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Abstract—A voice activity detector architecture based on an
analog feature extractor and a mixed signal classification stage
is proposed for ultra-low power activity. The feature extraction
stage is composed of a set of analog band-pass filters and
frame energy estimators. The classification stage has a fully
connected first layer built with ultra-low power consumption
ring oscillators, followed by gated recurrent unit layers. The
ring oscillator based layer consumes nWs according to transient
simulations performed in a low power 65 nm CMOS technology.
Additionally it features the ability to perform the analog-to-
digital conversion required to handle subsequent GRU layers,
as well as the possibility of computing a non-linear function like
sigmoid seizing the intrinsic non-linearity of the ring oscillator.
Training and testing operations are made proving competitive
classification performance between a baseline model and our
proposed architecture. In light of this, proper features for
deployment on power-restricted edge-computing applications are
shown.

Index Terms—Voice activity detection (VAD), analog feature
extraction, recurrent neural network (RNN), gated recurrent unit
(GRU), ring oscillator (RO).

I. INTRODUCTION

The huge development of computing capabilities has en-
abled efficient implementations of artificial intelligence tasks
over portable devices, such as cell-phones or wearables.
However, due to battery life restrictions, limiting the power
consumption is crucial, requiring the design of ultra-low
power architectures, in the range of hundred of nWs [1], [2].
Regarding smart portable applications, speech recognition has
become one of the topics that has received more attention,
highlighting voice activity detectors (VADs). VADs are able
to detect human voice within noisy environments during an
always-on operation. The interest of this task relies on directly
making use of the human voice as a command for other
purposes, such as waking up a device or as the first processing
stage of another more complex task like full-audio conversion
or keyword spotting.

VADs require continuous monitoring of the input audio
stream, typically sensed by a microphone. The conventional
way to proceed is turning the analog input raw data into digital
data, and then performing intensive digital computation (win-
dowing, FFT, filtering and energy estimations), to extract the
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Fig. 1. General scheme of the proposed VAD architecture.

features within different spectral bands and looking for data
patterns compatible with human voice. This approach leads to
accurate classifications but consumes much power [3]. Another
more energy efficient approach consists of taking the intensive
digital computation into the analog domain to make at least
the feature extraction stage by means of analog band-pass
filters and energy estimators [1], [4]. Additionally contextual
information is crucial to improve the performance of VADs
[5]1, [6] where long- and short-term time dependencies between
the input features become a meaningful parameter to achieve
excellent accuracy in the classification [7], [8].

In this light our manuscript goes towards the proposal of
new architectures for ultra-low power and excellent classifica-
tion accuracy VAD tasks by means of combining mixed-signal
circuits and recurrent neural networks. A general scheme of
the proposal is depicted in Figure 1. The raw sound data are
measured from a microphone and connected to the feature
extraction stage. The features are extracted from a set of
analog band-pass filters. The outputs of the filters are sampled,
framed, and the energy for each frame is computed to feed
the classification stage. The classification stage is composed
of a fully-connected first layer built with ring oscillators (ROs)
based multiply-accumulate (MAC) units, leading to ultra-low
power consumption, followed by two digital unidirectional
gated recurrent unit (GRU) layers, a fully connected (FC) layer
and a softmax layer. This manuscript focuses on the design and
validation of the classification stage.

The outline of the manuscript is as follows. Section II



describes in detail the proposed architecture for VAD tasks.
Section III shows the training dataset and the validation results.
Section IV provides some first data regarding the expected
power consumption of the first layer in the neural network.
Finally Section V concludes the manuscript.

ITI. PROPOSAL FOR FEATURE EXTRACTION AND
CLASSIFICATION STAGES IN VAD TASKS

A. Analog based feature extraction stage

A conventional way to extract the audio features in the
analog domain is shown in Figure 2. A set of analog band-
pass filters with different center frequencies is firstly applied
to the raw audio input data, then wave rectifiers are used, and
the energy within a frame can be estimated by integrating the
rectified signal over the frame time step.
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Fig. 2. General scheme of the analog feature extraction stage.

In our work, this kind of analog feature extraction stage is
simulated in MATLAB. The band-pass filter is modeled by
connecting a high-pass filter and a low-pass filter in cascade,
leading to the following band-pass transfer function:

S-WH
2+ (wyg +wp) - s +wy - wr’

H(s) = (1)
where wy and wy, denote the upper and lower cut-off fre-
quency, respectively. Considering that this work is in cooper-
ation with an industrial partner, the details of the filters bands
are not provided.

The outputs of the filters are framed. A frame length of 10
ms is used with a 7-ms frame shift. A frame is viewed as the
basic decision unit [8]. To ease the computation, we use the
short-time magnitude (STM) quantity to estimate the frame-
wise energy. The STM quantity Fj, for a given k-th frame
containing n sampling points x/i/, is calculated by adding up
all the absolute sampling values, as shown in Equation (2).
The STM is not sensitive to large signal levels since it does
not include squaring.
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=1

B. Mixed-signal based classification stage

A VAD task can be treated as a sequence-to-sequence
binary classification task. To consider contextual information
the classification stage is built with a unidirectional recursive
neural network (RNN) implemented with GRU units. The
RNN classifier takes the sequential frame-wise features and
predicts a sequence of outputs that has the same length as the
input sequence.

To benchmark our RO-based RNN classifier, we firstly train
and test a baseline RNN model that consists of 2 GRU layers
composed of 10 hidden units each, and a FC layer with 2

neurons followed by a softmax layer. Secondly we insert an
extra FC layer composed of 8 units before the GRU layers, and
train the neural network keeping the rest of the architecture
the same. This extra layer will become later on the ultra-low
power RO-based layer. Both models are trained and tested in
TensorFlow. The second one is then imported into a Simulink
environment where the simulation of RO-based layers is much
user-friendly (see Figure 3).
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Fig. 3. Design flow of the neural network that includes a RO-based FC layer.

Figure 4 illustrates the block diagram of how the first
FC layer is built with ROs, where the inputs zi,zs, ..., 2,
are the analog features coming from the previous stage. For
each channel, the computed frame feature is sampled at
every T'trqme, and multiplied by the corresponding pre-trained
weight, then the weighted results are summed up over all the
channels and the bias value is added (not shown here) leading
to an analog signal at node A.

The oscillation frequency of a RO can be described as
follows:

f(t) = fo+ Kvco - A(t), 3)

where fy denotes the rest oscillation frequency, Ky ¢o is the
gain, and A(t) is the analog signal at node A. If we look at
the output of the RO in the phase domain, it can be treated as
a phase integrator and Equation (3) can be rewritten as:

B(t) = 277/0 (fo+ Kveco - A(T))dr = 2 fot +

t
27TKVCO/ A(r))dr, 4)
0

where ¢(t) is the instantaneous phase of the RO.

Assuming a square output signal in the RO an edge (either
rising or falling) occurs whenever the phase ¢(t) is a multiple
of m. Asynchronous counters can be connected to the output
signal of the RO to quantify the phase. By connecting a parallel
RO always oscillating at the rest oscillation frequency and
subtracting both outputs the resulting signal at node B is:

t
B(t) = ZTFcho/ A(T)dT, 5
0
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Fig. 4. Block diagram of the units in the first FC layer built with ROs.

which is the same operation performed by a conventional
MAC unit inserted into a FC layer. Notice the advantages of
this approach. On the one hand, the RO-based layer performs
continuously in time with fy and Ky oo parameters that can
be tuned for ultra-low power operation. On the other hand
the RO is making the analog-to-digital conversion itself at the
same time of performing the first stage of the classification,
saving much power and area.

After the RO the remaining operations (sampling, first
difference and gain) are performed in the digital domain. The
gain G is 1/(2KycoTframe) for a counter sensitive to both
edges, and is used to get a final integrated expression whose
gain equals 1 and compatible with the training previously
performed in TensorFlow. Regarding the oscillation parameters
of the RO, the higher Kvco the higher the resolution achieved
in the analog-to-digital conversion, but also the higher the
power consumption. In this manuscript, the rest oscillation
frequency fy is set to 1 MHz, and the oscillator gain to 0.1
MHz/V. Finally the activation function is applied (a sigmoid
function) and the result is fed to the following GRU layers.
Note that the activation function could be integrated into the
RO operation seizing the non-linear voltage/current-frequency
transfer function [9] saving even more power.

III. SIMULATION RESULTS
A. Dataset

The model training and evaluation data are synthesized
based on the clean speech from TIMIT corpus [10] and
the noise from DEMAND database [11]. The TIMIT corpus
consists of speech data from 630 speakers. Each speaker reads
10 sentences. The DEMAND noise database contains multi-
channel recordings of acoustic noise in diverse environments,
including 6 categories with 18 scenarios. Both the clean speech
and noise data are sampled at 16 kHz. The TIMIT corpus has
already been divided into training and test sets. To build the
training data, we randomly select 500 clean utterances from
500 different speakers in the training set, concatenate them,
and add silence segments with random length (maximum 3
seconds) in-between. We also add silence at the beginning of

the concatenated data, for a better balanced speech and non-
speech class. The evaluation data is designed in the same way
with another 50 clean utterances from the test set. The overall
duration of the training utterances is about 38 minutes with the
speech class accounting for 58.8%, and around 4.1 minutes
and 57.6% for the evaluation utterances. Different types of
noise are added to the clean speech at different signal-to-noise
ratio (SNR) levels, ranging from -10 dB to 20 dB with a step
of 5 dB.

Here, 4 types of noise, kitchen, park, office room and
restaurant noises, are individually added to the clean training
utterances at random SNRs. The clean and noisy training
utterances are then concatenated, constructing a total training
data with a length of about 5.7 hours and the percentage of the
speech class stays the same. The clean evaluation utterances
are overlaid with noises at different SNRs as well, including
6 different background noises from a busy cafeteria, a sports
field, a hallway inside an office building, a washing room,
a subway, and a living room with background music. Note
that the evaluation data contains different noise types from
the training data.

In this manuscript, the VAD decision is on a frame-by-frame
basis, a frame is treated as an example for training and testing,
it can only be categorized as speech (denoted by ’I’) or non-
speech (denoted by ’0’). Given a frame containing a number
of samples, if the samples labeled as speech are more than a
half, this frame will be assigned to speech class, otherwise,
it will be labeled as non-speech. We use the word boundary
information in the TIMIT corpus as the ground truth, and build
the training targets in the way described above.

B. Training settings

To train the neural networks, the input features are first
logarithmic scaled and normalized to have zero mean and unity
standard deviation, and then split into a set of sequences with
a time step of 800 with 75% overlap, and the ground-truth
labels are also divided accordingly. The training epoch is set
to 20 to prevent overfitting, and the batch size is 64. In the
GRU cells, we use the sigmoid function to compute the gates,
and the hyperbolic tangent function (tanh) to update the cell



and hidden states. In the FC layer, the sigmoid function is
used. The initial learning rate is 0.001. The data is shuffled
before each training epoch. And the Adam optimizer [12] is
used for updating the weights and biases.

C. Results

Receiver operating characteristic (ROC) curve is commonly
used as a metric of VAD models for its insensitivity to the
skewed class distributions in the classification problems [13],
and the area under an ROC curve (AUC) is a quantitative
measure of the ROC curve. Here we use AUC as the metric
to evaluate our work.

TABLE I
AVG. AUC COMPARISON BETWEEN THE BASELINE MODEL, THE BASELINE
MODEL PLUS A FC LAYER, AND THE LATTER IMPLEMENTED WITH ROS

Baseline | Proposed Proposed
model model model w/. RO
Noise SNR N1 N2 N3
20 dB 99.51% 99.53% 99.41%
cafeteria
15 dB 99.37% 99.47% 99.35%
field
10 dB 98.99% 99.32% 99.19%
hallway
5dB 97.98% 98.94% 98.79%
washing
0 dB 95.76% 97.74% 97.59%
metro
-5 dB 90.77% 94.36% 94.23%
living room
-10 dB 80.25% 88.89% 88.77%
Clean speech 99.63% 99.54% 99.46%

Table I lists the average AUC results per SNRs on test
data with different background noises, for the baseline model
N1, the baseline model N1 plus the additional FC (N2), and
the proposed model with the first FC layer built with ROs
(N3). By inserting an FC layer before the GRU layer, the
proposed model N2 has a boosted performance against the
baseline model N1, showing a significant improvement on
the signals with poor SNRs. When the first FC layer is built
with ROs, quantization noise is introduced into the proposed
model due to the analog-to-digital conversion, and a slight
AUC degradation can be observed. However, the RO based
model N3 still outperforms the baseline model N1. The model
parameter size is increased from 1102 for the baseline model to
1262 for the proposed model with 1 extra FC layer, increased
by 14.5%.

Moreover, our proposed model with ROs based first FC
layer (N3) exhibits an average speech and non-speech hitting
rate of 97.23% and 95.22%, respectively, on the picked 10dB
SNR test data. Compared to the state-of-art silicon measure-
ment results, 90.1% and 94% speech and non-speech hitting
rate on a 20 minutes, 10dB SNR audio test data, as reported
in [14], our model provides an enhanced VAD performance,
especially on the speech hitting rate.

IV. POWER ESTIMATION OF THE RO-BASED FC LAYER

To estimate the power consumption of a RO with the
parameters we defined in the Simulink model, a RO with 3
taps is designed in a low power 65 nm CMOS technology and
simulated. Figure 5 shows the circuit diagram of our 3-tap
RO. All the transistor are set to the minimum size. The supply
voltage is 0.4 V. The input voltage can be used to control the
current flowing into the RO and thus tune the output frequency
by means of transconductors. Several transconductors may be
placed in parallel for different input signals. As a first approach
the RO is designed according to the parameters used in the
Simulink model, getting an average current of 7.5 nA and
leading to a power consumption of only 3 nW per unit in the
layer. In our case with 8 units, this becomes a power of 24
nW excluding the counters.

Considering the rest oscillation frequency f,, the sampling
frequency, and that the counters are triggered by both the rising
and the falling edges, the number of bits required for the
counters is 15 bits. Less bits could be used if some classi-
fication performance degradation is admissible due to higher
quantization noise. The digital counter may be implemented
with binary coding, leading to important area savings and
possible automatic place-and-route digital designs.
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Fig. 5. Designed 3-tap RO for power estimation.

V. CONCLUSION

We propose an ultra-low power architecture for VAD tasks
combining analog and digital circuitry for the feature extrac-
tion and classification stages. In this manuscript we focus
on the proposal of the classification stage, composed of
a RO-based FC layer and digital GRU layers. The power
consumption of the RO-based layer is in the nWs range and
performs the analog-to-digital conversion, always required for
digital GRU-based layers. The neural network also includes
the smart processing of the RO-based layer, showing rele-
vant accuracy performance in comparison to simple neural
networks not including the RO-based FC layer. The excellent
power performance of the RO-based layer and the competitive
classification performance result in a promising architecture to
be used on battery-powered edge devices.
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