
Towards Improved Homomorphic
Encryption for Privacy-Preserving Deep

Learning

by

José Cabrero-Holgueras

A dissertation submitted by in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in

Computer Science and Technology

Universidad Carlos III de Madrid

Advisor:

Prof. Dr. Sergio Pastrana

March 2023

This thesis is distributed under license “Creative Commons Atributtion - Non
Commercial - Non Derivatives”.

This PhD dissertation has been mostly developed at
CERN, supported by the CERN Doctoral Student
Programme (from November 1st, 2019 to October
31st, 2022).

A mis padres, quienes han sido los pilares de mi vida, siempre han creído en mí y me han
apoyado en todas las decisiones que he tomado. Gracias por hacerme ser quien soy.

Acknowledgements

There are a lot of things that made this thesis a not-so-professionally-rewarding time. If
there is a reason for this thesis to be written today, it is because of the people that were a
part of this journey.

First, I would like to express my sincere gratitude to Sergio Pastrana, my director,
and supervisor in this thesis. Despite being a remote Ph.D. and the fact that this topic was
outside his area of expertise, he accepted the challenge and invested considerable time and
effort in keeping up to date with my work and maximizing its success. Sergio honesty,
integrity, and dedication are exceptional values that are rare to find in the academic world.
I am deeply grateful for the support and encouragement that Sergio gave me, as it was
fundamental for the success of this thesis and my development as a researcher.

I would also like to express my most profound appreciation to Marco Manca for his
mentoring throughout the thesis. Our conversations were instrumental in gaining a deeper
understanding of research, the value of my work, and how to properly motivate it.

I am deeply indebted to Alberto Di Meglio, my CERN supervisor, for giving me the
opportunity to participate in such a unique and enriching experience.

I feel immensely grateful to have had the opportunity to work with such an extraor-
dinary group of people at CERN. Every single one of my colleagues has left a lasting
impression on me, creating unforgettable memories that I will treasure forever. I espe-
cially want to express my gratitude to Alexia Yiannouli, Anna Manou, Gabriele Morello,
Ignacio Peluaga, Lars Soerlie, and Renato Cardoso, as they were the most fantastic group
of friends, who I shared with unforgettable memories.

I cannot forget Team Kernel, a group of friends that, throughout these years, became
my family in France. I refer to Guillermo Izquierdo, Irene García, Javier López and Saúl
Alonso. They are a fantastic group of brilliant, humble, and generous people. I cannot
stress enough the comfort and joy our gatherings brought me (especially during pandemic
times). When we started working together back in 2018, I never imagined life would have
these adventures to come. I must specially thank Javier López for his support, helpful
suggestions, and the countless long dinners we enjoyed at his place. He has been an
outstanding friend in every way, often putting others before himself, and I am forever
grateful for his kindness.

I am incredibly thankful to my friends in Madrid, who were always keen to meet me

when I was around, and some of them I have known for more than 20 years. I refer to
Santiago Díaz, Lorena Lopesino, Iker Higuera, and Luís Martínez, who always organized
amazing plans for me when I arrived.

I also extend my gratitude to my university colleagues, Laura Martín and Alejandro
Rey, for our engaging meetings during my visits to Spain.

I would like to take a moment to acknowledge my online friends and videogame part-
ners, whose presence and constant companionship have added immeasurable joy and pos-
itivity to my life. I extend my profound gratitude to Nacho Martínez, Rodrigo Salgado,
and Sergio López. Without their presence, my life would not have been as enjoyable, and
I am forever grateful for their friendship.

I extend my thanks to the COSEC research group, particularly to Eduardo Blazquez
and Antonio Nappa, for their exceptional assistance and warm hospitality.

I am incredibly grateful to my parents, Carmen, Jose, and sister, Elena. They truly
know what this journey has meant for me and all the struggles I have been through. I
know, in their way, they have also struggled for me and looked to help me in every possible
way. They are the people I need the most and a fundamental part of my life. They have
given me everything and raised me to be the person I am today. I am immensely indebted
to them and will always treasure their support, which has been invaluable.

Above all, I want to thank Nerea Luna Picón, my lifetime partner. She is the best
person I know; she is loyal, supportive, and kind. From the moment we met, Nerea
has been a pillar of my life, helping me through decisions, even those that were tough
for both of us. Throughout this journey, Nerea was a constant source of positivity and
encouragement, especially during those lowest moments when quitting the Ph.D. seemed
more than a feasible option. She has always been there to lend a helping hand or simply
sit by my side and help me push through. I am confident that without her unwavering
support, I would not be writing these words today. I am forever grateful to you, Nerea.
This thesis is as much yours as it is mine.

vi

Published and submitted content

The following publications from the author have been included in this thesis:

• José Cabrero-Holgueras and Sergio Pastrana. “SoK: Privacy-Preserving Computa-
tion Techniques for Deep Learning”. In: Proceedings on Privacy Enhancing Tech-
nologies 2021.4 (2021), pp. 139–162

– The contents are included in Chapters 2 and 3.

• José Cabrero-Holgueras and Sergio Pastrana. “Towards Realistic Privacy-Preserving
Deep Learning over Encrypted Medical Data”. In: Frontiers in Cardiovascular
Medicine 10 (), p. 641

– Preprint version available: José Cabrero-Holgueras and Sergio Pastrana. To-
wards Realistic Privacy-Preserving Deep Learning Inference Over Encrypted
Data. http://dx.doi.org/10.2139/ssrn.4140183. 2022.

– The contents are included in Chapter 4.

• José Cabrero-Holgueras and Sergio Pastrana. “Towards Automated Homomorphic
Encryption Parameter Selection with Fuzzy Logic and Linear Programming”. In:
Expert Systems with Applications (2023)

– Preprint version available: José Cabrero-Holgueras and Sergio Pastrana. “To-
wards Automated Homomorphic Encryption Parameter Selection with Fuzzy
Logic and Linear Programming”. In: arXiv preprint arXiv:2302.08930 (2023).

– The contents are included in Chapter 5.

• José Cabrero-Holgueras and Sergio Pastrana. “HEFactory: A Symbolic Execution
Compiler for Privacy-Preserving Deep Learning with Homomorphic Encryption”.
In: Software X (2023)

– The contents are included in Chapter 6.

The material of the sources above are included in this thesis and are not singled out with
typographic means and references.

viii

Other research merits

The following articles and contributions are other research merits of this thesis:

• José Cabrero-Holgueras and Sergio Pastrana. “A methodology for large-scale iden-
tification of related accounts in underground forums”. In: Computers & Security
111 (2021), p. 102489

• José Cabrero-Holgueras. “Usable Homomorphic Encryption for Private Telemedicine
on the Cloud”. In: Italian Telemedicine Society Conference (SIT) (2021)

– This extended abstract was awarded the best abstract price at the Italian Telemedicine
Society Conference 2021.

x

Abstract

Deep Learning (DL) has supposed a remarkable transformation for many fields, heralded
by some as a new technological revolution. The advent of large scale models has increased
the demands for data and computing platforms, for which cloud computing has become
the go-to solution. However, the permeability of DL and cloud computing are reduced
in privacy-enforcing areas that deal with sensitive data. These areas imperatively call for
privacy-enhancing technologies that enable responsible, ethical, and privacy-compliant
use of data in potentially hostile environments.

To this end, the cryptography community has addressed these concerns with what
is known as Privacy-Preserving Computation Techniques (PPCTs), a set of tools that
enable privacy-enhancing protocols where cleartext access to information is no longer
tenable. Of these techniques, Homomorphic Encryption (HE) stands out for its ability
to perform operations over encrypted data without compromising data confidentiality or
privacy. However, despite its promise, HE is still a relatively nascent solution with effi-
ciency and usability limitations. Improving the efficiency of HE has been a longstanding
challenge in the field of cryptography, and with improvements, the complexity of the
techniques has increased, especially for non-experts.

In this thesis, we address the problem of the complexity of HE when applied to DL.
We begin by systematizing existing knowledge in the field through an in-depth analysis
of state-of-the-art for privacy-preserving deep learning, identifying key trends, research
gaps, and issues associated with current approaches. One such identified gap lies in the
necessity for using vectorized algorithms with Packed Homomorphic Encryption (PaHE),
a state-of-the-art technique to reduce the overhead of HE in complex areas. This thesis
comprehensively analyzes existing algorithms and proposes new ones for using DL with
PaHE, presenting a formal analysis and usage guidelines for their implementation.

Parameter selection of HE schemes is another recurring challenge in the literature,
given that it plays a critical role in determining not only the security of the instantiation
but also the precision, performance, and degree of security of the scheme. To address
this challenge, this thesis proposes a novel system combining fuzzy logic with linear
programming tasks to produce secure parametrizations based on high-level user input
arguments without requiring low-level knowledge of the underlying primitives.

Finally, this thesis describes HEFactory, a symbolic execution compiler designed to

streamline the process of producing HE code and integrating it with Python. HEFactory
implements the previous proposals presented in this thesis in an easy-to-use tool. It pro-
vides a unique architecture that layers the challenges associated with HE and produces
simplified operations interpretable by low-level HE libraries. HEFactory significantly re-
duces the overall complexity to code DL applications using HE, resulting in an 80% length
reduction from expert-written code while maintaining equivalent accuracy and efficiency.

xii

Resumen

El aprendizaje profundo ha supuesto una notable transformación para muchos campos
que algunos han calificado como una nueva revolución tecnológica. La aparición de mod-
elos masivos ha aumentado la demanda de datos y plataformas informáticas, para lo cual,
la computación en la nube se ha convertido en la solución a la que recurrir. Sin embargo,
la permeabilidad del aprendizaje profundo y la computación en la nube se reduce en los
ámbitos de la privacidad que manejan con datos sensibles. Estas áreas exigen imperativa-
mente el uso de tecnologías de mejora de la privacidad que permitan un uso responsable,
ético y respetuoso con la privacidad de los datos en entornos potencialmente hostiles.

Con este fin, la comunidad criptográfica ha abordado estas preocupaciones con las
denominadas técnicas de la preservación de la privacidad en el cómputo, un conjunto de
herramientas que permiten protocolos de mejora de la privacidad donde el acceso a la in-
formación en texto claro ya no es sostenible. Entre estas técnicas, el cifrado homomórfico
destaca por su capacidad para realizar operaciones sobre datos cifrados sin comprometer
la confidencialidad o privacidad de la información. Sin embargo, a pesar de lo promete-
dor de esta técnica, sigue siendo una solución relativamente incipiente con limitaciones
de eficiencia y usabilidad. La mejora de la eficiencia del cifrado homomórfico en la
criptografía ha sido todo un reto, y, con las mejoras, la complejidad de las técnicas ha
aumentado, especialmente para los usuarios no expertos.

En esta tesis, abordamos el problema de la complejidad del cifrado homomórfico
cuando se aplica al aprendizaje profundo. Comenzamos sistematizando el conocimiento
existente en el campo a través de un análisis exhaustivo del estado del arte para el apren-
dizaje profundo que preserva la privacidad, identificando las tendencias clave, las lagu-
nas de investigación y los problemas asociados con los enfoques actuales. Una de las
lagunas identificadas radica en el uso de algoritmos vectorizados con cifrado homomór-
fico empaquetado, que es una técnica del estado del arte que reduce el coste del cifrado
homomórfico en áreas complejas. Esta tesis analiza exhaustivamente los algoritmos exis-
tentes y propone nuevos algoritmos para el uso de aprendizaje profundo utilizando cifrado
homomórfico empaquetado, presentando un análisis formal y unas pautas de uso para su
implementación.

La selección de parámetros de los esquemas del cifrado homomórfico es otro reto re-
currente en la literatura, dado que juega un papel crítico a la hora de determinar no sólo la
seguridad de la instanciación, sino también la precisión, el rendimiento y el grado de se-

guridad del esquema. Para abordar este reto, esta tesis propone un sistema innovador que
combina la lógica difusa con tareas de programación lineal para producir parametriza-
ciones seguras basadas en argumentos de entrada de alto nivel sin requerir conocimientos
de bajo nivel de las primitivas subyacentes.

Por último, esta tesis propone HEFactory, un compilador de ejecución simbólica dis-
eñado para agilizar el proceso de producción de código de cifrado homomórfico e inte-
grarlo con Python. HEFactory es la culminación de las propuestas presentadas en esta
tesis, proporcionando una arquitectura única que estratifica los retos asociados con el
cifrado homomórfico, produciendo operaciones simplificadas que pueden ser interpre-
tadas por bibliotecas de bajo nivel. Este enfoque permite a HEFactory reducir signi-
ficativamente la longitud total del código, lo que supone una reducción del 80% en la
complejidad de programación de aplicaciones de aprendizaje profundo que usan cifrado
homomórfico en comparación con el código escrito por expertos, manteniendo una pre-
cisión equivalente.

xiv

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 4

1.3 Structure of the Document . 5

2 Background 7

2.1 Deep Learning for Homomorphic Encryption 7

2.1.1 Deep Learning and Neural Networks 8

2.1.2 Neural Network Layers . 8

2.1.3 Activation Functions . 10

2.2 Privacy Settings and Requirements in Deep Learning 11

2.2.1 Privacy Goals . 12

2.2.2 Adversarial Model . 12

2.2.3 Architectures and Processing Steps 13

2.2.4 Privacy Techniques . 14

2.3 Homomorphic Encryption . 16

2.3.1 Historical Background . 16

2.3.2 Learning with Errors and Ring Learning with Errors 17

2.3.3 Public Key Encryption from LWE 18

2.3.4 CKKS Encoding . 19

2.3.5 Homomorphic Operations on LWE 21

2.4 Secure Multiparty Computation Techniques 25

2.4.1 Oblivious Transfer . 25

2.4.2 Yao’s Garbled Circuits . 27

xv

2.4.3 Secret Sharing . 27

2.4.4 Zero-Knowledge Proofs . 29

2.4.5 Verifiable Secret Sharing . 29

3 State of the Art 31

3.1 Scope and Methodology . 32

3.2 Advanced Privacy-Preserving Computation Techniques 33

3.2.1 Advanced HE Constructions . 34

3.2.2 Advanced SMPC Constructions 34

3.2.3 Hybrid Techniques . 35

3.3 Machine Learning Approaches . 36

3.4 Privacy Preserving Deep Learning Inference 37

3.4.1 PPDL Inference in Centralized Architectures with Homomorphic
Encryption . 37

3.4.2 PPDL Inference in Distributed Architectures with Secure Multi-
party Computation . 39

3.4.3 PPDL Inference in Hybrid Architectures 40

3.5 Privacy Preserving Deep Learning Training 41

3.5.1 HE for PPDL Training . 41

3.5.2 SMPC for PPDL Training . 41

3.5.3 Hybrid Techniques for PPDL Training 42

3.6 Programming Interfaces for PPDL . 43

3.7 Current Challenges and Research Directions 46

3.7.1 Analysis . 46

3.7.2 Takeaways . 51

4 Optimization of Deep Learning Linear Algebra Algorithms for Packed Ho-
momorphic Encryption 55

4.1 Introduction . 55

4.1.1 Precedents . 56

4.1.2 Motivation . 57

4.1.3 Contribution . 57

4.2 Background . 58

xvi

4.2.1 Adversarial Model . 58

4.2.2 Packed Homomorphic Encryption 58

4.3 SIMD Algorithms for Deep Learning . 59

4.3.1 Notation . 61

4.3.2 SIMD Convolutional Layer . 61

4.3.3 SIMD Dense Layer . 65

4.3.4 Activation Functions . 69

4.4 Efficiency Analysis of Algorithms . 69

4.4.1 Efficiency Metrics . 70

4.4.2 Rotations on Large Ciphertexts 71

4.4.3 Analysis and Takeaways for Application to Deep Learning 71

4.5 Performance Evaluation of Guidelines 75

4.6 Summary . 79

5 Automating Homomorphic Encryption Parameter Selection with Fuzzy Logic
and Linear Programming 81

5.1 Introduction . 81

5.1.1 Motivation . 82

5.1.2 Precedents . 82

5.1.3 Contribution . 83

5.2 Background . 83

5.2.1 Linear Programming . 83

5.2.2 Fuzzy Logic . 84

5.2.3 Leveled Homomorphic Encryption Parametrization 84

5.3 System Model . 87

5.3.1 Fuzzy Logic Initialization . 88

5.3.2 Linear Programming Tasks . 93

5.4 Evaluation . 98

5.4.1 Experimental design . 98

5.4.2 Results . 100

5.4.3 Discussion . 103

5.5 Summary . 103

xvii

6 HEFactory: A Symbolic Execution Compiler for Privacy-Preserving Deep
Learning with Homomorphic Encryption 105

6.1 Introduction . 106

6.1.1 Precedents . 106

6.1.2 Motivation . 106

6.1.3 Contribution . 107

6.2 System Model . 108

6.3 HEFactory Architecture . 110

6.3.1 Dahut: A Python API for Homomorphic Encryption 112

6.3.2 Tapir: A Symbolic-Execution compiler 113

6.3.3 Boar VM: A bridge to HE frameworks 120

6.4 Framework Evaluation . 121

6.4.1 Experimental Design . 121

6.4.2 Results . 122

6.4.3 Deep Learning Evaluation . 124

6.5 Summary . 126

7 Conclusions and Future Work 127

7.1 Contributions . 128

7.2 Dissemination . 129

7.2.1 Publications . 129

7.2.2 Presentations . 129

7.3 Future Work . 130

A Baseline Convolution Algorithms 131

A.1 Convolution . 131

A.2 Result Transformation for CRF Format 132

A.3 Stride . 132

A.4 SIMD Padding . 133

B Simplified Leveled Homomorphic Encryption Parametrization in Practice 135

B.1 Practical Leveled Homomorphic Encryption Parametrization 135

B.2 Parametrizing Static Circuits . 136

xviii

B.3 Iterative Parameter Selection . 137

C HEFactory Internals 141

C.1 Symbolic Execution . 141

C.2 Delayed Execution . 142

C.3 Deep Learning Adaptation . 142

Bibliography 144

xix

xx

List of Figures

1.1 Thesis objectives . 5

2.1 Generic Architecture for Privacy-Preserving Data Processing. 14

2.2 Simplification of the Learning with Errors problem. 18

2.3 Encoding and Decoding Routines of CKKS 22

4.1 HE encryption-decryption layout mapping 56

4.2 SIMD Operations in Packed HE . 59

4.3 Packed HE algorithms for CNN evaluation 62

4.4 Extended rotation exemplified . 72

4.5 Convolution algorithm evaluation . 76

4.6 Matrix-matrix multiplication algorithm evaluation 78

4.7 Diagonal matrix multiplication evaluation 78

4.8 Matrix multiplication comparison . 79

4.9 Vectorized Cryptonets evaluation . 80

5.1 Circular dependencies in HE parametrization 87

5.2 Expert system general architecture . 87

5.3 Scale and looseness fuzzy inference modules 89

5.4 Initial scale fuzzy inference processes 90

5.5 Final scale fuzzy inference processes . 91

5.6 Fuzzy logic module for looseness fuzzy logic 93

5.7 Expert system benchmark results . 100

6.1 HEFactory workflow in MLaaS scenario 109

6.2 Multi-layered architecture of HEFactory 110

xxi

6.3 Performance comparison of HEFactory with code written in Lattigo. . . . 123

6.4 Comparison of HEFactory with base code written in Lattigo in terms of
lines of code (left) and characters per line of code (right). 123

7.1 Overview of the thesis objectives with the main keywords and techniques
used to achieve each objective. 128

xxii

List of Tables

3.1 Summary of the Proposals State of the Art for Privacy-Preserving Deep
Learning. 47

3.2 Summary of the API and Compiler Proposals of State of the Art. 48

3.3 URLs for the open-source repositories of the different contributions ana-
lyzed. 49

4.1 Extended rotation efficiency analysis . 71

4.2 Formal analysis based on the proposed metrics 73

4.3 Detailed comparison of matrix multiplication algorithms 74

4.4 Parametrization of Vectorization Tests 77

5.1 Membership intervals for fuzzy logic . 92

5.2 Linear programming metrics for the objective function 96

5.3 System benchmark tests . 99

5.4 Expert system numeric benchmark results 101

6.1 Framework Comparison table between HEFactory and other similar frame-
works for Homomorphic Encryption. 107

6.2 Intermediate representation description 121

6.3 HEFactory benchmark tests . 122

6.4 Parameters used for the benchmark test for each framework. 124

6.5 CNN architecture used in DL inference with Homomorphic Encryption. . 125

6.6 Evaluation results for Deep Learning inference with Homomorphic En-
cryption. 126

xxiii

xxiv

Acronyms

API Application Programming Interfaces. 32, 39, 46, 52, 53, 82, 107, 108, 110, 111,
125, 126

AST Abstract Syntax Tree. 113–117, 119

BNN Binary Neural Network. 38, 39

CNN Convolutional Neural Network. xxiii, 4, 7, 8, 10, 38, 39, 44, 45, 57, 60, 61, 63, 69,
79, 80, 112, 125, 133

CPU Central Processing Unit. 15

CRF Convolution Resulting Format. 131–133

DL Deep Learning. xi, xii, xxiii, 1–8, 10, 11, 13, 15–17, 25, 31–33, 35–44, 46, 48, 50–
53, 55–57, 59–61, 64, 65, 67, 69, 72, 74, 80, 105–108, 111–113, 115, 124–128,
130, 141, 142

DNN Deep Neural Network. 38–40, 43

DO Data Owner. 108, 109, 111, 120, 121, 125

DP Data Processor. 108, 109, 111, 120

DP Differential Privacy. 14–16, 32, 42, 58

FHE Fully Homomorphic Encryption. 3, 17, 37, 38, 43, 69, 83

FIP Fuzzy Inference Process. 88–93

FL Federated Learning. 15, 16, 32

FL Fuzzy Logic. 81, 83, 84, 87–90, 92–94, 97, 102, 103

GC Garbled Circuits. 35, 40, 42, 44

GPU Graphics Processing Unit. 15

xxv

HBC Honest-but-Curious. 13, 27, 40, 42, 51, 58

HE Homomorphic Encryption. xi, xii, 2–8, 10, 11, 14–17, 19, 21, 25, 31, 33–35, 37,
38, 40, 41, 43–53, 55–61, 64, 66, 69–71, 79, 81–88, 90, 95, 97–103, 105–115,
117–122, 124, 126–128, 130, 136–142

IR Intermediate Representation Code. 108, 111

IR Initial Representation. 60, 61, 66, 67, 74, 76, 78, 108, 109, 111, 113, 114, 119, 121,
123

LHE Leveled Homomorphic Encryption. 3, 17, 24, 34, 36, 37, 41, 42, 70, 79, 85, 135

LP Linear Programming. 81, 83, 84, 87, 88, 91–98, 102, 103

LWE Learning with Errors. xxi, 3, 17–20, 56, 58, 87, 105, 136

ML Machine Learning. 11, 36

MLaaS Machine Learning as a Service. 32, 37, 47, 48, 108, 109

NN Neural Network. 7–11, 36, 38, 42, 74, 143

OT Oblivious Transfer. 25–27, 34, 36, 39, 42

PaHE Packed Homomorphic Encryption. xi, 4, 55, 56, 58, 60, 61, 79–81, 105, 113, 127

PHE Partially Homomorphic Encryption. 16, 36

PPCTs Privacy-Preserving Computation Techniques. xi, 2, 4, 5, 15, 31–33, 35, 36, 41,
43, 46, 50–53, 55, 127, 128

PPDL Privacy-Preserving Deep Learning. 7, 11–13, 15, 16, 32, 34–37, 41–43, 46, 47,
49–53, 106, 127, 128, 142

RC Row-Column. 56, 60, 64, 67, 74, 131–134

RLWE Ring Learning with Errors. 17–19, 58, 84

RT Result Transformation. 60, 61, 66, 67, 73, 76, 78, 79, 131–133

SCBF Streamlined Backward Convolution Format. 62–64

SCRF Stridden Convolution Resulting Format. 131–133

SHE Somewhat Homomorphic Encryption. 17, 34, 38

SIMD Single Instruction Multiple Data. 25, 34, 38, 39, 45, 46, 56, 57, 59, 60, 64, 65,
69, 71, 80, 99, 113, 131, 142

xxvi

SISD Single Instruction Single Data. 34

SMPC Secure Multiparty Computation. 2, 7, 14–16, 25–27, 29, 31, 33–37, 39–44, 46–
49

SS Secret Sharing. 27, 34

TEE Trusted Execution Environment. 15, 36, 44, 51

WAN Wide Area Networks. 49

Yao’s GC Yao’s Garbled Circuits. 39, 40

ZKP Zero Knowledge Proof. 15, 29, 34, 51

xxvii

Chapter 1

Introduction

Computation and communications have undergone a remarkable transformation.
Where once the Internet was the domain for a few researchers, the advent of modern tech-
nology has brought complex cloud solutions to the fingertips of everyday people. The
structured classical algorithms have evolved into complex large scale models [Sha+17]
that provide instant answers to a wide range of questions and achieve proficiency in dif-
ferent domains. However, with these new technologies, new risks arise. Deep Learning
(DL) models are massive statistical models that indiscriminately consume vast amounts
of information, which is later probabilistically sent back to third parties [Sho+17]. More-
over, cloud computing involves using third-party servers where data and computation
remain under limited control [Sen15].

Also, despite the impressive improvement of DL in areas such as natural language pro-
cessing or computer vision, their applications to sensitive environments have remained
limited [RRK19]. A clear example is medical research. Several promising testbeds
demonstrate the potential of DL in healthcare applications, including improved remote
diagnosis, enhanced medical imaging, and health monitoring outside hospitals. Neverthe-
less, large-scale model training requires substantial infrastructure and datasets [Jul+17;
SS19; Tan+20; Top19]. Healthcare data is predominantly sensitive, and accessing large-
scale datasets required for DL models is often challenging due to privacy and legal restric-
tions. Furthermore, cloud providers offer the infrastructure needed for large-scale model
training, but this approach raises ethical and legal concerns regarding data privacy and
security. Given the ethical and legal restrictions imposed on data exchanges and working
on third-party infrastructure, privacy-sensitive environments have suffered reduced per-
meability of the latest technological advances. Privacy-sensitive applications [Ber+19;
HPW17] imperatively ask for the use of these technologies under responsible, ethical,
and privacy-compliant environments where the privacy and security of individuals must
be granted.

Cryptographers have addressed these concerns with significant progress in the realm

1

of secure data exchanges and private computation through Privacy-Preserving Compu-
tation Techniques (PPCTs). The traditional trust model, where two trusted parties (i.e.,
Alice and Bob) sought to establish a secure communication channel, has undergone a
significant change. In this new context, Alice seeks a service from Bob, yet Bob is not
a trusted party, and Alice might be reluctant to transmit information to him, e.g., due to
potential legal violations. This scenario is particularly relevant in sensitive domains, such
as healthcare, where Alice and Bob may wish to exchange information but clear access to
data is no longer tenable.

PPCTs provide reliable solutions that enable privacy-preserving computation, with
Homomorphic Encryption (HE) and Secure Multiparty Computation (SMPC) being the
approaches with the most potential. They provide reliable solutions for safeguarding data
privacy while processing information. However, PPCTs incur a high computational and
communication overhead to the already-demanding DL operations. Due to the impact
of DL, PPCTs have attracted the attention of researchers with an increasing number of
proposals published at a fast rate. Despite the high volume of research on this topic, the
technology remains immature, and few actual deployments are being used in privacy-
preserving scenarios. The limited adoption of PPCTs can be attributed mainly to issues
related to efficiency and usability [Che+20; Kum+20b].

HE is particularly noteworthy due to its unique property of enabling operations over
encrypted data while maintaining the confidentiality of the data. Consequently, HE has
gained recognition for its ability to facilitate privacy-preserving deep learning inference,
enabling private services to be hosted in the cloud. Nevertheless, it still introduces various
challenges due to the complexity of operations, efficiency, and usability issues in their
application to complex computations. In this thesis, we focus on lowering the entry barrier
for inexperienced users to Homomorphic Encryption in its application to DL inference.

The remainder of this Chapter is structured as follows: Section 1.1 outlines the main
motivations behind this thesis, and Section 1.2 introduces its goals. Finally, the structure
of the remaining chapters of this manuscript is defined in Section 1.3.

1.1 Motivation

As detailed previously, introducing sensitive data in a combination of DL and cloud
computing introduces previously unforeseen risks to computation and privacy concerns
with regulatory implications. The application of DL in sensitive environments, such as
medical research, has remained limited due to privacy and legal restrictions [Sin+22;
VB17].

In 1978, with the birth of the RSA [RSA78], the authors pointed out a curious property
of the cryptosystem. RSA allowed for modifications of the encrypted information without

2

the need to decrypt, which they called Homomorphic Encryption (HE). Ever since then,
the field of cryptography has evolved to elaborate more complex and compelling construc-
tions, which were able to emulate arbitrary computation through sums and multiplications
accurately, but ever so slightly missed by only providing a limited amount of consecutive
operations. Their limitations came from using the Learning with Errors (LWE) problem,
whose strength comes from introducing noise to a system of linear equations. The noise in
the cryptosystems grew with operations, and after a certain amount, it yielded undecrypt-
able results. More than 30 years after the RSA proposal, in 2009, Craig Gentry [Gen09]
proved the first construction where unlimited and arbitrary computation was possible, re-
ferred to as Fully Homomorphic Encryption (FHE). Gentry’s construction profited from
a clever mechanism called bootstrapping that homomorphically evaluated the decryption
circuit, reducing the noise and allowing for theoretically unlimited computation.

From then on, FHE has become a holy grail of cryptography, with numerous re-
searchers seeking to make it equivalent to classical computation efficiency-wise. The po-
tential implications and the existing Homomorphic Encryption (HE) applications impact
numerous areas such as aerospace, blockchain, and, more importantly for our study, Deep
Learning (DL). Not only this technology improves security, but it also defines legally
compliant mechanisms that qualify for performing data analytics and DL on sensitive
data, even on potentially hostile third-party infrastructure.

Therefore, on the one hand, privacy-sensitive applications require the use of DL un-
der responsible, ethical, and privacy-compliant environments. On the other hand, FHE
addresses legal concerns and allows privacy-preserving sensitive data processing.

Unfortunately, HE is still a relatively immature solution that presents efficiency and
usability flaws. Improving the efficiency of HE has been a longstanding challenge in the
field of cryptography. One improvement to this challenge is ciphertext packing [BGH13]
which allows for the encryption of a whole plaintext vector within a ciphertext. Together
with rotations, which enable cyclic shifting of the position of entries in the ciphertext,
ciphertext packing allows for the vectorization of algorithms, permitting the processing
of spatially related information and operations such as matrix multiplication [DMY16] in
reduced time. Although ciphertext packing and vectorization of algorithms significantly
reduce the number of operations on ciphertexts, designing algorithms for vectorized exe-
cution is far from straightforward, especially for untrained users. While some algorithms
for vectorized DL have been briefly described in the literature, their implications and
usability with DL have not been thoroughly discussed.

Gentry initially proposed bootstrapping to enable FHE, but it was computationally
inefficient. To address this limitation, Brakerski et al. [BGV14] coined the concept of
Leveled Homomorphic Encryption (LHE), where a ciphertext is encrypted with certain
levels, and by reducing the levels, the noise is also reduced. While LHE is more effi-
cient than bootstrapping, it still requires careful parameter selection. Selecting the correct
parameters for HE is challenging, as it is an NP-Complete problem with complex inter-

3

relations between the computation and the parameters. Additionally, ciphertext packing
introduces complexity to parameter selection, as the size of the polynomial ring con-
strains the maximum number of entries of the polynomial. The usability of HE poses a
steep learning curve for non-expert users, who need to gain experience before using these
techniques optimally. As a result, there is a need for efficient and user-friendly tools that
can assist with parameter selection and facilitate the adoption of homomorphic encryption
in practical applications.

Due to the considerable domain expertise and knowledge required to use HE effi-
ciently, recent research works have striven to provide abstractions and simplifications to
these techniques for non-practitioners to be able to use them [Aha+23; Dat+19; Dat+20;
HS14b; Mou+20; Res20]. While existing efforts tackle the problem from different sides
of the problem, most of them focus on specific parts of the problem and do not fully
address DL. These barriers restrict access to privacy-preserving data science to users
who might lack the expertise to work in low-level languages and with complex HE
tools [Chi+20b; HS14b; Res20].

Hypothesis:
By addressing specific usability challenges and integrating the solutions into tools, it is
possible to enhance the accessibility of HE-enabled DL for non-expert users.

1.2 Objectives

With the different problems raised and the different inconveniences in the use of Ho-
momorphic Encryption for Deep Learning Inference, this thesis has the following goal:

Goal: To provide techniques that reduce the complexity of Homomorphic Encryption
when applied to Deep Learning, especially for non-expert users.

The previous goal is divided into the following objectives (Figure 1.1):

• O1. Systematizing existing knowledge in the application of privacy-preserving
computation techniques to Deep Learning. The objective is to provide a system-
atic view of the current state of the art, together with development, identifying major
trends in using PPCTs, potential research gaps, and issues with existing techniques.

• O2. Analyzing and providing algorithms to adapt Deep Learning Inference
with Packed Homomorphic Encryption. The objective seeks to describe in detail
and extend the algorithms required for building Convolutional Neural Network with
vectorized PaHE. The objective shall provide formal analysis and guidelines that
improve the use of such algorithms.

• O3. Simplifying Homomorphic Encryption parameter selection for non-expert
users. It aims at designing an expert system that performs optimized parameter

4

selection based on high-level user input parameters, reducing the overall complexity
of the task.

• O4. Integrating the previous improvements in a computer-aided tool that en-
ables inexperienced users to use Homomorphic Encryption for Deep Learning.
The objective is to provide a compiler whose architecture simplifies the use of HE,
which provides interfaces to high-level languages (e.g., Python) and integrates the
possibility of using DL inference leveraging existing low-level HE frameworks.

Systematization	
of	

Knowledge
O1

Privacy-Preserving	Computation

Deep	Learning

Secure	Multiparty	Computation

Homomorphic	Encryption

Packed Homomorphic	Encryption

Deep	Learning	Inference

Deep	Learning	
Vectorization	for	Packed	
Homomorphic	Encryption

O2 Algorithm Vectorization SIMD

Leveled Homomorphic	Encryption

Parameter Selection
Automating	

Homomorphic	Encryption	
Parameter	Selection	

O3 Expert	System

Fuzzy	Logic Linear	Programming

Symbolic	Execution Deep	LearningSymbolic	Execution	for
Deep	Learning	with	

Homomorphic	Encryption
O4 Homomorphic	Encryption

Optimization Efficiency

Usability

Compilation

Figure 1.1: Overview of the thesis objectives with the main keywords and techniques used
to achieve each objective.

1.3 Structure of the Document

The remainder of this thesis is structured as follows:

• Chapter 1, Introduction, provides an introduction to the contents of the thesis.

• Chapter 2, Background, provides theoretical background on a series of base con-
cepts needed for the proper understanding of the thesis contributions, including
Deep Learning, Privacy-Preserving Computation Techniques and Homomorphic
Encryption.

• Chapter 3, State of the Art, covers a detailed analysis of the current research pro-
posals using PPCTs for DL, including a systematization of the knowledge and a
discussion of the existing research gaps.

• Chapter 4, Optimization of Deep Learning Linear Algebra Algorithms for Packed
Homomorphic Encryption, presents the analysis and description of vectorized algo-
rithms for performing DL with packing and rotations in HE.

5

• Chapter 5, Automating Homomorphic Encryption Parameter Selection with Fuzzy
Logic and Linear Programming, details the design of an expert system based on
fuzzy logic and linear programming tasks for automatic parametrization of HE
schemes.

• Chapter 6, HEFactory: A Symbolic Execution Compiler for Privacy-Preserving
Deep Learning with Homomorphic Encryption, describes the design of HEFactory
a symbolic execution compiler for DL with HE.

• Chapter 7, Conclusions and Future Work, covers the main contributions of this
thesis and outlines future lines of research.

• Appendix A, Baseline Convolution Algorithms, covers other generalizations of al-
gorithms used as a baseline comparison to the improved version provided in Chap-
ter 4.

• Appendix B, Simplified Leveled Homomorphic Encryption Parametrization in
Practice, provides a simple non-expert introduction to practical parametrization of
HE schemes.

• Appendix C, HEFactory Internals, provides a brief guide to the main classes and
functions of the internals of HEFactory.

6

Chapter 2

Background

In this thesis, we propose various improvements to the usability of Homomorphic Encryp-
tion in its relationship with Deep Learning inference. This section provides a comprehen-
sive background to understand the theoretical concepts. We first provide an introduction
of Deep Learning to detail the primary concepts, terminology, and basis for improvement
in Section 2.1. Then, in Section 2.2, we describe the different privacy goals and require-
ments that Deep Learning may want to achieve and the different techniques for this mat-
ter. Followingly, Section 2.3 covers a thorough description of Homomorphic Encryption,
documenting its building blocks and insights for its operations, behavior, and limitations.
Finally, Section 2.4 describes the set of privacy-preserving computation techniques based
on Secure Multiparty Computation. While this technique is out of the scope of the main
contributions of this thesis, we describe it in this Chapter since it has been proposed for
privacy-preserving Deep Learning in the literature, as we study in Chapter 3.

2.1 Deep Learning for Homomorphic Encryption

Deep Learning (DL) has revolutionized artificial intelligence with outstanding solu-
tions to previously computationally complex problems. As such, this section provides a
general background to DL concepts and layers used for Privacy-Preserving Deep Learning
(PPDL) and those covered in this work. While DL often comprises forward and backward
propagation, it is primarily applied to the inference phase with Homomorphic Encryption
(HE). As such, we only dig into the inference phase. We first cover an introduction to
DL and its origins in Subsection 2.1.1. Then we cover the major Neural Network (NN)
layers in Convolutional Neural Network (CNN) in Subsection 2.1.2. Finally, we cover the
primary Neural Network activation functions in Subsection 2.1.3.

7

2.1.1 Deep Learning and Neural Networks

DL is a machine learning technique that evolved from Neural Network [Goo+16;
LBH15]. NNs are biologically inspired statistical models that resemble neural connec-
tions, where neurons connect in a network and activate each other based on a stimu-
lus [Has+95]. Learning theory states that a NN can learn any function [Csá+01; Goo+16].
However, this definition does not account for the computational complexity of such NN
(i.e., the layer may be infinitely large). In practice, combining networks in deeper ar-
chitectures (i.e., more layers rather than wider layers) obtains similar results in terms of
accuracy while improving performance and constitute what we know as DL [Bal+17;
HS18].

Classically, NNs consist of neurons represented by a mathematical function that com-
bines a linear procedure and an activation function (i.e., mimicking the spiking biological
behavior of neurons). NNs compose groups of one or more neurons in layers, and the
specific arrangement of the layers is known as architecture.

While there are various flavors of unsupervised and self-supervised training for neural
networks, NNs are generally a supervised learning technique. In supervised learning,
there is an initial training phase, after which the model is available for inference. The
training phase instructs the model by extracting the statistical distribution for the learning
task from the data and encompassing it into the weights of the model.

The training phase consists of two steps. Firstly, forward propagation infers the pre-
diction on an input training sample. Secondly, backward propagation compares the pre-
dicted result with the ground truth in the loss function. Gradient descent evaluates the
particular effect of each weight on the final result and describes the modifications so that
predictions are correct in further iterations.

While modern architectures exist, such as Transformers [Sha+17] with attention units,
the existing limitations in Homomorphic Encryption have restricted the available options
to older yet effective models, such as CNNs. The following subsections describe the
building blocks of CNNs and the main existing activation functions.

2.1.2 Neural Network Layers

This section defines the main linear layers of a Neural Network, which serves as a
preamble for the algorithms described in Chapter 4.

Dense Layer

The dense layer, also known as a fully connected layer, is parametrized by the number of
neurons (n) it uses. The computation for these layers is defined as matrix multiplication

8

such that:
z = W · x (2.1)

Where W is the weight matrix of the layer and x ∈ Rh is the input vector of the previous
layers. In W ∈ Rh timesw, each row represents the weight of a neuron. Fully connected
layers are advantageous since they expose all connections, and during training, remote
relations can be stored by the Neural Network. However, this degree of connectivity
introduces the need to operate over h × w entries defined by the number of neurons in
previous layers and the number of neurons in the layer. For certain kinds of information,
such as images or sound, spatial or sequential information may lift such connectivity
requirements.

Convolutional Layer

Convolutional layers use the concept of image filters as a foundation. Classically, image
filters have provided promising results in extracting features from images. In this case,
the filter weights are left to the neural network training to extract. The main advantage
of convolutional layers is the reduction of connectivity, reducing the number of weights
per layer, and obtaining better results by exploiting the spatial locality of data [LeC+89;
LeC+98](i.e., the relations between data when they are found in close locations). It can
be successfully exploited in audio and image data.

A bidimensional convolutional layer operates over a fx × fy pixels filter. The filter is
shifted all over the pixels of the input image, resulting in a reduced representation of a
feature. The operations on the filter are determined by the weights computed during the
training. The formula for obtaining the bidimensional convolution of a pixel with a single
dimension filter is defined by:

yh,w,c =

c∑︂
k=0

fx∑︂
i=0

fy∑︂
j=0

wi, j,k · xh+i,w+ j,k (2.2)

where x is the input c-dimensional image, wi, j,k are the weights, and y is the output image.
In some cases, convolutions are combined with stride, which determines the displacement
(i.e., for which h,w, y is computed) and padding, which helps accentuate the information
values on corners of images.

Convolutional layers decrease the number of parameters and training time. They
are often used in conjunction with batch normalization layers [IS15] and dropout lay-
ers [Sri+14] to improve its training convergence.

Max Pooling and Average Pooling

The max pooling and average pooling layers are sub-sampling structures that permit ob-
taining significant values from the results of previous layers. Bidimensional pooling lay-
ers act on px × py areas of the matrix and compute the max or average of it. Thus, they

9

further reduce the input representation and speed up the computation. In CNN’s max
pooling, layers are directly coupled to the success of convolutional layers [Goo+16], and
thus combined. In the case of Homomorphic Encryption, max pooling layers are minimal
due to the complexity of approximating the max function. Therefore, the average pooling
is often used. The formula for the bidimensional average pooling is:

yh,w,c =
1

px · py
·

px∑︂
i=0

py∑︂
j=0

xh+i,w+ j,c (2.3)

where x is the input image and y is the resulting image.

2.1.3 Activation Functions

Activation functions are fundamental components that determine the intensity of the
output of a neuron [Nwa+18], and they control the learning factor for the different
weights. They are a vital aspect of DL training since they introduce non-linear behav-
ior to the equations. Without activation functions, a neural network is nothing more than
a complex linear regression [Goo+16]. There are several examples of it, but the most
commonly used ones are the following:

Sigmoid

The sigmoid activation shifts towards values being either 0 or 1. It is used as the last layer
activation. It enables a faster minimization of the cost function (i.e., values are shifted
towards 0 or 1) [LeC+12]. The formula defining the activation is:

f (x) = (1 + e−x)−1 (2.4)

ReLU

This function is used in intermediate layers of the NN [NH10]. It has the advantage of
allowing gradient updates to propagate correctly to the first layers. That is, for very deep
architectures, ReLU is essential. The formula defining the activation is:

f (x) = max(0, x) (2.5)

Softmax

The Softmax function behaves similarly to the sigmoid function, but it is especially effi-
cient for multiclass classification, outputting a higher probability of one class and a lower

10

for the rest. The formula for the softmax activation is:

f (xi) =
exi∑︁K
j=1 ex j

(2.6)

In practice, the application of DL is aided by software frameworks that help in the
process of producing and testing different NN architectures (e.g., Tensorflow [Aba+16b],
Keras [Cho+15], or PyTorch [Pas+17]). Software frameworks for DL simplify the design
and programming by providing a catalog of layers, which can be easily extended. These
frameworks also provide automatic computation of backpropagation, which reduces cod-
ing complexity and speeds up the process of implementing new layers. In a way, the
contributions of this thesis aim to mimic the development of DL frameworks in the field
of HE.

2.2 Privacy Settings and Requirements in Deep Learning

Privacy-Preserving Deep Learning considers a scenario where one or more entities
(clients) aim to perform DL training or inference privately. First, for training, a set of
input training samples is fed to the DL pipeline producing a model. Then, in production
time, the model is employed over a set of inference samples, producing output predictions.
If any of these processes are outsourced to external parties, it would involve the sharing
of sometimes potentially private or insecure information.

There are two main research lines related to PPDL. On the one hand, research focuses
on attacks and countermeasures related to classical DL models. On the other hand, in-
vestigations looking for privacy-by-design DL architectures, where training and inference
phases reveal neither the model nor the data. The former is related to an extensive research
line on adversarial machine learning, which aims to disclose potential threats to classical
Machine Learning (ML) algorithms and provide countermeasures [BR18; Pap+18a].

The latter is the research line covered in this thesis. It requires reformulating and
adapting inner functions and algorithms to provide a complete training or inference
pipeline.

In this section, we systematize and describe various properties and settings related to
the privacy and security of DL models and data. It allows an understanding of the different
views of the privacy of models. We first present the privacy goals in Subsection 2.2.1 and
the adversarial model in Subsection 2.2.2. Then, we describe the high-level architectures
and data processing phases in Subsection 2.2.3. Finally, we describe different techniques
proposed to achieve such goals in Subsection 2.2.4.

11

2.2.1 Privacy Goals

The main goal of PPDL is to enable training and inference while preserving the pri-
vacy of the associated entities (i.e., data providers, clients, or service providers). It means
the processing cannot reveal additional information about data. We identify the following
privacy goals, depending on the source of information that is protected:

Input Privacy aims to preserve the data privacy of the inputs used during training or
inference [WL11]. For training, we consider input privacy to all those techniques
that preserve the privacy of the dataset. For inference, we consider input privacy
when inference data is protected.

Output Privacy aims not to reveal private information about the data produced from
training (i.e., the model) or inference (i.e., the output predictions). Output privacy
is required when the model is exposed and used by non-trusted parties, which might
obtain information from it [FJR15; Sho+17]. We note that input and output privacy
is required when the training process is outsourced to a non-trusted party (i.e., the
data must be kept secret, and the model must be processed not to reveal information
about the input data).

Model Secrecy aims to preserve the monetary value of models due to the complexity and
effort required to train the models [Kum+20b]. Also, gaining information about
how a model works eases inference attacks against it [Tra+16]. Consequently,
model secrecy is a desirable privacy feature. Such secrecy can refer to two compo-
nents of the model. First, Architectural Secrecy keeps secret the organization of the
layers and their internal hyper-parameters. Second, Weight Secrecy protects the val-
ues of the weights given to the internal neurons after the training phase. The former
is often related to intellectual property (e.g., cloud services not willing to expose
how they process the data), and the latter with the output privacy guarantees (since
the weights are adjusted to represent statistical properties of the training data).

2.2.2 Adversarial Model

Security guarantees of the protocols used in distributed systems, where multiple par-
ties interact, often rely on the ideal-real world simulation paradigm [GMW87; GV88;
Lin20]. This paradigm considers an ideal scenario where an ideal functionality (i.e., in-
violable third-party) receives data from participants, computes a function in a central-
ized way, and sends back the result of the execution. In the ideal scenario, an adversary
can only tamper with the inputs of corrupted parties [Ode09]. A distributed protocol is
considered secure if, in the real world, the information exchanged between the different

12

parties does not reveal more information to an adversary than what the ideal world re-
veals. According to this paradigm, two adversarial models are defined depending on their
capabilities and goals:

Honest-but-Curious (HBC) adversary is a passive opponent that complies with the
protocol and does not tamper with the data for malicious purposes. However, it
tries to learn as much information as possible from information exchanges.

Malicious adversary is an active opponent with stronger capabilities. In addition to
having the HBC adversary capabilities, it can tamper with the protocol (e.g., dy-
namically changing the inputs to the computation, not executing the process, or
disconnecting at any point).

2.2.3 Architectures and Processing Steps

A privacy-preserving processing pipeline generally involves preprocessing, privacy-
preserving processing, and postprocessing.

In the preprocessing phase, the client and server transform the input data appropriate
format to evaluate the cryptographic protocol. In the privacy-preserving processing phase,
the server receives the input data from the client. It performs the blind evaluation of the
circuit (i.e., without having direct access to the plaintext data). Finally, the postprocessing
phase retrieves the final result. Depending on the technique, it may consist of a data
reconstruction from the different pieces or the decryption of the ciphertexts.

When dealing with DL, only the preprocessing phase requires modifying the functions
used internally in DL (i.e., in order to adapt the directives to the specific technique). The
two remaining stages blindly apply the modified model to the privatized data according to
the chosen protocol. Thus, most contributions focus either on improving the adaptation of
DL to cryptographic protocols or creating new protocols (or combinations of them) which
reduce the changes needed. Figure 2.1 shows a schematic view of the generic architecture
for PPDL.

The paradigm of MLaaS assumes a distributed protocol where different entities com-
municate in a network. Based on that, we consider two general architectures, depending
on where and how the actual computation is performed:

Centralized Architectures load the exigent processing on one party (i.e., a server with
enough computational resources). As such, a single server obtains the necessary
information from the client and performs most of the computation. Clients are
required fewer computational resources and infrequent interaction with the server.
In general, in a centralized architecture, the original model is only held on the server

13

Local Premises

11

2

N

Preprocessing Privacy Preserving Processing Postprocessing

A

B

A
Local Premises

B
Local Premises Local Premises

Figure 2.1: Generic Architecture for Privacy-Preserving Data Processing.

side and is often present in solutions with HE. Centralized architectures involve
complex operations but less communication.

Distributed Architectures allow several parties to distributively make processing on
their data without sharing the actual data. These architectures split the processing
among all the participants in a distributed fashion without a central server holding
the entire model. It is often done through Secure Multiparty Computation (SMPC)
techniques and requires computing infrastructure on all the parties. Distributed ap-
proaches perform fewer and simpler operations at the cost of more communication
and often require client interaction.

2.2.4 Privacy Techniques

Depending on privacy requirements, the adversarial model faced, and the specific set-
tings, existing solutions often use the following different techniques (either in isolation,
combined or in hybrid approaches):

Data Privacy techniques aim at reducing the amount of sensitive information that data
carry. The goal is that content of the data released does not reveal private informa-
tion about the entities behind it. Two main techniques are used for this: Anonymiza-
tion and Differential Privacy (DP). First, Data Anonymization aims at the de-
identification of data owners through generalization (i.e., removing identifying val-

14

ues from samples), omission (i.e., not including an individual in the dataset), and
suppression (i.e., deleting complete identifying entries from the dataset) [LLV07;
Mac+07; Swe02]. Second, Differential Privacy provides privacy guarantees for an
individual of a larger population [DR+14] (i.e., guaranteeing the privacy of the in-
dividual while allowing the calculation of population-wide statistics). DP provides
higher security than Anonymization since DP provides guarantees independently of
the threat model. DP mechanisms often rely on adding noise to the data reducing
its expressiveness. Data privacy techniques allow plaintext operation on the data,
making them suitable for classical DL environments. However, given the informa-
tion loss from dataset modifications and noise introduction, they also suffer utility
reduction.

Privacy-Preserving Computation Techniques (PPCTs) rely on cryptography to hide
the information while allowing computation over the underlying data. It does so
through data secrecy, i.e., preserving confidentiality and, thus, privacy. There are
two main approaches for this set of techniques (often used in combinations, as we
discuss later), i.e., SMPC and HE. While HE often lies as a subcategory of SMPC,
in general, they behave differently, and thus we separate them in this thesis. While
HE relies on the strength to find a key to break the encryption, SMPC relies on shar-
ing information among non-colluding parties for DL inference. Unlike data privacy
techniques, data is encoded without causing an information loss. These techniques
provide input privacy. However, while PPCTs preserve the information, the avail-
able operations are limited. Another drawback is that these techniques suffer from
important performance and usability challenges when used in PPDL (see §2.4).

Trusted Execution Environment (TEE) are hardware components, often integrated
into modern CPUs, that allow for the encryption of a portion of a process mem-
ory [CD16; KPW16; Win08]. TEEs keep the confidentiality and integrity of the
data and operations loaded. TEEs allow for code attestation, and some approaches
for DL rely on it [HCS18; Hun+18; TB18]. While TEEs preserve input privacy,
their security guarantees are based on hardware and are subject to other types of
attacks (e.g., side-channel attacks [Du+17; MIE17]). For example, SLALOM re-
lies on TEEs for simple private operations and executes complex computations in
an external, not necessarily trusted GPU, using ZKP to attest their correct execu-
tion [TB18]. Also, Chiron proposes a virtual server with a limited instruction set
running on top of a TEE so they can be attested [Hun+18].

Federated Learning (FL) allows collaborative training of a model using local data from
different entities without revealing it to the other parties [Kon+16; Ton+18]. The
clients use their local data to train a local version of the model to compute the
updates (i.e., gradients). Then these updates are sent back to a central server by
sharing the resulting weights and parameters [SS15], which the central server ag-
gregates onto a global model. This technique suffers from security issues since the

15

generated model and gradients are shared and may be abused to breach privacy.
Thus, FL is often combined with other techniques to preserve input and output pri-
vacy, such as HE, SMPC [Sav+20] or DP [SS15; YBS20]. We point out the reader
for further information to the works by Kairouz et al. [Kai+19], and Bonawitz et
al. [Bon+19]

As a summary of this section, PPDL consists of utilizing different techniques to elab-
orate DL training and inference in a manner that results equivalent to classic centralized
training.

2.3 Homomorphic Encryption

Homomorphic Encryption (HE) is a beautiful mathematical trick whereby performing
specific operations on specially-represented ciphertexts, we provoke a change in the un-
derlying cleartext. Under specific operations over the ciphertexts, we can map the change
on the cleartext to operations such as addition, multiplication, and rotation. In this sec-
tion, we cover the details of HE from its conception and provide details of the schemes
used in this thesis. The details of this section are based on the contents extracted from
OpenMined [Huy20a; Huy20b; Huy20c; Huy20d; Huy20e] and the original papers of the
authors of CKKS [Che+17].

2.3.1 Historical Background

Encryption schemes aim to provide confidentiality between two parties intending to ex-
change a piece of information or message without publicly releasing the content. For
that, a fundamental principle is the existence of one or more keys, without which extract-
ing the information is mathematically unfeasible. The first constructions were symmetric
based, which commonly utilize the same routine for encryption and decryption, using
the same secret key. Symmetric encryption assumes the existence of a previously shared
key, which raises a new problem related to secret key distribution. Public key cryptog-
raphy arose as a solution to this problem through trapdoor functions [DH22]. Trapdoor
functions provide a robust mechanism for encryption and a mechanism for decryption
using two different keys (a public and a private one), effectively enabling cryptography
without using a pre-shared secret. One of the first, more popular, and still to date in us-
ing public-key algorithms is the RSA cryptosystem [RSA78]. In the RSA release paper,
the authors noted an attractive property of the scheme: the ciphertext could be operated
(concretely through multiplications) without decryption, and the results would apply to
the hidden cleartext. As such, RSA is considered the first HE cryptosystem, also defined
as Partially Homomorphic Encryption (PHE), as it allows one homomorphic operation.
Other successful implementations of PHE include ElGamal [ElG85] or Paillier [Pai99]
cryptosystems.

16

After that, research focused on finding Fully Homomorphic Encryption (FHE), or Ho-
momorphic Encryption, that enables arbitrary computation on the ciphertext. While there
were various proposals, those more promising were labeled Somewhat Homomorphic En-
cryption (SHE), as these enabled performing addition and multiplication. However, there
were limits to the amounts of computation. SHE schemes were based on the Learn-
ing with Errors (LWE) [Reg09] problem, whose strength relies on noise introduced to
a system of linear equations. Operations over those ciphertexts increase the noise and
introduce boundaries to the number of operations that can be performed. However, in
2009, Craig Gentry, a researcher at Standford University and IBM Watson, proved FHE
feasible through bootstrapping (i.e., unbounded computation). Bootstrapping relies on
the execution of the decryption routine or circuit in the encrypted domain. In that way,
after the ciphertext reaches a certain noise level, it could be restored under reasonable lev-
els for further operation. However, this initial cryptosystem proposed by Gentry suffered
from very poor runtimes precisely due to the bootstrapping routine. Despite its capabil-
ities and improvements, bootstrapping is still inefficient and suffers from a low runtime
performance [DM15].

Since the work of Gentry in 2009, the research area in HE has dramatically expanded,
and numerous new approaches and techniques for optimization have arisen. One of the
optimizations comes in the form of Leveled Homomorphic Encryption (LHE) schemes.
These introduce a number of levels, which are removed from the ciphertext after multi-
plications, effectively reducing its noise. The removal operation for each of the levels is
called named modulo switching.

Based on the initial ideas proposed by Gentry, multiple encryption schemes have been
created using different arithmetic types, like integer operations (e.g., BFV [FV12] and
BGV [BGV14]) or boolean operations (e.g., GSW [GSW13], TFHE [Chi+16], or Con-
crete [Chi+20b]). In the context of DL, floating-point operations are available through
the CKKS scheme [Che+17], which we describe next.

It is also noteworthy to mention the availability of multiple open-source libraries, such
as Microsoft SEAL [Res20], IBM HElib [HS14b], Palisade [PRR17], Lattigo [Mou+20]
or Concrete [Chi+20b].

2.3.2 Learning with Errors and Ring Learning with Errors

The Learning with Errors problem is a proven worst-case hard problem introduced by
Regev [Reg09] and forms the basis for most HE schemes. This section introduces the
variants of the Learning with Errors (LWE) and the Ring Learning with Errors (RLWE).

We use ZQ to refer to the set of integers modulo Q, e.g., 3 mod 5. We use ZN
Q to

refer to vectors of N elements in ZQ, e.g., (1, 2, 3) mod 5. We denote the inner product
of two vectors a, b ∈ ZN

Q as ⟨a, b⟩ =
∑︁N

i ai · bi mod Q. A system of linear equations can

17

1
2
3
4

1 0 6 2
3 4 1 0
6 5 1 3
0 2 5 3

× 1 0 1+ 0 0 4 2=

𝑎!
𝑎"
𝑎#
𝑎$

𝐴 = {𝑎% ∈ 	ℤ&'} 𝑠 ∈ 	ℤ&'

𝑒 ∈ 	ℤ&' 𝑏 ∈ 	ℤ&'

-1

Figure 2.2: Simplification of the Learning with Errors problem. Finding s and e from A
and b becomes a computationally hard problem.

be represented as A × s = b. With A and b, the system can be easily solved to obtain s.

The LWE problem introduces an equation such that we generate a set of vectors A =

{ai
$
← ZN

Q} that we multiply by the secret s
$
← ZN

Q and add a noise e
$
← ZQ to obtain b ∈ ZQ

according to:
⟨ai, s⟩ + ei = bi mod Q (2.7)

In this case, only with A and b it is computationally unfeasible to find s and e. Figure 2.2
shows an example of the procedure mentioned to generate a LWE problem.

The hardness of LWE schemes relies on two problems that try to simplify the task of
solving the system of linear equations. On the one hand, the Search LWE [Bra+13] prob-
lem tries to obtain s and e from A and b. On the other hand, the Decision LWE [MP13]
problem uses an oracle simulation to distinguish a legitimately created A, b tuple from a

randomly extracted tuple A, u
$
← ZQ to distinguish a polynomial hiding a message from a

random sample.

Producing and transmitting a matrix A is inefficient because of the increased dimen-
sionality of real-world examples. Due to that, an equivalently secure setting is produced in
the RLWE problem. The RLWE problem uses polynomial quotient rings for thus generat-
ing polynomials in RQ = ZQ[x]/(xN +1) instead of vectors (e.g., c0+c1x+c2x2+ ...+cN xN

mod Q mod (xN + 1)). In practice, we operate polynomials whose coefficients individ-
ually scale according to the coefficient modulus Q, and whose degree scales according
to the polynomial degree N. In RLWE, the matrix A is produced from a cycled initial
polynomial (i.e., multiplying by x and reducing mod Q mod (xN + 1)).

2.3.3 Public Key Encryption from LWE

From the LWE and RLWE problems, we can produce both asymmetric (public-key) and
symmetric encryption schemes. This thesis covers the public-key schemes, which are
more widespread and useful for privacy-preserving processing. A public-key encryption
scheme has two keys: public key pk and secret key sk. The LWE-based schemes define
the public key as pk = (b, A) = (⟨−A, s⟩ + e, A) and the secret key sk = s. With a message

18

µ ∈ ZN
Q for LWE and µ ∈ ZQ[x]/(xN + 1) for RLWE, we follow an encryption process to

generate a ciphertext c = Enc(µ, pk) = (c0, c1) with u
$
← ZN

Q:

c0 = µ + pk0 · u = µ + b · u + e = µ − ⟨A, s⟩ · u − e

c1 = pk1 · u + e = A · u + e
(2.8)

For decryption, the procedure obtains the message µ back from the ciphertext c such
that µ = Dec(c, sk). For that, multiplying c1 with sk results in a close equivalence to:

c1 · sk = (A · u + e) · s ≃ ⟨A, s⟩ · u + e ≃ b · u + e (2.9)

By multiplying c1 · s, the result approximates to c0 − m, such that c1 · s = c0 − m.
Clearing the equation results in the following:

m ≃ c0 + c1 · s (2.10)

Generally, to guarantee that the decryption of µ is precise and does not lose significant
digits, it is multiplied by a scaling factor ∆. This thesis describes the scaling in Subsec-
tion 2.3.4 and the CKKS encoding. The procedure involves working with µ = ∆ · µ′ and
upon decryption µ′ = 1

∆
· µ.

2.3.4 CKKS Encoding

In previous sections, we showed that some HE schemes are based on the encryption of
an integer polynomial m ∈ ZN

Q. To provide an end-to-end explanation of HE, this subsec-
tion shows intuitions on the CKKS scheme, which we use in this thesis. It covers trans-
forming a plaintext complex number vector into a plaintext integer polynomial. While
this section includes the necessary knowledge for fully understanding CKKS, it is beyond
the complexity of previous sections, and complete knowledge is not required to under-
stand the contributions of this thesis. For readers interested in the high-level concepts,
we provide the following explanation. In short, this section covers encoding a vector of
complex numbers into a polynomial to compliant for use with RLWE through a series of
isomorphisms. In a nutshell, there are two essential transformations: the scaling (∆) and
the canonical embedding. The scaling ∆ aims to reduce the impact of noise and encoding
on the underlying ciphertexts. The canonical embedding is one of the isomorphisms that
enables translating from a vector to a polynomial. It uses a particular set of polynomials
(cyclotomic polynomials) whose roots are named roots of unity, which are easy to define
for specific polynomial degrees. Galois Automorphisms rely on the concept of roots of
unity to perform slot rotation. Next, we start with a detailed description of the concepts.

CKKS uses a specific type of polynomial quotient rings ZQ[x]/(xN + 1), named cy-
clotomic polynomials ΦM(X). These polynomials have special properties desirable for

19

encoding on certain degrees (e.g., primes or even degrees). In this case, the scheme prof-
its from two of these properties. First, when the degree M is a power of 2, the cyclotomic
polynomial is defined by ΦM(X) = (XN + 1). Second, the roots of unity of a cyclotomic
polynomial of degree M are defined by ξM = e

2iπ
M (i.e., the N roots or solutions of the

polynomial are ξ, ξ3, ..., ξ2N−1).

CKKS encodes a plaintext vector z ∈ CN/2, in a plaintext polynomial m(X) ∈
ZQ[x]/(xN+1) (i.e., CKKS allows encrypting a vector of complex values in an integer ring
polynomial) through a series of isomorphisms that generate equivalent representations in
various domains. We can view these isomorphisms as information transformations in dif-
ferent contexts. These isomorphisms have two main goals: first, they transform from the
complex number domain into the integers domain, and second, they encode the vector
into a polynomial (and vice-versa for decoding). Because the vector encoding establishes
certain restrictions on the polynomials, we first describe the vector encoding and then the
complex-integer number transformation.

In order to transform a vector from z ∈ ZN
Q into a polynomial m(X) ∈ ZQ[x]/(xN + 1),

the CKKS scheme leverages the canonical embedding, a transformation defined by
σ : ZQ[x]/(xN + 1) → ZN . As defined, the canonical embedding allows the extrac-
tion of the vector z by evaluating the polynomial on the roots of unity such that
σ(m) = (m(ξ),m(ξ3), ...,m(ξ2N−1)) ∈ ZN . In summary, there exist N equations follow-
ing zi = m(ξ2i−1) =

∑︁N−1
j=0 αi · (ξ2i−1) j, which can be transformed into a system of linear

equations such that A · α = z. A is the Vandermonde matrix of (ξ2i−1) : i = 1, ...,N, where
each row Ai is defined as the geometric progression of Ai, j = (ξ2i−1) j. Solving the system
of linear equations as α = A−1 ·z results in the function σ−1 to encode our polynomial from
z (i.e., m(X) = σ−1(z) =

∑︁N−1
i=0 = αi · Xi). In a nutshell, the canonical embedding com-

poses the decoding routine (i.e., from integer polynomial to integer vector). The canonical
embedding is deduced into a vector matrix multiplication of the initial vector z and the
inverse of the Vandermonde matrix (A−1) to elaborate the encoding routine.

After this step, a straightforward method exists to encode an integer vector into an
integer polynomial (and vice-versa). However, CKKS defines a series of isomorphisms
that transform from a complex number vector z ∈ CN/2 to an integer vector z ∈ ZN .

The first observation is the need to reduce from N to N/2. Because LWE works
with integer polynomials (i.e., real numbers), we only consider the real part of complex
numbers, not the imaginary part. This fact defines the number spaceH = z ∈ CN : z j = z− j,
where complex numbers are equivalent if they are the conjugate of each other (i.e., where
the real part is equal and the imaginary part is opposite). Furthermore, this implies that
cyclotomic polynomials evaluation is also equivalent for conjugates such that m(X) ∈
ZQ[x]/(xN + 1),m(ξ j) = m(ξ− j) = m(ξ− j), translating into a reduction of the dimensions
of the space from N to N/2 (i.e., the number of polynomial roots of unity is halved). In
CKKS, the first isomorphism is defined by π : H → CN/2 (i.e., used for decoding and
reducing the dimensions by a factor of 2). The inverse of the isomorphism π−1 expands

20

the dimensions from π−1 : CN/2 → H by copying the conjugate of the elements. With that,
we increase the dimensions of our initial vector z ∈ CN/2 to z ∈ H.

The transformation from H to σ : ZQ[x]/(xN + 1) is not straightforward as there is no
isomorphism between them (i.e., the transformation is not bijective). The transformation
first performs a transformation from complex numbers (H) to real numbers (z ∈ RN) and
then from real numbers into integers (ZN). For transforming into real numbers, CKKS
profits from the fact that ZQ[x]/(xN + 1) forms an orthogonal integer basis (1, X, ..., XN−1),
and given the isomorphism given by the canonical embedding, the basis also exists in
σ(ZQ[x]/(xN + 1)) as β = (β1, β2, ..., βN) = (σ(1), σ(X), ..., sigma(XN−1). We can use this
basis to project the complex numbers onto it, through Hermitian products, to obtain real
coefficients such that z =

∑︁N
i=1 zi ·βi with zi =

<z,βi>

||βi ||2
, where β vectors are obtained the same

as in the canonical basis (i.e., βi = σi(ξ2N−1)) and ||βi|| is the norm of the vector.

Finally, to obtain the transformation from a real to an integer number, CKKS uses
a technique named coordinate-wise random rounding, which takes a real number and
rounds it such that P(X = ⌊x⌋) = x − ⌊x⌋ and P(X = ⌊x⌋ + 1) = 1 − P(X = ⌊x⌋). That
means that, with high probability, our value z is going to be ⌊z⌋ the closer z is to ⌊z⌋ and
vice-versa if z is closer to ⌊z⌋+1. Since the coordinate-wise random rounding may remove
precision from the numbers, the numbers are upscaled (∆) and downscaled (∆−1) before
encoding and decoding, respectively.

At this point, the encoding has produced from an initial vector z ∈ CN/2 an integer
cyclotomic polynomial in ZQ[x]/(xN + 1). Figure 2.3.

2.3.5 Homomorphic Operations on LWE

An essential point of HE schemes is that they allow the operation of the messages µ from
the underlying ciphertext. This section covers five essential operations in these schemes:
plaintext addition, ciphertext addition, plaintext multiplication, ciphertext multiplication,
and ciphertext rotation. It also serves as a prelude to introducing fundamental operations,
such as relinearization and rescaling.

Ciphertext-Plaintext Addition

The addition of a new message µ′ to a ciphertext c = Enc(µ, pk), denoted as cadd = µ
′ + c:

cadd,0 = c0 + µ
′ = (µ + µ′) + b · u + e0

cadd,1 = c1
(2.11)

The decryption of c′ yields the expected result showing that the decrypted message is
equivalent to the sum of the plaintext to the polynomial:

µadd ≃ c′0 − c′1 · s = µ + µ
′ + e (2.12)

21

Expansion: 𝜋!"

𝜋!"(𝑧) ∈ 	ℍ

Scaling: Δ

Δ ⋅ 𝜋!"(𝑧) ∈ 	ℍ

Projection to 𝜎 ℛ : 𝑥 #(ℛ)

Δ ⋅ 𝜋!"(𝑧) #(ℛ) ∈ ℝ'

Coordinate-wise Random Rounding

Δ ⋅ 𝜋!"(𝑧) #(ℛ) ∈ 𝜎(ℛ)

Inverse Canonical Embedding: 𝜎!"

𝑚 𝑋 = 	𝜎!"(Δ ⋅ 𝜋!"(𝑧) #(ℛ)) ∈ ℛ

Canonical Embedding: σ

𝜎(Δ!" ⋅ 𝑚) ∈ 𝜎(ℛ)

Downscaling: Δ!"

Δ!" ⋅ 𝑚 ∈ ℛ

Projection: 𝜋

𝑧 = 𝜋 ∘ 𝜎(Δ!" ⋅ 𝑚) ∈ ℂ'/)

Figure 2.3: Summarization of the encoding and decoding routines of CKKS. For notation
simplicity, the figure uses R = ZQ[x]/(xN + 1)

22

Ciphertext-Ciphertext Addition

The addition of two ciphertexts c = Enc(µ, pk), and c′ = Enc(µ′, pk) can be proven
similarly to plaintext addition:

cadd,0 = c0 + c′0 = µ + b · u + e + µ′ + b · u + e = (µ + µ′) + 2 · (b · u + e)

cadd,1 = c1 + c′1 = 2 · (A · u + e)
(2.13)

The decryption yields the expected result:

µadd = cadd,0 + cadd,1 · s = (µ + µ′) − 2 · (⟨A, s⟩ · u + e) + 2 · (A · u + e) · s

= (µ + µ′) + e
(2.14)

Ciphertext-Plaintext Multiplication

The multiplication of a plaintext value µ′ with a ciphertext c = Enc(µ, pk) can be proven
as:

cmul,0 = c0 · µ
′ = (µ + b · u + e) · µ′ = (µ · µ′) + (µ · b · u) + (µ · e)

cmul,1 = c1 · µ
′ = (µ′ · A · u + e)

(2.15)

The decryption yields the expected result:

µmul = cmul,0 + cmul,1 · s = (µ · µ′) − (µ′ · ⟨A, s⟩ · u) + µ′ · ⟨A, s⟩ · u + 2 · µ′ · e

≃ (µ · µ′) + e
(2.16)

However, we note that the noise significantly increases with the multiplication opera-
tion compared to the addition operation.

Ciphertext-Ciphertext Multiplication

The multiplication of two ciphertexts c = Enc(µ, pk) and c′ = Enc(µ′, pk) has more
complexity. If we consider the decryption circuit such that:

µmul = Dec(c, sk) · Dec(c′, sk) = (c0 + c1 · s) · (c′0 + c′1 · s)

= (c0 · c′0) + (c0 · c′1 + c′0 · c1) · s + (c1 · c′1) · s2 = (d0, d1, d2)
(2.17)

Equation 2.17 shows how the multiplication of two ciphertexts generates a different
polynomial multiplied by s2. This fact raises a problem: With each multiplication, the
size of the ciphertext would grow exponentially in the size of polynomials. To solve
this problem, after each multiplication, a relinearization of the polynomial is performed,
which is described next.

23

Relinearization

As mentioned, the degree of the polynomial grows while holding a specific number of op-
erations. Given the exponential increase in the size of the polynomials, the relinearization
phase aims to find a matching pair of polynomials c′ = (c′0, c

′
1), whose decryption yields

the same result as the increased degree polynomial:

Dec(cmul, sk) = (d′0 + d′1 · s) = d0 + d1 · s + d2 · s2 = Dec(c, sk) · Dec(c′, sk) (2.18)

The envisioned solution consists of obtaining an encrypted version of d2·s2 that we can
use to subtract from the original polynomial to reduce its degree. This procedure is usually
carried out through what is called the relinearization key (rlk = (b · u + e + s2, A · u + e)),
which is an encryption of s2 that allows the obtention of an encryption of d2 · s2.

However, there is an essential flaw in the reasoning described by Fan and Ver-
cauteren [FV12]. When performing d2 · rlk, we obtain d2 · s2 + d2 · e, and due to d2 being
a big polynomial, d2 · e is not negligible after some number of multiplications. Therefore,
the notion of rescaling or modulus switching is introduced, which also permits reducing
the noise while simultaneously creating a Leveled Homomorphic Encryption scheme.

Rescaling

Generally, most homomorphic encryption schemes involve a rise in noise when perform-
ing multiplications (i.e., more in the case of ciphertext-ciphertext multiplications but also
quite noticeably with ciphertext-plaintext multiplications).

In modulo switching, the modulus Q is defined as a multiplication of smaller lower
bit co-primes q such that: Q =

∏︁l
i=0 qi. In CKKS, Q is defined as Q = ∆l · q0, where q0

defines the integer precision, and ∆ is the scale used for the encoding which also defines
the decimal precision such that q0 = 2#bitsinteger · 2#bitsdecimal. If we have ∆ = 220 and
q0 = 232, we would have 32 bits of precision, 12 of those for the integer part and 20 for
the decimal part.

The rescaling process reduces a ciphertext c at a given level l to level l − 1 while
reducing the noise. The modulo at level l is defined by ql = ∆

l · q0 and the rescaling
operation as:

Rescalel→(l−1)(c) = ⌊
ql−1

ql
c⌉ mod ql−1 = ⌊∆

−1 · c⌉ mod ql−1 (2.19)

In practice, the rescaling operation would involve working with huge numbers. For
practicality, polynomials are operated with the Chinese Remainder Theorem, which as-
sumes that the co-prime numbers of the remainder can be worked out independently to
operate on smaller polynomials independently. The Chinese Remainder Theorem intro-
duces the need to operate on more polynomials but under smaller numbers. This modifi-
cation involves that instead of using ∆, we often have to find numbers close to ∆ but being

24

co-prime between each other pl.

Rescalel→(l−1)(c) = ⌊p−1
l · c⌉ mod ql−1 (2.20)

Rotations

The previous operations act on the whole encrypted and encoded vector. However, rota-
tions are valuable to the toolset to simplify algorithms and profit from SIMD operations.
Rotations permute the vector entries by operating on the polynomial [HS14b]. Rotations
use what is known as Galois Automorphisms. Galois Automorphisms profit from the
roots of unity (ξ) of a cyclotomic polynomial (defined in Subsection 2.3.4) in order to
produce an equivalent permuted representation. By evaluating a polynomial in a different
root of unity, we obtain another equivalent polynomial whose contents are the same but
rotated ||m(ξ)|| = ||m(ξ j)||.

In order to profit from Galois Automorphisms, we generate something known as Ga-
lois Keys, which can rotate a ciphertext. The Galois Keys are generally obtained for
multiples of 2 since combining those can effectively produce any rotation.

2.4 Secure Multiparty Computation Techniques

There are two main approaches for privacy-preserving computation, either computing
on encrypted data (HE) or distributing the knowledge among different parties (SMPC).
This section provides an overview of the techniques for implementing privacy-preserving
computation through SMPC. We next describe the basic notions underpinning these tech-
niques and advances that have enabled their applications to DL and enable us to describe
Chapter 3.

Secure Multiparty Computation (SMPC) is the term used to refer to the techniques
that permit a set of n parties to perform computations on input data from each party
without revealing it to the other parties and to output a shared, common result. Multiple
constructions support SMPC. Each has particular requirements and benefits and is often
combined with others. We refer to the work by Lindell [Lin20] for a detailed description
of SMPC.

2.4.1 Oblivious Transfer

Oblivious Transfer (OT) is a 2-party cryptographic protocol allowing a receiver to request
k out of n pieces from a sender. The protocol ensures that the sender learns nothing
about the information sent. The receiver learns nothing about the pieces of information
he does not receive [Rab05]. This protocol can be extended to create a boolean SMPC

25

protocol [NP99]. Additionally, it is used as a base for secure data exchange in other
protocols.

1. The receiver chooses a bit b ∈ Z2. The sender creates public key parameters

sk, pk
$
← KeyGen(1λ) and another public key draw from random pk′. Then it

chooses pkb = pk and pk1−b = pk′ and sends those as p0, p1; in that way, the sender
knows which key is the correct key and the random key.

2. The sender encrypts respectively with the keys co = Encpk0(x0) and c1 = Encpk1(x1).

3. The receiver can only decrypt cb because the other key is indistinguishable from
random.

The most basic construction is based on the existence of trapdoor functions and works
in the following way:

1. The sender does the following:

• It creates a public-private keypair sk, pk
$
← KeyGen(1λ).

• It creates two random numbers x0, x1
$
← Z.

• It transmits pk, x0 and x1.

2. To answer, the receiver will issue a commitment in this phase with the following:

• Generates a random number k
$
← Z and b ∈ {0, 1}.

• Answer back with v = xb + Encpk(k).

3. Finally, the sender creates two keys and applies the xor operation of these with the
messages. Only one of the two will be able to be decrypted by the receiver, and the
other will be random information. The procedure is the following:

• The sender computes k0 = (v − x0)sk and k1 = (v − x1)sk.

• The sender answers back with m′0 = m0 ⊕ k0 and m′1 = m1 ⊕ k1

4. The receiver is only able to decrypt one of the two messages since he committed,
so it decrypts the corresponding by mb = m′b ⊕ k

The receiver can only commit to one value, and it will determine what it receives, and
since k is private sender learns nothing about the choice. The advantage is that the com-
mitment reveals no information since k is kept secret, and there is no way for the receiver
to modify the commitment so that it can reveal information from the other secret. Al-
though it is not the most efficient option, OT can be used as a means for Secure Multiparty
Computation by secretly obtaining the results of each phase.

26

2.4.2 Yao’s Garbled Circuits

Yao’s Garbled Circuits is a 2-party secure computation cryptographic protocol for boolean
circuits [Yao86] in the presence of HBC adversaries. It allows two parties to compute their
private inputs x, y without knowing each others’ input or the circuit.

In the basic protocol, a Garbler (G) owns inputs x, and the circuit C; the Evaluator
owns some input x′. The protocol works as follows:

1. G garbles the circuit g(C) = C′. The garbling consists of generating six symmetric
encryption keys per input of binary gate, four associated with the two input val-
ues and two associated with the output. Each key is given a value (0 or 1), and
the output encryption keys are encrypted with the appropriate combination of input
keys. For a gate with input wires a, b and output wire c would generate six keys
(k0

a, k
1
a, k

0
b, k

1
b, k

0
c , k

1
c). Each output wire key is encrypted with the corresponding in-

put keys. For example, for an AND gate:

• For output 0, 0: Enc(k0
a, Enc(k0

b, k
0
c))

• For output 0, 1: Enc(k0
a, Enc(k1

b, k
0
c))

• For output 1, 0: Enc(k1
a, Enc(k0

b, k
0
c))

• For output 1, 1: Enc(k1
a, Enc(k1

b, k
1
c))

This procedure is recursively performed for all the circuit gates, and the order of
keys is randomized. The garbling of the circuit (C′) and the input values associated
keys (g(x)) are sent to the Evaluator (E).

2. If the Evaluator has specific input values, the garbling (g(y)) is sent to the Evalu-
ator using OT. The Evaluator then blindly follows the protocol based on g(C), the
garbling x, and its input (i.e.,y).

3. At the end of the evaluation, the garbler may introduce a lookup table that contains
the decryption of the final values of the circuit. In that way, all parties can obtain
the output value.

Several optimizations followed the initial Yao Garbled Circuits proposal, including
the point-and-permute optimization [Pin+09], the half gates [ZRE15], the free XOR
gates [KMR14; KS08] or garbled row reduction [BMR90; NPS99].

2.4.3 Secret Sharing

Secret Sharing (SS) is a cryptographic protocol that permits dividing a secret piece of in-
formation x into n different ‘parts’ or shares which can only be rebuilt into the original if
at least k parties agree. SS is one of the bases for creating the most modern SMPC proto-
cols with more than two parties. More formally, a (k, n)-secret sharing scheme comprises

27

a pair of algorithms. First, S hare(x) produces a tuple of n different shares (s1, s2, ..., sn).
Then, Reconstruction(s1, s2, ..., sk) computes and produces the secret x out of k shares.
Next, we describe three main protocols used for SS.

Shamir Secret Sharing

Shamir Secret Sharing is based on the Lagrange Interpolation, which states that a polyno-
mial P(x) of degree n can be built from n+ 1 points [Sha79]. The sharing consists of gen-
erating a polynomial whose independent term is the secret to be shared. Shamir’s secret
sharing is efficient since it does not need strong preprocessing. Moreover, it is homomor-
phic for addition and multiplication. The main inconvenience is that the multiplication of
two degree-t shares generates a share of degree 2t+1. Therefore, it requires degree reduc-
tion after each multiplication [GRR98], which requires communications, thus incurring
an overhead.

Additive Secret Sharing

Additive Secret Sharing is based on the concept that a given secret x can be decom-
posed in the sum of n random numbers [Bla79]. The share generation process involves
selecting n − 1 random numbers and computing the n-th share as the sum of the rest.
While additive secret sharing is only homomorphic on the addition, Beaver Multiplica-
tion Triplets [Bea91] extend it to perform multiplication. This approach is more efficient
for computation because it moves the computational delay onto a preprocessing phase
(i.e., the multiplication can be performed offline). The protocol for additive secret sharing
is defined as follows:

• S hare(x). Choose n − 1 random numbers in si
$
← ZQ which will be (s1, s2, ..., sn−1).

To compute the nth share, we compute sn = x −
∑︁n−1

i=0 si mod Q.

• Reconstruction(si1, si2, ..., sik). It adds the random numbers in ZQ.
∑︁

i = 0nsi

mod Q.

This flavor of secret sharing provides a simple yet efficient alternative both when sharing
and on the reconstruction. Additionally, it is homomorphic to addition but not multipli-
cation (i.e., the addition of the shares is equivalent to the regular addition). However,
compared to Shamir’s scheme [Sha79], it is not homomorphic regarding multiplication.
Beaver Triplets are a construction that solves the multiplication need.

Beaver Multiplication Triplets

Beaver multiplication triplets [Bea91] are a construction that permits performing multi-
plication on secretly shared data. The construction relies on exchanging a secretly shared

28

multiplication of random numbers such as c = a · b. There are two assumptions for this
process; first, none of the parties knows the real values of the triplets, which then turns
into the second assumption, which is the existence of a trusted dealer for the triplets. As-
suming we want to compute the n party multiplication of secretly shared x = (x1, x2, ..., xn)
and y = (y1, y2, ..., yn); given a = (a1, a2, ..., an), b = (b1, b2, ..., bn) and c = (c1, c2, ..., cn),
such that c = a · b, the computation continues as follows:

1. Each party computes xi − ai, publish and reconstruct x − a.

2. Each party computes yi − bi, publish and reconstruct y − b.

3. All the parties can perform the offline computation: zi = ci + xi · (x − a) + yi · (y −
b) − (x − a) · (y − b)

After the different zi are reconstructed in a single element, the different intermediate
values are removed from the equation.

2.4.4 Zero-Knowledge Proofs

Zero Knowledge Proof (ZKP) are cryptographic constructions in which a prover P verifies
that a statement x is part of a language L to a verifier V , satisfying completeness (i.e., if
x ∈ L, V cannot reject the statement), soundness (i.e., if x ∉ L, then V only accepts it with
50% probability) and zero-knowledge (i.e., V learns nothing from the statement rather
than the commitment and the truth of it) [GMR89]. The probability of accepting a false
ZKP can be reduced from 50% by repeating the procedure multiple times.

In the scope of private computation techniques, ZKPs are commonly used to protect
against malicious adversaries by requiring the different parties to prove the correct execu-
tion of operations. In recent years, there have been multiple works combining ZKP with
flavors of SMPC to provide fully verifiable computation [GNS21; Par+13].

2.4.5 Verifiable Secret Sharing

Verifiable Secret Sharing schemes use homomorphic operations considering a malicious
adversary [BGW88; Cho+85; Fel87; GMW91]. The main changes to the previous ap-
proaches are the sharing of commitments to ensure the order does not interfere; the veri-
fication of the correctness of the computations with zero knowledge proofs [BFM88]; the
use of agreement schemes [FM89] and distributed coin-flipping protocols [Blu83].

29

30

Chapter 3

State of the Art

Recent advances in Privacy-Preserving Computation Techniques (PPCTs) (i.e., Ho-
momorphic Encryption and Secure Multiparty Computation) have enabled Deep Learning
(DL) training and inference over protected data, attracting the attention of cryptographers
and computer scientists in recent years, with an increasing number of proposals published
in a fast rate. However, these techniques still need to mature and be easier to deploy
in practical scenarios. PPCTs incur a high computational and communication overhead
to the already-demanding DL operations. Due to this, few actual deployments of these
technologies exist in privacy-preserving scenarios [Che+20; Kum+20b].

In this chapter, we study the past and present literature on PPCTs applied to DL.
For that sake, we provide a systematization of knowledge of the current state of the art.
To this end, this chapter reviews the evolution of privacy-preserving computation tech-
niques with DL to understand the gap between research proposals and practical applica-
tions. We highlight the relative advantages and disadvantages, considering aspects such
as efficiency shortcomings, reproducibility issues due to the lack of standard tools and
programming interfaces, or integration with DL frameworks commonly used by the data
science community. For interested readers, other works have surveyed various areas of
PPCTs [Azr+19; Che+20; Kai+20; Kum+20b; RRK19; Tan+20].

The remainder of this chapter continues as follows. First, we describe the scope and
methodology used to select and analyze the articles in Section 3.1. Then, we systemati-
cally describe the literature on PPCTs. Next, we describe a set of advanced techniques of
SMPC whose impact may be meaningful for DL in Section 3.2. We describe the origins of
the research area, with various applications of the initial primitives in Section 3.3. Then,
we describe state of the art divided into three broad sections: DL inference in Section 3.4,
DL training in Section 3.5, and programming interfaces and compilers in Section 3.6. Fi-
nally, we analyze the current limitations that prevent the deployment of existing solutions
in real-world settings, primarily due to deficiencies related to the efficiency and usability
of the proposals, and discuss research lines that the community should address in the fol-

31

lowing years in Section 3.7. Some of these research directions impact the scope of this
thesis. Specifically, those that refer to the complexity and usability of techniques in the
context of usability of PPCTs for DL.

3.1 Scope and Methodology

Privacy-Preserving Computation Techniques (PPCTs) ensure the input data’s privacy
and secrecy, relieving the client endpoint from heavy workloads and allowing deploy-
ments in collaborative settings (e.g., various hospitals privately sharing medical informa-
tion to investigate rare diseases). The main goal of this section is to provide an under-
standing of the landscape of MLaaS in data-sensitive contexts through privacy-preserving
cryptographic computation (i.e. when the data sent to third parties for processing is never
decryptable). As a secondary goal, we explore the adaptability of current DL techniques to
cryptographic constructions. Privacy-Preserving Computation Techniques are often com-
bined with other techniques as described in Subsection 3.2.3. At those crossing points, we
detail the use of the adjacent techniques and their benefit for DL. Accordingly, while Dif-
ferential Privacy (DP) is a widespread technique in the field of PPDL [Aba+16a; EPK14;
Goo+14; JYS18; Pap+16; Pap+18b], we only include proposals that intersect with our
scope (we refer to previous work for details on DP [DP19]). Also, Federated Learning
(FL) is outside the scope of the paper, given its need for computing infrastructure and the
reduced use of cryptographic constructions in the aggregation phase.

PPCTs present two main challenges for proper application with Deep Learning: effi-
ciency and usability.

Efficiency. PPCTs offer a limited operation set and suffer from performance issues when
dealing with complex computations. While their deployment is more widespread
in less-stringent scenarios, such as private data aggregation or statistics [MZ17;
Ohr+16; SS08], their application for DL is not straightforward and introduces rea-
sonable delays. We consider that a proposal improves efficiency by introducing
modifications to previous protocols reducing their runtime on DL workloads.

Usability. The second weakness is related to the deployability of these techniques. Many
frameworks and tools ease the access for data scientists (not necessarily experts
in computing science) to complex DL [Aba+16b; Cho+15; Pas+17]. However,
adapting these frameworks to use PPCTs is complex. In this regard, we consider
improvements to usability if the proposal simplifies the solution’s adaptability to ex-
isting DL frameworks (i.e., by providing tools to reduce the overall programming
effort). Accordingly, our study includes works that propose Application Program-
ming Interfaces (API), compilers, or relevant practical tools that help implement

32

and deploy the theoretical solutions into practical applications, thus fostering their
usability.

Besides allowing for further improvements on the proposal, open-source implemen-
tations allow for the reproducibility of the results. Our study analyzes whether the code
matches the theoretical claims (i.e., if it fully implements the security mechanisms and
features described in the paper), the source code maintenance, and its integration with
existing frameworks (e.g., Tensorflow or Keras).

In summary, for each of the proposals using privacy-preserving computation tech-
niques for DL, we study the following: (i) the problem addressed, i.e., training or infer-
ence, (ii) the architecture proposed, i.e., centralized, distributed, or hybrid, (iii) the privacy
goals and adversarial model assumed, (iv) the particular techniques involved, i.e., SMPC,
HE, and others, and, (v) the issues considered regarding efficiency and usability.

To select relevant proposals, we conducted queries in various research repositories
and databases, looking for specific keywords (e.g., Privacy-Preserving, Deep Learning,
Secure [Multiparty] Computation or Homomorphic Encryption). Then, we select those
with higher impact (regarding the number of citations) and those published in top venues.
We read their abstracts to check whether they fit the scope of our study, which gave us an
initial set of works that we carefully analyzed. Then, we apply snowball sampling using
the references from the papers in the initial set to add further relevant works. We know this
process has limitations, and we might have left out good research works since sometimes
quality is related to popularity. Despite this limitation, our study successfully includes
all the relevant works proposing PPCTs for DL. While the study was initially carried out
in the first half of 2021, the study of the area has been continuous, with particular detail
on the topics related to this thesis, and the conclusions have been adapted to match the
current research directions. While the study was originally carried out in 2021, the queries
and searches have been frequently recreated to update this thesis’s state of the art.

3.2 Advanced Privacy-Preserving Computation Tech-
niques

From the initial protocols described in Subsection 2.4 of the previous chapter, more
advanced and complex protocols have introduced efficiency and versatility features. In
this section, we aim to overview these protocols and provide insights into their features as
these translate to the features that DL-based protocols exhibit. Subsection 3.2.1 covers the
constructions and improvements to HE. Subsection 3.2.2 aims to describe the significant
improvements in SMPC technologies with a link to DL. Subsection 3.2.3 describes a
family of techniques that combine different base cryptographic constructions to achieve
enhanced feature sets (e.g., enabling multi-arithmetic privacy-preserving processing).

33

3.2.1 Advanced HE Constructions

Homomorphic Encryption ciphertexts can contain a vector of values allowing for Single
Instruction Multiple Data (SIMD) operations, also known as packing. The combination
of packing with rotations allows the elaboration variations of algorithms, often resulting
in improved efficiency respecting classic Single Instruction Single Data (SISD) operation.
Most constructions in the HE realm have relied on adapting existing algorithms to the HE
realm.

Halevi and Shoup [HS14a] were the first to propose HE SIMD algorithms in their
adaption to HELib [HS14b]. In their paper, they provide details on various algorithms,
specifically those that allow using HE Packed vectors as usual operations. They cover
various algorithms, from individual entry selection to replication and matrix multiplica-
tion.

Cheon et al. [Che+19b] provide an extended relation of algorithms to provide boolean
comparison operations in the HE domain based on LHE schemes thanks to mathematical
properties and elaborating operations such as absolute value, square root, or comparison
operators.

3.2.2 Advanced SMPC Constructions

The basic techniques form the foundation for more advanced security, performance,
versatility, and usability in protocols. These protocols are nowadays at the core of many
of the proposals for PPDL. SPDZ [Dam+12] is a SMPC protocol for n parties secure
against the corruption of n − 1 parties, which highly improves the security of previous
approaches. It combines the following primitives: i) additive Secret Sharing and beaver
multiplication triplets for the computation, ii) SHE for data encryption and beaver triplet
computation, iii) ZKP to guarantee the correctness of the information, and iv) commit-
ments to avoid malicious inputs. It relies on a computationally expensive preprocessing
phase that reduces the cost of the subsequent processing phase. Overdrive [KPR18] re-
duces the reliance on public-key infrastructure in the preprocessing phase and the use of
Beaver Triplet distribution with HE and distributed decryption. Furthermore, it optimizes
the most expensive part of the protocol, the execution of ZKP, by producing a more ef-
ficient Schnorr-like protocol [Sch89]. MASCOT [KOS16] raises as the counterpart to
SPDZ. In MASCOT, authors introduce modifications and remove the complexity from
the preprocessing phase, where the secure protocol results in only six times slower than
its non-secure counterpart. The main drawback in MASCOT is the communication delay
incurred by using OT, which they overcome by introducing an OT extension that increases
throughput.

Other works have attempted to speed up the computation of these protocols. Tiny-

34

Garble [Son+15] presents a methodology optimizing multiple aspects of Yao’s Garble
Circuits and defining an option for them to execute a MIPS I processor instruction set.
The optimization permits scaling the computation and utilizing more complex directives,
such as those of a more complex computing architecture.

3.2.3 Hybrid Techniques

Most PPCTs have a limited instruction set efficient to operate in a specific arithmetic
domain. However, many problems require operating on different arithmetic domains,
often forcing one to approximate the problem to specific arithmetic types partially. These
approximations cause inefficiencies in terms of performance, precision, and flexibility.
For example, in the case of DL, linear functions are computed efficiently with floating-
point arithmetic, whereas non-linear activation functions require boolean arithmetic. To
avoid the use of approximations, some authors have proposed what we define as Hybrid
Techniques, also referred to as share/ciphertext conversion protocol [WGC18]. These
techniques permit switching from one PPCTs algorithm to a different one, thus adapting to
use the required arithmetic type while preserving the privacy of the construction. Hybrid
techniques effectively improve the solutions’ flexibility and preserve the computation’s
efficiency and accuracy since the internal functions do not require approximation.

Hybrid techniques might combine different base cryptographic protocols from a single
PPCTs, i.e., HE or SMPC, and propose conversions from one to the other [JVC18]. As
we analyze in Section 3.4.3, various proposals use such hybrid techniques due to the
arithmetic variety of internal functions applied in DL.

For HE, CHIMERA [Bou+20] presents a framework that allows switching between
three main HE schemes without decryption. Concretely, it proposes using BFV [FV12],
HEAAN (CKKS [Che+17]) and TFHE [Chi+16] for integer, floating-point and boolean
arithmetic respectively. It has a strong potential for DL since linear functions can be exe-
cuted in floating-point arithmetic, whereas activation functions rely on boolean arithmetic,
thus not needing an approximation.

Similar to HE, SMPC suffers from using a single arithmetic type. ABY [DSZ15]
(Arithmetic-Boolean and Yao’s sharing) gives the programmer access to three protected
data types: arithmetic secret shared, boolean secret shared, and Yao’s GC. The most
important contribution is that they provide efficient cryptographic bridges between the
different constructions. ABY is a crucial contribution as it fosters various subsequent
proposals in PPDL [Cha+17a; MR18; Ria+18].

Even though ABY offers a higher-level abstraction due to the provision of data types,
it remains a complex low-level notation, requiring detailed knowledge, and optimal use
remains a programmer’s responsibility. EzPC [Cha+17a] partially solves this problem by
adding a new layer of abstraction and generating a two-party computation protocol from
the high-level description of the language. This layer hides the cryptographic details from

35

the user and selects the parameters automatically. EzPC is a cross-compiler that translates
C++ into 2-party secure code using ABY beneath.

3.3 Machine Learning Approaches

ML and DL were not designed considering privacy and security goals. While the
research area of PPDL is relatively new, there are multiple precedents on private data
analytics and machine learning which are the basis of proposals for PPDL inference and
training. The application of PPCTs for data mining and machine learning solutions has
been addressed before the growth in popularity of DL [BR18; VC04]. Indeed, the idea of
secretly evaluating a neural network was first proposed in 2008 by Sadeghi and Schnei-
der [SS08] where the authors propose a distributed 2-party computation paradigm where
the security relies on the secrets each of the parties stores. The authors use SMPC based
on OT transforming the NN using a generalized universal circuit (i.e., any circuit can be
simulated in boolean arithmetic).

ML Confidential [GLN12] proposes an approach to use linear regression models with
LHE. This paper is one of the first attempts that propose a privacy-preserving machine
learning solution using encryption and covers various architectural issues and problems,
such as the polynomial approximations or the fixed-depth of circuits.

In CodedPrivateML [So+19], the authors train machine learning models (i.e., linear
and logistic regression) using Shamir’s secret sharing and speed it up with the Lagrange
coding. This paper proposes a solution based on cloud computing by distributing the
workload to train the algorithms.

Next in relevance, TASTY [Hen+10] presents a distributed 2-party proposal aiming
to combine the Paillier PHE cryptosystem with other structures to achieve the execution
of other operations, such as multiplication. Additionally, the authors present a compiler
that simplifies the translation of code written in the Keras framework [Cho+15] to the
TASTY protocol. It constitutes one of the first attempts to combine theoretical concepts
with actual deployments.

Collaborative data analytics have been an area of research for PPCTs. The work by
Ohrimenko et al. [Ohr+16] enables different parties to interact through Trusted Execution
Environment (TEE) and oblivious access to data structures. In this case, the performed
task is known by all the parties, but the access patterns are hidden, so no side channel data
is released.

These works are examples of the ideas that form the basis for posterior contributions
in DL inference and training, which we analyze in the following sections.

36

3.4 Privacy Preserving Deep Learning Inference

One of the main conceptions of MLaaS was the provision of services, whereby up-
loading a DL model could be used for inference. This process involves transmitting in-
formation that, in some cases, may be confidential. In this section, we analyze proposals
for protecting the privacy of the data sent for inference. There are three main approaches,
i.e., using HE, SMPC, or hybrid techniques. We also analyze proposals that aim to ease
the abstraction of these techniques for existing DL frameworks through programming
interfaces and tools (e.g., compilers).

3.4.1 PPDL Inference in Centralized Architectures with Homomor-
phic Encryption

One of the main goals framed in this section is to adapt Neural Networks to work with Ho-
momorphic Encryption Schemes of various types. As mentioned before, the emergence
of FHE schemes implied a step forward for PPDL. Due to the computational complexity
incurred by these schemes, the first approaches using FHE are designed for a centralized
environment and use high-performance hardware.

We consider a client-server scenario, where a client needs to outsource the compu-
tation of DL inference to a not-necessarily trusted server. For that, the client and server
rely on public-key FHE. The client performs the key generation, encrypts the data with
his public key, and sends the ciphertext to the server. The server receives the public
and relinearization keys and the ciphertext. The server can operate on the data through
privacy-preserving processing and return the result to the client. The client owns a private
key which he never released, therefore is the only person able to decrypt the informa-
tion. Also, we consider that the client performs no computation except light tasks before
encrypting or after decryption. For example, the client can perform padding to reduce
the load of convolutions since it is a soft task. Also, after decrypting the information,
the client can retrieve the relevant information entries instead of having the server post-
process the result.

Cryptonets [Gil+16; Xie+14] is considered the first shot at adapting DL to work with
LHE. The goal was to adapt the structures of a Neural Network to work to use only ad-
dition and multiplication. The authors propose pixel-wise encryption (i.e., a pixel per
ciphertext) and aim to improve inference time by packing the same pixel of multiple im-
ages. Concretely, the authors proposed a modification of the ReLU activation function
using a square function and substituting the max pooling layer with an average pooling
layer. However, this work does involve a significant amount of operations which may be
non-optimal. Faster Cryptonets [Cho+18] improves the original proposal using a quanti-
zation scheme, i.e., a pruning technique for neural networks and optimal approximations.

37

These optimizations reduce the number of operations performed, the width of the circuits,
and the number of performed operations. One of the areas for improvement of Cryp-
tonets [Gil+16] and its subsequent optimization in Faster Cryptonets [Cho+18] is that the
activation functions could be more precise, especially in the training phase. Finding a DL
model that converges with square activation functions is a rather brute-force procedure.
ReLU functions are paramount for the success of DL. Thus, in CryptoDL [HTG17], au-
thors propose different approaches to approximate the ReLU activation using low-degree
polynomials. Their solution relies on using the Chebyshev Polynomial approximation of
the integral of the sigmoid function. Furthermore, profiting from binary reductions, with
relatively high-degree polynomials, can be approximated with only log2(ON

D
) where ON

D

is the multiplication depth of the circuit.

Low-Latency Inference, LoLa [BGE19], supposed the latest evolution to the Cryp-
tonets protocol introducing new operation layouts. In this work, the authors cover dif-
ferent layouts or plaintext-ciphertext mappings for the vectorization of SIMD operations
for the first time. These mappings allow for faster inference, more complex NN, and
vectorized algorithms.

On a sideline, the procedure to achieve accurate predictions tackled Boolean Neural
Networks and Integer Neural Networks. TAPAS proposes optimizations in the domain of
Boolean arithmetic [San+18]. Authors propose using Binary Neural Network (BNN) and
the TFHE library [Chi+20a]. TAPAS allows first to make the matrix multiplication faster-
adapting multiplication functions to the XNOR gate and then to count the number of ones
in the result for the actual summation. TAPAS BNNs achieve a reasonable speedup for
Deep Neural Network (DNN) tasks but work less efficiently on Convolutional Neural Net-
work (CNN) tasks. Interestingly, the authors released this tool open-source, which uses
the general-purpose HE evaluation framework SHEEP [BS18]. In FHE-DiNN [Bou+18],
the contribution shifts the focus towards using discretized neural networks (i.e., integer
weights) based on boolean arithmetics on top of TFHE. The use of these primitives per-
mits reducing the size of the computation and an increase in performance. Given the na-
tive use of boolean arithmetics, they claim a performance improvement over Cryptonets.
However, due to the changes performed to the neural networks after training, there is a
reduction in the accuracy of the resulting model. Although the solutions achieved by these
papers show efficient and promising results, they shift the focus toward different trends
compared to DL state of the art.

As a last optimization line, some works strive to optimize the execution of the linear
activation part of Neural Networks. Wu et al. [WH12] provide one of the first proposals,
focusing on noise-efficient implementations of linear regression, mean, and covariance
with Somewhat Homomorphic Encryption. Due to the nature of SHE, their work tackles
noise management to ensure the operations performed allow correct decryption of the re-
sult. The work of Duong et al. [DMY16] goes one step beyond by implementing different
embeddings applied when the encoding is performed and used to speed up matrix multi-
plications. Specifically, they cover two different embeddings, the binary and non-binary,

38

whose placement varies in size and efficiency. These are similar to the replication factors
covered in the Matrix-Matrix multiplication algorithm; however, they only cover m × m
matrix multiplication, which could often result inefficient.

More recent works regarding algorithm adaptation have exploited SIMD and cipher-
text packing to combine additions, multiplications, and rotations. Specifically, Jiang et
al. [Jia+18] is a framework that relies on an encoding that accelerates matrix computa-
tions. Due to the improvements in these operations, the authors show an acceleration of
DL inference using a specific encrypted CNN model (not trained from encrypted data) to
classify images from the well-known MNIST dataset.

3.4.2 PPDL Inference in Distributed Architectures with Secure Mul-
tiparty Computation

We consider a scenario where a client needs to outsource the computation of DL inference
to a not-necessarily trusted party. For that, the client and server rely on flavors of SMPC.
The client performs some sharing of the information and sends the shares to non-colluding
parties. The parties perform blind computation if the DL model n on the shares, from
which they extract no information. The client must keep a share or ensure the parties are
honest. Finally, the client aggregates all shares obtaining the final result.

In this uncertainty of scalability and efficiency, a set of works arise, continuing the
ideas proposed in TASTY [Hen+10], with SMPC. Although the protocols of this section
use distributed architectures in general, these are often used to hide a two-party associa-
tion.

MiniONN [Liu+17] is the first proposal using boolean arithmetics for a distributed
architecture. It allows private inference (model and data) through SMPC based on Oblivi-
ous Transfer. According to the proposed protocol, any DNN can be transformed into Min-
iONN. The main disadvantage of this work is the inherent communication delay due to the
use of OT for SMPC. With the rise in using Yao’s Garbled Circuits, DeepSecure [RRK18]
proposes a variation of the preprocessing phase for optimizing the DL functions. Since
most overhead relies on the communication delay and the preprocessing phase of garbled
circuits, the authors propose an optimized version of DL models to reduce the information
exchanged. Still, using garbled circuits implies regarbling all the circuits for each input,
which entails considerable overhead.

XONN proposes optimized circuits of XNOR gates that permit faster computations of
matrix multiplications. Similarly to TAPAS [San+18], XONN [Ria+19] proposes using
the boolean representation of BNNs for inference using Yao’s Garbled Circuits. Addition-
ally, it introduces a pruning algorithm for the neural network to generate a compressed
representation for inference and improve the garbling to set a constant number of com-
munication rounds for architectures of up to twenty-one layers. Finally, they provide an
API that permits translating a Keras [Cho+15] model into the proposed protocol.

39

Dalskov et al. [DEK20] propose a quantization scheme that enhances transmission
and speeds up the processing of DNN, considering malicious adversaries. The proposal
is evaluated with Additive Secret Sharing, and the goal is to reduce the dependency on
Beaver Triplets. If those are needed, the goal is to reduce the communication overhead
using 16-bit and 8-bit floating-point numbers. This approach requires both the client and
server to perform the computation or the existence of a second independent server for
secret-sharing to be securely deployed.

3.4.3 PPDL Inference in Hybrid Architectures

In the previous section, we observed how HE is a good technique for computing linear
and polynomial operations. However, converting non-linear functions introduces a cost
of precision and efficiency. On the other hand, SMPC scales poorly to many parties due to
communication delays. Moreover, adapting a DL model to a single arithmetic type (e.g.,
integer, fixed-point, floating-point, or boolean) restricts its operations and deteriorates
accuracy. Hybrid techniques aim to bridge the best of both worlds by combining and
supporting operations in different arithmetic fields and bridging some gaps in previous
approaches.

Chameleon [Ria+18] is the first to propose a multi-arithmetic framework for DL. It
leverages ABY [DSZ15] to switch between different arithmetic types during computa-
tion. Concretely, it uses fixed-point arithmetic for the linear activation functions and
boolean (based on Yao’s Garbled Circuits and GMW [GMW87; Ode09]) for the non-
linear ones while profiting from the contributions presented by Cryptonets [Gil+16] and
CryptoDL [HTG17]. GAZELLE [JVC18] proposes a SMPC protocol based on a hybrid
approach for DL inference considering an HBC adversary. On the one hand, they use
Packed Additively Homomorphic Encryption (PAHE) for the linear algebra functions.
PAHE speeds up vector and matrix computations and is designed to avoid bootstrap-
ping and complex architectural encoding decisions. On the other hand, they use Yao’s
Garbled Circuits for non-linear functions (e.g., ReLU or MaxPool). Due to the need
to combine PAHE and GC, they create a cryptographic bridge for switching between
these cryptographic structures. In this way, they present a speedup of 30x compared to
Chameleon [Ria+18] and MiniONN [Liu+17]. The work of GAZELLE was a break-
through that was followed up and compared by different works. As an improvement to
GAZELLE, DELPHI [Mis+20] combines GC and quadratic polynomials for the activa-
tion functions. A fundamental aspect of DELPHI is the generation of several derived
models from the original using different activation functions. Depending on particular
goals, the activation functions can be substituted by either garbled circuits (i.e., accurate
approach) or quadratic polynomials (i.e., efficient approach). Since either performance
or accuracy is degraded, DELPHI uses a planner to calculate an optimal trade-off that
minimizes the loss. They also claim that the protocol permits reducing the amount of
information exchanged by 90% with respect to GAZELLE.

40

3.5 Privacy Preserving Deep Learning Training

While DL inference is a complex procedure when coupled with PPCTs, it ignores
many of the challenges that the more complex and intense computation of DL training
backpropagation involves. Among the challenges, the need to ensure unbounded compu-
tation and the approximations of not only the activation functions but also the derivatives
of the activation functions are challenges that these sections below need to address.

There are two prominent use cases for DL training. On the one hand, when a party
wants to outsource a model’s training to a third party without disclosing the dataset or
the model itself. On the other hand, in various scenarios, similar to Federated Learn-
ing [Kon+16], many parties want to interact to produce a DL model securely and preserve
the privacy of their respective datasets.

3.5.1 HE for PPDL Training

The first constructions to extend HE-based inference into training implement a two-party-
based computation where the client helps perform backpropagation. The use of HE for
PPDL training consists of the encryption of the dataset and the model. Then, it is sent
to a third party for blind computation over the encrypted data. After some epochs, the
information is returned to the initial user, who decrypts it.

Hesamifard et al. [Hes+18] propose a continuation to CryptoDL [HTG17] for training
with LHE. In addition to the feasibility, they test their approach on multiple datasets.
Given the lack of efficient bootstrapping, they opt for sending back the data to the client,
who re-encrypts it and sends it back to the server for computation. However, it does not
guarantee a holistic process and requires client interaction. Nandakumar et al. [Nan+19]
provide the first end-to-end proposal for privacy-enhanced training on the server side
based on HE. They adapt the complete DL pipeline, including the loss and stochastic
gradient descent functions. They implement optimizations, thanks to which they perform
encrypted training in 40 minutes.

3.5.2 SMPC for PPDL Training

Using SMPC for PPDL training consists of a client producing shares of the model and
dataset. Then the information is sent to non-colluding servers, which perform the compu-
tation blindly. After some epochs, the shares of the model are returned to the client, who
combines them into a working model.

Similarly to HE, most approaches relying on SMPC perform training among two-
party scenarios. Due to the peculiarities of SMPC, these protocols sometimes assume
the existence of a trusted third party that acts as a randomness provider. One of the first

41

attempts to perform PPDL training was proposed in 2017 by Chase et al. [Cha+17b]. In
their work, authors combine differential privacy for data protection with SMPC through
additive secret sharing for collaborative gradient descent computation. While it intro-
duces a secure collaborative protocol for computing DL training, a reasonable amount of
the protocol is protected by DP. The main drawback is the accuracy loss accounted for
due to the noise introduced to guarantee a privacy budget. In a more complex approach,
SecureML first proposed a semi-honest client-server distributed approach to training lin-
ear regression, logistic regression, and neural networks [MZ17]. The protocol consists
of two phases: an offline preprocessing phase and the private computation online phase.
The offline phase is expensive since it requires generating Beaver Triplets for the rest of
the computation. Thus, SecureML optimizes this generation using vectorized LHE and
OT. Then, the online phase uses Additive Secret Sharing, Beaver Triplets for the shared
computation, and Yao’s GC for bit-level arithmetics. They introduce a second server that
acts as a non-colluding party to relieve the client from computation requirements.

Other papers introduce various approaches to improve this efficiency. For example,
QUOTIENT [Agr+19] profits from OT-based SMPC to improve the adaptation tech-
niques such as batch normalization and introduce adaptive gradient methods to improve
training efficiency. Other protocols, such as FLASH [Bya+20; Cha+19], focus on improv-
ing malicious adversary framework protections. It includes Guaranteed Output Delivery,
which ensures that the protocol finishes even if the parties are dishonest and that the model
is delivered to all parties or none. For that, they create a bi-convey primitive that evolves
from a commitment scheme and permits two honest parties to discover another party who
is not honest.

3.5.3 Hybrid Techniques for PPDL Training

While some SMPC techniques are designed for three or more parties, their adaption to DL
is difficult. With hybrid techniques, we observe protocols adapting better to DL training.
These, however, are very varied and combine techniques in particular ways that enhance
their use for privacy-preserving Machine Learning.

As an evolution to ABY and EzPC (previously used for inference), ABY3 [MR18]
introduces layers for DL training and proposes a similar protocol allowing for 3-party
computation. It considers both HBC and a malicious adversary and integrates the proto-
col in a NN compiler. In a similar fashion, SecureNN [WGC18] improved based on Se-
cureML [MZ17] to introduce 3-party previous works allowing three independent servers
to perform privacy-preserving training and prediction. The protocol considers m parties
who want to share their data to train a model using three servers. Firstly, they use Secret
Sharing from the m parties onto the n servers. Then, two servers use Additive Secret
Sharing, which is collaboratively performed with the third server. The third server pro-
vides beaver triplets for multiplication and operates in a boolean sharing of some bits of
the computation. They also propose modifications and optimizations for ReLU and max

42

pooling, reducing up to 8 times the computation overhead. With a similar idea but gener-
alizing to a notion of n parties in n servers, POSEIDON [Sav+20] proposes a framework
for training DNNs based on Federated Learning and multi-key FHE. Concretely, multi-
key FHE permits the generation of multiple private keys tied to a single public key. This
way, each party performs encryption on its share, while decryption requires an agreement
between all the parties. Multi-key FHE uses SMPC protocols for key generation, boot-
strapping, and key-switching. POSEIDON modifies Federated Learning so that training
is fully executed under HE in multiple servers, and there is a hierarchical gradient aggre-
gation with HE.

3.6 Programming Interfaces for PPDL

While it is essential to improve the efficiency of PPDL techniques, Section 3.4 and
Section 3.5 show various new protocols with particularities in their design and implemen-
tation. As a common factor, PPCTs protocols require expert knowledge and mathematical
background for proper understanding and fine-tuning. Privacy and efficiency are two cor-
nerstones for PPDL deployment, but also usability and applicability of the techniques are
essential and desirable features. Authors have striven to ease the integration of PPCTs
into new and existing frameworks. This thesis is framed in the techniques that aim to
make PPCTs more affordable and straightforward for end-users.

The techniques proposed in the literature require expertise and mathematical back-
ground for appropriate deployment. Thus, This section analyzes proposals to bridge the
gap between the theoretical proposals and their actual implementations and deployment.
We cover two main types of contributions: works that propose compilers from high-
level programming languages into privacy-preserving protocols (e.g., using libraries) and
works that automatically transform outputs from common DL frameworks (e.g., Tensor-
flow, Keras, PyTorch) to PPDL protocols.

Armadillo [CDS15] was one of the first toolchains for compilation. It translated from
C++ code into HE operations based on a Boolean FHE scheme. However, it had signifi-
cant limitations in the capabilities since no abstraction to the boolean layer was provided.

Intel nGraph HE Tranformer [Boe+19a; Boe+19b; Boe+20] implements a compiler
and runtime environment for inference with HE over Tensorflow. A backend process ob-
tains the graph from Tensorflow, generates encrypted data, and executes the homomorphi-
cally encrypted inference. The first version [Boe+19b] relies on Intel nGraph [Cyp+18]
and implements high-level operations with HE to perform PPDL inference. Addition-
ally, nGraph HE implements optimizations for ciphertext packing that permit executing
SIMD operations (i.e., to improve data parallelism) but does not benefit from vectorized
linear algebra primitives (e.g., matrix multiplication or convolution). Thus, to benefit

43

from SIMD operations, users would require to program these primitives manually. Fur-
thermore, the activation functions only allowed for non-linear approximations with a low
degree. Thus, the second version of the compiler [Boe+19a] was designed to avoid exe-
cuting non-linear operations on ciphertexts by distributing the computations between the
server and the clients. Concretely, for those non-linear functions, the information is sent
back to the client, who decrypts it, executes the activation, and then sends back the results
to the server. MP2ML [Boe+20] is a version of Intel nGraph that supports Yao’s GC for
the computation of the activation functions (i.e., in a similar way as GAZELLE [JVC18]).

PlaidML-HE and TinyGarble2 present similar approaches, transforming high-level
representations into specific machine instructions relatable to cryptographic construc-
tions. PlaidML-HE [Che+19a] proposes a new HE compiler for PlaidML (a library for
speeding machine learning workloads using heterogeneous hardware backends). This
way, it provides an intermediate abstraction layer agnostic to the machine learning frame-
work that can be HE-interpreted. TinyGarble2 [Hus+20] presents an evolution of Tiny-
Garble [Son+15] that permits having an efficient representation of GCs, enabling the
execution of Neural Networks in shorter times. For that, they implement an interface to
C++ and a DL library containing primitives to build CNNs for inference.

CrypTFlow is an end-to-end approach that permits translating Tensorflow code to
different SMPC protocols [Kum+20a]. CrypTFlow has three components: i) Athos is an
end-to-end compiler from TensorFlow to a variety of semi-honest SMPC protocols, ii)
Porthos is an improved semi-honest 3-party protocol that is allegedly faster than State of
the Art tools, especially for the convolution operation iii) Aramis is a tool that converts
any semi-honest SMPC protocol into a SMPC protocol that provides malicious security
based on the use of TEEs.

Despite all the previous works, CHET [Dat+19] is the first compiler that emerged
as the first full-fledged tool to create homomorphically encrypted code from a high-level
representation. CHET aims at C++ code executed on SEAL [Res20] and integrates Deep
Learning capabilities. CHET introduces various improvements, such as efficient and au-
tomated parameter selection. EVA [Dat+20] improves CHET by introducing a Python
interface and reduces the complexity of various operations at the expense of removing
certain functionalities, such as complex vectorized operations. CHET [Dat+19] describes
naive descriptions of new vectorized Convolution and Matrix Multiplication algorithms.
These suppose the basis of some of the algorithms detailed in Chapter 4. Additionally,
CHET [Dat+19] and EVA [Dat+20] provide a relatively automated parameter selection,
but the behavior is simplistic and does not take into consideration certain classes of al-
gorithms (i.e., parameter-dependent algorithms). The process chooses a default scale and
replicates it as often as needed by the user-provided input-output precision.

In parallel to CHET, RAMPARTS proposes a compiler-oriented view to HE. RAM-
PARTS [Arc+19] relies on Palisade [PRR17] HE library and provides an environment to
develop applications (in the Julia language), simplifying the use of HE directives based

44

on existing public libraries. RAMPARTS combines Crucible, a tool for symbolic execu-
tion, and the PALISADE [PRR17] HE library. Crucible unrolls the code and transforms
it into a simple arithmetic circuit by Crucible that the PALISADE backend then inter-
prets. It also supports base vectorized operations and parameter selection supported by
the PALISADE library. Ver, it lacks support for floating-point arithmetic and relies on
general-purpose tools, which sometimes may not follow the efficient guidelines for Ho-
momorphic Encryption.

Since CHET, there have been multiple works aimed at improving its performance and
usability on different fronts, namely HELayers [Aha+23], HECO [Via+23], and Con-
crete [Chi+20b]. HELayers [Aha+23] is inspired by the findings of LoLa [BGE19] and
introduces the concept of tiling (i.e., making plaintext-ciphertext layout mappings with
different variations). While the mappings are standardized according to the LoLa find-
ings and some further development, the main contribution is the automatic setup of those
divisions of tiles. Their work supports variations of CNN algorithms, and they support
automatic tiling on those. Efficiency-wise, the use of tiling supposes a significant im-
provement with respect to what is proposed by CHET and nGraph.

HECO [Via+23] is an automatic vectorization compiler. It aims to produce vector-
ized SIMD algorithms versions from the initial non-vectorized version. For that, they
use multiple optimizations on the compiler. Unlike other tools, they produce LLVM
MLIR [Lat+21], enabling other high-level programming language optimizations (e.g.,
constant folding). After that, they produce HE-specific optimizations, often carried out
by other compilers. Next, they deal with ciphertext vectors for SIMD vectorization us-
ing analyzing insert and extract operations from vectors. The compiler assumes vectors
and matrices are encoded flattened in ciphertexts. Then, after any insert and extract op-
eration is performed on the plaintext, it stores an AST-like representation preserving the
information on the source operands and the shape of the input operands. Thanks to this
introspection, whenever an operation is performed on the ith element of a vector, the
compiler can analyze whether the operation has previously been performed. Although
HECO provides high-level programming language optimizations, using lower layers for
HE-specific optimizations results in semantically abstract notations often insufficient for
HE-like code.

Finally, Concrete [Chi+20b] is an evolution of the TFHE scheme [Chi+20a] turned
into a framework that focuses on usability and efficiency. Concrete supports various im-
provements to HE, such as programmable bootstrapping [CJP21], which introduces the
ability to perform certain operations as the ciphertext noise is reduced with bootstrapping.
Furthermore, it introduces high-level libraries that empower inexperienced users, such as
Concrete-Numpy. Since TFHE is a boolean scheme, the constraints apply differently than
in floating-point schemes such as CKKS, thus the ability to perform such tasks.

Finally, the PySyft initiative aims to provide end-user tools for inference and train-
ing [Ryf+18]. Although some tools progressively develop secure protocols, their re-

45

search value is still reduced. Some of the existing protocols combine PyTorch and
SPDZ [Dam+12]. Tensors built can be shared among the parties executing the computa-
tion, making it seamless. Similarly, TFEncrypted [Dah+18] is an open-source library that
applies changes to Tensorflow to make it usable with SecureNN and ABY3 as compiler
and runtime. As of March’23, PySyft and TFEncrypted have evolved into infrastructural
initiatives where secure deployments can be made.

3.7 Current Challenges and Research Directions

The analysis of the current state-of-the-art of PPCTs for DL provided by previous
sections helps outline the current challenges that need to be addressed by the community.
Table 3.1 and Table 3.2 summarizes the analysis of the proposals concerning the attributes
presented in Section 3.1. We group works depending on whether they address DL training
or inference (Table 3.1) or if they propose an API or tool to ease the use of the PPDL
techniques (Table 3.2). We first provide an analysis of these proposals and then summarize
some exciting remarks and takeaways from our study. For reference, the links to the open-
source repositories, when available, are provided in Table 3.3.

3.7.1 Analysis

Most PPCTs present common challenges in their application. Most proposals are focused
on theoretical contributions, whose translation into real-world implementations requires
expertise and remains lengthy. Furthermore, most proposals involve intricate procedures
for their parametrization and algorithmics.

HE evolution has brought multiple efficiency improvements, such as algorithm vector-
ization and SIMD. However, these present challenges in their application by introducing
a gap between classical algorithm development and vectorized algorithm development.
Furthermore, the already intricate parameter selection becomes more complex due to the
interrelations of vectorization with the circuit parameters.

SMPC proposals are often easier to implement, as their complexity relies on commu-
nication delays. However, their security often relies on a third party, which requires ex-
tended SMPC protocols to remove the third party if it becomes unavailable. Furthermore,
minimizing the number of communications and the overall computation is essential.

As we observe in the following subsections, existing problems in PPCTs often in-
crease when these are applied to Deep Learning.

46

Adv. Arith. SMPC HE
Pr

iv
ac

y
Te

ch
ni

qu
e

N
am

e

R
ef

er
en

ce

Y
ea

r

N
um

be
r o

fP
ar

tie
s

In
pu

tP
riv

ac
y

O
ut

pu
t P

riv
ac

y
A

rc
hi

te
ct

ur
al

Se
cr

ec
y

W
ei

gh
ts

Se
cr

ec
y

H
on

es
t-

B
ut

-C
ur

io
us

M
al

ic
io

us
In

te
ge

r
B

oo
le

an
Fl

oa
tin

g
Po

in
t

O
bl

i v
io

us
Tr

an
sf

er
Y

ao
’s

G
ar

bl
ed

C
ir

cu
its

A
dd

iti
ve

SS
&

B
ea

ve
r

Sh
am

ir
’ s

SS
Z

er
o-

K
no

w
le

dg
e

Pr
oo

fs
C

om
m

itm
en

t S
ch

em
es

P a
rt

ia
lly

H
om

om
or

ph
ic

L
ev

el
le

d
H

om
om

or
ph

ic
Fu

lly
-H

om
om

or
ph

ic
T

E
E

D
iff

er
en

tia
lP

riv
ac

y
E
ffi

ci
en

c y
Im

pr
ov

em
en

t
U

sa
bi

lit
y

Im
pr

ov
em

en
t

O
pe

n
So

ur
ce

Im
pl

em
en

ta
tio

n
Pa

pe
r-

C
od

e
M

at
ch

in
g

C
od

e
M

ai
nt

en
an

ce
Te

ns
or

flo
w
/K

er
as
/P

yT
or

ch

DL Inference

H
E

TASTY† [Hen+10] 2010 2 ✓ ✕ ✓ ✓ ● ● ▲ ▲ ✓ ✓ ✕ ✓

Cryptonets [Gil+16] 2014 2 ✓ ❙ ✓ ✓ □ ■ ● ▲ ▲ ✓ ✓ ✕ ✕

CryptoDL [HTG17] 2017 2 ✓ ❙ ✓ ✓ □ ■ ● ▲ ❙ ✕ ? ? ?
TAPAS [San+18] 2018 2 ✓ ❙ ✓ ✓ ● ● ▲ ▲ ✓ ✓ ✕ ✕

Faster Cryptonets [Cho+18] 2018 2 ✓ ✓ ✓ ✓ □ ■ ● ■ ▲ ❙ ✕ ? ? ?
FHE DiNN [Bou+18] 2018 2 ✓ ❙ ✓ ✓ ■ □ ● ▲ ▲ ✓ ✓ ✕ ✕

Jiang et al. [Jia+18] 2018 2 ✓ ❙ ✓ ✓ □ ■ ● ▲ ▲ ✓ ✓ ✕ ✕

LoLa [BGE19] 2019 2 ✓ ❙ ✓ ✓ ● ● ▲ ▲ ✓ ✓ ✕ ✕

H
yb

ri
d Chameleon [Ria+18] 2018 2 ✓ ❙ ✓ ✓ ● ● ● ● ● ▲ ❙ ✕ ? ? ?

GAZELLE [JVC18] 2018 2 ✓ ❙ ✓ ✓ □ ● ■ ● ● ▲ ▲ ✓ ✓ ✕ ✕

Delphi [Mis+20] 2020 2 ✓ ❙ ✓ ✓ □ ● ■ ● ● ▲ ▲ ✓ ✓ ✕ ✕

SM
PC

Reza Sadeghi et al. [SS08] 2008 2 ✓ ❙ ✓ ✓ ● ● ▲ ❙ ✕ ? ? ?
MiniONN [Liu+17] 2017 2 ✓ ❙ ✓ ✓ ● ● ▲ ❙ ✕ ? ? ?

Deep Secure [RRK18] 2018 2 ✓ ❙ ✓ ✓ ● ● ● ▲ ❙ ✕ ? ? ?
XONN† [Ria+19] 2019 2 ✓ ❙ ✕ ✓ ● ● ● ▲ ▲ ✕ ? ? ✓

Dalskov et al. [DEK20] 2020 2 ✓ ❙ ✓ ✓ ● □ ■ ● ● ■ ▲ ▲ ✓ ✓ ✓ ✕

DL Training

H
E Hesamifard et al. [Hes+18] 2018 2 ✓ ❙ ✕ ✓ □ ■ ● ▲ ❙ ✕ ? ? ?

Nandakumar et al. [Nan+19] 2019 2 ✓ ❙ ✕ ✓ □ ■ ● ▲ ❙ ✕ ? ? ?

H
yb

ri
d ABY3 [MR18] 2018 3 ✓ ✕ ✓ ✓ ● ● ● ■ ● ● ● ● ▲ ▲ ✓ ✕ ✕ ✕

SecureNN [WGC18] 2018 3 ✓ ✕ ✓ ✓ □ ● ■ ● ● ● ▲ ▲ ✓ ✓ ✕ ✕

Poseidon [Sav+20] 2020 n ✓ ✕ ✕ ✓ ● ● ● ● ▲ ❙ ✕ ? ? ?

SM
PC

Chase et al. [Cha+17b] 2017 n ✓ ✓ ✕ ✓ ● ● ■ ▲ ❙ ✕ ? ? ?
SecureML [MZ17] 2017 2 ✓ ✕ ✓ ✓ □ ● ■ ● ● ● ● ▲ ▲ ✓ ✓ ✕ ✕

QUOTIENT [Agr+19] 2019 2 ✓ ❙ ✕ ✓ ● ● ▲ ❙ ✕ ? ? ?
Coded Private ML [So+19] 2019 n ✓ ✕ ✓ ✓ ● ● ▲ ❙ ✕ ? ? ?

FLASH [Bya+20] 2020 4 ✓ ✕ ✓ ✓ ● □ ■ ● ● ● ▲ ❙ ✕ ? ? ?
✓ Provisioned | ✕ Not Provisioned | ❙ Feature Dependent Provision | ● Secure Use | Partially Secure Use

□ Emulation Arithmetic | ■ Approximated Arithmetic |▲ Improvement | ❙ Not Improved
■ Not Covered Technique | † Repeated Entry

Table 3.1: Summary of the papers covered in the State of the Art Section with Character-
istics for Privacy-Preserving Deep Learning.

PPDL Inference

Privacy-preserving inference is one of the main pillars of PPDL. HE-based approaches
are more widespread than SMPC-based ones. This prevalence is mainly due to the match-
ing of HE-based architectures with the model of MLaaS cloud providers. While HE-based
approaches suppose an increased overhead due to the complexity of routines, the compu-

47

Adv. Arith. SMPC HE

Pr
iv

ac
y

Te
ch

ni
qu

e

N
am

e

R
ef

er
en

ce

Y
ea

r

N
um

be
r o

fP
ar

tie
s

In
pu

tP
riv

ac
y

O
ut

pu
t P

riv
ac

y
A

rc
hi

te
ct

ur
al

Se
cr

ec
y

W
ei

gh
ts

Se
cr

ec
y

H
on

es
t-

B
ut

-C
ur

io
us

M
al

ic
io

us
In

te
ge

r
B

oo
le

an
Fl

oa
tin

g
Po

in
t

O
bl

i v
io

us
Tr

an
sf

er
Y

ao
’s

G
ar

bl
ed

C
ir

cu
its

A
dd

iti
ve

SS
&

B
ea

ve
r

Sh
am

ir
’ s

SS
Z

er
o-

K
no

w
le

dg
e

Pr
oo

fs
C

om
m

itm
en

t S
ch

em
es

Pa
rt

ia
lly

H
om

om
or

ph
ic

L
e v

el
le

d
H

om
om

or
ph

ic
Fu

lly
-H

om
om

or
ph

ic
T

E
E

D
iff

er
en

tia
l P

riv
ac

y
E
ffi

ci
en

cy
Im

pr
ov

em
en

t
U

sa
bi

lit
y

Im
pr

ov
em

en
t

O
pe

n
So

ur
ce

Im
pl

em
en

ta
tio

n
Pa

pe
r-

C
od

e
M

at
ch

in
g

C
od

e
M

ai
nt

en
an

ce
Te

ns
or

flo
w
/K

er
as
/P

yT
or

ch

APIs & Compilers

H
E

TASTY† [Hen+10] 2010 2 ✓ ❙ ✓ ✓ ● ● ▲ ▲ ✓ ✓ ✕ ✓

Armadillo [CDS15] 2015 2 ✓ ✕ ✕ ✓ ● ● ● ❙ ▲ ✓ ✓ ✓ ✓

PySyft [Ryf+18] 2018 n ✓ ✕ ✕ ✓ ● ● ● ● ● ● ● ❙ ▲ ✓ ✕ ✓ ✓

TFEncrypted [Dah+18] 2018 n ✓ ✕ ✕ ✓ ● ● ● ● ● ● ● ❙ ▲ ✓ ✕ ✕ ✓

nGraph HE [Boe+19b] 2018 2 ✓ ✕ ✕ ✓ ● ● ● ❙ ▲ ✓ ✓ ✓ ✓

XONN† [Ria+19] 2019 2 ✓ ❙ ✕ ✓ ● ● ● ▲ ▲ ✕ ? ? ✓

CHET [Dat+19] 2019 2 ✓ ❙ ✓ ✓ ● ● ● ❙ ▲ ✓ ✓ ✓ ✕

nGraph HE 2 [Boe+19a] 2019 2 ✓ ✕ ✕ ✕ ● ● ● ❙ ▲ ✓ ✓ ✓ ✓

MP2ML [Boe+20] 2019 2 ✓ ❙ ✓ ✓ ● ● ● ● ● ❙ ▲ ✓ ✓ ✓ ✓

PlaidML HE [Che+19a] 2019 2 ✓ ❙ ✓ ✓ ● ● ● ❙ ▲ ✓ ✓ ✕ ✓

RAMPARTS [Arc+19] 2019 2 ✓ ❙ ✓ ✓ ● ● ❙ ▲ ✕ ? ? ✕

CrypTFlow [Kum+20a] 2020 3 ✓ ✕ ✓ ✓ ● ● ● ● ● ● ■ ❙ ▲ ✓ ✓ ✓ ✓

TinyGarble2 [Hus+20] 2020 2 ✓ ❙ ✓ ✓ ● ● ● ● ● ● ❙ ▲ ✓ ✓ ✕ ✕

EVA [Dat+20] 2020 2 ✓ ❙ ✓ ✓ ● ● ❙ ▲ ✓ ✓ ✓ ✕

Concrete [Chi+20b] 2021 2 ✓ ❙ ✓ ✓ □ ■ ● ▲ ▲ ✓ ✓ ✓ ✕

HELayers [Aha+23] 2022 2 ✓ ❙ ✓ ✓ ● ● ▲ ▲ ✓ ? ? ✕

HECO [Via+23] 2022 2 ✓ ❙ ✓ ✓ ● ● ▲ ▲ ✓ ✓ ✓ ✕

✓ Provisioned | ✕ Not Provisioned | ❙ Feature Dependent Provision | ● Secure Use | Partially Secure Use
□ Emulation Arithmetic | ■ Approximated Arithmetic |▲ Improvement | ❙ Not Improved

■ Not Covered Technique | † Repeated Entry

Table 3.2: Summary of the API and Compiler proposals covered in the State of the Art
Section.

tation left on the clients is minimal. On SMPC-based infrastructure, more parties partici-
pate, often relying on trusted third parties to issue parameters (e.g., beaver triplets). Also,
sometimes, these require some interaction with the client, which distances them from the
current MLaaS model.

As a common flaw, HE and SMPC proposals require modification of the DL model
to match the corresponding cryptographic protocols, affecting accuracy and hindering
efficiency with existing frameworks. Thus, the current trend shifts from HE-dependent
and SMPC-dependent architectures into Hybrid Architectures, where specific challenges
are less impactful due to working in multi-arithmetic environments. As an example,
GAZELLE [JVC18] combines efficient constructions for linear computations (e.g., ef-
ficient HE schemes) and boolean SMPC for non-linear functions.

48

Proposal Ref. URL

Dalskov et al. [DEK20] github.com/data61/MP-SPDZ
PySyft [Ryf+18] github.com/OpenMined/PySyft
CrypTFlow [Kum+20a] github.com/mpc-msri/EzPC
CHET/EVA [Dat+19; Dat+20] github.com/microsoft/EVA
ABY3 [MR18] github.com/ladnir/aby3
PlaidML HE [Che+19a] github.com/plaidml/plaidml
TinyGarble2 [Hus+20] github.com/IntelLabs/TinyGarble2.0
MP2ML [Boe+20] github.com/IntelAI/he-transformer
nGraph HE 2 [Boe+19a] github.com/IntelAI/he-transformer
nGraph HE [Boe+19b] github.com/IntelAI/he-transformer
SecureNN [WGC18] github.com/snwagh/securenn-public
Dalskov et al. [DEK20] github.com/anderspkd/SecureQ8
TFEncrypted [Dah+18] github.com/tf-encrypted/tf-encrypted
Delphi [Mis+20] github.com/mc2-project/delphi
SecureML [MZ17] github.com/shreya-28/Secure-ML
Cryptonets [Gil+16; Xie+14] github.com/microsoft/CryptoNets
Jiang et al. [Jia+18] github.com/K-miran/HEMat
TAPAS [San+18] github.com/amartya18x/tapas
GAZELLE [JVC18] github.com/chiraag/gazelle_mpc
FHE DiNN [Bou+18] github.com/mminelli/dinn
TASTY [Hen+10] github.com/tastyproject/tasty
HELayers [Aha+23] github.com/IBM/helayers
HECO [Via+23] github.com/MarbleHE/HECO
Concrete [Chi+20b] github.com/zama-ai/concrete

Table 3.3: URLs for the open-source repositories of the different contributions analyzed.

PPDL Training

While works intended for PPDL inference are progressively improving performance
and usability, HE-based or SMPC-based solutions for training are still immature. Like
PPDL inference, the major bottleneck for PPDL training is its high computational over-
head, preventing its application to complex, real-world use cases. Indeed, we observe
that to lower the computation; the proposed test neural network architectures are often
of reduced complexity (i.e., low number of layers and dimensions). Furthermore, PPDL
training in distributed settings requires higher network communications. Comparing the
performance over Wide Area Networks (WAN), where the network bandwidth is lower
than Local Area Networks, shows improvable delays, as shown in SecureNN [WGC18].
Finally, most PPDL inference contributions provide specific implementation details of the

49

https://github.com/data61/MP-SPDZ
https://github.com/OpenMined/PySyft
https://github.com/mpc-msri/EzPC
https://github.com/microsoft/EVA
https://github.com/ladnir/aby3
https://github.com/plaidml/plaidml
https://github.com/IntelLabs/TinyGarble2.0
https://github.com/IntelAI/he-transformer
https://github.com/IntelAI/he-transformer
https://github.com/IntelAI/he-transformer
https://github.com/snwagh/securenn-public
 https://github.com/anderspkd/SecureQ8
https://github.com/tf-encrypted/tf-encrypted
https://github.com/mc2-project/delphi
https://github.com/shreya-28/Secure-ML
https://github.com/microsoft/CryptoNets
https://github.com/K-miran/HEMat
https://github.com/amartya18x/tapas
https://github.com/chiraag/gazelle_mpc
https://github.com/mminelli/dinn
https://github.com/tastyproject/tasty
https://github.com/IBM/helayers
https://github.com/MarbleHE/HECO
https://github.com/zama-ai/concrete

different DL components (e.g., linear layers and polynomial approximations strategy). In
training, we have observed that some proposals omit details such as loss function or non-
linear derivative approximation.

Due to the inefficiency of using such techniques for training, most deployments inte-
grate Federated Learning in cleartext for improved training efficiency with PPCTs for
the secure exchange of the model weights, lining up with proposals such as POSEI-
DON [Sav+20].

Programming Interfaces and Compilers

An active area of research aligned which this thesis is the provision of programming
interfaces and compilers that allow for smooth integration of existing frameworks and DL
projects using PPCTs. For end-users to become familiar with these technologies, it is es-
sential to enable tools in native languages. In the data science domain, interfaces adapted
to DL frameworks such as Tensorflow [Aba+16b], Keras [Cho+15], or Pytorch [Pas+17]
are fundamental. We highlight Intel nGraph HE, where proposals from various papers
were integrated into an open-source tool [Boe+19a; Boe+19b; Boe+20]. Additionally, we
highlight proposals that elaborate conversion routines (e.g., TASTY [Hen+10] or CrypT-
Flow [Kum+20a]) to adapt existing trained models to PPDL protocols quickly.

While most tools already present improvements to perform such techniques, re-
cent proposals have explored various fronts (e.g., the reduction of algorithmic complex-
ity [Aha+23; BGE19]). While reducing and standardizing ciphertext formats is essential,
the seamless adaptation of algorithms for HE is also a critical research direction [Via+23].

Other Challenges and Considerations of PPDL

Most PPCTs rely on a single arithmetic type. Classic computation has typically been
composed of multiple datatypes in mind and efficient ways to combine them. DL in par-
ticular needs boolean and floating-point arithmetic types for linear and non-linear activa-
tions. In this line, hybrid approaches have shown a strong impact, and solutions such
as CHIMERA [Bou+20] open new paths for optimization. While authors have used
integer and boolean arithmetic for discretized and Binary Neural Networks, these are
rare and difficult to adapt to modern DL solutions for complex problems. Accordingly,
CKKS [Che+17], which natively supports floating-point arithmetic, has been used in var-
ious proposals that propose different approximations from integer arithmetic. Indeed, this
is the main scheme adopted in the contributions of this thesis. We refer the reader to
Section 2.3.4 of the previous chapter for a description of CKKS.

As explained in Section 2.2, we consider that a proposal provides input privacy if the

50

data processing reveals no user information. All the covered works provide input pri-
vacy (indeed, this is a key feature of PPCTs). Output privacy guarantees that the result
of a DL algorithm does not reveal additional information from the data. It protects DL
models against attacks such as membership inference or model inversion. While this be-
longs to a broader and active area of research (i.e., adversarial machine learning [BR18]),
only two works propose mechanisms to incorporate output privacy guarantees, i.e., Faster
Cryptonets [Cho+18] and the work by Chase et al. [Cha+17b]. Most works on privacy-
preserving inference assume that DL models are securely pre-trained (i.e., they do not
contain or reveal private information). Additionally, they consider the cloud provider as
the model owner or a trusted third party for the training (i.e., it establishes security mea-
sures and does not attack the model). Accordingly, while the proposals might not address
output privacy, providing such a guarantee would involve combining it with other tech-
niques, such as Differential Privacy. Regarding model secrecy, most of the works address
both weight secrecy and architectural secrecy. However, the latter is more difficult to
guarantee, given the patterns in common DL layers and activations. Furthermore, these
do not prevent other attacks of retraining other models [Tao+23].

Most of the literature usually assumes an HBC adversary who is limited in offensive
capabilities. Considering this kind of adversary lowers the performance requirements.
Multiparty computation protocols can be transformed into the malicious adversary set-
ting through commitment schemes, ZKP, and distributed randomness protocols [BGW88;
Cho+85; Fel87; GMW91; GRR98]. However, it is unclear whether cryptographic bridges
such as the ones implemented in GAZELLE [JVC18] or ABY [DSZ15] can be easily
attested and what their performance would be on the malicious setting. Indeed, some
contributions tackling the malicious adversary setting rely on trusted hardware (i.e., TEE)
for code verification and confidentiality [DEK20]. Exploring the translation of hybrid
protocols to malicious adversary models and efficient ZKP for distributed protocols is
paramount for the real-world deployment of these solutions.

3.7.2 Takeaways

We enumerate key takeaways from the study of the current state of the art, highlighting
lessons learned and points that deserve further research effort. We also highlight the
contributions of this thesis that address these points:

1. While classical cryptography is relatively easy to use (e.g., due to easy-to-use
and curated libraries), modern cryptography, such as HE, requires more tuning
and expertise. It calls for schemes (e.g., CKKS [Che+17]) and solutions (e.g.,
ABY [DSZ15]) that allow for automatic analysis and adaptation to specific cir-
cuits and the election of optimal parameters [VJH21]. For efficient use of PPDL,
these solutions should implement hybrid techniques to offer protocol conversion
mechanisms, improving the overall performance of multi-arithmetic systems. In

51

Chapter 4 we describe algorithms that automatically adapt the internal linear
algebra operation used in common DL layer so they can be adapted to HE.

2. Parametrization of PPCTs remains a complex problem that requires particular
knowledge of each technique. Lowering the entry barrier supposes introducing
automatic tools for parametrization that permit users to develop code with the spe-
cific PPCTs without digging down into the particularities of each technique. Fur-
thermore, using each PPCTs effectively is an ongoing effort. Providing tools and
guidelines for using each technique remains a desirable goal. In Chapter 5, we
provide a solution for automatic parameter selection in CKKS, relying on Lin-
ear Programming and Fuzzy Logic to provide an optimal solution in line with
the user needs in terms of efficiency, security, and precision.

3. Even if proposals release their source code openly for reproducibility, comparing ef-
ficiency and accuracy among contributions is complex due to different benchmark-
ing across articles. Different works claim different runtimes and accuracy across
DL models and computing architectures. Additionally, due to ad-hoc optimizations
applied to each proposal, we cannot easily measure the overall impact of each opti-
mization on the protocol. It is thus necessary to provide standardized trained models
and benchmarks for an accurate and fair comparison of the proposals. Again, this
would need to ease the integration of new works with said standard benchmarks.
Contributions like Gouert et al. [GMT23] show the importance of providing open
benchmarking of solutions to understand each solution’s best settings and applica-
tions.) It also t shows that the different low-level libraries for HE has pros and
cons under different settings. Thus that is desirable to create high-level compilers
that are not tied to a specific library. In Chapter 5 we describe the design of a
software compiler that abstracts the high-level requirements for the vectoriza-
tion, circuit adaptation, and automatic parameter selection from the lower-end
HE library, thus making it inter-operable with different HE frameworks and
libraries.

4. To lower the entry barrier for data scientists, it is essential to provide privacy-
preserving extensions for existing DL frameworks, e.g., Tensorflow or PyTorch.
This adaptation requires scientists to i) select a privacy-preserving solution or pro-
tocol, ii) implement adaptions to the protocol, and iii) provide an interface or bridge
with the used DL framework. That is, implementing a complete software stack. It is
a challenging yet desirable goal to build standard solutions to adapt existing PPDL
solutions by minimally changing the original code. The compiler presented in
Chapter 6 provides a high-level and easy-to-use API for data scientists that al-
lows them to seamlessly and easily adapt existing projects in Python for their
use with low-level HE frameworks.

The following takeaways are raised, but these are not explicitly addressed by this thesis:

52

1. Efficiency and usability are confronting goals. Most works focused on efficiency
improvements modify the original protocols to a great extent, which is detrimental
to their integration into other frameworks. Meanwhile, works focusing on usabil-
ity (i.e., APIs and compilers) involve few adjustments from basic techniques and
original protocols but have significantly worse runtime performance than those fo-
cused on efficiency. Additionally, as analyzed before, current APIs and compilers
are unsuitable for PPDL training, an area deserving more attention.

2. Except for classic Yao’s Garbled Circuits, most PPCTs reveal the performed op-
erations. As pointed out in Section 2.2, architectural secrecy ensures the non-
revelation of the architecture to untrusted parties. In contexts where the cloud server
is not a trusted third party, the common patterns in neural network operations allow
inferring the neural network architecture to the party performing the processing.
Therefore, to better protect the privacy and security of the DL models, works must
hide data and processing (e.g., using whenever available Indistinguishable Obfus-
cation [JLS20]).

3. In general, protocols assume participating entities in these protocols are honest but
curious. However, previous experience shows that honest-but-curious settings are
limited, e.g., due to internal security breaches or insiders. We note a lack of propos-
als considering a malicious setting, limiting the deployment of PPCTs to scenarios
where honest-but-curious adversaries cannot be guaranteed.

4. Similar to other Privacy-Enhancing Technologies, there is the potential misuse of
PPCTs by malicious adversaries. Indeed, since PPCTs ensure the input privacy of
users, this protection can conceal malicious behavior. For example, a user trying to
extract model parameters will carefully craft input data to create inference samples
that yield knowledge about the model. Detecting these adversarial samples might
require monitoring the inputs. In such cases, the detection mechanisms become
unusable due to the use of PPCTs. Thus, exploring how to integrate this technology
in adversarial settings would be desirable.

In the following chapters, we address some of the issues in this analysis, precisely
concerns regarding the usability and simplicity of Homomorphic Encryption. Concretely,
we propose new and simplified vectorized algorithms for Deep Learning with HE, a sim-
plified parametrization based on simple parameters, and a symbolic compiler unifying all
these concepts.

53

54

Chapter 4

Optimization of Deep Learning Linear
Algebra Algorithms for Packed
Homomorphic Encryption

Chapter 3 outlined the main lines and problems in the different Privacy-Preserving
Computation Techniques. One of the challenges regarded the usability and complexity of
Homomorphic Encryption. This chapter addresses the creation of vectorized algorithms
with Packed Homomorphic Encryption for Deep Learning.

The rest of this chapter is organized as follows. First, we introduce the problem and
the motivation in Section 4.1. Second, we provide background around Packed Homo-
morphic Encryption and outline the adversarial model in Section 4.2. Then, we describe
the different algorithms in Section 4.3. Next, we conduct a formal analysis of the perfor-
mance of the algorithms in Section 4.4. Consecutively, we empirically evaluate a working
prototype in well-defined tests in Section 4.5. Finally, in Section 4.6, we summarize the
contributions of this chapter.

4.1 Introduction

Homomorphic Encryption (HE) schemes enable performing operations over the en-
crypted ciphertext without decrypting. After the key milestone of Gentry [Gen09], HE
has undergone significant development to improve its efficiency [DM15]. One such fun-
damental improvement is Ciphertext Packing, which allows the encoding of various en-
tries of plaintext data (encoded as a vector) within a single ciphertext [BGH13]. Packing
improves efficiency through Packed Homomorphic Encryption (PaHE) since the individ-
ual operations to the ciphertext affect all the individual entries of the underlying plaintext

55

1 2 3 4

Plaintext Vector

1 2
3 4

Encoded Vector Packed Ciphertext2D Matrix

1 2 3 4 0 0 0 0 1 2 3 4 0 0 0 0

RC-Formatting

Matrix Formatting

Encoding

Decoding

Encryption (𝑝!)

Decryption (𝑠!)

𝑁 𝑁𝑛

		𝒎𝒐𝒅	𝑸

Figure 4.1: Encryption and layout mapping procedure for Homomorphic Encryption
Schemes based on Learning with Errors (LWE).

vector. Figure 4.1 shows how HE packing works for the logical encoding of a 2D Matrix.
First, we transform the matrix into a vector using a Row-Column format. Then, we log-
ically encode the vector in a plaintext polynomial (packed) and encrypt it. Next, we can
operate the ciphertext using Single Instruction Multiple Data (SIMD), where we modify
all the encrypted vector (matrix) elements with each instruction.

Unfortunately, applying ciphertext packing in Deep Learning (DL) is not straightfor-
ward. Indeed, the linear algebra operations used in the internal structures highly affect the
performance [Dat+19]. Understanding the impact of the ordering and election of internal
operations on global performance is critical for designing efficient algorithms. However,
this complex task requires a proper understanding of cryptographic protocols.

4.1.1 Precedents

Two main works have addressed the operation of PaHE with DL or linear algebra opera-
tions. Halevi and Shoup [HS14a] were the first to propose HE SIMD algorithms in their
adaption to HELib [HS14b]. In their work, they provide details on various algorithms,
specifically those that allow using HE Packed vectors as usual operations. They cover
multiple algorithms, from individual entry selection to replication and matrix multipli-
cation. In contrast to the work covered in this chapter, Halevi and Shoup [HS14a] pro-
vide more general algorithms that consider the minimization of HE parameters but do not
strictly relate them to Deep Learning. Additionally, in our paper, we specifically cover the
execution of algorithms for matrix multiplication on arbitrary matrix dimensions, while
they only cover square matrices.

CHET [Dat+19] is a compiler for DL inference that considers an analysis of the
HEcircuits to generate efficient HE code. In their work, the authors propose algorithms
for convolution and matrix multiplication. However, CHET algorithms suffer from limited
applicability due to lacking any initial representation or result transformation guidelines.

While other works have briefly described techniques to perform linear algebra op-
erations on packed ciphertexts, how to fully take advantage of it for DL is still to be
demonstrated.

56

4.1.2 Motivation

Over the last few years, there has been significant progress on the cryptographic proto-
cols and theories related to ciphertext packing, which promises substantial improvements
in the application of HE in complex, distributed applications such as DL for healthcare
remote analysis and monitoring. However, adapting existing operations for SIMD over
ciphertext packing is non-trivial.

Existing works have attempted to automatically transform linear algebra algorithms
so they can be applied using SIMD over packed ciphertexts [Dat+19; HS14a]. How-
ever, these works provide simplistic views of the required algorithms, which limit their
reproducibility and implementation in real-world architectures.

Moreover, the algorithms are described and tested for isolated computations, far from
the complex workflow and interconnections from the internal layers of Deep Learning.
Since the input and output encoding of ciphertext packing differs from regular operations,
it is necessary to account for the different formats of the inputs and outputs in each layer
of the DL architecture and how these affect the overall performance.

For example, when using SIMD operations, it is required to transform the output of a
convolutional layer to be a valid input for subsequent dense layers. These transformations
have not been described or accounted for the overall overhead in previous works. Also,
this transformation requires different adaptions depending on specific details of the DL
layer, e.g., stride or padding. Furthermore, the last entries overflow to the first positions in
rotations with packed ciphertexts. Our work shows how some algorithms profit from this
overflow to perform computation. Overall, existing proposals either leave the adaptation
to HE on the user [HS14a] or provide algorithms that are not general for inputs of any
size [Dat+19].

4.1.3 Contribution

This chapter provides a comprehensive solution to the research challenge of efficiently
adapting the operations of Convolutional Neural Network (CNN) for their use on packed
vectors. A key aspect in the design of the algorithms is that they work on arbitrary-sized
input matrices and vectors, and thus they can adapt to images of any size. We provide
a holistic view of the DL inference process by not only understanding the individual
linear operations required by the algorithms but also the collective relationship of the
different layers. During the design process, it is imperative to note that the connections
required to link the layers in a DL architecture can be a substantial burden. This is a recent
finding that cannot be overlooked. Accordingly, we conduct a thorough analysis of the
implication of the algorithms and provide recommendations according to these insights
for the integration in DL projects.

57

4.2 Background

This section provides a basis for the notation and operations used in the remainder of this
chapter. We first describe the adversarial model and the privacy requirements assumed in
Subsection 4.2.1. Then, we cover the more essential concepts regarding Packed Homo-
morphic Encryption in Subsection 4.2.2.

4.2.1 Adversarial Model

This work considers an Honest-but-Curious adversary [GMW87; GV88; Lin20], a pas-
sive adversary that complies with the protocol and does not tamper with the data for
malicious purposes. However, it tries to learn as much information from data exchanges.
HE inherently guarantees input privacy (i.e., the confidentiality of the data sent to the
cloud during the inference process is guaranteed). However, HE does not account for the
output privacy of the model. Thus, in our work, we assume that the service provider either
is proprietary or has access to the model.1.

Furthermore, for all of our use cases, we consider the set of parameters established for
the Learning with Errors problem following the guidelines described in the Homomor-
phic Encryption Security Standard [Alb+18]. Thus, these parameters provide a secure
environment for the execution of the algorithms.

4.2.2 Packed Homomorphic Encryption

Homomorphic Encryption (HE) is a property of an encryption scheme that permits oper-
ating with the ciphertext while translating those changes to the underlying plaintext. This
work focuses on widely used HE schemes based on variations of the Ring Learning with
Errors (RLWE) problem [Reg09].

Concretely, we focus on Packed Homomorphic Encryption (PaHE)
schemes [BGH13], which enable the introduction of more than one plaintext ele-
ment per ciphertext [BGH13]. In RLWE-based schemes, we parametrize them based
on a tuple (N,Q, σ). We represent the ring polynomial coefficient modulus Q with a
Chinese Remainder Theorem (CRT) coefficient moduli chain qi, allowing rescaling.
The polynomial degree N defines the maximum number of plaintext elements n that a
ciphertext can accommodate, i.e., the maximum length of a vector that can be encoded
(see Figure 4.1). Schemes such as BFV [FV12] allow packing as many elements as the
length of the polynomial (i.e., n ≤ N). In the scheme CKKS [Che+17], though, due
to the complex number packing, it is only possible to pack half of the vector size (i.e.,

1Output privacy, e.g., preventing model inversion or membership inference attacks, requires mechanisms
during training, such as Differential Privacy, which provides privacy protection against adversarial attacks.
These are out of this thesis’s scope, focusing on inference and assuming a pre-existing trained model.

58

1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1⊕ 9 9 9 9 9 9 9 9=

8 7 6 5 4 3 2 1 7 6 5 4 3 2 1 0⊖ 1 1 1 1 1 1 1 1=

8 7 6 5 4 3 2 1 1 1 1 1 2 2 2 2⊙ 8 7 6 5 8 6 4 2=

8 7 6 5 4 3 2 1 ≪ 6 5 4 3 2 1 8 7=2

≫ 6 7 8 1 2 3 4 5=31 2 3 4 5 6 7 8

Figure 4.2: SIMD Operations allowed by CKKS Packed Homomorphic Encryption
Scheme.

n ≤ N/2). This thesis treats parameter N independently of the scheme (i.e., n = N).
However, all the conclusions are valid to CKKS by substituting by n = N/2. Finally, σ
represents the error distribution often fixed for HE schemes.

The routines of an HE scheme are the following:

• A key generation routine produces a public key pk and its corresponding private
key sk, defined by Keygen(N,Q, σ)→ pk, sk, where N and Q are the homomorphic
encryption parameters.

• The encryption routine takes a public key pk and a plaintext vector v to generate a
ciphertext vector ct ∈ ZQ[x]/(xN+1) in a ring ZQ[x]/(xN+1) such that Enc(v, pk)→
ct. The inverse decryption routine takes a ciphertext ct and uses the private key sk

to obtain the plaintext vector such that Dec(ct, sk)→ v.

• The different evaluation routines compute over the ciphertext ct one of the follow-
ing operations: element-wise sum (⊕), element-wise subtraction (⊖), Element-wise
multiplication (⊙), and left/right cyclic rotation (≪ and ≫ respectively). Note we
represent operations differently to highlight the element-wise nature of those. We
depict the SIMD behavior of operations in Figure 4.2.

For simplicity, in the algorithms, we assume that a vector’s encryption routine also com-
prises the previous encoding. Similarly, the decryption routine includes the decoding after
decryption. We refer the reader to Section 2.3 for more details on packing, encoding, and
encryption.

4.3 SIMD Algorithms for Deep Learning

As detailed in Chapter 2, most DL building blocks rely on standard linear algebra oper-
ations (e.g., matrix or vector multiplication). Some of these operations are not available
in the encrypted domain (e.g., accessing an arbitrary entry of an array). Furthermore,
existing optimizations for running classical linear algebra on computers, such as tiling

59

memory accesses in matrix multiplications [VS02], are not possible when the smallest
unit considered is a packed HE ciphertext (i.e., a polynomial in ZQ[x]/(xN + 1)). Thus, it
is necessary to develop focused algorithmic optimizations for these ciphertexts.

In this section, we provide general algorithms to adapt linear algebra operations so
they can exploit the potential of SIMD operations in DL while working on HE ciphertexts.
Concretely, we propose descriptions of algorithms that operate on arbitrary matricesM ∈
Rh×w (i.e., of height h and width w).

Additionally, since DL architectures consist of connected layers of different natures,
the representations between these layers need to be compatible. This compatibility means
that the output of SIMD operations resulting from a given layer needs to be usable for
the input of the following layer. While previous works have proposed SIMD functions
for these layers, they have only provided partial examples, not giving a holistic view of
the DL pipeline and not considering the interconnections of the layers [Dat+19; HS14a].
Indeed, as we show in Section 4.5, the data transformations have a considerable overhead
which the DL design phase should account for.

The ciphertext encodes vectors of size N when dealing with PaHE. However, CNNs
operate over matrices which require transforming matrices into vectors (see Figure 4.1).
We consider a standard representation that we refer to as Row-Column (RC) format,
where the 2D matrix is flattened row by row (Equation 4.1). This format allows the
representation of information with the smallest N. Accordingly, in this work, we provide
algorithms to transform the RC format to the appropriate Initial Representation for the
algorithm and Result Transformation algorithms for returning to the RC format.

RC(M) = {M0,0,M0,1, ...,M0,w−1,M1,0, ...,Mh−1,w−1} (4.1)

In a nutshell, the processing of each layer requires the following algorithms (executed
before, during, and after the actual data processing):

1. Initial Representation (IR) algorithms provide the corresponding layer with an
appropriate representation of the data for executing the algorithm (i.e., according to
the requirements of the layer).

2. Algorithm Execution (ALG) algorithms are the actual execution of the internal
operations over the data. We next describe the convolution blocks (i.e., convolu-
tional layer, pooling layer, and activation function) and dense blocks (i.e., dense
layer and activation function).

3. Result Transformation (RT). Due to the nature of SIMD operations, the algo-
rithms usually introduce some extra, irrelevant data in the result (e.g., redundant or
padded). Also, different SIMD operations produce different output formats. Thus,
we elaborate dedicated algorithms to extract the relevant output information and

60

turn it back into a format suitable for the next layer. We note that the RT process
can often be combined with the IR of the following layer.

4.3.1 Notation

We use M ∈ Rh×w to represent a matrix M of dimensions h × w. Also, we use Mi, j to
refer to the entry on row i and column j of the matrix.

Many of the algorithms rely on binary bitmasks to obtain relevant information. These
are composed of binary values. In the description of the algorithms, we assume bitmasks
are initially filled with 0, and we express a condition to get the positions (indexes) where
entries are set to 1. We use the parameter t (bitmask[t] ∈ ZN2), which defines such
indexes. For example, for a bitmask where even indexes are 1, we denote the mask as
bitmask[t]← {t mod 2 = 0}.

In HE, the ciphertext representation uses integer ring polynomial representation, un-
like DL floating point representation. This problem has multiple approaches, such as
fixed point representations or CKKS encoding [Che+17]. The algorithms provided here
are represented generically without discussing the specific representation (i.e., the only
requirement is the availability of the operations defined in Section 4.2.2).

In the following sections, we provide the general algorithms that allow the adaptation
of common layers in CNNs, i.e., convolutional and dense blocks. Then, we provide a dis-
cussion on how to use activation functions (which are non-linear) in the context of PaHE
Figure 4.3 provides a summary overview of the application of the different algorithms in
a CNN pipeline.

4.3.2 SIMD Convolutional Layer

Computing a classical 2D convolutional layer involves a relationship between an input
bi-dimensional matrix region and a bi-dimensional filter. The convolution can combine
structures such as padding, stride, or pooling layers. Accordingly, the algorithms defined
for PaHE should also account for using these variants.

This section presents a new algorithm for convolution, dubbed the Streamlined Con-
volution Algorithm. It allows combining convolutional, pooling, and activation layers in
subsequent blocks, neglecting the cost of initial representation and executing a single re-
sult transformation algorithm (i.e., we can use the output representation of the algorithm
arbitrarily). We first describe the convolution algorithm with stride and the result trans-
formation algorithm. Then, we provide its integration with padding and average pooling
layers. For reference, Appendix A details the convolution algorithms that extend and gen-
eralize previous work [Dat+19], which we use as a baseline comparison in Section 4.5.

61

Co
nv

ol
ut

io
na

l
La

ye
r

Initial Representation Algorithm Execution Result Transformation

Streamlined 2D
Convolution

(Alg. 1)

Streamlined
Convolution Result

Transformation
(Alg. 3)

Po
ol

in
g

La
ye

r
De

ns
e

La
ye

r

IR/RE-Diagonal
Matrix Multiplication

(Alg. 5)

Streamlined
2D Padding

(Alg. 4)

Diagonal Matrix
Multiplication

(Alg. 4)

IR/RE-Diagonal
Matrix Multiplication

(Alg. 5)

IR-Matrix A (Alg. 6)

IR-Matrix B (Alg. 7)

Matrix-Matrix
Multiplication

(Alg. 8)

RE-Matrix-Matrix
Multiplication

(Alg. 9)

Ac
tiv

at
io

n
Fu

nc
tio

n
La

ye
rs

Taylor Polynomials

Linear Regression

Chebyshev
Polynomials

Figure 4.3: Overview of the different algorithms needed to perform a Convolutional Neu-
ral Network with Homomorphic Encryption.

Streamlined Convolution Algorithm

The convolution algorithm takes as input a plaintext filter F ∈ R fx× fy of dimensions
fx × fy. The filter is applied to a ciphertext vector ct ∈ ZQ[x]/(xN + 1) that corresponds to
an encrypted input matrix, i.e., ct = Enc(M ∈ Rh×w, pk), with pk being the encryption key
andM the plaintext input matrix linearized. The algorithm leverages that the dimensions
of filters are shorter than input matrices, and we have plaintext access to those. Thus, it
computes the convolution between each filter pixel and the input matrix (i.e., represented
by a ciphertext) and adds the partial results for each pixel. The algorithm is described in
Algorithm 1.

We denote the linearized format of the matrix as Streamlined Backward Convolution
Format (SCBF) since it depends on the information of previous layers. For multiple con-
secutive convolutions, the algorithm requires some information to determine the layout of
the input vector. Concretely, in the execution of layer l, the algorithm receives as input the
product of strides from previous layers, i.e., Sx =

∏︁l−1
i=0 si

x and Sy =
∏︁l−1

i=0 si
y, where si

x, s
i
y

are the strides on x and y axis of the i-th consecutive convolutional layer. Furthermore,
the algorithm also requires the dimensions of the first encoded matrix, i.e., (h0,w0). These
define the capacity of the algorithm to perform operations on the information. Whenever

62

we execute a convolution, the result format depends on these values.

For the first layer, we use the Row-Column format, a subset of the SCBF format where
Sx = 1 and h,w = h0,w0.

Finally, if the convolution uses padding, the algorithm relies on the PADDING function,
which we describe in the next section.

Algorithm 1 Streamlined 2D Convolution
Input: cS CBF

t ∈ ZQ[x]/(xN + 1) = Enc(M ∈ Rh×w, pk), F ∈ R fx× fy , (sl
x, s

l
y), p, (Sx,Sy),

h0,w0

Output: conv ∈ ZQ[x]/(xN + 1) in SCBF format

function Convolution(ct,F , sx, sy, p, Sx,Sy, h0,w0)
hout ← ⌊

h− fx+2·p
sl

x
⌋ + 1

wout ← ⌊
w− fy+2·p

sl
y
⌋ + 1

cpad
t ← Padding(cS CBF

t , p, (Sx,Sy), (h0,w0))
for i← 0, fx do

for j← 0, fy do
rot ← cpad

t ≪ (i · w0 · Sx + j · Sy)
conv = conv ⊕ rot ⊙ Fi, j

end for
end for
return conv

end function

Streamlined Padding Algorithm

The insertion of padding is common in convolutional layers to ensure the preservation of
details in the corners of matrices when using filters. In general, if the padding is added
on the first layer of the CNN, we can apply it on the cleartext matrix (i.e., applied by the
client) and encrypt afterward. However, if the padding is not present on the initial layer,
it is the responsibility of the server to execute it. For that, we propose Algorithm 2, where
based on the structure of the SCBF format, it performs padding with little computational
effort, as opposed to the base algorithm described in Appendix A. The algorithm has two
main tasks. First, it rotates the relevant information according to the padding needed for
the first row. Then, using a bitmask, it introduces zeroes in the appropriate positions. Note
that, for notation clarity, we perform an inversion of the bitmask (i.e., zeroes become ones
and vice versa) denoted as 1 − bitmask[t].

Streamlined Average Pooling Layers

Similar to the usage of stride during the convolution operation, pooling layers allow for
reducing the overall complexity required to process the information. Additionally, they

63

Algorithm 2 Streamlined 2D Padding
Input: cS CBF

t ∈ ZQ[x]/(xN + 1) = Enc(M ∈ Rh×w, pk), p, (Sx,Sy), h0,w0

Output: cpad
t ∈ ZQ[x]/(xN + 1) = Enc(M′ ∈ Rhpad×wpad , pk), in SCBF format

function Padding(ct, p, Sx, Sy, h0, w0)
hpad ← h + 2 · p
wpad ← w + 2 · p
cpad

t ← cS CBF
t ≫ (w0 + 1) · Sx · p

bitmask[t] ← {t = i · w0 · Sx + j · Sy | i = ⌊t/w0⌋, j = t mod w0 | i < p ∨ i ≥
(hpad − p) ∨ j < p ∨ p ≥ (wpad − p)}

cpad
t ← cpad

t ⊙ (1 − bitmask[t]) ▷ Inverted bitmask
return cpad

t

end function

highlight the most relevant features for the classification, extracting higher informative
areas and discarding less informative ones. While max pooling is a popular choice for
DL since it allows the extraction of pronounced and sharp changes [Goo+16] (e.g., edges
in pictures for image segmentation), the max function is non-linear. Thus, its usage with
current Homomorphic Encryption schemes remains complex and inefficient. In our work,
we cover linear average pooling, which results in less inefficiency 2 , but extracts smoother
changes from pictures [Goo+16].

The encrypted version takes an input ciphertext vector ct ∈ ZQ[x]/(xN + 1) = M ∈

Rh×w, and a pool P ∈ Rpx×py . The adaptation to SIMD HE can be obtained by using the
convolution algorithm presented in §4.3.2, but using a dedicated filter for the pooling,
defined as:

P = {Pi, j =
1
n
| 0 ≤ i < px, 0 ≤ j < py, n = px · py} (4.2)

Similar to the convolution algorithm, the pooling layer also requires meta-information
from previous layers.

Streamlined Convolution Result Transformation

The previously presented algorithms can be arbitrarily combined between themselves and
activation functions, incurring a minimal multiplication depth and the number of multi-
plications per layer. The only drawback is its combination with other types of layers (e.g.,
the dense layer). For that, we provide a function allowing the user to return to RC format
to become compatible with other layers. The process depicted in Algorithm 3 may not be
the most efficient depending on the subsequent layer. If that is the case, the lines detailed
as formatting in blue and with the formatting comment may swap for a more appropriate
layout. This algorithm receives a ciphertext vector ct ∈ ZQ[x]/(xN + 1) =M ∈ Rhout×wout ,

2We note that so-called hybrid approaches, such as GAZELLE [JVC18], are potential options for eval-
uating boolean non-linearities. However, they rely on other privacy-preserving computation techniques.

64

being the encrypted result of the convolutions of which we stored the output dimensions
hout × wout. Additionally, as in the previous examples, it is necessary to keep track of the
product of strides in previous layers (Sx,Sy) and the initial dimensions (h0,w0).

Algorithm 3 Streamlined Convolution Result Transformation
Input: cS CBF

t ∈ ZQ[x]/(xN + 1) in format, Rhout×wout , h0 × w0, (Sx,Sy)
Output: cRC

t in RC format

function RT-SCR-RC(ct,w0,Sx,Sy)
for i← 0, hout do

for j← 0,wout do
bitmask[t]i ← {t = j · Sy + (i · w0 · Sx)}
shi f ti ← t − (i ∗ hout + j) ▷ Formatting
cRC

t = cRC
t ⊕ (cS CBF

t ⊙ bitmask[t]i) ≪ shi f ti

end for
end for
return cRC

t

end function

4.3.3 SIMD Dense Layer

The Dense or Fully-Connected Layer of a Neural Network performs a weighted con-
nection of all the inputs to all outputs. It is a linear transformation that a matrix-vector
multiplication can represent, where a weight matrixW ∈ Rh×w is multiplied by the vector
x ∈ Rn. The weights matrix contains parameters fine-tuned during the training. The input
vector comprises all the outputs from the n neurons in the previous layer.

This section proposes algorithms for efficiently applying SIMD operations over en-
crypted data on Dense Layers. These algorithms generalize two previously proposed
algorithms for DL inference: a Diagonal Matrix-Vector multiplication [HS14a] and a
Matrix-Matrix multiplication [Dat+19]. While these matrix multiplication algorithms re-
port simplistic examples, in our work, we describe a generalization together with all the
transformation algorithms required for the internal connections.

Diagonal Matrix-Vector Multiplication

This algorithm is based on the multiplication of a ciphertext vector x ∈ ZQ[x]/(xN + 1)
(i.e., data is encrypted, thus providing input-privacy) by a cleartext matrix W ∈ Rh×w

(i.e., the weights are not encrypted, thus not providing weight-secrecy). The algorithm
decomposes the matrix in the extended diagonals (i.e., diagonal vectors of length h). Then
the input vector x is rotated, multiplied by the diagonal matrix, and added. In this way, the
algorithm ensures that each entry of the ciphertext vector multiplies each matrix value.
Halevi and Shoup were the first to describe this approach in HElib [HS14a]. In their

65

algorithm, authors do not cover the application to HE where the number of elements in
the ciphertext n is fewer than the size of the ciphertext N. We provide an explanation and
an IR algorithm to solve this obstacle. We also introduce a generalization of the algorithm
that enables its application to arbitrary size matrices in Algorithm 4. We discuss the
practical implications of its application to HE and its relation to other layers in Section 4.4.

Algorithm 4 Diagonal Matrix Multiplication
Input: ct ∈ ZQ[x]/(xN + 1) = Enc(v ∈ Rn),M ∈ Rh×w, pk)
Output: result

function DiagonalMatMul(ct,W)
hext ← 2⌈log2(h)⌉

wext ← 2⌈log2(w)⌉

α← max(hext,wext)
spacing← N

α

cext
t ← SwitchSpacing(ct)

for i← 0, α do
di ← {W j,(i+ j mod w) | 0 ≤ j < h}
cext

ti ← cext
t ≪ (i · spacing)

dext
i ← Enc(di,N)

result ← result ⊕ (dext
i ⊙ cext

ti)
end for
return result

end function

The algorithm takes advantage of the overflow of the input vector during rotations,
i.e., when the last values move to the first positions. In HE, the size of the underlying
slots is determined by N, which is a power of 2. Introducing a small plaintext vector
within a larger ciphertext would prevent us from preserving the overflow behavior. Thus
we propose a preprocessing step to keep the overflow happening.

The algorithm relies on two preprocessing steps for correctness. First, to enforce an
overflow in longer vectors, the matrix W ∈ Rh×w is extended to the closest power of 2
in both dimensions, resulting in (hext = 2⌈log2(h)⌉,wext = 2⌈log2(w)⌉). Second, based on these
new dimensions, a spacing (∆) is computed to move and split each entry of the plaintext
vector uniformly within the ciphertext vector. This way, the shifts can be weighted by
the spacing, and the overflow is kept. Concretely, the spacing is computed as follows:
∆ = N

max(hext ,wext)
∈ Z. The denominator takes the maximum since a matrix multiplication

either reduces or increases the size of the matrix. Note that since N is a power of 2, and
so are hext and wext, the result is an integer spacing value, also a power of 2. Algorithm 5
shows the algorithm for these preprocessing steps. The algorithm is adapted to switch
from a ∆i spacing between vector elements to ∆ f spacing. In this way, the algorithm can
be used both as the RT of a dense layer and the IR of a subsequent dense layer.

66

Algorithm 5 Initial Representation and Result Transformation for Diagonal Matrix Mul-
tiplication
Input: ct ∈ ZQ[x]/(xN + 1) = Enc(v ∈ Rn, pk), ∆i, ∆ f

Output: cext
t ∈ ZQ[x]/(xN + 1)

function SwitchSpacing(ct,∆i,∆ f)
shi f t = ∆ f − ∆i

for i← 0, n do
bitmask[t]i ← {t = i ∗ ∆i}

cext
t ← cext

t ⊕ ((bitmask[t]i ⊙ ct) ≫ (i ∗ shi f t))
end for
return cext

t

end function

Matrix-Matrix Multiplication

We propose an algorithm for a matrix-to-matrix multiplication, which takes as a starting
point an example provided in CHET [Dat+19] for matrices of 3x3. Besides offering a
general description to apply this in arbitrary size matrices, we also provide the IR and RT
algorithms so these matrix multiplications can be chained together in a DL architecture.

We assume that we want to multiply two matrices A ∈ RhA×wA and B ∈ RhB×wB , which
are encrypted and formatted in Row-Column format, cA

t ∈ ZQ[x]/(xN + 1) = Enc(A ∈
RhA×wA , pk) and cB

t ∈ ZQ[x]/(xN + 1) = Enc(B ∈ RhB×wB , pk). The key concept for the
algorithm is the replication of the RC matrix representation. These special and alternative
replications permit linear computation of all the necessary combinations. Thus, the main
complexity of the algorithm resides in the Initial Representation algorithms. Once this is
completed, the overall multiplication complexity is very low.

For matrix A = {Ai, j | 0 ≤ i < hA, 0 ≤ j < wA}, its placement over the vector is
repeated alternatively according to the formula cPA

t = {cPA
tk = Ai, j | 1 ≤ i < hA, 1 ≤

j < wA, 0 ≤ k =
⌈︂

i+ j·wA
wB

⌉︂
< hA · wA · wB}. Thus, each element Ai, j of matrix A is

consecutively repeated wB times in the vector representation vA (e.g., for A = [1, 2, 3],
cPA

t = [1, 1, ..., 2, 2, ..., 3, 3, ...]). Algorithm 6, shows the process to prepare the matrix cPA
t

from a Row Column representation of A denoted as cA
t .

For matrix B = {Bi, j | 1 < i < hB, 1 < j < wB}, its transformation involves repeat-
ing multiple times the vector according to the formula cPB

t ∈ ZQ[x]/(xN + 1) = {cPB
tk =

B
(k mod wB),(

⌈︃
k

wB

⌉︃
mod hA)

| 0 ≤ k < hB ·wB · hA}. Thus, the Row-Column representation of the

matrix B is repeated hA times (e.g., for B = [1, 2, 3], cPB
t = [1, 2, 3, ..., 1, 2, 3]. Algorithm 7

shows the algorithm to prepare the matrix cPB
t .

Once both matrices are transformed into the specified layout, Algorithm 8 performs
element-wise multiplications of the vectors (obtaining a vector cC

t = cPA
t ⊙cPB

t) and applies
wA rotations and sums to the product, obtaining: cC′

t =
∑︁hA

i=0 cC
t ≪ N − (i · wB).

67

Algorithm 6 Initial Representation for Matrix A in Matrix Multiplication
Input: cA

t ∈ ZQ[x]/(xN + 1) = Enc(A ∈ RhA×wA , pk), wB

Output: cPA
t

function PrepareMatrixA(cA
t ,wB)

for i← 0, hA · wA do
bitmask[t]i ← {t = i}
cA

ti = bitmask[t]i ⊙ cA
t

partial← partial ⊕ (cA
ti ≫ (i · (wB − 1))

end for
for i← 0,wB do

cPA
t ← cPA

t ⊕ (partial ≫ i)
end for
return cPA

t

end function

Algorithm 7 Initial Representation for Matrix B in Matrix Multiplication
Input: cB

t ∈ ZQ[x]/(xN + 1) = Enc(B ∈ RhB×wB , pk), hA

Output: cPB
t

function PrepareMatrixB(cB
t , hA)

for i← 0, hA do
result ← result ⊕ (cB

t ≫ (i · hB · wB))
end for
return result

end function

Algorithm 8 Matrix-Matrix Multiplication
Input: cPA

t ∈ ZQ[x]/(xN + 1), cPB
t ∈ ZQ[x]/(xN + 1), RhA×wA , RhB×wB

Output: cC′
t ∈ ZQ[x]/(xN + 1)

function MatrixMatrixMul(cPA
t , c

PB
t)

cC
t ← cPA

t ⊙ cPB
t

for i← 0,wA = hB do
cC′

t ← cC′
t ⊕ (cC

t ≫ (N − (i · wB))
end for
return cC′

t

end function

However, due to the nature of the algorithm, this result contains extra spacing that
needs to be discarded. Concretely, wB relevant items in the vector (i.e., items from the
actual outcome of the multiplication) are followed by wB non-relevant ones (i.e., irrelevant
artifacts). These are discarded in a Result Extraction algorithm to finally get the Row-
Column representation of the multiplication (see Algorithm 9, where cC′

t is the result with
spacing that needs to be transformed, and cA×B

t is the output of the transformation).

68

Algorithm 9 Result Extraction Matrix-Matrix Multiplication
Input: cC′

t ∈ ZQ[x]/(xN + 1), RhA×wB

Output: cA×B
t ∈ ZQ[x]/(xN + 1) in RC format:

function RE-MatrixMatrixMul(cC′
t)

bitmask[t]← {0 ≤ t < wB}

for i← 0, hA do
bitmask[t]i ← bitmask[t] ≫ wB

cC′
ti ← (cC′

t ≪ (i · wB)) ⊙ bitmask[t]i

cA×B
t ← cA×B

t ⊕ cC′
ti

end for
return cA×B

t

end function

4.3.4 Activation Functions

Neural Networks have excelled at classification and regression tasks because they can
map non-linear distributions. Activation functions are a crucial component of such suc-
cess, and their integration within FHE schemes is a hot research topic in the literature.
Linear approximations of various kinds are among the most successful yet straightfor-
ward proposals to introduce activation functions in HE-based DL. Authors have proposed
solutions ranging from alternative polynomials [Gil+16; Xie+14], Taylor and Chebyshev
Polynomials [HTG17] or simple linear regressions [ISY20; WH12]. The common goal of
these works is to obtain a low-degree polynomial to approximate the non-linear behavior
as accurately as possible. This chapter assumes that the activation functions have been
approximated to polynomials using existing proposals. Thus, computing an activation
function to Packed Homomorphic Encryption does not require any particular format or
construction as it applies the transformation to all the slots of the ciphertext. We can often
insert the activation layers with other layers or building blocks of the layers (i.e., algorithm
execution and result transformation) without changing the final result. In Section 4.4.3,
we provide insights on where introducing activation functions for the convolutional and
dense blocks would be more or less desirable.

4.4 Efficiency Analysis of Algorithms

The previous section presented algorithms for SIMD execution of CNN inference. This
section formally analyzes the algorithms’ efficiency and performance impact. Indeed, effi-
ciency is one of the biggest challenges for applying HE for DL. We first define the metrics
used to measure efficiency. Second, we provide some insights regarding applying rota-
tions and large ciphertext vectors. Finally, we analyze all the algorithms in terms of the
proposed metrics. That enables us to provide a series of guidelines for their application.

69

4.4.1 Efficiency Metrics

Generally, HE operations are performance-wise heavy to execute over ciphertexts. Our
analysis focuses on the transformations applied to ciphertexts. Plaintext operations have
a negligible impact on the computation; thus, we do not account for them in the analysis.
For evaluating these algorithms, we rely on four metrics that define the efficiency of a
circuit C:

Multiplication Depth (OD) defines the maximum number of consecutive products that
an HE ciphertext needs to apply in a given circuit C. The multiplication depth directly
impacts the parametrization of HE schemes, specifically in N and Q. In terms of cleartext
operations, N defines the polynomial degree. Thus, a bigger N would involve operating
over larger degree polynomials (i.e., more coefficients to compute per ciphertext oper-
ation). Also, working with bigger Q involves computing more remainders. In Leveled
Homomorphic Encryption (LHE) Schemes, each multiplication usually requires a rescal-
ing operation to reduce the underlying noise. Therefore, we consider the need for one
rescaling per OD (i.e., per multiplication). In this case, we need OD different moduli (qi)
in a polynomial coefficient modulus Q. In direct relation with Q, N often defines a maxi-
mum capacity for a Q (i.e., increasing the OD may not only involve increasing Q but also
N). The optimization of these parameters is of paramount importance to obtain better
runtimes. For all these reasons, keeping a minimal depth of the circuit is very important
for achieving efficiency in the desired computation, which justifies why OD is one of the
metrics analyzed for the efficiency of the algorithms.

Operation Cost differs across the different available computations in HE. Multiplication
is the most costly since it requires multiplication and is paired with a relinearization phase
(i.e., preventing the polynomial degree from growing) and a rescaling phase (i.e., reduc-
ing the noise scale). The next more costly operation is rotation, which involves generating
different Galois Keys. In CKKS, if the encoding scale s is chosen the same as the small-
est modulus prime qi, we can neglect the noise and depth cost. Element-wise additions
are the lowest cost operation and are considered linear in computation and noise growth.
For the rest of the analysis, we denote the addition and subtraction complexity (Osum) as
the number of sums (and subtractions) required by a circuit. Likewise, we consider the
multiplication complexity (Omul) and rotation complexity (Orot) as the number of multi-
plications and rotations in the circuit.

Memory Complexity (Omem) accounts for the number of ciphertexts needed in memory
to execute one of the algorithms. Given the large memory size of ciphertexts, minimizing
the number of ciphertexts simultaneously residing in the main memory is essential.

Memory Constraints (Ocon) determines the constraints that an algorithm imposes on the
size of plaintext vectors n it operates with, so these can fit in ciphertext with N slots (i.e.,
n < N). If the plaintext vectors do not fit in the ciphertext, the circuit would require
an extended vector representation (i.e., the plaintext vectors are packed within multiple
ciphertexts). In general, for most algorithms, we consider that for an input matrixM ∈

70

Metric OD Osum Omul Orot Omem Ocon

Value 1 2 · r r r 2 · r -

Table 4.1: Efficiency analysis of Rotation of a big cleartext vector when it is packed over
multiple ciphertexts (Algorithm 10)

Rh×w, we can compute the algorithm if h · w ≤ N (i.e., if the full matrix size fits in a
ciphertext vector slot). However, some specific algorithm representations of information
may define harder or softer limits for the execution. As we detail in the following section,
the memory constraints Ocon directly impact the operation cost. In the following sections,
we use r to define the number of ciphertext vectors of size N needed to host a plaintext
vector of length n.

4.4.2 Rotations on Large Ciphertexts

The effect of the ‘Memory Constraints’ Ocon is essential for the Rotation operation. In
HE programming, most algebra circuits present memory constraints, given the difficulty
of packing all the information within the same ciphertext. In parallelism with classical
(non-HE) programming, we could consider when a program does not fit into the avail-
able memory and uses swap space. At that point, computation becomes a constraint and
is more expensive. In HE circuits with packing, when we need multiple ciphertexts to
represent the plaintext data, rotations have a worse impact on the efficiency of algorithms.
Indeed, many algorithms rely on rotations to benefit from SIMD operations (e.g., to trans-
form output layouts). Previous works assume rotations as ‘cost-free’ operations and thus
use them arbitrarily [Dat+19]. We observe, however, that when an algorithm is general-
ized to work on arbitrary-size plaintext inputs (often large scale), the assumption does not
hold anymore. Suppose the plaintext vector entries n extend over the available slots N. In
that case, multiple ciphertexts are required, and the plaintext vectors and rotation cost are
no longer neglectable since at least r = ⌈n/N⌉ ciphertext vectors are needed.

To demonstrate this performance decrease, we depict in Figure 4.4 the rotation pro-
cedure for n > N, i.e., when more than one ciphertext is needed. In the example, we
represent one input vector with two ciphertexts. Considering a 2-left rotation (≪ 2), we
observe that individual rotations of the vectors are partial. Thus, this involves further mod-
ifications, such as an additional multiplication of the vectors by a mask, which increases
OD. Table 4.1 shows the overall complexity of this process. We provide the details in
Algorithm 10.

4.4.3 Analysis and Takeaways for Application to Deep Learning

This section provides a detailed analysis of the algorithms presented in Section 4.3
concerning the proposed efficiency metrics. Table 4.2 presents the formal performance

71

Figure 4.4: Operations performed for privately rotating twice (ct ≪ 2) a vector of dimen-
sion n = 16 in with homomorphic encryption ciphertexts of size N = 8 and r = 2.The
vector is encoded in two ciphertexts. The ciphertexts need to be rotated, masked and re-
organized to obtain the same result as in the plaintext rotation.

Algorithm 10 Rotation r times of V cleartext vector encoded in multiple ciphertexts
v0, v1, ..., vn.

function Rotate({ct0, ct1, ..., ctr ∈ ZQ[x]/(xN + 1)} = Enc(M, pk), rot)
q, rot ← ⌈rot/r⌉, rot mod r
bitmask[t]← {N − r ≤ t < N}
for i← 0, r do

c′ti ← cti ≫ rot
c0

ti ← c′ti ⊙ bitmask[t]
c1

ti ← c′ti ⊖ c0
ti

end for
for i← 0, r do

crot
ti ← c0

t(i−q mod r) ⊕ c1
t(i−1−q mod r)

end for
return {crot

t0 , c
rot
t1 , ..., c

rot
tr }

end function

complexity extracted from the different algorithms. Next, we give key insights extracted
from the analysis and discuss future directions and best practices to apply the algorithms
for DL Inference.

The Streamlined Convolutional Blocks reduce the multiplication depth. The im-
proved version of the algorithm we propose in Section 4.3.2 introduces many efficiency
improvements to the base algorithm. The streamlined version of the algorithms allows
to insert lconv convolutions, lstride strided convolutions, lpad padding layers, lpool average

72

Formal Analysis of Algorithms
Algorithm Metrics

Name Ocon OD Osum Omul Orot Omem

ALG (1)
Str. Convolution

h·w ≤ N 1 fx· fy fx· fy fx· fy 3
h·w > N 2 3r· fx· fy 2r· fx· fy r· fx· fy 4r

ALG (11)
Convolution

h·w ≤ N 1 fx· fy fx· fy fx· fy 3
h·w > N 2 3r· fx· fy 2r· fx· fy r· fx· fy 4r

ALG (2)
Str. Padding

h0·w0 ≤ N 1 0 1 1 2
h0·w0 ≤ N 2 2r 2r r 3r

ALG (14)
Private Padding

h·w ≤ N 1 h h h 3
h·w > N 2 3r·h 2r·h r·h 4r

RT (3)
SCBF to RC

h·w ≤ N 1 hout·wout hout·wout hout·wout 3
h·w > N 2 3r·hout·wout 2r·hout·wout r·hout·wout 4r

RT (12)
CRF to RC

h·w ≤ N 1 hout hout hout 3
h·w > N 2 3r·hout 2r·hout r·hout 4r

RT (13)
SCRF to RC

h·w ≤ N 1 hout·wout hout·wout hout·wout 3
h·w > N 2 3r·hout·wout 2r·hout·wout r·hout·wout 4r

IR/RT (5)
Diag. Mat. Mult.

n·(∆ f − ∆i + 1) ≤ N 1 n n n 3
n·(∆ f − ∆i + 1) > N 2 3r·n 2r·n n·r 4r

ALG (4)
Diag. Mat. Mult.

max(α, n) ≤ N 1 α α α 4
max(α, n) > N 2 3r·α 2r·α r·α 5r

IR (6)
Prepare Matrix A

hA·wA·wB ≤ N 1 hA·wA + wB hA·wA hA·wA + wB 3
hA·wA·wB > N 3 3r·hA·wA + wB r(2·hA·wA + wB) r·(hA·wA + wB) 4r

IR (7)
Prepare Matrix B

hB·wB·hA ≤ N 0 hA 0 hA 2
hB·wB·hA > N 1 3r·hA r·hA r·hA 3r

ALG (8)
Mat-Mat. Mult.

max(hA·wA·wB, hB·wB·hA) ≤ N 1 wA = hB 1 wA = hB 4
max(hA·wA·wB, hB·wB·hA) > N 2 3r·wA r(wA + 1) r·wA 5r

RE (9)
Mat-Mat. Mult.

n ≤ N 1 hA hA hA 4
n > N 2 3r·hA 2r·hA r·hA 3r

Table 4.2: Detailed analysis of the different metrics proposed in Section 4.4.1 (Ocon, OD,
Osum, Omul, Orot and Omem). Additionally, it shows the performance variation if Rotations
are as in Algorithm 10.

pooling layers or lact activation functions (with cost Oact
D

). This results in a depth cost of:

OD = lconv + lstride + lpad + lpool + lact · O
act
D + 1

The cost is one operation per layer and the RT algorithm. Also, it does not make
any difference in using stridden or non-stridden convolutions. On the other hand, the base
version proposed in previous work requires applying a RT function after each convolution,
and the stride makes it more expensive in the Omul. The overall cost of the base version is:

OD = 2lconv + 2lstride + lpad + 2lpool + lact · O
act
D

In summary, the base version heavily affects the depth because it requires RT algorithms.

The Streamlined Convolutional Blocks reduce the overall cost of auxiliary convolu-
tion routines. If we analyze the cost of operations, we can see how the overall cost of
the streamlined convolution algorithm does not change concerning the base algorithm.
However, looking at the rest of the streamlined routines (i.e., padding or stride), we
can observe how the cost is highly reduced. Although the padding occupies the same

73

multiplication depth slot, it reduces its cost to a single multiplication and rotation.
Furthermore, the reduction in the cost of stride permits using it freely, allowing for faster
training algorithms over higher dimensionality data. If we used the baseline algorithm,
it would be preferable not to use padding and stride to 1 as much as possible to keep
efficiency.

Matrix Multiplication Algorithm Comparison on l-Layer Dense Neural Network
Algorithm Metrics

Name Alg. Ocon OD Osum Omul Orot Omem

Diagonal Matrix
Multiplication 5, 4

max(α, n) ≤ N 2l + 1 α(2l + 1) α(2l + 1) α(2l + 1) 4
max(α, n) > N 4l + 2 3r·α(2l + 1) 2r·α(2l + 1) α·r·(2l + 1) 5n

Matrix-Matrix
Multiplication

6, 7,
8, 9

max(hA · wA, h2
B) ≤ N 2l l(2hA + wA) l(hA + 1) l(2hA + wA) 5

max(hA · wA, h2
B) > N 5l 3r·l(2hA + wA) 2r·l(3hA + wA + 1) l·r·(2hA + wA) 6n

Table 4.3: Detailed comparison of the different complete matrix multiplication algorithms
described in the thesis according to the different metrics proposed in Section 4.4.1 (Ocon,
OD, Osum, Omul, Orot and Omem) for a generic l-layer Neural Network. Additionally, it
shows the performance variation if rotations are computed as in Algorithm 10. Note that,
for Algorithms 4 and 5, we can consider α = n. In Algorithms 7, 8, and 9, we consider the
optimization of not using Preprocessing A and considering B is a one-dimensional vector.

Prioritize IR Prepare Matrix B over IR Prepare Matrix A. Comparing both algo-
rithms, we observe a clear advantage in the algorithm used to prepare Matrix B in the
Matrix-Matrix multiplication. Indeed, both OD and Omul are smaller than in Prepare
Matrix A. Furthermore, we consider the weights matrix to be provided in cleartext for
DL Inference. In such a case, we recommend prioritizing IR Prepare Matrix A over
the cleartext matrix (i.e., executing the heavy algorithm over the plaintext matrix); thus,
the IR Prepare Matrix B algorithm on the ciphertext space. It allows for improving the
overall performance of the multiplication routine while maintaining input privacy as a
constraint.

Avoid using the Matrix-Matrix Algorithm for large input matrices. We observe that
the Matrix-Matrix Algorithm (Alg. 8) imposes significant limits on the size of matrices
that can be multiplied (Ocon). For example, for a latent vector size N of 1024, the
maximum length of two square matrices A, B that we can privately multiply is around
10 × 10. Introducing a larger size of N (e.g., 16,384 or 32,768) would improve this
factor slightly (e.g., 25 × 25 and 32 × 32, respectively). This problem occurs due to
the replication factor introduced by the algorithm, i.e., it requires the replication of
A’s RC format wB times and B’s RC format wA times. In a real-world setting, Neural
Networks often involve larger matrices. Encoding those input matrices involves using
multiple ciphertexts to represent the plaintext vector. The performance would be less in
the encoding and execution time (as rotations demand). It also increases the memory
requirements and the number of required operations (as described in Table 4.2).

74

The Matrix-Matrix multiplication Algorithm improves when B is a one-dimensional
vector. This optimization partially overcomes certain of the previously presented
weaknesses of this algorithm. Indeed, if we consider a real use case, often dense layers
are flattened, representing information as a one-dimensional vector. If matrix B is a vector
(i.e., wB = 1), the constraintOcon is reduced to max(hA ·wA, hB ·wA) = max(hA ·wA, h2

B) ≤ N.
Furthermore, for reducing dense layers, where the size of the output vector is smaller
than the size of the input vector (i.e., hA ≤ wA = hB), the constraint would be just on
the shape of the underlying vector to the ciphertext. This constraint still imposes hard
constraints for the underlying vector size (e.g., around 180 elements for N = 32, 768 or
128 for N = 16, 384).

Choosing between Matrix-Matrix or Diagonal Matrix Multiplication mostly de-
pends on Ocon. Table 4.3 shows both algorithms’ overall cost of an arbitrary l-layer dense
architecture. First, it is essential to consider the memory constraints of ciphertexts Ocon.
The Matrix-Matrix Multiplication generally remains more efficient for small underlying
plaintext vectors n. The improvement is due to having a lower OD and half the number of
multiplications Omul than the Diagonal Matrix Multiplication. However, this only holds
under the Ocon assumption, where we can represent the plaintext information under a sin-
gle ciphertext. If not, the diagonal matrix multiplication becomes more efficient (i.e., the
algorithm accepts larger matrix dimensions). At the same time, we must consider that
increasing N to permit using more underlying plaintext elements n and working with the
Matrix-Matrix Multiplication may be counterproductive. This deficiency is due to the
cleartext operations performed to execute a ciphertext operation. When we increase N, so
does the number of cleartext operations to compute on each polynomial. Therefore, keep-
ing a minimal N becomes likewise critical for efficiency. Before increasing N, using the
Diagonal Matrix Multiplication would be better for performance. Finally, if the constraint
Ocon requires multiple vectors in both instances, it would be needed a trade-off between
OD and Omul based on the number of layers l. While the overall complexity remains sim-
ilar for both algorithms, it is important to note two things. First, Omul grows double as the
number of layers l grows. Indeed, the Diagonal Matrix multiplication is less efficient for
the same number of layers. Second, the increase of OD of l reduces in the Diagonal Ma-
trix Multiplication with a comparison 4l + 2 ≤ 5l. For neural network architectures with
one dense layer l = 1, the OD is better with the Matrix-Matrix multiplication algorithm.
In the rest of the cases l > 1, the overall OD of the Diagonal Matrix is smaller.

4.5 Performance Evaluation of Guidelines

We conduct different experiments to study the algorithms’ impact on real-world inference
and corroborate the formal analysis and the critical findings from Section 4.4. These

75

Test 0 Test 1 Test 2 Test 3

10 2

10 1

100

101

Ru
nt

im
e

(s
)

Base RT
Streamlined RT
Base Convolution
Streamlined Convolution
Base Padding
Streamlined Padding

Figure 4.5: Convolution performance evaluation between streamlined and baseline ap-
proaches to algorithms.

experiments implement variations from the base use case described in A[Dat+19]. In
each experiment, we conduct various tests varying the architectures and parameters to
examine the performance impact of the different designed routines.

The first experiment compares the baseline and streamlined convolution algorithms.
The use case executes a set of c convolutions in a row. All the convolutions have the same
properties, with the parameter values described in Table 4.4. The results are depicted
in Figure 4.5. As expected by the formal analysis, the streamlined convolution algorithm
does not impact the convolution operation since the execution times are similar. However,
the algorithm produces an output format where the placement of the elements allows
for efficient integration with the following layers. It impacts the execution time of the
padding and the results transformation algorithms achieving a speedup of 8 times faster
on average. Also, we can observe that in the baseline algorithm, the result transformation
involves a substantial part of the computational effort, with a high impact on the overall
performance.

In the second experiment, we evaluate the Matrix-Matrix Multiplication algorithm.
We compute a sequence of Prepare Matrix Multiplications (for both A and B), the matrix
multiplication algorithm, and the result transformation. We show the test cases evaluated
in the second section of Table 4.4 and the results in Figure 4.6. As demonstrated in
Section 4.4, the IR Algorithm executed for Matrix A is highly inefficient. However, the IR
for Matrix B is much more efficient, supposing a relatively minor difference. Therefore,
if we consider one of the matrices to be cleartext (e.g., the weights of a Dense Layer
are not private), we should always choose it to be matrix A. Another conclusion drawn
from Figure 4.6 is the relevance of the IR and RT algorithms. Even in the most optimal use
case, the matrix multiplication itself only supposes 40% of the total amount of processing.
Therefore, in other works that omit the IR or RT, the overall performance is only partially

76

Convolution Test Case

Test Num. Initial Shape Kernel Size Stride Padding Speedup
0 10 20 × 20 3 × 3 (1, 1) 1 7.51
1 10 30 × 30 3 × 3 (1, 1) 1 8.37
2 10 40 × 40 5 × 5 (1, 1) 1 11.75
3 5 30 × 30 3 × 3 (2, 2) 1 6.86

Matrix-Matrix Multiplication Test Case

Test Matrix Shape N
0 2 × 2 16
1 3 × 3 32
2 4 × 4 2048
3 5 × 5 2048
4 20 × 20 8192

Diagonal Dot Multiplication Test Case

Test Matrix Shape N
0 3 × 3 16
1 3 × 24 64
2 24 × 3 64
3 4 × 50 2048
4 50 × 4 2048
5 50 × 50 64
6 50 × 50 128
7 50 × 75 2048
8 75 × 100 2048

Matrix-Matrix vs Diagonal Matrix Multiplication Test Case

Test Matrix Shape N
1 5 × 5 512
2 10 × 10 1024
3 20 × 20 8192
4 40 × 40 65536
5 50 × 50 65536

Table 4.4: Parametrization of the different tests
performed for each of the four takeaways con-
sidered in Subsection 4.4.3.

shown, as the transformations involve a significant portion of the overhead.

The third experiment analyses the Diagonal Matrix Multiplication. For comparison
purposes, we provide a detailed analysis of the diagonal matrix multiplication algorithm
in Figure 4.7. This algorithm generally shows the lesserOcon requirements of the Diagonal
Matrix multiplications. For bigger matrix sizes, the underlying ciphertext vector needs a
smaller size of N than the Matrix-Matrix Multiplication Algorithm. The tests executed on
these algorithms can be found in the third subdivision of Table 4.4. As we can observe,
the ordering of dimensions influences the preprocessing algorithm’s time. In general, the
maximum size of the matrices defines the length of the extended diagonal. Therefore, the
test with matrices of 50 × 4 (test 4) obtains similar performance times to the test with
matrices of 50 × 50 (tests 5 and 6). Also, given the small dimensions, the differences
between the two tests with matrices of 50 × 50 (tests 5 and 6) are negligible.

77

Test 0 Test 1 Test 2 Test 3 Test 4

10 2

10 1

100

101

Ru
nt

im
e

(s
)

Matrix-Matrix Multiplication Tests
IR Prepare A
IR Prepare B
Mat. Mult.
Result Transformation

Figure 4.6: Performance evaluation of Alg. 8. The graph compares the two preprocessing
algorithms together with the multiplication and RT algorithms in absolute terms (execu-
tion time).

Test 0 Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8

10 1

100

Ru
nt

im
e

(s
)

Diagonal Matrix Multiplication Tests
IR Switch Spacing
Diagonal Dot

Figure 4.7: Performance evaluation of the diagonal matrix multiplication of two matrices.
The graph shows the overall cost of the two main routines for IR/RT and the algorithm in
absolute terms and relative to the execution time.

The fourth experiment compares the different matrix multiplication algorithms. We
perform the fourth experiment with the exact dimensions of the Matrix-Matrix and the Di-
agonal Dot multiplication algorithms. It enables us to compare the algorithms accurately.
We provide the results in Figure 4.8 and the executed tests at the bottom of Table 4.4.
Overall, we can observe how for smaller sizes of matrices, the lower execution time of
the Matrix-Matrix Multiplication Algorithm imposes better runtimes. However, once the
dimensions grow, the Diagonal Matrix Multiplication provides better runtimes. However,
we note that the tests may give misleading information since, for the same N, the Diag-
onal Matrix Multiplication enables working with more significant matrices and generally
involves less computation.

Finally, our fifth experiment combines the different algorithms in a Neural Network

78

Test 0 Test 1 Test 2 Test 3 Test 4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ru
nt

im
e

(s
)

Matrix-Matrix vs Diagonal Dot Matrix Multiplication
IR Prepare B
Mat. Mult.
RT
IR Switch Spacing
Diagonal Dot

Figure 4.8: Performance comparison of the Matrix-Matrix Multiplication Algorithm and
the Diagonal Matrix Multiplication Algorithms.

use case for cardiology and healthcare. This test analyzes the implications of putting to-
gether the algorithm in an actual use case. For that, we develop a CNN model based on the
CheXpert dataset [Irv+19] with the typical Homomorphic Encryption-based architecture
of Cryptonets [Gil+16]. We perform inference on 250 samples and obtain the average
runtime of the layers for the different proposed algorithms. The results of such tests are
depicted in Figure 4.9. First, we observe a noticeable difference between the first layers
of the Neural Network and the last layers. As we showed in Section 4.4, the complexity
of the algorithms is often determined by the dimensionality of the treated matrices. The
first layers deal with larger dimensions; thus, the computation is more affected by such di-
mensionality. This fact is especially noticeable with the Convolution and Average Pooling
layers, where the RT is affected by such high dimensionality. Furthermore, when using
Homomorphic Encryption, this behavior is emphasized with the existence of LHE, which
introduces the concept of levels. Levels are treated with the Chinese Remainder Theorem
and operate with more levels before dropping them with each rescaling. On the first lay-
ers, the efficiency is worse before rescaling, as HE works on more remainders than in the
latest layers, where most of the moduli have been dropped. Intermediate layers introduce
a reduced delay due to being fundamentally a processing-based layer requiring no inter-
nal reorganization of the vectors. As a last factor, we analyze the algorithms’ precision
compared to classic algorithms and obtain an equivalent absolute precision difference of
3.79 · 10−6, which we consider negligible for this application.

4.6 Summary

Efficient Homomorphic Encryption (HE) requires structural optimizations to perform the
complex computation of the internal layers. One such optimization is Packed Homomor-
phic Encryption (PaHE), which encodes multiple elements on a single ciphertext, allow-

79

Co
nv

.
0 Ac

t. 0

Av
g.

Po
ol

.
0

Fl
at

te
n

0

De
ns

e
0 Ac

t. 1

De
ns

e
1 Ac

t. 2

10 3

10 2

10 1

100

Ru
nt

im
e

(s
)

ALG Convolution
RT Convolution
IR Switch Spacing
ALG Diagonal DOt
ALG Flatten
ALG Activation

Figure 4.9: Performance evaluation Cryptonets Neural Network based on the CheXpert
dataset. Average runtime of the execution of 250 random samples of the dataset. The
ordering of the x-axis corresponds to the layer execution order (i.e., Conv. 0 is the first
layer, and Act. 2 is the last layer).

ing for efficient SIMD operations. However, using PaHE in DL circuits is not straightfor-
ward, and it demands new algorithms and plaintext-ciphertext data mapping, which exist-
ing literature has not adequately addressed. To fill this gap, in this chapter, we elaborate on
novel algorithms to adapt the linear algebra operations of DL layers to PaHE, focusing on
Convolutional Neural Network (CNN). We provide detailed descriptions and insights into
the different algorithms and efficient inter-layer data format conversion mechanisms. We
formally analyze the complexity of the algorithms in terms of performance metrics and
provide guidelines and recommendations for adapting architectures that deal with private
data. Furthermore, we confirm the theoretical analysis with practical experimentation.
Among other conclusions, we prove that our new algorithms speed up the processing of
convolutional layers compared to the existing proposals.

80

Chapter 5

Automating Homomorphic Encryption
Parameter Selection with Fuzzy Logic
and Linear Programming

In Chapter 4, we discussed the complexity of performing efficient vectorization of
Packed Homomorphic Encryption algorithms. Parametrization of Homomorphic Encryp-
tion schemes is another long-studied challenge that introduces a multi-faced problem with
numerous implications regarding precision, performance, and security. To solve this is-
sue, in this chapter, we propose an expert system that allows the selection of an optimal set
of parameters for HE based on the combination of Fuzzy Logic and Linear Programming
from high-level user parameters. The resulting solution reduces the expertise needed to
deal with HE schemes and yields parametrizations that preserve the high-level features
expressed by the user.

The remainder of this chapter is organized as follows. Section 5.1 motivates the main
problem dealt with in the chapter. Then, Section 5.2 provides a background to the different
techniques used in this chapter and concretely details insights into the parametrization of
HE schemes. Next, Section 5.3 introduces the design of the expert system, which is
then evaluated in Section 5.4. Finally, Section 5.5 summarizes the main contributions of
this chapter. For interested readers, in Appendix B, a detailed practical description of
parameter selection is overviewed.

5.1 Introduction

Selecting critical parameters for parametrization in Homomorphic Encryption (HE)
frameworks is complex due to various issues (e.g., circular relations between parameters,

81

low-level knowledge requirements, and different parameter value combinations tradeoffs).
This section describes the problem and the other solutions provided in previous works.

5.1.1 Motivation

One of the main unaddressed challenges of current HE frameworks is the selection of a
set of critical parameters, i.e., the parametrization. In a nutshell, parameter selection is
complex since there are circular relations between parameters and the underlying circuit.
Also, the combination of different values for these parameters results in a tradeoff between
three essential features of privacy-preserving scenarios, i.e., security (having robust en-
cryption), performance (requiring a reasonable amount of computational resources), and
precision (limiting to an affordable amount of noise in the final result). Furthermore,
to understand the consequences, the user needs detailed knowledge about the low-level
primitives.

Also, the Homomorphic Encryption Standard defines minimum settings to establish
secure parameters in HE [Alb+18]. Like classical cryptography, where the selection of
critical parameters (such as RSA key size and AES block size) is not left to end-users or
programmers, for widespread adoption of HE, solutions shall not leave these decisions to
users. Still, it is needed to provide degrees of freedom for the user to determine parameters
such as security, performance, or precision, since these might depend on the scenario of
the application of the circuit.

5.1.2 Precedents

In recent years, some proposals have looked at the affordability of HE techniques for
end-users, presenting HE protocols as application programming interfaces (API) or com-
pilers [VJH21]. Compilers and APIs are software pieces that aim to provide a simple
functionality for end programmers while hiding the complexity employed in the logic
of programs. In HE, compilers and APIs allow the users to access abstracted represen-
tations of low-level instructions with reduced complexity and within standard program-
ming languages. The software generates a logical coupling between the high-level model
and the underlying HE circuit, concealing the particularities of the technique. However,
as described in Section 3.6, most compilers still do not provide an automated param-
eter selection, requiring users to select them manually. The most effective options are
CHET [Dat+19] and EVA [Dat+20], which provide a relatively automatic parameter se-
lection. However, their behavior uses naive approaches and, thus, is suboptimal. As a
difference to our proposal, EVA requires the user to input the maximum precision for the
integer scale. It chooses a default scale, uses it as many times as needed by the multipli-
cation depth, and then sets the rest of the parameters based on the total logQ. In our case,

82

we decide it through a user-defined value for precision.

Takeaway. Overall, a proper setup of FHE schemes such as CKKS [Che+17] highly de-
pends on the optimal selection of parameters. Unfortunately, such optimal selection is
complex since parameters depend on each other and the underlying circuit. Moreover, the
selection seriously impacts security, efficiency, and precision. Balancing the tradeoff of
these features depends on the scenario of the application. Existing FHE frameworks usu-
ally leave the selection of parameters to the user, which is time-consuming and requires
expertise in cryptography. Thus, this chapter proposes an expert system that leverages
Linear Programming and Fuzzy Logic to assist in parameter selection and overcomes
these challenges.

5.1.3 Contribution

In this chapter, we propose an expert system that allows the selection of an optimal set of
parameters for HE within user preference. Given an input circuit, our system leverages
Linear Programming to select a close-to-optimal solution given a set of intrinsic rules to
the HE scheme. The characteristics and constraints of HE parameter selection enable their
representation as a Linear Programming model. Moreover, due to the potential parameter
choices and their confronting impact on security, efficiency, and performance, the system
allows users to guide the selection around these constraints. Concretely, the system uses
Fuzzy Logic to select the best options based on the criteria defined by the user. Fuzzy
Logic employs language variables to capture the intricacies of verbal language and model
it into actual values that a computer can treat. We leverage Fuzzy Logic to couple the
implications of parameter selections with the specific parameters that govern it.

5.2 Background

This section provides a theoretical background of the concepts tackled in this chapter to
properly understand the complete presented expert system.

5.2.1 Linear Programming

Linear Programming (LP) is an optimization technique that obtains -if existent- the opti-
mal solution to a model, defined by an objective function, the decision variables, and a set
of constraints [Mur20]. Concretely, LP attempts to maximize or minimize the objective
function. The objective function shows the overall benefit or cost of decision variables.

83

More formally, an LP task is defined as:

max z = cT x | min z = cT x

Ax ≤ b

x ≥ 0

(5.1)

where z is the objective function, x represents the decision variables, c are the coefficients,
A are the constraints the rule the objective function and b is the vector of resources.

In LP tasks, the constraints define a region of all feasible solutions (i.e., the solutions
to the objective function that fulfill the constraints). Optimal solutions usually lie in the
extreme points of the feasible region. The Looseness Fuzzy Logic Module, described in
the following section, generates coefficients that modify the constraints of the feasible
region so that extreme points vary.

LP tasks are solved with methodologies widely falling under two categories, i.e.,
Simplex-based methods and Interior Point Methods. Simplex-based methods work
on the polyhedron constructed with the decision variables and bounded by the con-
straints [BG69]. In Interior Point Methods, the algorithms work with the feasible region
and travel the extreme points to find the optimal solutions [PW00]. Although a priori the
methods have different computational complexities, their practical efficiencies are similar
nowadays.

5.2.2 Fuzzy Logic

Fuzzy Logic (FL) is a control system technique aimed at systems working with a degree of
uncertainty. In particular, FL profits from language rules and uses them to express control
system values. The benefit of FL is the ability to represent a value within a threshold. In
FL, there exist two predominant solvers, Mandiani and Sugeno. For this proposal, we use
Mandiani as it delivers more detailed explanations of the decision variable relations.

During the fuzzy inference process, a set of crisp antecedents (i.e., crisp values we
know as truth) are transformed into fuzzy sets to relate them logically and obtain a crisp
consequent. The complete process is the following: first, the antecedents are fuzzified.
The fuzzification analyzes the degree of membership of the crisp value to membership
functions. In the second phase, the fuzzy inference process relates the different fuzzy
values (i.e., belonging to the membership functions) through boolean logic statements.
The result of the fuzzy inference process is a fuzzy consequent, which is deffuzified with
some predefined metric (i.e., usually the area of the centroid) to obtain the final value.

5.2.3 Leveled Homomorphic Encryption Parametrization

An RLWE-based HE scheme allows encrypting a message µ using a secret s in a ring
polynomial of degree N with modulus Q (with N,Q ∈ Z+). It also requires setting a

84

parameter σ for the standard deviation of a random distribution χ(µ, σ). As we detail
later, the parametrization consists of choosing the more suitable values for the tuple (N,Q,
and σ).

In LHE schemes, two special operations, relinearization, and modulo switching, fol-
low every multiplication operation. The multiplication of two polynomials of degree
N increases the degree (e.g., xN ∗ xN = x2N). It introduces the need for exponentially
more polynomials to obtain the solution and effectively grow the ciphertext size. The
relinearization uses the encrypted secret s to reduce the degree homomorphically. Still,
multiplications introduce a potentially non-negligible error. The modulo-switching oper-
ation aims to reduce the noise introduced with each multiplication. For this process, the
polynomial modulus Q is defined according to the Chinese Remainder Theorem as the
multiplication of OD smaller moduli qi, i.e., Q =

∏︁OD
i=0 qi.

We note that, in practice, modulo switching exhibits a particular behavior in specific
libraries. If the noise scale has not grown significantly, there is no need to rescale and
perform modulo switching. In the same way, if the noise scale has increased substantially,
the rescaling may be performed twice. In our experience, these cases only occur with
small modulus and are very rare, so in this contribution, we assume only the case where
each rescaling uses one modulo and is always performed.

The term OD, which corresponds with the multiplication depth of the circuit, defines
the minimum number of moduli qi needed to perform modulo switching. For simplicity
(and consistency with HE libraries), in the remainder, we use logQ, logN, and logqi to
refer to the bit counts of these numbers (e.g., logQ = ⌈log2(Q)⌉).

In general, HE schemes aim at reducing the noise introduced by operations, so circuits
allow more operations [Bra+13; MP13]. In this regard, the Homomorphic Encryption
Security Standard [Alb+18] provides a set of guidelines for the secure selection of these
parameters. In this chapter, we adhere to those guidelines and adopt them strictly in the
design of the proposed system.

Assigning a parametrization (N,Q, σ) to a circuit C for its execution under LHE poses
many challenges. In most cases, there is a unidirectional dependence of the parametriza-
tion (N,Q, σ) on the circuit C.

In such cases, the first step is to extract the circuit constraints, precision p, multiplica-
tion depth OD, and maximum vector length |v|max. The precision p is the number of bits
needed to represent the integer part of the most significant floating point number in the
computation p = ⌈log2(dmax)⌉. Note that it does not only affect input variables but also
intermediate and resulting values. The multiplication depth OD is the maximum number
of consecutive multiplications that occur over a ciphertext in the circuit C. The maxi-
mum vector length |v|max is the length of the most significant vector we aim to encode in
a single ciphertext. Most HE libraries limit the slots to 215 for CKKS, and thus it may be
necessary to represent a vector in multiple ciphertexts. This step may introduce additional
computation rounds and multiplication depth [CP22].

85

After obtaining these values (p,OD and |v|max), the second step is to select the param-
eters (N,Q, σ).

In most cases, to reduce the amount of noise, and according to the HE Standard,
σ ≈ 3.2. Increasing σ improves the security but reduces the precision during decryption.
That is due to the introduction of more noise per operation.

Next, the chain of moduli qi is selected, which includes at least OD logqi-bit prime
numbers, and whose product defines the polynomial modulo Q. Finally, according to the
guidelines of the Homomorphic Encryption Security Standard [Alb+18], each N allows
for a maximum budget or amount of moduli bits, represented asBN,λ,T . More formally, for
each value of N, for a security type T ∈ {classical, quantum} and for a security parameter
λ ∈ {128, 192, 256} the standard defines a maximum budget that must be lower than the
sum of the selected logqi (BN,λ,T >=

∑︁OD
i=0 logqi). Therefore, for a circuit parametrization

to be secure, one would need to compute the sum of all logqi and then compare it to the
budget BN,λ,T established to obtain a N.

At the same time, N shall compare with the maximum vector length |v|max. If
N
2
>= |v|max, then the largest vector fits within the ciphertext slots of the chosen pa-

rameter set. Furthermore, to ensure that the maximum precision does not overflow, the
distance between q0 (known as the special prime) and the rest of the moduli qi has to be p
following logq0 = logqi+ p ∀ i > 0. In practice, only logq1 needs to preserve this property
but to maintain the cost of rotations negligible, all logqi must share the same bit count.

However, the above reasoning misses two crucial factors in selecting parameters.
First, suppose |v|max does not fit within the largest vector. In that case, the plaintext vec-
tor is represented by multiple smaller ciphertexts (i.e., involving additional multiplication
depth for each rotation, thus modifying the circuit). Also, some algorithms rely on the
parameter N for their execution. For example, vector aggregation algorithms (i.e., sums
all the entries of a vector) perform logN consecutive multiplications. Then, this behavior
involves a different multiplication depth OD per each possible N value (in this chapter,
we denote this relation between the multiplication depth and N as ON

D
). Using such algo-

rithms requires an iterative parametrization process since the different choices of (N,Q, σ)
may introduce changes in the circuit C, which in turn might require re-definitions of the
parameters as represented by Figure 5.1. One potential solution is to keep fixed one or two
of the parameters. However, this can bias the parametrization and make it less efficient.

The second factor not mentioned before is related to the impact of the parameter selec-
tion on the output. Indeed, each parameter selection involves a tradeoff between precision,
security, and performance. For example, increasing N increases the security since a larger
polynomial hides the secret, but it becomes less efficient since it requires operations over
a higher degree polynomial. Similarly, higher values of Q allow for larger multiplica-
tion depth and better precision. However, the smaller the value Q, the more secure and
efficient the encryption scheme is.

86

N

↑ Security
↑ Vector Size
↓ Performance

C
↓ Performance

Q
↑ Precision
↓ Performance
↓ Security

Figure 5.1: Circular dependencies in HE parametrization between polynomial degree N,
polynomial modulus Q and circuit programming C. The diagram also depicts the impli-
cations of each parameter in the growing (↑) or decreasing (↓) of each variable.

5.3 System Model

Precision Security Performance

Scale Fuzzy Module

Integer
Scale FL

Decimal
Scale FL

Looseness Fuzzy Module

LogQ FL LogN FL

Linear Programming Model

Decision Variables Objective Function Constraints

Parametrization

𝑁 𝑙𝑜𝑔𝑞! 𝑙𝑜𝑔𝑞" 𝑙𝑜𝑔𝑞# 𝑙𝑜𝑔𝑞𝒪𝒟" σ
Polynomial ModulusPolynomial Degree Error Distribution

Max. Vector
Length
|𝑣|%&'

Multiplication
Depth
𝒪𝒟)

Input Variables
Fuzzy Logic

Linear Program
m

ing
O

utput Param
eters

User Choice Input Circuit Parameters Input

Figure 5.2: General architecture of the FL-based and LP-based system proposed.

In the previous section, we described the process for parameter setup in HE. We also
discussed the difficulty of manually establishing appropriate values in the absence of ex-
pertise on the inner cryptographic workings of the scheme. Also, the complexity of the
LWE scheme makes that even a human with expertise might fail to provide an optimal
set of parameters due to circular dependencies among them and with the circuit being
operated. Also, as discussed before, the selection of parameters has an essential influence
on the performance, security, and precision of the scheme. These are confronting goals,
and their setup depends on the application scenario (e.g., one would prefer a more secure

87

scheme, even at the cost of losing precision or performance, and vice-versa).

Accordingly, we propose a system that automatically finds the optimal parameters
and, to make the system more flexible, asks the user to choose a priority level for these
confronting features.

The methodology is depicted in Figure 5.2. It receives as input the level of priority for
each of the features mentioned above, i.e., security, precision, and performance, in a score
from 0 to 10. We note, however, that stating the priority of security of 0 means putting
the lowest priority on secure parameters (i.e., reducing N and increasing Q). However,
in no way will the system generate an insecure set of parameters, as established by the
HE Standard [Alb+18]. The system applies Fuzzy Logic, which permits making fuzzy
decisions on parameters while establishing fuzzy rules on the input values. The output of
the FL, together with information regarding the circuit (i.e., the multiplication depth and
the maximum vector length), are used to define the Linear Programming (LP) model. The
LP model allows for balancing the tradeoff of each of the value choices for the selected
parameters. Concretely, it defines the LP constraints, decision variables, and objective
function. The remainder of this section describes further the Fuzzy Logic and the Linear
Programming processes.

5.3.1 Fuzzy Logic Initialization

This section elaborates on the two different Fuzzy Logic Modules used to generate the
coefficients to design the Linear Programming model, i.e., the Scale FL Module and the
Looseness FL Module. The Scale Fuzzy Module generates the maximum and minimum
values of the polynomial modulus logQ, fulfilling the user input requirements regarding
security, performance, and precision. Then, to make the LP task more flexible, the Loose-
ness Fuzzy Module expands the interval of valid values for the LP task to adjust the final
parameters in an unconstrained interval. The combination of these two models outputs
the coefficients used to define the actual LP model values that later define the constraints
and objective function used in Linear Programming. We next explain these two models.

Scale Fuzzy Module

The Scale Fuzzy Module produces two coefficients kint and kdec using two independent
processes, i.e., the Integer Scale Fuzzy Logic and the Decimal Scale Fuzzy Logic. The
LP tasks use these coefficients to determine the bit length of each polynomial moduli
logqi. On the one hand, the Decimal Scale represents the total bit length value of logqi.
On the other hand, the Integer Scale represents the value of precision p needed (i.e., the
number of bits to represent the integer part of a decimal number).

The Integer and Decimal Scale FL consist of two consecutive Fuzzy Inference Process
(FIP), Initial FIP and Final FIP. The initial FIP only considers the users’ security, perfor-

88

mance, and accuracy priorities. The final FIP refines the previous output by considering
information about the circuit (i.e., the multiplication depth). Figure 5.3 depicts how the
chaining of the different FIPs within each Fuzzy Logic occurs, detailed next.

Scale Fuzzy Module

Integer
Scale FL

Decimal
Scale FL

Initial
FIP

Final
FIP

Initial
FIP

Final
FIP

Looseness Fuzzy
Module

LogQ FL LogN FL

LogQ
FIP

LogN
FIP

𝑘!"#$ 𝑘!"#%𝑘&'(𝑘)*+

Figure 5.3: Overall hierarchization of the different Fuzzy Inference Process (FIP) carried
in the Fuzzy Logic phase. For the Scale Fuzzy Module, there are two Fuzzy Logic Mod-
ules, each of which has two separate FIP (i.e., Initial FIP and Final FIP. In the case of the
Looseness Fuzzy Module, there is two Fuzzy Logic with a single FIP.

The Integer and Decimal Scale FL share four antecedents and one consequent. The
first three antecedents are the inputs from the user, i.e., the valuation (from 0 to 10) of the
importance given to precision, performance, and security. The fourth antecedent is the
multiplication depth ON

D
that shall be obtained from the circuit. Each FIP produces one

consequent (coefficient), i.e., the integer and decimal scale (kint and kdec respectively).

As mentioned before, for each of the FL processes, two consecutive FIPs are applied.
These use five membership functions to describe the antecedents and consequent as very
low, low, medium, high, and very high. For more details on the intervals for each mem-
bership function, we refer the reader to Table 5.1. Splitting the Fuzzy Logic into two
separate FIP significantly reduces the number of rules 52 ≪ 53. Also, it produces a more
straightforward understanding and relations of antecedents based on the boolean rules.

The first FIP for both Integer and Decimal Scale FL uses as antecedents the precision,
performance, and security to compute an initial estimation of the Integer and Decimal
Scale as consequents. We note that, for the computation of logqi, performance and se-
curity are aligning goals. Thus we compute the maximum of these two to compete with
the precision3. Figure 5.4 shows the overall Integer and Decimal Scale estimations as
surface plots according to the user inputs. The surface plots show the variations in the
resulting Fuzzy Logic value based on the modifications to the antecedent. The main vari-
ations observed on the plots among the Integer and Decimal Scales are in the resulting

3We use the max value since our preliminary experimentation showed that using other metrics, such as
the average, leads to less consistent results with the user inputs.

89

Perf.Sec.

0

2

4

6

8

10 Precission
0

2
4

6
8

10

In
te

ge
r S

ca
le

0

5

10

15

20

25

30

(a) Integer Scale

Perf.Sec.

0

2

4

6

8

10

Precission

0

2

4

6

8

10

De
cim

al
 S

ca
le

0

10

20

30

40

50

60

(b) Decimal Scale

Figure 5.4: Initial Fuzzy Inference Process (FIP) for Integer and Decimal Scale estima-
tion obtention based on the antecedents on the x and y axis (precision, performance and
security), the surface plots determines the value of the consequents on the z axis. Given
the aligning goals of performance and security, these are combined within the same met-
ric. The surface plots show the variations in the resulting Fuzzy Logic value based on the
modifications to the antecedent. This surface plot aims at having a slow decrease based
on high and very-high precision values as well as avoiding very-low values of Integer and
Decimal Scale (those are not beneficial for the precision of results). The main differences
lay in the large precision values as the Decimal Scale is less affected by user parameters
to prevent extreme inaccuracy due to Homomorphic Encryption noise.

ranges (i.e., the integer scale follows a shorter range than the decimal scale). The surface
plot aims at having a slow decrease based on high and very-high precision values. It also
avoids very-low values of the Integer and Decimal Scale, as those are not beneficial for
the precision of results. The main differences lay in the large precision values since the
Decimal Scale must be less affected by reduced precision preventing excessive precision
loss due to HE noise. The graphs show how, for medium values of precision, perfor-
mance, and security (i.e., between 4 and 6), the FIP averages the result obtaining medium
values of scale (i.e., around 15 for the scale and 30 for the decimal coefficient). However,
the resulting decimal scale values are furthest in contrary cases (e.g., high precision and
low performance/security). We note that, in our implementation, we favor precision over
performance and security as it may yield useless results otherwise. Therefore, we see a
lower decrease in precision suffered by the surface plot but a more significant reduction
in performance and precision.

The circuit restrains the permitted values for the integer and decimal scales despite
the user’s choices. For example, if the user chooses precision as its goal, the Integer
and Decimal Scales (kint and kdec) will grow significantly. If the circuit also has a high

90

multiplication depth, the maximum budget allowed within N = 15 & λ = 128 may
need to fit more bits of logqi and thus result in a non-solvable LP task. Accordingly, the
second FIP rationalizes the integer and decimal scale coefficients by either maintaining
or reducing them based on the multiplication depth of the circuit. If the values of the
multiplication depth are very big, the Integer and Decimal scales are reduced accordingly
to levels that make the parametrization feasible. Figure 5.5 shows the surface plots of the
results for the Integer and Decimal scales. The surface plots show the two-dimensional
relationship between two input variable values (on the x and y axis) and the output variable
(on the z axis). We can see how the coefficients are maintained from the previous FIP for
low values of Multiplication Depth (i.e., simpler circuits). However, we observe a plateau
for larger values of the estimated scales and multiplication depth where the final values are
rationalized and reduced. In this way, the resulting coefficients fit within the maximum
security budget. The main difference between the Integer and Decimal Scale processes is
for low predicted scales. Wherein the Integer Scale tends to increase its final value even
for predicted low values (so it does not decrement precision), the decimal scale is kept
constant across the very-low values (i.e., from 0 to 20).

Mult. Depth(X)

0
5

10
15

20

25

30

35

Integer Scale (Y)

0

5

10
15

20
25

30

Fin
al

 In
te

ge
r S

ca
le

(Z
)

0

5

10

15

20

25

30

(a) Integer Scale

Mult. Depth(X)

0
5

10
15

20

25

30

35

Decimal Scale (Y)

0

10
20

30
40

50
60

Fin
al

 D
ec

im
al

 S
ca

le
(Z

)

0

10

20

30

40

50

60

(b) Decimal Scale

Figure 5.5: Final Fuzzy Inference Process (FIP) for Integer and Decimal Scale coefficients
obtention based on initial Integer or Decimal Scale Estimation and Multiplication Depth.
The surface plot presents a readjustment of the Integer and Decimal Scales based on the
multiplication depth (ON

D), reducing it when large multiplication depths are present. The
main difference relies on the low values where the Integer Scale is partially corrected from
drastic reductions, while on the Decimal Scale, these are directly hard-coded. Plateau val-
ues of the surface plots are designed to enable feasible parametrizations when the Integer
and Decimal Scales are coupled to large multiplication depths.

91

Fuzzy Logic Membership Function Interval
Var. Very Low Low Medium High Very High

Precision [−∞, 0, 2.5] [0, 2.5, 5] [2.5, 5, 7.5] [5, 7.5, 10] [7.5, 10,∞]
Performance [−∞, 0, 2.5] [0, 2.5, 5] [2.5, 5, 7.5] [5, 7.5, 10] [7.5, 10,∞]

Security [−∞, 0, 2.5] [0, 2.5, 5] [2.5, 5, 7.5] [5, 7.5, 10] [7.5, 10,∞]
OD [−∞, 0, 7] [0, 7, 14] [7, 14, 21] [14, 21, 28] [21, 28,∞]
kreal [−∞, 0, 7.5] [0, 7.5, 15] [7.5, 15, 22.5] [15, 22.5, 30] [22.5, 30,∞]

kdec [−∞, 12, 24] [12, 24, 36] [24, 36, 48] [36, 48, 60] [48, 60,∞]
klogN [−∞, 0, 0.25] [0, 0.25, 0.5] [0.25, 0.5, 0.75] [0.5, 0.75, 1.0] [0.75, 1.0,∞]
klogQ [−∞, 0, 0.25] [0, 0.25, 0.5] [0.25, 0.5, 0.75] [0.5, 0.75, 1.0] [0.75, 1.0,∞]

Table 5.1: Fuzzy Logic Membership Function Intervals for the Tri-
angular functions. Represented as [beginning, peak, end].

Looseness Fuzzy Logic

The Looseness FL provides margins that capture the need for flexibility of the LP task.
While preserving user priorities, it permits a range where the parametrizations remain
optimal. The intervals provide flexible room for the LP task to extract the more optimal
values in terms of performance (i.e., choosing a more optimal logN) and precision (i.e.,
profiting from the logQ budget). It benefits from the properties of the centroid defuzzifi-
cation (i.e., it never takes extreme values) to establish flexible intervals for the LP task to
work.

This FL Module extracts two different coefficients, klogN and klogQ, that scale the poly-
nomial degree N and polynomial modulus Q, respectively. Each of them uses a differ-
ent FIP. The FIP for klogN uses two antecedents, i.e., performance and security, since
increasing N improves security but reduces performance. The FIP for klogQ uses three an-
tecedents, i.e., precision, performance and security. However, similar to the Scale FL, we
take the maximum of performance and security as they align goals. The goal of these co-
efficients is to provide the Linear Programming task with guidelines on what to prioritize
through the objective function as we depict in Section 5.3.2

We use five membership functions for the antecedent and consequent values very low,
low, medium, high, and very high. Figure 5.6 represents the FIP that outputs the two
coefficients klogN and klogQ. The surface plot shape achieved by this Fuzzy Logic allows
us to prioritize medium or close-to-extreme values where we see plateaus. Anything that
does not lie within the medium category generally shifts to it (i.e., we see the local maxima
on those points).

As a result of the two Fuzzy Logic modules, the proposed system outputs four coeffi-
cients: kint, kdec, klogN , and klogQ. In the following sections, the variables are used to weigh
and define various ranges of it. For reference, in Table 5.1, we show the different intervals
used for membership functions.

92

(A) Performance

(B) Perf. Sec.

0

2

4

6

8

10 (A) Security
(B) Precision

0
2

4
6

8
10

(A
) l

og
(N

) S
co

re
(B

) l
og

(Q
) S

co
re

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.6: Fuzzy Logic used for estimating coefficients to weight the polynomial degree
N and polynomial modulus Q (klogN and klogN). With (A), we represent the antecedents
and consequent of the FIP to obtain klogN . With (B), we represent the antecedents and
consequents of klogQ. With the selected klogN , klogQ, the objective function is parametrized
to prefer specific values which match the user-defined characteristics (i.e., performance,
security or precision). As these parameters share conflicting goals, the user-provided
values serve to find meet-in-the-middle scores that parameterize the Linear Programming
task ranging in (0, 1.0).

5.3.2 Linear Programming Tasks

LP solvers intend to provide an optimal solution for a problem defined in an LP model.
In our case, the problem is to generate a valid parametrization for N and Q. 4. The LP
model receives inputs from the FL modules, some of which are used to define Global
Parameters, which are presented first. Then, we describe the different characteristics of
the LP model, i.e., the decision variables, the objective function, and the constraints.

Global Parameters

As a result of the two Fuzzy Logic modules, the system outputs four coefficients
kint, kdec, klogN , and klogQ. Using these coefficients requires some transformations to in-
tegrate into the LP model. Concretely, we define global parameters for the LP model,
which represent the range of allowed values for logQ and the precision p (i.e., the inte-

4As described in Section 5.2.3, typically, the value of σ is fixed to 3.2 due to the reduced increase in
noise of that distribution. As such, we do not include this parameter in the selection.

93

ger scale). The system performs it according to the maximum (max(ON
D

)) and minimum
(min(ON

D
) possible multiplication depths. Concretely, the initial interval is described as

follows:
[logQmin = k

min(ON
D

)
dec , logQmax = k

max(ON
D

)
dec]

[pmin = k
min(ON

D
)

int , pmax = k
max(ON

D
)

int]
(5.2)

Limiting the range to [logQmin, logQmax] turns into a very static model, where the LP
solver has little room to optimize the parameters. As such, and based on the precision-
performance-security tradeoff, we extend the interval by a factor of klogQ such that:

logQext
min = logQmin + logQmin · klogQ

logQext
max = logQmax + logQmax · klogQ

(5.3)

Decision Variables

The LP task uses five sets of variables. Some of these are auxiliary because they do not
have a predefined term in the objective function. The solvers set the values for these aux-
iliary variables by relating them with other variables in the constraints. We model the
problem with auxiliary decision variables since LP tasks cannot express quadratic rela-
tions between variables. We can model the connection between a variable in the objective
function and the auxiliary variable in the constraints with the auxiliary variables.

bchoice
N,λ,T are a set of boolean decision variables that indicate the election of a given N.

For a given N, two additional parameters determine the maximum budget for
the Q bit length (BN,λ,T). These parameters are, i) the type of security (T ∈

{classical, quantum}) and, ii) the security parameter (λ ∈ {128, 192, 256}). Thus,
for the model to choose any option, we generate a boolean variable for each com-
bination of a given N under a type of security T and security parameter λ, which
indicates the election, or not, of that bchoice

N,λ,T set. More formally, the set of variables
is defined as bchoice

N,λ,T ∈ Z2∀N, λ,T .

zlogqi are integer auxiliary decision variables that determine the bit length of each element
in the polynomial moduli chain. Since there are different ON

D
for each N, we create

as many as the maximum max(ON
D

) of decision variables. Then, our LP model and
other variables ensure the use of the minimum required number of logqi and that
this number coincides with the particular multiplication depth ON

D
for that N.

bset
logqi

are a set of boolean variables used to define whether the variable zlogqi has a value
or not. This allows us to properly account for zlogqi during the calculation of the
specific budget BN,λ,T for a polynomial degree selection bchoice

N,λ,T .

bthr
logqi

are a set of boolean variables used to define whether the corresponding zlogqi has
surpassed a certain threshold. We combine these variables with the global parame-
ters obtained from the Looseness FL Module to enable flexibility of the parameter
choice. Furthermore, it also avoids setting values far from the initial user choice.

94

zp is an integer auxiliary decision variable defining the integer scale precision. The vari-
able combines with zlogqi so that at least a level of precision is guaranteed. Contrary
to zlogqi , with the integer precision, we want to maintain precision; thus, the intervals
are narrower than in the decimal. The LP task chooses this value from the range
[pmin, pmax].

Objective Function

The objective function represents the metrics that need to be minimized or maximized.
In this work, we define a cost for every decision variable, and the objective is to minimize
it. As discussed in Section 5.2.3, there is no objective way to determine whether an HE
parametrization is more suitable before execution. We instead compare them in terms of
performance, precision, and security. Due to that, we perform a multistep quantification
of each decision variable. First, we establish the metrics used to compare the different
parameter selections. Second, we normalize the metrics in the [0, 1] range and combine
them by aggregate multiplying all in a final metric. The resulting metric scores the deci-
sion variables in the objective function. Overall, N and Q share an equivalent weight in
the minimization of the objective function.

Polynomial Degree N Metrics. To properly account for the impact of the polynomial
degree, we define seven different metrics. Table 5.2 shows the definition and description
of these metrics. To unify the impact of a metric m, we normalize every metric in the

[0, 1] range with Cm′ =
Cm − min(Cm)

max(Cm) − min(Cm)
. Finally, all metrics are combined with the

multiplication and renormalized as in CΠ = Cλ′ · CN′ · CO′add
· CO′mul

· CO′rot
· CT ′ · C|v|′max .

With this processing, we achieve uniformity on the impact of every metric over bchoice
N,λ,T . In

that way, the objective function takes a uniform and equal representation of the different
possible choices, taking a value of 0 for the best and 1 for the worst.

Polynomial Modulus Q Metrics. To loosen the Linear Programming task when choosing
the values for Q, we introduce only the boolean variables bset

logqi
and bthr

logqi
in the objective

function. The bset
logqi

variables penalize the objective function with each use, promoting the
use of less zlogqi whenever possible. We ensure that the amount of bset

logqi
variables needed

are chosen with the constraints. Also, with the constraints we link zlogqi decision variables
with bset

logqi
and bthr

logqi
. In that way, we force zlogqi to take a value within [logQmin, logQext

max].
Also, depending on the value of klogQ we use the decision variable bthr

logqi
to reward (i.e.,

klogQ ≤ 0.5) or penalize (i.e., klogQ > 0.5) the variable zlogqi if it is set above the range
logQext

min. In such a way, we promote choosing higher values of zlogqi when precision is the
goal and lower values of zlogqi when performance or security are the goals. In all cases,

the weight of bset
logqi

and bthr
logqi

in the objective function is
1

max(ON
D

)
.

95

Polynomial Degree N Metrics

Metric Definition Formula

Cλ Establishes the security guarantees of the cur-
rent N. 1 −

λi − λmin

λmax − λmin
(5.4)

CN Establishes the tradeoff between performance
and security obtained by choosing a particular
N considering klogN .

a =
N − Nmin

Nmax − Nmin

(1 − klogN) · a + (1 − a) · klogN

(5.5)

COadd Defines the cost of performing additions given
the specific circuit and multiplication depth ON

D

Oadd − O
min
add

Omax
add − O

min
add

(5.6)

COmul Defines the cost of performing multiplications
given the specific circuit and multiplication
depth ON

D

Omul − O
min
mul

Omax
mul − O

min
mul

(5.7)

COrot Defines the cost of performing rotations given
the specific circuit and multiplication depth ON

D

Orot − O
min
rot

Omax
rot − O

min
rot

(5.8)

CT Equalizes the cost of choosing a quantum-safe
and a classical parametrization. BN,λ,T

BN,λ,T=quantum
(5.9)

C|v|max Measures the number of ciphertext vectors
needed to represent the given maximum length
vector |v|max under the current degree N.

⌈
N

2 · |v|max
⌉ (5.10)

Table 5.2: Metrics used in Linear Programming to evaluate the suitability of a polyno-
mial degree bchoice

N,λ,T according to the different areas of influence it has. For each metric,
a value from 0 to 1 is extracted, with one being the worst and zero being the best. The
different values are always weighted from 0 to 1 before being multiplied in a final metric
CΠ.

96

Constraints

Finally, after defining the decision variables and objective function, we introduce the con-
straints that guarantee to fulfill the requirements established in the HE Standard [Alb+18]
Again, we note that the constraints ensure that the resulting parametrization of the Linear
Programming task is always within the needed security standards. Although we do not
note them as explicit constraints, all decision variables must take a positive value in Lin-
ear Programming. Also, we remind that zlogqi and zp are integer variables and bchoice

N,λ,T , bset
logqi

and bthr
logqi

are boolean variables.

Variable Ranges. We set constraints that define the ranges for each variable. In this
case, we set the variable zlogqi to lie in the range [0, 60]. Also, the variable zp is
constrained in the interval [pmin, pmax] so that the value of zp is congruent with the
precision established in the FL modules.

Choose one NN,λ,T
choice . This constraint guarantees that a single choice is made for N, λ, and

T . In that way, the LP task is forced to set to one a single bchoice
N,λ,T and the rest of

bchoice
N,λ,T to 0 such as:

N∑︂
i

λ∑︂
j

T∑︂
k

bchoice
i, j,k = 1 (5.11)

Adjust to the budget BN,λ,T . The constraint guarantees that, for each bchoice
N,λ,T , we do not

surpass the associated budget with the different variables zlogqi .

N∑︂
i

λ∑︂
j

T∑︂
k

bchoice
i, j,k · Bi, j,k =

OD∑︂
i

zlogqi (5.12)

Guarantee enough rescaling for the circuit. This constraint ensures the availability of
enough moduli for each multiplication depth. It assures that all rescalings can take
place after multiplication. More formally, we want to ensure that for an N, there are
at least ON

D
moduli bset

logqi
for relinearization.

N∑︂
i

λ∑︂
j

T∑︂
k

bi, j,k
choice · O

i
D =

OD∑︂
i

bset
logqi

(5.13)

Guarantee precision. This constraint ensures there are at least zp bits of precision to
represent the integer scale. We remind the reader that the previous constraint set the
interval for minimum and maximum values for zp. It performs the constraining by
setting the bit distance zp between the special prime zlogq0 and the rest of the moduli
(zlogqi | 0 < i < ON

D
).

zlogqi + pchoice ≤ zlogq0∀i ∈ 0 < i < max(ON
D) (5.14)

97

Precise encryption. This constraint guarantees that the encryption provides enough bits
of precision. We set zlogq0 to be the same as zlogq

ON
D

.

zlogq0 = zlogqON
(5.15)

Pair zlogqi with bset
logqi

guarantees that if bset
logqi

is 1, then the related value of logqi has to be
within the expected range defined by [logQmin, logQext

max]. Also, if the value of bset
logqi

is 0, then the value of zlogqi is necessarily 0, thus not influencing all the previous
constraint computations.

zlogqi ≥ bset
logqi
· logQmin∀i ∈ 0 < i < max(ON

D) (5.16)

zlogqi ≤ bset
logqi
· logQext

max∀i ∈ 0 < i < max(ON
D) (5.17)

Promote or discourage higher precision values. The LP task has certain flexibility to
choose zlogqi based on user choices. If the objective function is positive for bthr

logqi
,

then this constraint will try to preserve values in the range [logQmin, logQext
min].

That means it will look for performance and security rather than precision. Oth-
erwise, if the objective function is negative for bthr

logqi
then, we look for values in

[logQext
min, logQext

max] though it is not enforced.. The constraint is formulated in any
case as follows:

zlogqi ≥ bthr
logqi
· logQb

min∀i ∈ 0 < i < max(ON
D) (5.18)

5.4 Evaluation

In this section, we evaluate the correctness of the parameter selection of the proposed
system. First, we explain the experimental design conducted, and then we present the
results.

5.4.1 Experimental design

The proposed expert system selects parameters based on i) the user choices for the priority
of precision, performance, and security and ii) the processed circuit (i.e., multiplication
depth and maximum vector length). The experimental design aims to provide insights into
the correctness of the system. We create eleven tests that apply different computations and
imply other aspects of HE operations. Concretely, the tests evaluate encryption and de-
cryption, additions, multiplications, rotations, rescaling on various multiplication depths,
and combinations of the previous results. Table 5.3 details the different tests executed.

To evaluate precision, we measure the noise introduced by HE operations. First,
we use the expert system to extract parameters for different values for priorities of the
precision. Second, we execute the benchmark tests in plaintext and using HE. Third, we

98

Benchmark Tests
Test Details
T1 Encrpytion Decryption Test performs the encryption and decryption of a packed ciphertext.
T2 Addition Test performs a large number of additions on packed ciphertexts.
T3 Multiplication Test performs a large number of multiplications on packed ciphertexts with multiplication

depth ON
D
= 1.

T4 Rotation Test performs a large number of rotations on packed ciphertexts.
T5-T10 Large Multiplication Depth Test performs a set of tests with a large number of multiplications with in-

creasing multiplication depths (i.e., where the test number TX determines the multiplication depth). For
example, in T5 the multiplication depth is ON

D
= 5 or in T10 the multiplication depth is ON

D
= 10.

T11 Matrix Multiplication Test performs a large number of matrix multiplications between a packed vector
and a cleartext matrix which is vectorized according to the diagonal matrix multiplication [CP22].

Table 5.3: Benchmark tests performed to evaluate the different parameter selections of
the expert system. The different algorithms are executed for each user choice value.

compare the expected plaintext result with the HE result to measure the error incurred
(if any). In order to make the evaluation more accurate, we profit from packing, which
allows us to introduce a vector of numbers per ciphertext operating over all of them in
SIMD, making the evaluation more uniform. We refer the reader to Chapter 4 for more
details on algorithm creation with packing.

To evaluate performance, we use the expert system to generate parameters for var-
ious values of priorities for the performance. Then, we execute the program measuring
the encryption, processing, and decryption time. Note that, for consistency, we force the
rescaling or level dropdown in the evaluation. The rationale is that if the set of chosen
parameters introduces less noise, then rescaling may be unnecessary, introducing an in-
equality for the remainder of the test in the number of operations performed in each test
and their cost.

To evaluate security, we assess the parameter sets for different values of priorities
for the security parameter. As described in Section 5.2.3, as logN increases, it provides
more security, but as logqi increases, it reduces the security. Accordingly, we theoretically
evaluated by analyzing the chosen parameters logN and logqi and considering the security
guidelines of the HE Standard [Alb+18].

We conduct two different experiments with two types of parametrizations. First, we
individually analyze each variable (performance, security, and accuracy) and show differ-
ent values for one metric affecting the overall system. We fix the priority value for two
metrics at their lowest (i.e., 0) and set the third to values ranging from 0 to 10. This allows
us to observe the output for the different values for each variable when the others do not
affect the result. The second experiment attempts to evaluate how the system behaves
with conflicting values of the variables, using intermediate priorities. Concretely, we take
4 and 9 as priorities for each variable and run the benchmark tests on all the possible
combinations for these two values. In this last test, we also include a manual parametriza-
tion that a non-expert user may carry out when trying to use Homomorphic Encryption to
evaluate the effectiveness of our compiler.

99

Each test is executed ten times during the experimentation, and the average of the
executions is reported. We run the tests on a machine with an AMD Ryzen 3950X and
32 GB of RAM running Ubuntu 20.04. The tests are run on Golang 1.16 and the HE
framework Lattigo v2 [Mou+20].

5.4.2 Results

0 2 4 6 8 10
User Performance Choice

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Pe
rfo

rm
an

ce
 G

ai
n

Performance Tests
T1
T2
T3
T4

0 2 4 6 8 10
User Precision Choice

0.0

0.2

0.4

0.6

0.8

1.0
Re

la
tiv

e
Pr

ec
isi

on
 G

ai
n

Precision Tests
T1
T2
T3
T4

0 2 4 6 8 10
User Security Choice

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Se
cu

rit
y

Ga
in

Security Tests
T1
T2
T3
T4

0 2 4 6 8 10
User Performance Choice

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Pe
rfo

rm
an

ce
 G

ai
n

Performance Tests
T5
T6
T7
T8

0 2 4 6 8 10
User Precision Choice

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Pr
ec

isi
on

 G
ai

n

Precision Tests
T5
T6
T7
T8

0 2 4 6 8 10
User Security Choice

0.0

0.2

0.4

0.6

0.8

1.0
Re

la
tiv

e
Se

cu
rit

y
Ga

in

Security Tests
T5
T6
T7
T8

0 2 4 6 8 10
User Performance Choice

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Pe
rfo

rm
an

ce
 G

ai
n

Performance Tests
T9
T10
T11

0 2 4 6 8 10
User Precision Choice

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Pr
ec

isi
on

 G
ai

n

Precision Tests
T9
T10
T11

0 2 4 6 8 10
User Security Choice

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Se
cu

rit
y

Ga
in

Security Tests
T9
T10
T11

Parameter Selection Benchmark

Figure 5.7: Combined representation of the results relatively aggregated. The figures
show relative performance, precision, and security improvements from generating param-
eter selections with the expert system. In all these tests, we scale the figures so that a
higher metric means a better result in all terms, performance, security, and performance.

We divide this section into the analysis of the two experiments used, one to evalu-
ate each feature individually, using all possible priority values, and the other to test the
different combinations of conflicting priorities.

100

Benchmark Tests

Prec. Perf. Sec.
T1 T2 T3

∆ Res. Time(s) logN logQ Scale ∆ Res. Time(s) logN logQ Scale ∆ Res. Time(s) logN logQ Scale

4 4 4 1.49e-01 1.03e-03 10 40 20 4.39e-01 4.31e-01 10 91 20 1.32e+00 3.49e+00 10 110 20
4 4 9 5.32e-01 5.49e-03 12 93 21 8.94e-01 3.05e+00 13 114 21 3.42e+00 4.37e+01 13 136 21
4 9 4 5.41e-01 4.81e-03 12 82 19 8.10e-01 1.83e+00 12 100 19 3.85e+00 4.33e+01 13 120 19
4 9 9 5.83e-01 5.06e-03 12 82 19 8.71e-01 1.85e+00 12 100 19 3.47e+00 4.34e+01 13 120 19
9 4 4 3.52e-02 5.07e-03 12 82 19 1.14e-01 1.88e+00 12 100 19 1.25e-01 4.41e+01 13 120 19
9 4 9 1.33e-01 5.20e-03 12 109 23 5.48e-01 3.07e+00 13 132 23 1.09e+00 4.41e+01 13 160 24
9 9 4 1.49e-01 5.16e-03 12 93 21 3.96e-01 3.05e+00 13 114 21 9.71e-01 4.41e+01 13 136 21
9 9 9 1.26e-01 5.14e-03 12 93 21 4.05e-01 3.05e+00 13 114 21 8.73e-01 4.40e+01 13 136 21

Manual Selection 6.73e-02 5.39e-03 12 93 21 1.14e-01 3.05e+00 13 114 21 2.29e-01 4.40e+01 13 136 21

Prec. Perf. Sec.
T4 T5 T6

∆ Res. Time(s) logN logQ Scale ∆ Res. Time(s) logN logQ Scale ∆ Res. Time(s) logN logQ Scale

4 4 4 1.93e+00 7.38e+00 10 131 20 3.03e+02 1.08e+01 15 232 20 5.96e+02 1.46e+01 15 254 20
4 4 9 2.96e+00 4.46e+01 13 114 21 1.07e+04 5.40e+00 14 237 21 4.95e+03 7.23e+00 14 259 21
4 9 4 2.99e+00 2.11e+01 12 100 19 1.08e+04 2.58e+00 13 207 19 4.48e+03 7.12e+00 14 237 19
4 9 9 2.89e+00 2.12e+01 12 100 19 1.08e+04 2.56e+00 13 207 19 5.43e+03 7.20e+00 14 237 19
9 4 4 1.24e+00 2.13e+01 12 100 19 8.07e+01 2.61e+00 13 207 19 1.58e+02 7.24e+00 14 237 19
9 4 9 1.95e+00 4.50e+01 13 132 23 2.67e+02 5.48e+00 14 271 23 6.84e+02 7.39e+00 14 293 23
9 9 4 1.97e+00 4.50e+01 13 114 21 2.84e+02 5.48e+00 14 237 21 6.72e+02 7.34e+00 14 259 21
9 9 9 2.04e+00 4.50e+01 13 114 21 2.59e+02 5.46e+00 14 237 21 5.84e+02 7.37e+00 14 259 21

Manual Selection 2.99e+00 4.50e+01 13 114 21 3.91e+03 5.43e+00 14 237 21 1.98e+03 7.30e+00 14 259 21

Prec. Perf. Sec.
T7 T8 T9

∆ Res. Time(s) logN logQ Scale ∆ Res. Time(s) logN logQ Scale ∆ Res. Time(s) logN logQ Scale

4 4 4 1.41e+03 2.10e+01 15 276 20 3.00e+03 2.68e+01 15 298 20 6.85e+03 3.34e+01 15 321 20
4 4 9 8.05e+03 9.62e+00 14 278 21 1.45e+04 1.22e+01 14 300 21 1.05e+06 1.51e+01 14 317 21
4 9 4 2.15e+04 9.46e+00 14 258 19 7.48e+04 1.21e+01 14 280 19 1.05e+06 1.51e+01 14 302 19
4 9 9 5.17e+03 1.01e+01 14 258 19 1.20e+04 1.24e+01 14 280 19 1.05e+06 1.55e+01 14 302 19
9 4 4 1.63e+02 9.68e+00 14 258 19 3.29e+02 1.22e+01 14 280 19 8.98e+02 1.54e+01 14 302 19
9 4 9 1.39e+03 9.87e+00 14 328 24 3.08e+03 1.23e+01 14 352 24 8.24e+03 1.56e+01 14 376 24
9 9 4 1.39e+03 9.65e+00 14 278 21 3.04e+03 1.23e+01 14 300 21 7.42e+03 1.52e+01 14 317 21
9 9 9 1.29e+03 9.72e+00 14 278 21 3.45e+03 1.23e+01 14 300 21 6.32e+03 1.55e+01 14 317 21

Manual Selection 7.44e+03 9.60e+00 14 278 21 5.27e+05 1.23e+01 14 300 21 1.03e+06 1.52e+01 14 317 21

Prec. Perf. Sec.
T10 T11

∆ Res. Time(s) logN logQ Scale ∆ Res. Time(s) logN logQ Scale
4 4 4 2.09e+06 4.11e+01 15 344 20 3.57e+01 3.14e+01 14 151 20
4 4 9 2.10e+06 1.85e+01 14 333 21 6.03e+01 1.97e+01 13 177 21
4 9 4 2.10e+06 1.84e+01 14 323 19 1.26e+02 1.97e+01 13 157 19
4 9 9 2.10e+06 1.87e+01 14 323 19 1.43e+02 2.02e+01 13 157 19
9 4 4 1.54e+03 1.89e+01 14 323 19 6.30e+00 2.03e+01 13 157 19
9 4 9 2.09e+06 1.91e+01 14 401 24 6.58e+01 2.02e+01 13 208 24
9 9 4 2.09e+06 1.88e+01 14 333 21 4.81e+01 2.01e+01 13 177 21
9 9 9 2.09e+06 1.87e+01 14 333 21 7.46e+01 2.02e+01 13 177 21

Manual Selection 8.19e+04 1.87e+01 14 333 21 1.76e+02 2.01e+01 13 177 21

Table 5.4: Numeric benchmarks for each test executed on precision, performance, and
security values for all combinations of 4 and 9. The columns for each test show ∆ Res.
as the variation of the result with the HE noise, with the expected result (i.e., computed
in cleartext); the total time in seconds (s) needed to execute the test and the security
parameters used logN, logQ and scale.

The results for the individual tests are shown in Figure 5.7. Due to the nature of the
tested circuits, we note that the parametrizations may not change significantly, and thus
the implication of user choices in performance are more irregular. These occur because
different values of the user choices may lead to equivalent parametrization and similar
runtimes. Nevertheless, we observe a clear improvement in the performance gain for
higher values of the user choice. For example, in Tests 5-11, which are the most complex
from our benchmark set, the performance gain is reduced for low values (below 6) and
then considerably increases for higher values.

101

In the case of precision, there is a clear improvement for values higher than 4 or 5 in
all tests, which shows that the expert system successfully materializes the user choices.
Furthermore, precision is a key factor in Homomorphic Encryption that the parametriza-
tion manages to land. A similar pattern can be observed with security, where in most of
the tests, the improvement affects values higher than 5. However, in some circuits (i.e.,
Tests 3, 4, and 5), the increased security is smaller due to the requirements of the circuit.
There is a particular behavior in Tests 3, 4, and 5 for values 6 and 7, where the security
decreases regarding lower priorities. This is due to the performance-security tradeoff,
where the LP tasks chose a lower value of logQ, and, in doing so, it is able to reduce the
budget BN,λ,T thus fitting the parameters within a smaller logN (and in turn, improving
performance). Although the security metric slightly decreases, it remains high according
to the HE standard, and we do not consider it a worse parametrization in practice.

Table 5.4 shows the results for the experiment where we have run the test suite using
different combinations of priorities for the three features. This experiment evaluates the
behavior of the expert system when conflicting user choices appear. We observe that, as a
general pattern, when there is no conflict (i.e., all features have the same value, either 4 or
9), the results show that the three features equally improve, obtaining equivalent output.
It is mainly due to the Fuzzy Logic membership functions, logic rules, and defuzzification
that average and smooths the changes avoiding any decision that has a more significant
impact over the others. As long as the choices are not diverse, the overall optimization
of parameters is shared for the three features. Indeed, when precision is the most crucial
feature (with a value of 9 versus 4 for the other two variables), the logQ and scale increase,
and the error in the result is considerably minimized in all tests. As for security, we
observe that for higher values of security choice, the polynomial degree logN is kept
high, and the polynomial modulus logQ is minimized. The best performance value is
shared among parametrizations with the lowest logN and logQ.

An especially meaningful insight arises from the comparison of T5 to T10. When
performance is the goal, we observe how there is a linear relation between the number of
moduli and the runtime. As the multiplication depth increases, the runtime also increases.
This comes from the need to operate over more moduli per operation performed. Regard-
ing precision, noise also has an apparent influence on operations. As the multiplication
depth increases, given the scales, the noise propagation increases more significantly in
T10 than in T5 with 8.07 · 101 ≪ 1.54 · 103.

Finally, compared to the non-expert handpicked parameterizations, we observe how
the parametrization achieves mixed goals. In most cases, we remark a shift in the achieved
goals. This apparent difference comes from the need to perform manual circuit analysis
and obtain a biased result for any characteristics. Furthermore, we observe how, due to the
selection of the prime moduli (logqi), sometimes, the runtimes are affected significantly
(T9). In general, the multi-faced evaluation of the expert system’s parameters enables the
automated assessment of potential consequences and minimizes those.

102

5.4.3 Discussion

From the results of our first experiment, we observe that the improvement in each of
the variables increases with higher priority values when these are set independently (i.e.,
the other two variables are not considered). When different values are combined and
conflict (experiment 2), the expert system behaves as expected, and the result often favors
the variable with higher priority. However, we observe that in some cases, the different
combination of priorities results in the same set of parameters and in similar accuracy,
performance, and security. This is expected since the system is designed to guarantee a
minimum level of security as defined in the HE Standard. Overall, we have shown that
the expert system helps to provide optimal values for the parameters, balancing security,
performance, and accuracy. Indeed, the system outputs a set of parameters congruent
with what an expert initially seeks. These choices are performed from the heuristics and
expert knowledge implemented within the system. Furthermore, it requires minimal effort
from the user to achieve goals by setting high-level parameters. Otherwise, the user must
manually understand each choice’s constraints and considerations.

5.5 Summary

Homomorphic Encryption (HE) is not widespread due to limitations in terms of efficiency
and usability. Among the challenges of HE, scheme parametrization (i.e., selecting ap-
propriate parameters within the algorithms) is a relevant multi-faced problem. First, the
parametrization needs to comply with a set of properties to guarantee the security of the
underlying scheme. Second, parametrization requires a deep understanding of the low-
level primitives since the parameters have a confronting impact on the scheme’s precision,
performance, and security. Finally, circular relations exist between the circuit to be exe-
cuted and the parametrization. Thus, there is no general rule for the optimal selection of
parameters, and this selection depends on the circuit and the scenario of the application.
Currently, most existing HE frameworks require cryptographers to address these consid-
erations manually. It requires a minimum of expertise acquired through a steep learning
curve. This chapter proposes a unified solution for the previously mentioned challenges.
Concretely, we present an expert system combining Fuzzy Logic and Linear Program-
ming. The Fuzzy Logic Modules receive a user selection of high-level priorities for the
cryptosystem’s security, efficiency, and performance. Based on these preferences, the ex-
pert system generates a Linear Programming Model that obtains optimal combinations
of parameters by considering those priorities while preserving a minimum required level
of security for the cryptosystem. We conduct an extended evaluation showing that an ex-
pert system generates optimal parameter selections that maintain user preferences without
undergoing the inherent complexity of analyzing the circuit.

103

104

Chapter 6

HEFactory: A Symbolic Execution
Compiler for Privacy-Preserving Deep
Learning with Homomorphic
Encryption

In Chapter 4, we addressed the vectorization of algorithms in Packed Homomorphic En-
cryption for Deep Learning, which showed the difficulty of producing such operations
and provided guidelines to improve the use of this. Then, in Chapter 5, we described
the parametrization process of LWE-based schemes, together with a tool to automate this
process. To bring these scientific improvements to the community, the logical follow-up
for such contributions is to design and implement a tool that simplifies the production of
Homomorphic Encryption code in the form of a compiler. In this chapter, we describe
HEFactory, a multi-layer framework that introduces several improvements to usability
and automation, easing access to interdisciplinary data scientists and enabling DL infer-
ence on sensitive data while preserving privacy.

The remainder of this chapter is distributed as follows. First, we provide the motiva-
tion and introduction of the work in Section 6.1. Section 6.2 describes the flexible and
extensible system model of HEFactory. Then, Section 6.3 describes a multi-layered ar-
chitecture where each layer provides support for the upper layers and relies on functions
from the inner layers. Then, in Section 6.4, we evaluate the performance and code sim-
plicity of HEFactory for general and Deep Learning applications. Finally, in Section 6.5,
we summarize the main contributions of this chapter.

105

6.1 Introduction

Many advanced techniques in the field of Homomorphic Encryption (HE) can be com-
plex for non-experts to understand and use. While basic libraries have been available for
a long time, using them requires specialized knowledge and effort. Elaborating efficient
algorithms for Deep Learning (DL) on top of these is challenging and often needs inter-
operability with classic algorithms. This section outlines the main approaches to address
this issue and its limitations.

6.1.1 Precedents

Most modern HE techniques present technical barriers to researchers and practitioners in
other areas of knowledge. While low-level libraries have remained available since very
early in the field, using such libraries requires practical expertise and effort. Due to the
considerable domain expertise and knowledge needed to use Homomorphic Encryption
(HE) efficiently, recent works provide abstractions and simplifications to these techniques
for non-practitioners to use them [Aha+23; Dat+19; Dat+20; HS14b; Mou+20; Res20;
Via+23].

However, existing efforts to solve this problem either provide partial solutions to
the problem, e.g., not offering direct integration for Deep Learning [Dat+19; Dat+20],
not offering vectorized support and algorithms [Boe+19b], not providing high-level lan-
guage support [Gil+16; HTG17; JVC18; Mou+20] or the reliance of circuit analysis for
parametrization [Aha+23]. Therefore, these barriers restrict its access to data science
from many disciplines, which might lack the expertise to work with languages such as
C or C++ [Chi+20b; HS14b; Res20]. For a summary comparison of the features of the
different frameworks, compared to HEFactory, we refer the reader to Table 6.1 and Sec-
tion 3.6.

6.1.2 Motivation

High-level programming languages like Python or R are equipped with production-ready
data science libraries [Van16]. However, the software libraries and frameworks support-
ing HE use efficient languages, such as C++ [Chi+20b; HS14b; Res20] or Go [Mou+20].
Thus, adapting data-science libraries is a complex task due to the numerous changes re-
quired for compatibility with Deep Learning and the particular challenges of HE. In gen-
eral, deploying such scenarios requires subsequent development efforts to bridge the gap
between the different programming languages and can be affected by reiterations in de-
sign.

Providing easy-to-use Privacy-Preserving Deep Learning with HE is a key require-

106

nGraph EVA Concrete HELayers HEFactory
Vectorized Deep Learning ✓ ✗ ✗ ✓ ✓

Symbolic Execution ✗ ✓ ✗ ✓ ✓

Graph Execution ✓ ✗ ✗ ✗ ✗

Floating-Point CKKS ✓ ✓ ✗ ✓ ✓

Boolean TFHE ✗ ✗ ✓ ✗ ✗

Automated Parameter Selection ✗ ■ ✓ ■ ✓

Automated Ciphertext Vector Batching ✗ ✗ ✗ ✗ ✓

Tiling ✗ ✗ ✗ ✓ ✗

Optimization ✗ ✓ ✓ ✓ ✓

DL Frameworks Support ✓ ✗ ✓ ✗ ✓

✓: Provided | ✗: Not Provided | ■: Semi-Automatic

Table 6.1: Framework Comparison table between HEFactory and other similar frame-
works for Homomorphic Encryption.

ment for the spread of such solutions. Experts need to deliver non-experts frameworks
that generate simple, easy-to-use language without introducing security-specific concepts.
These need to relieve the user from any code adaptation and allow fast iteration while pro-
viding an optimal and functional solution.

6.1.3 Contribution

In this chapter, we describe HEFactory, a multi-layer framework that introduces several
improvements to usability and automation, easing access to interdisciplinary data scien-
tists and enabling DL inference on sensitive data while preserving privacy. Furthermore,
it features support for vectorized DL routines, automated parameter selection, automatic
ciphertext vector batching, and DL framework support, which places it as a competitive
alternative among the existing proposals.

HEFactory is composed by three main modules, dubbed Dahut, Tapir and Boar5. The
main scientific contributions are:

1. We present Dahut, a high-level API layer for Python that allows adapting existing
data science projects to private execution easily. This API makes the inner workings
of HE transparent to the developers and thus avoids the need to learn how it works
and how to make the correct decisions for its proper use.

2. We propose Tapir, a compilation toolchain that applies symbolic execution on the
source code in two phases. It processes the high-level functions and decomposes

5These names were inspired by the animal family of Cingulata [CDS15], one of the first software-aided
HE proposals described in Section 3.6.

107

them into low-level instructions for later homomorphic evaluation on the encrypted
data. Two stages of compilation allow the introduction of parameter-dependent
functions (i.e., procedures that depend on the parametrization of the HE scheme
but also influence it) at an early stage. Among others, Tapir allows for automated
parameter selection, automated ciphertext batching, and the provision of vectorized
techniques.

3. Finally, we describe Boar, a virtual machine software that interprets the output of
the Tapir compiler (using a custom Intermediate Representation Code (IR) format)
leveraging a HE backend framework for cryptographic operations (key generation,
encryption, and decryption), and the homomorphic circuit evaluation.

6.2 System Model

This section explains how HEFactory can be applied in a cloud scenario, i.e., to use Ma-
chine Learning as a Service (MLaaS). We consider two different actors, the Data Owner
(DO) and the Data Processor (DP). The DO is the client willing to use cloud services for
computation over sensitive data. At the same time, the Data Processor (DP) is the server
hosting the high-computing infrastructure to carry out the computation. We currently as-
sume that the Data Processor (DP) contains a pre-trained model on which it can conduct
inference. However, HEFactory can be extended to support bootstrapping, potentially
allowing training models over encrypted data.

Adversarial Model. We consider an Honest-But-Curious adversary model for the server.
Thus, we assume that DP correctly executes the trained circuit on the given data without
tampering with the input and output. However, it might attempt to access and learn the
input and output data content, thus breaking its privacy. In our setting, we only focus
on input privacy during inference, which preserves data privacy from an external non-
trusted party [CP21b]. Thus, we do not consider model secrecy (i.e., the inner workings
of the circuit are known both by the DP and the DO). Also, we do not cover output pri-
vacy regarding DL models, where the trained model might reveal internal information
about the data used for training (e.g., Membership Inference Attacks [Sho+17]). Also,
HEFactory enforces secure parametrizations according to the guidelines in the HE Stan-
dard [Alb+18].

Figure 6.1 represents the workflow of the process. First, the programmer writes code
using the Dahut API, either for NumPy-like operations or to perform actual Deep Learn-
ing inference. This code is given as input to Dahut (Step 1). Depending on who is
responsible for the programming task, we note that this step can be carried out entirely
by DO (if the DO provides the code) or split between DO and DP (if the DP provides the
code). In the latter case (i.e., when the actual circuit is programmed/designed by DP), the
DO compiles the input version of the program to create a data file with custom format
(see §6.3.2). The DP compiles the program into the IR code with placeholder data inputs

108

that are later filled with the data provided by the DO.

As a result of the compilation, Tapir outputs the input data in plaintext with a specific
format (only known by the DO), and also the HE params and IR code, which are of public
knowledge for both the DO and the DP (Step 2). The client (DO) uses the Boar Encryptor
to encrypt the input using specific HE params, resulting in the ciphertext and three keys: a
public key, a private key, and an evaluation key (Step 3). These keys are then transmitted
to the DP (Step 4), e.g., using a secure channel. DP then uses the Boar virtual machine
to execute the circuit (IR code) over the encrypted data, resulting in the encrypted result
(Step 5). This output is then transmitted back to the DO (Step 6), which can safely decrypt
on its local premises using the Boar Decryptor and the private key (Step 7).

Tapir Symbolic Compiler

Boar BoarEncryptor

Boar BoarEvaluator

Boar BoarDecryptor

Input Data HE Parameters

Evaluation Key

Public Key

Private Key

IR Code

Encrypted Data

Encrypted
Result

Decrypted
Result

Circuit Repr.

Dahut API for Homomorphic Encryption

1

2

3

4 5

6

7

Figure 6.1: Workflow of HEFactory in an MLaaS scenario. Tapir generates the necessary
outputs from the code to complete the execution. The Boar encryptor generates the keys
and encrypted input from the data. Then the Boar evaluator performs the execution from
the respective inputs. Finally, the Boar Decryptor extracts the decrypted result with the
private key.

109

6.3 HEFactory Architecture

HEFactory uses a layered architecture, where upper layers transparently rely on the func-
tionality provided by lower layers. In that way, these layers can assume specific abstrac-
tions concreted in lower layers. For example, any layer above the automatic parameter
selection can conduct its functions without caring about the HE internal parameters. As
such, since some expressions depend on these parameters (named Parameter-Dependent
expressions), our framework provides a solution in the form of Delayed Algorithms,
which are detailed in the following subsections. Figure 6.2 depicts the general archi-
tecture, which is composed of three main modules:

Dahut

Tapir

Boar

Backend HE Library

Deep Learning Inference

Delayed Algorithms

Delayed Execution

Automatic Parametrization

Automatic Vector Batching

Lazy Optimization

Circuit Generation

Symbolic Execution

Encryptor DecryptorEvaluator

Eager Optimization

Figure 6.2: Multi-layered architecture of HEFactory

Dahut provides a high-level Python API that acts as a translation layer for data scientists.
It encompasses two submodules. On the one hand, the code submodule allows writing

110

high-level Python instructions to interact with NumPy (for simple arithmetic operations)
and Tensorflow (for DL). Dahut code submodule modifies the original DL model circuit to
use HE-friendly algorithms (i.e., models are decomposed into HE-supported operations).
On the other hand, the data submodule defines new data types that can be used by the
programmers in their code as if they were regular types (e.g., floating-point numbers and
arrays). At a high level, Dahut allows code operations with these data types as if they were
plaintext information but internally transforms (in Tapir) them to a format that allows for
their encryption and privacy-preserving computation (in Boar).

Tapir is a symbolic compiler that takes as input the code and data obtained from Dahut
and transforms it into a custom binary format that can be then interpreted for different
HE frameworks in Boar (see Figure 6.2). In short, Tapir performs symbolic execution to
transform the high-level circuit into simpler low-level operations. In the first phase, the
compiler executes symbolic execution on the code and transforms it into internal expres-
sions. Since some expressions (e.g., a matrix multiplication) depend on the HE parame-
ters, Tapir initially marks these expressions as a Delayed Algorithms, so it can transform
them later. These expressions are stored in internal structures (objects) that provide the
required metadata for the parameter selection algorithm (e.g., the multiplication depth).
Once the compiler obtains the circuit representation from the first phase, it extracts rele-
vant information (e.g., the total number of multiplications or rotations required). It uses
an expert system to optimize the parameter selection automatically. Then, the Delayed
Algorithms are processed and symbolically executed, considering these parameters and
obtaining a complete low-level representation of the circuit using a custom Intermediate
Representation Code (IR) format. Finally, the compiler analyzes and compresses vec-
tors in the circuit compliant with the HE parameters, optimizes the code, and outputs the
circuit in a binary format.

Boar is a low-level virtual machine that acts as an interpreter for the binary code obtained
in Tapir. Concretely, it conducts the actual encryption and decryption of the data (typ-
ically done by the DO) and allows the DP to run the circuit with HE operations on the
encrypted data. It translates the IR code into low-level instructions from a given HE back-
end framework instructions (e.g., Lattigo). The IR code uses a standard format produced
by Tapir, and that Boar can interpret. HEFactory implements serialization to divide data
from code into different files, on which different access controls can be applied (e.g., to
prevent the DP from accessing the data).

Both Tapir and Boar are transparent to the programmer, who only needs to interact
with high-level subroutines using the Dahut high-level API. In that way, HEFactory pro-
vides a high-level NumPy-compatible interface and DL operations in a friendly Pythonic
way, lowering the barrier to its use for data scientists. Next, we describe each of the
modules in detail.

111

6.3.1 Dahut: A Python API for Homomorphic Encryption

Dahut is the uppermost layer of the HEFactory stack. It defines compatibility layers for
two popular Python libraries used in data science projects, i.e., NumPy for simple algebra
operations (e.g., multiplications of scalars or vectors) and TensorFlow for DL. Currently,
it implements common layers for Convolutional Neural Network (CNN) [Gil+16].

Dahut defines two new data types for symbols (CGSym) and arrays (CGArray). These
types are internally encrypted, and developers can use them as regular Python variables.
Concretely, CGSyms are used for declaring single values (e.g., integer or floating point
numbers), and CGArrays for declaring vectors and matrices. The CGArray is an abstract
type designed to track shape changes on the matrices and vector shapes during HE opera-
tions. In the following section, we describe how Tapir internally handles the interactions
of these data types during compilation.

Dahut provides a developer-friendly interface to Tapir through a central structure,
i.e., the Context Manager or CGManager, which tracks the changes and operations on
the declared symbols. During execution, Dahut invokes the execution of the different
processes of Tapir (see Figure 6.2) through CGManager. As a result of this invocation,
Tapir outputs the necessary files to encrypt (or decrypt) the data and evaluate the circuit
homomorphically in Boar. To show its simplicity, Listing 1 depicts the code snippet
required to transform a Tensorflow model in HEFactory and apply DL inference on an
encrypted matrix of size 28x28.

Listing 1: Code snippet that adapts a TensorFlow model to HEFactory and applies DL
inference on the encrypted data

1 tf_model = load_model('model.h5')

2 input_data = load_dataset()['x_test'][0]

3 private_model = Model.from_tf(tf_model)

4 with CGManager(precision=10,

5 performance=0,

6 security=0,

7 sec_type='classical') as cgm:

8 ciphertext_vec = CGArray(cgm, input_data)

9 res = private_model.forward(ciphertext_vec)

10 cgm.output([res])

11 boar = Boar(verbose=True)

12 boar.launch()

13 results = boar.grab_results()

14 pt_res = results[res.get_id()]

112

For DL compatibility, Dahut internally adapt operations such as matrix multiplication
or convolution for their use during HE evaluation. Thus, it relies on algorithms that trans-
late the high-level TensorFlow layers to low-level HE implementation in Tapir. These
algorithms are designed to optimize under Packed Homomorphic Encryption (PaHE)
schemes which allow conducting Single Instruction Multiple Data (SIMD). As discussed
in §3.6, SIMD operations substantially optimize the performance and allow for practical
applications of HE schemes such as CKKS in real scenarios. We refer to our previous
work for a complete description and analysis of these algorithms. These algorithms are
optimized to compute a complete forward pass, i.e., Dahut provides a transparent com-
patibility layer for DL inference. We note that the design of HEFactory permits easy
integration of new algorithms for DL training. Due to the existing challenges in the infer-
ence phase [Aha+23; CP21b; HTG17], we leave this integration for future work.

6.3.2 Tapir: A Symbolic-Execution compiler

Tapir, the keystone of HEFactory, is a symbolic execution compiler. Symbolic execution
is a process where an interpreter evaluates a code over symbolic values without actually
executing the program. By performing symbolic execution on HE, the interpreter gener-
ates a trace of the operations computed over the symbols and arrays. This trace permits
streamlining the required operations and optimizing the memory layout. While Tapir
performs symbolic execution on HE symbols (i.e., CGSym and CGArray), it operates dy-
namically on the remaining operations (i.e., the Python interpreter computes operations
over classical variables). This way, Tapir simplifies the final output, which will only con-
tain the required low-level HE operations (using a custom IR format), and thus eases the
integration of different backend frameworks implemented in Boar.

Symbolic execution in regular programs presents challenges for its application, e.g.,
path explosion that generates complex layouts when multiple branches exist or aliasing
when multiple names point to the same memory region. However, these challenges do not
affect our framework since we only conduct Symbolic Execution to HE circuits, where
only a restricted set of arithmetic operations are permitted (i.e., multiplication, addition,
subtraction, and rotation).

Compilation Overview

Tapir follows a classical compiler structure made of a lexer, a syntax analyzer, and a se-
mantic analyzer. In order to integrate Tapir as a Python library, it uses the same structures
provided by the language. Thus, the Python programming language provides the lexing
and parsing of the code. Then, through symbolic execution of the code, the expressions
on symbols are extracted and introduced on the AST. In addition to the syntax analysis
performed by Python, Tapir enforces syntactic rules on the kind of operations that can be
introduced in the AST. For example, it enforces the number of rotation operations as an

113

integer value. The semantic analysis tracks the context where operations are permitted.
For example, operating on vectors enforces that vector shapes are compatible. Then, it
generates an Abstract Syntax Tree (AST), on top of which optimizations and analysis are
carried out. Finally, the code generator produces an IR code, which can be serialized
and deserialized. It takes a Python program as input and produces output code written
interpretable by low-level HE framework (e.g., Lattigo). Internally, it uses an Initial Rep-
resentation (IR) language, on top of which some optimizations are conducted.

The main goal of Tapir’s compilation process is to build a complete, functional, and
efficient AST. The AST is complete when it includes all operations performed on the
symbols, and those can be translated to a binary representation (i.e., it does not include
any delayed operation and can be expressed as IR Code). The AST is functional if its
interpretation by the Boar VM can perform all operations, including vector encoding
and rescaling. The AST is efficient if it allows implementing optimizations to reduce
unnecessary operations and minimize the memory footprint. The AST is an essential data
structure containing information on the different symbols and their operations. The AST
acts as a registry, assigning each variable and expression an identifier. In that way, the
internal representation optimizes compilation time.

The compilation process works in two phases. The first phase consists of the symbolic
execution of the code to build an initial AST. At this stage, the parameters for the HE
circuits are not established; thus, we divide the expressions of the AST into parameter-
dependent and parameter-independent. When dealing with parameter-independent ex-
pressions, Tapir runs the syntactic and semantic analysis. The syntactic analysis enforces
rules on which operations can be introduced in the AST. For example, it enforces the
number of rotation operations to be an integer value. The semantic analysis tracks the
context where operations are permitted. For example, operating vectors enforces that vec-
tor shapes are compatible. When dealing with parameter-dependent symbols, in this first
Phase Tapir leaves a placeholder Delayed Operation object on the AST, which provides
necessary data for the parameter selection, like the number of expected multiplications or
rotations that will be produced.

The second phase aims to perform all the necessary tasks on the initial AST to make
it complete, functional, and efficient. To make it complete, Tapir implements a Delayed
Execution layer that processes and unrolls the Delayed Operations, guaranteeing all the
resulting operations in the AST can be translated into IR code. To make the AST func-
tional, Tapir implements a Vector Batch Rewriting layer that rewrites the AST so that all
vector operations fit within the slots defined by the HE parametrization. Both the Delayed
Execution and the Vector Batching require to know the HE parameters already. Therefore,
Tapir implements an automatic parametrization layer. To make the AST efficient, Tapir
implements two layers of optimization, the Eager and Lazy Optimizers.

For Tapir to traverse, analyze and rewrite the AST, it implements auxiliary structures
in the form of AST Visitors and AST Rewriters. AST Visitors traverse the instructions to

114

analyze the AST without making changes. Multiple visitors can traverse the AST simul-
taneously without affecting the consistency of the AST (i.e., without affecting the com-
pleteness or functionality of the AST). We use AST Visitors to compute multiplication
depth (ON

D
) per logN, the maximum vector length |v|max used to compute the parameter

selection. AST Rewriters are structures that traverse the AST and create, modify or delete
instructions. AST Rewriters affect the consistency of the AST and, thus, shall not be ex-
ecuted concurrently. Tapir uses Rewriters in the compilation for the Optimization Phase,
the Vector Batch Rewriter, and the Delayed Expression Rewriter.

Finally, the circuit generation phase generates binary files that optimally represent
all the information in the AST. The circuit generation also involves retrievability and
deserialization of the contents by the Boar VM.

Parameter-Independent Expressions

Symbols (CGSym and CGArray) are the main programming entities used by Tapir and
exposed to developers in Dahut. Tapir uses symbols to guarantee syntactic and semantic
consistency of the different interactions with other programming variables and symbols.

For consistency, we consider an expression to be a complex interaction of different
symbols in the source code. In its first phase, Tapir simplifies and traces the interactions
of symbols in instructions, which are reduced traces of an expression. When Tapir inter-
acts with parameter-independent expressions, it simplifies them and traces the different
instructions thanks to symbols. Internally, instructions comprise three operands (i.e., two
inputs and one output) and an operation. While the input and the output operand are
always a CGSym, the other input operand or special operand can be an integer or floating-
point number, a vector, or another symbol. Furthermore, Tapir supports four operations:
addition, subtraction, multiplication, and rotation. Depending on the operation and the
special operand, Tapir implements different syntactic and semantic rules on the instruc-
tions.

Upon these basic operations, Tapir supports additional functionality (e.g., optimized
polynomial computation with repeated squaring and Horner’s algorithm). Also, these
operations are the building blocks for the inner algorithms that transform DL internal
layers to HE-friendly functions.

Parameter-Dependent Expressions

In Homomorphic Encryption, some algorithms can take advantage of overflows during
rotation, e.g., for vector indexing. The appropriate execution of the algorithm depends on
the disposition of the real ciphertext slots, which in turn depend on the HE parameters.
Thus, these are considered parameter-dependent expressions and cannot be processed
before the HE parameters are selected.

115

In the first phase of the compilation, for these parameter-dependent expressions, Tapir
introduces a placeholder instruction or Delayed Operation object in the AST. After per-
forming the parameter selection in the second phase, the Delayed Executor rewrites the
AST, replacing the delayed operation object with the analogous algorithm using the low-
level instructions.

Delayed Operation objects are a simple interface that permits representing the algo-
rithm in a compiler-friendly way. The Delayed Operation object functionality allows the
implementation of algorithms for different parametrizations guaranteeing compliance and
flexibility. They conveniently provide two main functions. On the one hand, they store,
at a per-N basis, the cost of the Delayed Operation in terms of additions, multiplications,
rotations, multiplication depth, and multiplication depth with extended rotations. These
are specific metrics needed for parameter selection and enabling a forward pass of the
code without actually unrolling the operation. On the other hand, after performing pa-
rameter selection, the Delayed Operation object contains the specific function code that,
combined with the AST, is executed under specific parameters.

With the actual instructions for Parameter-independent expressions and the Delayed
objects for parameter-dependent expressions, the first phase of the compilation gets an
initial AST. Then, consecutive layers transform that into a complete, functional, and effi-
cient, as explained next.

Eager Optimizer

This optimizer consists of an AST Rewriter, which acts on top of the initial AST built
from the code written by the user. It works before parameter selection and delayed exe-
cution. The role of this optimization is to detect redundant patterns in operations before
the Parameter Selection takes place. In our current prototype, the Eager Optimizer is
instructed to detect and remove duplicated operations. This optimization significantly re-
duces the multiplication depth, thus speeding up the computation and reducing the total
cost of the operations. Due to its modular design, further compiler optimizations can be
further designed and applied at this stage.

Automated Parameter Selection

In Tapir, the parameter selection results from a combination of an AST Visitor, Fuzzy
Logic, and Linear Programming. The AST Visitor is in charge of extracting various
circuit parameters relevant to parameter selection, e.g., the multiplication depth at a per-
logN basis, the number of uses of each operation, and the maximum vector size |v|max. We
refer to Chapter 5 for further details on this automatic parameter selection process. This
selection helps automate the process and simplifies the selection for non-expert users.

116

Delayed Execution

Once the HE parameters are defined, the Delayed Execution layer consists of an AST
Rewriter that operates on the delayed operations (left as a placeholder during the first
phase of the compilation) and unrolls them into low-level instructions. It traverses the
AST looking for delayed operations, replacing the placeholder with the analogous in-
structions of the operation, considering the pre-existing parametrization. The code re-
placement is done thanks to the delayed operation object present in the instruction. The
AST Rewriter relies upon a program pointer to control the program flow. Whenever
this pointer targets a function marked as Delayed, the AST Rewriter moves the program
pointer to the entry point of this function and processes it. Afterward, the algorithm is
unrolled into its low-level operations, and once it finishes, the program pointer is restored
to its previous position.

Vector Operation Batch Rewriter

After the Delayed Execution layer, the AST provides a complete representation of the
code. However, because operations contain arbitrary length vectors, representation is not
yet functional. The AST gives no guarantee that the vectors would fit on the maximum
number of slots (i.e., the maximum size of a plaintext vector that can allocate a ciphertext).
When the maximum number of slots is exceeded, typically, the programmer must repre-
sent the plaintext with multiple ciphertexts. We denote the split of a plaintext vector into
multiple ciphertexts as batching and each ciphertext vector as batches. This procedure
involves manually splitting every plaintext vector and guaranteeing consistency along the
code. This procedure is highly inconvenient, cumbersome, and prone to errors process.
Furthermore, an extended procedure is needed once rotations appear since the overflow
of rotations should be preserved across batches. Tapir’s Vector Operation Batch Rewriter
analyzes the expressions in the AST and rewrites them so that batching is performed au-
tomatically according to the maximum vector size |v|max. To the best of our knowledge,
this is the first automatic implementation of such techniques in an HE compiler.

The procedure works under a set of guarantees that the architecture of Tapir enforces
from previous layers. Tapir assumes that the algorithms inform when they contain size-
increasing operations. In this case, the output symbol shall explicitly reshape the output
symbol (similar to broadcasting rules in NumPy). The assumptions are motivated by the
inability of the compiler to determine how to interact with two differently-sized batched
vectors (i.e., with a different number of batches) or on size-increasing operations. Due to
this, we need to establish a uniform rule for the compiler to interpret these expressions.
The guarantees assumed are the following:

1. Any two input operands within the same operation are always equally sized arrays.
The semantic analyzer in CGSym guarantees that this condition holds; therefore,
every input symbol operates with another symbol or vector of the same shape.

117

2. Size-growing operations (i.e., those that can potentially increase the size of a vec-
tor) always reflect the shape change on the output vector. Holding the previous
condition means two operands share the same shape, but the output symbol shape
may increase. We detail later the batching of such operations.

3. All symbols derive from a previous symbol, except input symbols. Therefore, un-
less specific size-growing operations are performed (i.e., matrix multiplication), the
vectors shall always fit within the batch size of the previous vector.

4. Rotations are the uttermost relevant step in size-growing operations where a size-
changing vector influences the control flow. Not performing a rotation on the ap-
propriate sizes can yield unpreserved algorithm integrity, given the use of overflows
in HE. Additions and multiplications on size-growing operations can be padded and
do not require such attention.

With these considerations in mind, the algorithm follows a three-step process.

1. It analyzes input symbols for potential rewriting.

2. It iterates over instructions looking for i) interactions of batched input symbols and
ii) size-increasing operations that would not fit within the maximum slots (i.e., those
where the output symbol shape is larger than the input symbols).

3. If any of the two previous conditions occur, the output batched symbols are also
cached for subsequent propagation of the batching in the remaining operations.

Batching implies changes to symbols and operations. For symbols, it is only required
to replicate their representation. With operations, we differentiate between non-rotations
and rotations. Non-Rotations only require replicating the operation n times on the differ-
ent batches. On the other hand, rotation operations require performing combinations of
frames of the different vectors. For a more detailed explanation of extended rotations, we
refer the reader to Chapter 4, where we tested and elaborated these algorithms.

For vector and symbol operations, we fill the vector operator with 0 up to the max-
imum length and then perform the batching on the output vectors. The algorithm takes
automatic care of the extension of operations. It simply replicates the operation n times
acting on the different batches for additions and multiplications. For rotation, the algo-
rithm substitutes each rotation with the equivalent extended rotation algorithm, as shown
in Figure 4.4. For example, the operation c⃗ = a⃗ + b where a⃗ is bigger than the number
of slots would require replicating a⃗ into n smaller vectors a⃗0, a⃗1, ..., a⃗n−1. The operation
would be replicated such that {c⃗0 = a⃗0 + b, c⃗1 = a⃗1 + b, ..., c⃗n−1 = a⃗n−1 + b}. The batched
result of the operation is stored as equivalent to the original symbol in operation. In that
way, after analyzing each operation, propagation occurs on the remainder of the circuit.

118

Lazy Optimizer

This layer consists of an AST Rewriter, which executes right before binary generation and
serves for memory optimization at execution time. The main task of the Lazy Optimizer is
to introduce free operations. These operations identify the last operation using a symbol,
after which the symbol can be removed from memory. In that way, during execution
time, the compiler guarantees a minimum memory allocation for variables (i.e., reduced
memory footprint).

Circuit Generation

At the end of the compilation, Tapir produces three different binary files through its binary
generator. First, the HE Parameter File holds a binary representation of the parameters
that the compiler estimates necessary for the execution of the circuit. Second, the In-
put Data File stores the data of all input CGSym in a binary format that Boar understands
for encryption. Finally and more importantly, the IR code File contains a translation of
the AST instruction in an assembly-like format. The IR code File contains a header in-
cluding metadata, i.e., the number of instructions and the size of operands. On average,
every operation occupies 13 bytes, except when we deal with vector operations, where
the full vector needs to be stored. In Tapir, every instruction is organized as a tuple with
the format: [<op> <result> <input_a> <input_b>]. The operands <result> and
<input_a> are always a CGSym or CGArray and can be represented by a 32-bit integer.
The free operand accepts three different values for <input_b>, a floating point value,
vector, or symbol. Floating-point and integer numbers are represented in 32-bit notation.
HEFactory supports the operations (<op>) that are needed for HE computation, i.e., ad-
dition, subtraction, multiplication, rotation, and free. Additionally, the IR code has a
different representation for the operation depending on the type of the free operand. We
use a byte to represent the operation code in IR. The Initial Representation details can be
found in Table 6.2.

All three files generated by Tapir’s Circuit Generation are independent and use rela-
tive addressing to other files. That means that subsequent executions of the compiler may
generate different data files compatible with the code file without requiring a recompila-
tion.

Further compression can be effectuated on the binary representation to optimize the
file size. Although HEFactory currently supports the CKKS scheme and parameters, the
binary format is extensible and could potentially be implemented with other homomor-
phic encryption schemes.

119

6.3.3 Boar VM: A bridge to HE frameworks

Tapir outputs three different files with a specific, custom format: one for the parameters,
one for the data, and one for the circuit. The serialization of the circuit and data into
different files allows for enforcing access control policies for different users, i.e., only the
Data Owner might get access to the data. These files are processed by Boar, composed
of three different entities for encryption and decryption of the data and for computation
of the circuit. Boar acts as a virtual machine since it receives the circuit represented in
a custom binary format from Tapir, and blindly executes it using the HE backend. The
proof-of-concept prototype implemented for this chapter supports the Lattigo frameme-
work [Mou+20]. However, we note it can be adapted to any other HE framework, such
as Microsoft SEAL [Res20] or IBM HELib [HS14b].

Boar Encryptor

It produces an encrypted file and the different keys needed for its processing. In order
to do that, it reads the HE parameters file, from which it generates appropriate keys.
Afterward, it uses those keys to encrypt the contents of the input data file. The secret
key shall be kept private for Data Owner, whereas the public and evaluation keys must be
shared with the Data Processor. These different keys are also serialized into different files
to allow the setup of appropriate access control.

Boar Evaluator

It simulates the runtime of a standard OS process. For that, it needs data, code, and
additional elements. The additional elements are the public and evaluation keys obtained
from the client. In general, the Data Owner might provide the data in an encrypted format.
In contrast, the Data Owner or Data Processor might provide the actual compiled code
(depending on who trained the model).

It loads the information and generates an internal memory structure to store the in-
termediate ciphertexts, guaranteeing minimal memory usage by freeing variables when
appropriate. The low-level virtual machine can automatically cache large ciphertexts on
disk, introducing a reduced residing set in memory so that the memory usage of the cir-
cuit is reduced (at the cost of an increased computational time) to enable processing in
memory-constrained devices. We note that further processing optimizations (e.g., paral-
lelization or GPU acceleration) can be implemented in this module. Once the execution
finishes, Boar Evaluator serializes and writes the remaining ciphertexts from memory into
files.

Once the code finishes the execution, Boar Evaluator serializes and writes the remain-
ing ciphertexts from memory into files.

120

IR Operations
Op. Name Opcode Operand A (a) Operand B (b) Output (c) Operation

addi 0 Ciphertext Integer Ciphertext c = a + int(b)
subi 1 Ciphertext Integer Ciphertext c = a − int(b)
muli 2 Ciphertext Integer Ciphertext c = a · int(b)
addf 3 Ciphertext Float Ciphertext c = a + f loat(b)
subf 4 Ciphertext Float Ciphertext c = a − f loat(b)
mulf 5 Ciphertext Float Ciphertext c = a · f loat(b)
addx 6 Ciphertext Ciphertext Ciphertext c = a + b
subx 7 Ciphertext Ciphertext Ciphertext c = a − b
mulx 8 Ciphertext Ciphertext Ciphertext c = a · b
rot 9 Ciphertext Integer Ciphertext c = a << b
addv 10 Ciphertext Vector Ciphertext c = a + array(b)
subv 11 Ciphertext Vector Ciphertext c = a − array(b)
mulv 12 Ciphertext Vector Ciphertext c = a · array(b)
free 99 Ciphertext - - delete(a)

Table 6.2: Intermediate Representation code produced by
Tapir and interpreted by Boar. Every instruction is organized
as a tuple with the format: [<op> <output> <operand_a>
<operand_b>] The table details the values and datatypes al-
lowed by each operation.

Boar Decryptor

Finally, similarly to the encryptor, the decryptor reads the encrypted result from the output
file. It allows it to decrypt the ciphertexts using the secret key generated on the Boar
Encryptor. We assume the Data Owner does this process in a controlled environment.

6.4 Framework Evaluation

This section evaluates HEFactory describing the experimental design and goals first and
then showing the results.

6.4.1 Experimental Design

HEFactory makes HE usable for non-experts. For testing, we use a benchmark inspired in
HECO [Via+23], evaluating different operations (detailed in Table 6.3). For comparison,
we implement these operations using four approaches:

1. Code produced with HEFactory (i.e., using the Dahut library, in Python).

2. Code written in Lattigo with expert awareness (i.e., conducting manual optimiza-
tions based on HE expert knowledge in Go)

121

Benchmark Tests
Test Details
T1 Box Blur performs the 3 × 3 blurring of a 32 × 32 image.
T2 Dot Product performs a dot product between two 8-element ciphertext vectors.
T3 Gx Kernel performs the x axis Sobel filter to a 32 × 32 image.
T4 Hamming Distance computes the distance between two 8 element vectors a, b = {0, 1} ∈ Z using logarith-

mic accumulation.
T5 L2 Distance computes the L2-distance between two 8 element vectors a, b ∈ Z using the square root.
T6 Linear Polynomial performs the computation of a linear polynomial (3x + 7) over 8 elements of a vector.
T7 Matrix Multiplication performs the diagonal matrix multiplication [CP22] of a 64 × 64 matrix and a 64

element vector.
T8 Quadratic Polynomial performs the computation of a linear polynomial (2x2 + 3x + 7) over 8 elements of

a vector.
T9 Robert Cross combines the computation of two convolutions and the normalization of those two convolu-

tions using the square root.
T10 Deep Learning Emulation combines the computation of two convolutions, followed by a result transfor-

mation, a degree 2 polynomial activation function, and matrix multiplication.

Table 6.3: Benchmark tests performed to evaluate the performance of HEFactory.

3. Code written as a non-expert (i.e., using a naive approach to only use basic opera-
tions of HE framework in Go).

4. Code written in EVA, a similar Python library that works on top of Microsoft SEAL.

To evaluate performance, we measure the execution times of the HE processing.
The detailed parameters used in each test are depicted in Table 6.4. For the non-expert
version, we assume the user utilizes predefined sets of parameters available in the library.
The expert version uses performant and well-tested parameters. The EVA and HEFactory
versions use automatically generated parameters by their automated circuit analysis.

We also evaluate code simplicity by analyzing two factors: the number of lines of
code (LoC) and characters per LoC. In general, shorter code is faster to write, easier to
iterate, and faster to fix.

All the experiments are run on an AMD Ryzen 9 3950x with 32 Gigabytes of RAM
on Ubuntu 20.04, running Python 3.10 and Golang 1.16 with Lattigo v2.1.1. EVA is
compiled according to the installation instructions provided in the Github repository with
Clang for C++17 in Ubuntu 20.04.

6.4.2 Results

Performance. Figure 6.3 shows the different runtimes. We observe major differences
between non-expert code and HEFactory code. Specifically, algorithms with little vector-
ization content (e.g., linear and quadratic polynomial) show a lesser degree of overhead,
but vectorized algorithms show considerable differences (e.g., matrix multiplication or
box-blur). Expert-written code and HEFactory code have less disparity between each
other, as code produced by HEFactory resembles the operations performed by an expert.

122

EVA performance shows equivalent performance to HEFactory. However, it shows prob-
lems with certain algorithms, such as the square root algorithm (used in L2 Distance and
Robert Cross), which is unable to perform because of internal crashes. Also, for certain
very small programs, such as the linear and quadratic polynomial, the execution time re-
mains bigger than HEFactory and Lattigo Expert. We note that given that the backend
libraries are different (Microsoft SEAL vs. Lattigo), the differences might be related to
issues in these libraries. Unlike EVA, however, HEFactory can be easily modified to
work on top of SEAL or any other library by implementing new translation functions in
the Boar layer (i.e., to transform our IR code to SEAL code in C++). We refer to a recent
work by Gouert et al. for a detailed comparison of backend libraries [GMT23].

Bo
x

Bl
ur

De
ep

Le
ar

ni
ng

Do
t

Pr
od

uc
t

Gx
Ke

rn
el

Ha
m

m
in

g
Di

st
an

ce

L2
Di

st
an

ce

Lin
ea

r
Po

ly
no

m
ia

l

M
at

rix
M

ul
t.

Qu
ad

ra
tic

Po
ly

no
m

ia
l

Ro
be

rt
Cr

os
s

Av
g.

10 3

10 2

10 1

100

101

Ru
nt

im
e

(s
)

Lattigo Non-Expert
EVA
HEFactory
Lattigo Expert

Figure 6.3: Performance comparison of HEFactory with code written in Lattigo.

Bo
x

Bl
ur

De
ep

Le
ar

ni
ng

Do
t

Pr
od

uc
t

Gx
Ke

rn
el

Ha
m

m
in

g
Di

st
an

ce
L2

Di
st

an
ce

Lin
ea

r
Po

ly
no

m
ia

l
M

at
rix

M
ul

t.
Qu

ad
ra

tic
Po

ly
no

m
ia

l
Ro

be
rt

Cr
os

s

Av
g.

0

50

100

150

200

250

300

Li
ne

s
of

 C
od

e

Lattigo Non-Expert
EVA
HEFactory
Lattigo Expert

Bo
x

Bl
ur

De
ep

Le
ar

ni
ng

Do
t

Pr
od

uc
t

Gx
Ke

rn
el

Ha
m

m
in

g
Di

st
an

ce
L2

Di
st

an
ce

Lin
ea

r
Po

ly
no

m
ia

l
M

at
rix

M
ul

t.
Qu

ad
ra

tic
Po

ly
no

m
ia

l
Ro

be
rt

Cr
os

s

Av
g.

0

10

20

30

40

Ch
ar

ac
te

rs
 p

er
 L

in
e

Figure 6.4: Comparison of HEFactory with base code written in Lattigo in terms of lines
of code (left) and characters per line of code (right).

123

Test Benchmark Parameters

Box Blur Dot Product Gx Kernel
LogN LogQ ON

D
∆ LogN LogQ ON

D
∆ LogN LogQ ON

D
∆

HEFactory 13 150 3 30 13 150 3 30 13 150 3 30
EVA 13 150 3 30 13 150 3 30 13 150 3 30

Lattigo Expert 13 160 2 40 13 160 2 40 13 160 2 40
Lattigo Non-Expert 13 218 6 30 13 218 6 30 13 218 6 30

Hamming Distance L2 Distance Linear Polynomial
LogN LogQ ON

D
∆ LogN LogQ ON

D
∆ LogN LogQ ON

D
∆

HEFactory 14 241 6 30 13 150 3 30 13 150 3 30
EVA 13 150 3 30 - - - - 13 180 3 60

Lattigo Expert 13 281 5 40 13 160 2 40 13 160 2 40
Lattigo Non-Expert 13 218 6 30 13 218 6 30 13 218 6 30

Matrix Multiplication Quadratic Polynomial Robert Cross
LogN LogQ ON

D
∆ LogN LogQ ON

D
∆ LogN LogQ ON

D
∆

HEFactory 13 150 3 30 14 241 6 30 13 180 4 30
EVA 13 150 3 30 13 150 3 30 - - - -

Lattigo Expert 13 160 2 40 14 281 5 40 13 241 4 40
Lattigo Non-Expert 13 218 6 30 13 218 6 30 13 218 6 30

Table 6.4: Parameters used for the benchmark test for each framework.

Code Simplicity. Figure 6.4 shows the number of LoC (left) and the average number of
characters per LoC (right) for the different benchmarks. Implementations written in Lat-
tigo are similar (averaging over 150 LoC per benchmark) and are worse than the average
35 LoC per benchmark in HEFactory. HEFactory also provides better results regard-
ing characters/LoC, with 25 characters (versus 50 for the Lattigo variants). On average,
HEFactory produces 80% fewer lines of code with 55% fewer characters per line of code
(i.e., making code shorter and more straightforward to read). While the differences with
EVA are narrow, EVA provides a minimal interface that displaces the programming bur-
den onto the user for complex operations. HEFactory, on the other hand, provides a set
of essential tools for program building, such as basic vectorized functions and other prim-
itives, which eases the work on this library. This is especially meaningful in the Deep
Learning test, where the increased complexity of the use case impacts EVA more than
HEFactory.

Takeaway. HEFactory provides performance-equivalent results with a simpler interface.
Thus, it lowers the bar for using HE primitives for non-expert users at no cost in terms of
performance.

6.4.3 Deep Learning Evaluation

A primary goal of HEFactory is to provide an abstraction layer for Deep Learning. We
evaluate compilation time, performance, and code simplicity of the execution of DL infer-
ence in Lattigo for a Convolutional Neural Network. We train a modified LeNet 5 model,
similar to the described in CryptoDL [HTG17] model. LeNet 5 [LBH15] neural network
is a handwritten digit classification model. The modifications to the base neural network

124

Neural Network Architecture
Layer Details

2D Convolution Kernels: 5, Kernel Size: 5 × 5, Stride: 1, Padding: 0
ReLU Activation Chebyshev approximation of x+ log(1+e−x), of Degree: 4 and Domain:

[−100, 100]
2D Average Pooling Pool Size: 3 × 3

Flatten -
Dense Units: 100

Sigmoid Activation Chebyshev approximation of
1

1 + e−x , of Degree: 4 and Domain:
[−100, 100]

Dense Units: 1

Sigmoid Activation Chebyshev approximation of
1

1 + e−x , of Degree: 4 and Domain:
[−100, 100]

Table 6.5: CNN architecture used in DL inference with Homomorphic
Encryption.

include using linear Chebyshev approximations of the activation functions and vector-
ized linear algebra primitives for the convolution and matrix multiplication [CP; CP22].
Table 6.5 depicts the architecture of the implemented neural network. As described in
Listing 1, HEFactory can directly receive a Tensorflow model, which underneath trans-
forms into basic instructions that Tapir can elaborate on and later on transmit to Boar.
The model class transforms the model. It extracts the activation functions of the model
to use. The only exception to this replacement is the last activation function, which only
needs to be executed on the output classification and can be performed by the DO and
remains a sigmoid function.

Table 6.6 summarizes the results. In total, the compilation time for the circuit is 5.4
seconds. As for the performance when running the inference, we observe that it requires
around 199s. However, HEFactory is motivated by the computation burden being out-
sourced to a cloud provider, which can be assumed to have higher computing capabilities.
Therefore, in Table 6.6, we split the total time into the time taken by the different tasks
and analyze which of these need to be executed either locally by the client (i.e., key gen-
eration, encryption, and decryption) or remotely by the server (i.e., circuit evaluation).
The execution of inference on a sample only requires 11s of client computation (10.4s for
key generation and 0.06s for encryption and decryption). In contrast, the most significant
computation of the evaluation (i.e., 187s, ≈ 94%) is offloaded to the cloud or a third-party
server, which can be assumed to have higher computing capabilities. A significant result
is that HEFactory requires only 66 lines of code to adapt DL inference from an existing
CNN in TensorFlow. Most of these lines are related to API calls to the internal functions
of HEFactory in a similar fashion as other Python-related libraries.

125

DL Compilation Time Results
Parameter Delayed Vector Binary
Selection Execution Batching Optimizer Generation Total

1.1 s 0.4 s 7 ms 0.01 s 3.48 s 5.4 s

DL Performance Time Results
Parameter Key
generation generation Encryption Evaluation Decryption Total
6.9 ∗ 10−4 s 10.4 s 0.05 s 187 s 0.01 s 199 s

Neural Network Lines Of Code
Lines of Code Characters / LoC

66 40

Table 6.6: Evaluation results for Deep Learning inference with Homomorphic Encryption.

Takeaway. This test confirms that HEFactory allows for efficient execution of vectorized
privacy-preserving DL inference, with a few modifications to existing data science pro-
grams. We believe that this will enable the use of HE and DL for users without previous
knowledge of Privacy-Preserving Technologies, without requiring previous knowledge
about the inner cryptographic techniques or the implementation details.

6.5 Summary

Homomorphic Encryption remains a complex technology with multiple application
challenges. It also requires a steep learning curve for its practical usage, preventing such
techniques from being successfully applied by non-experts. In this chapter, we present
HEFactory, a software stack composed of Dahut, a high-level Python API; Tapir, a sym-
bolic compiler; and Boar, a low-level virtual machine. HEFactory relies on a layered
architecture that implements several improvements to deal with the existing challenges
of HE. Dahut allows adapting trained Deep Learning models (and other high-level op-
erations) using HE. It directly interacts with Tapir, a symbolic compiler that translates
high-level expressions to simple low-level homomorphic instructions using a custom bi-
nary format. It integrates various intelligent systems and algorithms for the functional
evaluation of complex operations, parameter selection, vectorized ciphertext batching,
and optimizations. Boar is the low-level virtual machine that interprets binary files us-
ing existing HE backend frameworks. We implement a prototype and program various
Python tests on top of Lattigo, a state-of-the-art HE framework. Our evaluation shows
that HEFactory substantially reduces the complexity of programming Deep Learning ap-
plications with HE (i.e., a reduction of 80% in the number of lines of code and by 40%
in the complexity of statements required with respect to its equivalent in Lattigo), with
negligible compilation times and performance overhead.

126

Chapter 7

Conclusions and Future Work

In this thesis, we set the goal of providing techniques that reduce the complexity of Ho-
momorphic Encryption (HE) when applied to Deep Learning (DL) techniques, especially
for non-expert users. To this end, we stated a set of sub-objectives.

We next review each of these objectives and discuss the corresponding contributions pro-
posed in this thesis:

• O1. Systematizing existing knowledge in the application of privacy-preserving
computation techniques to Deep Learning. Chapter 2 and Chapter 3 address
this objective by providing a systematic view of the current state of the art of
Privacy-Preserving Deep Learning (PPDL) with PPCTs. The systematic review
allows identifying major use trends, potential research gaps, and issues with exist-
ing techniques, focusing on efficiency and usability issues. The insights from this
study informed the remainder of the research questions addressed in this thesis.

• O2. Analyzing and providing algorithms to adapt Deep Learning Inference
with Packed Homomorphic Encryption. Chapter 4 provides a detailed descrip-
tion of new and existing vectorization algorithms for computing convolutional neu-
ral networks with PaHE. Additionally, it provides a detailed analysis of the different
algorithms and concludes with guidelines for optimal use and empirical demonstra-
tions of those.

• O3. Simplifying Homomorphic Encryption parameter selection for non-expert
users. Chapter 5 introduces the design of a novel expert system combining fuzzy
logic and linear programming tasks that perform optimized parameter selection
based on high-level user input parameters. Our evaluation shows how the high-
level user elections yield parametrizations that reflect user choices at execution time
without requiring a low-level understanding of the cryptographic primitives.

• O4. Integrating the previous improvements in a computer-aided tool that en-
ables inexperienced users to use Homomorphic Encryption for Deep Learning.

127

Chapter 6 describes the implementation of a symbolic execution compiler for HE.
The architecture simplifies the use of HE by providing efficient vectorized algo-
rithms, automated parameter selection, and high-level DL support in Python. Our
evaluation shows that, with a reduced number of lines, the symbolic compiler can
produce performance-wise equivalent code to expert-written low-level code.

Systematization	
of	

Knowledge
O1

Deep	Learning	
Vectorization	for	Packed	
Homomorphic	Encryption

O2

Automating	
Homomorphic	Encryption	
Parameter	Selection	

O3

Symbolic	Execution	for
Deep	Learning	with	

Homomorphic	Encryption
O4

Figure 7.1: Overview of the thesis objectives with the main keywords and techniques used
to achieve each objective.

7.1 Contributions

Collectively, this thesis presents the subsequent contributions:

• A systematization of knowledge of the field of Privacy-Preserving Deep Learn-
ing (PPDL) focused on using PPCTs that introduces the different main goals of
PPDL and the solutions provided by PPCTs. The work describes the various ap-
proaches taken by state-of-the-art contributions in applying PPCTs. It analyzes the
major trends and potential research gaps to detail future lines of research.

• A formal analysis with usage guidelines of vectorized algorithms for PPDL
with HE that addresses the generalization problem of vectorized algorithms and
details the best practices to use vectorized algorithms in convolutional neural net-
works. Furthermore, it generalizes existing algorithms and introduces new ones.

• An expert system combining fuzzy logic with linear programming tasks that
effectively reduces the complexity of performing HE parameter selection and pro-
vides users with high-level features which are then reflected in the parametrizations.

• An HE symbolic compiler in Python that enables the use of HE in data science
projects for non-experts. Among other features, it implements efficient vector-
ized algorithms, automated parameter selection, and high-level DL support. Thus,
non-expert users can use HE with expert-equivalent performance without having
to learn complex mathematical formulas and without tedious circuit optimizations.
The compiler leverages the scientific contributions presented at earlier stages of
the thesis and provides a new software design that allows to include of additional
improvements in the future. As such, the compiler is provided open-source.

128

7.2 Dissemination

The outcomes of this thesis have been disseminated through the following publications at
diverse forums.

7.2.1 Publications

Journals

• José Cabrero-Holgueras and Sergio Pastrana. “Towards Realistic Privacy-
Preserving Deep Learning over Encrypted Medical Data”. In: Frontiers in Car-
diovascular Medicine 10 (), p. 641

• José Cabrero-Holgueras and Sergio Pastrana. “Towards Automated Homomorphic
Encryption Parameter Selection with Fuzzy Logic and Linear Programming”. In:
Expert Systems with Applications (2023)

• José Cabrero-Holgueras and Sergio Pastrana. “HEFactory: A Symbolic Execution
Compiler for Privacy-Preserving Deep Learning with Homomorphic Encryption”.
In: Software X (2023)

Conferences

• José Cabrero-Holgueras and Sergio Pastrana. “SoK: Privacy-Preserving Computa-
tion Techniques for Deep Learning”. In: Proceedings on Privacy Enhancing Tech-
nologies 2021.4 (2021), pp. 139–162

7.2.2 Presentations

Conferences

• SoK: Privacy-Preserving Computation Techniques for Deep Learning. The
21st Privacy Enhancing Technologies Symposium. July 12–16, 2021, Online.

• Usable Homomorphic Encryption for Private Telemedicine on the Cloud. Ital-
ian Telemedicine Society Congress (SIT) October 22-23, 2021, Online.

Workshops

• Privacy and Deep Learning for Healthcare Research. CERN openlab Workshop.
March 10, 2021. CERN, Geneva, Switzerland.

• Post-Quantum Privacy-Preserving Data Analysis Pipelines. CERN openlab
Workshop. March 22, 2022. CERN, Geneva, Switzerland.

129

• Quantumacy Project. OpenQKD 5th General Assembly. June 23, 2022. Paris,
France.

7.3 Future Work

From the proposals presented in this thesis, various future lines of research emerge:

• The contents presented in Chapter 4 demonstrate that developing vectorized algo-
rithms can be a time-consuming process compared to the more verbose semantics
produced by traditional code. To alleviate this issue, future proposals should in-
corporate internal transformations that generate equivalent vectorized algorithms
from classical representations or automatically select optimal layouts based on the
complexity of operations and subsequent result transformations.

• Chapter 5 showcases a novel method of automating algorithm parametrization that
maintains user objectives by incorporating expert knowledge in a heuristic system.
This work is premised on a static circuit that remains unchanged following its gen-
eration. Alternative strategies may involve integrating the circuit within the search
space to assess options where circuits and parameters are subject to modification.
Furthermore, our current tool has the potential to facilitate the creation of a training
dataset for DL models that can optimize parametrization based on known outputs.

• The symbolic compiler presented in Chapter 6 is aimed at producing user-friendly
code that eases the adoption of HE. While efficiency was desirable, it was not a
priority in the development. Further compilation strategies remain to be tested
and evaluated, such as introducing low-level programming language optimization
strategies. Additionally, the analysis and application of compilation features for
optimizing both the code generation process and the generated intermediate repre-
sentation code.

Second, current HE is generally a sequential process. It is desirable to analyze code
to enable parallel processing and exploit it is desirable to analyze parallel patterns
to exploit multiprocess execution of HE routines.

Finally, this thesis claims an improvement in code complexity thanks to using the
symbolic-compiler HEFactory. However, it is not the same code complexity as
usability. To support the claims of usability improvement, it would be desirable
to carry out a usability study where we analyze the coding efficiency of users per-
forming. The usability study can also help understand the main challenges and
complexities present in the current use of the tool.

130

Appendix A

Baseline Convolution Algorithms

In this appendix we overview the base algorithms upon which we improve the proposed
in Section 4.3.2. First, we describe the base convolution algorithm (§A.1), its base result
transformation (§A.2) and the introduction of Stride (§A.3) and padding (§A.4).

A.1 Convolution

We propose a general algorithm that permits the application of the convolution operation
to arbitrary matrices using SIMD operations. As a starting point, we based the algorithm
on examples proposed for matrices of 3 × 3 using kernel filters of 2 × 2 [Dat+19].

The algorithm takes as input a plaintext filter F ∈ R fx× fy of dimensions fx × fy. The
filter is applied to a ciphertext vector ct ∈ ZQ[x]/(xN + 1) (in Row-Column (RC) format)
that corresponds to an encrypted input matrix, i.e., ct = Enc(M ∈ Rh×w, pk), with pk being
the encryption key andM the input data in cleartext. The algorithm leverages the fact that
the dimensions of filters are shorter than input matrices and that we can operate them in
plaintext. Thus, it computes the convolution between each pixel of the filter and the input
matrix (i.e., represented by a ciphertext) and adds the partial results for each pixel. The
algorithm is described in Algorithm 11.

Depending on whether we use stride or not, we consider a different result layout. In
our work, we name two, the Convolution Resulting Format (CRF) for non-stridden convo-
lution and the Stridden Convolution Resulting Format (SCRF) for stridden convolutions.
These layouts include onull meaningless values between the values of the result (wout) des-
ignated by the input matrixM ∈ Rh×w and filter size F ∈ R fx× fy . Generally, these formats
are not valid for consecutive operations (layers), therefore Result Transformation (RT)
algorithms are needed, and we describe them next.

131

Algorithm 11 2D Convolution
Input: ct ∈ ZQ[x]/(xN + 1) = Enc(M ∈ Rh×w, pk), F ∈ R fx× fy

Output: conv ∈ ZQ[x]/(xN + 1) in CRF or SCRF format

function Convolution(ct,F)
for i← 0, fx do

for j← 0, fy do
rot ← ct ≪ (i ∗ w) + j
conv = conv ⊕ rot ⊙ Fi, j

end for
end for
return conv

end function

A.2 Result Transformation for CRF Format

In the CRF format, the amount of onull values is given by wout = w − fy + 1 and onull =

w−wout = fy−1. Therefore, a Result Transformation algorithm is developed to transform
the CRF format to the Row-Column format (named RT-CRF-RC). The original layout
splits the useful rows wout by onull values, therefore, the algorithm creates bitmasks for
the rows and shifts them to the appropriate position on the resulting RC) format. This
processing is described in Algorithm 12.

Algorithm 12 Result Transformation CRF to RC
Input: cCRF

t ∈ ZQ[x]/(xN + 1) in CRF format, Rh×w, R fx× fy

Output: cRC
t ∈ ZQ[x]/(xN + 1) = Enc(M ∈ Rhout×wout , pk), in RC format

function RT-CRF-RC(ct, h, w, fx fy)
hout ← h − fx + 1
wout ← w − fy + 1
onull ← wout − w
for i← 0, hout do

bitmask[t]i ← {i · wout ≤ t < wout · (i + 1)}
rowi ← cCRF

t ≪ (i · onull)
cRC

t = cRC
t ⊕ (rowi ⊙ bitmask[t]i)

end for
return cRC

t

end function

A.3 Stride

Sometimes, the input matrices to a convolutional layer are high resoultion images (i.e.,
have long dimensions (h,w)). Processing these images demands high performance cost,

132

since the convolutions extract features from small areas (as defined by the kernel). To
avoid processing large portions of the images, the process can be optimized by skipping
the result of parts of the convolutions. The amount of data to be skipped is defined by a
stride tuple (sx, sy). That is, considering that in a normal convolution the output shape is
defined by hout = h − fx + 2 · p + 1 and wout = w − fy + 2 · p + 1, stridden convolutions

reduce the output shape by a factor of the stride (sx, sy) such that hout =
h − fx + 2 · p + 1

sx

and wout =
w − fy + 2 · p + 1

sy
.

Given the convolution algorithm is based on the filter size, the reduction of output
elements does not affect the convolution algorithm itself, but it does provide a different
layout for the output format. In such a layout, the elements are more scattered than with-
out stride. For reference, we name this layout Stridden Convolution Resulting Format.
As with the CRF format, we cannot directly use the output layout in consecutive layers.
Thus, we propose an algorithm that translates from this layout to the RC, dubbed RT-
SCRF-RC, described in Algorithm 13. In this algorithm, we use a formula to determine
where the wout elements for the stride output are placed and extract them iterative addition
through bitmasks.

Algorithm 13 Result Transformation SCRF to RC
Input: cS CRF

t ∈ ZQ[x]/(xN + 1) in SCRF format, Rh×w, R fx× fy , (sx, sy), p
Output: cRC

t in RC format

function RT-SCRF-RC(ct, h,w, fx, fy, sx, sy, p)

hout ←

⌊︄
h − fx + 2 · p + 1

sx

⌋︄
wout ←

⌊︄
w − fy + 2 · p + 1

sy

⌋︄
for i← 0, hout do

for j← 0,wout do
bitmask[t]i ← {t = j · sy + (i · w · sx)}
shi f ti ← t − (i ∗ hout + j)
cRC

t = cRC
t ⊕ (cS CRF

t ⊙ bitmask[t]i) ≪ shi f ti

end for
end for
return cRC

t

end function

A.4 SIMD Padding

In many modern CNN architectures, it is common to chain multiple convolutional layers.
While in the first convolutional layer it is possible to introduce padding in ‘cleartext’ (i.e.,

133

the data owner can add it at the end of the ciphertext before encryption), for consecutive
ones, it is required to do it privately.

The proposed algorithm takes a bidimensional linearized ciphertext array ct ∈

ZQ[x]/(xN + 1) = Enc(M ∈ Rh×w, pk) and pads it uniformly with p zeroes on each di-
mension. It initially assumes a Row-Column format where the remaining entries of the
vector are set to zero. The algorithm extracts each row, and computes the necessary shift-
ing for a row, defined by the formula shi f ti = (w + 1) + (p · i) | 0 ≤ i < h. The details are
described in Algorithm 14. This algorithm outputs a Row-Column format directly usable
by the convolution algorithm described in §A.1. Furthermore, it does not affect the Result
Transformation algorithm.

Algorithm 14 2D Padding
Input: ct ∈ ZQ[x]/(xN + 1) = Enc(M ∈ Rh×w, pk), in RC Format, p
Output: cpad

t ∈ ZQ[x]/(xN + 1) = Enc(M′ ∈ Rhpad×wpad , pk), in RC format

function Padding(ct, p)
hpad ← h + 2 · p
wpad ← w + 2 · p
for i← 0, h do

bitmask[t]i ← {i · w ≤ t < w · (i + 1)}
shi f ti ← (w + 1) + (p · i)
cpad

t = cpad
t ⊕ ((ct ⊙ bitmask[t]i) ≫ shi f ti)

end for
return cpad

t

end function

134

Appendix B

Simplified Leveled Homomorphic
Encryption Parametrization in Practice

This chapter simplifies the parametrization process and shows the challenges of per-
forming HE parameter selection in practice. In the following sections, we describe prac-
tical approaches to the problem. First, Section B.1 describes a practical approach to the
parametrization of Leveled Homomorphic Encryption schemes. Then, Section B.2 covers
simple static parametrization, and Section B.3 covers an example of iterative parametriza-
tion.

B.1 Practical Leveled Homomorphic Encryption
Parametrization

The parameters of an Leveled Homomorphic Encryption (LHE) scheme for a circuit
C are determined by a tuple (N,Q, σ), where:

The polynomial degree (N) determines the size of the polynomial used for the encryp-
tion. At the same time, the size of the polynomial determines the number of ci-
phertext slots or the maximum number of plaintext elements that can be encrypted
within a single ciphertext. It is always a power of 2 and is often depicted as logN
or the bit count (i.e., logN = log2(N)).

The polynomial modulus (Q) produce ring arithmetic in the polynomial. The modulus
is often a product of several smaller coprime moduli qi, which serve for modulo
switching or rescaling. In a nutshell, whenever there is a multiplication operation,
the ciphertext polynomial drops a modulus qi, and in doing so, it reduces the scale

135

of noise. In the same way, Q and qi can be represented as a bit count logQ and
logqi, respectively (i.e., logQ = log2(Q) and logqi = log2(qi)).

Error distribution (σ) determines the scale of the error e introduced in ciphertexts for
the security of LWE. It is usually set to 3.2 to reduce the noise introduced while
guaranteeing security [Bra+13; MP13].

Choosing these parameters for the CKKS scheme consists of analyzing the circuit and
extracting some parameters from it based on the following steps:

1. Defining the integer and decimal precision values (kint and kdec respectively). These
are the values that determine the bit precision of the encryption.

2. Compute the multiplication depth (OD) by looking for the maximum number of
consecutive multiplications present in the circuit.

3. Select n = OD + 2 moduli bit lengths logqi, whose value is determined by:

• The first and last moduli determine the integer precision for encryption and
decryption. Thus, these are set to the sum of the integer and decimal scales:
logq0 = logqn = kint + kdec.

• The remaining moduli are set to preserve the noise scale on rescalings. Thus,
these are set to the decimal scale: logqi = kdec : 0 < i < n.

4. Compute the total modulus bit count logQ by summing the partial moduli: logQ =∑︁ON
D

i=0 logqi.

5. Based on the HE Standard [Alb+18], determine the appropriate logN according to
the corresponding logQ.

B.2 Parametrizing Static Circuits

This section describes the parametrization of a simple static circuit described in Listing 2.
For that we follow the steps described in Section B.1:

1. First, we select the integer and decimal scales. In this case, we select these to be 25
bits:

• kint = 25 and kdec = 25

2. Then we compute the maximum multiplication depth (OD). The maximum multi-
plication depth consists of three consecutive multiplications: a first multiplication
to compute x2, a second multiplication to compute x4, and the final multiplication
to compute 3 · x4. The remaining operations all have smaller multiplication depths.

136

• OD = 3

3. Then we select the chain of n = OD + 2 moduli (logqi). The first and last moduli
(logq0 and logqn) equal the integer sum and decimal precision. The remaining
moduli are equal

• n = OD + 2 = 5

• logq0 = logqn = kint + kdec = 25 + 25

• logqi = kdec = 25

4. Then we compute the addition of the different moduli (logqi) into the polynomial
modulus bit count logQ:

• logqi = {50, 25, 25, 25, 50}

• logQ =
∑︁ON

D

i=0 logqi = 175

5. Finally, we can look up the values for the maximum budgets according to the HE
Standard [Alb+18]. The HE Standard defines the maximum logQ that can be in-
troduced per logN. In this case, the maximum value of logQ for logN = 12 is 111,
thus not fitting. For logN = 13, the maximum budget logQ = 220 fits our values.

• logN = 13

At the end of this procedure, we have produced a valid parametrization that guarantees
the initial requirements we set for it. This example circuit shows a static behavior since
the parameters do not influence it.

Listing 2: Example static circuit computing f (x) = 3x4 + 2x + 7

1 def f(x):

2 #Repeated squaring reduces the multiplicative depth

3 x2 = x * x

4 x4 = x2 * x2

5 return 3 * x4 + 2 * x + 7

B.3 Iterative Parameter Selection

Some circuits present dependencies between the parametrization and the circuit itself.
The example shown in Listing 3 presents a dependency between the multiplication depth
and the size of the ciphertext vector. This fact implies that the elections made in the initial
phases may have to be reviewed. The parametrization works as follows:

137

1. First, we select the integer and decimal scales. In this case, we select these to be 25
bits:

• kint = 25 and kdec = 25

2. Then we compute the maximum multiplication depth (OD). As stated before, there
is a dual relationship between the vector length defined by logN and the multipli-
cation depth in this circuit. We start by assuming the vector length equals n = N
logN = 2:

• OD = 2

3. Then we select the chain of n = OD + 2 moduli (logqi). The first and last moduli
(logq0 and logqn) equal the integer sum and decimal precision. The remaining
moduli are equal

• n = OD + 2 = 5

• logq0 = logqn = kint + kdec = 25 + 25

• logqi = kdec = 25

4. Then we compute the addition of the different moduli (logqi) into the polynomial
modulus bit count logQ:

• logqi = {50, 25, 25, 50}

• logQ =
∑︁ON

D

i=0 logqi = 150

5. Finally, we can look up the values for the maximum budgets according to the HE
Standard [Alb+18]. The HE Standard defines the maximum logQ that can be in-
troduced per logN. In this case, the maximum value of logQ for logN = 12 is 111,
thus not fitting. For logN = 13, the maximum budget logQ = 220 fits our values.

• logN = 13

However, we see how our initial assumption n = N and logN = 2 is no longer true, as
we need a logN = 13 for our circuit to be secure. It implies reproducing the same steps
again, updating our assumption to N = 213 and logN = 13:

1. First, we select the integer and decimal scales. In this case, we select these to be 25
bits:

• kint = 25 and kdec = 25

2. Then we compute the maximum multiplication depth (OD). Now we assume N =
213 and logN = 13.

• OD = 13

138

3. Then we select the chain of n = OD + 2 moduli (logqi). The first and last moduli
(logq0 and logqn) equal the integer sum and decimal precision. The remaining
moduli are equal

• n = OD + 2 = 5

• logq0 = logqn = kint + kdec = 25 + 25

• logqi = kdec = 25

4. Then we compute the addition of the different moduli (logqi) into the polynomial
modulus bit count logQ:

• logqi = {50, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 50}

• logQ =
∑︁ON

D

i=0 logqi = 375

5. Finally, we can look up the values for the maximum budgets according to the HE
Standard [Alb+18]. The HE Standard defines the maximum logQ that can be in-
troduced per logN. Our previous guess was for logN = 13, where the maximum
budget logQ = 220. Again, this does not fit our values; we need to update to
logN = 14 where the budget is logQ = 440.

• logN = 14

Again, we spot the same problem, the circuit has updated our requirements, and our
previous assumption is no longer true. We need logN = 14, and thus we need to repeat
the whole process again:

1. First, we select the integer and decimal scales. In this case, we select these to be 25
bits:

• kint = 25 and kdec = 25

2. Then we compute the maximum multiplication depth (OD). Now we assume N =
214 and logN = 14.

• OD = 14

3. Then we select the chain of n = OD + 2 moduli (logqi). The first and last moduli
(logq0 and logqn) equal the integer sum and decimal precision. The remaining
moduli are equal

• n = OD + 2 = 5

• logq0 = logqn = kint + kdec = 25 + 25

• logqi = kdec = 25

4. Then we compute the addition of the different moduli (logqi) into the polynomial
modulus bit count logQ:

139

• logqi = {50, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 50}

• logQ =
∑︁ON

D

i=0 logqi = 400

5. Finally, we can look up the values for the maximum budgets according to the HE
Standard [Alb+18]. The HE Standard defines the maximum logQ that can be in-
troduced per logN. Our previous guess was for logN = 13, where the maximum
budget logQ = 220. Again, this does not fit our values; we need to update to
logN = 14 where the budget is logQ = 440.

• logN = 14

This time, our assumptions are correct, and we can assume a correct parameterization.
However, this presents multiple challenges that are difficult to sort out in more complex
circuits.

Listing 3: Example static circuit computing the multiplication of entries of a vector of
n = 4 entries.

1 def vector_mult(x):

2 y = x

3 logN = math.log2(N)

4 for i in range(logN):

5 y *= y << i

6 return y

140

Appendix C

HEFactory Internals

This section describes the overall internal and engineering workflow of the HEFactory
described in Chapter 6. For that, we describe the main classes that describe the workflow
of the compiler. First, we depict the symbolic execution phase in Section C.1. Then,
we detail the interactions to work with vectorized algorithms in Section C.2. Finally,
Section C.3 describes the Deep Learning interactions to adapt Tensorflow models.

C.1 Symbolic Execution

HEFactory aims to provide a fully integrated Python library environment. As a re-
sult, it eliminates the need for a separate compilation process and instead integrates it
within Python. To achieve this, HEFactory leverages the lexing and parsing capabilities
of Python. Additionally, it utilizes various language features and defines two structures
for compilation, namely, the compilation unit CGManager and the symbols CGSym.

The compilation environment of HEFactory enables the storage of the symbolic ex-
ecution trace and facilitates the production of a binary for later execution. Upon ini-
tialization, it creates an empty AST class. To simplify resource behavior emulation, the
CGManager executes compilation upon resource exit using the Python with clause. While
HEFactory tracks relations between symbols, only operations on CGSym are considered
relevant, not all Python variables.

In HEFactory, symbols are represented by the CGSym class, created using a
CGManager. The CGSym class overrides the behavior of all operations that can be exe-
cuted on a variable in the Python programming language, using operation overriding to
track operations. It also introduces syntax and semantic analysis to ensure that behaviors
are permitted within Homomorphic Encryption (HE). Upon declaration of a CGSym, an
initial value can be provided, which is used as a template for determining HE parameters.

141

This usage simplifies the problem of parsing operation order, and the same strict operation
order provided by Python is introduced in the compiler.

After each operation, the result is added to the AST, a list of Expr. Each expression is
represented by a four-element tuple that includes an operation code, an output symbol, and
two operands, one of which is always a ciphertext. Upon the completion of all operations,
various optimizations are performed by the compiler, including the introduction of free
expressions, which are added after the last use of a symbol.

Once the optimizations have been performed, the compiler produces a binary using
the BinGen class, which creates three files: a data file, a parameters file, and a circuit
file. The data file has a map-like structure that assigns an identifier to each input symbol
as a key and then introduces a value, which can be encrypted later. The parameters file
is a JSON-like file that stores all the parameters for the circuit. In contrast, the circuit
file includes a header that provides information about the circuit, such as the number of
operations. Each operation is then included in the file, and the parameters are standardized
after parsing the instruction type.

C.2 Delayed Execution

Delayed execution is a core component of HEFactory, as it allows for the inclusion of
vectorized operations and Single Instruction Multiple Data (SIMD) packing. It comprises
two distinct classes, namely DelayedExpr and DelayedExecutor. Delayed expressions
are employed whenever an operation’s execution requires input from the HE parameters.
During operation execution, an instance of DelayedExpr is appended to the AST ex-
pression list. This unique instruction exposes an output CGSym, whose characteristics
align with the expected output had the DelayedExpr been executed. This capability en-
ables the selection of parameters, assuming that the AST expansion will not alter these
parameters. Once the parameters have been selected, the DelayedExecutor expands the
DelayedExpr into equivalent code.

HEFactory incorporates preprogrammed vectorized primitives such as matrix multi-
plication, convolution, average pooling, and vector aggregation to facilitate the imple-
mentation of Privacy-Preserving Deep Learning (PPDL).

C.3 Deep Learning Adaptation

HEFactory includes multiple classes that facilitate the adaptation of base DL models
for PPDL usage. Specifically, it features a Tensorflow Model parser class that generates

142

an equivalent encrypted circuit. This process is facilitated by the wrapper classes, namely
Conv2D, AvgPooling2D, Dense, and Activation, which adapt the layers of the trained
Neural Network (NN). To support these functions, the Model class of Dahut offers all the
essential infrastructure required. Specifically, for inference purposes, the Model class can
be invoked with a CGArray, which represents the CGSym for vectors in an abstract form.
The execution process can then be performed automatically without requiring further in-
put from the user.

143

144

Bibliography

[Aba+16a] Martin Abadi et al. “Deep learning with differential privacy”. In: Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security. 2016, pp. 308–318.

[Aba+16b] Martıén Abadi et al. “Tensorflow: Large-scale machine learning on hetero-
geneous distributed systems”. In: arXiv preprint:1603.04467 (2016).

[Agr+19] Nitin Agrawal, Ali Shahin Shamsabadi, Matt J Kusner, and Adrià Gascón.
“QUOTIENT: two-party secure neural network training and prediction”.
In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. 2019, pp. 1231–1247.

[Aha+23] Ehud Aharoni et al. “HeLayers: A Tile Tensors Framework for Large Neu-
ral Networks on Encrypted Data”. In: Proceedings on Privacy Enhancing
Technologies (PETS). 2023.

[Alb+18] Martin Albrecht et al. Homomorphic Encryption Security Standard. Tech.
rep. Toronto, Canada: HomomorphicEncryption.org, Nov. 2018.

[Arc+19] David W Archer et al. “Ramparts: A programmer-friendly system for build-
ing homomorphic encryption applications”. In: Proceedings of the 7th
ACM Workshop on Encrypted Computing & Applied Homomorphic Cryp-
tography. 2019, pp. 57–68.

[Azr+19] Monir Azraoui et al. “SoK: Cryptography for Neural Networks”. In:
IFIP International Summer School on Privacy and Identity Management.
Springer. 2019, pp. 63–81.

[Bal+17] David Balduzzi, Marcus Frean, Lennox Leary, JP Lewis, Kurt Wan-Duo
Ma, and Brian McWilliams. “The shattered gradients problem: If resnets
are the answer, then what is the question?” In: International Conference on
Machine Learning. PMLR. 2017, pp. 342–350.

[Bea91] Donald Beaver. “Efficient multiparty protocols using circuit randomiza-
tion”. In: Annual International Cryptology Conference. Springer. 1991,
pp. 420–432.

[Ber+19] Daniel S Berman, Anna L Buczak, Jeffrey S Chavis, and Cherita L Corbett.
“A survey of deep learning methods for cyber security”. In: Information
10.4 (2019), p. 122.

145

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. “Non-Interactive Zero-
Knowledge and Its Applications”. In: Proceedings of the Twentieth Annual
ACM Symposium on Theory of Computing. STOC ’88. Chicago, Illinois,
USA: Association for Computing Machinery, 1988, pp. 103–112. doi: 10.
1145/62212.62222. url: https://doi.org/10.1145/62212.62222.

[BG69] Richard H Bartels and Gene H Golub. “The simplex method of linear pro-
gramming using LU decomposition”. In: Communications of the ACM 12.5
(1969), pp. 266–268.

[BGE19] Alon Brutzkus, Ran Gilad-Bachrach, and Oren Elisha. “Low Latency Pri-
vacy Preserving Inference”. In: Proceedings of the 36th International
Conference on Machine Learning. Ed. by Kamalika Chaudhuri and Rus-
lan Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research.
PMLR, Sept. 2019, pp. 812–821. url: https://proceedings.mlr.
press/v97/brutzkus19a.html.

[BGH13] Zvika Brakerski, Craig Gentry, and Shai Halevi. “Packed ciphertexts
in LWE-based homomorphic encryption”. In: Public-Key Cryptography–
PKC 2013: 16th International Conference on Practice and Theory in
Public-Key Cryptography, Nara, Japan, February 26–March 1, 2013. Pro-
ceedings 16. Springer. 2013, pp. 1–13.

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. “(Leveled) fully
homomorphic encryption without bootstrapping”. In: ACM Transactions
on Computation Theory (TOCT) 6.3 (2014), pp. 1–36.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. “Completeness
Theorems for Non-Cryptographic Fault-Tolerant Distributed Computa-
tion”. In: Proceedings of the Twentieth Annual ACM Symposium on Theory
of Computing. STOC ’88. Chicago, Illinois, USA: ACM, 1988, pp. 1–10.
doi: 10.1145/62212.62213. url: https://doi.org/10.1145/62212.
62213.

[Bla79] George Robert Blakley. “Safeguarding cryptographic keys”. In: 1979 Inter-
national Workshop on Managing Requirements Knowledge (MARK). IEEE.
1979, pp. 313–318.

[Blu83] Manuel Blum. “Coin flipping by telephone a protocol for solving impossi-
ble problems”. In: ACM SIGACT News 15.1 (1983), pp. 23–27.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. “The round complex-
ity of secure protocols”. In: Proceedings of the twenty-second annual ACM
symposium on Theory of computing. 1990, pp. 503–513.

146

https://doi.org/10.1145/62212.62222
https://doi.org/10.1145/62212.62222
https://doi.org/10.1145/62212.62222
https://proceedings.mlr.press/v97/brutzkus19a.html
https://proceedings.mlr.press/v97/brutzkus19a.html
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/62212.62213

[Boe+19a] Fabian Boemer, Anamaria Costache, Rosario Cammarota, and Casimir
Wierzynski. “NGraph-HE2: A High-Throughput Framework for Neural
Network Inference on Encrypted Data”. In: Proceedings of the 7th ACM
Workshop on Encrypted Computing & Applied Homomorphic Cryptogra-
phy. WAHC’19. London, United Kingdom: Association for Computing
Machinery, 2019, pp. 45–56. doi: 10 . 1145 / 3338469 . 3358944. url:
https://doi.org/10.1145/3338469.3358944.

[Boe+19b] Fabian Boemer, Yixing Lao, Rosario Cammarota, and Casimir Wierzynski.
“NGraph-HE: A Graph Compiler for Deep Learning on Homomorphically
Encrypted Data”. In: Proceedings of the 16th ACM International Confer-
ence on Computing Frontiers. CF ’19. Alghero, Italy: Association for Com-
puting Machinery, 2019, pp. 3–13. doi: 10.1145/3310273.3323047. url:
https://doi.org/10.1145/3310273.3323047.

[Boe+20] Fabian Boemer, Rosario Cammarota, Daniel Demmler, Thomas Schnei-
der, and Hossein Yalame. “MP2ML: A Mixed-Protocol Machine Learning
Framework for Private Inference”. In: Proceedings of the 2020 Workshop
on Privacy-Preserving Machine Learning in Practice. PPMLP’20. Virtual
Event, USA: Association for Computing Machinery, 2020, pp. 43–45. doi:
10.1145/3411501.3419425. url: https://doi.org/10.1145/
3411501.3419425.

[Bon+19] Keith Bonawitz et al. “Towards federated learning at scale: System design”.
In: arXiv preprint:1902.01046 (2019).

[Bou+18] Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Paillier.
“Fast homomorphic evaluation of deep discretized neural networks”. In:
Annual International Cryptology Conference. Springer. 2018, pp. 483–512.

[Bou+20] Christina Boura, Nicolas Gama, Mariya Georgieva, and Dimitar Jetchev.
“Chimera: Combining ring-lwe-based fully homomorphic encryption
schemes”. In: Journal of Mathematical Cryptology 14.1 (2020), pp. 316–
338.

[BR18] Battista Biggio and Fabio Roli. “Wild patterns: Ten years after the rise of
adversarial machine learning”. In: Pattern Recognition 84 (2018), pp. 317–
331.

[Bra+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and
Damien Stehlé. “Classical hardness of learning with errors”. In: Proceed-
ings of the forty-fifth annual ACM symposium on Theory of computing.
2013, pp. 575–584.

[BS18] Nick Barlow and Oliver Strickson. SHEEP is a Homomorphic Encryp-
tion Evaluation Framework. https://github.com/alan- turing-
institute/SHEEP. 2018.

147

https://doi.org/10.1145/3338469.3358944
https://doi.org/10.1145/3338469.3358944
https://doi.org/10.1145/3310273.3323047
https://doi.org/10.1145/3310273.3323047
https://doi.org/10.1145/3411501.3419425
https://doi.org/10.1145/3411501.3419425
https://doi.org/10.1145/3411501.3419425
https://github.com/alan-turing-institute/SHEEP
https://github.com/alan-turing-institute/SHEEP

[Bya+20] Megha Byali, Harsh Chaudhari, Arpita Patra, and Ajith Suresh. “FLASH:
fast and robust framework for privacy-preserving machine learning”. In:
Proceedings on Privacy Enhancing Technologies 2020.2 (2020), pp. 459–
480.

[Cab21] José Cabrero-Holgueras. “Usable Homomorphic Encryption for Private
Telemedicine on the Cloud”. In: Italian Telemedicine Society Conference
(SIT) (2021).

[CD16] Victor Costan and Srinivas Devadas. “Intel SGX Explained.” In: IACR
Cryptol. ePrint Arch. 2016.86 (2016), pp. 1–118.

[CDS15] Sergiu Carpov, Paul Dubrulle, and Renaud Sirdey. “Armadillo: a compila-
tion chain for privacy preserving applications”. In: Proceedings of the 3rd
International Workshop on Security in Cloud Computing. 2015, pp. 13–19.

[Cha+17a] Nishanth Chandran, Divya Gupta, Aseem Rastogi, Rahul Sharma, and
Shardul Tripathi. “EzPC: programmable, efficient, and scalable secure two-
party computation for machine learning”. In: ePrint Report 1109 (2017).

[Cha+17b] Melissa Chase, Ran Gilad-Bachrach, Kim Laine, Kristin E Lauter, and
Peter Rindal. “Private Collaborative Neural Network Learning.” In: IACR
Cryptol. ePrint Arch. 2017 (2017), p. 762.

[Cha+19] Harsh Chaudhari, Ashish Choudhury, Arpita Patra, and Ajith Suresh. “As-
tra: High throughput 3pc over rings with application to secure prediction”.
In: Proceedings of the 2019 ACM SIGSAC Conference on Cloud Comput-
ing Security Workshop. 2019, pp. 81–92.

[Che+17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. “Homo-
morphic encryption for arithmetic of approximate numbers”. In: Interna-
tional Conference on the Theory and Application of Cryptology and Infor-
mation Security. Springer. 2017, pp. 409–437.

[Che+19a] Huili Chen, Rosario Cammarota, Felipe Valencia, and Francesco Regaz-
zoni. “PlaidML-HE: Acceleration of Deep Learning Kernels to Compute
on Encrypted Data”. In: 2019 IEEE 37th International Conference on Com-
puter Design (ICCD). IEEE. 2019, pp. 333–336.

[Che+19b] Jung Hee Cheon, Dongwoo Kim, Duhyeong Kim, Hun Hee Lee, and Kee-
woo Lee. Numerical Method for Comparison on Homomorphically En-
crypted Numbers. Cryptology ePrint Archive, Paper 2019/417. https :
//eprint.iacr.org/2019/417. 2019. url: https://eprint.iacr.
org/2019/417.

[Che+20] Huili Chen et al. “Developing privacy-preserving AI systems: the lessons
learned”. In: 2020 57th ACM/IEEE Design Automation Conference (DAC).
IEEE. 2020, pp. 1–4.

148

https://eprint.iacr.org/2019/417
https://eprint.iacr.org/2019/417
https://eprint.iacr.org/2019/417
https://eprint.iacr.org/2019/417

[Chi+16] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachene.
“Faster fully homomorphic encryption: Bootstrapping in less than 0.1 sec-
onds”. In: international conference on the theory and application of cryp-
tology and information security. Springer. 2016, pp. 3–33.

[Chi+20a] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
“TFHE: fast fully homomorphic encryption over the torus”. In: Journal of
Cryptology 33.1 (2020), pp. 34–91.

[Chi+20b] Ilaria Chillotti, Marc Joye, Damien Ligier, Jean-Baptiste Orfila, and
Samuel Tap. “CONCRETE: Concrete Operates oN Ciphertexts Rapidly by
Extending TfhE”. In: WAHC 2020–8th Workshop on Encrypted Computing
& Applied Homomorphic Cryptography. Vol. 15. 2020.

[Cho+15] François Chollet et al. Keras. https://github.com/fchollet/keras.
2015.

[Cho+18] Edward Chou, Josh Beal, Daniel Levy, Serena Yeung, Albert Haque, and
Li Fei-Fei. “Faster cryptonets: Leveraging sparsity for real-world encrypted
inference”. In: arXiv preprint:1811.09953 (2018).

[Cho+85] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. “Ver-
ifiable secret sharing and achieving simultaneity in the presence of faults”.
In: 26th Annual Symposium on Foundations of Computer Science. IEEE.
1985, pp. 383–395.

[CJP21] Ilaria Chillotti, Marc Joye, and Pascal Paillier. “Programmable bootstrap-
ping enables efficient homomorphic inference of deep neural networks”.
In: Cyber Security Cryptography and Machine Learning: 5th International
Symposium, CSCML 2021, Be’er Sheva, Israel, July 8–9, 2021, Proceed-
ings 5. Springer. 2021, pp. 1–19.

[CP] José Cabrero-Holgueras and Sergio Pastrana. “Towards Realistic Privacy-
Preserving Deep Learning over Encrypted Medical Data”. In: Frontiers in
Cardiovascular Medicine 10 (), p. 641.

[CP21a] José Cabrero-Holgueras and Sergio Pastrana. “A methodology for large-
scale identification of related accounts in underground forums”. In: Com-
puters & Security 111 (2021), p. 102489.

[CP21b] José Cabrero-Holgueras and Sergio Pastrana. “SoK: Privacy-Preserving
Computation Techniques for Deep Learning”. In: Proceedings on Privacy
Enhancing Technologies 2021.4 (2021), pp. 139–162.

[CP22] José Cabrero-Holgueras and Sergio Pastrana. Towards Realistic
Privacy-Preserving Deep Learning Inference Over Encrypted Data.
http://dx.doi.org/10.2139/ssrn.4140183. 2022.

149

https://github.com/fchollet/keras

[CP23a] José Cabrero-Holgueras and Sergio Pastrana. “HEFactory: A Symbolic Ex-
ecution Compiler for Privacy-Preserving Deep Learning with Homomor-
phic Encryption”. In: Software X (2023).

[CP23b] José Cabrero-Holgueras and Sergio Pastrana. “Towards Automated Homo-
morphic Encryption Parameter Selection with Fuzzy Logic and Linear Pro-
gramming”. In: Expert Systems with Applications (2023).

[CP23c] José Cabrero-Holgueras and Sergio Pastrana. “Towards Automated Homo-
morphic Encryption Parameter Selection with Fuzzy Logic and Linear Pro-
gramming”. In: arXiv preprint arXiv:2302.08930 (2023).

[Csá+01] Balázs Csanád Csáji et al. “Approximation with artificial neural networks”.
In: Faculty of Sciences, Etvs Lornd University, Hungary 24.48 (2001), p. 7.

[Cyp+18] Scott Cyphers et al. “Intel ngraph: An intermediate representation, com-
piler, and executor for deep learning”. In: arXiv preprint:1801.08058
(2018).

[Dah+18] Morten Dahl et al. “Private machine learning in tensorflow using secure
computation”. In: arXiv preprint:1810.08130 (2018).

[Dam+12] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. “Multi-
party computation from somewhat homomorphic encryption”. In: Annual
Cryptology Conference. Springer. 2012, pp. 643–662.

[Dat+19] Roshan Dathathri et al. “CHET: An Optimizing Compiler for Fully-
Homomorphic Neural-Network Inferencing”. In: Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation. PLDI 2019. Phoenix, AZ, USA: Association for Computing
Machinery, 2019, pp. 142–156. doi: 10.1145/3314221.3314628. url:
https://doi.org/10.1145/3314221.3314628.

[Dat+20] Roshan Dathathri, Blagovesta Kostova, Olli Saarikivi, Wei Dai, Kim Laine,
and Madan Musuvathi. “EVA: An Encrypted Vector Arithmetic Language
and Compiler for Efficient Homomorphic Computation”. In: Proceedings
of the 41st ACM SIGPLAN Conference on Programming Language Design
and Implementation. PLDI 2020. London, UK: Association for Computing
Machinery, 2020, pp. 546–561. doi: 10.1145/3385412.3386023. url:
https://doi.org/10.1145/3385412.3386023.

[DEK20] Anders Dalskov, Daniel Escudero, and Marcel Keller. “Secure evaluation
of quantized neural networks”. In: Proceedings on Privacy Enhancing
Technologies 2020.4 (2020), pp. 355–375.

[DH22] Whitfield Diffie and Martin E Hellman. “New directions in cryptography”.
In: Democratizing Cryptography: The Work of Whitfield Diffie and Martin
Hellman. 2022, pp. 365–390.

150

https://doi.org/10.1145/3314221.3314628
https://doi.org/10.1145/3314221.3314628
https://doi.org/10.1145/3385412.3386023
https://doi.org/10.1145/3385412.3386023

[DM15] Léo Ducas and Daniele Micciancio. “FHEW: bootstrapping homomorphic
encryption in less than a second”. In: Annual International Conference on
the Theory and Applications of Cryptographic Techniques. Springer. 2015,
pp. 617–640.

[DMY16] Dung Hoang Duong, Pradeep Kumar Mishra, and Masaya Yasuda. “Effi-
cient secure matrix multiplication over LWE-based homomorphic encryp-
tion”. In: Tatra mountains mathematical publications 67.1 (2016), pp. 69–
83.

[DP19] Damien Desfontaines and Balázs Pejó. “SoK: Differential Privacies”. In:
CoRR abs/1906.01337 (2019). arXiv: 1906.01337. url: http://arxiv.
org/abs/1906.01337.

[DR+14] Cynthia Dwork, Aaron Roth, et al. “The algorithmic foundations of differ-
ential privacy.” In: Foundations and Trends in Theoretical Computer Sci-
ence 9.3-4 (2014), pp. 211–407.

[DSZ15] Daniel Demmler, Thomas Schneider, and Michael Zohner. “ABY-A frame-
work for efficient mixed-protocol secure two-party computation.” In:
NDSS. 2015.

[Du+17] Zhao-Hui Du et al. “Secure encrypted virtualization is unsecure”. In: arXiv
preprint:1712.05090 (2017).

[ElG85] Taher ElGamal. “A public key cryptosystem and a signature scheme based
on discrete logarithms”. In: IEEE transactions on information theory 31.4
(1985), pp. 469–472.

[EPK14] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. “Rappor: Ran-
domized aggregatable privacy-preserving ordinal response”. In: Proceed-
ings of the 2014 ACM SIGSAC conference on computer and communica-
tions security. 2014, pp. 1054–1067.

[Fel87] Paul Feldman. “A practical scheme for non-interactive verifiable secret
sharing”. In: 28th Annual Symposium on Foundations of Computer Science.
IEEE. 1987, pp. 427–438.

[FJR15] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. “Model inversion
attacks that exploit confidence information and basic countermeasures”.
In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. 2015, pp. 1322–1333.

[FM89] Paul Feldman and Silvio Micali. “An optimal probabilistic algorithm for
synchronous byzantine agreement”. In: International Colloquium on Au-
tomata, Languages, and Programming. Springer. 1989, pp. 341–378.

[FV12] Junfeng Fan and Frederik Vercauteren. “Somewhat Practical Fully Homo-
morphic Encryption.” In: IACR Cryptol. ePrint Arch. 2012 (2012), p. 144.

151

https://arxiv.org/abs/1906.01337
http://arxiv.org/abs/1906.01337
http://arxiv.org/abs/1906.01337

[Gen09] Craig Gentry. “A fully homomorphic encryption scheme”. crypto .
stanford.edu/craig. PhD thesis. Stanford University, 2009.

[Gil+16] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael
Naehrig, and John Wernsing. “Cryptonets: Applying neural networks to
encrypted data with high throughput and accuracy”. In: International Con-
ference on Machine Learning. 2016, pp. 201–210.

[GLN12] Thore Graepel, Kristin Lauter, and Michael Naehrig. “ML confidential:
Machine learning on encrypted data”. In: International Conference on In-
formation Security and Cryptology. Springer. 2012, pp. 1–21.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. “The knowledge
complexity of interactive proof systems”. In: SIAM Journal on computing
18.1 (1989), pp. 186–208.

[GMT23] Charles Gouert, Dimitris Mouris, and Nektarios Georgios Tsoutsos. “SoK:
New Insights into Fully Homomorphic Encryption Libraries via Standard-
ized Benchmarks”. In: Proceedings on Privacy Enhancing Technologies
2023.3 (July 2023), pp. 1–20.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. “How to Play ANY Mental
Game”. In: Proceedings of the Nineteenth Annual ACM Symposium on The-
ory of Computing. STOC ’87. New York, New York, USA: Association for
Computing Machinery, 1987, pp. 218–229. doi: 10.1145/28395.28420.
url: https://doi.org/10.1145/28395.28420.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. “Proofs that yield noth-
ing but their validity or all languages in NP have zero-knowledge proof
systems”. In: Journal of the ACM (JACM) 38.3 (1991), pp. 690–728.

[GNS21] Chaya Ganesh, Anca Nitulescu, and Eduardo Soria-Vazquez. “Rinocchio:
SNARKs for ring arithmetic”. In: Cryptology ePrint Archive (2021).

[Goo+14] Ian Goodfellow et al. “Generative Adversarial Nets”. In: Advances in neu-
ral information processing systems. 2014, pp. 2672–2680.

[Goo+16] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio.
Deep learning. Vol. 1. 2. MIT press Cambridge, 2016.

[GRR98] Rosario Gennaro, Michael O Rabin, and Tal Rabin. “Simplified VSS and
fast-track multiparty computations with applications to threshold cryptog-
raphy”. In: Proceedings of the seventeenth annual ACM symposium on
Principles of distributed computing. 1998, pp. 101–111.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. “Homomorphic encryp-
tion from learning with errors: Conceptually-simpler, asymptotically-
faster, attribute-based”. In: Annual Cryptology Conference. Springer. 2013,
pp. 75–92.

152

crypto.stanford.edu/craig
crypto.stanford.edu/craig
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420

[GV88] Oded Goldrcich and Ronen Vainish. “How to Solve any Protocol Problem -
An Efficiency Improvement (Extended Abstract)”. In: Advances in Cryptol-
ogy — CRYPTO ’87. Ed. by Carl Pomerance. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1988, pp. 73–86.

[Has+95] Mohamad H Hassoun et al. Fundamentals of artificial neural networks.
MIT press, 1995.

[HCS18] Nick Hynes, Raymond Cheng, and Dawn Song. “Efficient deep learning on
multi-source private data”. In: arXiv preprint:1807.06689 (2018).

[Hen+10] Wilko Henecka, Stefan K ögl, Ahmad-Reza Sadeghi, Thomas Schneider,
and Immo Wehrenberg. “TASTY: tool for automating secure two-party
computations”. In: Proceedings of the 17th ACM conference on Computer
and communications security. 2010, pp. 451–462.

[Hes+18] Ehsan Hesamifard, Hassan Takabi, Mehdi Ghasemi, and Rebecca N
Wright. “Privacy-preserving machine learning as a service”. In: Proceed-
ings on Privacy Enhancing Technologies 2018.3 (2018), pp. 123–142.

[HPW17] James B Heaton, Nick G Polson, and Jan Hendrik Witte. “Deep learning
for finance: deep portfolios”. In: Applied Stochastic Models in Business
and Industry 33.1 (2017), pp. 3–12.

[HS14a] Shai Halevi and Victor Shoup. “Algorithms in helib”. In: Annual Cryptol-
ogy Conference. Springer. 2014, pp. 554–571.

[HS14b] Shai Halevi and Victor Shoup. Bootstrapping for HElib. Cryptology ePrint
Archive, Paper 2014/873. https://eprint.iacr.org/2014/873. 2014.
url: https://eprint.iacr.org/2014/873.

[HS18] Nathan O Hodas and Panos Stinis. “Doing the impossible: Why neural net-
works can be trained at all”. In: Frontiers in psychology 9 (2018), p. 1185.

[HTG17] Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. “Cryptodl: Deep
neural networks over encrypted data”. In: arXiv preprint:1711.05189
(2017).

[Hun+18] Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly Shmatikov, and Emmett
Witchel. “Chiron: Privacy-preserving Machine Learning as a Service”. In:
arXiv preprint:1803.05961 (2018).

[Hus+20] Siam Hussain, Baiyu Li, Farinaz Koushanfar, and Rosario Cammarota.
“TinyGarble2: Smart, Efficient, and Scalable Yao’s Garble Circuit”. In:
Proceedings of the 2020 Workshop on Privacy-Preserving Machine Learn-
ing in Practice. 2020, pp. 65–67.

[Huy20a] Daniel Huynh. CKKS EXPLAINED, PART 2: FULL ENCODING AND DE-
CODING. Accessed on March, 30 2023. 2020. url: https : / / blog .
openmined.org/ckks-explained-part-2-ckks-encoding-and-

decoding/.

153

https://eprint.iacr.org/2014/873
https://eprint.iacr.org/2014/873
https://blog.openmined.org/ckks-explained-part-2-ckks-encoding-and-decoding/
https://blog.openmined.org/ckks-explained-part-2-ckks-encoding-and-decoding/
https://blog.openmined.org/ckks-explained-part-2-ckks-encoding-and-decoding/

[Huy20b] Daniel Huynh. CKKS EXPLAINED, PART 3: ENCRYPTION AND DE-
CRYPTION. Accessed on March, 30 2023. 2020. url: https://blog.
openmined . org / ckks - explained - part - 3 - encryption - and -

decryption/.

[Huy20c] Daniel Huynh. CKKS EXPLAINED, PART 4: MULTIPLICATION AND
RELINEARIZATION. Accessed on March, 30 2023. 2020. url: https://
blog.openmined.org/ckks-explained-part-4-multiplication-

and-relinearization/.

[Huy20d] Daniel Huynh. CKKS EXPLAINED, PART 5: RESCALING. Accessed on
March, 30 2023. 2020. url: https://blog.openmined.org/ckks-
explained-part-5-rescaling/.

[Huy20e] Daniel Huynh. CKKS EXPLAINED: PART 1, VANILLA ENCODING AND
DECODING. Accessed on March, 30 2023. 2020. url: https://blog.
openmined.org/ckks-explained-part-1-simple-encoding-and-

decoding/.

[Irv+19] Jeremy Irvin et al. CheXpert: A Large Chest Radiograph Dataset with
Uncertainty Labels and Expert Comparison. 2019. arXiv: 1901.07031
[cs.CV].

[IS15] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. 2015. arXiv:
1502.03167 [cs.LG].

[ISY20] Takumi Ishiyama, Takuya Suzuki, and Hayato Yamana. “Highly accurate
CNN inference using approximate activation functions over homomorphic
encryption”. In: 2020 IEEE International Conference on Big Data (Big
Data). IEEE. 2020, pp. 3989–3995.

[Jia+18] Xiaoqian Jiang, Miran Kim, Kristin Lauter, and Yongsoo Song. “Secure
Outsourced Matrix Computation and Application to Neural Networks”. In:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security. CCS ’18. Toronto, Canada: Association for Comput-
ing Machinery, 2018, pp. 1209–1222. doi: 10.1145/3243734.3243837.
url: https://doi.org/10.1145/3243734.3243837.

[JLS20] Aayush Jain, Huijia Lin, and Amit Sahai. “Indistinguishability obfuscation
from well-founded assumptions”. In: arXiv preprint:2008.09317 (2020).

[Jul+17] D Julkowska et al. “The importance of international collaboration for rare
diseases research: a European perspective”. In: Gene therapy 24.9 (2017),
pp. 562–571.

154

https://blog.openmined.org/ckks-explained-part-3-encryption-and-decryption/
https://blog.openmined.org/ckks-explained-part-3-encryption-and-decryption/
https://blog.openmined.org/ckks-explained-part-3-encryption-and-decryption/
https://blog.openmined.org/ckks-explained-part-4-multiplication-and-relinearization/
https://blog.openmined.org/ckks-explained-part-4-multiplication-and-relinearization/
https://blog.openmined.org/ckks-explained-part-4-multiplication-and-relinearization/
https://blog.openmined.org/ckks-explained-part-5-rescaling/
https://blog.openmined.org/ckks-explained-part-5-rescaling/
https://blog.openmined.org/ckks-explained-part-1-simple-encoding-and-decoding/
https://blog.openmined.org/ckks-explained-part-1-simple-encoding-and-decoding/
https://blog.openmined.org/ckks-explained-part-1-simple-encoding-and-decoding/
https://arxiv.org/abs/1901.07031
https://arxiv.org/abs/1901.07031
https://arxiv.org/abs/1502.03167
https://doi.org/10.1145/3243734.3243837
https://doi.org/10.1145/3243734.3243837

[JVC18] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan.
“GAZELLE: A Low Latency Framework for Secure Neural Network In-
ference”. In: 27th USENIX Security Symposium (USENIX Security 18).
Baltimore, MD: USENIX Association, Aug. 2018, pp. 1651–1669. url:
https : / / www . usenix . org / conference / usenixsecurity18 /

presentation/juvekar.

[JYS18] James Jordon, Jinsung Yoon, and Mihaela van der Schaar. “PATE-GAN:
Generating synthetic data with differential privacy guarantees”. In: Inter-
national Conference on Learning Representations. 2018.

[Kai+19] Peter Kairouz et al. “Advances and open problems in federated learning”.
In: arXiv preprint:1912.04977 (2019).

[Kai+20] Georgios A Kaissis, Marcus R Makowski, Daniel Rückert, and Rickmer
F Braren. “Secure, privacy-preserving and federated machine learning in
medical imaging”. In: Nature Machine Intelligence (2020), pp. 1–7.

[KMR14] Vladimir Kolesnikov, Payman Mohassel, and Mike Rosulek. “FleXOR:
Flexible garbling for XOR gates that beats free-XOR”. In: Annual Cryp-
tology Conference. Springer. 2014, pp. 440–457.

[Kon+16] Jakub Konečnỳ, H Brendan McMahan, Daniel Ramage, and Peter
Richtárik. “Federated optimization: Distributed machine learning for on-
device intelligence”. In: arXiv preprint:1610.02527 (2016).

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. “MASCOT: faster ma-
licious arithmetic secure computation with oblivious transfer”. In: Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security. 2016, pp. 830–842.

[KPR18] Marcel Keller, Valerio Pastro, and Dragos Rotaru. “Overdrive: Making
SPDZ great again”. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer. 2018, pp. 158–189.

[KPW16] David Kaplan, Jeremy Powell, and Tom Woller. “AMD memory encryp-
tion”. In: White paper (2016).

[KS08] Vladimir Kolesnikov and Thomas Schneider. “Improved garbled circuit:
Free XOR gates and applications”. In: International Colloquium on Au-
tomata, Languages, and Programming. Springer. 2008, pp. 486–498.

[Kum+20a] Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya Gupta, Aseem
Rastogi, and Rahul Sharma. “Cryptflow: Secure tensorflow inference”. In:
2020 IEEE Symposium on Security and Privacy (SP). IEEE. 2020, pp. 336–
353.

[Kum+20b] Ram Shankar Siva Kumar et al. “Adversarial machine learning-industry
perspectives”. In: 2020 IEEE Security and Privacy Workshops (SPW).
IEEE. 2020, pp. 69–75.

155

https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar
https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar

[Lat+21] Chris Lattner et al. “MLIR: Scaling Compiler Infrastructure for Domain
Specific Computation”. In: 2021 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO). 2021, pp. 2–14. doi: 10.1109/
CGO51591.2021.9370308.

[LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In:
nature 521.7553 (2015), pp. 436–444.

[LeC+12] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller.
“Efficient backprop”. In: Neural networks: Tricks of the trade. Springer,
2012, pp. 9–48.

[LeC+89] Yann LeCun et al. “Backpropagation applied to handwritten zip code
recognition”. In: Neural computation 1.4 (1989), pp. 541–551.

[LeC+98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. “Gradient-
based learning applied to document recognition”. In: Proceedings of the
IEEE 86.11 (1998), pp. 2278–2324.

[Lin20] Yehuda Lindell. “Secure Multiparty Computation”. In: Commun. ACM
64.1 (Dec. 2020), pp. 86–96. doi: 10.1145/3387108. url: https://
doi.org/10.1145/3387108.

[Liu+17] Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. “Oblivious neural
network predictions via minionn transformations”. In: Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Secu-
rity. 2017, pp. 619–631.

[LLV07] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. “t-closeness:
Privacy beyond k-anonymity and l-diversity”. In: 2007 IEEE 23rd Interna-
tional Conference on Data Engineering. IEEE. 2007, pp. 106–115.

[Mac+07] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthu-
ramakrishnan Venkitasubramaniam. “l-diversity: Privacy beyond k-
anonymity”. In: ACM Transactions on Knowledge Discovery from Data
(TKDD) 1.1 (2007), 3–es.

[MIE17] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. “Cachezoom:
How SGX amplifies the power of cache attacks”. In: International Confer-
ence on Cryptographic Hardware and Embedded Systems. Springer. 2017,
pp. 69–90.

[Mis+20] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting
Zheng, and Raluca Ada Popa. “DELPHI: A cryptographic inference ser-
vice for neural networks”. In: 29th USENIX Security Symposium (USENIX
Security 20). 2020.

156

https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1145/3387108
https://doi.org/10.1145/3387108
https://doi.org/10.1145/3387108

[Mou+20] Christian Vincent Mouchet, Jean-Philippe Bossuat, Juan Ramón Troncoso-
Pastoriza, and Jean-Pierre Hubaux. “Lattigo: A multiparty homomorphic
encryption library in go”. In: Proceedings of the 8th Workshop on En-
crypted Computing and Applied Homomorphic Cryptography. CONF.
2020, pp. 64–70.

[MP13] Daniele Micciancio and Chris Peikert. “Hardness of SIS and LWE with
small parameters”. In: Annual Cryptology Conference. Springer. 2013,
pp. 21–39.

[MR18] Payman Mohassel and Peter Rindal. “mixed protocol framework for ma-
chine learning”. In: Proceedings of the ACM SIGSAC Conference on Com-
puter and Communications Security. 2018, pp. 35–52.

[Mur20] Kazuo Murota. “Linear programming”. In: Computer Vision: A Reference
Guide. Springer, 2020, pp. 1–7.

[MZ17] Payman Mohassel and Yupeng Zhang. “SecureML: A System for Scalable
Privacy-Preserving Machine Learning”. In: Proceedings of the IEEE Sym-
posium on Security and Privacy. IEEE. 2017, pp. 19–38.

[Nan+19] Karthik Nandakumar, Nalini Ratha, Sharath Pankanti, and Shai Halevi.
“Towards deep neural network training on encrypted data”. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops. 2019.

[NH10] Vinod Nair and Geoffrey E Hinton. “Rectified linear units improve re-
stricted boltzmann machines”. In: ICML. 2010.

[NP99] Moni Naor and Benny Pinkas. “Oblivious transfer and polynomial evalua-
tion”. In: Proceedings of the 31st ACM Symposium on Theory of Comput-
ing. 1999, pp. 245–254.

[NPS99] Moni Naor, Benny Pinkas, and Reuban Sumner. “Privacy preserving auc-
tions and mechanism design”. In: Proceedings of the 1st ACM conference
on Electronic commerce. 1999, pp. 129–139.

[Nwa+18] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen
Marshall. Activation Functions: Comparison of trends in Practice and Re-
search for Deep Learning. 2018. arXiv: 1811.03378 [cs.LG].

[Ode09] Goldreich Oded. Foundations of Cryptography: Volume 2, Basic Applica-
tions. 2009.

[Ohr+16] Olga Ohrimenko et al. “Oblivious multi-party machine learning on trusted
processors”. In: 25th USENIX Security Symposium (USENIX Security 16).
2016, pp. 619–636.

157

https://arxiv.org/abs/1811.03378

[Pai99] Pascal Paillier. “Public-key cryptosystems based on composite degree
residuosity classes”. In: Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics). Vol. 1592. Springer Verlag, 1999, pp. 223–238. doi: 10.1007/3-
540-48910-X_16. url: https://link.springer.com/chapter/10.
1007/3-540-48910-X%7B%5C_%7D16.

[Pap+16] Nicolas Papernot, Martıén Abadi, Ulfar Erlingsson, Ian Goodfellow, and
Kunal Talwar. “Semi-supervised knowledge transfer for deep learning from
private training data”. In: arXiv preprint:1610.05755 (2016).

[Pap+18a] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael P Well-
man. “SoK: Security and privacy in machine learning”. In: 2018 IEEE
European Symposium on Security and Privacy (EuroS&P). IEEE. 2018,
pp. 399–414.

[Pap+18b] Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Ku-
nal Talwar, and Úlfar Erlingsson. “Scalable Private Learning with PATE”.
In: arXiv preprint:1802.08908 (2018).

[Par+13] Bryan Parno, Craig Gentry, Jon Howell, and Mariana Raykova. Pinocchio:
Nearly Practical Verifiable Computation. Cryptology ePrint Archive, Paper
2013/279. https://eprint.iacr.org/2013/279. 2013. url: https:
//eprint.iacr.org/2013/279.

[Pas+17] Adam Paszke et al. “Automatic Differentiation in PyTorch”. In: NIPS 2017
Workshop on Autodiff. Long Beach, California, USA, 2017. url: https:
//openreview.net/forum?id=BJJsrmfCZ.

[Pin+09] Benny Pinkas, Thomas Schneider, Nigel P Smart, and Stephen C Williams.
“Secure two-party computation is practical”. In: International conference
on the theory and application of cryptology and information security.
Springer. 2009, pp. 250–267.

[PRR17] Yuriy Polyakov, Kurt Rohloff, and Gerard W Ryan. “PALISADE lattice
cryptography library user manual”. In: Cybersecurity Research Center,
New Jersey Institute of Technology (NJIT), Tech. Rep (2017).

[PW00] Florian A Potra and Stephen J Wright. “Interior-point methods”. In: Jour-
nal of computational and applied mathematics 124.1-2 (2000), pp. 281–
302.

[Rab05] Michael O Rabin. “How To Exchange Secrets with Oblivious Transfer.” In:
IACR Cryptol. ePrint Arch. 2005.187 (2005).

[Reg09] Oded Regev. “On lattices, learning with errors, random linear codes, and
cryptography”. In: Journal of the ACM (JACM) 56.6 (2009), pp. 1–40.

[Res20] Microsoft Research. Microsoft SEAL (release 3.6). https://github.
com/Microsoft/SEAL. Microsoft Research, Redmond, WA. Nov. 2020.

158

https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-48910-X_16
https://link.springer.com/chapter/10.1007/3-540-48910-X%7B%5C_%7D16
https://link.springer.com/chapter/10.1007/3-540-48910-X%7B%5C_%7D16
https://eprint.iacr.org/2013/279
https://eprint.iacr.org/2013/279
https://eprint.iacr.org/2013/279
https://openreview.net/forum?id=BJJsrmfCZ
https://openreview.net/forum?id=BJJsrmfCZ
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL

[Ria+18] M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M
Songhori, Thomas Schneider, and Farinaz Koushanfar. “Chameleon: A hy-
brid secure computation framework for machine learning applications”. In:
Proceedings of the 2018 on Asia Conference on Computer and Communi-
cations Security. 2018, pp. 707–721.

[Ria+19] M Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine, Kristin
Lauter, and Farinaz Koushanfar. “XONN: XNOR-based Oblivious Deep
Neural Network Inference”. In: 28th USENIX Security Symposium
(USENIX Security 19). 2019, pp. 1501–1518.

[RRK18] Bita Darvish Rouhani, M Sadegh Riazi, and Farinaz Koushanfar. “Deepse-
cure: Scalable provably-secure deep learning”. In: Proceedings of the 55th
Annual Design Automation Conference. 2018, pp. 1–6.

[RRK19] M Sadegh Riazi, Bita Darvish Rouani, and Farinaz Koushanfar. “Deep
learning on private data”. In: IEEE Security& Privacy 17.6 (2019), pp. 54–
63.

[RSA78] Ronald L Rivest, Adi Shamir, and Leonard Adleman. “A method for ob-
taining digital signatures and public-key cryptosystems”. In: Communica-
tions of the ACM 21.2 (1978), pp. 120–126.

[Ryf+18] Theo Ryffel et al. “A generic framework for privacy preserving deep learn-
ing”. In: arXiv preprint:1811.04017 (2018).

[San+18] Amartya Sanyal, Matt Kusner, Adria Gascon, and Varun Kanade. “TAPAS:
Tricks to Accelerate (encrypted) Prediction As a Service”. In: International
Conference on Machine Learning. 2018, pp. 4490–4499.

[Sav+20] Sinem Sav et al. “POSEIDON: Privacy-Preserving Federated Neural Net-
work Learning”. In: arXiv preprint:2009.00349 (2020).

[Sch89] Claus-Peter Schnorr. “Efficient identification and signatures for smart
cards”. In: Conference on the Theory and Application of Cryptology.
Springer. 1989, pp. 239–252.

[Sen15] Jaydip Sen. “Security and privacy issues in cloud computing”. In: Cloud
technology: concepts, methodologies, tools, and applications. IGI global,
2015, pp. 1585–1630.

[Sha+17] Noam Shazeer et al. Outrageously Large Neural Networks: The Sparsely-
Gated Mixture-of-Experts Layer. 2017. doi: 10.48550/ARXIV.1701.
06538. url: https://arxiv.org/abs/1701.06538.

[Sha79] Adi Shamir. “How to share a secret”. In: Communications of the ACM
22.11 (1979), pp. 612–613.

[Sho+17] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov.
“Membership inference attacks against machine learning models”. In: 2017
IEEE Symposium on Security and Privacy (SP). IEEE. 2017, pp. 3–18.

159

https://doi.org/10.48550/ARXIV.1701.06538
https://doi.org/10.48550/ARXIV.1701.06538
https://arxiv.org/abs/1701.06538

[Sin+22] Saurabh Singh, Shailendra Rathore, Osama Alfarraj, Amr Tolba, and Byun-
gun Yoon. “A framework for privacy-preservation of IoT healthcare data
using Federated Learning and blockchain technology”. In: Future Genera-
tion Computer Systems 129 (2022), pp. 380–388.

[So+19] Jinhyun So, Basak Guler, A Salman Avestimehr, and Payman Mohas-
sel. “CodedPrivateML: A Fast and Privacy-Preserving Framework for Dis-
tributed Machine Learning”. In: arXiv preprint:1902.00641 (2019).

[Son+15] Ebrahim M Songhori, Siam U Hussain, Ahmad-Reza Sadeghi, Thomas
Schneider, and Farinaz Koushanfar. “Tinygarble: Highly compressed and
scalable sequential garbled circuits”. In: 2015 IEEE Symposium on Secu-
rity and Privacy. IEEE. 2015, pp. 411–428.

[Sri+14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. “Dropout: A Simple Way to Prevent Neural Net-
works from Overfitting”. In: Journal of Machine Learning Research 15.56
(2014), pp. 1929–1958. url: http : / / jmlr . org / papers / v15 /
srivastava14a.html.

[SS08] Ahmad-Reza Sadeghi and Thomas Schneider. “Generalized universal cir-
cuits for secure evaluation of private functions with application to data
classification”. In: International Conference on Information Security and
Cryptology. Springer. 2008, pp. 336–353.

[SS15] Reza Shokri and Vitaly Shmatikov. “Privacy-preserving deep learning”. In:
Proceedings of the 22nd ACM SIGSAC conference on computer and com-
munications security. 2015, pp. 1310–1321.

[SS19] Nils Strodthoff and Claas Strodthoff. “Detecting and interpreting myocar-
dial infarction using fully convolutional neural networks”. In: Physiologi-
cal measurement 40.1 (2019), p. 015001.

[Swe02] Latanya Sweeney. “k-anonymity: A model for protecting privacy”. In: In-
ternational Journal of Uncertainty, Fuzziness and Knowledge-Based Sys-
tems 10.05 (2002), pp. 557–570.

[Tan+20] Harry Chandra Tanuwidjaja, Rakyong Choi, Seunggeun Baek, and
Kwangjo Kim. “Privacy-Preserving Deep Learning on Machine Learn-
ing as a Service—a Comprehensive Survey”. In: IEEE Access 8 (2020),
pp. 167425–167447.

[Tao+23] Rohan Taori et al. Stanford Alpaca: An Instruction-following LLaMA
model. https://github.com/tatsu-lab/stanford_alpaca. 2023.

[TB18] Florian Tramer and Dan Boneh. “Slalom: Fast, verifiable and pri-
vate execution of neural networks in trusted hardware”. In: arXiv
preprint:1806.03287 (2018).

160

http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://github.com/tatsu-lab/stanford_alpaca

[Ton+18] Samet Tonyali, Kemal Akkaya, Nico Saputro, A Selcuk Uluagac, and
Mehrdad Nojoumian. “Privacy-preserving protocols for secure and reliable
data aggregation in IoT-enabled smart metering systems”. In: Future Gen-
eration Computer Systems 78 (2018), pp. 547–557.

[Top19] Eric J Topol. “High-performance medicine: the convergence of human and
artificial intelligence”. In: Nature medicine 25.1 (2019), pp. 44–56.

[Tra+16] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ris-
tenpart. “Stealing machine learning models via prediction apis”. In: 25th
{USENIX} Security Symposium ({USENIX} Security 16). 2016, pp. 601–
618.

[Van16] Jake VanderPlas. Python data science handbook: Essential tools for work-
ing with data. " O’Reilly Media, Inc.", 2016.

[VB17] Paul Voigt and Axel von dem Bussche. The EU General Data Protection
Regulation (GDPR): A Practical Guide. 1st. Springer Publishing Company,
Incorporated, 2017.

[VC04] Jaideep Vaidya and Chris Clifton. “Privacy-preserving data mining: Why,
how, and when”. In: IEEE Security & Privacy 2.6 (2004), pp. 19–27.

[Via+23] Alexander Viand, Patrick Jattke, Miro Haller, and Anwar Hithnawi.
HECO: Fully Homomorphic Encryption Compiler. 2023. arXiv: 2202 .
01649 [cs.CR].

[VJH21] A. Viand, P. Jattke, and A. Hithnawi. “SoK: Fully Homomorphic Encryp-
tion Compilers”. In: 2021 2021 IEEE Symposium on Security and Pri-
vacy (SP). Los Alamitos, CA, USA: IEEE Computer Society, May 2021,
pp. 1166–1182. doi: 10.1109/SP40001.2021.00068. url: https://
doi.ieeecomputersociety.org/10.1109/SP40001.2021.00068.

[VS02] Vinod Valsalam and Anthony Skjellum. “A framework for high-
performance matrix multiplication based on hierarchical abstractions, al-
gorithms and optimized low-level kernels”. In: Concurrency and Compu-
tation: Practice and Experience 14.10 (2002), pp. 805–839.

[WGC18] Sameer Wagh, Divya Gupta, and Nishanth Chandran. “SecureNN: Efficient
and Private Neural Network Training.” In: IACR Cryptol. ePrint Arch. 2018
(2018), p. 442.

[WH12] David Wu and Jacob Haven. “Using homomorphic encryption for large
scale statistical analysis”. In: FHE-SI-Report, Univ. Stanford, Tech. Rep.
TR-dwu4 (2012).

[Win08] Johannes Winter. “Trusted computing building blocks for embedded linux-
based ARM trustzone platforms”. In: Proceedings of the 3rd ACM work-
shop on Scalable trusted computing. 2008, pp. 21–30.

161

https://arxiv.org/abs/2202.01649
https://arxiv.org/abs/2202.01649
https://doi.org/10.1109/SP40001.2021.00068
https://doi.ieeecomputersociety.org/10.1109/SP40001.2021.00068
https://doi.ieeecomputersociety.org/10.1109/SP40001.2021.00068

[WL11] Ting Wang and Ling Liu. “Output privacy in data mining”. In: ACM Trans-
actions on Database Systems 36.1 (2011), pp. 1–34.

[Xie+14] Pengtao Xie, Misha Bilenko, Tom Finley, Ran Gilad-Bachrach, Kristin
Lauter, and Michael Naehrig. “Crypto-nets: Neural networks over en-
crypted data”. In: arXiv preprint:1412.6181 (2014).

[Yao86] Andrew Chi-Chih Yao. “How to generate and exchange secrets”. In:
27th Annual Symposium on Foundations of Computer Science (sfcs 1986)
(1986), pp. 162–167.

[YBS20] Tao Yu, Eugene Bagdasaryan, and Vitaly Shmatikov. “Salvaging federated
learning by local adaptation”. In: arXiv preprint:2002.04758 (2020).

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. “Two halves make a
whole”. In: Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques. Springer. 2015, pp. 220–250.

162

	Introduction
	Motivation
	Objectives
	Structure of the Document

	Background
	Deep Learning for Homomorphic Encryption
	Deep Learning and Neural Networks
	Neural Network Layers
	Activation Functions

	Privacy Settings and Requirements in Deep Learning
	Privacy Goals
	Adversarial Model
	Architectures and Processing Steps
	Privacy Techniques

	Homomorphic Encryption
	Historical Background
	Learning with Errors and Ring Learning with Errors
	Public Key Encryption from LWE
	CKKS Encoding
	Homomorphic Operations on LWE

	Secure Multiparty Computation Techniques
	Oblivious Transfer
	Yao's Garbled Circuits
	Secret Sharing
	Zero-Knowledge Proofs
	Verifiable Secret Sharing

	State of the Art
	Scope and Methodology
	Advanced Privacy-Preserving Computation Techniques
	Advanced HE Constructions
	Advanced SMPC Constructions
	Hybrid Techniques

	Machine Learning Approaches
	Privacy Preserving Deep Learning Inference
	PPDL Inference in Centralized Architectures with Homomorphic Encryption
	PPDL Inference in Distributed Architectures with Secure Multiparty Computation
	PPDL Inference in Hybrid Architectures

	Privacy Preserving Deep Learning Training
	HE for PPDL Training
	SMPC for PPDL Training
	Hybrid Techniques for PPDL Training

	Programming Interfaces for PPDL
	Current Challenges and Research Directions
	Analysis
	Takeaways

	Optimization of Deep Learning Linear Algebra Algorithms for Packed Homomorphic Encryption
	Introduction
	Precedents
	Motivation
	Contribution

	Background
	Adversarial Model
	Packed Homomorphic Encryption

	SIMD Algorithms for Deep Learning
	Notation
	SIMD Convolutional Layer
	SIMD Dense Layer
	Activation Functions

	Efficiency Analysis of Algorithms
	Efficiency Metrics
	Rotations on Large Ciphertexts
	Analysis and Takeaways for Application to Deep Learning

	Performance Evaluation of Guidelines
	Summary

	Automating Homomorphic Encryption Parameter Selection with Fuzzy Logic and Linear Programming
	Introduction
	Motivation
	Precedents
	Contribution

	Background
	Linear Programming
	Fuzzy Logic
	Leveled Homomorphic Encryption Parametrization

	System Model
	Fuzzy Logic Initialization
	Linear Programming Tasks

	Evaluation
	Experimental design
	Results
	Discussion

	Summary

	HEFactory: A Symbolic Execution Compiler for Privacy-Preserving Deep Learning with Homomorphic Encryption
	Introduction
	Precedents
	Motivation
	Contribution

	System Model
	HEFactory Architecture
	Dahut: A Python API for Homomorphic Encryption
	Tapir: A Symbolic-Execution compiler
	Boar VM: A bridge to HE frameworks

	Framework Evaluation
	Experimental Design
	Results
	Deep Learning Evaluation

	Summary

	Conclusions and Future Work
	Contributions
	Dissemination
	Publications
	Presentations

	Future Work

	Baseline Convolution Algorithms
	Convolution
	Result Transformation for CRF Format
	Stride
	SIMD Padding

	Simplified Leveled Homomorphic Encryption Parametrization in Practice
	Practical Leveled Homomorphic Encryption Parametrization
	Parametrizing Static Circuits
	Iterative Parameter Selection

	HEFactory Internals
	Symbolic Execution
	Delayed Execution
	Deep Learning Adaptation

	Bibliography

