6260 0.132045 94.630 94.24 94.81
15 94.4605 0.062616 94.465 94.35 94.57
16 94.1590 0.093578 94.165 94.00 94.29
17 93.4505 0.156423 93.455 93.14 93.81
18 93.5095 0.149929 93.505 93.25 93.77
19 94.2725 0.074684 94.270 94.13 94.38
20 94.5085 0.070208 94.495 94.41 94.64
TABLE 5: Summary of accuracies of the best 20 GE individuals after full training in EMNIST Digits.
Mean Std. Dev. Min. Median Max.
1 99.6835 0.009881 99.680 99.66 99.70
2 99.6880 0.015079 99.685 99.66 99.72
3 99.6155 0.018489 99.610 99.58 99.65
4 99.7145 0.009987 99.720 99.70 99.73
5 99.5420 0.029487 99.540 99.48 99.60
6 99.6780 0.019628 99.680 99.64 99.72
7 99.6765 0.015652 99.680 99.64 99.70
8 99.5410 0.024900 99.540 99.49 99.59
9 99.4655 0.039533 99.475 99.39 99.52
10 99.6570 0.016575 99.650 99.63 99.69
11 99.6785 0.013485 99.675 99.66 99.72
12 99.6115 0.016944 99.610 99.58 99.64
13 99.6665 0.016944 99.665 99.63 99.70
14 99.6205 0.022589 99.620 99.58 99.66
15 99.6560 0.011425 99.660 99.64 99.68
16 99.6305 0.013945 99.630 99.60 99.65
17 99.3050 0.070599 99.320 99.16 99.39
18 99.5220 0.031722 99.525 99.44 99.59
19 99.6480 0.015079 99.650 99.62 99.68
20 99.6015 0.015313 99.600 99.58 99.63

12

99,8+ + <+ + et ettt
99.7 |- & %
996 Bl = :
99.5(% rrrrrr %%] rrrrrrrrrrrrrrrrrrr B
994l R

99.3[-

Accuracy (%)

99.2 [< e

99.1

1 23 456 7 8 91011121314151617 1819 20
Individual #

FIGURE 6: Boxplot showing the distribution of accuracies of the best
20 GE individuals after full training in the EMNIST Digits dataset.

95.4
95.2
95.0
< 94.8
94.6
94.4
0421 - - -
94.0

y (%)

Accura

1 234567 8 910111213141516171819 20
Ensemble Size

FIGURE 7: Accuracy of CNNs committees with up to 20 models from
GE with EMNIST Letters.

The accuracy looks very steady when more than three CNNs
are involved, yet results improve at the end, attaining better
accuracy with a larger number of models.

The plot referred to the Digits dataset is shown in
Figure 8. It is noticeable that, beyond 8 individuals, the
accuracy stabilizes around 99.75% (error rate of 0.25%). The
best accuracy is 99.7725% (error rate of 0.2275%), with a
committee of six CNNs. The accuracy is very steady as new
models are added to the ensemble, with the worst result
of an ensemble of at least three CNNs obtaining only 0.03
percentage points less than the aforementioned result.

Given these results, we can conclude that once again the
use of committees improves the results over those attained
with single models. In particular, the using of committees in
the Letters dataset increases the accuracy from 95.19% (using
a single model) to 95.35%, reducing the gap with the result
reported by Peng and Yin [47] (95.44%). Regarding the Digits
dataset, the accuracy raises from 99.73% to 99.7725%, a result
that would head the ranking with this dataset.

Regarding the interpretation of the results, Figure 9 shows
the confusion matrix for the EMNIST Letters dataset using
the best ensemble found, which was obtained using the
topologies optimized with GE. It can be seen that accuracy is
almost perfect. The most common mistakes involve mixing
up the letters T and ‘L, the letters ‘G’ and ‘Q} and to a much
lesser extent the letters V" and ‘U’ These seem like accept-
able mistakes given the high similarity of these characters.
Figure 10 shows a random sample of 100 misclassified images

Complexity

in the EMNIST Letters dataset. As we already knew from the
confusion matrix, most misclassified samples are vertical bars
which could be either an L or an T (notice that both are
even more similar when comparing a lowercase " with an
uppercase T). Also, it can be seen how some characters are
hardly recognizable even by a human.

As for the confusion matrix for the Digits dataset using
the best ensemble found, it is depicted in Figure 11. Again,
most values are in the main diagonal, representing an almost
perfect accuracy. Most remarkable mistakes involve misclas-
sifying digits ‘9’ and ‘4, 3} and 5} and 2" and ‘3’ To a lesser
extent, the ensemble also mixes up the digits ‘6’ and ‘0> From a
test set of 40,000 samples, only 97 were incorrectly classified.
In fact, only 91 instances from a total of 40,000 in the test
set have been incorrectly classified, and these can be seen
in Figure 12. Most of these digits are hardly recognizable.
Actually, one instance seems to involve two digits in one
(seventh row, eighth column). Others seem to be incomplete,
and it is hard to tell whether they are a 5" or a 3’ (e.g., first
row, third column). Finally, the confusion between ‘4’s and
‘9’s seems to arise because either a digit ‘4’ is very rounded on
the top or the digit ‘9’ seems to be slightly open, maybe due
to the image being incomplete.

5. Conclusions

Convolutional neural networks are a very effective tool in
numerous complex problems and in particular in classifi-
cation tasks. The only drawback of those systems is the
dependence between network models, understood as the
union of architecture and parameters, and the results they
are able to accomplish. This dependence makes it difficult
and expensive to find the optimal model for each problem.
One way to avoid this difficulty is by the use of evolutionary
systems to automatically find appropriate architectures in
each case, an approach called neuroevolution which has been
used with success since the late 1980s but only in recent years
have been applied to deep learning models.

In this work, we have focused on analyzing the potential
of a neuroevolutionary system regarding two different lines
of study: on one hand to improve the performance of the
generated models, by means of the use of committees, and
on the other hand to validate the robustness of such models
to be transferred to new, similar, domains.

The use of committees exploits the property of evo-
lutionary systems to generate a population of individuals,
instead of working with a single solution. The use of multiple
models allows the outcomes to be modulated, in such a way
that possible errors of individual systems can be corrected,
provided that the models that conform to the ensemble are
different and effective enough, as not to distort the result of
the best model. In this work, this effect is achieved through
the inclusion of niching strategies in the evolutionary system,
as well as the use of a historical set, hall-of-fame, of the best
models.

Experiments have been carried out for different sizes
of ensembles, from 2 up to a maximum of 20, for the
handwritten classification task. Results prove an improve-
ment with respect to the isolated models, in all cases. In

Complexity

99.800
99.775
99.750
99.725
99.700
99.675
99.650

Accuracy (%)

99.625 | - -

13

99.600

1234567 8 91011121314151617181920

Ensemble Size

FIGURE 8: Accuracy of CNNs committees with up to 20 models from GE with EMNIST Digits.

A 01601 22000002203000100010
Bloffo11012000101100100101102
Cloofi21n010000500000210200000
D200 0100000011521001000000
E|105075200100100010100100001
Floooo27i30100000040109000000
G 410111 0020001 118030000000
H|2201000FJ00372122000000201200
J]00201000715015400 110100010000
Jloooz2o0110nufHo200000023010000

§ K|0100100400Fi100000101000201

2 L|0250100318810 .000020000000T10

D M [0o0o00000100107H1000000000°000

© N[2000000600004Fj0o10200113100

=3020170010000001 02000200000

F~ P|0o0o0o310000000000f0010000000
QBoo0o1 13501001001 0F0000100020
R|to0100000100103010F01070151
S|210000200500010000FHJ0o000000
T |1t 0001400000000100107J000T1T171
Ufz20100002030101100010721020
VI|[tooooooo0o1100100016002710101
W (loooo0oo00010100330000001070071
X|ooooo101004011010101000F]90
Y [000100210300000125020350 5040
Z |00 100010100000100000000°00

ABCDEFGHI JKLMNOPQRSTUVWXYZ

Predicted letter

FIGURE 9: Confusion matrix of the best committee found for
EMNIST Letters.

C=FYvep=x—2Q
LI i N S
P~ NS T
ON—-—O0O-N~—-¢&
N Y -
b= 29T
S~SN~NAMT~
SONNLO LY -
~~FJRN~0h =W
—~ DI NT LN D0

<
<
AN
N

o

FIGURe 10: Sample of 100 misclassified images in the EMNIST
Letters test set with the best committee found.

addition, a more detailed analysis shows higher performance
for small ensemble sizes, around seven models, from which
the improvements are less important. The results also show
an insignificant dependency on the size of the ensembles,
from a size of four, which allows us to conclude that it is
not necessary the use of large ensembles, above a critical
minimum size.

0 i 0 0 o0 1 2 0 4 1
1| 0 10 1 0 0 3 1 0
210 1 6 1 1 0 4 3 1
310 o0 2 o 3 0 1 2 0

B

042 0 o0 0 o 2 2 2 9

=

WV

55 o 1 0 7 0 2 0 1 1
63 0 2 0 3 0 0o 1 0
711 2 2 2 0 o [UN
glo o 2 4 1 2 1 o0 2
90 o o o 4 o0 o0 3 1

o 1 2 3 4 5 6 7 8 9
Predicted digit

FiGure 11: Confusion matrix of the best committee found for
EMNIST Digits.

RGNS VIS (LY
=~ LD adDoday
D==mY s, L CH
LY VEAN@ I N o IGEN RN
SOy N
NNV = C0L @
NN AU AP
A NN R S N
DO CVoOLH N o
R ST T ISR I N

FIGURE 12: The 91 misclassified images in the EMNIST Digits test set
with the best committee found.

Regarding topology transfer learning, our hypothesis was
that once suitable topologies were found using neuroevo-
lution, these topologies should behave reasonably well over
a different domain or problem which is similar to the one
used for evolving the population. If the hypothesis is correct,
then a lot of time could be saved, since neuroevolution

14

is an computational expensive process. In our work, the
neuroevolutionary process searched for optimal topologies
for the MNIST database, and then we have transferred those
topologies to EMNIST. EMNIST has been released recently
and provides several databases: we have focused on EMNIST
Digits, which is the same problem as MNIST but with
data obtained from a different source, and EMNIST Letters,
which is a similar yet different problem involving recognition
of handwritten letters. Results have shown that transferred
topologies are able to obtain a very high performance,
attaining an accuracy of 99.73% in EMNIST Digits and
95.19% in EMNIST Letters.

These results show the great robustness of the models
generated by our evolutionary system. Not only they achieve
the best results reported so far in these domains, but also
18 out of the 20 models obtained outperform the best state-
of-the-art results in the Digits domain, and so do the whole
20 in the Letters domain. These results are even more
significant if we take into account that one of the referred
works also uses CNNGs, in an ensemble of 7 models. This
confirms not only the difficulty of finding effective models
by hand, but also that even models learned by our system
in some domains, when applied directly to different, but
similar, domains, obtain better results than those designed by
experts focused on the latter. Of course, this happens without
disregarding that, in the future, new works can unveil models
better adapted to that domains, thus resulting in a better
performance.

Additionally, we have realized that these two improve-
ments are not exclusive, and when combined, the results
can be improved, outperforming single models, reaching
accuracies of 99.7725% for EMNIST Digits and 95.35%
for EMNIST Letters. This translates into an improve-
ment of 0.0425 percentage points for EMNIST Digits
and 0.16 percentage points for EMNIST Letters when
compared to the best accuracy obtained with individual
models.

Based on all the tests and analyses, the proposed
approaches are recommended even if the process is time-
consuming, since it is fully automated and the output can be
used for building committees or to be applied to different, yet
similar problems. Results empirically prove how successful
both approaches are and support some of the benefits of
using neuroevolution for determining the best topologies and
hyperparameters of CNNs.

Data Availability

The databases used in this paper are publicly available
for download and, in particular, can be accessed from
the following website: http://yann.lecun.com/exdb/mnist/,
whereas EMNIST can be downloaded from the following site:
https://www.nist.gov/itl/iad/image-group/emnist-dataset.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Complexity

Acknowledgments

This research is partially supported by the Spanish Ministry
of Education, Culture and Sport under FPU fellowship with
identifier FPU13/03917.

References

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR ’16), pp. 770-
778, Las Vegas, Nev, USA, June 2016.

[2] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional
networks for semantic segmentation,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR
’15), pp. 3431-3440, IEEE, Boston, Mass, USA, June 2015.

[3] A. Baldominos, Y. Saez, and P. Isasi, “Evolutionary convolu-
tional neural networks: an application to handwriting recogni-
tion,” Neurocomputing, vol. 283, pp. 38-52, 2018.

[4] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the
IEEE, vol. 86, no. 11, pp. 2278-2323, 1998.

[5] Y. LeCun and Y. Bengio, “Convolutional networks for images,
speech, and time series,” in The Handbook of Brain Theory and
Neural Network, pp. 255-258, MIT Press, 1998.

[6] J. Bergstra, O. Breuleux, F. Bastien et al., “Theano: a CPU and
GPU math compiler in Python,” in Proceedings of the 9th Python
in Science Conference, 2010.

[7] Y. Jia, E. Shelhamer, J. Donahue et al., “Caffe: convolutional
architecture for fast feature embedding,” in Proceedings of the
ACM Conference on Multimedia (MM ’14), pp. 675-678, ACM,
Orlando, Fla, USA, November 2014.

[8] M. Abadi, P. Barham, J. Chen et al.,, “TensorFlow: a system
for large-scale machine learning,” in Proceedings of the 12th
USENIX Symposium on Operating Systems Design and Imple-
mentation, pp. 265-283, 2016.

Lasagne, “Welcome to lasagne last visited on,” 2017, http:/lasagne
.readthedocs.io.

[10] Keras, “Keras: the python deep learning library;” 2017, https://
keras.io.

[11] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors,” Nature, vol. 323,
no. 6088, pp. 533-536, 1986.

[12] K. O. Stanley, J. Clune, J. Lehman, and R. Miikkulainen,

“Designing neural networks through neuroevolution,” Nature
Machine Intelligence, vol. 1, no. 1, pp. 24-35, 2019.

[13] J.Koutnik, J. Schmidhuber, and E. Gomez, “Evolving deep unsu-
pervised convolutional networks for vision-based reinforce-
ment learning,” in Proceedings of the 2014 Annual Conference
on Genetic and Evolutionary Computation, pp. 541-548, Canada,
July 2014.

[14] P. Verbancsics and J. Harguess, “Image classification using
generative neuroevolution for deep learning,” in Proceedings of
the 2015 IEEE Winter Conference on Applications of Computer
Vision, pp. 488-493, USA, January 2015.

[15] K. O. Stanley, D. B. DAmbrosio, and J. Gauci, “A hypercube-
based encoding for evolving large-scale neural networks,” Arti-
ficial Life, vol. 15, no. 2, pp. 185-212, 2009.

[16] S. R. Young, D. C. Rose, T. P. Karnowski, S. Lim, and R. M.
Patton, “Optimizing deep learning hyper-parameters through

[9

http://yann.lecun.com/exdb/mnist/
https://www.nist.gov/itl/iad/image-group/emnist-dataset
http://lasagne.readthedocs.io
http://lasagne.readthedocs.io
https://keras.io
https://keras.io

Complexity

an evolutionary algorithm,” in Workshop on Machine Learning
in High-Performance Computing Environments, 2015.

[17] S. R. Young, D. C. Rose, T. Johnston et al., “Evolving deep
networks using HPC,” in Proceedings of the Machine Learning
on HPC Environments, pp. 3924-3928, Denver, CO, USA,
November 2017.

[18] I Loshchilovand E. Hutter, “CMA-ES for hyperparameter opti-
mization of deep neural networks,” 2016, https://arxiv.org/abs/
1604.07269.

[19] C. Fernando, D. Banarse, M. Reynolds et al.,, “Convolution
by evolution: differentiable pattern producing networks,” in
Proceedings of the Genetic and Evolutionary Computation Con-
ference, pp. 109-116, ACM, New York, NY, USA, 2016.

[20] L. Xie and A. Yuille, “Genetic CNN,” in Proceedings of the 16th
IEEE International Conference on Computer Vision, (ICCV ’17),
October 2017.

[21] R. Miikkulainen, J. Liang, E. Meyerson et al., “Evolving deep
neural networks,” 2017, https://arxiv.org/abs/1703.00548.

[22] T. Desell, “Large scale evolution of convolutional neural net-
works using volunteer computing,” in Proceedings of the the
Genetic and Evolutionary Computation Conference Companion,
pp. 127-128, Berlin, Germany, July 2017.

[23] E.Real, S. Moore, A. Selle et al., “Large-scale evolution of image
classifiers,” in Proceedings of Machine Learning Research, vol. 70,
pp. 2902-2911, 2017,

[24] Y. Sun, B. Xue, and M. Zhang, “Evolving deep convolutional
neural networks for image classification,” 2017, https://arxiv.org/
abs/1710.10741.

[25] E. Dufourq and B. A. Bassett, “EDEN: evolutionary deep
networks for efficient machine learning,” in Proceedings of the
Pattern Recognition Association of South Africa and Robotics and
Mechatronics (PRASA-RobMech), pp. 110-115, Bloemfontein,
South Africa, November 2017.

[26] M. Suganuma, S. Shirakawa, and T. Nagao, “A genetic pro-
gramming approach to designing convolutional neural network
architectures,” in Proceedings of the Genetic and Evolutionary
Computation Conference, (GECCO ’17), pp. 497-504, Germany,
July 2017.

[27]]. Davison, “DEvol: Automated deep neural network design via
genetic programming,” 2017, https://github.com/joeddav/devol.

[28] E. Bochinski, T. Senst, and T. Sikora, “Hyper-parameter opti-
mization for convolutional neural network committees based
on evolutionary algorithms,” in Proceedings of the 24th IEEE
International Conference on Image Processing, (ICIP ’17), pp.
3924-3928, Beijing, China, September 2017.

[29] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K.
Kavukcuoglu, “Hierarchical representations for efficient archi-
tecture search,” in Proceedings of the 6th International Confer-
ence on Learning Representations, Vancouver, British Columbia,
Canada, 2018.

[30] O. Kramer, “Evolution of convolutional highway networks,”
in Applications of Evolutionary Computation, K. Sim and P.
Kaufmann, Eds., vol. 10784 of Lecture Notes in Computer
Science, pp. 395-404, Springer International Publishing, Cham,
Switzerland, 2018.

[31] J. Prellberg and O. Kramer, “Lamarckian evolution of convolu-
tional neural networks,” 2018, https://arxiv.org/abs/1806.08099.

[32] E Assungdo, N. Lourenco, P. Machado, and B. Ribeiro,
“DENSER: deep evolutionary network structured representa-
tion,” Genetic Programming and Evolvable Machines, 2018.

15

[33] B. Wang, Y. Sun, B. Xue, and M. Zhang, “A hybrid DE approach
to designing CNN for image classification,” in Proceedings of the
31Ist Australasian Joint Conference on Artificial Intelligence, 2018.

[34] Y. Sun, B. Xue, and M. Zhang, “Automatically evolving
cnn architectures based on blocks;” 2018, https://arxiv.org/abs/
1810.11875.

[35] D.C.Ciregan, U. Meier, L. M. Gambardella, and J. Schmidhuber,
“Convolutional neural network committees for handwritten
character classification,” in Proceedings of the 11th International
Conference on Document Analysis and Recognition, pp. 1135-
1139, September 2011.

[36] G. Pons and D. Masip, “Supervised committee of convolutional
neural networks in automated facial expression analysis,” IEEE
Transactions on Aﬁective Computing, vol. 9, no. 3, pp. 343-350,
2018.

[37] C. Schaefer, M. Geiger, T. Kuntzer, and J.-P. Kneib, “Deep
convolutional neural networks as strong gravitational lens
detectors,” Astronomy & Astrophysics , vol. 611, 2018.

[38] Y. Kawana, N. Ukita, J.-B. Huang, and M.-H. Yang, “Ensemble
convolutional neural networks for pose estimation,” Computer
Vision and Image Understanding, vol. 169, pp. 6274, 2018.

[39] A. Kumar, J. Kim, D. Lyndon, M. Fulham, and D. Feng,
“An ensemble of fine-tuned convolutional neural networks for
medical image classification,” IEEE Journal of Biomedical and
Health Informatics, vol. 21, no. 1, pp. 31-40, 2017.

[40] B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing
neural network architectures using reinforcement learning,
in Proceedings of the 5th International Conference on Learning
Representations, 2017.

[41] S.J. Pan and Q. Yang, “A survey on transfer learning,” IEEE
Transactions on Knowledge and Data Engineering, vol. 22, no.
10, pp. 1345-1359, 2010.

[42] J.R. Chang and Y. S. Chen, “Batch-normalized maxout network
in network,” Journal of Machine Learning Research, vol. 48, 2015.

[43] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, “EMNIST:
an extension of MNIST to handwritten letters,” 2017,
https://arxiv.org/abs/1702.05373.

[44] NIST, “NIST Special Database 19, 2017, https://www.nist.gov/
srd/nist-special-database-19.

[45] P. J. Grother and K. K. Hanaoka, “NIST special database
19 handprinted forms and characters database,” Tech. Rep.,
National Institute of Standards and Technology, 2016.

[46] A. van Schaik and J. Tapson, “Online and adaptive pseudoin-

>

verse solutions for ELM weights,” Neurocomputing, vol. 149, pp.
233-238, 2015.

[47] Y. Peng and H. Yin, “Markov random field based convolutional
neuralx networks for image classification,” in IDEAL 2017:
Intelligent Data Engineering and Automated Learning, H. Yin, Y.
Gao, S. Chen et al,, Eds., vol. 10585 of Lecture Notes in Computer
Science, pp. 387-396, Springer, Guilin, China, 2017.

[48] S. Singh, A. Paul, and M. Arun, “Parallelization of digit
recognition system using deep convolutional neural network on
CUDA,” in Proceedings of the Third International Conference on
Sensing, Signal Processing and Security (ICSSS ’17), pp. 379-383,
Chennai, India, May 2017.

[49] E. O. Neftci, C. Augustine, S. Paul, and G. Detorakis, “Event-
driven random back-propagation: enabling neuromorphic deep
learning machines,” Frontiers in Neuroscience, vol. 11, article no
324, 2017.

[50] L.Shu, H.Xu, and B. Liu, “Unseen class discovery in open-world
classification,” 2018, https://arxiv.org/abs/1801.05609.

https://arxiv.org/abs/1604.07269
https://arxiv.org/abs/1604.07269
https://arxiv.org/abs/1703.00548
https://arxiv.org/abs/1710.10741
https://arxiv.org/abs/1710.10741
https://github.com/joeddav/devol
https://arxiv.org/abs/1806.08099
https://arxiv.org/abs/1810.11875
https://arxiv.org/abs/1810.11875
https://arxiv.org/abs/1702.05373
https://www.nist.gov/srd/nist-special-database-19
https://www.nist.gov/srd/nist-special-database-19
https://arxiv.org/abs/1801.05609

16

(51]

[52]

[54]

[55]

[56]

J. Milgram, M. Cheriet, and R. Sabourin, “Estimating accurate
multi-class probabilities with support vector machines,” in
Proceedings of the International Joint Conference on Neural
Networks, (ITCNN °05), pp. 1906-1911, Canada, August 2005.

E. Granger, P. Henniges, R. Sabourin, and L. Oliveira, “Super-
vised learning of fuzzy ARTMAP neural networks through
particle swarm optimisation,” Journal of Pattern Recognition
Research, vol. 2, no. 1, pp. 27-60, 2007.

L. S. Oliveira, R. Sabourin, F. Bortolozzi, and C. Y. Suen,
“Automatic recognition of handwritten numerical strings: a
recognition and verification strategy, IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 24, no. 11, pp.
1438-1454, 2002.

P. V. W. Radtke, R. Sabourin, and T. Wong, “Using the RRT
algorithm to optimize classification systems for handwritten
digits and letters,” in Proceedings of the 23rd Annual ACM
Symposium on Applied Computing, (SAC °08), pp. 1748-1752,
Brazil, March 2008.

A. L. Koerich and P. R. Kalva, “Unconstrained handwrit-
ten character recognition using metaclasses of characters,” in
Proceedings of the IEEE International Conference on Image
Processing, (ICIP ’05), pp. 542-545, Italy, September 2005.

P. R. Cavalin, A. De Souza Britto Jr., F. Bortolozzi, R. Sabourin,
and L. E. S. Oliveira, “An implicit segmentation-based method
for recognition of handwritten strings of characters,” in Proceed-
ings of the 2006 ACM Symposium on Applied Computing, pp.
836-840, France, April 2006.

Complexity

Advances in Advances in . Journal of The Scientific Journal of
Operations Research Decision Sciences Applied Mathematics World Journal Probability and Statistics

|nternational
Journal of
Mathematics and
Mathematical
Sciences

Journal of

Optimization

Hindawi

Submit your manuscripts at
www.hindawi.com

International Journal of
Engineering
Mathematics

International Journal of

Analysis

Journal of : Advances in] Mathematical Problems International Journal of Discrete Dynamics in
Complex Analysis Numerical Analysis in Engineering Differential Equations Nature and Society

International Journa!

of
Stochastic Analysis Mathematics Function Spaces Applied Analysis Mathematical Physics

Journal of Journal of Abstract and ; Advances in

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

