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ABSTRACT

Abstract

The revolution of Extended Reality (XR) has already started and is rapidly
expanding as technology advances. Announcements such as Meta’s Metaverse have
boosted the general interest in XR technologies, producing novel use cases. With
the advent of the fifth generation of cellular networks (5G), XR technologies are
expected to improve significantly by offloading heavy computational processes from
the XR Head Mounted Display (HMD) to an edge server. XR offloading can rapidly
boost XR technologies by considerably reducing the burden on the XR hardware,
while improving the overall user experience by enabling smoother graphics and more
realistic interactions. Overall, the combination of XR and 5G has the potential to
revolutionize the way we interact with technology and experience the world around
us.

However, XR offloading is a complex task that requires state-of-the-art tools
and solutions, as well as an advanced wireless network that can meet the demand-
ing throughput, latency, and reliability requirements of XR. The definition of these
requirements strongly depends on the use case and particular XR offloading im-
plementations. Therefore, it is crucial to perform a thorough Key Performance
Indicators (KPIs) analysis to ensure a successful design of any XR offloading solu-
tion.

Additionally, distributed XR implementations can be intrincated systems with
multiple processes running on different devices or virtual instances. All these agents
must be well-handled and synchronized to achieve XR real-time requirements and
ensure the expected user experience, guaranteeing a low processing overhead. XR
offloading requires a carefully designed architecture which complies with the required
KPIs while efficiently synchronizing and handling multiple heterogeneous devices.

Offloading XR has become an essential use case for 5G and beyond 5G technolo-
gies. However, testing distributed XR implementations requires access to advanced
5G deployments that are often unavailable to most XR application developers. Con-
versely, the development of 5G technologies requires constant feedback from poten-
tial applications and use cases. Unfortunately, most 5G providers, engineers, or
researchers lack access to cutting-edge XR hardware or applications, which can hin-
der the fast implementation and improvement of 5G’s most advanced features. Both
technology fields require ongoing input and continuous development from each other
to fully realize their potential. As a result, XR and 5G researchers and developers
must have access to the necessary tools and knowledge to ensure the rapid and
satisfactory development of both technology fields.

In this thesis, we focus on these challenges providing knowledge, tools and solu-

xi Distributed Implementation of eXtended Reality Technologies over
5G Networks



ABSTRACT

tiond towards the implementation of advanced offloading technologies, opening the
door to more immersive, comfortable and accessible XR technologies. Our contri-
butions to the field of XR offloading include a detailed study and description of the
necessary network throughput and latency KPIs for XR offloading, an architecture
for low latency XR offloading and our full end to end XR offloading implementation
ready for a commercial XR HMD. Besides, we also present a set of tools which can
facilitate the joint development of 5G networks and XR offloading technologies: our
5G RAN real-time emulator and a multi-scenario XR IP traffic dataset.

Firstly, in this thesis, we thoroughly examine and explain the KPIs that are
required to achieve the expected Quality of Experience (QoE) and enhanced im-
mersiveness in XR offloading solutions. Our analysis focuses on individual XR
algorithms, rather than potential use cases. Additionally, we provide an initial
description of feasible 5G deployments that could fulfill some of the proposed KPIs
for different offloading scenarios.

We also present our low latency muti-modal XR offloading architecture, which
has already been tested on a commercial XR device and advanced 5G deployments,
such as millimeter-wave (mmW) technologies. Besides, we describe our full end-
to-end complex XR offloading system which relies on our offloading architecture to
provide low latency communication between a commercial XR device and a server
running a Machine Learning (ML) algorithm. To the best of our knowledge, this is
one of the first successful XR offloading implementations for complex ML algorithms
in a commercial device.

With the goal of providing XR developers and researchers access to complex
5G deployments and accelerating the development of future XR technologies, we
present FikoRE, our 5G RAN real-time emulator. FikoRE has been specifically
designed not only to model the network with sufficient accuracy but also to support
the emulation of a massive number of users and actual IP throughput. As FikoRE
can handle actual IP traffic above 1 Gbps, it can directly be used to test distributed
XR solutions. As we describe in the thesis, its emulation capabilities make FikoRE
a potential candidate to become a reference testbed for distributed XR developers
and researchers.

Finally, we used our XR offloading tools to generate an XR IP traffic dataset
which can accelerate the development of 5G technologies by providing a straightfor-
ward manner for testing novel 5G solutions using realistic XR data. This dataset is
generated for two relevant XR offloading scenarios: split rendering, in which the ren-
dering step is moved to an edge server, and heavy ML algorithm offloading. Besides,
we derive the corresponding IP traffic models from the captured data, which can be
used to generate realistic XR IP traffic. We also present the validation experiments
performed on the derived models and their results.

Distributed Implementation of eXtended Reality Technologies over
5G Networks xii
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

EXtended Reality (XR) refers to a group of technologies that seek to enhance
and expand human perception of the physical world. This includes Virtual Reality
(VR), which creates immersive digital environments, and Augmented Reality (AR),
which overlays digital information on the physical world. In between both edges
of immersive media technologies we have other solutions such as Mixed Reality
(MR) [1] or Distributed Reality (DR) [2]. XR technologies have seen significant
developments in recent years, and have potential applications in a wide range of
fields, from gaming and entertainment to healthcare and education.

The recent interest in XR technologies, driven in part by the announcement of
Meta’s plans for a new type of social interaction called the Metaverse 1, has led to
significant investment in the technology. This has resulted in lighter, more afford-
able XR Head Mounted Displays (HMDs), hardware, and algorithms, improving the
overall user experience.

XR technologies typically involve the use of an HMD to render virtual content.
In VR, the HMD completely occludes the real world, completely cutting the user
off from it. AR HMDs, on the other hand, use transparent displays or video pass-
through technologies to overlay virtual content on the real world.

Current XR devices have reached eye-level resolution, with more than 70 Points
per Degree (PPD), such as the Varjo XR-3 2. However, this level of resolution
is only possible with tethered devices connected to high-end computing platforms
with state-of-the-art Graphical Processing Units (GPUs). XR technologies have also
advanced to the point where fully wireless VR and AR devices with extensive capa-
bilities are now available. For example, the Meta Quest 2 3 is a wireless VR HMD
with a resolution of 1832x1920 per eye, hand tracking capabilities and a robust 6
Degrees of Freedom (DoF) head tracking.

This fast development of XR technologies is enabling novel use cases that involve
a new way of interacting with the real world and with each other. However, there are
still several technological constraints, such as limited computing power or battery
life, that hinder XR applications from reaching their full potential. In addition,
novel applications such as the Metaverse require real-time connections between a
large number of users.

1https://about.facebook.com/
2https://varjo.com/products/xr-3/
3https://www.meta.com/es/quest/products/quest-2/
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Expanding the current boundaries of XR technologies and applications requires
the use of high-end hardware with powerful GPUs for real-time rendering and Ma-
chine Learning (ML) processing. As a result, the most technologically advanced
immersive devices are still tethered, bulky, uncomfortable, and expensive. The re-
lease of advanced networks, such as the fifth generation of cellular networks (5G),
has led to the exploration of distributed solutions for immersive technologies as a
means of enabling wireless, lighter, and more affordable devices while increasing the
overall user experience. The goal is to offload some or all of the heavy processing
tasks to a nearby server, improving the available computing power while reducing
the XR HMD processing requirements. XR offloading can become a key enabler
that can provide significant benefits, including improved user experience, reduced
demand on local computing resources, and the ability to support a larger number
of users simultaneously.

XR offloading is not a trivial task. Both AR and VR devices handle intense
data rates in a limited amount of time: the update rate must be kept above 60
Hz to ensure a successful experience and avoid any discomfort, such as motion
sickness [3], to the user. Consequently, successful task offloading for VR and AR
applications requires a robust network that can satisfy the extremely tight latency
and throughput requirements.

According to Third Generation Partnership Project (3GPP) specifications, 5G
includes a set of three services: Enahnced Mobile Broadband (eMBB), Ultra-Reliable
Low-Latency Communications (URLLC) and Massive Machine-Type Communica-
tions (mMTC). Both eMBB and URLLC 5G services match XR applications’ ex-
tremely high communication data rate requirements under demanding low latency
constraints, which can enable offloaded immersive solutions. Therefore, 5G has
been considered a natural key technology enabler for the future development of XR
technologies.

1.1. Motivation

Successful XR offloading requires a tightly optimized pipeline, including but not
limited to the architecture, network or the XR HMD itself. It involves a complex
ecosystem in which many tools have to be set and configured to seamlessly interact
with each other. As shown in Fig. 1.1, any complex XR offloading application
involves multiple algorithms which need to run in different devices along the entire
architecture: edge, cloud, device, etc. Where these algorithms should run and what
the network and hardware requirements are for them to run in real-time must be
understood in detail before any successful XR offloading attempt.

Consequently, the first natural step is to understand what are the requirements
that XR offloading imposes to the network and offloading architecture. There are

Distributed Implementation of eXtended Reality Technologies over
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Figure 1.1: Simplified offloading architecture for a complex XR application.

multiple studies that propose a set of requirements and implementations for achiev-
able XR offloading. Multiple VR offloading research examples focus on the require-
ments and resource handling techniques for Multi-access Edge Computing (MEC)
based offloading, as in [4][5][6][7]. Other studies, on the other hand, focus on novel
resource allocation techniques specifically designed for VR offloading, as in [8]. Fi-
nally, there are relevant works which thoroughly analyze the network requirements
for VR offloading, as in [9][10]. All the described VR research examples are focused
on intense downlink traffic as they consider the main VR offloading use case to
be focused on split rendering approaches [11]. In this case, the rendering process
is moved to a nearby server which continuously receives the updated poses of the
head and hands, and renderS the realistic immersive frames accordingly. This ap-
proach allowS to display very realistic scenes in light and comfortable VR devices
with limited computing power. However, VR immersiveness is not only affected by
the visual resolution: the user needs to seamlessly interact and move within the
virtual scenario. Besides, any VR experience should aim to achieve a high level of
Sense of Embodiment (SoE)[12] as it is directly connected to how the users perceive
themselves within the VR experience. State of the art VR research aims to produce
novel methods and algorithms to improve the user experience, interaction and self
awareness. These methods include, for instance, hand tracking [13], object detection
[14], or egocentric human segmentation [15]. Most of these methods involve high
uplink data rates to transmit the sensor data captured in each frame while the end
to end latencies should lay below the sampling period of the device, which is smaller
than 16 ms in current VR devices, such as the Meta Quest 2 with an update rate
between 72 and 90 Hz.

Similarly, AR applications should not only properly place the virtual content
but also allow both the user and the real scenario to interact with it. This re-
quires the real environment to be analyzed as accurately as possible and in real-
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time, requiring multiple heavy duty algorithms, such as semantic segmentation and
3D reconstruction, to concurrently run in real-time. Even though there are some
real-time state-of-the-art implementations of these processes [16][17], they require
modern hardware which is usually not portable and energy consuming. Besides,
the AR content should be rendered with a motion to photon delay below 15 ms
[3], deadline to which most of the previously mentioned processes need to com-
ply. Even more constraint is the case in which the user needs to interact with a
virtual object: the virtual object’s reaction and haptic feedback latencies must be
smaller than 10 ms [3]. There are some studies [18] which thoroughly analyze the
distributed implementation of AR, proposing several offloading architectures and
some use case-dependent requirements.

In general, XR offloading studies are focused on specific use cases’ requirements.
However, they lack a thorough understanding of how and where the individual al-
gorithms should run, and what are the individual offloading requirements. Each
individual XR application requires different combinations of XR algorithms. Know-
ing the specific offloading requirements for each algorithm is a key factor for an
optimal architecture design: different offloading combinations can be deployed for
the same use case or application depending on the available network resources. With
this thesis, we aim to provide a detailed description of the most fundamental algo-
rithms of XR. Besides, we propose a set of throughput and latency requirements for
offloading different combinations of these fundamental algorithms, filling the current
gap in XR offloading requirements research studies.

With a precise and relevant set of XR offloading requirements, researchers can
design and develop optimized offloading architectures accordingly. There have been
several relevant research examples that describe and test actual XR offloading ar-
chitecture implementations. For example, in [19], the authors propose an efficient
offloading architecture specifically optimized for mobile AR. Additionally, the au-
thors in [20] propose an offloading architecture carefully designed to reduce energy
consumption. Finally, in [21], a reinforcement-learning self-optimizing distributed
offloading architecture is proposed. While some of these architectures have been
benchmarked, they often only focus on resource allocation or energy consumption.
However, complex XR offloading imposes tight throughput and latency requirements
on both the uplink and downlink, which can only be fulfilled with an extremely op-
timized architecture and a strong network. In this thesis, we propose our own
offloading architecture, specifically optimized for XR offloading using the relevant
Key Performance Indicators (KPIs) obtained in the theoretical analysis. Our goal is
to provide a novel architecture that is capable of sustaining the intense throughput
and latency requirements expected for a wide range of offloading combinations.

In general, most XR offloading studies follow a theoretical approach or validate
proposed architectures using synthetic traffic and network simulators. However, it is
rare to find research venues that propose end-to-end XR offloading implementations
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tested on commercial hardware using actual wireless access points. In this thesis, we
implement a full end-to-end system to demonstrate the potential of XR offloading
and the performance of our offloading architecture in a realistic commercial deploy-
ment. Our goal is to offload our egocentric human segmentation algorithm, which
allows users to see themselves in real-time within a VR scene [15]. This algorithm
is at the cutting edge of video-based avatars and requires a high-end GPU to run
in real-time, justifying the need to offload the process to a nearby server. Along
with the detailed explanation of the implemented end-to-end solution, we describe
the user study we conducted to validate both the offloading architecture and our
egocentric human segmentation solution.

During the experiments with both the isolated offloading architecture and the
end-to-end system, we realized that low frequency bands (sub-6) 5G cannot sustain
the throughput and latency requirements of the most demanding scenarios. The
use cases we are testing require an advanced wireless network, such as Millimeter
Wave (mmW) technologies, to sustain the throughput and latency requirements.
However, most advanced 5G technologies are still under development and have not
reached their full potential. We identified this important technology gap which can
slow down the development of distributed XR implementations. One popular alter-
native is the use of simulation tools that realistically model the behavior of not only
available 5G technologies, but also other implementations that are foreseen in the
standard but not yet available. In particular, XR researchers could potentially use
real-time emulators to test their solutions on a realistic yet simulated 5G deploy-
ment. There are multiple 5G emulators in the state of the art such as NS-3 [22],
OpenAirInterface (OAI) 5G-RAN [23], or Simu5G [24]. However, these emulation
tools are too limited in terms of number of simulated User Equipments (UEs) or
throughput capabilities (less than 10 Mbps) to be considered a reference testbed
for XR offloading testing and prototyping. Therefore, we decided to build our own
emulator, FikoRE, with the goal of realistically modeling the network while achiev-
ing high throughput, above 1 Gbps, and a massive number of UE [25][26]. In this
thesis, we present, describe, and validate FikoRE as a real-time open-source 5G em-
ulator. We also present a realistic setup for Free-Viewport Video (FVV) rendering
and distribution, in which FikoRE has been used as a prototyping testbed.

After years of researching distributed XR implementation, we can conclude that
XR offloading is a complex task with tight requirements. The network must be
carefully designed and configured, which requires a long iteration and research pro-
cess. Both XR technologies and telecommunications research must collaborate to
achieve a complex goal that cannot be fulfilled without each other’s knowledge.
However, telecommunications researchers and developers often do not have access
to fully developed distributed XR implementations, which generate the necessary
traffic to test their solutions. A popular trend is to rely on recorded or modeled
traffic data. While there are already some complete XR traffic models available in
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the standards [27], they only consider a subset of relevant use cases. Additionally,
their video transmission models, while precise, lack information about inter-packet
arrival time. This inter-packet arrival time, defined as the time between individual
Internet Protocol (IP) packets within a single video frame, can be a relevant param-
eter to model accurately, especially for resource allocation algorithms. During the
development of this thesis, we created our own XR offloading traffic dataset which
complementary covers other use cases not included in [27]. We also proposed a set
of XR traffic models, derived from our dataset, which include inter-packet arrival
times, filling what we believe is an important research gap.

1.2. Contributions

In this thesis, we focus on the requirements, technologies and tools which are nec-
essary to fulfil and implement in order to achieve successful distributed XR imple-
mentations. In particular, our contributions are:

• A thorough breakdown of XR technologies in their most fundamental algo-
rithms to extract their individual requirements and how they interact with
each other. The conclusions from this breakdown are reflected in [28] and
[29], where we also derive, by solving a simple optimization problem, a set of
required donwlink and uplink peak throughput and end to end latency values
for a selected group of VR and AR offloading scenarios. Besides, we also pro-
pose different 5G configurations and high-level architectures which, according
to the standards, can fulfil the proposed requirements.

• A novel implementation of a Transmission Control Protocol (TCP) based ar-
chitecture specifically designed for XR offloading, presented in [30]. Besides,
we present field results of our offloading architecture for different scenarios and
offloading algorithms. In the same study, we carry out some throughput and
latency becnhmarking experiments in different wireless access technologies, in-
cluding 5G mmW frequency band. In this thesis we also introduce our work in
progress extension of our offloading architecture, which incorporates H.264 [31]
encoding transmitted over Real-time Transport Protocol (RTP) [32] for video
streaming, which relaxes the overall throughput and latency requirements.

• Full end to end implementation of an offloading solution on a commercial VR
HMD, thoroughly described in [33]. In our end to end implementation, we
offload our real-time deep-learning egocentric segmentation algorithm which
identifies which pixels from an egocentric point of view corresponds to the
VR user. The end goal is to allow the users to see themselves within the VR
scene. Our end to end implementation allows to use our novel state of the art
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segmentation algorithm, in real-time, on a Meta Quest 2 4. Besides, we perform
a fairly thorough user study to understand how the algorithm performs and if
the offloading architecture is affecting the Quality of Experience (QoE) at all.

• A full stack 5G Radio Access Network (RAN) emulator which outperforms, in
terms of scalability and throughput handling capabilities, any other emulator
in the state of the art. The emulator, named FikoRE and described in [25], has
been tested on a real deployment of Free-Viewport Video streaming. Besides,
it has been validated using measurements obtained from field tests using an
actual mmW deployment. FikoRE source code has been published openly in
[26].

• An XR offloading traffic dataset captured using our offloading architecture,
detailed in [34]. From the dataset, we derive the correspondent traffic mod-
els, with higher level of detail than the models proposed in the specifications
[27]. Besides, the captured offloading use cases are complementary to the ones
proposed in [27]. The models have been validated using FikoRE. Finally, the
dataset has been made public as part of FikoRE repository [26].

1.3. Thesis Outline

The present thesis is organized as follows:

• In Chapter 2, we describe the current state of the art of XR technologies
including a breakdown of AR and VR technologies. We also present the opti-
mization problem that we designed to estimate a set of throughput and latency
KPIs for different relevant offloading scenarios. Finally, we include a summary
of the possible 5G configurations that can sustain the estimated requirements
for the selected offloading scenarios.

• In Chapter 3, we detail our offloading architecture. We described the imple-
mentation details of both our TCP version and first approach to the RTP with
H.264 encoding version. We also present some validation experiments carried
out on both WiFi and mmW technologies.

• In Chapter 4, we present our end to end offloading implementation which has
been tested on a commercial VR HMD. Besides, we describe the user study
experiments carried out to validate our end to end offloading implementation.

• In Chapter 5, we provide a detailed description of FikoRE, our real-time full
stack 5G RAN emulator. We provide fundamental implementation details,

4https://www.meta.com/es/quest/products/quest-2/
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followed by the results obtained in the carried out validation experiments. Fi-
nally, we show the performance of FikoRE on a Free-Viewport Video streaming
application.

• In Chapter 6, we describe the steps followed to capture a realistic XR offloading
traffic dataset. Besides, we provide model distributions estimated using the
measured traffic, which are validated using FikoRE.

• In Chapter 7, some conclusions and future work are pointed out.

Distributed Implementation of eXtended Reality Technologies over
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Chapter 2

Key Performance Indicators and Potential Network
Architectures for eXtended Reality Offloading

XR offloading imposes tight and demanding requirements to the network, which
have been thoroughly studied from a theoretical perspective in the state of the
art. However, successful real-time offloading for XR applications imposes extreme
throughput, latency and even reliability requirements to the network which strongly
depend on the specific process to be offloaded and target application. Besides,
these process-specific requirements are also different depending on the targeted XR
technology. The visual requirements for AR are considerably lower than VR, while
the spatial and semantic awareness of the real scenario is crucial in AR.

As described in Chapter 1, most of AR and VR offloading research examples are
focused on generalist approaches based on specific high-level use cases, which impose
very high throughput and latency requirements on the downlink side. In both AR
and VR, the perceived QoE does not only depend on the visual quality, but other
relevant factors such as pose estimation precision, interactivity, spatial awareness,
and a large etcetera. The sense of immersiveness, for instance, is low if the user has
very poor interaction possibilities with the virtual content, regardless of its visual
quality. The individual algorithms which directly affect the immersiveness can be
considerably enhanced by providing access to remote computational resources. As
different XR implementations and applications might use different combinations of
algorithms, we decided to study XR offloading requirements from a lower level: we
study the offloading latency and throughput KPIs of each individual XR algorithm
that can be potentially offloaded. These individual theoretical KPIs can facilitate
the design and deployment of complex offloading architectures regardless of the
targeted use case.

In this chapter, we present the followed procedure to analyze XR relevant al-
gorithms and extract a set of theoretical throughput and latency KPIs from this
analysis. We achieve this by thoroughly analyzing the most relevant XR algorithms
along with their data flow. The goal is to understand what are the processing
requirements in terms of processing times, input and output data flows and interac-
tion between them. This information is then used as input to solve an optimization
problem resulting in the targeted network KPIs. We use the obtained KPIs to pin-
point which of the proposed algorithms are firm candidates to be offloaded. Finally,
we propose high-level architecture based on the standards which can satisfy the
obtained requirements for a set of arbitrary offloading scenarios.
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2.1. A Breakdown of eXtended Reality Algorithms

XR technologies and applications gather multiple algorithms that interact with each
other. To estimate the throughput and latency KPIs of a potential distributed XR
implementation we need to understand each algorithm individually analyzing its
input and output flows, update rates and hardware requirements. We analyze the
state of the art of the most relevant XR algorithms to obtain these characteristics
and specifications. The analysis is later used to derive the target throughput and
latency KPIs for a set of arbitrary potential distributed implementations.

2.1.1. Sensor Capture and Preprocessing

State of the art XR devices include multiple sensors: RGB and depth cameras,
microphones, inertial measurement units (IMUs), controllers, etc. These sensors
provide the necessary input data to the most relevant XR algorithms. Therefore,
we need to provide an accurate estimate of the data rates and frequency updates
for a successful throughput and latency KPIs analysis.

As described in Chapter 1, AR and VR technologies are on opposite edges of
XR technologies. Therefore, we decided to use different devices as reference for AR
and VR. On the AR side, we take the Hololens 2 [35] as a reference, being the
most recent and advanced AR device available. Running at 60 Hz, the Hololens 2 is
producing around 500 Mbps of raw sensor data. The RGB camera captures frames
at a 1080p (1920x1080) resolution while the depth camera has a square resolution
of 1024x1024.

We use the Varjo XR-3 [36] as the VR reference HMDs to estimate the sensor
data specifications. The Varjo XR-3 is the most advanced commercial VR HMD in
terms of resolution. The XR-3 also incorporates video pass-through capabilities, via
a set of high-resolution stereo cameras, enabling to use them as an AR device or for
DR [2] applications. The RGB cameras are also 1080p. The depth sensor captures
1920x1080 resolution frames.

In general, this sort of data is transmitted using video encoding algorithms such
as H.264 which considerably reduces the necessary bitrate, being the combination
of H.264 encoding and RTP transmission is the most efficient solution in terms of
latency and throughput. However, it can introduce artifacts in the received video
stream due to packet loss, encoding quality or delays. In this study we try to ob-
tain a set of network requirements for advanced XR offloading which can improve
the current state of the art of XR technologies. Many of the described algorithms
are sensitive to this artifacts which can decrease the overall quality of experience.
Therefore, for uplink sensor data transmission in this study we consider per frame en-
coding using JPEG which requires higher bitrates imposing more constraint network
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Table 2.1: Reference RGB and Depth camera feeds resolution, size per frame and
expected data rates.

Sensor Resolution Frame Size Data Rate

Varjo XR-3 RGB 1920x1080@90 2.50 Mbits 225 Mbps
Varjo XR-3 Depth 1920x1080@90 2.50 Mbits 225 Mbps
Hololens 2 RGB 1920x1080@60 2.50 Mbits 150 Mbps
Hololens 2 Depth 1024x1024@60 1.33 Mbits 80 Mbps

requirements, but avoiding the introduction of potential artifacts in the stream.

According to [37], a typical JPEG compression ratio assumes a weight of 1.2 bits
per pixel. We use this reference to estimate the weights values per frame summarized
in Table 2.1. On the other hand, the audio capture and Inertial Measurement Unit
(IMU)’s feeds are considerably smaller than the camera feeds and, therefore, we
decided to neglect them from the subsequent analysis for simplification.

2.1.2. Position and Orientation Estimation

Distributed implementations of XR applications might lead to a new generation of
wireless and light high-end VR devices. Consequently, the user will have the chance
to freely move within the virtual scene rather than just acting as a static observer.
In this new scenario it is even more crucial to accurately track the device’s pose in
real-time as pose inaccuracies can provoke motion sickness. On mobile scenarios,
the device translations are not bounded and the tracking errors can critically in-
crease, which might completely ruin the experience. Therefore, XR devices must be
able to accurately estimate its own pose in real-time using the available sensor data.
This estimation is done using Simultaneous Localization and Mapping (SLAM) al-
gorithms [38]. While there are multiple SLAM implemantations which rely on only
a single RGB stream [39], in general, a robust XR-targeted SLAMs algorithm re-
quires the combination of at least an RGB camera and an IMUs. In some examples,
the SLAMs algorithm is also fed with the depth information or multiple RGB feeds,
increasing the algorithm’s accuracy and robustness. On the other hand, the out-
put bitrate could be neglected as it is only composed by some few dozens of floats
for every processed frame. In general, SLAM algorithms which combine an IMU
and one or several RGB cameras can succesfuly track the device using low camera
frame rates (below 10 Hz). However, due to the fast and dynamic nature of XR
head movements, SLAM algorithms for XR require camera update frequency of 30
to 60Hz. High update rates usually improve the accuracy, while demanding more
computational power [40].

In some cases, especially for AR, the SLAMs algorithm output is used for 3D
reconstruction, requiring the generated point cloud and RGB/depth key frames to
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be exported, considerably increasing the output bit rate. Offloading the SLAMs
process would require both the 5G eMBB and URLLCs capabilities to fulfil the
constrained update times. See Table 2.2 for an itemized summary of the data flow
and timing requirements.

3D Reconstruction

The goal of 3D reconstruction is to model, with different grades of accuracy depend-
ing on the final goal, the 3D morphology of the real scenario surrounding the user.
It is a key algorithm in many AR applications for generating realistic interactions
between the real and virtual objects.

3D reconstruction can be considered an extension of SLAMs algorithms to an
extent in which some SLAMs algorithms simultaneously handle the pose tracking,
and the 3D reconstruction such as ORB-SLAM [39]. In general, the input of the
state-of-the-art algorithms consists of the continuously updated SLAMs pointcloud,
the device’s estimated pose, and the depth and RGB cameras’ feeds [16]. The output
data consist of the estimated 3D mesh updates along with the corresponding color
textures. It is not efficient to continuously export the entire mesh, but only the
sections which are modified. The offloading requirements are less restrictive as the
generated mesh updates can be transmitted at a lower rate, 0.5-1 Hz, and higher
latencies (below a second), allowing this process to be offloaded to a further server.
Finally, the final 3D reconstruction could be stored on the device or a server after
each session and be reloaded in a posterior session. See Table 2.2 for a summary of
3D reconstruction data flow and timing requirements.

2.1.3. Semantic Understanding Algorithms

Semantic understanding algorithms obtain semantic information from the real scene,
such as which real objects are in the scene along with their shape, pose, and size.
In our analysis, we focus in three of the most important semantic understanding
algorithms:

• Object detection is a very populated research topic for its importance on
uncountable fields such as autonomous driving or AR. Consequently, its state
of the art has improved rapidly aiming to decrease the size of object detection
deep learning networks while preserving their accuracy. Therefore, current
algorithms reach real time performance on standalone devices with limited
computing power such as smartphones. Two key examples of these shallow
networks are the YOLO-Tiny and YOLO-Lite which run at 244Hz on a GPU
and 20Hz on a Central Processing Unit (CPU) respectively [14]. In the latter,
the CPUs usage is very high while achieving lower detection accuracies than
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in GPUs-enabled computing systems. The input is generally the RGB feed
from a single camera while the output is simply the position, size and label
of the bounding box. The output is therefore light and can be neglected
in comparison with other heavy data flows. In this case, the update rate
requirements are not as tight as some filters can be used to estimate the
position of the detected objects in between updates.

• Hand tracking it is a recent feature included in most XR devices which is
becoming crucial as it allows the users to interact with the virtual content
with their own hands instead of using a remote control device [41] [13] [42].
However, these algorithms still consume an important share of the available
in-built computing resource. There are multiple hand tracking approaches.
In [41], the authors propose a generative adversarial network (GAN) based
solution to solve the hand tracking problem from a single RGB sensor. On the
contrary, in [42], the authors just use a single depth sensor as the only input
to their proposed method. Finally, in [13], both the RGB and depth feeds are
used for real-time hand tracking estimation. We consider this last setup as our
reference scenario to numerically analyze hand tracking algorithms as it is the
most demanding one in terms of end to end latency as it is a critical algorithm
which considerably affects the user experience. Regarding the update rate, in
[43] the authors achieve an update rate of 50Hz on a GPUs-less device. We
assume update frequency rates of 60 to 90Hz for hand tracking state of the
art examples running on high-end hardware, with processing times between 8
and 12 ms (see Table 2.2)

• Semantic segmentation can be understood as a natural extension of ob-
ject detection algorithms: once the object is detected, its accurate shape and
2D position is extracted. This step can be used, for instance, to handle the
occlusion of dynamic objects like the user’s hands. The way the users per-
ceive their own hands can drastically affect the sense of embodiment and the
immersiveness [44]. There is a new research path which explores methods to
allow the users to see themselvesf within the virtual scenario without the use
of avatars. The so called egocentric segmentation techniques rely on computer
vision algorithms to segment the hands or other human body parts from a
real-time egocentric video feed. The segmented feed is included and seam-
lessly blended with the virtual content. This solution is useful in both AR and
VR. In AR, this segmentation mask can be used to realistically occlude the
virtual content, as in [45]. Dynamic occlusion handling is a tough task which
is still considered an open AR problem. If the virtual content is not prop-
erly occluded behind a moving object, for instance the user’s hands, it would
produce a wrong perception of its position within the real world, ruining the
experience. It requires a perfect segmentation of the moving object, with very
constrained processing times. Some state of the art examples can run in real
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Figure 2.1: Simplified AR architecture including estimated processing times and
required input and output frame sizes.

time, as in [46], reaching 60 Hz on a high-end GPUs. In VR, this technique
allows to substitute virtual avatars by the segmented real-time feed from the
HMDs’s frontal stereo cameras, as in [47] [33]. The main goal of the egocentric
semantic segmentation algorithms is to improve the sense of embodiment, the
sense of presence (SoP) and the interaction with the virtual or even real ob-
jects as in [48]. Egocentric segmentation should run at the same data rate as
the device’s update rate to avoid any flicker or miss alignment which can ruin
the experience. In the case, the input corresponds to the RGB feeds which
can be complemented with the depth camera feeds. The output consists of a
pixel classification mask per frame considerably increasing the output bit rate
in comparison to the other two algorithms.

The summary of the data flow and timing requirements for offloading the de-
scribed algorithms is summarized in Table 2.2. Besides, Fig. 2.1 depicts a schema-
tized representation of the main described algorithms for the particular case of a
distributed AR implementation.

2.1.4. XR Engine and Frame Rendering

The XR engine simulates the physics of the virtual content and renders a new frame
accordingly. While in VR this is an extremely demanding step which requires high
end GPUs for advanced virtual scenes, in AR this step is not extremely demanding,
allowing the devices to be completely wireless. In both cases, targeting to decrease
the size and weight of XR HMDs, it is natural to consider the possibility of offloading
the rendering step.

High resolution VR scene rendering targets to achieve human-eye resolution with
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Table 2.2: Summary of input and output size per frame, update frequencies and
estimated processing times for the analyzed XR processes. In green the input data,
in red the output data.

Algorithm Data@Resolution Freq. Frame Size Bitrate Times

SLAM
RGB@1920x1080 60 Hz 2.50 Mbits 150 Mbps

7-12msDepth@1024x1024 60 Hz 1.33 Mbits 80 Mbps
Pose 60 Hz <<1 Mbits <<1 Mbps
Keyframes 20 Hz 3.83 Mbits 77 Mbps

3D Reconstruction
Pose 60 Hz <<1 Mbits <<1 Mbps

+100msKeyframes 20 Hz 3.83 Mbits 77 Mbps
3D Mesh + Texture 1 Hz <<1 Mbits <<1 Mbps

Object Detection RGB@1920x1080 60 Hz 2.50 Mbits 150 Mbps 7-12msBounding Box 60 Hz <<1 Mbits <<1 Mbps

Hand Tracking
RGB@1920x1080 60 Hz 2.50 Mbits 150 Mbps

7-12msDepth@1024x1024 60 Hz 1.33 Mbits 80 Mbps
Hand pose 60 Hz <<1 Mbits <<1 Mbps

Ego. Segmentation
RGB@1920x1080 60 Hz 2.50 Mbits 150 Mbps

7-12msDepth@1024x1024 60 Hz 1.33 Mbits 80 Mbps
Mask@1920x1080 60 Hz 0.32 Mbits 20 Mbps

AR Rendering Masks and Pose 60 Hz 0.32 Mbits 20 Mbps 5-12 msFrame@1920x1080 60 Hz 2,5 Mbits 150 mbps

VR Rendering Masks and Pose 90 Hz 0.32 Mbits 29 Mbps 5-12 msFrame@7680x1080 90 Hz 3.33 Mbits 300 Mbps

at least 4K per eye and a density of 60 pixels per degree per eye demanding intense
computational resources: the Varjo XR-3 specifications require the use of at least
an NVIDIA GeForce R⃝ RTX 2080 Ti GPUs. In this case, for both AR and VR
rendering, the transmission of the rendered frames must be done following a very
optimized pipeline including H.264/H.265 encoding over RTP. With this setup, and
as described in [34], we have maximum frame sizes of 3.33 Mbit.

The input to the render process is the updated position of the virtual objects
and the device, given by the VR engine, such as Unity or Unreal. The engine is
also in charge of using the data produced by the aforementioned algorithms. State
of the art devices are optimized to deliver rendering times below 5 ms. Refer to
Table 2.2 for a detailed summary of the processing and data flow specifications of
the rendering process.

2.2. Numerical Analysis

The goal of this section is to offer an initial estimation of the required network KPIs,
in terms of required peak throughput in each transmission direction, Uplink (UL)
and Downlink (DL), and two-way transmission latency, necessary for a successful
distributed XR implementation.
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For our analysis, we simplify the ideal transmission time of a single frame, con-
sidering that it is only affected by the amount of data to be sent divided by the
effective throughput. We express the transmission time of a single frame as:

tf = Sf

T
, (2.1)

in which tf is the transmission time of frame f in seconds, Sf the size in bits
of f and T the effective throughput in bits per second. This throughput can be
understood as the necessary peak throughput that needs to be sustained during tf .
After the frame is transmitted, the link is considered to be idle until the next frame
is sent. As a consequence, our analysis is focused on the peak throughput which
the network should be able to provide rather than an estimation of the necessary
mean throughput. For simplification, we consider that T already includes all the
possible sources of throughput loss such as packet loss, re-transmission or packet
duplication, among others. We also define the total transmission latency L as the
aggregation of the ideal propagation time and other network-specific latencies such
as the ones associated with the Hybrid Automatic Repeat Request (HARQ) process,
among others. The total network transmission time tN can be written as:

tN = Su

Tu

+ Sd

Td

+ L (2.2)

in which Su and Sd are the frame size on the uplink and downlink sides respectively,
and Tu and Td the effective peak throughput. If we consider the processing time tp

the aggregated time of all the non-networked processes involved in the VR applica-
tion, we can then express the total update time t, which has to be smaller than the
device’s update period 1/fd, as:

t = Su

Tu

+ Sd

Td

+ L + tp <
1
fd

, (2.3)

The processing times for the different possible VR offloading scenarios are hard
to be accurately estimated in a general case: they depend not only on the character-
istics of the specific set of algorithms used, but also on the hardware and software
implementations. Consequently, our goal is to estimate the less restrictive sets of
uplink and downlink peak throughput and latencies which satisfy Eq. 2.3, given dif-
ferent processing times. To achieve this, we propose a simple optimization problem
which aims to maximize a reward function:

Tu, Td, L = arg max
Tu,Td,L

R(Tu, Td, L, tp, Su, Sd). (2.4)

As we want to find the less restrictive set of peak throughput and latency KPIs,
the reward function is designed to try to maximize the latency and reduce the peak
throughput while increasing the total update time. The reward function is expressed
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as:
R(Tu, Td, L, tp, Su, Sd) = wL(1− Lmax − L

Lmax − Lmin )+

wTu

T max
u − Tu

T max
u − T min

u

+

wTd

T max
d − Td

T max
d − T min

d

+

wt
tN + tp

1
fp

,

(2.5)

in which Lmax, Lmin, T max
u , T min

u , T max
d and T min

d are the maximum latency and peak
throughput values and wL, wTu , wTd

, wt weights to modify the reward function.
These weights are used to adjust the importance during the optimization of each of
the target parameters: Tu, Td, L or t. We defined a set of constraints to solve the
proposed optimization problem which can be summarized as:

Su

Tu

+ Sd

Td

+ L + tp <
1
fd

(2.6)

kT max
u ≤ T max

d (2.7)
Tu ≤ T max

u (2.8)
Td ≤ T max

d (2.9)
T max

u + T max
d <= T max (2.10)

L ≥ Lmin (2.11)

For our analysis, we set the minimum latency Lmin to 1 ms and T max to 10
Gbps according to the initial capabilities of ultra-dense 5G networks. The initial
deployments of 5G networks implement Time Division Duplex (TDD) method to
separate the inward and outward signals. According to 3GPP TS 38.213 V.16.1.0
[49] standard, we can assume 4 times more slots allocated for the downlink signaling.
As a consequence, we assign 2 Gbps for T max

u and 8 Gbps for T max
d . Therefore, the

value of k in Eq. 2.7 is set to 4. We solve the optimization problem for a set of
tp ranging from 1 ms to (1/fp − 2) ms, obtaining groups of peak throughput and
latencies for each considered processing time. For our analysis, we consider that no
adaptive offloading technique [50] is used as we want to study the most restrictive
case in which the environment is highly dynamic. In this case, all the captured
frames are sent to the server. The optimization problem has been solved using
Python’s SciPy library with the Nelder-Mean algorithm.

2.3. Reference Scenarios and Results

As AR and VR technologies have different requirements for the described algorithm,
we are proposing separated use cases for AR and VR.
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Figure 2.2: Set of optimal Round Trip Times and Uplink and Downlink peak
throughputs for a set of given AR processing times for the three AR use cases
running at 60 Hz.

2.3.1. AR Use Cases

For the sake of simplicity, we choose the 3 most representative AR offloading sce-
narios. In use case A, we analyze the full AR offloading scenario, which is necessary
to enable ultra-light mobile AR devices with almost no computation capabilities.
In the case in which the AR device includes a computationally powerful companion
or can achieve heavier computations, only some of the mentioned algorithms need
to be offloaded. We analyze the offloading of two different demanding algorithms
separately: object detection and semantic segmentation (use case B) and occlusion
handling (use case C), as they are crucial AR computationally intensive algorithms.
The red dash lines in Fig. 2.1 represent which algorithms are offloaded in each use
case. Notice that the throughput values are not the mean values but the peak
throughput values that the network needs to supply during the frame transmission
time.

AR Use Case A. Full Offloading

In this first use case, the full AR processing stack is offloaded from the device. In
this setup, the uplink stream is expected to include all the sensor data. On the
downlink side, the system transmits the rendered scene back to the device. The
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estimated mean uplink rate for this first use case is between 150 and 230 Mbit/s for
a device running at 60 FPS. On the downlink side, we estimate the transmission to
require 1.67 Mbit/frame, as the transmitted data corresponds to the high-definition
rendered frame. In Fig. 2.2, we can observe the estimated pairs of round-trip laten-
cies and uplink and down-link peak throughput optimal values that satisfy the 16.6
ms of total update time for different AR processing times. The depicted latency
corresponds to the total round-trip latency, including any latency added by the en-
tire network stack. We can observe that for AR processing times between 6 and 8
ms, the estimated round-trip latencies are 4 ms and above. The two way latency
requirements rapidly increases with the processing times. Within these bounds, the
required peak throughput values lie around 0.85 Gbps on the uplink.

AR Use Case B: Object Detection and Segmentation

In this case, the only offloaded process is the object detection and segmentation
algorithm. The uplink stream corresponds to the RGB and depth feeds, while the
downlink only includes the single-channel segmentation mask. This setup requires
uplink and downlink rates of around 2.5 Mbit and 0.33 Mbit per frame respectively.
To analyze the current use case, we choose the same AR processing times span as in
the previous example. As expected, we can observe in Fig. 2.2 how the downlink peak
throughput requirements considerably drop below 0.4 Gbps as the downlink data
steam is slimmer than in the previous use case. On the uplink side, the required peak
throughput remains high, with estimated values below 1.2 Gbps. The estimated
roundtrip latency is higher than 5 ms for AR processing times below 8 ms.

AR Use Case C: Occlusion Handling Offloading

Occlusion handling algorithms require at least the depth and RGB frames to be
constantly transmitted. Besides, some state-of-the-art algorithms use the output
from the 3D reconstruction and hand tracking algorithms, which in this case are sent
from the device. Consequently, we estimate the required input to weight 4.17 Mbit
per frame while the output is lighter: 0.33 Mbit per frame from the high-resolution
occluding mask. We can observe in Fig. 2.2 how the estimated peak throughput and
round-trip latency requirements slightly increase compared to the previous use case.
However, real-time occlusion is a hard and unsolved problem which we can expect
to require higher AR processing times. In that case, the required round-trip latency
might drop below 4 ms with uplink peak throughput values above 1.4 Gbps.

2.3.2. VR Use Cases

We propose three main distributed VR implementations as reference use cases for
our throughput and latencies KPIs analysis.
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Figure 2.3: Peak throughput and latency results for different values of processing
times tp for the VR rendering offloading scenario (use case A).

VR Use Case A: VR Rendering Offloading

In this scenario we consider that the only offloaded process is the rendering step.
In high resolution VR applications this is the most demanding step both in terms
of data transmission and computational requirements, and can be considered our
KPIs baseline. In this scenario, the uplink data rate is neglected as no media is
transmitted, only virtual object updates and other metadata. On the donwlink
side, the transmitted data is the rendered frame, which consists of 2 4K frames, one
for each eye. According to Table 2.2, the downlink frame size lays between 2.5 and
3.33 Mbit. The update rate used for this first experiment is set to 60 Hz. For this
first experiment we used wTu = 0.25, wTd

= 0.25, wL = 0.25 and wt = 0.25 so no
target parameter is prioritized during the optimization.

In Fig. 2.3 we can observe the output from the proposed experiment. As we
described in Section 2.1, the rendering times for high-end devices usually require a
minimum of 5 ms to render a new frame depending on the hardware and setup used.
For processing times above this value, we estimate round-trip transmission latencies
decreasing from 8 ms. On the other hand, the downlink peak throughput estimated
requirements are already quite severe, oscillating between 1.2 and 1.3 Gbps.
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Figure 2.4: Peak throughput and latency results for different values of processing
times tp for the VR rendering offloading scenario with uplink transmission of depth
sensor data for real-time processing (use case B).

VR Use Case B: VR Rendering Offloading and Depth Sensor Data Uplink
Transmission

In this experiment, we consider the case in which the rendering is offloaded from
the device along with another depth-based algorithm, such as hand tracking. We
chose this scenario as it requires high uplink data rates without being as demanding
as the full offloading scenario. Consequently, the downlink frame size is identical
to the one described in the first scenario. On the contrary, in this case the uplink
frame size is estimated to be between 0.5 and 1.33 Mbits. The update data rate is
again considered to be 60 Hz. In this case, we used wTu = 0.25, wTd

= 0.25, wL = 1
and wt = 0.25 to try to prioritize the latency optimization and target values some
milliseconds above the low threshold.

Fig. 2.4 depicts the obtained values for this second experiment. From the analysis
in previous sections we can expect processing values below 10 ms. We can observe
in Fig. 2.4 how the required round-trip latency decreases below 3 ms, with minimum
values above 9 ms. Besides, the peak downlink throughput remains stable around
2 Gbps for processing times below 10 ms. On the uplink side, we estimated peak
throughput values around 0.4 Gbps. In both the downlink and uplink, the peak
throughput starts exponentially increasing for processing values above 9 ms. In this
experiment, we can also observe the black and gray curves which determine the time
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Figure 2.5: Peak throughput and latency results for different values of processing
times tp for the full VR offloading scenario (use case C). Update rate: 60 Hz.

in ms for which the network must sustain the uplink and downlink peak throughputs
respectively.

VR Use Case C: Full VR Offloading

In this last experiment, we propose the full VR offloading scenario in which the entire
processing pipeline is offloaded from the device. In this scenario, the downlink is the
same as in the previous experiments: the high-definition rendered frame. However,
the uplink transmits now the full sensor data. We only consider the stereo RGB and
depth frames: other data, such as audio or IMUs measurements can be neglected.
In this scenario, we have an uplink frame size that lays between 2.16 and 3.83 Mbit.
This is the most interesting scenario as it demands the maximum from the network
at both the downlink and uplink sides. The used update rate is kept at 60 Hz. We
also used the same weight values as in the previous experiment.

Fig. 2.5 shows the results from this last experiment. We can observe how the
uplink peak data rate has similar values to the ones obtained in the previous cases.
However, the uplink transmission time is more than 3 times higher. On the other
hand, the downlink peak throughput requirements have considerably increased with
values around 3 Gbps. On the contrary, there are no considerable changes on the
latency as the optimization problem is configured to keep the latency values high.
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Figure 2.6: Peak throughput and latency results for different values of processing
times tp for the full VR offloading scenario (use case C). Update rate: 90 Hz.

Finally, we repeated the same experiment but setting the update rate at 90 Hz.
We can observe in Fig. 2.6 that in this situation, the peak throughput requirements
are extremely high with peak throughput above 5 Gbps on the downlink with two-
way latencies below 4 ms.

2.3.3. 5G RAN Configuration

To fulfil the above detailed requirements, we propose an initial 5G RAN configura-
tion which can lead to a successful XR offloading schemes. In general, XR offloading
demands tight peak throughput requirements on the uplink side, with values above
1 Gbps. On the downlink side, the required peak throughput can reach similar
values. Finally, the required roundtrip network latency might decrease to values
below 4 ms if we are constrained to hardware providing XR processing times above
8 ms. These requirements demand a very specific and well-designed network config-
uration. The required roundtrip latencies are extremely hard to achieve for several
reasons. Current RAN are very complex systems with very different processes which
add extra latency to the transmission. First, low latency demanding processes must
run as close as possible to the gNB, avoiding any backhauling connectivity if possi-
ble. Consequently, the use of well-equipped Multi-Access Edge Computing (MEC)
systems is crucial. There are other potential sources of latency such as the HARQ
process. This acknowledgement-based error control tool is a key element of current
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wireless networks. However, it can induce high packet transmission latencies if many
retransmissions are required. To avoid this scenario, the Modulation and Coding
Scheme (MCS) selection must be well aligned with the current network conditions.
Incorrectly selected MCS might produce high error rates and, consequently, higher
latencies and peak throughput requirements.

Consequently, the scheduling algorithm must be designed to prioritize the XR
user. This prioritization is crucial both to achieve high peak throughput and low
latency communication. Packets corresponding to the prioritized user should be
allocated as soon as they are ready, along with any necessary packet retransmission.
Besides, the TDDs scheme should be carefully selected. In the AR use cases, there
is a higher demand on the uplink side, TDD slot configurations must prioritize the
uplink stream. According to the 3GPP TS 38.213 [49] specification, TDDs configu-
rations 34 to 42 and 50 to 55 prioritize higher the uplink stream. On the other hand,
VR use cases impose much higher throughput requirements on the downlink side.
Therefore, an ideal TDDs configuration for VR use cases might be 11DL:1GP:2UL
TDDs. Ideally, in both AR and VR the slot configuration should be dynamically
selected depending on the network status, connected users and scheduling decisions,
as described in the 3GPP TS 38.213 specification [49].

From the resource allocation side, it is key to select the proper subcarrier spac-
ing (or numerology) to ensure that the network can provide the required data rates.
According to the 3GPP TS 38.306 specification [51], the estimated data rate require-
ments can be sufficed using a subcarrier spacing of 120 KHz (numerology 3) and a
bandwidth of 400 MHz. High numerology also has positive impact on the latency, as
they correspond to shorter Orthogonal Frequency-Division Multiplexings (OFDMs)
symbols. In all scenarios, 256-Quadrature Amplitude Modulations (QAMs) modu-
lation must be used to ensure high bit efficiency and sufficient available throughput.
However, VR use case C corresponding to the full offloading scenario, imposes re-
quirements which can only be fulfilled with advanced 5G network deployments,
such as mmWs frequency, multiple MIMO layers and carrier aggregation solutions
enabling bandwidths above 2 GHz according to the 3GPP TS 38.101 specification
[52], becoming a key enabler of portable immersive XR. Besides, we would need to
make use of other crucial capacities of 5G, such as Non-Public Networkss (NPNs)
which, as described in 3GPP TS 28.807 [53], allow controlled user prioritization and
very specific scheduling schemes.

XR traffic should travel through a specific network slice where RAN resources are
properly reserved and Quality of Service (QoS) policies are established throughout
the network. This slice could coexist with other slices in the same NPN with differ-
ent requirements (e.g., mMTC for Internet of Things (IoT) devices in a connected
factory, and eMBBs, mostly with downlink capabilities, for general intranet/internet
access).
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Figure 2.7: Proposed 5G-RAN architecture for a succesful distributed XR deploy-
ment.

Finally, as the offloading sets demanding hardware requirements for the MEC,
particularly in terms of GPUs resources, it is important to use dynamic resource
allocation and virtualization. The idle MEC capacity available in low-usage hours
(e.g. during the nights) may be dynamically released to other tasks that can be
performed offline and scheduled for such hours (e.g. heavy data analytics). There-
fore, the XR slice should also be able to acquire and release the computing resources
whenever they are needed.

The proposed 5G network architecture for XR offloading, is shown in Fig. 2.7.
We can observe how the latency-constrained algorithms, such as dynamic occlusion,
semantic segmentation, and object tracking, run on a MEC with no required back-
haul connection. Other non-real-time processes, such as 3D reconstruction, can run
on a further server, which involves the backhaul link and the 5G core.

2.3.4. Conclusions

In this chapter we have analyzed the main technology and network requirements
for an immersive XR distributed architecture and how 5G can become a key en-
abler of fully immersive XR. We have described the current state of the art of XR
algorithms, along with their individual required inputs and outputs, and hardware
requirements. We have studied the latency and peak throughput requirements nec-
essary to successfully offload some of the described algorithms. Furthermore, we
have numerically exemplified how the latency, throughput and XR processing times
are related with each other, proposing possible network configurations that may
guarantee them. The estimated required peak throughput and latency values call
for the use of 5G milimeter wave spectrum along with massive MIMO, smart re-
source allocation slicing, and NPNs. Besides, we have described the importance of
novel and optimized scheduling approaches to fullfil the tight requirements for XR
offloading. Finally, we characterized the parameters and algorithm distribution of a
plausible 5G network architecture to enable the presented distributed XR offloading
implementation. As a main conclusion we can foresee that the time has come for
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the implementation of XR on feasible devices thanks to the efficient architecture,
throughput and latency enabled by 5G.
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Chapter 3

EXtended Reality Offloading Architecture

The KPIs described in Chapter 2 are a crucial starting point to design an opti-
mized offloading architecture which can fulfil the demanding throughput and latency
KPIs necessary to offload the most relevant and impacting XR algorithms. In this
chapter we present our offloading architecture. The first and most stable version of
our architecture relies on TCP protocol and individual JPEG encoding and has been
carefully designed to reduce any processing overhead which can degrade the network
performance. We are currently implementing RTP and H.264 functionalities which
are also presented in this chapter. However, as the new functionalities are still a
work in progress, we only include consolidated results from the TCP version of the
architecture. The TCP version of the architecture has been tested for different of-
floading scenarios and conditions on two different wireless networks: WiFi and 5G
millimeter wave technologies. Besides, to test the network on alternative millimeter
wave configurations, currently not available on the actual 5G millimeter rollouts,
we used FikoRE, our open source 5G RAN real-time emulator, fully described in
Chapter 5. The results achieved with the TCP version of the architecture show great
performance for the tested immersive media scenarios, highlighting the relevance of
millimeter wave technology for the future of immersive media applications.

The goal of this chapter is to give a practical overview of our functional offloading
implementation and present some preliminary results while highlighting what other
improvements are still required both from the network and the architecture sides to
reach XR offloading full potential. Our contributions are:

• Design and implementation details of our novel offloading architecture, includ-
ing both the TCP and RTP-based functionalities. The architecture handles
multiple streams from different users, allowing concurrent offloading services
and traffic routing while aiming for a low latency and reliable data exchange.

• Description of the experimental approach for testing our architecture in dif-
ferent offloading scenarios and wireless networks: we describe the set of ex-
periments we carried out to show the performance of both our architecture
and the network itself. The main goal of these experiments is to show what
can currently be achieved and what is still lacking from both the network and
architecture.

• Brief presentation of the obtained results: we show and analyze the obtained
results, paving the ground for future researchers.
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Figure 3.1: Simple example of a distributed system implemented with the architec-
ture main components: Alga and Polyp.

3.1. Architecture Description

The main goal of the implemented architecture is to ensure a reliable, scalable and
flexible offloading tool optimized for low latency communication. We understand
the proposed architecture as a service provider for immersive media applications:
the architecture back-end provides a set of services to which the immersive device
subscribes to. Consequently, the data flow follows a publisher-subscriber approach,
which facilitates the dissemination of the information in distributed systems [54] as
the one we are proposing. We refer as nodes to each individual component of the
distributed architecture which subscribes or publishes to an available data channel
(see Fig. 3.1). The available data channels advertised by other nodes are referred as
topics. Our architecture is composed of two main components which are in charge
of efficiently distributing the information between the different nodes:

• Alga: is the core communication custom library which allows the direct data
exchange between nodes. Alga allows a node to publish or subscribe to one or
more topics, handling the data reception and transmission.

• Polyp: is the traffic routing agent which maps the publishers with their corre-
spondent subscribers. Polyp receives publishing or subscribing petitions from
the connected nodes and routes the traffic accordingly: it receives packets from
the nodes, check their destination and route them to all the targeted nodes.
Consequently, polyp has to be designed and implemented to ensure high data
managing efficiency to avoid any unnecessary delays.

The idea of the proposed architecture is that the potential offloaded algorithms
are offered by a MEC or a distributed system of processing servers as services. Each
of the offered services’ inputs and outputs are associated to topics. Each immersive
application can publish their sensor data to arbitrary services, and can subscribe
to the service’s outputs using their unique topic (see Fig. 3.2). With this approach
not only the scalability of the proposed pipeline is ensured but it also simplifies the
implementation efforts for the immersive applications providers.
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Figure 3.2: A distributed offloading implementation for immersive applications using
the proposed architecture and 5G.

To keep the communication latencies low, there should be at least one Polyp
instance running as close to the MEC and the serving g-Node B (gNB) as possible.
Polyp is in charge of routing the traffic from and to the services running in different
instances within the nearby MEC. Besides, our architecture is designed to handle
other services which does not require real-time processing: for these services, Polyp
can communicate with other Polyp instances through the internet. In this scenario,
the immersive application can stream their sensor data to further servers to do non
real-time heavy processing, such as photogrammetry realistic reconstruction [55].
Consequently, the proposed architecture can simultaneously handle real-time and
non-critical services using the same protocol and data flow.

3.1.1. Alga: Implementation Details

Alga is implemented as a reliable publisher-subscriber communication library which
relies on two different protocols: TCP and RTP. In both options, we have built both
the publishers and subscribers to allow both synchronous and asynchronous commu-
nication. In the synchronous mode, both the receiving and sending steps block the
main process. In the asynchronous mode, we create an independent thread for each
opened socket so that that receiving and sending steps do not block the main pro-
cess. Besides, we have implemented and efficient callback system for the subscribers.
Any custom method can be attached to such callback to handle the incoming mes-
sages at will. In general, the RTP version of our architecture is designed for video
streaming. On the other hand, metadata and other sensor data, such as IMUs, are
transmitted using our TCP-based implementation.

TCP

We implemented TCP-based transmission in our architecture for use cases in which
we need to prioritize reliability over maximizing the throughput. In both AR and
VR lost frames suppose a great degradation of the user experience, specially for
the most latency-critical algorithms such as VR rendering or hand segmentation.
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Figure 3.3: Left: Detailed structure of our custom packets. Right: Schematic sim-
plified representation of Polyp’s internal design.

The TCP functionality of Alga is implemented using a well-known and well doc-
umented TCP-based communication library: ZeroMQ5. ZeroMQ has been widely
tested and bechmarked, showing outstanding performance both in terms of latency
and throughput [56]. ZeroMQ allows to simply connect to an arbitrary endpoint or
bind to a socket and start receiving and sending data through that port. Binding
is a key functionality as it allows to listen to all the packets coming through an
arbitrary port regardless the endpoint source. Besides, ZeroMQ already allows to
configure ports as publishers or subscribers, discarding the received packets which
do not correspond to the subscribed topic. This feature, combined with the binding
capabilities, allows a fast implementation and an optimal performance as it discrim-
inates the packets coming to a bind port by topic, avoiding any extra processing on
the binding side.

We have implemented three types of publishers/subscribers, which use different
kinds of custom packets. All of the packets are divided into three sub-packets:
topic, header, and data. The topic is a simple string with the topic to which the
socket is subscribed or publishing to. The header includes relevant metadata: packet
id, timestamp, byte size, and a free field for other metadata, see Fig. 3.3 for a
detailed structure of our packets. The header and data changes depending on the
publisher/subscriber type:

• Picture: it allows to publish or subscribe to three or four channels color images.
It implements JPEG encoding and decoding capabilities, and is able of trans-
forming the image data to bytes, and reconstructing the image when received.
The header in this case also adds the image metadata: height, width, chan-
nels, and encoding format. The data sub-packet includes the image (encoded
or not) bytes.

• Unsigned 8 Bits Picture: is specifically designed for semantic segmentation
algorithms offloading, in which the result is a single channel 8 bits frame. The

5https://zeromq.org/
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Figure 3.4: The proposed offloading architecture strategy and simplified data flow
for a general multi-peer scenario (top). Alga data flow for both TCP-JPEG and
RTP-H-264 implemented transmission pipelines (Bottom).

implementation also allows single channel JPEG encoding and decoding. The
header in this case removes the channel information as it is no longer required.

• Metadata: this type is designed to transmit metadata such as configuration
information, position and orientation updates or the result from algorithms
such as object tracking which outputs just positions, orientations and sizes.
The header in this case is the originally described one. The data in this case
is sent as regular strings.

RTP

While JPEG encoding allows to have full control on the individual frames, it is not
as efficient in terms of compression as video-targeted encoders such as H.264. We
decided to implement H.264 encoding capabilities to our offloading pipeline. How-
ever, transmitting encoded video over TCP is not efficient: video traffic is typically
split in packets of around 1.5 kbytes, considerably increasing the TCP’s ACK-NACK
overhead. Therefore, we decided to implement RTP over User Datagram Protocol
(UDP) as an extra functionality of Alga.

The camera or rendering streams can now be transmitted as H.264 encoded video.
For this purpose, we incorporate GStreamer6 in charge of encoding and decoding the
video stream and transmit or receive the RTP frames. For traffic control reasons,
and to make it compatible with Polyp’s and TCP-Alga’s functionalities, we need

6https://gstreamer.freedesktop.org/
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to have control over the individual video frames and attach them the associated
metadata, such as destination topic, timestamps, etc. This metadata can be useful
also for performance analysis or bottleneck detection. To achieve this goal, we use
RTP extended headers. The metadata is then added to each video frame as an
RTP extended header, which can be decoded and read on the receiving end. This
is achieved using GStreamer in-built functionality. Alga’s data flow for RTP and
H.264 modes is depicted in Fig. 3.4.

From the sending peer, the frames are fed to Alga in RAW RGB format. Alga
injects the RAW frame along with its associated metadata to GStreamer encod-
ing and transmitting pipeline. If the traffic goes through Polyp, it is in charge of
transmiting it to the subscribed peers. In both this case or the case in which the
traffic is transmitted between final peers, GStreamer pipeline receives and decodes
the RTP frame to the specified format. Once decoded, the frame can be accessed
by the application layer.

3.1.2. Polyp: Implementation Details

Polyp has been designed to efficiently route traffic coming from a socket to another
arbitrary socket. The key component of Polyp is the mapping between the topics and
destination ports. When a new service or node is added to the system, Polyp receives
the relevant information: subscriber/publisher(s) topic(s) and the correspondent
endpoint(s). Polyp then maps these topics with such ports so it only requires the
topic information from the incoming packets to correctly route them, see Fig. 3.3
for a schematic representation of Polyp’s inner processes.

Polyp is implemented to support TCP traffic via ZeroMQ and UDP/RTP traffic.
The rules to determine which type of traffic to expect coming in and out of each
topic are selected by the user and can be dynamically modified. Polyp binds to a set
of arbitrary ports to which the nodes and services connect to receive or send data
through an arbitrary topic. When handling TCP traffic, Polyp relies on ZeroMQ
inbuilt topic discrimination and binding capabilities. We implemented our own logic
to handle the topic-based routing for RTP/UDP traffic.

3.2. Experiments and Results

All the experiments and results described in the the following sections are focused
on the TCP-based version of the proposed architecture. While the architecture has
been already tested in field VR offloading scenarios in wireless networks [47], we
wanted to benchmark it in different scenarios and wireless networks. Consequently,
we designed our experimental setup to test a wide range of combination of scenarios
and offloaded algorithms. With these experiments, we aim to understand the current
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limitations of our implementation and study how we and other researchers can move
toward an even more optimal offloading solution.

We focused in three main offloading scenarios. In all the cases, the uplink feed
is the sensor data, which we consider to be just a single camera feed. The main
difference between the scenarios is the resulting data, which is sent back through
the downlink stream to the device:

• Scenario A - Full offloading: in this scenario the donwlink side is composed by
the rendered frame, which is sent back to the device. This is the most latency-
critical scenario, as lost or late frames can produce nausea or discomfort to
the user.

• Scenario B - Real-time segmentation offloading: in this case, the downlink
stream includes the individual frames resulting from the segmentation algo-
rithm.

• Scenario C - Light downlink algorithms: some heavy algorithms, such as object
tracking [14] or simultaneous localization and mapping (SLAM) [38], only
output some metadata as the only results. This metadata is sent back to the
device.

The last two scenarios are less restrictive in terms of latency if their implementa-
tions include any latency correction algorithm, allowing to have end to end latencies
above the sampling rate period. Even though current AR and VR devices already
include time warping capabilities to reduce the effects or rendering delays or jitter,
it is still crucial to decrease latencies to the minimum, especially in scenario A.
The greater these latencies are, the harder it is for the time warping algorithm to
overcome its effect. If the offloading architecture adds extra latency, the correction
effect of the time warping algorithm would decrease, so we aim for the architecture
to not add extra frames of latency which could degrade the experience even if time
warping is available.

We decided to test the selected scenarios in three different networks to under-
stand how our architecture adapts to their particularities. Our goal is to understand
the limitations of both our architecture and the network in each offloading scenario:

1. WiFi: we decided to test our architecture on a WiFi network as this technology
is well stablished as the most used wireless network for indoor tasks. The
outstanding performance of the newest releases, such as the release 802.11ax
which allow throughputs way higher than 1 Gbps [57], adequate for immersive
media offloading. In our experiments we use a Netgear R6400 router.

2. mmW 5G Network: mmW technology is considered to become one of the
key enablers of novel technologies, including VR and AR offloading, over the
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coming years. Consequently, we decided to test our architecture on a mmW
prototype we have access to. The setup we used incorporates 8 Component
Carriers (CC) with 100 MHz of bandwidth each. It is configured with numerol-
ogy 3 which corresponds to a carriers sub-spacing of 120 KHz. Only two of the
available subcarriers are configured to allow uplink traffic, using a 1UL:4DL
(1 uplink slot granted for every 4 downlink slots assigned) TDD configuration.
We used the Askey RTL6305 mmW modem which, by the time we carried out
the experiments, was not capable of aggregating the uplink subcarriers. Con-
sequently, on the uplink side only 100 MHz of bandiwdth with TDD 1UL:DL
were available. The experimental setup is using 256-QAM modulation. Mil-
limiter wave communication is a recently introduced technology which is still
in a very early stage, both from the modems and gNB sides. However, we still
considered relevant for the research ecosystem to test the architecture on our
mmW setup as we could gain insights on how to optimize our architecture for
the future of this groundbreaking telecommunication technology.

3. 5G-RAN Emulator: we decided to use our FikoRE, our open-source 5G-RAN
emulator[25], described in Chapter 5, to test the network with different and
currently not commercially available configurations. More specifically, mmW
possible configurations are still limited, constraining the uplink scheduling
grants. Besides, mmW commercial modems have not reached their full poten-
tial yet. For this reason, we have decided to emulate in real-time a mmW gNB
with optimal configuration parameters. The main goal is to emulate, with a
high level of accuracy, how our architecture performs on a mmW setup bet-
ter configured and optimized for both uplink and downlink communication.
Besides, FikoRE allows to model other latencies such as the link latency be-
tween gNB and a nearby MEC. In the proposed experiments, FikoRE runs on
a Aorus Laptop with 16 GB of RAM and an Intel R⃝ CoreTM i7-10870H CPU
@ 2.20GHz × 16.

3.2.1. Architecture Setup

We decided to test an architecture setup in which a device is offloading an algorithm
to a MEC. The MEC has several offloading services available, and an instance of
Polyp runs on it, handling and routing the income data to and from the target
service. Fig. 3.5 depicts the architecture setup and data flow we have used for the
experiments. Even though we are aware of the importance of the selected packe-
tization schemes or video encoding/decoding techniques to the overall behavior of
the architecture, our main goal for the proposed experiments is to benchmark the
throughput and latency capabilities of our implementation. Consequently, we de-
cided to send the frames individually and remove all the processing overhead non
related to the architecture itself, such as the encoding and decoding steps.
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Figure 3.5: Detailed data flow of the used experimental setup.

Therefore, we used the same 4K (3840 × 2160) ten seconds video for all the
experiments. We resized each frame of the video to resolutions 2, 4 and 8 times
smaller than the original, for a total of 4 videos. Then, we encoded each frame of
each video to JPEG and store them in memory. These files are used both in the
server and client to load the frames that are sent each time. The same process
is done for the frames corresponding to the resultant segmentation mask in the
offloading scenario B: each frame is offline masked, according to a random color
mask, and encoded to single channel JPEG. The process is repeated for the 4 chosen
resolutions.

While the architecture is also prepared to receive and send packets asynchronously,
to isolate and fairly evaluate each individual frames transmission, the data flow is
synchronous (see Fig. 3.5) and follows the next scheme:

• When the result from the previously transmitted frame is received, the client
takes an encoded frame from the stored files and sends it through its publisher
to an arbitrary port.

• Polyp, running in the same machine as the server, receives the packet and
retransmits it to the receiving port to which the target service is attached.

• The target service receives the packet on the subscriber. In this case, we
use a dummy service which just discards the packet and immediately loads
an encoded frame from the previously created files and sends it back to the
client. If we are on the offloading scenario C, only random metadata of fixed
size (360 bytes) is sent back.

• Polyp re-routes the received reply from the server to the correspondent receiv-
ing port on the client side.

• The client receives the reply, discards it, logs the round trip time and uplink
and downlink frame sizes, and re-initializes the loop.

3.2.2. Polyp Evaluation

The first step was to evaluate the overhead introduced by Polyp’s packet routing.
As we consider Polyp to be running in the MEC which is offering different offloading
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Table 3.1: Decomposition of the source and results frame size used in each experi-
ment.

A - Rendering Offloading B - Segmentation Offloading C - Metadata Offloading
UL DL UL DL UL DL

Pixels Mbits Pixels Mbits Pixels Mbits Pixels Mbits Pixels Mbits Mbits
R1 3840x2160 8.14 3840x2160 8.14 1920x1080 2.81 1920x1080 2.09 1920x1080 2.81 <0.001
R2 960x540 1.00 3840x2160 8.14 960x540 1.00 960x540 0.83 960x540 1.00 <0.001
R3 540x270 0.35 1920x1080 2.81 540x270 0.35 540x270 0.32 540x270 0.35 <0.001

services, we can assume Polyp’s routing is done on the local host network. Conse-
quently, we decided to run the entire proposed experimental pipeline in the same
computer for different source and result frames and trace the overhead latencies
added by Polyp. We repeated the experiments 4 times, one for each resolution. In
all the 4 rounds of experiments, the time overhead mean was in all cases smaller
than 1 ms.

After this simple experiment we can conclude that in this type of setup, in which
Polyp is running in the same machine as the offloading services, there is no relevant
time overhead added by Polyp. Therefore, in the following experiments we do not
use Polyp to route the packets to the dummy server, and we directly connect or
bind the server’s and client’s publishers and subscribers.

Alga Results

We did not evaluate all the possible combinations of source and results frames. On
the contrary, we chose only the most representative combinations, shown in Table
3.1. The sizes shown in Table 3.1 are the mean sizes of all the JPEG-encoded frames
with the given resolution. As in scenario B the downlink frames are single channel
JPEG-encoded masks, we can observe their sizes to be smaller than the ones with
same resolutions in the other scenarios. We have three different resolution setups
for each scenario. Table 3.1 defines the IDs for each experiment, being R1, R2 and
R3 the 3 resolution combinations for each offloading scenario, A, B or C.

We also analyzed the basic performance of both the WiFi and mmW setups. We
used iperf7 to estimate the TCP throughput capabilities. We let the test run for 100s

in each setup, with no other users connected. In FikoRE case, we assumed a one
way latency between the core and the MEC of 3ms. FikoRE is configured exactly as
the actual mmW setup, but assuming the 1UL:4DL TDD configuration is extended
along the 8 subcarriers, and the modem is capable of performing carrier aggregation.
This configuration multiplies by 8 the actual uplink throughut capabilities of the
actual mmW experimental setup. The simulated modem is placed 50 meters away
from the gNB. This configuration is used in all the emulated experiments. The

7https://iperf.fr/
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Table 3.2: Summary of each network setup’s Iperf performance.

1 - WiFi 2 - mmW 3 - Fiko - 5G-RAN Emulator
DL (Mbps) UL (Mbps) Ping (ms) DL (Mbps) UL (Mbps) Ping (ms) DL (Mbps) UL (Mbps) Ping (ms)
∼200 ∼200 <4 ∼3000 >80 <12 >3500 >1500 6

(a) (b)

Figure 3.6: Example of the estimated PDF (in orange) for the obtained round
trip times histograms in milliseconds (in blue) for two arbitrarily chosen examples:
Scenario A and resolution R2 for both WiFi (a) and the mmW base station setup
(b).

summary of the achieved TCP performance on Iperf in the three cases is shown in
Table 3.2. The ping values measurements were taken with empty buffers.

We are using the same set frames along the duration of each experiment. As
a consequence, we only need to focus on the measured Round Trip Time (RTT)
latency on the application layer. For each experiment, we transmitted both ways
a total of 10000 frames through the architecture. In each iteration, the round trip
time was measured and saved for later analysis. We decided to obtained the RTT
latencies’ probability density functions for each experiment, giving a statistical view
of the RTT performance of our architecture.

By a quick inspection, our intuition indicated that the Probability Distribution Function
(PDF) followed a Gamma distribution [58] with a certain time offset. This intuition
matches the fact that any delay in a communication network is defined by a mini-
mum value (the offset), which is caused by physical and computing limitation factors,
with a greater occurrence in the delays close to the offset and some values with a
much lower occurrence in higher delays. Besides this, our intuition was supported
by a study on the prediction of RTT for wireless networks [59]. The definition of
the offset Gamma distribution can be expressed as:

fX(x, xi, α, θ) = (x− xi)α−1e−(x−xi)/θ

θαΓ(α) , with Γ(α) =
∫ ∞

0

tα−1

et
dt, (3.1)
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Table 3.3: Summary of the estimated PDF values for each experiment: rendering
(A), segmentation (B) and metadata (C) offloading; and high (R1), medium (R2),
and low (R3) frame resolution. See Table 3.1 for details.

WiFi
A-1 A-2 A-3 B-1 B-2 B-3 C-1 C-2 C-3

Mean (ms) 36,43 23,54 10,58 25,36 11,61 3,98 8,43 4,23 2,52
95th Percentile 43,35 31,21 13,52 40,92 19,84 5,50 10,47 5,56 3,68
Std (ms) 4,52 5,33 1,86 8,97 4,61 0,97 1,32 1,02 0,86
Offset (ms) 23,75 12,43 7,17 9,63 5,32 2,61 5,88 2,86 1,78
Shape 9,8 11,46 5,96 3,93 2,49 2,56 4,81 3,69 1,09
Scale 0,24 0,17 0,34 0,52 0,74 0,5 0,32 0,18 0,39

mmWave
A-1 A-2 A-3 B-1 B-2 B-3 C-1 C-2 C-3

Mean (ms) 190,53 105,83 51.05 58,22 27,11 19,07 42,80 22,39 17,95
95th Percentile 259,82 153,00 70,62 82,05 36,47 27,46 61,80 27,81 25,36
Std (ms) 41,8 31,04 18,24 35,87 8,12 6,7 11,91 6,35 4,55
Offset (ms) 102,62 51,45 32,72 32,98 21,42 16,85 22,74 8,41 14,98
Shape 4,96 5,79 6,9 2,55 1,1 0,24 3,88 6,66 0,86
Scale 0,5 0,33 0,09 0,23 0,25 1,51 0,38 0,16 0,41

FikoRE 5G-RAN Emulator
A-R1 A-R2 A-R3 B-R1 B-R2 B-R3 C-R1 C-R2 C-R3

Mean (ms) 16,14 10,76 8,67 10,99 8,57 8,51 9,88 8,54 8,5
95th Percentile 17.92 11,69 9,48 12,72 9,44 8,65 10,62 9,41 8,65
Std (ms) 3,14 1,34 0,96 1,49 0,96 0,43 0,82 0,38 0,34
Offset (ms) 14,67 10,38 8,37 10,15 8,34 8,37 9,21 8,32 8,35
Shape 0,96 0,71 1,59 0,59 0,51 1,56 0,82 1,99 1,98
Scale 0,13 0,07 0,02 0,34 0,04 0,06 0,21 0,07 0,09

with α a shape parameter, θ the scale parameter, β the inverse of the scale
parameter, and xi the offset. These are the parameters that need to be adjusted
given the input data. We found that 10000 iterations was enough to accurately
adjust an offset Gamma PDF, for each experiment, from the RTTs histogram. To
adjust the PDF, we defined an optimization function of the following type:

min
xi,α,θ

∑
x

|fX(x, xi, α, θ)− hX(x, s)|, (3.2)

where hX(x, s) is the histogram adjusted to the x axis of the PDF and the
experiment s. The optimization problem was solved using Matlab. Fig. 3.6 shows
the obtained RTT histograms and their estimated PDFs from two of the presented
experiments. We can observe a great level of agreement between the theoretical
PDF and the histogram after solving the optimization problem defined in Eq. 3.2.

Apart from this, the mean and variance of the RTT have been calculated, since
these statistic parameters are the simplest that characterize any distribution, and
can be applied with a good agreement for Gamma distributions. The obtained
RTT metrics for each resolution and scenario combination and wireless technology
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Figure 3.7: Graphical summary of the round trip time results from all the experi-
ments.

experiment is shown in Table 3.3. Besides, and to show when most of the frames
arrives on time in each scenario and wireless technology, we estimated the 95th
percentiles shown also in Table 3.3. Aiming to give a visual insight of the results we
built Fig. 3.7 which depicts the bar plot of the mean and variance RTT from each
experiment. Notice that we have added two thresholds in Fig. 3.7: one is delimiting
the maximum RTTs which support hard real-time and the other referring to the
soft real-time deadline. We understand hard real-time as the process in which the
total end to end latency, including the processing overhead, is smaller than the
frame update period (16.6 ms). We chose this deadline to be 8 ms according to the
processing overhead times assumed in [28]. In specific VR offloading applications,
as the one described in [47], higher RTTs (<50 ms) provide a sufficient quality of
experience, as buffering techniques can overcome the delay effects. Consequently,
we consider 32 ms as our reference soft real-time deadline for this particular less
constrained offloading applications.

We can directly observe that the performance on the actual mmWave setup
is the poorest one. We were expecting this behaviour as the mmW technology,
and especially the experimental setup we have access to, is still improving, with
almost no commercial roll-outs worldwide. The available mmW modems are still
very limited on the uplink side: the Askey RTL6305 is not performing any succesful
carrier agreggation on the uplink. Consequently, the uplink effective bandwidth is
limited to less than 30 MHz, considerably reducing the effective throughput. Besides,
the fact that our architecture is based on TCP reduces the network exploitation
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on poorly performing networks: delay and throughput are competing resources in
TCP. However we can observe that in some scenarios, the soft real-time deadlines are
achieved. Consequently, for some of the proposed scenarios, the current sub-optimal
development stage of mmW technologies is already useful for particular immersive
offloading tasks.

Our WiFi experimental setup considerably favors our TCP-based architecture
as the measured baseline ping end to end latencies were smaller than 4 ms. Conse-
quently, all the experiments but the most demanding in terms of throughput (A-R1)
were meeting the soft real-time deadline. Besides, only three experiments showed
deadlines above the hard real-time requirements (A-R1, A-R2, B-R1). These lim-
itations could be overcome using a router which implements MIMO or multilink
transmission to provide even higher throughputs.

Finally, as we were expecting a priori, the best performance is given by the
emulated mmW setup. First, it is key to acknowledge that in this setup, the en-
tire architecture pipeline was running on the same machine, removing any possible
network degradation that could be produced by any of the network components
involved. Besides, the mmW configuration used, which assumed the use of modems
capable of performing carrier aggregation, enables almost 200 MHz just for uplink
transmission. This allows more than 8 times uplink throughput than in the actual
mmW setup. We can observe that only the first scenario and resolution combination
(A-R1) is not fulfilling the hard real-time requirements. However, we can observe
that the mean RTTs are not going below 8-7 ms. This is due to two facts: we mod-
eled a fixed simulated core to MEC one-way latency of 3 ms, and TDD scheduling
adds extra non-avoidable latencies, specially on the uplink side. This last limitation
could be overcome using network slicing which allows greater scheduling flexibility
and use case specific optimizations.

3.2.3. Emulated mmW-based Offloading on a Realistic Scenario

The goal of this last set of experiments is to test our architecture in a more realistic
scenario using the 5G-RAN emulator: we simulated multiple users attached to the
same base station which are sharing network resources with the virtual immersive
user. The goal is to emulate an actual mmW deployment and understand how
the performance degrades as other users are connected to the same base station.
We included 120 virtual users in the simulator which are consuming 5 Mbps and
1 Mbps of downlink and uplink traffic respectively. We chose these values as they
represent the case in which these virtual users are on a video-call, receiving and
sending HD 1080 and SD 480 video streams respectively. This number of users
was selected as this combination of users and uplink and downlink throughputs
sufficiently degrades the overall performance of the offloading architecture. The
users are placed randomly within a 1000 m radius from the base station. Besides,
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Figure 3.8: Graphical summary of the round trip time results from all the experi-
ments.

the emulator has user prioritization capabilities, handled by the emulator’s scheduler
implementation. Therefore, we tested the scenario with no user prioritization against
the one with it. We used proportional fair [60], a well studied solution, as the ruling
scheduling algorithm. As we already have the previous results as a baseline, we
decided to focus only on the most relevant resolutions for each offloading scenario:
R2 in all the offloading Scenarios A, B, C from Table 3.1. We choose this uplink
frames resolution (960x540) as it is, along with 1080x720, a typical resolution for
VR offloading applications as the one proposed in [47].

The obtained results are depicted in Fig. 3.8. We can observe the high perfor-
mance degradation when other users are consuming resources from the base station
and no user prioritization is used: measured RTTs grow 6 times bigger than in the
no users setups. However we can observe that there is almost no visual RTT values
differences between the user-less and prioritization setups. We can, on the contrary,
observe that the standard deviation is slightly higher for the scenario with simulated
users. This is justified by the fact that, even though the user prioritization is forcing
the scheduler to grant transmission slots to the prioritized user, proportional fair
scheduling algorithm guarantees periodic serving to the other users. This produces
small peaks of latency on the prioritized user, which, as we can observe in Fig. 3.8,
are small enough to be neglected.

41 Distributed Implementation of eXtended Reality Technologies over
5G Networks



CHAPTER 3. EXTENDED REALITY OFFLOADING ARCHITECTURE

3.3. Conclusions

In this chapter, we have presented our communication architecture specially opti-
mized for immersive media offloading. First, we have described the main character-
istics and implementation details of the proposed architecture, including both main
protocols implemented, RTP and TCP, and encoding techniques, JPEG or H.264.
As RTP transmission and H.264 encoding functionalities are still a work in progress
in our architecture, our experimental evaluation has considered only the TCP-based
version of our architecture.

We have described the main experiments that were performed to test our imple-
mentation. The architecture was tested on both WiFi and a 5G mmW wave setup.
As the current development of mmW wave has still not reached its full potential, we
have also tested our network on a 5G emulator which is able of modeling a config-
urable mmW base station. The goal of this last experiment is to test the potential
of our offloading architecture on a fully functional mmW setup.

The architecture was tested on different offloading scenarios, frame resolutions,
and the three wireless networks setups: WiFi, mmW, and emulated mmW. The
results where focused on measuring the round trip time at the application level for
each scenario and wireless technology. The obtained results showed a high perfor-
mance of our architecture in WiFi, meeting at least the soft real time deadline for
every test case but one. On the contrary, mmW results were not as successful: the
test cases with highest input or output resolutions did not satisfy the soft real time
requirements. This was expected as the current development of mmW technologies
is currently limited, considerably constraining the uplink throughput capabilities.
However, even with the current limitations, mmW can already be used in several of-
floading use cases according to the results. Finally, using the emulated mmW setup,
configured for exploiting the actual throughput capabilities, we managed to obtain
outstanding results with our offloading architecture. The only test case in which the
emulated mmW setup could not perform in hard real-time is the scenario in which
both the uplink and downlink frames’ resolution was 4K. From these results, we
conclude that the Scenario A, in which the rendered immersive scene is sent back
to the device, which is unavoidably a hard real-time offloading use case, is not well
suited for TCP communication protocol. In this case, our work in progress RTP
transmission and H.264 video encoding functionalities can provide a more optimized
performance for this kind of traffic.

Furthermore, we tested our architecture in a realistic mmW rollout, using the
5G mmW emulator. We added multiple virtual users to the emulated scenario,
consuming throughput resources from the base station. When no user prioritization
was used, the network degradation was such that the measured RTT increased up to
8 times compared to the no user scenario. We performed the same experiments using
user prioritization, showing almost an identical performance as the scenario with no
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users. The experiments with the mmW emulated setup has shown the potential of
both mmW technologies and the proposed offloading architecture. The combination
of these technologies, and the newest releases of WiFi, can become a key technology
enabler for the future of immersive media technologies.

These results already give a detailed overview of the throughput and latency
capabilities of the proposed architecture for the particular application of immer-
sive media offloading. However, we plan to extend the presented experiments and
results in the short term by testing how the selected packetization schemes and
encoding/decoding approach affect the overall behaviour of the architecture, both
from a quantitative and quality of the immersive experience point of views.
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Chapter 4

End-to-End Offloading Solution: Real-time
Egocentric Human Segmentation

Figure 4.1: Example of video-based self-avatar in an immersive experience.

In Chapter 3, we describe our optimized offloading architecture and its perfor-
mance evaluation experiments’ results. The architecture has only been evaluated
in terms of throughput and latency capabilities. The next natural step is to test it
on a realistic offloading deployment to understand its impact on the immersivenes
and other subjective metrics. To the best of our knowledge, there is no example of
a full end to end XR offloading deployment running on a commercial XR HMD in
the state of the art. In this Chapter, we present our end to end offloading solution
which we deployed using a Meta Quest 2.

Over the last three years, we have worked on the development of a real-time
egocentric body segmentation algorithm [15], [61], which, by the means of a stereo
camera placed on the front of the VR HMD, allows the user to see themselves within
the VR experience, as in Fig. 4.1. This solution aims to override the traditional
virtual avatars used to represent the users in VR experiences. Our algorithm runs
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Figure 4.2: Self-avatars can be described based on their visibility, fidelity and dy-
namics. There are different related technologies

in real time at a frame rate above 50 Hz. However, this is achieved on a Intel
Core i7-11800H and a Nvidia Geforce RTX 3070 GPU. Therefore, to include this
algorithm in a commercial wireless device such as the Meta Quest 2 8, we need to
provide a reliable and optimized connection between the device and a server running
the algorithm. In this chapter, we present our end to end offloading solution which
allows the users to see themselves in VR using our egocentric body segmentation
algorithm which runs in a nearby server.

4.1. Background of User Self-Perception in XR

The use of self-avatars, the virtual representation of the user’s body from its own
perspective, is starting to become ubiquitous in XR. The possibility of seeing your
own body while immersed brings many benefits. First, it increases the users’
Sense of Presence (SoP), as it shifts the user from being an observer to really expe-
riencing the virtual environment [62], [63]. Besides, it enhances spatial perception
and distance estimation [12], [64] while bringing a positive impact on cognitive load
[65], trust and collaboration [66]. Apart from increasing the SoP, self-avatars also
increase the Sense of Embodiment (SoE) [44], [67]. As defined by Kilteni et al. [68],
Sense of Embodiment refers to the feeling of being inside, controlling and having
a virtual body. Sense of Embodiment includes the sense of ownership as one’s self
attribution of a body, sense of location defined as one’s spatial experience of being
inside a body, and sense of agency as the sense of having global motor control over
a body.

In a nutshell, an avatar is a user representation that can be described based
8https://store.facebook.com/en/quest/products/quest-2/
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on its visibility, fidelity and dynamics (see Fig. 4.2). In what concerns to avatars
visibility, the minimal configuration of an avatar just relies on modelling the users’
hands [69]. On the other hand, the current trend is to model the partial body (e.g.,
upper body limbs [70]) or even the entire human body [71].

Once decided the level of visibility, it is necessary to decide which avatar fidelity
or realism level (shape and texture for skin and clothes), should be used for mod-
elling the human body. Existing works for hand representations range from abstract
forms [44], minimal iconic representation [44], robot hands, to more realistic ones
with gender-matched and skin-matched limbs [72]. Fidelity approaches for full body
avatars includes minimal representations, such as the stickman appearance [67], car-
toonish ones (e.g., the ones used in Mozilla Hubs), realistic avatars usually found in
human model libraries such as Rocketbox library [73], or personalized ones found in
VR platforms (e.g. Virbella). The latest tendency relies on models that preserve the
user’s body shape such as using a skinned multi-person linear body (SMPL) model
[74], or 3D scanning systems such as point-cloud representation for fully personalized
avatars [75]. There is still room for improvement with modelling identity-preserving
avatars, specially concerning real-time performance issues. It remains an interesting
challenge, since it has been proven the benefits of avatar fidelity and realism level
in object size perception [71], [76], body ownership [77], presence [78], co-presence
[79], among others.

One remaining challenge is how to capture all movements from the user’s body so
that the avatar can accurately mimic them. It is an important feature as it facilitates
interaction tasks in MR [80]. Modelling head and hands movements have been widely
studied. Head tracking is provided by almost all standard HMDs. Besides, there
are recent commercial solutions for hand tracking, such as Leap Motion sensor [81],
or camera-based hand tracking as in the Meta Quest 2 or HTC VIVE. On the other
hand, less work has been done on full body tracking, including lower limbs and torso.
Some works proposed using 2 VIVE trackers attached to the feet for allowing foot
tracking and visibility [80], [82], [83]. Although traditional approaches for full body
capture are based on IMUs sensors placed on a suit that the user wears [78], [84],
[85], there are emerging solutions based on computer vision that can track the user’s
body movements using one single depth sensor such as Azure Kinect v2 [86]. Apart
from the already mentioned challenges of full body tracking and avatar appearance
resembling the user’s own identity, there is still the subjective factor of whether
users accept the avatar as a virtual representation of themselves or not.

An alternative approach to computer-generated avatars is the use of video-based
self-avatars. This can be done through the combination of VR video pass-through
and computer vision algorithms: user’s real body is incorporated into the virtual
scene by segmenting the egocentric vision of a stereo camera placed in front of or
integrated with the HMD. The VR community has explored this idea over the last
decade. For instance, Bruder et al. proposed skin segmentation algorithm to incorpo-
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rate users’ hands handling different skin colors [87]. Conversely, a floor subtraction
approach was developed to incorporate users’ legs and feet in the virtual environ-
ment. Assuming that the floor appearance was uniform, the body was retained by
simply filtering out all pixels not belonging to the floor [87].

Pigny et Dominjon [88] were the first to propose a deep learning algorithm to
segment egocentric bodies. Their architecture was based on U-NET and it was
trained using a hybrid dataset composed of images from the COCO dataset belong-
ing to persons and a 1500-image custom dataset created following the automatic
labelling procedure reported in [61]. The segmentation network has two decoders:
one for segmenting egocentric users, the other for exocentric users. However their
segmentation execution speed could not currently totally keep up with the cameras
update rate while maintaining a decent quality. They reported 16 ms of inference
time for 256× 256 images, and observed problems of false positives that downgrade
the AV experience.

Later, in [70], the authors developed a system able to segment the user’s hand
and arms using a dataset composed of 43K images from TeGO, EDSH, and a cus-
tom EgoCam dataset, using semantic segmentation deep learning network based on
DeepLabv3+. For the experiment, they used an HTC Vive HMD, a monocular RGB
camera, and a Leap Motion controller to provide free-hands interaction camera. In-
ference time takes around 20ms for 360x360 RGB video in a workstation provided
with Nvidia Titan Xp GPU (12GB memory). They manage to run VR rendering
and Convolutional Neural Network (CNN) segmentation in the same workstation.

There are other color-based approaches [48], [89], [90] which can be deployed in
real time but they tend to work well just for controlled conditions. Further, they
failed at dealing with different skin colors or long-sleeve clothes [89]. Alternatively,
depth cameras solutions have been proposed [91]–[93]. Despite being effective for
some situations, they still lack precision to provide a generic, realistic, and real time
immersive experience.

4.2. Contribution

Our real-time video-based self-avatar algorithm is inspired in Thundernet’s architec-
ture [94], a deep CNN specifically designed for real-time semantic segmentation. Our
improvements and optimizations from the original architecture are described in [15],
[61]. Our solution, achieves a frame rate of 66 fps for an input resolution of 640x480,
thanks to its shallow design. To train it, we created a 10, 000 images dataset with
high variability in terms of users, scenarios, illumination, gender, among others.
This chapter investigates how to integrate our segmentation algorithm with a com-
mercial device, in particular the Meta Quest 2, using our offloading architecture
described in Chapter 3. Our main contributions can be summarized as:
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• a detailed description of our End-to-End (E2E) system which manages to
integrate our real time egocentric segmentation algorithm in a realistic MR
experience using our own offloading architecture and custom hardware and
software implementation. The E2E system is composed of three main modules:
video pass-through capable VR device, real-time egocentric body segmentation
algorithm, and optimized offloading architecture.

• a subjective evaluation of the video-based self-avatar technology integrated
in a gamified immersive experience, conducted by 58 users. To the best of
our knowledge, it is the first work that includes a user study using full body
video-based self-avatars.

4.3. System Design and Implementation

The generation of real-time, accurate and effective video-based self-avatars for MR
requires the following solutions to be integrated as a single MR end-to-end system:

• Video pass-through capable VR device: captures the real scenario us-
ing a frontal stereo camera, accurately aligns it to the user’s view and head
movement, and renders it, in real-time, within the immersive scene.

• Real-time egocentric body segmentation algorithm: identifies the pix-
els corresponding to the user’s body from the frames captured by the frontal
camera.

• Optimized offloading architecture: egocentric body segmentation algo-
rithms require high-end hardware not available in current state of the art
HMDs. We integrate our offloading architecture described in Chapter 3 in the
proposed E2E system to provide an optimized communication link between
the VR HMD and the server running the segmentation algorithm.

4.3.1. Custom Video pass-through Implementation

There are several VR devices with video pass-through capabilities which are already
commercially available, such as the Varjo XR-39 or the HTC VIVE Pro10. These
devices are still tethered, constraining the range of possible use cases of the proposed
system. Consequently, we decided to build our own video pass-through solution [95]
for the Meta Quest 211, as it is a well-known commercially successful stand alone
VR device. For this purpose, we had to build our own hardware along with the

9https://varjo.com/products/xr-3/
10https://www.vive.com/eu/product/vive-pro/
11https://store.facebook.com/en/quest/products/quest-2/
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Figure 4.3: Simplified representation of our custom video pass-through implemen-
tations.

necessary software to effectively integrate the captured video into the VR scene,
ensuring a perfect alignment between the captured feed and head movement.

Stereo Camera and 3D-printed Attachment

Our video pass-through system must capture high definition stereoscopic video at
a rate of at least 60 Hz to comply with many MR video pass-through use cases12.
We chose the ELP 960P HD OV9750 stereo camera13 which provides a maximum
resolution of 2560x960 at a 60Hz update rate and a field of view of 90◦. Most
commercially available video pass-through MR devices incorporate stereo cameras
which are aligned with the user’s eyes. On the other hand, we realized after some
initial tests that for our particular use case tilting the stereo cameras 25◦ towards
the ground provided a better experience and ergonomics for the user. We designed
a custom 3D printed attachment to fix the stereo camera to the VR device with the
described offset as in Fig. 4.3.

Video Capture

Aligned with most of AR and VR applications, our solution is built using Unity
19.3. Consequently, we must be able to access the stereo camera feed from Unity
to be able to process and render it within the immersive scenario. Our system has
been designed to work both in tethered and wireless modes. Due to the device’s
particularities, both modes differ in the way that the video stream from the stereo
camera is captured:

• Wireless Mode: as the Quest 2 relies on Android as the base operative
system, we built a native Android plugin to capture the video frames from
the stereo camera. The plugin is based in the cross-platform UVC library [96]
for webcam video capturing. We implemented a custom interfacing plugin to
allow Unity to access the captured frames with as low latency as possible.

12https://developer.oculus.com/resources/oculus-device-specs/
13https://bit.ly/3qGHY8h
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Figure 4.4: Schematized representation of the VR device’s and stereo camera’s ren-
dering frame’s coordinate frames. In orange, the VR device rendering camera coor-
dinate frame. In blue, the rendering planes coordinate frame. In red, the parameters
to be estimated using our custom calibration method.

• Tethered Mode: in this case, we capture the video frames as a simple web-
cam using Unity’s C# Application Programming Interface (API).

Rendering Planes Placement

In any video pass-through MR application, the rendered stereo camera’s feed and
user’s head movement must be perfectly aligned to avoid any user discomfort or VR
sickness. This misalignment can come from three non-exclusive sources: lens distor-
tion effects, inaccurate placement of the planes where the camera feed is rendered,
and motion-to-photon delays. We need to apply the necessary calibration steps to
reduce the effect of the aforementioned misalignment sources.

The captured video frames from the stereo camera are rendered into two virtual
planes (in blue in Fig. 4.4), which we refer to as rendering planes, one for each
eye. The first step is to obtain the intrinsic parameters [fx, fy, cx, cy] and distortion
coefficients [k1, k2, k3, p1, p2] from the stereo camera so we can accurately correct
the camera’s lens distortion and properly scale the rendering planes. We used a
well-known camera calibration technique described by Z. Zhang [97].

We used a custom shader for Unity to correct the camera’s lens distortion using
the estimated parameters, applied to the rendering planes’ material. The shader
implements the following distortion correction equation [98] for each pixel pxy:

x′ =x + x̄(k1r
2 + k2r

4 + k3r
6) + p1(r2 + 2x̄2) + 2p2x̄ȳ (4.1)

y′ =y + ȳ(k1r
2 + k2r

4 + k3r
6) + p2(r2 + 2ȳ2) + 2p1x̄ȳ, (4.2)
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where x̄ = x − cx, ȳ = y − cy, r =
√

x̄2 + ȳ2. Finally, we need to properly scale
the rendering planes according to the intrinsic camera parameters, so that the real
objects captured by the stereo camera are perceived with the appropriate size. Using
an arbitrary distance(dr) between the rendering frames and the origin of the virtual
cameras assigned to each eye (eye cameras) we can estimate the scale S for a given
resolution [Rx, Ry]:

S = [sx, sy] = [dr
Ry

fy

, sy
Rx

Ry

]. (4.3)

Once the camera has been correctly calibrated, we can solve the inaccurate place-
ment of the rendering planes. The goal is to estimate the pose of the stereo camera
with respect to the VR device’s coordinate frame, as in Fig. 4.4. Specifically, we
need to estimate the accurate position and orientation of the rendering frames with
respect to the virtual cameras coordinate frames. The goal is to calculate the ge-
ometrical relationship [∆x, ∆y, β], depicted in Fig. 4.4 between both coordinate
frames.

While this calibration is traditionally achieved using a classic camera-IMU (iner-
tial measurement unit) calibration method [99], commercial devices do not provide
access to raw sensor data with accurate time-stamps. Consequently, we decided to
design our own workaround calibration method. Our method relies on the com-
plementary hand controllers commonly available with current state of the art VR
devices. These controllers are accurately tracked by the VR device relative to its
own coordinate frame. Consequently, we designed and 3D printed an attachment for
the Meta Quest 2 controllers which includes an Aruco [100] cube as the one shown
in Fig. 4.3.

Using a standard Aruco tracking library [100] written in C++ along with the
estimated camera intrinsic parameters and distortion coefficients, we can accurately
track the Aruco cube and, consequently, the correspondent controller’s pose using
the incorporated stereo camera. This estimation can be used to directly infer the
geometrical relationship between the stereo camera’s and VR device’s coordinate
frames. Consequently, we can directly estimate [∆x, ∆y, β], by estimating the re-
quired translation and rotation of the stereo camera’s coordinate frame within the
VR scene to perfectly align the VR controller pose as measured by the VR device
and by the stereo camera. This relationship is constant, as the stereo camera is
rigidly attached to the VR device.

Delay Alignment Buffers

Even though the stereo camera lens distortion has been properly corrected and the
video feed rendered on well-aligned and scaled rendering planes within the virtual
scene, we need to introduce a method to remove the misalignment produced by the
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motion to photon latency. This latency produces an unnatural decoupling between
the stereo feed, the head movement, and, consequently, the virtual scene. This
artifact not only degrades the experience but can produce VR sickness.

In a delay free system, we could just place the stereo camera coordinate frame
in a fixed relative position and orientation with respect to the VR device coordinate
frame. However, in a realistic scenario, this setup would produce the effect that
the visual feed is delayed with respect to the user’s head movement. To overcome
this issue we add a delay alignment buffer, which stores the position and orientation
corresponding to the stereo camera’s coordinate frame. The size of the buffer corre-
sponds to an arbitrary time tc which depends on the empirically estimated motion
to photon delay. We assume tc to be constant for the same stereo camera and VR
device models. Consequently, by placing and rotating the stereo camera feed always
to the first pose stored in the buffer, we achieve an accurate head movement to
stereo feed alignment.

4.3.2. Egocentric Segmentation

This is a crucial step in our setup: we need an accurate real-time egocentric body
segmentation algorithm which allows to identify which pixels, from the stereo cam-
era feed, correspond to the user’s body. Our algorithm is based on deep learning
techniques. Particularly, it is based on the use of semantic segmentation networks
[101]. In this case, the segmentation is performed from first point of view (egocentric
vision).

The designed algorithm must meet two requirements: i) real-time performance
achieving an update rate above 60Hz, and ii) high quality segmentation in uncon-
trolled conditions. Concerning the first requirement, we designed our architecture
inspired in Thundernet [94], a very shallow semantic segmentation algorithm com-
posed of: i) an encoding subnetwork; ii) a pyramid pooling module (PPM) that
enables to extract features at different scales; and iii) a decoding subnetwork. Sev-
eral modifications were applied to the baseline architecture: i) larger pooling factors
of 6, 12, 18, 24 were used in the PPM module to better extract features of larger
input images, ii) three additional long skip connections between encoding and de-
coding subnetworks for refining object boundaries were added, and iii) weighted
cross entropy loss function was used to handle class imbalance between human body
(foreground) and background. For more detailed information please refer to our
work [15].

To achieve high quality segmentation, a data-centric approach was followed,
putting a strong emphasis on the variability of the training data. We created a
dataset of almost 10000 images composed of three datasets: i) Ego Human dataset, a
semi synthetic dataset composed of egocentric body parts (arms, lower limbs, torsos)
merged with realistic backgrounds that facilitates the process of groundtruth gener-
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Figure 4.5: Final E2E simplified architecture, including the languages in which each
agent was built.

ation; ii) a subset of THU-READ dataset, originally created for action recognition,
whose segmentation groundtruth was created manually using Amazon Mechanical
Turk, and iii) EgoOffices: an egocentric dataset that was manually captured using
a portable custom. The dataset was captured by more than 25 users and multiple
realistic scenarios, such as different apartments or office rooms. As the hardware
setup involves the use of a stereo camera for providing stereo vision, to the user, we
re-trained Thundernet architecture with images composed of two copies of the same
images resulting in a 640 × 480 image, to replicate stereo vision. For more details,
please refer to [15].

4.3.3. End to End System

The final E2E setup is depicted in Fig. 4.5. The principal data flow of the E2E
architecture is the following:

1. Stereo camera frame capture: As we have already described, the VR
client runs Unity and is in charge of obtaining individual frames from the
stereo camera video feed. The individual frames are moved to the underlying
C++ plugin running our offloading architecture.

2. Transmit stereo color frame to server: The offloading architecture, via
Alga, is in charge of packing each frame and transmit them via TCP through
an arbitrary topic. The segmentation server, runs another instance of Alga
and receives the frames through the same topic.

3. Egocentric body segmentation: The server then infers the segmentation
mask for each received frames.

4. Transmit result back to VR client: The mask is transmitted back to the
VR client via Alga, through another arbitrary topic.

5. Shader application on rendering frames: Finally, the client applies the
received masks to the custom shader attached to the rendering frames. The
shader is in charge of rendering exclusively the stereo camera pixels corre-
sponding to the user’s body according to the received mask.
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4.3.4. Hardware Setup

The egocentric segmentation server was running on a PC with an Intel Xeon ES-
2620 V4 @ 2.1Ghz with 32 GB of RAM and powered with 2 GPU GTX-1080 Ti
with 12GB RAM each. On the VR client side, we considered two modalities:

• Standalone Mode: The immersive scene is running directly on the Meta Quest
2 HMD, to which the stereo camera is directly connected.

• Tethered Mode: The immersive scene runs on a workstation to which a Meta
Quest 2 is connected via an USB-C cable using the "Link" mode. The stereo
camera is connected to the workstation. In this case the client workstation
includes an Intel Core i7-11800H and a Nvidia Geforce RTX 3070 GPU.

We used Unity version 2019.3 on the client side, where the stereo frames are
captured at a resolution of 1280x480. For the validation experiments we used a
Netgear R6400 router, providing symmetric wireless 200 Mbps when a single user is
connected [30].

4.4. Performance Evaluation

The proposed offloading architecture has been thoroughly benchmarked in terms of
throughput and latency in multiple relevant scenarios and wireless technologies[30].
We decided to extend the benchmark by testing the architecture on the final E2E
system. To obtain the following results we used the exact hardware setup described
in Section 4.3.4.

4.4.1. Offloading Architecture and Video Pass Through

We first aim to evaluate the performance of our offloading architecture alone in the
following setups:

• Wireless Scenario: Meta Quest 2 in Standalone mode using WiFi. We want
to understand how the implemented system behaves on a device with limited
computing resources.

• Tethered Scenario: Meta Quest 2 connected to a workstation. In this case
the system has considerably higher computing resources. The workstation is
connected to the server via an ethernet cable, with a 1 Gbps interface.

In this first round of experiments, we removed the segmentation algorithm from
the server, directly transmitting back to the client a single channel 8-bit mask of
the incoming frame. This mask is obtained using a chroma-key algorithm which
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Table 4.1: Performance evaluation results for the tethered and wireless scenarios
along with the server processing times.

Tethered Wireless Server
Mean 7.37 ms 10.39 ms 16.7 ms

Variance 14.37 ms 19.38 ms 0.006 ms
95-th Perc. 14.0 ms 18.0 ms 31.2 ms

adds a negligible overhead on the server side. For each scenario, we repeated a set
of 4 experiments each transmitting 1000 frames. No other users are connected to
the router. We store the times that each frame takes from the moment it is loaded
in memory on the client side to when the final mask is received from the server on
the client side. The initial results are shown in the first two columns of Table. 4.1.
Our E2E setup provides mean round trip times of 7.37 and 10.30 milliseconds on
tethered and wireless scenarios respectively, with confidence intervals below 20 ms
in both cases.

4.4.2. Segmentation Server

In this case, the goal is to measure the total time consumed by the server in perform-
ing all the necessary steps for a frame: reception, necessary transformations such as
scaling, and inference. Similarly to the previous set of experiments, we carried out
4 experiments each processing 1000 frames. We obtained a mean time of 16.7 ms,
as shown in Table 4.1, which guarantees an update rate of 60 Hz, complying with
MR applications real-time requirements.

4.4.3. End to End System

Finally, by aggregating the results obtained in the previous two experiments we
obtained E2E mean RTTs of 29.67 ms and 32.29 ms. This latency is low enough to
allow the use of delay buffers to ensure a proper alignment of the color frame and
masks, as described above.

Delay buffers

As the obtained RTTs values are higher than the device’s update period of 16 ms,
the hand pixels appear to be misaligned with respect to the segmentation mask. The
misalignment comes from the fact that the segmentation mask arrives to the VR
client an average of 32.29 ms later than its corresponding stereo pixels are loaded in
memory and rendered. The feeling is as if the mask follows the actual hand. This
artifact, shown in Fig. 4.6, affects the overall experience and must me removed.
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Figure 4.6: Left: Mask-color pixels alignment observed when no delay buffer is used.
Right: alignment achieved using the delay buffer.

To overcome this issue, we decided to add a frame buffer of an arbitrary size
according to the update rate of the camera and the measured mean RTT (32.29
ms). By doing this we overcome the artifacts generated by the system’s added delays,
ensuring the mask and its corresponding stereo pixels to be rendered simultaneously.
Notice that the size in time of this delay buffer must be added to the alignment buffer
described in Section 4.3.1.

4.5. Conclusions

In this chapter, we have thoroughly described the state of the art of user repre-
sentation for MR applications, including a wide range of solutions such as realistic
full-body avatars, virtual hands only, or video-based full-body representation. We
have highlighted their advantages and disadvantages, focusing specially on the users
perception of presence and embodiment. Besides, we reviewed specific state of the
art implementations of video-based egocentric segmentation solutions for MR appli-
cations, highlighting the need of a more accurate and fast segmentation algorithm.
To the best of our knowledge, we could not find any E2E implementation which al-
lows the usage of deep learning based segmentation solutions on commercial wireless
VR devices.

Furthermore, we have presented our E2E system which provides full body video-
based self-avatar user representation for MR applications. The E2E can be divided
in three different modules: video pass-through solution for the Meta Quest 2, our
real-time egocentric body segmentation algorithm, and our optimized offloading
architecture. All the different components and implementation details have been
described in detail.

Our implementation allows to run the proposed segmentation algorithm in real-
time on a commercial VR device, the Meta Quest 2. We achieved round trip times
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below 11 ms over WiFi if no algorithm is running on the server. Consequently, the
system allows to use other computationally demanding solutions on standalone VR
devices such as object tracking or camera-based full body tracking, extending the
current boundaries of MR solutions and applications.

The full E2E results showed the implementation’s capability to fulfil the real-
time requirements, providing update rates above 60 Hz using WiFi and running the
egocentric human segmentation algorithm. Finally we described our delay-correction
buffers to overcome the round trip latencies above the update rate of 60 Hz ensuring
an accurate alignment between the color and received mask frames.
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Chapter 5

FikoRE: 5G and Beyond RAN Emulator for Ap-
plication Level Experimentation and Prototyping

A fast development of XR technologies and other 5G use cases demands accessible
and simple-to-use 5G testbeds. The network requirements that these applications
impose, described in Chapter 2, demand a thorough design of the resource allocation
techniques, including network slicing and user prioritization. Besides, the network
needs to dynamically adapt to the particular applications, based on QoE metrics, by
communicating required QoS indicators using 5G QoS Identifiers (5QI). However,
some specific 5G deployments and configurations are still not available for many
application developers and researchers, which can potentially hinder the fast de-
velopment not only of distributed XR implementations, but other ground-breaking
technologies.

One feasible solution to accelerate the development of advanced technologies,
such as distributed XR, is to use RAN simulators, allowing application developers
to test the performance of their solutions under different network setups and con-
figurations. However, and to the best of our knowledge, there is no 5G emulator
available that is capable of handling actual IP traffic above 1 Gbps from multiple
IP sources, while simulating hundreds of virtual UEs, and modelling advanced 5G
deployments’ behaviour with sufficient accuracy, as described in Section 5.1. These
requirements are crucial for an emulated 5G testbed to be broadly used by applica-
tion developers of demanding use cases, such as XR offloading or the Metaverse.

In this chapter we present FikoRE (Framework for Immersive communication
networK Optimization RAN Emulator), an open-source [26] RAN emulator targeting
to lower the entry barrier for application layer researchers to test their real-time
solutions in a realistic RAN deployment. FikoRE, implemented in C++, is capable
of handling high throughput (above 1 Gbps) real IP traffic allowing researchers to
directly test advanced and demanding use cases such as XR offloading. Besides, due
to the thoughtful modelling assumptions that have been made, FikoRE achieves a
high scalability level supporting hundreds of UEs in real-time, regardless of their
target throughputs, while realistically emulating an advanced 5G setup as we prove
in a set of validation experiments. Furthermore, FikoRE has already been tested on
a realistic Free-Viewport Video streaming application, as described in Section 5.4.
These characteristics and validation experiments allows the potential consideration
of FikoRE as a reference testbed for wireless XR applications and other demanding
novel use cases.
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5.1. State of the Art of 5G RAN Emulation

There are many RAN simulators in the state-of-the-art widely used in research and
industry. Vienna Simulator [22] and NS-3[102] are two of the most well-known
examples. Another interesting example is Matlab 5G Toolbox [103], a very useful
tool for telecommunications researchers as the flexibility provided by Matlab allows
them to rapidly test their own models or algorithms. Finally, 5G-LENA [104] is a
popular 5G simulator with end-to-end simulation capabilities. It is designed as a
plugged module for NS-3.

More interesting for our purpose are the system level RAN emulators, capable of
handling actual IP traffic while simulating, in real-time, a specific RAN technology.
There are multiple RAN emulators in the state-of-the-art, some of them included as
an available functionality in the aforementioned simulators, as in NS-3[22]. However,
the scalability in terms of throughput and simultaneous UEs is too limited [105] to be
used as an emulator for novel 5G use cases. A relevant effort is the OpenAirInterface
(OAI) 5G-RAN [23] simulation module, which has real-time emulation capabilities.
Similarly, its scalability limitation, requiring more than 20 GB of memory to emulate
100 UEs in real time, discards it as a potential 5G testbed for advanced XR use cases.

Finally, we can mention Simu5G [24], which has proven to achieve real-time
performance while handling actual IP traffic and emulating a full end-to-end, multi-
user and multi-gNB 5G setup. However, its real-time performance cannot support
high throughput. It is limited to less than 2 Mbps of actual IP traffic, hindering
Simu5G to become a relevant testbed for wireless XR testing and prototyping.

There are relevant 5G emulators commercially available, such as the ones from
Polaris [106] and Keysight [107], but they are specially focused on testing 5G equip-
ment rather than potential applications.

From the brief analysis of 5G RAN emulation and simulation tools available
in the state of the art, we can conclude that FikoRE can potentially become the
reference platform for advanced 5G use cases prototyping and development.

5.2. FikoRE Structure

We have organized FikoRE in 3 main modules:

• Traffic Capture/Generator (TC/TG): it (a) generates virtual traffic, ac-
cording to the user-selected TG model, it (b) parses actual IP traces to gener-
ate realistic virtual traffic or it (c) captures actual IP traffic coming from an
arbitrary set of ports.

• MAC Layer: it handles the resource allocation step, implemented as an
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Figure 5.1: Simplified information flow between FikoRE’s main modules.

abstraction of the details described in 3GPP 38.214 [108], 3GPP 38.211 [109]
and 3GPP 38.306 [51] specifications.

• User Equipment (UE): it models a single UE, including its position estima-
tion, according to a user-selected mobility model, channel quality estimation,
and packet handling. The main modules included in each emulated UE are:

– Radio Link Control and Packet Data Convergence Protocol
Layer: it models the behavior of the Radio Link Control (RLC) and
Packet Data Convergence Protocol (PDCP) layers with a high abstrac-
tion level.

– PHY Layer: it models the main channel quality measure-
ments, such as the Signal to Noise and Interference Ratio (SINR),
Reference Signal Received Power (RSRP), HARQ retransmissions proba-
bilities, etc. The models implemented in this layer are described in 3GPP
38.901 [110].

These modules are instantiated for each transmission direction: UL and DL. The
overall data flow, depicted in Fig. 5.1, can be summarized as:

1. Each emulated UE’s IP traffic is generated or captured by its own TG module.
The packets are sent to the RLC/PDCP layer where they are queued in the
IP buffer.

2. The PDCP/RLC layer indicates to the MAC layer how many bits are available
for transmission for each UE via Scheduling Request (SR).

3. With this information along with each UE’s emulated
Channel State Information (CSI), estimated by the PHY layer module,
the MAC layer allocates frequency and time resources to each UE.
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4. The PDCP/RLC layer, according to the allocated resources by the MAC layer,
segments the IP packets into smaller blocks.

5. Using the emulated CSIs, the PHY layer module determines the transmission
latency and HARQ retransmission probabilities of each block.

6. If the block must be retransmitted, it is moved to the correspondent HARQ
queue to be allocated again.

7. Finally, when the block is successfully transmitted it is moved back to the
RLC/PDCP layer module, where the integrity and ordering of the full IP
packets are checked.

8. Successful IP packets are then released. Corrupted or lost IP packets are
dropped.

The described steps run once every 1 millisecond. This deadline is strict and must be
met to allow a proper synchronization between actual IP traffic and the emulator’s
behaviour.

5.2.1. Traffic Capture and Generation

The Traffic Generator (TG) module is used for simulated UEs which are not linked
with any actual IP traffic. It periodically creates virtual IP packets for both uplink
and downlink transmission directions. There is a TG instance in each UE, handling
both UL and DL traffic. FikoRE implements two TG options:

• Simple Traffic Model: generates, in each time step, as many packets of an
arbitrary size as necessary to fulfil a given arbitrary mean throughput goal.
The user can freely select the target UL and DL throughputs, and the size of
the simulated IP packets.

• IP Traffic Traces: parses a specially formatted text file which stores a sim-
plified version of IP traces captured by specific software such as Wireshark.
Each line corresponds to an IP packet’s timestamp and payload in bytes. This
functionality allows to add virtual UEs to the emulation session which are
demanding realistic traffic (such as XR offloading) to the network.

For UEs handling actual IP traffic, the TG is replaced by a Traffic Capture (TC)
module, which incorporates Netfilter Queues (NQ) [111] library. NQ is a Linux user
space API which provides access to packets that have been queued by the firewall.
To filter packets coming from or to specific ports or addresses, the adequate firewall
rules must be set by the user, as described in [26]. Each emulated UE linked to
actual IP traffic have two queues assigned: for UL and DL directions. These queues
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IDs are provided to the TC module as a configuration parameter. FikoRE interfaces
with NQ assigning a callback to each of the UE’s queues, which receives each IP
packet’s ID and size. This information, along with the callback timestamp is used
to create virtual IP packets identical to the ones generated by the TG module. The
received packet’s ID can be used via NQ to drop or release the associated actual IP
packet.

5.2.2. MAC Layer

Tuning, improving or even re-designing the resource allocation step handled by
the MAC layer can enhance the network performance enabling novel use cases or
applications. Our goal is to provide a representative yet simple to configure and
modify MAC layer module.

This module implements a sufficiently detailed abstraction of the resource allo-
cation procedures described in 3GPP 38.214 [108] and 3GPP 38.211 [109] specifi-
cations. More specifically, a Resource Allocation Grid is built by the emulator for
each transmission direction (UL and DL), according to the user-selected parameters,
such as the bandwidth and numerology. The smallest isolated resource unit han-
dled by our implementation is a Resource Block (RB), containing 12 subcarriers in
frequency and 14 OFDM symbols, in Resource Block Groups (RBGs), as described
in the specifications.

The goal of the resource allocation step is to optimally assign these RBs/RBGs
to the available UEs according to a selectable metric, estimated in each timestep
for each UE and RB/RBG pair. The current version of the emulator implements
well-known metrics, as described in [112], such as First-In-First-Out (FIFO), Pro-
portional Fair (PF), Blind Equal Throughput (BET) and Maximum Throughput
(MT).

We have implemented a simple user prioritization scheme in which each UE can
be configured with a different level of prioritization (5QIs). This feature is key in
scenarios in which extremely demanding applications, such as XR offloading [28][30],
share network resources with other UEs.

The MAC layer module also determines which modulation and coding rate is
used for each UE and RB/RBG according to the Channel Quality Indicator (CQI)
index reported by the PHY layer module which is used to map a corresponding MCS
index. The MCS index, which represents the current channel quality of a specific
UE, is mapped to the modulation and coding rate according to the tables in 3GPP
38.214 [108]. The MCS index can be estimated for the entire bandwidth (wideband
mode) or for each sub-band, RBG/RB (sub-band mode), both supported by FikoRE.
The estimated modulation order and coding rates are then used to determine how
many bits can be transmitted in each RB/RBG to the assigned UE. We used the
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following formula slightly modified from 3GPP 38.306 [51]:

bits = ν ·Qm · f ·R ·N sc ·B · (1−OH) (5.1)

where ν is the number of used Multiple Input Multiple Output (MIMO) layers,
Qm is the modulation order, f is the scaling factor (configuration parameter), N sc is
the number of subcarriers in an RB/RBG, and OH is the estimated overhead whose
possible values are given in the 3GPP 38.306 [51] specification. B is a parameter
we used to handle TDD. It represents how many OFDM symbols, estimated by the
TDD module, are granted for DL or UL transmission in the evaluated RB/RBG. If
Frequency Division Duplex (FDD) is selected, then B is always the maximum num-
ber of OFDM symbols within the RB/RBG. Then, a Transport Block Size (TBS) is
estimated for each UE-RB/RBG pair, according to 3GPP 38.306 [51]. This number
of bits are requested to the RLC/PDCP layer, which segments the IP packets in
blocks accordingly.

Contrarily to other emulators such as Simu5G [24] the resource allocation steps
are done every 1 millisecond instead of every Transmission Time Interval (TTI) or
slot. We assume that the estimated channel quality is invariant along the 1 millisec-
ond sub-frame and perform the resource allocation step along all the slots within the
sub-frame accordingly. While our simplification implies a decreased modelling accu-
racy in the cases in which the UEs move sufficiently fast (coherence time is smaller
than 1 millisecond), it considerably reduces the processing overhead increasing the
overall scalability.

5.2.3. User Equipment

The UE module models the individual UEs connected to the emulated gNB. In each
timestep, the UE module is designed to:

1. Generate Traffic: using the TG model or from the incoming real IP traffic.

2. Update its Position: according to the selected mobility model: random
walk, waypoint and Manhattan.

3. Estimate its CSIs: using the PHY Layer module which implements the
models from the 3GPP 38.901 [110].

4. Handle Packets: the packets are handled by the UE’s RLC/PDCP module
and can be queued, depending on several emulated metrics, in 3 different
buffers: IP, HARQ and Packet Release buffers.

The main procedures of the UE module are handled by the following main modules:
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User Equipment: RLC/PCDP Layer

The RLC/PDCP layer represents a simple abstraction of all the higher layer lev-
els within the full stack of 5G and beyond networks. There is an instance of the
RLC/PDCP layer in each UE instance. This module queues all the IP packets (real
and simulated) from each UE. Via a SR, the RLC/PDCP layer communicates to the
MAC layer how many bits are ready for transmission for each UE. When a slot is al-
located to an UE by the MAC layer, the RLC/PDCP layer splits the IP packets into
smaller blocks (if necessary) of the estimated TBS. These blocks are retransmitted
according to a simple HARQ retransmission probability expression as:

p(NACK) = (1− (1− fBLER(γ))ntx) · rntx (5.2)

where fBLER(γ) estimates the Block Error Rate (BLER) given the SINR γ in the
time step when the packet was originally transmitted, ntx is the number of times
the evaluated packet was already retransmitted, and r is the HARQ error reduction
factor left as a configuration parameter. If there is retransmission, the packet is
moved to the HARQ buffer. Otherwise, it is moved to the Packet Release buffer.
These time deadline for these packets to be released from both buffers are estimated
according to the PHY layer air transmission delays, HARQ ACK/NACK period,
and other modelled or selectable processing delays. There is one instance of the IP,
HARQ and Packet Release buffers for each transmission direction (UL/DL) within
each UE.

The Packet Release buffer also implements packet re-ordering capabilities as an
actual RLC layer. Besides, it also checks the integrity of full IP packets: if one block
from an IP packet is dropped (maximum number of retransmissions is reached) then
the entire IP packet is dropped.

User Equipment: PHY Layer

The PHY layer models the most relevant channel quality metrics estimation: SINR,
RSRP, MCS, among others. These metrics are used by the MAC layer for performing
the resource allocation step. The key metric, from which all the others are derived
is the SINR. We calculate the SINR from the Received Signal Power (RSP), and the
measured noise and interference. To estimate the RSP, we model the macroscopic
fading which includes the Line of Sight (LOS) probability, Pathloss and Shadowing
attenuation using the models described in 3GPP 38.901 [110] specification, given
for 6 different outdoor and indoor scenarios. Besides, we also model the Rayleigh
Fading as the module of uncorrelated zero mean gaussian random variables. Both
the microscopic (Rayleigh) and macroscopic fading are modelled according to the
UE’s velocity and doppler law, coherence bandwidth and correlation distance, the
latter estimated according to 3GPP 38.901 [110]. Other constant values are required
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Figure 5.2: PHY Layer module’s simplified data flow.

but are left as configuration parameters for the user: transmission and reception
antenna gains, and the transmission power.

To allow the concurrent emulation of multiple UEs, we need to reduce FikoRE’s
computation overhead as much as possible. Therefore, the noise and interference
are modelled at the beginning of the emulation session and left constant. While the
noise is given as a configuration parameter, the interference is modelled using the
same RSP models as described before but applied to other background gNBs and
UEs sufficiently close to the simulated gNB and UEs. These background gNBs and
UEs are only considered for the precomputation of the interference. The number
and distance of the interfering gNBs and UEs, and their base frequencies and other
basic configuration are left as configuration parameters.

Once the noise, interference and RSP are modelled, the SINR can be directly
calculated. The SINR is reported as a linear average of each RB SINR values. The
bandwidth size of each SINR report depends on the arbitrary CSI report configu-
ration parameters. The SINR is used to estimate the MCS index for each UE and
RB/RBG. To obtain the SINR-MCS relations, we performed link level simulations
using Matlab, obtaining a set of SINR-BLER curves for each MCS. These curves are
estimated for different configurations according to the maximum number of MIMO
layers and number of RB per RBG.

Finally, we have the Rank Indicator Model which determines if the signals re-
ceived in each antenna of the UE or gNB are sufficiently uncorrelated, so that several
MIMO layers can be used. As we are not estimating any correlation matrices, we
proposed a simple model where the total transmission power is constant for a given
UE or gNB and is uniformly divided among each antenna used for MIMO transmis-
sion. Consequently, we can estimate for each number of MIMO layers the threshold
SINR values for each extra added MIMO layer from which it is more efficient to
use an extra layer in terms of data rate. We built a simple look-up table with this
information. The overall data flow of the PHY layer module is depicted in Fig. 5.2.
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5.2.4. Multithreading and Real-time Discrete Emulation

FikoRE has been designed as a multi-threaded emulator to expand its scalability as
much as possible. As a real-time discrete emulator handling actual IP traffic, all the
threads must be well synchronized. FikoRE has two main processes which have to
run one after the other: MAC Layer resource allocation and UE handling. The first
process consists of two threads, one for each transmission direction (UL and DL).
In the second case, each UE is running in a separated thread. We implemented a
custom threading agent which launches the MAC layer threads, waits for them to
join, and then launches the UE’s threads. When all the UE’s threads have joined,
the main timing module idles until the 1 millisecond deadline is met to run the next
time step, launching the MAC layer threads. If, for the selected configuration or
hardware limitations, each time step cannot be processed in less than a millisecond,
the emulator user is notified, and the emulation aborted.

5.3. Validation Experiments

We performed a set of experiments to validate and show FikoRE’s models and
performance. To ensure repeatability, the different stochastic distributions’ seed is
fixed along the experiments. We also assumed that all the UEs were in LOS with
the gNB.

5.3.1. MCS-Throughput Validation

The first experiment targets to validate all the layers but the PHY layer: we want to
study if the mapping between the reported MCS and measured application through-
put is comparable to the one measured in a real deployment. For this, we took
several measurements on an actual mmW 5G outdoors deployment. We used iperf3
to continuously transmit IP packets to an iperf3 server running on a nearby MEC
server. We used an Askey RTL6305 modem to wirelessly connect our laptop to the
mmW gNB. We continuously logged the MAC layer level DL throughput and the
associated MCS index. These pairs of MAC layer throughput and indexes were com-
pared to the ones obtained by FikoRE. Both the emulator and actual mmW setup
were running on the 26.5 GHz frequency band, for a total of 800 MHz of bandwidth
separated in 8 carriers. All the carriers were configured with 4DL:1UL TDD config-
uration. In both cases, only one UE is connected to the gNB. We emulate a scenario
in which the UE slowly moves away from the gNB to obtain all the possible MCS
values. The results comparison is shown in Fig. 5.3. We can observe how in most of
the cases the mean throughput difference between the actual and emulated cases is
low, showing a final average error smaller than a 5.3%. We can observe how lower
MCS indexes show proportionally larger throughput differences than the mid and
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Figure 5.3: MCS index versus measured mean throughput per RB for actual mea-
surements on a mmW setup (blue) and simulated values(red).

high indexes.

5.3.2. Allocation Metrics

The resource allocation metrics estimation of the MAC layer is also a key step as
the selected or implemented metric directly affects the overall performance for par-
ticular applications. In [113] the authors test, on the Vienna Simulator [22], how the
application layer throughput is affected by the selected metric for a fixed number
of connected UE. To validate our metrics and resource allocation step implemen-
tation we decided to repeat the experiment using our emulator. We tested two
different setups: 3.5 GHz frequency band with 10 MHz of DL bandwidth as in [28]
(Configuration A) and 26.5 GHz frequency band with 400 MHz of DL bandwidth
(Configuration B). We tested our implementation of the FIFO, PF, BET and MT
metrics. To be able to compare our results with the ones obtained in [113], we con-
figured FikoRE to simulate 20 full-buffer UEs. The results obtained are depicted in
Fig. 5.4. We can directly compare configuration A results to the ones obtained in
[113], showing to be almost identical. Being the Vienna Simulator, a widely recog-
nized RAN simulator, this comparison itself can serve as a validation of our metric
estimation and resource allocation implementation.
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Metric Type

Figure 5.4: Throughput values obtained using different metric types and 20 simu-
lated users. In red: mmW frequency band. In blue: 3.5 GHz frequency band.

5.3.3. User Prioritization

Our next target is to test how FikoRE handles actual IP traffic when multiple con-
current simulated UEs share resources from the same emulated network. Besides, we
also aim to test how the selected user prioritization level affects the traffic of the pri-
oritized UE (actual IP traffic in this case). In this experiment, we run the emulator
configured on the 3.5 GHz frequency band and 40 MHz of DL bandwidth, using the
PF metric. For injecting actual IP traffic, we used iperf3 with a target throughput
higher than the maximum that can be provided by the available bandwidth to make
sure the associated UE is receiving the maximum possible throughput given the
emulated network setup. We repeat the experiments with a different prioritization
level each time: no prioritization, medium, high and maximum prioritization. The
other simulated UEs are in all cases set to low priority.

We repeated the same experiments for both TCP and UDP traffic. The number
of simulated UEs ranged from 10 to 250. The simulated UEs are demanding 5
Mbps from the network, which corresponds to a user watching a high-definition
online video. The results of the measured mean DL throughput for the actual
IP traffic UE are shown in Fig. 5.5. As expected, the measured transmitted DL
throughput rapidly decays as the number of simulated UEs grows in the medium and
no prioritization cases. We can observe the importance of user prioritization when
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Figure 5.5: Emulated throughput for a user handling real IP data and sharing
resources with other simulated UEs. Different UE prioritization levels are used for
the real IP traffic UEs.

particular UEs must sustain a minimum network quality, such as in XR offloading
[30]. When the UE is sufficiently prioritized, the measured throughput decreases at
a much lower rate, sustaining high throughputs even when many UEs are demanding
network resources. With this experiment we showcase not only FikoRE’s capacity to
simulate multiple UEs while handling actual IP traffic in real time, but also highlight
the importance of user prioritization allocation techniques to ensure sufficient quality
of service for advanced use cases.

5.3.4. XR Traffic Use Case

In the following experiment, we evaluate FikoRE’s performance when actual XR
IP traffic is handled while simulating multiple concurrent UEs. In this setup, one
UE is handling actual XR IP traffic captured by the emulator via Netfilter. The
experiment is identical as the previous one, but using actual XR traffic. FikoRE
simulates multiple concurrent UEs transmitting 5 Mbps UL and DL of synthetic
simulated video traffic. The emulated XR UE is placed at different distances to the
gNB in each experiment, while the other simulated UEs are placed randomly at a
distance between 100 and 1500 meters from the gNB. To ensure repeatability, the
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Figure 5.6: Emulated throughput for a user handling real IP data and sharing
resources with other simulated UEs. Different UEs prioritization levels are used for
the real IP traffic UE.

same random generator seed is used across experiments.

The XR IP traffic is generated using the XR setup used to generate the traffic
models described in [34], for the full offloading scenario with medium resolution on
the UL and 72 Hz 4K resolution on the DL. The mean throughput corresponds
to around 41 Mbps and 119 Mbps for the UL and DL streams respectively. More
details on how to test XR solutions with the emulator are described in [26].

In this experiment, we run the emulator configured on the 26.5 GHz frequency
band and 200 MHz to ensure sufficient throughput for multiple UEs. The TDD
configuration used ensures a balanced number of UL and DL slots. We used PF as
the allocation metric. We repeat the experiments with a different number of UEs,
between 0 and 100, and prioritization levels: no prioritization, medium, and high.
The other simulated non-immersive UEs are in all cases set to low priority. The
results of the measured round-trip times (RTT) for the actual IP traffic UE, with a
server just transmitting the DL rendered frames without processing the UL frames,
are shown in Fig. 5.6. As expected, the measured RTTs increase with the distance
and the increment is proportional to the number of UEs.

We can also observe, as in the previous experiment, the strong effect of the pri-
oritization values, decreasing the total RTT in more than a half. We can observe
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Figure 5.7: Number of simultaneous UEs that FikoRE can handle in real-time un-
der different network configurations. In orange, the real-time total processing time
deadline.

the importance of user prioritization when particular UEs must sustain a minimum
network quality as in XR offloading. When the UE is sufficiently prioritized, the
measured RTT decreases at a lower rate even when many UEs are demanding net-
work resources. As in the previous experiment, we can observe how crucial these
user prioritization techniques become for very demanding use cases such as XR and
the Metaverse.

5.3.5. Performance Evaluation

We tested the number of simultaneous UEs that FikoRE can handle while meeting
the 1 millisecond deadline in different network configurations, using laptop includ-
ing an Intel Core i7-11800H with 16 GB of RAM memory. We tested 3 different
bandwidth sizes (40, 100, 800 MHz), frequency bands (3.5 and 26.5 GHz) and RB
grouping (type 2 or no grouping, type 0 or frequency grouping, or both frequency
and time grouping). Each experiment run for 20 seconds of simulation time. We
depict the actual runtime in Fig. 5.7 for the different combinations. We can observe
that our thoughtful design and simplified assumptions allow FikoRE to handle be-
tween 100 and 1600 UEs depending on the configuration. Note that, contrarily to
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Figure 5.8: Schematic representation of the used FVV Live solution. In green, the
control stream. In red, the raw depth and RGB streams. In blue, the rendered
view. The main modules of the FVV are numbered as: i) Acquisition, ii) Virtual
view computation, and iii) Virtual camera control module.

[24], we do not distinguish between background and foreground UEs, and all the
UEs behave identically, which imposes higher computation requirements but more
useful emulations.

We also tested the maximum actual IP traffic our emulator is able to handle in
real-time. With a sufficiently high bandwidth, we achieved a maximum throughput
of 6.5 Gbps of Iperf traffic, much higher that well-stablished state-of-the-art RAN
emulators (< 10 Mbps). We also tested the logging overhead in multiple scenarios,
for a logging frequency of 100 Hz. We measured a mean overhead of less than 5%
of the total timestep runtime.

5.4. Advanced Use Case: Free Viewpoint Video Distribution
over Emulated 5G

Free Viewpoint Video (FVV) is a technology that allows the user to freely navigate
a scene selecting an arbitrary path at any moment, all around the scene. FVV’s
tight requirements in terms of throughput and latency demand the use of advanced
wireless network such as 5G.

In this test case scenario, we focus on the production and streaming of live
FVV services through FikoRE’s emulated 5G networks. The proposed FVV system,
FVV Live[114], is a real-time, end-to-end FVV system based on consumer electronics
Stereolabs ZED cameras. The general architecture of FVV Live, depicted in Fig.
5.8, can be divided in three main modules:

• Acquisition Module consisting of three capture servers, each one of them
managing a set of three ZED cameras. All cameras perform the capture of
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the scene on a synchronized way and deliver several RGB+D(epth) streams
that are post-processed, encoded and transmitted over RTP. The RGB data
is processed in a two stage chain that involves lossy encoding and RTP trans-
mission. On the other hand, depth data post-processing implies the following
stages: i) depth correction, ii) 12-bit quantization, iii) bit re-arrangement to
fit the 12-bit depth map on a 8-bit YUV 4:2:0 frame (8 bits for Y + 4 bits for
U and V) and iv) lossless encoding + RTP transmission.

• Virtual View Rendering Module comprising a view rendering server that
performs the view synthesis computation according to the virtual camera po-
sition chosen by the operator through the control console. The input is the
RGB+D video streaming and the control messages which indicate the desired
position of the synthesized view. The synthesized virtual view is encoded and
RTP transmitted to a control module, in which the user can monitor it and
dynamically select the target view.

• Control Module used by an individual user or by an operator in a production
setup to visualize the synthesized stream and dynamically change its position.

FVV Live has already been integrated with a real 5G Non Stand Alone (NSA) 3x
RAN, as described in [115]. On these first field tests, the authors realized that the
current development level of 5G mmW technologies cannot reach its full potential
yet due to limitations of the configuration parameters, considerably hindering the
distributed implementation of an advanced FVV system.

Our target is to analyze the performance of the proposed FVV Live implemen-
tation on a fully developed version of 5G mmW technologies emulated by FikoRE.
The end goal is not only to validate FikoRE, but to learn how to improve and adapt
our FVV approaches to advanced 5G deployments.

5.4.1. Experimental Setup

In the current experimental setup, cameras are connected to capture servers over a
USB 3.0 link and capture servers are wired to the rendering server by an Ethernet
link. To simplify and accelerate the experimentation process, a camera simulation
module is used so the system is able to transmit prerecorded RGB+D streams. This
module makes it convenient to run all kind of tests without having to physically
deploy cameras.

The setup chosen to perform the experiments is shown in Fig. 5.9. The cam-
era simulator module runs on a separated machine streaming 9 synchronized pre-
recorded RGB+D feeds over 9 different ports. The camera simulator machine is
connected to the rendering server using an Ethernet connection. The rendering
server is running FikoRE, which centralizes all communications between camera
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Figure 5.9: Architecture of the system used to perform the simulations. Main
modules are the camera simulator, the 5G emulator, the view render and the control
console.

simulator, view render and control console, so every packet is processed according
the configured 5G emulation rules. The rendering server computes the synthetic
view according to the virtual camera position chosen by the operator using the con-
trol console. The resulting view is encoded and transmitted back to the control
console. The control console is connected to the processing server through a wired
Ethernet connection.

Regarding the simulated video sequences, different resolutions and complexity
levels have been considered which result in different bit-rate demands mainly because
of the lossless encoding process of depth data. Two resolutions and frame-rates have
been considered (1080@30 fps and 720@30 fps) and three different scene complexities
have been defined: simple, medium and complex, where less scene complexity implies
less bit-rate requirements. Finally, FVV Live allows to choose different transmission
modes using all the 9 cameras or a subset of them according to the selected view,
reducing the bitrate.

Packet losses have been evaluated by transmitting several video sequences from
the camera simulator to the view renderer through FikoRE on different 5G config-
urations and measuring the packet error rate on the view renderer.

We also measured the Motion to Photon (M2P) latency, defined as the time
span between the instant the camera operator requests a view change (by sending
a control message to the virtual renderer) and the time when the new rendered
view is visualized on the control console. More details on the M2P measurement
methodology can be found in [114].

5.4.2. Scenarios and Results

Several tests have been carried out to evaluate the simulation capabilities of the
FikoRE and the performance of FVV Live over the 5G simulated network.
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Table 5.1: Average bit-rate and packet losses for both field test and emulation
scenarios

3 RGB+D 5 RGB+D
Simulation Field Test Simulation Field Test

Mbps % loss Mbps % loss Mbps % loss Mbps % loss
720 Simple 36.8 0 36.8 0 54.2 0 54.2 0
720 Medium 46.9 0 46.9 0 79.4 0 79.4 0
720 Complex 135.7 0 135.7 0.001 218.02 0.016 212.6 2.5
1080 Simple 165.7 0 165.7 0 - - - -
1080 Complex 259.0 30 >220 32 - - - -

Basic scenario

The first set of tests (basic scenario) recreates the real field deployment of FVV Live
running over Nokia’s 5G infrastructure, described in [115]. The aim of these tests is
mainly to assess the accuracy of FikoRE with measurements of a real deployment.
In [115], the network was configured with a 4DL:1UL for a total of 100 MHz. In
this scenario, the system can only make use of a total of 20 MHz for UL transmis-
sion. Hence, FikoRE is configured with identical bandwidth, TDD configuration,
frequency band (26.5 GHz), numerology and modulation order as in such deploy-
ment. No virtual users are created apart from the ones associated with the actual
cameras’ traffic the only ones being simulated by FikoRE. The scheduler used is the
well-known Proportional Fair.

The sequences transmitted vary on resolution (720p and 1080p) and complexity
(simple, medium and complex for 720p and simple and complex for 1080p). Also,
transmission modes with a subset of 3 and 5 RGB+D streams have been used. For
each configuration, a test has been carried out measuring the total output bit-rate,
the packet error rate and the M2P latency.

Table 5.1 shows the results for the simulations and the actual field tests [115]
respectively. Measurements obtained in the simulation match those of the field tests.
For UL rates over 200 Mbps, this basic configuration starts reaching its limits [115],
with the simulator setup being slightly more tolerant than the field results.

As we can see, for 720p, the simulated 5G network is able to manage all combina-
tions of complexities and number of RGB+D streams with zero or minimum packet
losses on the same range as the actual field tests results, except for the 720 complex
at 5 RGB+D streams that performs better on the simulation, in terms of packet
loss percentage. For 1080 simple at 3 RGB+D streams case, for both simulated and
actual field tests performs with minimum losses. On the other hand, the current 5G
configuration is not able to manage the 1080 complex sequence generating massive
packet losses.
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Table 5.2: M2P basic scenario results comparison

Test Average M2P (ms) Std Dev (ms)
Simulated test 221 62

Field test 279 67

Table 5.3: Packet losses for advanced scenario simulations

#added users %loss, no priority %loss, FVV priority
0 0.077 -
30 0.078 0.076
80 0.047 0.075
130 28.25 0.118
160 - 0.054
180 - +30

Additionally, M2P latency has been measured for this specific configuration,
using a 720 medium complexity sequence. Table 5.2 shows a comparison of both
scenarios, simulated and field tests. The difference between both measurements
could be due to the fact that in the field tests, the control console was connected
to the network using a LTE link while the simulated measurement considered a 5G
connection of the control console.

5.4.3. Advanced scenarios

These set of simulations have been carried out using a video sequence whose bit-
rate is not supported on the basic scenario (Section 5.4.2) so we can evaluate the
differences of the results on both cases and also the possible impact of the expected
future 5G networks over FVV Live. A scenario with 9 RGB+D streams, medium
complexity, 1080@30 fps sequence with an average bit-rate of 525 Mbps has been
selected. Although this sequence overloads the bit-rate capacity of the basic scenario
5G configuration, it is expected to be supported by the simulated advanced 5G
configurations.

In this scenario, we assume a fully developed mmW deployment, both from the

Table 5.4: M2P results for advanced scenario simulations

Test Average M2P (ms) Std (ms)
100 users, FVV priority 123 19
100 users, no priority 117 25

160 users, FVV priority 145 34
160 users, no priority 188 43
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UE and base station sides. Consequently, we have a similar emulator configuration
as the previous scenario, but with a total of 800 MHz available with 4DL:1UL
TDD, increasing the effective UL bandwidth up to 160 MHz. Moreover, to test
our implementation on a more realistic scenario, we decided to incorporate multiple
virtual users to the simulation, which consume resources from the RAN. Several
scenarios have been defined in terms of additional users added to the simulated 5G
radio link (0, 30, 80, 130, 160 and 180 additional users). The users are consuming
5 Mbps of UL traffic. Thus, we can evaluate the performance of FVV Live running
on a next generation 5G network, where the radio channel bandwidth is a shared
resource between FVV Live and other users. As the emulator incorporates user
prioritization capabilities, we decided to test our FVV Live implementation in two
different scenarios: i) users’ and FVV Live traffic have the same scheduling priority
assigned on the emulation run, and ii) FVV Live has the highest priority. Each
scenario has been tested using the 1080 medium complexity sequence (525 Mbps).
For M2P latency evaluation several tests have been carried out using a 1080 simple
sequence for different number of additional users (100 and 160 users) with and
without high priority for FVV Live.

Table 5.3 shows the results for packet error rate measurements. As it can be
seen, if all users have the same priority as FVV Live, the network manages the
transmission maintaining FVV Live under a very low percentage of packet losses
until the number of additional users reaches 130. At this point the high packet
losses makes it impossible for the view renderer to synthesize any virtual view. On
the other hand, if FVV Live priority is higher than other users’ priority, the system
is able to work under a very low packet losses percentage until the number of users
reaches 180.

Table 5.4 shows the results for M2P latency tests for different number of users
and different priority configurations. As it can be seen, for 100 additional users, the
M2P latency measurements are similar between the equal priority scenario and the
FVV Live prioritized one, because 100 users are not enough to saturate the network
resources so the priority policies are not necessary. On the contrary, for a higher
number of additional users it seems that the priority policy has a significant impact
on FVV Live M2P performance because more users imply less resources for each
user and thus, prioritized users get advantage on the bandwidth assignment over
non-prioritized users.

5.5. Conclusions

In this chapter, we have presented FikoRE, our RAN open-source real-time emulator
specifically designed for application-level experimentation and prototyping. The
main goal of FikoRE is to allow researchers and developers to test novel advanced
use cases with a special focus on high throughput solutions such as XR offloading.

77 Distributed Implementation of eXtended Reality Technologies over
5G Networks



CHAPTER 5. FIKORE: 5G AND BEYOND RAN EMULATOR FOR APPLICATION LEVEL
EXPERIMENTATION AND PROTOTYPING

After a thorough analysis of the state-of-the-art of Long Term Evolution (LTE)
or 5G emulation tools, we highlighted the gap of real-time RAN emulators capable
of handling enough throughput to test these demanding applications, being their
maximum throughput limited to below 10 Mbps in most of the cases.

We described in detail the different design decisions, models and architecture
implemented in our emulator, which makes it a great candidate to become an enabler
of novel use cases and technologies which cannot yet be tested on cutting edge
technologies such as 5G’s mmW frequency bands.

Besides, we have tested FikoRE in several scenarios to validate its different mod-
ules. We have first validated how well the MCS index to application layer through-
put mapping is achieved by FikoRE. We achieve this validation by comparing actual
mmW measurements with our emulated measurements. The scheduler implementa-
tion and resource allocation are validated by comparing our emulated results with
the results described in [28]. Furthermore, we have shown FikoRE’s actual IP traffic
handling capabilities while handling hundreds of simulated UEs. In this last set of
experiments, we have shown the importance of a well-designed user prioritization
approach for particularly demanding applications such as XR offloading.

We have also evaluated the overall performance of the emulator, showing how
FikoRE is capable of emulating between 100 and 1,600 UEs in real-time, depending
on the configuration. We have also tested its current actual IP traffic throughput
limits, reaching a maximum of 6.5 Gbps. These results indicate that FikoRE can
become a strong testing and emulation tool for the future of XR offloading solutions
and the Metaverse, among other demanding use cases.

Finally, we have tested FikoRE’s performance on a realistic Free Viewport Video
(FVV) production deployment. The goal of this validation experiment is to highlight
FikoRE’s capability to emulate advanced 5G configurations that are still not avail-
able. Besides, we also aim to compare FikoRE’s modelling capability by comparing
the proposed FVV system (FVV Live) performance on an actual and emulated
mmW deployment.

The proposed experiments included, first, the emulation of a real field end-to-end
deployment of FVV Live running over a real 5G network. The results were compared
to the measured metrics obtained on an actual 5G mmW deployment [115]. The re-
sults obtained from the comparison of both experiments were almost identical, which
served as a validation of FikoRE’s modelling accuracy. Second, simulations of ad-
vanced 5G configurations, that are not currently available for real deployments, have
been performed to evaluate its impact on FVV Live system in terms of packet losses
and M2P latency. This second experiment shows the advantages of using FikoRE to
rapidly evaluate the impact of future 5G technology on complex media production
systems, such as FVV Live, without the need for very complex deployments and for
hardware configurations that currently are not available.
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Chapter 6

IP Traffic Models for Advanced eXtended Reality
Offloading Scenarios

XR offloading is a complex task with extreme requirements in terms of latency
and throughput which requires a well designed and configured network, as described
in Chapter 2. Successful XR offloading deployments requires a continuous develop-
ment and improvement of the network, with a special focus on carefully designed
resource allocation algorithms. However, it is not trivial for developers or researchers
to have access to fully developed XR offloading implementations that can be used for
testing and evaluating novel algorithms or network configurations. The current trend
is to rely on pre-recorded or modelled traffic data, which is then fed to various sim-
ulation environments or actual wireless access network deployments. Pre-recorded
traffic data allows to use extremely realistic data with simple use case-agnostic tools,
such as tcpreplay 14. On the other hand, traffic models allow to generate longer traf-
fic traces while providing a greater flexibility than with pre-recorded traffic data.
Even though it is true that the traffic characteristics for each XR use case can be
very diverse, thus making it difficult to define a general purpose model, the access to
modelled or pre-recorded XR traffic data can considerably accelerate and simplify
the testing and prototyping steps.

A number of previous works deal with immersive multimedia applications’ traffic
capture and modeling or present ready-to-use models. Authors of [116] provide de-
tails on specific use cases employing augmented and virtual reality and how one can
approximately model their behaviors using the models from 5G-PPP [117], [118].
In [119], the authors modeled augmented reality downlink traffic using a classical
two-state Markovian process. In [120], a complete framework aimed to model XR
application is presented, alongside an accurate statistical analysis and an ad-hoc
traffic generator algorithm. Furthermore, the work carried out in [120] has been
exploited to create a VR traffic generator framework for the ns-3 simulator [121].
Authors of [122] model 3GPP-compliant traffic cases for next generation mobile
networks applications, which include advanced gaming, but no explicit AR/VR/XR
case is considered. Generally speaking, the previous works mostly focus on providing
models for the downlink traffic. However, as described in [28][29] and Chapter 2,
advanced XR technologies require multiple complex algorithms to run simultane-
ously to provide the user with sufficiently high level of interaction, immersiveness
and user experience. These algorithms, in many cases, require high-end hardware

14https://tcpreplay.appneta.com/
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and therefore, can be considered potential offloading candidates. They require to be
continuously fed with the sensor streams captured by the XR HMD, which can be
as heavy or more as ultra-realistic rendered frames, imposing strict requirements on
the uplink transmission. Aligned with this idea, 3GPP has recently included very
detailed traffic models for AR and XR in Release 17 [27], differentiated according
to the type of data streamed. While the considered VR use cases are still centered
only on distributed rendering solutions with a special focus on downlink traffic, the
AR traffic models also consider complex and heavy uplink traffic.

In this chapter, we provide realistic traffic traces and the associated models for
two separate state-of-the-art extended reality offloading scenarios, both for down-
link and uplink. Our goal is to complement and improve the models proposed in
[27]. First, the proposed scenarios, described in Section 6.1, complement the ones
described in [27]. Besides, we provide the raw data, which can be useful for many
researchers not only to use it as it is for simulation or prototyping purposes, but for
generating other models more suitable for their use. We also provide a set of XR
traffic models obtained for the traces. Differently from other models in the state of
the art, we also model the inter-packet arrival time, which, as we show in Section 6.6,
can be extremely relevant for XR offloading resource allocation algorithms design.

The proposed scenarios are based on the research achieved over the last years
and presented in previous chapters. The first scenario corresponds to ultra realistic
VR rendering offloading, presented in Chapter 2. The second one corresponds to
the egocentric body segmentation algorithm offloading scenario which end to end
implementation is described in Chapter 4. These offloading scenarios sit on the
very edge of the current state of the art. For this reason, we truly believe that our
contribution will provide valuable tools to design, test, improve or extend wireless
network solutions both in academia and industry. To our knowledge, this is the first
work that provides both an accurate traffic dataset and the validated models for the
mentioned use cases and applications. Our main contributions can be summarized
as:

• An XR offloading traffic dataset for two different relevant offloading scenarios,
captured for multiple streaming resolutions.

• XR traffic models obtained from the captured traces, including the inter-packet
arrival time models, not available in most of the models provided in the state
of the art.

• A thorough validation of the proposed models using a realistic 5G RAN em-
ulator, showing how an accurate inter-packet arrival time can considerably
improve the quality of the models for specific applications.
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6.1. XR Offloading Scenarios

Our goal is to capture a relevant IP traffic dataset for two demanding XR offloading
scenarios, that is, full XR offloading (Scenario A) and egocentric human segmen-
tation algorithm offloading (Scenario B). In Scenario A, described in chapter 2 all
the processing but the sensor capture is moved from the XR device to a nearby
server. Differently from [27], we consider the VR HMD to be a very light device
in charge of only capturing the sensor data. The sensor data are streamed to the
server, where they get processed. The sensor info is used to render a new high-
definition VR frame which is sent back to the device. This is a very relevant use
case for advanced and future networks, which can enable ultra-light and wearable
XR devices. In our case, we consider the sensor data to be generated by a stereo
camera feed and inertial sensors. The inertial sensors traffic can be neglected as its
associated throughput is much lower than the stereo camera feed throughput [28],
[29]. This is an extremely demanding use case as the round trip times should lay
below the frame update period, i.e., around 11 ms for a device running at 90 Hz.
While there are some techniques to slightly expand this time budget, such as XR
time warp [123], the latency requirements are still tight, especially for ultra-high
definition XR scenes rendering, encoding, and transmission.

Scenario B, described in Chapter 4, focuses on the particular case of egocen-
tric body segmentation [33], since this is a promising state-of-the-art solution for
XR applications. The upstream traffic includes the stereo camera traffic while the
server is sending back simple binary masks to the device in which the white pixels
correspond to the user’s body. The received masks are used by the XR device to
render only the pixels corresponding to the user’s body within the VR scene. While
still a demanding offloading use case, the overall requirements are much lower than
in Scenario A, since the downlink stream is just composed of single-channel binary
masks.

6.2. Offloading Architecture

Our offloading architecture, described in [30] and Section 6.2, relies on two main
agents to share data between different peers. On one hand, we have Alga, which
connects individual peers. On the other hand, we have Polyp, a data re-router and
replicator, in charge of transmitting the data from one source to one or multiple
listening peers. We implemented a publisher-subscriber approach based on topics.
When a client subscribes to a topic, Polyp is in charge of re-routing and replicating
all the data of the topic toward this client. Similarly, when a client publishes data
to a topic, Polyp ensures that these data are transmitted to all the peers subscribed
to this topic. Our architecture allows direct communication between end clients
without having to use Polyp. Polyp itself is a peer that can subscribe or publish to
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Figure 6.1: The proposed offloading architecture strategy and simplified data flow
for a general multi-peer scenario (top). Alga data flow for both TCP-JPEG and
RTP-H-264 implemented transmission pipelines (bottom).

a topic. Alga is in charge of creating all the necessary connections and transmitting
the data. The general representation of our architecture is depicted in Fig. 6.1.

The first version of this offloading architecture, implemented Alga using TCP
for IP traffic transmission. Besides, to efficiently avoid TCP disadvantages, we sent
each frame separately encoded in JPEG. This architecture served us to use our ML
egocentric body segmentation algorithm, running on a nearby server, with a com-
mercial XR HMD, the Meta Quest 2 15. However, joint JPEG encoding and TCP
transmission, while useful in many scenarios due to their associated reliability, as
described in [30], were not originally designed to support high throughput and low
latency. Therefore, we extended Alga’s functionality incorporating H.264 video en-
coding [31] and RTP (real-time transport protocol) over UDP transmission [32]. To
encode the sensor streams in H.264 and pack the data in RTP frames the architecture
uses GStreamer 16.

For traffic control reasons and to preserve compatibility with Polyp’s in-built
functionalities, we need to have control over the individual video frames and attach
the metadata associated with them, such as the destination topic, timestamps, etc.
This metadata can also be useful for performance analysis or bottleneck detection.
To achieve this goal, we use RTP extended headers. Thus, the metadata is added
to each video frame as an RTP extended header, which can be decoded and read on

15https://www.meta.com/en/quest/products/quest-2/
16https://gstreamer.freedesktop.org/
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the receiving end. This is achieved using GStreamer in-built functionality. Alga’s
data flow for both TCP and RTP/UDP modes is depicted in Fig. 6.1.

From the sending peer, the frames are fed to Alga in raw RGB format. Alga
injects the raw frame along with its associated metadata into the GStreamer encod-
ing and transmitting pipeline. If there are multiple peers subscribed to the same
topic, the traffic is replicated and routed by Polyp, leaving this traffic untouched
and just accessing the headers to read the target destination. In both this case
and the case of direct traffic transmission between end peers using just Alga, the
GStreamer pipeline receives and decodes the RTP frame. Once decoded, the frame
can be accessed by the application layer.

6.3. Traffic Capture Methodology

As described in Section 6.2, our offloading architecture implementation has already
been tested on a full end-to-end offloading solution using a commercial XR device,
the Meta Quest 2. However, we decided to use a high-end laptop to emulate the
XR offloading IP traffic for two main reasons:

• Uncontrollable overhead – our architecture is optimized for wireless of-
floading via WiFi or advanced RAN networks such as 5G. We need to capture
the data on the transmitting peer to avoid any overhead introduced by the
wireless transmission, traffic routing, congestion, etc. These potential sources
of overhead can lead to latencies, jitter, or packet loss which strongly depend
on the used configuration, wireless technology, and other external factors. It is
out of the scope of this work to model the network behavior and its associated
configuration. However, we could not find an efficient manner to capture the
IP traffic being transmitted from the XR device.

• Cover demanding XR offloading use cases – the Meta Quest 2 is not
capable of handling demanding XR offloading use cases due to its limited
computation capabilities. Our target is to cover XR offloading use cases which
are still not possible with current XR or wireless access points technologies.

Following these considerations, all the data were captured using a high-end lap-
top, with an Intel Core i7-10870H CPU @ 2.20 GHz × 16, and 16 GB of RAM
incorporating a Nvidia GeForce RTX 3070 GPU, running Ubuntu 18.04 LTS. The
offloading architecture was set up and configured identically to an actual XR offload-
ing deployment. For simplification and as we were not using an actual XR HMD,
the IP traffic from each stream (Scenario A and Scenario B uplink and downlink
streams) was captured via separate capture runs. Therefore, we used prerecorded
data to capture the IP traffic. According to the scenarios described in Section 6.1
we recorded data for the following streams:
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Table 6.1: Uplink and downlink resolutions and frame rates used to generate the
proposed XR IP traffic dataset.

Resolution @ FPS

Stream 1 Stream 2 Stream 3

High 2560× 960 @ 60 3840× 1920 @ 90 2560× 960 @ 60
Medium 1920× 720 @ 60 3840× 1920 @ 72 1920× 720 @ 60

Low 1280× 480 @ 60 1280× 480 @ 60

• Stream 1 – Uplink stereo camera stream: This corresponds to the frontal
stereo camera data, which are transmitted in both offloading Scenarios A and
B. The recorded data were obtained from the same stereo camera used in
the end-to-end offloading solution [33], described in Chapter 4. We recorded a
continuous stereo video stream of 2560×960 resolution at 60 Hz, the maximum
supported by the camera. While XR devices are expected to run at rates above
90 Hz, the sensor data are not required to be updated so fast [28], [29]. The
prerecorded data had a length of 15 minutes.

• Stream 2 – Downlink rendered frames: This corresponds to the im-
mersive frames rendered on the server in Scenario A. In this case, we used
a high-definition stereo video from a first person video game. The recorded
video has a resolution of 3840× 1920 and an update rate of 90 Hz.

• Stream 3 – Downlink segmentation masks: This corresponds to the
binary pixel classification output by the egocentric body segmentation ML
algorithm in Scenario B. From the stream 1, we estimated the black and white
binary single channel masks for each frame using the segmentation algorithm
described in [15]. Therefore, the resolution and update rate is the same as in
stream 1 (2560× 960 @ 60 Hz).

To expand and add extra value to the presented dataset, we downscaled the three
streams to different sets of resolutions/update rates that can be useful for potential
researchers and applications. A summary of all the resolutions and update rates we
used to generate the traffic data is shown in Table 6.1.

Each of the resolution/frames per second (FPS) and transmission direction (up-
link or downlink) streams was captured separately. To capture the IP traffic, the
client reads the individual raw frames, one by one, from the selected stream and
sends them using the described architecture. As both the client and server run on
the same machine to accelerate and simplify the capture process, we set a stream-
ing client connected to a server, which just discards the incoming packets using
GStreamer’s Fakesink module to avoid any additional overhead. There is no in-
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Figure 6.2: Simplified representation of the final setup used to capture the XR
offloading IP traffic dataset.

Figure 6.3: Simplified IP packets (black arrows) representation packed in several
RTP frames. The RTP frame size, inter-frame, and inter-packet interval times are
illustrated.

stance of Polyp and both client and server are directly connected using Alga in
H.264-RTP mode: the raw frames are encoded using H.264 and packetized as RTP
frames to be transmitted via UDP, in localhost. The IP traffic was captured using
Wireshark, generating an individual packet capture (PCAP) file for each capture
run. The final simplified capturing setup is depicted in Fig. 6.2. Each capture run
had a duration of 10 minutes, for a total of 110 minutes of data.

6.4. Traffic Modeling

In addition to releasing the PCAP files publicly, we made a systematic effort to
statistically model the most relevant video streaming IP traffic parameters: i) RTP
frame size, defined as the size of each individual RTP frame, ii) inter-frame inter-
val, that is, the time between individual RTP frames and iii) inter-packet interval,
i.e., the time between successive packets within an individual RTP frame. These
parameters are depicted schematically in Fig. 6.3. The main goal is to allow po-
tential researchers, in the context of wireless communication systems analysis and
evaluation, to generate realistic XR IP traffic, online or offline, based on the models
derived.
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Table 6.2: RTP frame size, inter-frame interval, inter-packet interval and individual
IP packet sizes basic statistics from the captured data

Stream 1 - Uplink Stereo Camera
Frame size (bytes) Inter-Frame Interval (ms)

Mean Std. Dev. 95th perc. Mean Std. Dev 95th perc.
Low 34602.44 9529.36 55735 16.76 0.26 17.12
Mid 86149.87 19936.04 132384 16.76 0.50 17.53
High 232084.33 28141.99 269008 16.80 2.57 21.29

Inter-Packet Interval (ms) IP Packet Size (bytes)
Mean Std. Dev. 95th perc. Mean Std. Dev 95th perc.

Low 3.94 6.08 17.10 1280.79 356.58 1428
Mid 3.53 5.47 17.27 1364.81 244.83 1428
High 4.55 11.02 6.43 1403.88 154.31 1428

Stream 2 - Downlink Rendered Frames
Frame size (bytes) Inter-Frame Interval (ms)

Mean Std. Dev. 95th perc. Mean Std. Dev. 95th perc.
72 Hz 207968.42 122929.70 396402 13.88 0.05 13.94
90 Hz 163548.89 116837.86 339396 11.11 0.04 11.17

Inter-Packet Interval (ms) IP Packet Size (bytes)
Mean Std. Dev. 95th perc. Mean Std. Dev. 95th perc.

72 Hz 3.41 9.18 4.85 1400.04 171.38 1428
90 Hz 3.66 9.08 6.91 1392.66 191.91 1428

Stream 3 - Segmentation Masks
Frame size (bytes) Inter-Frame Interval (ms)

Mean Std. Dev. 95th perc. Mean Std. Dev. 95th perc.
Low 4968.50 2175.03 7708 16.76 0.20 17.05
Mid 8273.98 3921.00 13970 16.75 0.61 17.77
High 24378.90 11440.59 43458 17.10 3.30 22.44

Inter-Packet Interval (ms) IP Packet Size (bytes)
Mean Std. Dev. 95th perc. Mean Std. Dev. 95th perc.

Low 7.01 6.17 15.04 749.83 517.39 1428
Mid 5.87 9.61 15.34 933.53 527.48 1428
High 7.54 24.80 24.63 1216.27 419.88 1428

6.4.1. Data Pre-processing

The PCAP files are large and contain a lot of information that can be useful in
future works, such as the transmitted bytes themselves or other relevant metadata.
To derive the traffic models, we store the payload, timestamps and the new RTP
frame marker bit of the individual IP packets coming into the arbitrary port used
for transmission. This bit information is necessary to identify a new frame. Data
pre-processing takes place in two steps, as follows.

In the first step, we obtain a list of all the captured IP packets, ordered according
to their timestamp. For each packet, we keep the payload in bytes, the timestamp,
and a custom boolean indicator, i.e., a combination of the bit marker and the times-
tamp separation, which determines if the IP packet initiates a new RTP frame or
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not. This first pre-processing step is implemented using Python and Scapy17 library
to parse the PCAP file.

In the second step, we go through all the IP packets and group them in individual
RTP frames according to the custom boolean indicator. Then we estimate, for each
RTP frame, the total size in bytes (RTP frame size), the time in between consecutive
frames (inter-frame intervals), and the time in between consecutive IP packets (inter-
packet intervals). These parameters are stored in three separate arrays and saved as
an NPY (Python NumPy format) file. These NPY files are the ones used to model
the IP traffic. This second step is implemented in Python as well.

These two steps are applied to all the captured PCAP files. The final outputs are
stored as individual files to easily identify each capture run. In Table 6.2 we show
the basic statistics, i.e., mean value, standard deviation, and 95th percentile of all the
captured data cases, for the frame size, inter-frame interval, inter-packet interval,
and IP packet size. The packet size information is useful to generate synthetic data
from the fitted models.

6.4.2. Prior Data Analysis

Before taking any modeling decisions, we studied the histograms of the pre-processed
data. In particular, we plotted the histograms for all the parameters to be modeled
for all the captured data. In Fig. 6.4 we present examples of the RTP frame size,
inter-frame interval, and inter-packet interval histograms, for the high-resolution
Stream 1 and 3 (at 60 Hz), as well as Stream 2 at 90 Hz.

We observe, in all streams, that the inter-frame intervals are evenly distributed
around a mean value that coincides with the frame update period according to the
selected FPS value. Due to variable rate encoding, which guarantees low latency,
the coding rate and the frame size may include peaks and variations. For the 60 Hz
captured data, this is not an issue since the encoder is faster than the frame update
period for all cases and resolutions. However, for very high resolutions and frame
update rates, the coding rate needs to dynamically adapt, resulting in frame sizes
with more than one peak, as shown for Stream 2 in Fig. 6.4. This also affects the
standard deviation of the inter-frame interval, which is reduced in Stream 2 cases
due to the stricter encoding time requirements.

Regarding the potential distributions to model the target parameters, we ob-
serve, that in both Stream 1 and 3, these parameters can be modeled as unimodal
continuous distributions. On the other hand, we observe that the distribution of the
RTP frame sizes of Stream 2 presents two local maxima. These local maxima are
smaller for the higher frame update rate (90 Hz) depicted in Fig. 6.4. Nevertheless,
we decided to model Stream 3 RTP frame sizes as continuous unimodal distributions

17https://scapy.net/
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Figure 6.4: Histograms and CDFs from the captured data for Stream 1, 2 and 3 for
the target parameters: inter-packet interval times, inter-frame interval times and
frame sizes.

as well and check if they provide a sufficiently good fitting before testing multimodal
distributions.

In Fig. 6.4 we can observe that the inter-packet interval distribution seems not
to be unimodal, since slight changes in convexity appear. However, the inter-packet
intervals lay in the order of the microsecond, as shown in Table 6.2. On that scale,
many external sources can affect the measured value, such as the operating system
particular operations, Wireshark processing, etc. Again, modeling these possible
external factors that can affect the inter-packet intervals is out of the scope of this
work. Therefore, we choose to move forward with the simple approach of modeling
the inter-packet interval time as a unimodal continuous distribution.
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6.4.3. IP Traffic Models

Figure 6.5: Best KS test scoring models for the target parameters to be modelled:
RTP frame sizes, inter-frame interval times, and inter-packet interval times.

There is a wide range of well-established and commonly used continuous dis-
tributions for the parameters under consideration. To find the best candidate dis-
tributions that fit our data, we used Python’s Scipy library[124]. Scipy is capable
of modeling more than 90 different continuous distributions. We decided to fit all
the distributions available and evaluate their goodness of fit using the Kolmogorov-
Smirnov (KS) test [125]. The KS test quantifies the distance between the empirical
Cumulative Distribution Function (CDF) Fn(x) of a sample and the fitted CDF of
an arbitrary distribution F (x) as:

KS = sup
x
|Fn(x)− F (x)|, (6.1)

where supx is the supremum of all the set of distances across x values. The lower the
KS test value, the better the fitting of the candidate distribution with the captured
data. The KS test results of the 15 best-fitted distributions for each parameter and
stream type are depicted in Fig. 6.5, sorted from best (left) to worst (right). We
observe that Johnson’s SU distribution [126] obtains the best mean KS value across
all the captured data. This distribution was proposed by N. L. Johnson in 1949
and has been historically used in finances. The key characteristic of Johnson’s SU

distribution is its flexibility which originates from its four parameters that allow the
distribution to be either symmetric or asymmetric. The PDF is expressed as

f(x, γ, δ, λ, ε) = ε

δ ·m(x, γ, δ)ϕ
{
γ + δ log(x)

· [k(x, γ, δ) + m(x, γ, δ)]
}
,

(6.2)

where
k(x, γ, δ) = x− γ

δ
, m(x, γ, δ) =

√
k(x, γ, δ)2 + 1, (6.3)

with γ and δ being the location and scale parameters, respectively, λ and ε the
Johnson’s SU specific shape parameters, and ϕ(·) the PDF of the normal distribution.
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Figure 6.6: Johnson SU and exponential normal fitted distributions’ PDFs and CDFs
for the Stream 2 and 90 Hz case.

Figure 6.7: Histograms and CDF from the captured data for Stream 1 for the
parameters: inter-packet interval times inter-frame interval times and frame sizes.
On top, the Johnson SU fitted distribution’s PDF and CDF.

By further inspecting Fig. 6.5, we notice that for the RTP frame sizes, the only
case that Johnson’s SU does not provide the best fit is for the Stream 2 @ 90 Hz,
for which the Exponential Normal distribution is the best. However, as we can see
in Fig. 6.6 the practical differences between the two distributions for Stream 2 @
90 Hz are small enough. Besides, even if Johnson’s SU fit is not as accurate as in the
other RTP frame size distributions (see Fig. 6.7), the measured KS values obtained
are low enough, with a good fit for the larger packet sizes. Therefore, we decided to
model and evaluate the RTP frame sizes using the Johnson’s SU distribution for all
the captured data. Similarly, we decided to use Johnson’s SU distribution to model
also the inter-frame and inter-packet intervals. The parameters of Johnson’s SU

distribution, as given by Python Scipy Library, for all the traffic parameters under
consideration and captured data are summarized in Table 6.3.
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Table 6.3: Fitted Johnson’s SU distribution parameters for the RTP frame size,
inter-frame interval, and IP inter-packet interval, along with the KS test values.

Stream 1 – UL stereo camera
Frame size Inter-frame interval Inter-packet interval

Low Medium High Low Medium High Low Medium High
Location (γ) 28204.99 73230.79 220497.49 0.01676 0.01682 0.01507 1.61 E-6 1.71 E-6 1.86 E-6
Scale (δ) 4990.40 12559.32 20161.10 0.000204 0.00062 0.007549 4.11 E-8 4.08 E-8 16.5 E-8
Shape-A (a) -0.869 -0.781 -0.478 0.0281 0.114 -0.679 -1.200 -1.169 -1.451
Shape-B (b) 1.123 1.180 1.239 1.222 1.551 3.158 0.465 0.517 0.705
KS-Test 0.027 0.025 0.0192 0.0025 0.0059 0.0221 0.082 0.054 0.072

Stream 2 – Downlink rendered frames
Frame size Inter-frame interval Inter-packet interval

70 Hz 90 Hz 70 Hz 90 Hz 70 Hz 90 Hz
Location (γ) 216500.38 -136187.44 0.01388 0.0111 1.59 E-6 1.62 E-6
Scale (δ) 52883.59 14897.09 4.373 E-5 2.30 E-5 5.40 E-8 5.31 E-8
Shape-A (a) 0.120 -9.761 -0.109 -0.132 -1.209 -1.258
Shape-B (b) 0.844 2.691 1.491 1.517 0.542 0.521
KS-Test 0.095 0.050 0.016 0.012 0.054 0.052

Stream 3 – Downlink segmentation mask
Frame size Inter-frame interval Inter-packet interval

Low Medium High Low Medium High Low Medium High
Location (γ) 4144.51 5547.71 -3633.71 0.01676 0.01675 0.016346 1.17 E-6 1.53 E-6 2.14 E-6
Scale (δ) 1962.34 3879.20 16105.91 0.000118 0.000795 0.00231 1.91 E-8 6.07 E-8 20.70 E-8
Shape-A (a) -0.442 -0.857 -3.800 -0.0092 -0.0096 -0.228 -5.705 -2.425 -0.995
Shape-B (b) 1.441 1.586 2.987 1.063 1.635 1.130 0.957 0.606 0.493
KS-Test 0.017 0.011 0.022 0.012 0.010 0.0227 0.180 0.178 0.078

6.5. Realistic Traffic Generation

Our next goal is to build a tool that allows the generation of realistic XR offloading
IP traffic. Such a tool is useful for researchers and application developers to gener-
ate and use synthetic data for analysis or incorporate it into complex link-level or
system-level simulations. While other video XR traffic [27] state-of-the-art models
only consider the frame size and inter-frame interval for generating synthetic data,
we believe that including the inter-packet interval data extends the applicability of
our models to a wider range of research efforts. For instance, when designing novel
or advanced resource allocation techniques, an accurate inter-packet interval model
might be extremely useful and lead to better and more appropriate solutions.

To create synthetic data we have to generate random values from the fitted
distributions. Towards this end, we used Scipy’s rvs in-built function, which uses
the inverse of the CDF to generate random samples from a specific distribution. In
addition, we need the size of the individual RTP packets. In the real captured data
this is not constant, as shown in Table 6.2, in terms of the IP packet sizes, especially
for Stream 3, since the way the segmentation mask is coded and organized in RTP
packets varies from the regular color video stream (1 and 2). In general, the packets
of each RTP frame have a fixed size chosen in the encoding/RTP framing pipeline
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Algorithm 1: Synthetic IP packets generation algorithm.
input : NRT P , sRT P

output: A sequence of IP packets
while N generated

RT P < NRT P do
1. sIP ← FSrandom

2. NIP ← sRT P /sIP

3. while N generated
IP < NIP do

3.1 ∆tIP ← IPIrandom

3.2 ts ← ts + ∆tIP

3.3 Store new IP packet P(ts, sRT P )
3.4 N generated

IP ← N generated
IP + 1

4. ∆tIF ← IFIrandom

5. ts ← ts + ∆tIF

6. N generated
RT P ← N generated

RT P + 1

(1442 bytes in our case). The first (including the RTP header) and the last are
usually different. Depending on the chosen pipeline and configuration there may be
smaller packets also in between, as in our case. However, these phenomena happen
rarely as we can observe in the packet size histograms. The significant difference
between the mean and the maximum packet sizes in low throughput streams, such
as Stream 3, is expected because the number of packets between the first and last
within an RTP frame is small (smaller than 5 in the low resolution Stream 3 case).
Therefore, we consider two IP packet size options: i) the mean size value, as in
Table 6.2 or ii) the 95th percentile value. We refer to case i) as Mean Packet and
case ii) as Max Packet.

Once we have the generators and packet sizes, we can easily define a procedure
for synthetic realistic IP traffic generation, as described in Alg. 1. For each RTP
frame among the NRT P to be generated, we begin by getting its size sRT P from
the selected RTP generator, and by choosing the IP packet size sIP equal to Max
Packet or Mean Packet. Then we compute the total number of packets NIP simply
by dividing sRT P by sIP . We continue by generating NIP packets of size sIP , each
with a specific timestamp ts. The timestamp is computed by adding a random inter-
packet interval ∆tIP to the previous packet timestamp. Once all NIP packets are
generated, a new randomly picked inter-frame interval ∆tIF is added to the current
timestamp. The random values are generated from the modelled distributions. The
above procedure is repeated for each RTP frame.

The described algorithm can be easily implemented in any programming lan-
guage and therefore used in any simulation environment. Additionally, it can be
used to create synthetic traffic traces by storing the generated packets in a separate
PCAP file and utilize them at a later time.
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Table 6.4: Mean throughput of the generated synthetic data in comparison with the
captured traffic’s throughput.

Stream 1 — Uplink stereo camera
Captured
(Mbps)

Max. size
(Mbps) Error (%) Mean size

(Mbps) Error (%)

Low 16.51 16.49 0.12 16.49 0.12
Med. 41.11 41.15 0.09 40.96 0.36
High 110.55 110.50 0.05 110.27 0.25

Stream 2 — Downlink rendered frames
Captured
(Mbps)

Max. size
(Mbps) Error (%) Mean size

(Mbps) Error (%)

70 Hz 119.79 121.36 1.29 120.83 0.86
90 Hz 117.76 117.74 0.02 118.60 0.71

Stream 3 — Downlink segmentation mask
Captured
(Mbps)

Max. size
(Mbps) Error (%) Mean size

(Mbps) Error (%)

Low 2.37 2.35 0.89 2.36 0.51
Med. 3.95 3.92 0.66 3.94 0.35
High 11.4 11.44 0.38 11.44 0.32

6.6. Validation Experiments

In this section, we test the traffic generated with the methodology described in the
previous section, over a realistic RAN scenario, to determine its ability to accurately
mimic the behavior of the captured XR offloading data traffic. To do this, we
first compare the average throughput obtained from the captured data with the
corresponding generated synthetic data obtained. Then, we study the behavior
of the different synthetic data models in terms of application layer throughput and
latency in the most relevant offloading scenarios using a real-time 5G RAN emulator.
Finally, we thoroughly examine the impact of the type of traffic model used on
resource allocation by comparing synthetic data from different models with actual
XR traffic.

The first step is to compare the generated mean throughput of the synthetic
data using the modeled Johnson’s SU distribution with the captured data. The
mean throughput results of the captured and synthetic data, for both Max Packet
and Mean Packet cases (IP packet sizes), are shown in Table 6.4. The differences
between the synthetic and captured data throughput are also included as percentage
differences. We can observe that the throughput differences are low in all cases, with
a peak of 1.29% for Stream 2 and 72 Hz case. All other cases present differences
below 1%, for both IP packet sizes, with an average error of 0.435%, and 0.438%,
for Max Packet, and Mean Packet case, respectively.

The next evaluation step is to compare the behavior of both synthetic and cap-
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tured data on a realistic advanced 5G RAN deployment. Towards this end, FikoRE,
our open-source 5G RAN real-time emulator [25], [26] described in Section 5. For
our validation experiments, FikoRE runs as a simulator since we are not injecting
actual IP traffic, but the traces from the captured or synthetic data. We tested the
two scenarios described in Section 6.1, with the following setup:

• Scenario A – Full Offloading: On the downlink side, we chose to evaluate
the 72 Hz rendered frames stream since it represents the current rendering
offloading possibilities of commercial XR devices such as the Meta Quest 2.
The Meta Quest 2 devices are capable of performing offloaded rendering, via a
WLAN network, to a laptop in charge of rendering the immersive scene. The
recommended setup is 72 Hz, being the rendering resolution of 1832×1920 per
eye, which is slightly smaller than our captured data for the rendering frames
stream. The uplink corresponds to the sensor stream (Stream 1) with a stereo
resolution of 1920× 720.

• Scenario B – Egocentric Human Body Segmentation: Successful de-
ployment of this scenario is described in Chapter 4. While our deployment
uses smaller resolutions, we evaluated the scenario in which both Stream 1
and 3 use a resolution of 1920× 720.

Both offloading scenarios were evaluated in three different network configura-
tions:

• Configuration A – Multiple background UEs and a single immersive
UE with PF: In this scenario we simulated multiple UEs which are trans-
mitting 5 Mbps of traffic in each direction. The throughput is not continuous,
but is synthetically generated using the video streaming models from [127]
applicable for streaming applications such as Netflix. The emulator is set up
with a single carrier of 100 MHz bandwidth on the 26.5 GHz mmW frequency
band. Resource allocation takes place based on the PF metric [128], using
1:1 (downlink:uplink) time division duplexing (TDD). We tested this network
with a single immersive UE and 0, 20, 40, 60, 80 and 100 background UEs
with 5 Mbps traffic in each direction. The network starts saturating around
80 simultaneous UEs.

• Configuration B – Mutiple immersive UEs with PF: In this scenario
we have multiple immersive UEs, all using the same synthetic data. The
throughput per UE is much higher than in Configuration A, so we increased
the total bandwidth to 200 MHz in order to be able to simulate more UEs
before reaching network UE saturation.

• Configuration C – Mutiple immersive UEs with MT: this setup is
identical to Configuration B only changing the resource allocation metric used
from PF to MT [128].
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Table 6.5: Common simulation parameters used in all the experiment runs

Simulation Parameters

TDD Configuration 1(UL):1(DL)
Modulation 256-QAM

Frequency Band 26.5 GHz
UE MIMO Layers 2
Allocation Type 0

Allocation Configuration 1
Scenario Rural Macrocell
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Figure 6.8: Mean downlink throughput measured for Scenario A Configuration C
for the captured and synthetic data.

All three configurations have in common the simulation parameters included
in Table 6.5. Each individual simulation run has a duration of 500 seconds and is
repeated for each combination of configuration, number of UEs, offloading Scenarios
(A and B), and type of data (synthetic with both packet types and captured data).
In all cases, there is a “principal” immersive UE closer to the emulated gNB than
the other simulated UEs, from which we obtained the measurements used in this
analysis. The goal is to study and compare the behavior of each type of IP traffic
data at the application level, so we evaluated the application layer throughput and
latency. The throughput is measured as the total mean throughput transmitted
by all UEs. The latency, is measured only for the principal immersive UE. All the
stochastic models, including the initial position of the non-principal UEs, have the
same random seed across the experiments. The principal UE is placed 100 m away
from the gNB to ensure it has priority regardless of the metric used for allocation,
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Table 6.6: Emulated application level throughput and latency comparison between
captured and synthetic traffic. The synthetic experiments are repeated using the
maximum and mean packet sizes.

Configuration A – Multiple background UEs and a single immersive UE with PF

Scenario A: Full offloading Scenario B: Deep learning offloading

Throughput error Latency error Throughput error Latency error

DL UL DL UL DL UL DL UL

Max. pkt size (%) 0.85 0.06 0.07 0.27 0.28 0.06 1.48 0.23
Mean pkt size (%) 0.59 0.13 0.58 0.38 0.35 0.13 1.55 0.51

Configuration B – Multiple immersive UEs with PF

Scenario A: Full offloading Scenario B: Deep learning offloading

Throughput error Latency error Throughput error Latency error

DL UL DL UL DL UL DL UL

Max. pkt size (%) 0.57 0.23 0.71 0.15 1.55 0.16 0.04 0.48
Mean pkt size (%) 0.65 0.46 0.29 0.32 1.50 0.28 0.03 0.36

Configuration C – Multiple immersive UEs with MT

Scenario A: Full offloading Scenario B: Deep learning offloading

Throughput error Latency error Throughput error Latency error

DL UL DL UL DL UL DL UL

Max. pkt size (%) 1.72 0.23 0.83 0.34 1.55 0.16 0.06 0.20
Mean pkt size (%) 1.28 0.46 0.42 0.38 1.92 0.28 0.03 0.12

while the rest are placed randomly, at a longer distance.

The application layer mean throughput results obtained for the downlink trans-
mission of Scenario A for Configuration C, are depicted in Fig. 6.8. It is evident
that the difference between the real, and the modeled data, for the total of UEs,
is very low. We observe that from 8 UEs onward, the network starts saturating
and the throughput does not increase linearly. This is because UEs with worse
channel quality get fewer allocation grants. The measured latency behaves similarly
showing low differences. Furthermore, similar results were obtained for all other con-
figurations and scenarios. Overall, the throughput and latency differences between
the captured and synthetic data obtained from FikoRE simulations are gathered in
Table 6.6. These differences are expressed by the relative mean error across em-
ulation runs with different numbers of UEs. We observe that they are very low,
below 2%, in all cases. Besides, the differences between the Max Packet and Mean
Packet cases of the IP packet sizes are negligible, with a mean difference of less than
0.04%. These results validate the goodness of the fitting of the proposed models for
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Figure 6.9: Example of allocation error matrices for both transmission directions
(UL and DL) between the captured and synthetic data. The error is estimated for
the entire grid. This case corresponds to Scenario A and Configuration B.

application-level simulations.

As a further step, we assess how well the synthetic traffic data generated with
our model behave on the lower layers of the stack compared to the captured data.
In particular, we study the resource allocation differences when using the captured
or synthetic data as input for the simulator. Besides, we highlight the necessity
of an accurate model which includes also the inter-packet intervals, contrary to
the models proposed in [27]. In this context, we generated synthetic data using a
simple Normal model using the statistical metrics from the captured data included
in Table 6.2. However, instead of generating multiple IP packets within an RTP
frame, we generated all the bits within the RTP frame in the same timestamp. By
doing so we do not only highlight the necessity of an accurate model in terms of
RTP frame size and inter-frame interval, but also the relevance of the inter-packet
interval models. We refer to this simpler model as “Norm” model.
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For this validation step, we also used FikoRE which is capable of logging every
single allocation step, that is, how the resources are allocated at each subframe. We
use this information to compare the differences in terms of the allocated throughput,
for each RB within the allocation grid. More specifically, we measure the number
of bits allocated for each RB and each UE. The number of RBs along the time and
frequency axes depend on the bandwidth and selected numerology. The allocation
error is estimated by comparing the bits allocated to each RB and UE when using
the synthetic data from different models and using the actual XR traffic. We can
build, for each UE, the allocation matrices illustrated in Fig. 6.9. These matrices
express the resource allocation differences, or allocation errors, between a selected
model and the actual XR traffic in bits per second, so the metric does not depend
on the total duration of the simulation run. To estimate the allocation error of the
entire grid as a percentage of the total transmitted error, we use the formula

e(%) = 100
∑K

i=1 |tc(i)− tm(i))|∑K
i=1 tc(i)

, (6.4)

where tm(i) and tc(i) denote the allocated throughput of the model being evaluated,
and the captured data, respectively, for the ith RB (1 ≤ i ≤ K) along the total
simulation time, with K the total number of RBs. To really understand how the
different sources of traffic data are being allocated, we decided to simulate a single
UE, the principal one, in each run. By doing this, we avoid the effects of the selected
configuration (such as the allocation metric, UEs channel quality, etc.) that directly
affect the resource allocation procedure and can lead to inaccurate conclusions.

Using the same configuration parameters described in Table 6.5, we tested mul-
tiple combinations of total bandwidth and numerology µ, which directly affect how
the resource allocation grid is built, for a single immersive UE. In specific, we tested
bandwidths of 40 MHz with µ = 1, 100 MHz with µ = 2, 200 MHz with µ = 2,
and 200, 400, 800 MHz with µ = 3. Each simulation run had a duration of 500
seconds. The simulations were repeated for each configuration, Scenario (A and B),
and source of data (captured, Jonhson’s SU with Max Packet size, and Norm). The
synthetic data generated using the Mean Packet size presented no evident differences
with the Max Packet size option.

Observing the measured allocation errors depicted in Fig. 6.10 we can extract
several conclusions. First, we notice that the allocation error is considerably higher
for the Norm simpler model compared to the proposed Johnson’s SU model. Be-
sides, the error difference increases rapidly in favor of Johnson’s SU model as we
configure the emulator with more total bandwidth. Increasing the numerology also
negatively impacts the performance of the Norm model. For low bandwidths, the
error difference is low, as an RTP frame does not fit in a single subframe and has
to be transmitted along several subframes. Therefore, the entire resource allocation
grid gets saturated and the allocation differences, being estimated in comparison
with the total allocated throughput in each RB, become hard to measure. On the
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Figure 6.10: Measured allocation errors between the captured and synthetic data
using our emulation tool for each transmission direction (UL and DL) and validation
Scenario (A and B) for different numerology and bandwidth configurations. All
simulations were done for a single UE.

contrary, for higher bandwidths, not all the RBs are allocated for each RTP frame
and the differences become more noticeable. Our intuition is that the difference
that we observe for higher bandwidths could also be observed if we could discard
the saturated subframes. In addition, the allocation error of the proposed Johnson’s
SU models remains almost constant along the test configurations, which clearly is
not the case for the Norm model. Thus, we get a strong hint of the importance
of obtaining accurate models which include the inter-packet intervals, especially
for high numerologies and bandwidths, in designing successful resource allocation
techniques.

6.7. Conclusions

This chapter aims to provide realistic traffic traces and associated models for XR of-
floading scenarios to complement and improve upon the models proposed in previous
works, such as [27]. We proposed two XR offloading scenarios that are at the cutting
edge of the current state of the art. The first scenario represents a full offloading
solution in which the XR HMD captures and transmits sensor data to a nearby
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server or MEC facility for processing and rendering ultra high definition immersive
frames, which are then transmitted back to the device. The second scenario focuses
on offloading heavy ML algorithms, specifically our novel real-time egocentric hu-
man body segmentation algorithm, which allows users to see themselves within the
virtual scene.

The traffic data was captured using our own offloading architecture, described
in [30], with additional functionality presented in this chapter. To avoid any un-
controllably overhead that we did not aim to model, the data has been captured on
the sender side, using a local host network. The IP traffic was captured for multiple
resolutions for both the uplink and downlink streams and both offloading scenarios.

The collected data was cleaned and post-processed, and we conducted a thor-
ough analysis to determine the most appropriate modeling approach. We chose to
model the three main components of video traffic – frame size, inter-frame interval,
and inter-packet interval – using continuous single modal distributions. While many
video or XR traffic models, such as [27], do not include inter-packet interval infor-
mation, we consider it a crucial feature to include in XR traffic models, especially
for resource allocation techniques design and optimization, as demonstrated in our
validation experiments. We fit multiple continuous distributions to the data for all
resolutions and found that the Johnson-SU distribution provided the best fit, as
determined by the measured fitting goodness estimated using the KS test.

The Johnson-SU distribution was fitted for all target parameters, scenarios, and
resolutions, and the fitted parameters are summarized in Table 6.3. With these
models, we generated synthetic data and used it in validation experiments with our
open-source 5G RAN emulator [26]. These experiments compared the performance
of the captured data and synthetic data from both the application and resource
allocation layers. At the application layer, we found that our models can generate
realistic XR traffic data for the proposed scenarios. In the resource allocation layer,
we demonstrated the importance of including inter-packet interval time for designing
advanced resource allocation techniques specifically optimized for XR offloading.

In conclusion, the data and models presented in this chapter are valuable re-
sources for the design, testing, improvement, and expansion of wireless network
solutions in both academia and industry. They offer a comprehensive approach for
studying XR offloading scenarios and provide insight into the importance of con-
sidering inter-packet interval times for resource allocation techniques. Overall, this
chapter provides a valuable contribution to the field of wireless networks and XR
technology.
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Chapter 7

Conclusions and Future Research

7.1. Summary and Conclusions

In this thesis, we have studied the requirements and implemented some of the nec-
essary tools and algorithms to achieve successful distributed XR applications. All
our contributions, both in terms of theoretical analysis and implementation efforts,
sit on the very edge of XR offloading technologies.

First, we have thoroughly analyzed the state of the art of XR technologies. Par-
ticularly, we have broken down both AR and VR technologies identifying their main
individual algorithms. Each of these algorithms’ state of the art has been studied,
extracting the hardware and real-time requirements, and identifying their input and
output expected data format and size. The results from the theoretical analysis
have been used as input to extract a set of realistic throughput and latency require-
ments for a selected group of use cases. We proposed a simple optimization problem
to extract these requirements. Differently from other state of the art requirements
studies, ours is focused on the algorithms rather than high level use cases. This
allows to extrapolate our results to other custom use cases not covered in our work.
Besides, our analysis is not only considering the DL traffic, but also highlights the
tight requirements imposed by the heavy UL traffic foreseen in most of AR and VR
distributed implementations. Finally, we have used the estimated requirements to
propose potential 5G architectures which can fulfil them.

The proposed requirements have been used to design our own XR offloading ar-
chitecture. In general, there are few research examples that describe a full offloading
architecture implementation. Besides, the authors usually do not take into account
the heavy UL traffic expected to be sustained when designing the architecture. In
this thesis, we have presented our own offloading architecture. We have provided
exhaustive implementation details of the initial version of our architecture. This ver-
sion, based on JPEG encoding via TCP, has been successfully tested using an actual
VR HMD on WiFi and 5G mmW technologies. Besides, we have provided an initial
description of our newest functionality which allows H.264 encoding transmitted
over RTP.

The TCP version of our architecture has been used to implement, to the best
of our knowledge, one of the first full end to end distributed XR applications. In
particular, our egocentric semantic segmentation algorithm runs, in real-time, in
a server wirelessly connected to a commercial VR HMD, the Meta Quest 2, using
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our architecture. The offloaded algorithm takes as input the RGB feed captured
by a stereo camera placed on the front of the HMD, and estimates which pixels
corresponds to the user’s body creating a binary mask. The mask is transmitted
back to the HMD, rendering only the pixels from the frontal stereo camera that
are identified as the user’s body. With our implementation, the users are able to
see themselves within the VR scene, in real time, substituting traditional virtual
avatars. This solution is a breakthrough in XR technologies. In this thesis we have
described all the implementation details of our end to end solutions, along with the
results from the carried out user study experiments. The goal of these experiments
was to validate both the segmentation algorithm and the end to end implementation.

Another research gap that we have identified is the difficulty to access fully de-
veloped 5G deployments which can be used to test novel distributed XR implemen-
tations. While a typical alternative would be the use of real-time network emulators,
the ones available in the state of the art are not scalable enough (in terms of number
of simulated UEs) or can not support high throughput in real time. In this thesis
we present FikoRE, our real-time 5G RAN emulator capable of simulating hundreds
of 5UEs while supporting high throughput of actual IP traffic (above 1 Gbps) in
real time. The emulator is fully described in this thesis, and is complemented by
other details described in FikoRE’s open source repository [26]. We have also per-
formed a set of validation experiments to check FikoRE’s emulation accuracy by
comparing the emulated behavior with measurements taken from an actual mmW
deployment. Besides, we have showcased its potential as a reference testbed for
advanced 5G use cases by testing it along a fully developed Free-Viewport Video
streaming implementation.

Finally, to support telecommunication engineers and researchers in the develop-
ment of optimized solutions which aim to facilitate and fulfil the requirements of
distributed XR offloading implementations, we have created a realistic XR traffic
dataset using the RTP version of our architecture and our VR hardware. We have
captured the data for XR offloading use cases which are complementary to the ones
presented in the specifications [27]. Besides, we have presented XR traffic models
derived from the captured data so that other researchers or engineers can generate
their own synthetic realistic XR traffic. The models have been validated in several
experiments using FikoRE. The proposed dataset and models can become relevant
tools for those researchers that have no access to fully developed distributed XR
implementations.

Given all these contributions, we can conclude that we have provided relevant
advances towards the implementation of successful distributed XR solutions, paving
the way for more immersive, wearable and affordable XR. In this thesis, we have
already pushed the limits of current XR implementations by means of 5G and other
advanced wireless networks. And more essential, we have highlighted how important
is for the development of XR technologies, the improvement of wireless technologies,
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and vice-versa.

7.2. Future Research

Based on the contributions and achievements presented in this thesis, we propose
the following research directions for future work:

• Further development of our offloading architecture to fully integrate H.264
video streaming over RTP in a complete end-to-end XR offloading application.
This will involve finalizing the tools needed to include this functionality in a
commercial device deployment.

• Perform subjective experiments using our fully developed end-to-end architec-
ture, similar to the ones proposed in Chapter 4, to understand the impact
of different encoding schemes and protocols on the overall XR experience in
relation to network quality of service. The aim is to allow the application to
adapt dynamically based on measured network KPIs.

• Test our architecture in a more complex end-to-end offloading scenario with
multiple peers and offloading services. While the proposed offloading archi-
tecture is capable of handling simultaneous peers subscribing or publishing
to different services, we have not yet explored techniques for optimizing and
managing shared resources on the server or MECs side. Therefore, our goal
is to investigate methods for allocating computing resources and managing
multiple offloading requests on the MECs.

• Study potential techniques for optimizing XR offloading performance using
5QIs to specify the desired level of service quality. We also aim to dynamically
adapt these 5QIs based on the received network KPIs and the measured QoE
on the application side. This is a complex task requiring the synchronized
orchestration of multiple agents across the end to end solution. The goal is
to enable the network to dynamically allocate resources in order to ensure a
minimum overall QoE.

• Continuously develop FikoRE, our 5G RAN emulator, with a focus on scal-
ability and the inclusion of advanced features such as handover and network
slicing. We are interested in studying, implementing, and testing novel re-
source allocation algorithms specifically designed for XR offloading and other
XR-related applications, such as the metaverse.
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