
Applying Hypervisor-Based Fault
Tolerance Techniques to Safety-Critical

Embedded Systems

by

Santiago Lozano Terol

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in

Computer Science and Technology

Universidad Carlos III de Madrid

Advisor(s):

Jesús Carretero Pérez

Tutor:

Jesús Carretero Pérez

March 2023

This thesis is distributed under license “Creative Commons Atributtion - Non
Commercial - Non Derivatives”.

ACKNOWLEDGEMENTS

El éxito de esta tesis es el resultado de la aportación, de una forma u otra, de muchas
personas diferentes. Por tanto, y aunque intentaré ser breve, es de justicia escribir unas
líneas de agradecimiento hacia ellas:

A mi tutor en la universidad, Jesús. He comprobado que un doctorado con mención
industrial es muy difícil de dirigir: las necesidades de la empresa son cambiantes y siem-
pre urgentes y no es fácil mantener el foco en la investigación. En los momentos críticos,
tú me ayudaste a encauzar la tesis.

A los miembros del tribunal de la prelectura de la tesis: Félix, Javier y Katzalin. Os
agradezco la exhaustiva y respetuosa revisión de nuestro trabajo. Vuestros comentarios
fueron muy valiosos para terminar de darle forma al libro.

A Cristina Tato, que me ofreció la posibilidad de realizar este doctorado y me animó a
ello. En los momentos en los que se puso más difícil compatibilizar mi trabajo en la em-
presa y en la universidad me repetías que, en el futuro, veríamos toda esta aventura como
un acierto. Creo que tenías razón. Gracias por realizar el delicado ejercicio de equilibrio
que supone guiarme y, a la vez, darme la autonomía y la responsabilidad suficientes para
crecer como ingeniero.

A mi madre. Gracias a ti empecé a estudiar una ingeniería hace ya diez años. Si ahora
alcanzo el techo académico es, en parte, porque siempre me he esforzado para que estés
orgullosa de mí.

A mi padre. Quizá por esta estúpida vergüenza masculina no te he dicho nunca lo que
siento y creo que sabes bien: que estos años he coincidido con grandísimos profesionales
de muchos países diferentes y aún no he conocido a ninguno al que admire tanto como te
admiro a ti. Ahora que he finalizado mis estudios, mi próximo objetivo es convertirme en
un profesional tan bueno y distinguido como tú.

A mis hermanos, a mis tíos y primos, a mis abuelos (y a mis abuelas). A mis amigos,
a mis compañeros de trabajo. Tengo la suerte de que sois tantos que empezar a escribir
nombres no tiene sentido, pero vosotros sabéis quiénes sois. Si en estos últimos tres años
hemos reído, hemos comido, cenado, hemos salido de fiesta, hemos viajado, hemos hecho
deporte o, en definitiva, hemos pasado un buen rato juntos, estás incluido en este párrafo.

Sobre todo a ti, Tere. Gracias por el cariño, por la paciencia, por asumir en muchas
ocasiones tus responsabilidades y las mías para regalarme un poco de tiempo. Por hacerlo
todo con una sonrisa. Sin ti no hubiera sido posible y sin ti no tendría sentido.

Por último, a la personita que me ha obligado a darle el empujón definitivo a la tesis.
Pequeña Lola: todas las horas diarias que se ha llevado esta investigación las pienso
dedicar, de ahora en adelante, a pasar tiempo con tu mamá y contigo.

PUBLISHED AND SUBMITTED CONTENT

Publications and contributions have been made and are included as part of this thesis:

• Santiago Lozano, Tamara Lugo and Jesús Carretero. A Comprehensive Survey on
the Use of Hypervisors in Safety-Critical Systems. IEEE Access, 2023.

– This article is currently under review. The material contained in this article
has been fully included in Chapter 2 of this thesis. The content from this item
has not been singled out with typographical means and references throughout
this thesis.

• Santiago Lozano, Juan Fombellida, Carlos Rodríguez, Cristina Tato, Jesús Car-
retero. MFOC Project: MPSoC-Based Multi-Purpose Execution Platform. In III
Congreso de Ingeniería Espacial : El espacio, la última frontera, 27-29 Octubre
2020, Madrid, España. ISBN: 978-84-09-31948-0. pp. 120-122. Extended abstract
and oral presentation.

– The material contained in this publication has been partially included in chap-
ters 1 and 2 of this thesis. The content from this item has not been singled out
with typographical means and references throughout this thesis.

OTHER RESEARCH MERITS

Other articles, publications or lectures conducted during the doctoral thesis:

• Tamara Lugo, Santiago Lozano, Javier Fernández, and Jesús Carretero. A Survey of
Techniques for Reducing Interference in Real-Time Applications on Multicore Plat-
forms. IEEE Access, 10:21853–21882, 2022. doi: 10.1109/ACCESS.2022.3151891.

• Santiago Lozano. MIA: Multi-Purpose Space Platform using cFS and TSP. Flight
Software Workshop 2022. Oral presentation.

• Santiago Lozano. Plataforma Multipropósito para los Sistemas Espaciales 2023. I
Semana Interdisciplinar del Espacio y IV Congreso de Ingeniería Espacial, 2021.
Oral presentation.

• Santiago Lozano. Revisiting the design of small satellites for speeding up the prod-
ucts and improving flexibility and performance. ESA Joint Board on Communica-
tion Satellite Programmes 5G Advisory Committee, 2022. Oral presentation.

• Santiago Lozano. Design and deployment of space systems using MPSoC technol-
ogy. Go2Space Hackaton, 2021. Oral presentation.

CONTENTS

1. INTRODUCTION. 1

1.1. Motivation . 1

1.2. Context . 2

1.3. Objectives. 2

1.4. Contributions . 3

1.5. Structure and Contents. 4

2. FUNDAMENTALS . 6

2.1. Virtualization . 7

2.1.1. Brief History of Virtualization . 7

2.1.2. Hypervisors . 9

2.1.3. Virtualization in Safety-Critical Embedded Systems 11

2.1.4. Hypervisors for Safety-Critical Real-Time Systems 17

2.1.5. Safety-Critical Real-Time Hypervisors Comparison 31

2.2. Safety-Critical Embedded Systems Standards 36

2.2.1. Aviation Software Standards . 36

2.2.2. Space Software Standards . 38

2.2.3. Automotive Software Standards . 39

2.3. Software-Based Fault Tolerance . 41

2.4. Hypervisor Fault Tolerance . 42

2.5. Single Event Upset . 44

2.6. Summary . 45

3. PROBLEM STATEMENT AND RELATED WORK 46

3.1. Problem Statement . 46

3.2. Hypervisor-Based Fault Tolerance (HBFT) . 47

3.2.1. HBFT for Safety-Critical Embedded Systems. 47

3.2.2. HBFT for Cloud Servers and Cluster Computing 52

3.3. Summary . 53

v

4. PROPOSED SOLUTION. 54

4.1. Requirements . 54

4.2. Architecture Definition . 56

4.3. Voter. 59

4.3.1. Voter Operating Modes . 60

4.3.2. Redundant Voters . 65

4.4. Health Monitoring . 67

4.4.1. Hypervisor health check process . 67

4.4.2. Partitions health check process . 68

4.4.3. Partitions results check process . 70

4.5. Summary . 72

5. PROTOTYPE . 73

5.1. Prototype Architecture. 73

5.2. Hardware Layer . 75

5.2.1. System on Chip. 75

5.2.2. Bootloaders . 78

5.3. NIR HAWAII-2RG Benchmark . 79

5.4. Operational Modes . 80

5.4.1. Partitions Memory Allocation. 80

5.4.2. Nominal Mode . 82

5.4.3. Safe Mode . 83

5.5. Health Monitoring . 84

5.5.1. Hypervisor health check . 85

5.5.2. Partitions health check . 88

5.5.3. Partitions results check process . 90

5.6. Voter. 93

5.6.1. Software Voter . 93

5.6.2. FPGA Voter. 93

5.7. Summary . 96

vi

6. EVALUATION . 97

6.1. XtratuM Performance Measurement . 97

6.1.1. Dhrystone Benchmark . 98

6.1.2. Performance Results . 98

6.2. Fault Injection . 102

6.2.1. SEU Injection. 102

6.2.2. Double SEU Occurrences . 103

6.2.3. Test Conclusions . 107

6.3. Trade-Off between SW and FPGA Voters . 108

6.3.1. Software Voter . 108

6.3.2. FPGA (IP) Voter . 109

6.3.3. Trade-Off Conclusions. 112

6.4. Summary . 113

7. CONCLUSIONS AND FUTURE WORK . 115

7.1. Conclusions. 115

7.2. Contributions . 118

7.2.1. Journals . 118

7.2.2. Conferences with Publication . 119

7.2.3. Conferences (Presentation-Only) . 120

7.2.4. Projects and Proposals . 121

7.3. Future work . 123

BIBLIOGRAPHY. 125

vii

LIST OF FIGURES

2.1 Graphical depiction of a hypervisor . 9

2.2 Type I hypervisor . 10

2.3 Type II hypervisor . 10

2.4 Federated architecture example . 12

2.5 Graphical depiction of the ARINC 653 standard 13

2.6 Number of papers published each year according to the previously defined
search . 18

2.7 Articles selection criteria . 19

2.8 Triple Modular Redundancy . 41

2.9 TMR with redundant voter . 42

2.10 Flowchart of the TTMR algorithm . 42

3.1 HBFT Architecture Proposed by Campagna et al. 48

3.2 HBFT Architecture Proposed by Sabogal and George 49

3.3 Quest-V Architecture . 50

3.4 TMR Strategy Workflow . 51

3.5 TTMR Strategy Workflow . 51

4.1 Possible partition types . 57

4.2 Architecture of the proposed solution . 57

4.3 FPGA Components . 59

4.4 Voter logic - Normal Mode . 61

4.5 Voter logic - Tie-breaker in Normal Mode 62

4.6 Voter logic - Degraded Mode . 63

4.7 Voter logic - Highly Degraded Mode . 64

4.8 Management of redundant voter decisions 66

4.9 Hypervisor health check process flowchart 68

4.10 Partitions health check process flowchart 70

4.11 Partitions results check process flowchart 71

viii

5.1 Prototype Architecture . 75

5.2 Bootloaders Control Flow . 78

5.3 NIR HAWAII 2-RG Data Processing Algorithms Steps (ESA) 80

5.4 Scheduling policy for prototype partitions - Plan 0 83

5.5 Scheduling policy for prototype partitions - Plan 1 84

5.6 Scheduling policy for the Safe Mode . 85

5.7 Voter prototype simplification . 94

5.8 RTL description of the voter prototype 95

6.1 Cumulative avionics upsets (image from Taber and Normand, 1993) . . . 103

6.2 Simulation when every input is equal (I) 109

6.3 Simulation when every input is equal (II) 110

6.4 Simulation when one of the inputs is different (I) 110

6.5 Simulation when one of the inputs is different (II) 111

6.6 Simulation when all the inputs are different (I) 111

6.7 Simulation when all the inputs are different (II) 112

ix

LIST OF TABLES

2.1 Number of papers resulting from the search of the word "hypervisor" and
words referring to safety-critical sectors 17

2.2 Distribution of the results of the previous search by year 18

2.3 Proprietary hypervisors comparison . 21

2.4 Hypervisors Comparison (Part I) . 32

2.5 Hypervisors Comparison (Part II) . 33

2.6 Hypervisors Comparison (Part III) . 34

2.7 Hypervisors Comparison (Part IV) . 35

4.1 Advantages and disadvantages of the related work 55

5.1 Z-7010 Processing System characteristics 76

5.2 Z-7010 Programmable Logic characteristics 77

5.3 Avnet Microzed characteristics . 77

5.4 Memory allocation of the system executable 82

5.5 Prototype scheduling policy - Plan 0 . 82

5.6 Prototype scheduling policy - Plan 1 . 83

5.7 Prototype scheduling policy - Core 0 . 84

5.8 Prototype scheduling policy - Core 1 . 84

5.9 XNG reset time . 87

6.1 XNG overhead using the Drhystone benchmark 99

6.2 XNG overhead measured with the NIR benchmark HAWAII-2RG 100

6.3 XNG overhead along the different steps of the algorithm 101

6.4 XNG overhead for each of the steps of the algorithm measured in isolation 101

6.5 XNG overhead for 20 iterations of the algorithm 102

6.6 SEU Correction Capability . 102

6.7 Correction of double SEU occurrences randomly generated 104

6.8 Correction of double SEU occurrences when one VM has a higher failure
probability due to HW damage . 106

x

6.9 Correction of double SEU occurrences when two VMs have a higher fail-
ure probability due to HW damage - Scenario 1 106

6.10 Correction of double SEU occurrences when two VMs have a higher fail-
ure probability due to HW damage - Scenario 2 107

6.11 Correction of double SEU occurrences when two VMs have a higher fail-
ure probability due to HW damage - Scenario 3 107

6.12 Voting process execution time in Scenario 1 108

6.13 Voting process execution time in Scenarios 2 and 3 109

6.14 Execution time of the hardware (FPGA) voter 112

6.15 Execution time for multiple redundant voters 113

7.1 Advantages of our work with respect to previous solutions 118

xi

Chapter 1. Introduction

1. INTRODUCTION

This chapter is an introduction to the work done in this PhD thesis. The chapter is
divided into five main sections:

• Section 1.1 contains the technical motivation of the thesis.

• Section 1.2 explains the particular conditions under which this doctoral thesis orig-
inated as a result of the collaboration between academia and industry.

• Section 1.3 sets out the main objective of the research and the various specific ob-
jectives to achieve it.

• Section 1.4 lists the main contributions that have been obtained as research outputs,
which can be disseminated in journals and conferences or exploited for projects in
the aviation and space industry.

• Section 1.5 sets out the structure of the rest of the document and briefly describes
its contents.

1.1. Motivation

The success of many safety-critical systems, such as flight systems or some automotive
subsystems, depends to a large extent on their ability to maintain deterministic behav-
ior over long periods of time and in an autonomous or semi-autonomous manner (with
very limited external real-time support). This task is hindered by the hostile conditions
in which these systems have to operate in many cases: vacuum, radiation, extreme tem-
peratures, impacts.... All these constraints make the processes and products related to
safety-critical industries complex and costly, which is a major barrier to entry for small
and medium-sized companies. For example, the most common fault tolerance mecha-
nisms to protect flight systems against radiation-induced soft errors are usually the use of
electronic components that are specially hardened against ionizing particles or hardware
redundancy. In both cases, the fault tolerance mechanism entails a cost overrun and a
considerable increase in the weight and power consumption of the final product.

In recent years, both in flight systems and automotive systems, there has been a trend
towards the use of COTS components with high processing capacity to meet increasingly
demanding system requirements. In the space sector, the term "new space" has emerged,
which is often used to refer to a new non-institutional market based on small platforms
with associated lighter development and manufacturing processes and less stringent re-
liability requirements. Obviously, in this type of platform, fault tolerance mechanisms
must evolve accordingly so that they do not entail such a high cost overrun. This thesis

1

Chapter 1. Introduction

addresses this problem, using virtualization to propose an alternative to hardware redun-
dancy that maintains high levels of reliability while drastically reducing the redundancy
footprint.

1.2. Context

This industrial PhD was born from the collaboration between SENER Aerospacial and the
Universidad Carlos III de Madrid. After a long and fruitful collaboration in research and
teaching tasks between both institutions, in 2020 a consortium was formed, coordinated
by SENER Aerospacial, to carry out a project called Madrid Flight on Chip (MFOC). In
addition to SENER Aerospacial, this consortium is made up of the Universidad Carlos III
de Madrid, IMDEA Software and a number of small and medium-sized companies from
the Community of Madrid: GENERA, CENTUM, REUSE and MARM.

The objective of the MFOC project is to develop and mature new techniques for the
development of small satellites and next generation space systems. This includes explor-
ing software and hardware techniques that can revolutionize the space design and devel-
opment process to obtain more agile and cost-efficient missions than traditional space
missions. The project uses commercial electronic components such as embedded multi-
core processors and FPGAs, which implies the challenge of making these components
robust to cosmic radiation, since they have not been specially designed for operation in
such a hostile environment. Studying the existing scientific literature on hardware redun-
dancy, it became apparent that there was an option not widely explored that potentially
involves much less system footprint: using a hypervisor to deploy virtual machines on top
of the embedded system, so that redundant applications run on these virtual machines in
isolation from each other.

Given this research opportunity and given that there were very good conditions within
the framework of the MFOC project, since SENER Aeroespacial and the Universidad
Carlos III de Madrid had to carry out several activities of the project in close collaboration,
the possibility of carrying out an industrial doctoral thesis was raised. In addition, in
2019 the Community of Madrid launched a call offering funding for the realization of
industrial PhDs (order 1724/2019 of May 30, 2019). In November (order 52/2019) the
aid was granted to SENER Aeroespacial and the Universidad Carlos III de Madrid, so that
in March 2020 the doctoral thesis officially began.

1.3. Objectives

The initial objective of the thesis is to explore novel techniques to improve the relia-
bility and efficiency of software on MPSoC platforms. During the research, looking
at the different possibilities, we have decided to implement a fault tolerance mechanism
based on the use of a hypervisor to redundant software applications in independent virtual

2

Chapter 1. Introduction

machines, isolated from each other, and examine how this affects the reliability and safety
of the system. This general objective can be subdivided into different specific objectives:

O1 Study and selection of the appropriate tools and environments for the research:

(a) Study and selection of the hardware environment, which should include at
least a multicore processor and an embedded FPGA.

(b) Study and selection of the hypervisor (and the operating system, if applicable)
that will constitute the software base of the mechanism.

O2 Co-design and implementation of a hypervisor-based space system that will enable
the deployment of mixed-criticality applications.

O3 Definition and implementation of a space use case for applying the Hypervisor-
Based Fault Tolerance (HBFT) mechanism.

O4 Investigation of the effect of the HBFT mechanism on system safety and reliability.

In addition, given the mixed nature of this PhD (industry-university collaboration),
the following non-technical objectives are proposed:

O5 Dissemination of results in specialized congresses related to the space industry and
in research journals.

O6 Strengthening of the links between the university (Universidad Carlos III de Madrid)
and the company (SENER Aeroespacial) to allow future collaborations in space
projects.

1.4. Contributions

The main contributions of this thesis are:

C1 A methodology that allows implementing a Hypervisor-Based Fault Tolerance (HBFT)
mechanism. This methodology involves the use of a hypervisor and the replication
of the functionality to be redundant in different virtual machines, following (at least)
a Triple Modular Redundancy scheme. In addition, an additional virtual machine
called Health Monitoring is used, which monitors the correct operation of the vir-
tual machines and takes the necessary measures to restore them in case of failure.

C2 A prototype implementing the HBFT mechanism exposed, as well as an evaluation
of the prototype by simulating Single Event Upsets (SEUs) that cause failures in
the computations of the virtual machines following different statistical distributions.
For the functionality to be redundant, a space benchmark currently in use in several
real missions is used.

3

Chapter 1. Introduction

C3 A comprehensive state-of-the-art review of the use of hypervisors in safety-critical
embedded systems, especially focused on the space, aviation, and automotive in-
dustries. In addition to the review of related works, a comparison is made between
all hypervisors according to different parameters. Beyond helping to choose the
most suitable hypervisor for this study, the review will allow equivalent decisions
to be made for other future studies.

C4 A trade-off that evaluates the advantages of moving the voter used to implement
the HBFT mechanism to the FPGA, rather than running it as just another virtual
machine. This approach of bringing all the voting logic to digital hardware has not
been raised or executed in other studies dealing with safety-critical systems, to the
best of our knowledge.

1.5. Structure and Contents

This document details the work conducted through the development of this thesis, and it
is structured as follows:

• Chapter 1, Introduction, has briefly presented the motivation, objectives, and con-
tributions of this thesis.

• Chapter 2, Fundamentals, exposes a series of concepts that are necessary to cor-
rectly understand the information presented in the rest of the thesis, such as the
concepts of virtualization, hypervisors, or software-based fault tolerance. In addi-
tion, this chapter includes an exhaustive review and comparison between the differ-
ent hypervisors used in scientific studies dealing with safety-critical systems, and a
brief review of some works that try to improve fault tolerance in the hypervisor it-
self, an area of research that is outside the scope of this work, but that complements
the mechanism presented and could be established as a line of future work.

• Chapter 3, Problem Statement and Related Work, explains the main reasons why
the concept of Hypervisor-Based Fault Tolerance was born and reviews the main
articles and research papers on the subject. This review includes both papers related
to safety-critical embedded systems (such as the research carried out in this thesis)
and papers related to cloud servers and cluster computing that, although not directly
applicable to embedded systems, may raise useful concepts that make our solution
more complete or allow us to establish future lines of work.

• Chapter 4, Proposed Solution, begins with a brief comparison of the work presented
in Chapter 3 to establish the requirements that our solution must meet in order to
be as complete and innovative as possible. It then sets out the architecture of the
proposed solution and explains in detail the two main elements of the solution: the
Voter and the Health Monitoring partition.

4

Chapter 1. Introduction

• Chapter 5, Prototype, explains in detail the prototyping of the proposed solution,
including the choice of the hypervisor, the processing board, and the critical func-
tionality to be redundant. With respect to the voter, it includes prototypes for both
the software version (the voter is implemented in a virtual machine) and the hard-
ware version (the voter is implemented as IP cores on the FPGA).

• Chapter 6, Evaluation, includes the evaluation of the prototype developed in Chap-
ter 5. As a preliminary step and given that there is no evidence in this regard, an
exercise is carried out to measure the overhead involved in using the XtratuM hyper-
visor versus not using it. Subsequently, qualitative tests are carried out to check that
Health Monitoring is working as expected and a fault injection campaign is carried
out to check the error detection and correction rate of our solution. Finally, a com-
parison is made between the performance of the hardware and software versions of
Voter.

• Chapter 7, Conclusions and Future Work, is dedicated to collect the conclusions
obtained and the contributions made during the research (in the form of articles in
journals, conferences and contributions to projects and proposals in the industry).
In addition, it establishes some lines of future work that could complete and extend
the research carried out during this doctoral thesis.

5

Chapter 2. Fundamentals

2. FUNDAMENTALS

The central idea around which this thesis revolves is the application of virtualization
techniques to implement fault tolerance in safety-critical embedded systems. There are
several works related to this topic, especially in the last decade, which will be reviewed in
chapter 3. Before that, however, it is important to expose certain concepts that will help
to understand the research interest of this thesis and to understand some of the decisions
that have been taken to design and develop the prototype, such as the choice of the hy-
pervisor. Likewise, this chapter (especially the section related to embedded safety-critical
hypervisors) may help other researchers to replicate or extend the results obtained in this
work.

The chapter is divided into six main sections:

• Section 2.1 is devoted to virtualization. It briefly reviews the history of virtual-
ization and explains key concepts such as hypervisors and how they are usually
classified. It also discusses how virtualization is applied to industries where em-
bedded processors and electronics are used and safety is a critical requirement. In
particular, the space, aviation and automotive sectors are analysed. Finally, the sci-
entific literature on hypervisors applied in these industries is reviewed in detail, and
a comparison is made between them. The aim of this is twofold: on the one hand,
to justify the choice of the hypervisor chosen to develop the prototype presented in
chapter 4; on the other hand, to summarise in a few pages the main characteristics
of the hypervisors used in different research carried out during the last two decades,
so that other researchers have easier access to this information and can choose the
hypervisor that best suits their needs, in case they wish to replicate or extend the
work done in this thesis.

• Section 2.2 is devoted to briefly explain the main standards by which certification
authorities measure and approve software safety in the space, aviation and auto-
motive industries. This thesis has a dual nature, since it is carried out through a
university-industry collaboration, so it is interesting to explain, even if only briefly,
the standards that the hypervisor and the rest of the software developed in this or
other research works would have to comply with, if it were to be put into practice
in a real commercial system.

• Section 2.3 is dedicated to briefly explaining what redundancy in safety-critical
systems consists of, why it is necessary and what types of redundancy exist. In
particular, some software-based redundancy techniques will be analysed, which will
help to understand why it is interesting to apply virtualization to implement this type
of redundancy.

6

Chapter 2. Fundamentals

• Section 2.4 is devoted to analysing some of the main works that focus on protecting
hypervisors against potential failures. Although this is not the subject of this thesis,
since our solution proposes to use the hypervisor to protect the rest of the system,
it is a complementary area of research that will need to be explored by anyone who
wants to put into practice what is going to be presented in this thesis.

• Section 2.5 briefly exposes the concept of Single Event Upset (SEU), which are
the main errors that are intended to be detected and corrected by the mechanism
presented in this thesis.

• Section 2.6 briefly summarises the chapter and introduces the contents of the fol-
lowing chapter.

2.1. Virtualization

2.1.1. Brief History of Virtualization

Despite being a topic that has been booming in recent years, the roots of virtualization date
back to the 1960s. Christopher Strachey is considered one of the pioneers on the subject,
being the first person [1] to publish an article dealing with the concept of time-sharing
at the International Conference on Information Processing at UNESCO, Paris, in June,
1959 [2]. The time-sharing technique is based on the fact that a computer can be used
by several users at the same time. This technique would imply over time revolutionary
changes in the industry, including the appearance of the concept of virtualization.

The first experimental time-shared system was accomplished in 1961 by a MIT group,
led by Professor Fernando J. Corbató [3]. In 1963, the same group developed an oper-
ational version for the IBM 7094 mainframe, called CTSS (Compatible Time Sharing
System). This system would be the basis of the famous MIT’s Project MAC (Mathemat-
ics and Computation, later renamed to Multiple-Access Computer) [4]. One of the main
objectives of the project was the creation of a large, multiple-access computer system,
available to meet the needs of a large number of users individually. In this context, MIT
contacted several computer vendors, including GE and IBM. At the time, IBM did not
consider the demand for a time-sharing computer to be large enough to invest in. GE, on
the other hand, committed to developing a time-sharing computer, so MIT chose GE as
its supplier. In May 1964, a GE computer was used for a demonstration of a time-sharing
system at Dartmouth College [5]. This probably became a wake-up call for IBM, espe-
cially when Bell Labs announced that it needed a similar system [6]. In response, IBM
designed the CP-40 OS, which provided an environment for up to 14 simultaneous virtual
machines [7]. Although this OS was never commercially distributed (it was only used
in laboratories), it is important for being the first OS to use complete virtualization and
being the forerunner of the CP-67 and the famous VM/370 [8], which was used with one
of IBM’s best-known mainframes, the System/370.

7

Chapter 2. Fundamentals

Each user of these systems had a terminal, a keyboard and a mouse, the whole set
being an input/output device that was connected to the mainframe, the central computer
where all the calculations were performed. Due to economic constraints, and because
virtualization allowed it, companies used to use a single mainframe and provide a terminal
to each employee, instead of providing a computer to each employee [9].

In 1974, Gerald J. Popek and Robert P. Goldberg put on paper the characteristics that
a system had to fulfill to support virtualization [10]. Their article described the prop-
erties and functions of virtual machines and virtual machine monitors that we still use
today. According to its definition, a virtual machine (VM) can virtualize any hardware
resource, including processors, memory and network connectivity. A virtual machine
monitor (VMM), more commonly known as a hypervisor, is the layer of software that
provides the execution environment for the virtual machine. In their article they also
described the three properties that a VMM had to satisfy:

• Equivalence: The environment that it provides to the virtual machines must be
identical to the hardware that is being virtualized. Thus, a program running on the
VMM must behave in the same way as if it was running directly on the physical
machine.

• Resource control: The VMM must have full control over system resources.

• Efficiency: If possible, there should be no difference between a virtual machine and
a physical equivalent.

These properties are still valid today, although the term Virtual Machine Monitor is
no longer so common, being gradually replaced by the term hypervisor.

Over time, throughout the 1980s and 1990s, as Moore’s prediction continued to hold
true [11], computers became increasingly powerful, cheap, and small. Personal computers
appeared to replace mainframes and terminals [12] [13]. The emergence and rise of
personal computers changed the direction of computer development and meant that, for
some time, the need for virtualization was no longer so urgent and its development was
somewhat slowed down. However, in recent years we have experienced another boom in
virtualization technologies due to different reasons, some of which are:

• Resource optimization: The great power of today’s computers means that, in many
cases, they are idle most of the time, since the use required of them does not con-
sume all their resources. Virtualization allows several applications, each one even
with different operating systems or execution environments, to run on the same
hardware in isolation and without interaction between them. This has allowed to
optimize hardware resources in several types of applications [14] [15].

• Isolation as a security measure: One of the great advantages of hypervisors is the
isolation among virtual machines so that, ideally, malicious activity on one virtual

8

Chapter 2. Fundamentals

machine does not affect the rest [16]. Also, virtualization provides a way to imple-
ment application redundancy without having to purchase additional hardware. If
one application fails, another application (running on a different virtual machine)
can take over.

• Physical space reduction: The fact that virtualization makes it possible to use
fewer hardware resources allows to save physical space.

• Less power consumption: Like the previous point, this is a direct consequence of
the resource optimization. The fact of being able to use fewer hardware resources
for the same functionality can lead to less power consumption, and eventually to a
smaller carbon footprint [17] [18].

• Easy migration and legacy protection: Hypervisors, by definition, decouple the
OSs and applications of the host hardware, thus benefiting the migration of virtual
machines from one host to another without disruption. This is a great advantage
when it comes to efficient work-balancing or when designing plug-and-play sys-
tems [19].

2.1.2. Hypervisors

As explained above, VMMs have their origin in the 70s, and their birth responds to very
specific needs. Today, VMMs allow us to take full advantage of the capabilities of new
processors, which are becoming more and more powerful. The term Virtual Machine
Monitor has progressively stopped being used, and today it is much more common to
refer to them as hypervisors.

Figure 2.1: Graphical depiction of a hypervisor

Ankita Desai et al. [20] define a hypervisor as a thin software layer that provides
abstraction of hardware to one or several operating systems, by allowing them to run on
the same host hardware. Indeed, as shown in figure 2.1, a hypervisor is a layer of software
that creates and manages virtual machines or partitions, to which it provides abstraction
of the hardware. It is more debatable whether an operating system that uses the hardware
virtualized by the hypervisor is necessary: as we will see later, there are hypervisors
that make the virtualized hardware directly available to users, allowing them to manage

9

Chapter 2. Fundamentals

it as if it were real hardware. Programming an application on these hypervisors would
be equivalent to programming what is commonly known as a "bare-metal application",
except that the hardware on which it runs is virtual, not real.

Hypervisors can be classified into two types depending on the environment in which
they run:

• Type I hypervisors or bare-metal hypervisors, in which the hypervisor runs di-
rectly on top of the host hardware. In this, the hypervisor has the responsibility of
scheduling and allocating system resources to each of the virtual machines, and no
operating system runs below it.

• Type II hypervisors, in which the hypervisor runs as an application on top of a
host operating system. The host OS does not necessarily have to know about the
hypervisor, it treats it as any other process.

Figure 2.2: Type I hypervisor Figure 2.3: Type II hypervisor

Hypervisors can also be divided into two types based on the type of virtualization they
offer:

• Full virtualization hypervisors allow running unmodified guests operating sys-
tems. The hypervisor completely emulates the physical platform it runs on, so
the operating systems running on it don’t even know they are running on a virtual-
ized platform [21]. The great advantage of this approach is the flexibility it offers,
by allowing any guest OS to run. However, it tends to carry a significant over-
head, with up to 30% more latency when compared to running directly on physical
hardware [22].

• Paravirtualization hypervisors cannot run unmodified OSs, but the guest OS must
be aware that it has been virtualized and provides special hooks to directly take
advantage of the services offered by the hypervisor [22]. In other words, the hy-
pervisor does not have to translate the instructions of each VM, but receives direct
instructions from it, usually called hypercalls. Of course, this alternative is much
less flexible, since each guest OS must be modified to work with the hypervisor on

10

Chapter 2. Fundamentals

which it runs, but it has the advantage of offering higher performance in terms of
access time to hardware, as theorized and demonstrated by Dordevic et al. in an
article comparing the two virtualization techniques [23].

Some modern processors offer hardware tools to achieve (ideally) full virtualization,
reducing the overhead of classic full virtualization. This particular case goes by different
names: Xen calls it hardware virtual machine (HVM) [24], but it is generally referred
to as hardware-assisted virtualization or accelerated virtualization [25]. Sometimes, this
type of virtualization continues to have a too large overhead and is combined with some
paravirtualized drivers, which is why it is also referred to as hybrid virtualization [26].

2.1.3. Virtualization in Safety-Critical Embedded Systems

As explained above, virtualization is one of the most powerful tools in the present and near
future for the efficient use of modern multicore platforms. However, although it is gen-
erally accepted that the future of electronic systems is multicore technology, sectors with
critical security requirements (such as the space, aviation, or automotive sectors) have
traditionally been reluctant to adopt this technology. For example, despite the fact that
multicore systems began to come into existence in 2005, 2008 is the first year in which
the subject is directly addressed in two articles by the American Institute of Aeronautics
and Astronautics (AIAA): one on Multiple Levels of Independent Security (MILS) [27]
and another dealing with the future of jet fighter mission computers [28]. Most proba-
bly, the reason behind this slow permeation of multicore technology in critical sectors is
related to interference problems between cores that need to consume the same resources
and how this affects the Worst Case Execution Time (WCET). Years ago, works such
as those of Kinnan et al. [29] and Wilhelm et al. [30] already pointed out some of the
problems of shared resources, how they cause variability in execution times and how this
un-predictability impacts the implementation and certification of these systems. A decade
later, bounding the WCET to obtain deterministic behavior remains one of the main chal-
lenges in, for example, avionics platforms, as reflected in the work of Annighoefer et
al. [31] These problems can be mitigated, in many cases, by intelligently planning ar-
chitectures to improve predictability, as the works of Cullman et al. [32] and Kliem and
Voigt [33] point out.

However, it is essential to address the problems that multicore processors poses, as
they are becoming impossible to avoid in the present and future of critical real-time sys-
tems. In their article [34], in which they review the challenges of the future in terms
of avionics architectures, Bieber et al. explain how multicore architectures have been
replacing monocore architectures since the mid-2000s, so that monocore processors are
progressively less common and more expensive. In addition to economic reasons, it is
clear that monocore processors have a ceiling when it comes to computing power. The
power consumption and the heat dissipated by the processing units as they become more
powerful is specially problematic. This means that the future of avionics and other sectors

11

Chapter 2. Fundamentals

of critical needs inevitably pass-through multicore processors. For this reason, software
tools are needed to help take advantage of their processing capacity, maintaining high
levels of safety and security. Among these tools, virtualization has emerged as one of the
most powerful, gaining popularity even in technologically conservative sectors such as
automotive or avionics.

Virtualization in the Aviation Industry

From Federated Architectures to Integrated Modular Avionics

Traditionally, flight systems have had a federated architecture, in which each function
consists of a black box with dedicated computational resources [35].

Figure 2.4: Federated architecture example

Each of the black boxes can contain a completely different configuration (hardware or
software) inside, and they are physically isolated from each other. Naturally, this archi-
tecture is excellent in terms of fault isolation and fault tolerance, but it presents a series of
serious problems: duplication of resources, lack of flexibility (adding a functionality re-
quires adding a new box) and high cost, not only economic, but also regarding power con-
sumption and weight. It is in this context that the concept of Integrated Modular Avionics
(IMA) was born, in the early 1990s [36]. In an IMA architecture, the coexistence of dif-
ferent avionics functions on the same platform is pursued, without interference between
them. For this, the different functions share a series of hardware resources (CPU, commu-
nications, I/O devices...) and are separated by robust partitioning mechanisms inherent to
the architecture itself [37]. Today, the advantages of using IMA are not discussed in the
industry and virtually every airplane model that enters service uses this philosophy [38].
One of the key enablers for this paradigm shift was the release of the ARINC 653 software
standard in 1996.

12

Chapter 2. Fundamentals

ARINC 653

ARINC 653 is a software specification for time and space partitioning in safety-critical
real-time systems. The first draft describing ARINC 653 was published in 1996 [39], and
two supplements have since been published, the most recent being in 2007. Originally, it
defined the general structure that the operating system of an IMA architecture should fol-
low, but ARINC 653 can also be applied to a hypervisor, since some of its characteristics
fit even better with it.

The objective of ARINC is to specify the characteristics of a software execution en-
vironment in which several applications can run, separated from each other in virtual
containers called partitions. Ideally, these containers should be perfectly isolated from
each other, so that the execution or failure of one partition does not affect any other par-
tition. The way to achieve this isolation is to separate the hardware resources spatially
and temporally. The similarity between ARINC 653, in this regard, with the hypervisor
concept is remarkable, and this is reflected in the equivalence between figures 2.1 and 2.5.

Figure 2.5: Graphical depiction of the ARINC 653 standard

In addition to defining the services to be offered, one of the most important features
of ARINC 653 is that it standardizes the interface between the hypervisor/OS and the
application layer. This interface is called APEX (Application/Executive), and it offers
several advantages in line with the IMA philosophy: portability, reusability, modularity
and easy integration of software blocks [40].

The services offered by ARINC 653 can be divided into several modules:

• Partition Management: This module provides means to modify the operating
mode of partitions, and is in charge of scheduling the partitions.

13

Chapter 2. Fundamentals

• Process Management: Each partition can have multiple periodic or aperiodic pro-
cesses. This module provides means for modifying the operational mode of pro-
cesses, and it includes process scheduling.

• Time Management: This module ensures that hard real-time requirements are met
and provides time-related services, such as reading time or wait/timeout services
for processes. There must be a single time source for all partitions, regardless of
their execution.

• Inter-Partition Communication: Communication among the different partitions
is carried out through ports and channels. Conceptually, a port could be seen as
a gate at the borders of a partition, while channels link two or more ports. The
standard also defines two modes of operation: sampling mode (oriented to fixed-
size synchronous messages) and queuing mode (oriented to asynchronous messages
of variable size).

• Intra-Partition Communication: This module is in charge of providing com-
munication among processes inside a partition, which is realized through buffers
and blackboards. Events and semaphores are also used, to provide synchronization
among processes.

• Health Monitor: This module is responsible for defining, detecting and reacting to
different errors at the process, partition or system level.

In their article VanderLeest et al. [41] make an interesting reflection on how the AR-
INC 653 standard seems to prohibit interruptions, since they can undermine the determin-
ism of a system, allowing one partition to steal time from others. Indeed, most imple-
mentations of ARINC 653 do assume that interrupts are not allowed when following the
IMA philosophy, but they reason that interrupts do not have to involve non-determinism,
and they design interrupts that offer predictability via a decreasing time budget, so that
the system is predictable at the scale of major time frame. They also developed a pro-
totype to demonstrate how these interrupts work using the Xen hypervisor, although the
hypervisors used in safety-critical use cases will be reviewed in more depth in section
2.1.4.

The hypervisor concept fits really well with the IMA philosophy and the ARINC 653
standard. Virtualization provides, by definition, time and space partitioning. The rest
of the functionalities that ARINC 653 describes (for example, health monitoring or the
APEX interface) must be implemented, either in the hypervisor itself or at other levels of
the software architecture (typically, the application interfaces, such as APEX, POSIX or
OSEK are covered at OS level). In a 2015 article [42], VanderLeest et al. conclude that
hypervisors are the tool that will allow the aviation industry to firmly adapt to multicore
systems, which are the only way to increase processor performance. Moreover, ARINC
653 is also one of the most powerful candidates to standardize the space industry as well,

14

Chapter 2. Fundamentals

as the requirements of the civil aviation world that prompted the definition of the standard
are also applicable to the space industry [43]. The adoption of ARINC 653 would bring
benefits in terms of cost reduction, modular certification, and less integration effort.

The DO-297 standard (IMA Development Guidance and Certification Considerations)
is the document used by certification authorities such as the FAA and EASA to approve
aviation IMA systems [44]. In turn, this document recommends ARINC 653 to define the
interfaces and specify the behavior of the system. Later, in section 2.2, we will briefly
explain some of the software standards used not only in aviation, but in other safety-
critical sectors such as space and automotive.

Virtualization in the Space Industry

The space industry has always been closely related to the aviation industry, so it is rea-
sonable that there are numerous articles that discuss the possibility of applying aviation
standards and practices to the aerospace industry. An example is the article by Windsor
and Hjortnaes, in which they analyze the advantages of incorporating TSP techniques into
the spacecraft avionics architectures based on the IMA aeronautical concept and the AR-
INC 653 standard [45]. They also consider the areas where these techniques could have
the most impact and give different examples of use cases.

Actually, in some respects the operation of space systems is even more delicate than
that of military and commercial aircraft. The success of space missions depends on be-
ing able to obtain deterministic behavior over long periods of time and, in many cases,
with very limited real-time support from the ground operating teams. In addition, the
environment in which a space system operates can be significantly more hostile than that
of other critical real-time systems, due to factors such as vacuum, radiation or extreme
temperatures. All of this makes the processes to design, develop and test space equipment
time-consuming and costly. Likewise, the avionics in such equipment often consist of
old and robust components, often created specifically for use in the space industry (such
as LEON processors [46]), which have proven their reliability over years of successful
missions.

For the same reasons as in aviation (increased complexity of software applications,
increased processing capacity of hardware platforms, promotion of interoperability and
reusability...), in recent years there is also a trend in the space sector towards COTS com-
ponents, in order to take advantage of the powerful resources they offer, while reducing
development costs, power consumption and physical space on the spacecraft. This has
led to the emergence of a new space market, commonly referred to by that name: New
Space [47]. This new market is based on the development of small space platforms that
have a significantly lower associated cost than classic space missions and, therefore, less
stringent reliability requirements. Both the reduction in cost and the openness to com-
mercial components have led New Space to welcome private companies [48], something
not common in the space industry, which has traditionally been driven by public organi-

15

Chapter 2. Fundamentals

zations. The entry of private companies has considerably increased the number of players
in the industry, which has boosted its competitiveness and the emergence of new low-cost,
high-performance applications such as space debris removal, Earth observation missions
or satellite-based global communication networks.

It is clear that there is a problem in combining all or most of the functionality of a
space system on a single high-capacity hardware platform: there are safety-critical func-
tionalities whose failure would have a catastrophic impact on the mission objective, while
other functionalities are not so critical and can therefore be subject to less demanding and
less costly verification and validation processes. In this context, virtualization is a key
technology since, as explained in section 2.1.1, it guarantees by its inherent characteris-
tics the temporal and spatial separation of different software modules, so that there is no
interference between them and the failure of one does not affect the others. When virtual-
ization is used to deploy functionalities of different criticality levels on the same platform,
the resultant systems are usually referred to as mixed-criticality systems [49] [50].

Virtualization in the Automotive Industry

Since the appearance of the first electronic ignition systems in the 1970s, the number of
electronic components in cars has constantly increased. Whereas previously mechanical
systems accounted for most of the complexity of cars, electrical and electronic systems
have become more sophisticated over time [51]. In fact, it is currently estimated that
35% of the cost of a vehicle corresponds to electronics, greatly exceeding the 20% that it
supposed in 2000 or the 30% that it supposed in 2010, and it is estimated that this figure
will continue to grow up to 50% by 2030, according to a report by PriceWaterhouseC-
oopers [52]. Today, most vehicles are based on a powerful electrical and electronic (E/E)
architecture on which the engine, braking, steering and other comfort and safety features
depend. Embedded software has begun to gain paramount importance in automotive de-
sign and development, and it will continue to gain importance as companies continue
to develop the technology, especially in areas such as autonomous driving. This means
that the number of ECUs (Electronic Control Units) is increasing in modern vehicles: a
current car has more than 150 ECUs for different purposes [53]. Faced with this chal-
lenge, different solutions have been proposed in recent years. Among these, virtualization
is one of the most studied [54], since it would allow combining several ECUs on the
same hardware platform, maintaining a temporal and spatial separation between them.
This separation is essential, since critical systems such as driving assistance, which are
usually managed by safety-certified RTOSs, coexist in the same vehicle with informa-
tion and entertainment systems, which have significantly more lax safety constraints [55].
Using virtualization, the functionality previously distributed among many ECUs can be
collected in a smaller number of DCUs (Domain Control Units), each system adhering to
its own safety requirements [56].

Although not as direct as between the space and aviation sectors, there are many simi-

16

Chapter 2. Fundamentals

larities between these and the automotive sector: Gaska and Chen [57] make an interesting
analogy between the architecture of an automotive system and an IMA avionics architec-
ture. They discuss how multicore processing, along with hypervisor technology, are key
enablers of the future of these types of systems, and propose various candidates for both
multicore platforms (Intel Xeon FPGA SoC, NVidia Tesla SoC or Xilinx Ultrascale+)
and hypervisors (VxWorks, Lynx or Green Hills). However, the article does not show any
type of test or deep analysis that allows us to opt for any of the alternatives.

2.1.4. Hypervisors for Safety-Critical Real-Time Systems

Having explained the basis for understanding the hypervisor concept and some of the
reasons why virtualization not only has a place, but may play a fundamental role in the
future of several safety-critical industries, the following section includes an exhaustive
survey in which the existing scientific literature is reviewed in search of evidence of the
use of hypervisors in safety-critical embedded systems, in order to be able to qualitatively
compare the different hypervisors used. The search criteria used to select these scientific
articles are described below.

Paper Selection Criteria

The interest of the research topic for the community of real-time systems is undoubted.
The term hypervisor is very popular in Google trends being around 75% in the last 10
years. As we want to restrict the overview on hypervisors to safety-critical systems,
we have searched for a term consisting of the word "hypervisor" together with differ-
ent words related to industries in which safety-critical embedded systems are developed
in the most popular and relevant databases of scientific and engineering research articles:
IEEE Xplore and Science Direct. Table 2.1 shows the results obtained.

Table 2.1: Number of papers resulting from the search of the word "hypervisor" and words
referring to safety-critical sectors

Automotive Aerospace Aviation Avionics Safety-Critical Spacecraft Aircraft Vehicle
IEEE Xplore 44 29 6 22 37 4 5 24
ScienceDirect 144 68 39 71 117 22 64 322
Total 188 97 45 93 154 26 69 346

Note that not all the articles and books resulting from the search are of interest to this
survey, as some only mention the hypervisor concept in a context not directly related to
this technology. However, sorting the search results in chronological order clearly shows
the upward trend in the importance and depth of hypervisors in safety-critical embedded
systems. After eliminating duplicate results, Table 2.2 presents the distribution of articles
and books by year and Figure 2.6 shows them graphically.

These results are supplemented with searches in Google Scholar, to complement the

17

Chapter 2. Fundamentals

Table 2.2: Distribution of the results of the previous search by year

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
2 1 2 4 3 1 8 10 22 18 27 40 36 41 48 55 66 74

Figure 2.6: Number of papers published each year according to the previously defined
search

articles found in these two large databases with the most relevant articles found in smaller
databases. From all these results, only journal articles and conference proceedings are
selected, discarding books, which usually collect valuable technical information but do
not usually present new information that has not been previously presented in articles.
Finally, among the remaining articles, a review is carried out to select only those articles
that meet one of the following criteria:

• The article deals with the use of an existing hypervisor (open-source or proprietary
licensed) in the context of a safety-critical embedded system.

• The article presents modifications made to an open-source hypervisor for use in the
context of a safety-critical embedded system.

• The article presents the development of a new hypervisor for use in safety-critical
embedded systems.

The criteria for selecting the articles to be reviewed in this survey are reflected graph-
ically in Figure 2.7.

The selected jobs and the hypervisors used in them are discussed in detail below. Be-
cause of their importance and the greater existence of evidence in this regard (in scientific
literature or through dissemination by private companies), work using Xen (2.1.4), KVM
(2.1.4) and XtratuM (2.1.4) is discussed in dedicated sections. The rest of the hypervi-
sors are grouped together in section 2.1.4. Previously, however, section 2.1.4 introduces

18

Chapter 2. Fundamentals

Figure 2.7: Articles selection criteria

some hypervisors that have great importance and presence in the industry but, due to their
proprietary licensing and high price, are hardly studied in academic works.

Proprietary Hypervisors

Note that although a hypervisor inherently offers TSP features, it is not the only option
to implement them. An RTOS can offer TSP features if it is able to fully isolate software
modules, so each of them can run different criticality partitions. For example, there are a
number of proprietary RTOS, oriented to safety-critical real-time industrial applications,
that offer TSP features and have already been certified according to standards such as DO-
178C or ISO 26262 (some details on these and other standards are given in section 2.2, so
that the importance of complying with them is understood when the developed software
is actually to be used in real use cases). It is the case of WindRiver VxWorks, Green
Hills Integrity, LynxOs, SYSGO PikeOS, JetOS or DDCI Deos. In some cases, given
the increasing complexity of these types of applications and the increase in processing
power in current hardware platforms, they have ended up including virtualization capacity,
or resulting in the appearance of new virtualization products from the companies that
develop them. These products are:

• WindRiver Helix

• Green Hills Integrity Multivisor

• LynxSecure Separation Kernel Hypervisor

• SYSGO PikeOS

• DDCI Deos

19

Chapter 2. Fundamentals

• RTS Hypervisor

These hypervisors have a proprietary license and are aimed at critical real-time sys-
tems such as aviation or automotive, so they are quite expensive. This makes their use
confined almost exclusively to commercial purposes, so there is little published literature
on them. Therefore, the information compiled in the following table, which compares
each of these options, has been compiled mainly from sources provided by the develop-
ers themselves. In addition, it must be taken into account that these hypervisors are all
developed by large companies and are direct competitors, which is why they offer similar
functionality in features such as inter-partition communication, real-time support or safety
and security services. Therefore, a comparison between the hypervisors listed above is
made below, based on criteria by which they differ:

• Hypervisor Type: As explained in section 2.1.2, hypervisors can run directly on
the hardware (type 1 or bare-metal) or on an OS host (type II).

• Supported HW Architecture: Although it is not an exhaustive analysis (the com-
patibility case with each different processor or SoC could be studied), the processor
architectures supported by each of the hypervisors are listed.

• Virtualization Type: As explained in section 2.1.2, hypervisors use different virtu-
alization techniques that can be roughly grouped into two types: paravirtualization
and full-virtualization.

• Supported guest OSs: The different operating systems that can be run as guests
on each of the hypervisors. Note that, in the cases of hypervisors that offer full-
virtualization, any operating system can be run unmodified, although it is usually
more efficient to run a paravirtualized operating system if possible.

• Nationality of the developer: This is an important aspect to take into account, since
there may be cases in which an original equipment manufacturer faces restrictive
regulation when it uses the product of a company from another country, in the event
that there is competition between both countries (as sometimes happens with the
USA, Russia and many European countries).

The comparison is reflected in Table 2.3.

Xen

Xen is a type-1 hypervisor, originally developed by the University of Cambridge Com-
puter Laboratory, that is now being developed by the Linux Foundation, with support
from Intel. Xen is free and is one of the few type-1 hypervisors that is available as open-
source. It is also, by far, the hypervisor on which most literature and research are based,

20

Chapter 2. Fundamentals

Table 2.3: Proprietary hypervisors comparison

Hyp.
Type

Supported
HW

Architectures

Virtualization
Type

Supported
Guest OS

Developer
Nationality

WindRiver
Helix

1
ARM
x86

Full
Virtualization

Any unmodified
OS

American

Green Hills
Integrity
Multivisor

2
ARM
x86

Full
Virtualization

Any unmodified
OS

American

LynxSecure
Separation
Kernel

1
ARM

PowerPC
x86

Paravirt.

Full
Virtualization

Any unmodified
OS (fully

virtualized)

LynxOS and Linux
(paravirtualized)

American

SYSGO
PikeOSa 1

ARM
PowerPC

x86
SPARC

Paravirt.

Full
Virtualization

Any unmodified
OS (fully

virtualizated)

PikeOS and Linux
(paravirtualized)

German

DDCI
Deosa 2

ARM
PowerPC

x86
Paravirt. RTEMS American

RTS
Hypervisor

1 x86
Full

Virtualization
Any unmodified

OS
German

OpenSynergy’s
COQOS

1 ARM
Full

Virtualization
Any unmodified

OS
German

aNote that in the case of PikeOS and Deos, the same product offers typical RTOS functionality and
virtualization capabilities.

so this section is dedicated to briefly describing its characteristics and analyzing the re-
sults of the main research works with respect to Xen, especially those related to real-time
safety-critical systems.

As other hypervisors do, Xen allows to run many instances of an OS (or different OS)
in parallel on a single machine. A running instance of a virtual machine is called a do-
main or guest. However, although the hypervisor is the first program running after exiting
the bootloader and runs directly on the hardware, it needs a special first domain (called
domain 0 or dom0) that has specific privileges and is responsible for controlling the hyper-
visor and starting other guest domains. These other domains are called domUs (because
they are unprivileged domains, in the sense they cannot control the hypervisor or man-
age other domains). Dom0 has direct access to the hardware, so the hypervisor does not
contain device drivers. Instead, the devices are attached to dom0 and use standard Linux

21

Chapter 2. Fundamentals

drivers. Dom0 can then share these resources with the rest of the domains. Although Xen
is not as vulnerable to single-point failures as a type II hypervisor (in which the host OS
crash automatically causes the guest OS to crash), the fact that most physical resources
reside on dom0 means that, if there is a failure in dom0, the rest of the system will lose
communication capabilities, both externally and between domains. Even if their function-
ality is degraded, the domUs could remain operational even after the failure of dom0, but
any additional failure in the domU would be unrecoverable, since dom0 would not be able
to reboot it. You could return the system to its initial configuration by rebooting dom0
but obviously doing so would interrupt system availability for mission-critical applica-
tions. There are methods to mitigate this problem by enhancing the autonomy of domUs.
For example, a domU can be given direct hardware access through Xen’s pass-through
virtualization feature.

Xen was originally developed for x86 processors in 2003, and for that architecture
it provides both paravirtualization and full virtualization. The porting of Xen to ARM
involved major changes in its architecture and, as a result, its code for ARM architectures
is considerably smaller than that of x86 architectures but, as a main limitation, it stands
out that Xen for ARM only supports paravirtualization [58].

After this brief explanation of Xen, the most important works that use this hypervisor,
especially those that apply it to safety-critical embedded systems, are listed below.

VanderLeest et al. [42] use Xen over the Zynq UltraScale+ MPSoC as a case study.
Although the Zynq Ultrascale+ contains a quad-core A-53 processor, as a possible solu-
tion to the problem of shared resources, they propose a simplification in which different
partitions do not run simultaneously on different cores. This prevents interference in, for
example, access to the L2 cache or memory bus bandwidth. However, this simplifica-
tion does not allow the efficient use of the Zynq Ultrascale+ large processing capacity.
In the event that more than one partition needs to access the same I/O resource, the arti-
cle proposes two ways to do it: via software (although this can be a bottleneck, limiting
bandwidth or latency) or via hardware, implementing an arbitrator in the FPGA of the
MPSoC. It must be taken into account that the certification of arbitration logic must be
done at a level equivalent to the highest level of criticality of any of the serviced guests
(if implemented in software, in accordance with the DO-178C standard; in case of being
implemented in hardware, in accordance with the DO-254 standard). The possibility of
using the LynxSecure Separation Kernel Hypervisor and the Mentor Graphics Multicore
Framework is also discussed in the article, although neither of these options is analysed
in depth.

In their article [59], Daniel Sabogal and Alan D. George explain the development of a
framework called Virtualized Space Applications (ViSA). ViSA leverages the capabilities
of the Xen hypervisor to provide a safe environment (software-based fault tolerant) on the
Zynq Ultrascale+ and improve the dependability and availability of a flight system. The
framework manages to improve the system in these aspects but presents problems when

22

Chapter 2. Fundamentals

the APU of the Zynq Ultrascale+ is irradiated. In addition, there is work to be done to
solve one of the main problems of Xen-based systems, which is the dependency on dom0.
Currently, no article has been published that continues this work.

In 2010, DornerWorks introduced a prototype implementation of the ARINC 653
standard, extending the Xen hypervisor [60]. In a 2013 article, VanderLeest and other
DornerWorks researchers explain these ARINC 653 extensions made on Xen a little more
in depth and name the resulting hypervisor ARLX (ARINC 653 Real-time Linux on Xen)
[61]. A few years later, ARLX was renamed Virtuosity, and VanderLeest announced that
they were adapting the hypervisor to FACE conformance [62]. Today, Virtuosity remains
an open-source hypervisor and DornerWorks benefits from it by offering maintenance
and support. Virtuosity presents the limitations of any Xen-based hypervisor, especially
in terms of certification: m the control partition (dom0) runs Linux as a guest OS. Despite
its widespread use, it is very difficult to certify Linux according to the most demand-
ing aviation or automotive standards, due to the little documentation on some of its main
components, as well as the great effort involved in certifying an operating system so large.

Kistijantoro and Gilbran extended the ARLX partition scheduler to use the primary-
backup scheme, so that the scheduler can guarantee certain services even in the event
of partition failure, using backup partitions [63]. Although they demonstrated that this
method improved the overall reliability of the system, it still presented several significant
problems: it resulted in an unacceptably high maximum latency, the scheduler was not
able to autonomously detect the failure of a partition (it depended on the partition be-
ing capable of reporting it) and did not consider the deadline of each process within a
partition.

Bijlsma et al. [64] propose a safety mechanism for autonomous vehicles that, among
other tools, uses Xen to isolate software modules in the same SoC. During their experi-
ments, using Xen’s Null scheduler, they measured the time it took for the hypervisor to
shut down a faulty VM, and found that it was much longer than the time it took to pause
it, so they opted for this option. Even so, although the mean time in 2000 experiments
was 55us (acceptable to avoid a collision and prevent the fault from propagating), they
obtained outliers of up to 1.5ms. This large variation indicates that a more deterministic
scheduling is needed in the hypervisor, to be able to use it in such critical functionality.

Karthik et al. used Xen to offer an integrated cockpit solution, in which four different
automotive systems ran on the same heterogeneous SoC [55]. However, it should be
noted that Xen was used (on an ARM Cortex-A15 processor) only to run three of those
systems, which used Linux and Android and were not safety-critical. A microcontroller
(ARM Cortex-M4) and an RTOS were used exclusively to run the other system, which
was safety-critical, without any kind of virtualization.

Xen on ARM has also been used to integrate Linux with a real-time operating system
such as ERIKA OS, which obtained the OSEK-VDX certification for automotive appli-
cations, on the same platform [65]. However, this option still has many limitations in

23

Chapter 2. Fundamentals

terms of certification: the deployment architecture is very specific (a dual-core platform in
which each OS runs on a different core) and ERIKA OS can run only as a guest domU, so
it depends entirely on the privileged domain dom0, which runs a general-purpose Linux.
As in previous examples, there is also the challenge of certifying the Xen hypervisor itself,
which does not seem approachable in its current form for meeting DAL A/B/C according
to the DO-178C standard or an automotive-grade standard such as ASIL.

Recently, Schulz and Annighöfer conducted an empirical study to test the suitability
of Xen to operate on safety-critical real-time systems [66]. In their experiments they
obtained some promising results, but in some scenarios, they observed unpredictable be-
haviour in terms of latencies and execution times. Although further research is needed,
they conclude that Xen is not realistically feasible for such systems in its current state.

KVM

KVM is an open-source hypervisor originally released in 2007 for the x86 architecture
and, since 2012, ported to the ARM architecture. KVM is integrated into the Linux
kernel (since its version 2.7.20 for x86 and its version 3.9 for ARM), so it takes advantage
of a large part of its functionality, such as memory management or CPU scheduling. In
fact, as Dall and Nieh explain [67], although in x86 KVM resides entirely in the kernel,
in ARM it is divided into two parts: one (called Highvisor) that resides in kernel space
and corresponds to most of the hypervisor’s functionality, and another (Lowvisor) that
resides in Hyp mode and is in charge of enforcing isolation and performing the context
execution switches between VMs and host. This is because trying to implement KVM
entirely in the host kernel would have involved a series of modifications on the kernel that
would have been negative in terms of performance and portability. A big advantage of
this approach is that porting KVM from one ARM platform to another is easier than with
a bare-metal hypervisor like Xen. Since ARM platforms are not very standardized and it
is very common for them to support a version of Linux higher than 3.9, this advantage is
key when compared to Xen [58].

KVM does not offer virtualization of hardware devices but relies on external tools that
run in user space, such as QEMU. Together, KVM and QEMU allow running unmodified
guest OSs [68]. However, to avoid the overhead that full-virtualization implies, there is
also the possibility of running paravirtualized OSs using Virtio [69].

There are numerous papers analyzing Xen and KVM performance overhead on x86
architectures [70] [71] [72], but only a few that do so on ARM architectures and us-
ing embedded systems. Among them, perhaps the most complete is that of Raho et al.
[58], who make a comparison in which they also include container technology (Docker,
in particular). The conclusion they reach is that the overhead performance of any of the
solutions is very small, with slight differences depending on the test run. They also ana-
lyze how KVM is more easily portable than Xen and how Docker, although fast and easy
to deploy, is a less secure alternative to hypervisors, because hypervisors use hardware

24

Chapter 2. Fundamentals

extensions to offer greater isolation (VMs do not share kernel space, while containers
do). However, in a recent paper Müller et al. measured the overhead of KVM on a self-
driving car-oriented Nvidia Drive AGX SoC and concluded that KVM produces too high
an overhead in this particular case, which makes it unusable in real-world use cases [73].

XtratuM

XtratuM [74] is a type-1 hypervisor originally developed by researchers at the Univer-
sidad Politécnica de Valencia and currently maintained by the Spanish company fentISS.
XtratuM is targeted to real-time safety-critical systems, especially in the space sector
[75], being designed based on the ARINC 653 standard. Currently, it supports Linux,
RTEMS and LithOS (an operating system from the same developers) as paravirtualized
guest OSs and allows to run bare-metal partitions using XRE, a minimal execution envi-
ronment offered by the hypervisor itself. Unlike Xen, it uses no control partition (dom0):
the hypervisor manages the partitions and its communications, IRQs and HW I/O access.
The latest versions of XtratuM support SPARCv8, ARMv7 and RISC-V architectures.
Although they are not up to date and their support is not continuous, there are also older
versions of XtratuM for PowerPC [76] and x86 [75] architectures.

XtratuM can be downloaded under the GNU General Public License, although fentISS
also offers a commercial version called XtratuM Next Generation (XNG). This version is
currently the most widely maintained by developers and, although it offers similar func-
tionality to the GPL version, its internal structure is significantly different.

ESA and CNES are two of the main promoters of XtratuM, financing projects and
research in which its development is continued and the possibility of using it in space
missions is being evaluated [77] [78]. However, the ARINC 653 oriented nature of
XtratuM makes it a good candidate for aviation applications as well, although as of today
the costly process to certify it according to the corresponding safety standards (such as
DO-178C) has not started. Efforts have also been made to use XtratuM in automotive
systems, such as the work carried out in the OVERSEE project, in which FreeOSEK (an
RTOS OSEK/VDX-compliant) was ported as a guest OS on top of XtratuM [79].

Although it is a hypervisor widely used in private industry and, for competitive rea-
sons, companies are sometimes not interested in disseminating knowledge about it, there
are a few academic papers that mention or use XtratuM on safety-critical embedded sys-
tems. These are described below:

Larrucea et al. define a series of characteristics that a safety-critical hypervisor should
meet to comply with the IEC 61508 standard, defined by the International Electrotech-
nical Commission, which covers the functional safety of electrical, electronic, and pro-
grammable electronic equipment [80]. In the same article, they map the defined features
to the XtratuM capabilities, demonstrating how it successfully covers them.

Muttillo et al. carried out a series of tests, on different hardware platforms that used

25

Chapter 2. Fundamentals

both the LEON3 and LEON4 processors, in which they demonstrated that the perfor-
mance of XtratuM competes with that of a highly proven hypervisor like PikeOS, im-
proving it in some aspects (such as timing and memory access), although it is somewhat
less predictable in the overhead introduced [81].

Researchers from the Korea Aerospace Research Institute made the effort to port a
version of RTEMS that would support Symmetric Multi-Processing (SMP) on top of
XtratuM [82] [83]. Currently, fentISS has released versions of XtratuM with which
bare-metal partitions can be run on the hypervisor in SMP, both on LEON4-based boards
and on boards based on the Zynq-7000 SoC. In addition, it is developing a BSP that will
allow to run a Linux SMP guest OS on Zynq-7000.

Campagna et al. [84] presented a prototype of an architecture in which the XtratuM
hypervisor runs on a LEON3 processor. As they describe in their article, they run three
partitions on top of XtratuM: two of them running a number-crunching application and a
checker partition that checks the outputs produced by the other two. The purpose of the
paper is to study the solvency of their solution to the injection of errors. The failure model
they assume is Single Event Upset (SEU), which models the impact of ionizing radiation
on the processor as a result of a memory bit flip. They show that using a hypervisor is
an effective method for task segregation and scheduling, as well as error detection. The
use of the hypervisor has an overhead close to the minimum possible overhead and it is
capable of detecting 96.2% of SEU faults.

During a study on the robustness of the separation kernels, XtratuM was used on a
LEON3 as a use case and 9 notable vulnerabilities were discovered that had not been
detected during the validation campaigns of the hypervisor development [85]. This not
only demonstrates the effectiveness of the error injection method used, but it was a con-
siderable help to further strengthen XtratuM, as part of the hypervisor developer team was
involved in the experiment.

XtratuM is also one of the foundations of XANDAR, a project that aims to provide
a toolchain for developing safety-critical embedded systems [86]. The toolchain, devel-
oped by a large group of partners from industry and academia, has been tested in both
avionics and automotive use cases.

Onaindia et al. propose an architecture oriented to real-time systems that monitors and
it is able to reduce system power consumption [87]. The lowest-level component of this
architecture is a hypervisor. For the prototype, because of its features and its support for
Xilinx Zynq-7000 SoCs, XtratuM is used (and extended) as hypervisor, and the prototype
is tested on two use cases of avionics and railway systems. XtratuM has also been used,
on a representative computer system used in avionics, as the basis for building a feedback
control mechanism implemented at the hypervisor level [88].

26

Chapter 2. Fundamentals

Other Hypervisors

Some research papers using or developing hypervisors other than Xen, KVM or XtratuM
are listed and briefly described below:

Missimer et al.’s Quest-V [89] uses hardware virtualization for safe and secure re-
source partitioning, offering partitions (called sandboxes) that can run their own operating
system, called Quest, or Linux. However, the work is currently discontinued and does not
support ARM multicore platforms with hardware virtualization.

Rodosvisor is a type 1 hypervisor developed by Tavares et al. It supports paravirtual-
ization and full-virtualization, and was tested on a Xilinx FPGA with a built-in PowerPC
core [90]. It is inspired by the ARINC 653 standard, but it is not fully compliant with it,
since it implements the services defined by the standard, but not strictly following the cor-
responding API. In the experiments in the article, two bare-metal (OS-less) partitions are
deployed, and a third partition runs RODOS, an RTOS for embedded systems. However,
apart from one article enhancing the hypervisor for integration into the POK operating
system in 2016 [91], there are no other known articles describing a continuation of the
work, porting the hypervisor to other HW platforms, or supporting new guest OSs.

Pinto et al. presented in 2016 a hypervisor called RTZVisor (Real Time TrustZone-
assisted Hypervisor) oriented to space applications, which used the ARM TrustZone to
provide virtualization on a Xilinx Zynq platform [92]. A few months later, they intro-
duced two extended versions of the hypervisor, called µRTZVisor [93] and SecSSy [94],
designed to increase the safety and security of its predecessor. These hypervisors have
some interesting features, such as the ability to run different almost unmodified guest
OSs, but they have other important limitations: they disable the caches and MMUs of the
guest OSs, they are limited to ARM processors offering ARM TrustZone technology and,
despite being tested on a multicore platform (Zynq ZC702), they do not support multicore
processing, so they use only one of the processor cores.

Although RTZVisor is probably the most advanced of its kind, it is neither the only nor
the first hypervisor to be based on ARM’s TrustZone technology. Winter proposed in 2008
a method that, using TrustZone, provided a virtualization framework and implemented a
prototype in which he deployed a non-secure guest in a secure Linux environment [95].
Cereia and Cibrario carried out a similar exercise, implementing a virtualization layer
that allowed to deploy an RTOS and a guest OS, pointing out some of the limitations
that ARM TrustZone imposed on them at the time: it only allowed the execution of two
OSs and, while the guest OS did not it could access or interfere with the RTOS, it did
not work in reverse, so it would not support two secure RTOS [96]. These limitations
are shared by ARM TrustZone-based hypervisors proposed in later work, such as the
Secure Automotive Software Platform by Kim et al. [97] or the open-source Xvisor
presented by Cicero et al. [98] VOSYSmonitor, from Virtual Open Systems, also allows
parallel execution of a secure partition (running an RTOS) and a partition without real-
time guarantees (GPOS), but has the particularity that it allows the non-critical partition

27

Chapter 2. Fundamentals

(GPOS) to use another hypervisor (such as Xen or KVM), so it could be argued that it also
supports multi-guest OS [99]. VOSYSmonitor gives full priority to the RTOS, allowing
the GPOS(s) to run when there are no active tasks on the RTOS.

Dasari et al. conducted a series of experiments with the ETAS Lightweight Hyper-
visor (LWHVR), a commercially viable solution in the automotive industry, which they
extend by implementing Reservation Based Scheduling (RBS) [100]. ETAS LWHVR
is a hypervisor oriented to multicore microcontrollers, with a low overhead and memory
footprint. One of the cores works as a master, and in it runs all the SW that has direct
access to the HW. Different VMs can run in the rest of the application cores. This archi-
tecture makes the use of this hypervisor not viable in monocore systems and, probably,
inefficient in the case of processors with few cores (such as dual-core processors).

Jailhouse is a simplicity-oriented hypervisor based on Linux. The hypervisor is im-
plemented as a Linux kernel module, just like Xen or KVM. As Ramsauer et al. [101]
explain, it does not perform any kind of scheduling, and simply provides static partition-
ing, directly allocating hardware resources to each partition. This has the advantage that
legacy applications can be run with no active hypervisor overhead and simplifies certifi-
cation efforts. For this reason, among others, Jailhouse is the hypervisor chosen to cement
a computing platform called SELENE, which aims to serve as a basis for developing dif-
ferent safety-critical applications, from flight applications to autonomous robotics [102].
However, the fact of this hypervisor being based on Linux implies other complications in
terms of safety and certification, such as the fact that it requires other software elements
(UEFI Firmware code or bootloader, for example) that must be considered in the certifica-
tion process. In addition, it still has limitations in essential aspects such as communication
between VMs, for which it does not offer end-to-end timing guarantees. Some of these
issues may be faced during the development of SELENE, which is scheduled to end in
December 2022. Boomerang [103] is another proposal that leverages the features of a
hypervisor to develop a system in which to run a critical partition along with a non-critical
guest OS.

Bao [104] is also a proposal based on this concept of static partitioning, in which
the hypervisor is freed from resource management, once the CPU cores, memory or I/O
devices have been assigned to each guest OS. One of the limitations of this simplistic
approach is that the number of guest OSs is limited by the number of physical CPUs,
unless other virtualization technology runs on top of the static partitioning hypervisor.

OKL4 is a popular Type I hypervisor developed by Open Kernel Labs (the company
was acquired by General Dynamic Mission Systems in 2012, and the hypervisor is no
longer open-source), intended to be deployed in embedded systems. It is especially popu-
lar in the mobile phone industry (estimated to have been deployed in hundreds of millions
of them [105]) and is capable of paravirtualizing various high-end operating systems,
including Linux, Windows and VxWorks. In addition, it can offer a simple POSIX inter-
face by itself, so it is able to function as a minimal OS for the implementation of safety

28

Chapter 2. Fundamentals

or security critical applications [106]. Although it does not support full-virtualization,
OKL4 is able to take advantage of the virtualization extensions of some ARM processors
to reduce the effort required to paravirtualize an OS.

seL4 is also a microkernel of the L4 family available, at different levels of maturity,
for ARM, x86 and RISC-V architecture processors. Its development started in 2006, with
the intention of providing a basis for secure, reliable, and safe systems. The kernel is open
source, available under the GNU GPL v2 license, and most of the libraries and tools are
under the BSD 2 clause. seL4 can run standalone as an OS with TSP capabilities, but it
can also be configured as a bare-metal hypervisor on which, in addition to running native
applications, Linux virtual machines can be deployed [107].

Another open-source hypervisor geared towards having a small footprint for its use
in embedded systems is NOVA [108]. According to its developers, the hypervisor is the
base of every other component of a system that uses it, so it should be as small and trusty
as possible. However, unlike OKL4, NOVA offers full virtualization, thus, as explained
above, it results in a slightly more complex and less efficient, yet more flexible hypervisor
[105].

ACRN [109] is a lightweight hypervisor oriented to IoT and embedded systems.
Although its architecture makes it quite flexible and allows multiple non-safety-critical
VMs to be deployed, the number of safety-critical VMs is limited to two at best. Another
important limitation is that it is based on Intel virtualization technology, so its supported
HW is limited to some processors from this manufacturer. Among the guest OSs that it
supports we can find Ubuntu, Android, Windows, as well as others more interesting in
terms of safety, such as VxWorks and Zephyr.

Elektrobit also offers its hypervisor implementation, called Corbos, of which there is
not much published information. It is known to be a microkernel-based hypervisor that
allows at least Linux partitions to be deployed alongside other safety-critical partitions.
Corbos is mentioned in an article by Lampka and Lackorzynski, to exemplify an auto-
motive architecture that uses virtualization to harness the computing power of an ECU,
without sacrificing the safety and security of the most critical software [110].

In 2014, Kim et al. introduced a hypervisor geared towards critical real-time systems,
called QPlus-Hyper [111]. This hypervisor allowed the execution of an RTOS and a
GPOS on the same platform, using the virtualization extensions present in some ARMv7
cores. However, there is no evidence that the development of this hypervisor has been
continued since 2015, when this hypervisor was used to carry out a proof of concept that
investigated how a GPU that is shared between several guest OSs could be virtualized
[112]. Other than that, it is only briefly mentioned in a 2019 article that discusses cache-
interference issues on clustered multicore platforms [113]. For this reason, and due to the
lack of public information on the internal structure of the hypervisor, it has been decided
not to take it into account in the comparison.

Reinhardt and Morgan evaluate a type I hypervisor called RTA-HV, developed by

29

Chapter 2. Fundamentals

ETAS Ltd and aimed at efficient use of resources in multicore systems. In their research,
they paravirtualized guest OSs on the Infineon AURIX TC27X platform [114]. As high-
lighted in the article, a non-intrusive hypervisor has the added advantage that it acts as
an abstraction layer, which encourages software reuse, facilitating porting to another plat-
form. However, in the work presented in their article there are certain limitations, mainly
due to the low virtualization support on the part of the HW used. For example, they did
not achieve complete temporal isolation between partitions and could only do a one-to-
one mapping between partitions and CPU cores. Despite this, they analyze and reason
that hypervisors are a good solution to the problem of consolidating different systems in
the same ECU.

Manic et al. [53] used Blackberry’s QNX hypervisor to deploy two virtual machines,
with different OSs, on the same ECU. The objective of the experiment was, in addition
to being able to carry out independent processing in each of these virtual machines, to
demonstrate that they can share a single graphic display without affecting either the per-
formance or the safety of the vehicle. QNX is a Type I hypervisor certified to ISO 26262
ASIL D (in addition to the industry standard IEC 61508 SIL 3). It supports both safety
(QNX Neutrino RTOS and QNX OS for Safety) and non-safety (Linux or Android) guest
OSs, and can be deployed on the latest ARMv8 and x86-64 SoCs.

Lemerre et al., from the Atomic Energy and Alternative Energies Commission, ex-
tended the RTOS PharOS, adding a paravirtualization layer that allowed it to run Tram-
poline (an OSEK/VDX-compliant RTOS) partitions, which run as time-triggered tasks
within PharOS [115]. Configured in this way, PharOS can be considered a type II hyper-
visor.

HTTM is a relatively recent type 2 hypervisor that offers full virtualization on MIPS
architectures, so there is no need to use any hardware-specific extensions [116]. Its main
weakness in terms of its application in safety-critical systems is that it must run on a Linux
host, which limits its ability to deliver real-time performance, and that it currently only
allows the creation of a guest VM. Even so, the work is still evolving, and there are recent
papers evaluating and trying to improve the efficiency of HTTM [117]. Although it is
theoretically open-source, we have not been able to find the source code in any repository
and we do not know the license under which it is distributed.

Minos is an open source type 1 hypervisor that allows multiple VMs to be deployed
on SoCs based on the ARMv8-A architecture. Through paravirtualization, it can host
several Linux, Android and Zephyr guest VMs, and is oriented to IoT and embedded
devices. There are hardly any research papers mentioning Minos, but details about its
internal structure and source code can be consulted through its Github repository [118].

There are a couple of initiatives that propose hypervisors targeted at SoCs that cannot
be considered Type 1 or Type 2, since they are implemented as another hardware module
(implemented in the SoC’s FPGA), rather than as a software layer. Developers of these
hypervisors are often referred to as type 0 hypervisors. Janssen et al. are the first to

30

Chapter 2. Fundamentals

coin this term [119], although they did not go so far as to define a complete hypervisor,
but rather a prototype running on a Microblaze core that allows bare-metal applications
to be deployed isolated from each other. Jiang et al. developed BlueVisor, which does
achieve this "type 0 hypervisor" in which all its components run in hardware, and allows
paravirtualized guest OSs (FreeRTOS, uCOS-II and XilKernel) to be deployed on softcore
processors at the highest privileged level [120]. However, due to the current immaturity of
these initiatives and because their nature is different from that of the hypervisors reviewed
in this survey, we leave these type 0 hypervisors out of the comparison.

2.1.5. Safety-Critical Real-Time Hypervisors Comparison

Having analysed the main hypervisors that have been applied to safety-critical embed-
ded systems, and according to the information gathered from the cited sources (mainly
academic research papers), this section compiles their characteristics and compares them.

There are different characteristics according to which hypervisors can be compared
and ranked. Based on user requirements and their knowledge of embedded systems,
Hamelin et al. propose a set of practical criteria by which any potential user could select
the most suitable one for their application or system [121]. Since in section 5 virtually all
hypervisors for use in a safety-critical real-time embedded system have been reviewed,
it is interesting and potentially useful for future research to classify these hypervisors
according to some of the parameters established by Hamelin et al:

• Hypervisor Type (type 1 or 2).

• Supported HW architectures (ARM, x86/64...).

• Supported Guest OS (Linux, RTEMS, FreeRTOS...).

• Communication Services (inter-partition communication).

• API (POSIX, OSEK, ARINC 653).

• License.

To these criteria we can add a few more, having reviewed the state of the art and seen
where many of the hypervisors studied differ:

• Virtualization Type (full virtualization or paravirtualization).

• Scheduling (ARINC 653, no scheduling...).

• Real-time partitions support (and limitations, if any).

• Developers’ nationality/country of origin (in addition to being of interest for an-
alyzing the investment of each country in this type of technology, it could have an
impact on its use in certain countries).

31

Chapter 2. Fundamentals

• Ongoing maintenance (evidence of maintenance in the last 3 years).

• Multi-Guest OS (supports more than two operating systems running simultane-
ously on different partitions).

• Multicore (runs on target hardware using more than one CPU core).

Note that this comparison will take into account the most prominent hypervisors in
sections 2.1.4, 2.1.4, 2.1.4 and 2.1.4. Proprietary hypervisors that, due to their high price,
are oriented towards commercial exploitation and are not interesting for future research,
have their own comparison table according to other criteria in section 2.1.4.

Table 2.4: Hypervisors Comparison (Part I)

Xen XtratuM* KVM Virtuosity Quest-V
Hyp. Type 1/2a 1 1/2a 1/2a 2

Virtualization
Type

Paravirtualizationb

Full Virtualization
Paravirtualization

Paravirtualization
Full Virtualization

Paravirtualization Full Virtualization

Supported HW
Architectures

x86
ARM

ARM
SPARC
RISC-V

x86
ARM

PowerPC

x86
ARM

x86

Supported
Guest OS

Any unmodified OS
that runs on the supported

HW architectures

LithOS
Linux

RTEMS

Any unmodified OS
that runs on the supported

HW architectures

Linux
FreeRTOS

Any unmodified OS
that runs on the supported

HW architectures
Inter-Partition

Communication
Yes Yes Yes Yes Yes

API Own API APEX Own API APEX POSIX

License GNU GPL v2
GNU GPL v2

Professional version
also available

GNU GPL GNU GPL v2 GNU GPL v3

Scheduling

Borrowed Virtual Time
Simple Earliest Deadline First

Credit
ARINC 653

ARINC 653 Completely Fair ARINC 653 No (static partitioning)

Multi-Guest
OS

Yes Yes Yes Yes Yes

Real-Time
Support

Noc Yes Noc Noc Yes

Developers
Nationality

Worldwide Spanish Worldwide American American

Ongoing
Maintenance

Yes Yes Yes Yes No

Multicore Yes Yes Yes Yes Yes

aHypervisors like Xen, KVM, Virtuosity (Xen-based) or Jailhouse cannot easily be categorised as type
1 or type 2. On the one hand, they extend the Linux kernel to make it a type 1 hypervisor, but the host OS
remains fully functional and all other guest OSs run as Linux processes on this host, so in this sense the
hypervisor should be considered as type 2.

bXen supports full virtualization and paravirtualization for x86 architectures. For ARM architectures, it
only supports paravirtualization.

cHypervisors such as Xen, KVM or Virtuosity (Xen-based) support real-time guest OSs. However, it
should be noted that all these guests (domUs) will always depend on the correct functioning of the host
(dom0), which is based on the Linux kernel and is not formally deterministic.

Discussion

On the one hand, Tables 2.4 to 2.7 show that paravirtualization is the most popular method
of virtualization (70% of the hypervisors analysed offer paravirtualization), so it seems

32

Chapter 2. Fundamentals

Table 2.5: Hypervisors Comparison (Part II)

Rodosvisor RTZVisor Xvisor VOSYSmonitor RTA-LWHVR
Hyp. Type 1 1 1 1 2

Virtualization
Type

Paravirtualization
Full Virtualization

Paravirtualization
Paravirtualization
Full Virtualization

Full Virtualization Unknown

Supported HW
Architectures

PowerPC ARM
x86

ARM
RISC-V

ARM PowerPC

Supported
Guest OS

Any unmodified OS
that runs on the supported

HW architectures
FreeRTOS

Any unmodified OS
that runs on the supported

HW architectures

Any unmodified OS
that runs on the supported

HW architectures

RTA-OS
Unknown

Inter-Partition
Communication

Yes Yes No No Yes

API
Own API

(similar to APEX)
Own API Own API Own API Own API

License Unknown Unknown GNU GPL v2 Proprietary Proprietary

Scheduling ARINC 653 Round-Robin
Priority Round-Robin

Priority Earliest Deadline First
Preemptive Priority Reservation Based

Multi-Guest
OS

Yes Yes Yes Noa Yes

Real-Time
Support

Yes Yes Yes Up to 1 partition No

Developers
Nationality

Portuguese Portuguese
Italian
Indian

French German

Ongoing
Maintenance

No No Yes Yes Yes

Multicore No No Yes Yes Yes

aVOSYSmonitor limits the number of real-time partitions that the system can host to one. By itself, it
also guarantees to be able to run a single general-purpose partition but allows the use of another hypervisor
(such as Xen, for example) to expand the number of general-purpose partitions on the system.

that efficiency is usually more highly valued than the flexibility of the virtualization so-
lution. Along the same lines, type 1 hypervisors, which are more efficient because they
have direct access to the hardware, are notably more common than type 2 hypervisors.
Although it depends on the consideration given to Xen, KVM, Virtuosity or Jailhouse,
which cannot be easily classified between type 1 and type 2, only 25% of hypervisors are
undoubtedly type 2: Quest-V, RTA-LWHVR, NOVA, PharOS and HTTM.

On the other hand, we can see that Linux is clearly the most common guest OS sup-
ported by the hypervisors analyzed. Counting hypervisors offering full virtualization, up
to 85% of hypervisors support an embedded Linux distribution as guest OS. This is not
surprising in that Linux offers a robust open-source kernel, proven over many years, has
a large community and provides access to a large number of software tools and develop-
ment environments. As for real-time operating systems, we can find that the hypervisors
analysed support some very popular ones, such as FreeRTOS, RTEMS, Zephyr or Vx-
Works. ARM is the hardware architecture on which most hypervisors can be deployed
(70% of the hypervisors analysed have support for some ARM architecture), followed by
x86 architectures (50%) and RISC-V architectures (25%) and PowerPC (clearly below
with 15%). The first hypervisors to adapt to the RISC-V architecture, a modern alterna-
tive to the more classical processors that is gaining momentum in the space, aviation, and
automotive sectors, are XtratuM, XVisor, Bao, PharOS and seL4.

Although in the case of open source hypervisors it is common for there to be con-

33

Chapter 2. Fundamentals

Table 2.6: Hypervisors Comparison (Part III)

Jailhouse Bao OKL4 NOVA ACRN
Hyp. Type 1a 1 1 2 1a

Virtualization
Type

Paravirtualization Paravirtualization Paravirtualization Full Virtualization Paravirtualization

Supported HW
Architectures

x86
ARM

ARM
RISC-V

ARM
x86

MIPS

x86
ARM

x86

Supported
Guest OS

Linux
FreeRTOS

Zephyr

Linux
FreeRTOS

Erika RTOS

Linux
Windows
VxWorks

Any unmodified OS
that runs on the supported

HW architectures

Linux
Windows
VxWorks
Zephyr

Inter-Partition
Communication

Yes Yes Yes Yes Yes

API Own API Own API POSIX Own API Own API
License GNU GPL v2 GNU GPL v2 Proprietary GNU GPL v2 BSD 3-Clause

Scheduling No (static partitioning) No (static partitioning) Round-Robin Priority Preemptive Priority
Round-Robin Priority

Borrowed Virtual Time
Multi-Guest

OS
Yes Yes Yes Yes Yes

Real-Time
Support

Yes Yes Up to 1 partition Yes Up to 2 partitions

Developers
Nationality

German Portuguese American German Chinese

Ongoing
Maintenance

Yes Yes Yes Yes Yes

Multicore Yes Yes Yes Yes Yes

aAlthough Jailhouse is a type 1 hypervisor, it requires a Linux partition that loads the hypervisor
firmware. After handing over control to the hypervisor, the Linux partition must continue to run. Some-
thing similar happens with the ACRN hypervisor, which requires a pre-launched partition that has exclusive
access to certain hardware elements.

tributions from different developers from all over the world (this is especially noticeable
in the larger hypervisors in terms of development time and lines of code, such as Xen
and KVM), it can be seen that there are certain countries that stand out above the rest
in terms of the development of virtualization technologies for embedded systems: the
United States, Germany and France alone account for 50% of the hypervisors analyzed.
This trend is even more pronounced in the case of proprietary hypervisors with more ex-
pensive licenses: in Table 2.3, all the hypervisors analysed are American or German. In
any case, these figures are not so surprising considering that these countries have a very
strong embedded systems industry, especially safety-critical embedded systems, such as
aviation, space, defense, or automotive. The number of Portuguese initiatives is striking,
although only one of them is still actively supported (Bao). Besides them, only China
is the country of origin of multiple (two) hypervisor development initiatives: ACRN and
Minos.

Even with all these data, it is difficult to advise or advise against the use of one of
these hypervisors over the others, because it will depend to a large extent on the particular
needs of each investigation. As a general rule, hypervisors for which there is no ongoing
maintenance (Quest-V, Rodosvisor and RTZVisor) should be avoided. If a low-overhead
solution is required, it is better to opt for type 1 hypervisors offering paravirtualization,
such as XtratuM, XVisor, OKL4, Minos or seL4. If the HW platform has sufficient re-

34

Chapter 2. Fundamentals

Table 2.7: Hypervisors Comparison (Part IV)

Corbos Minos PharOSa seL4 HTTM
Hyp. Type 1 1 2 1 2

Virtualization
Type

Full Virtualization Paravirtualization Paravirtualization Paravirtualization Full Virtualization

Supported HW
Architectures

Unknown ARM
ARM

RISC-V

ARM
x86

RISC-V
MIPS

Supported
Guest OS

Any unmodified OS
that runs on the supported

HW architectures

Linux
Android
Zephyr

PharOS (native)
Trampoline

Linux
Any unmodified OS

that runs on the supported
HW architectures

Inter-Partition
Communication

Yes Yes Yes Yes No

API POSIX Own API OSEK Own API Own API
License Proprietary GNU GPL v2 Apache v2.0 GNU GPL v2 Unknown

Scheduling Unknown Unknown
ARINC 653

Preemptive Priority
Preemptive Priority Completely Fair

Multi-Guest
OS

Yes Yes Yes Yes No

Real-Time
Support

Yes Yes Yes Yes No

Developers
Nationality

German Chinese French Worldwide Pakistani

Ongoing
Maintenance

Yes Yes Yes Yes Yes

Multicore Yes Yes Yes Yes Yes

aPharOS is originally an open source RTOS. However, Lemerre et al. added a virtualization layer to the
RTOS in order to deploy VMs using another RTOS (Trampoline) [115], which technically makes PharOS
a type 2 hypervisor.

sources, especially in terms of processing cores, it might be interesting to opt for simpler
solutions offering static partitioning to obtain even lower overhead, such as Bao or Jail-
house. Even so, in the case of Jailhouse, as in the case of Xen, KVM or Virtuosity, it
must be taken into account that their use is associated with the mandatory deployment
of at least one Linux partition, so they might not be interesting in case the system to be
developed has real time requirements. These hypervisors, as well as type 2 hypervisors
(RTA-LWHVR, NOVA, PharOS or HTTM) and type 1 hypervisors offering full virtual-
ization (Corbos and VOSYSmonitor) can be interesting in case system resources are not
a very limiting factor, and a flexible solution is sought.

Finally, as regards their application in safety-critical systems, XtratuM, which has
been applied in several aerospace projects and research works and is in the process of cer-
tification in some of them, as well as static partitioning solutions (Bao and Jailhouse) for
simpler systems, would be particularly recommendable. In all these cases there is support
for real-time operating systems, although XtratuM would be the most recommendable
due to its API, which is much more similar to the APEX required by the ARINC 653
standard.

35

Chapter 2. Fundamentals

2.2. Safety-Critical Embedded Systems Standards

The present thesis is submitted in partial fulfilment of the requirements for the degree of
an Industrial Ph.D. According to art.15 bis of RD 99/2011 of January 28, the designation
"Doctorado Industrial" (Industrial Ph.D.) applies to those programmes that are totally
or partially carried out within a company and aims to promote research in companies
in technological sectors. Given this special characteristic, we consider it interesting to
dedicate a few pages to present some of the standards that apply to software development
in the space, aviation, and automotive sectors. Note that these are some of the standards
that the hypervisor and the rest of the software developed in this, or other research works
would have to comply with, if it were to be put into practice in a real commercial system.

2.2.1. Aviation Software Standards

FACE Technical Standard

The Future Airborne Capability Environment (FACE) Technical Standard defines an open
reference architecture aimed at increasing the reusability and portability of software com-
ponents and creating software product lines across the military aviation domain [122].
The FACE approach enhances portability from one operating environment to another
through the application of modular architecture, hardware abstraction, standardized inter-
faces, and data models. In the long term, the objective of FACE is to reduce development
costs, integration costs and time-to-field for avionics capabilities.

FACE is not the only standard oriented to develop an Open System Architecture
(OSA). Tokar [123] analyzes, together with FACE, two other initiatives that have the
same objective: Unmanned Aerospace Systems Command and Control Standard Initia-
tive (UCI) and the Open Missions Systems (OMS) initiative. While the latter are more
focused on UAVs, Tokar concludes in his article that FACE is a standard with a broader
and more complete scope, and that it has a great momentum in the current military avia-
tion industry, especially in the American Army. The National Defense Authorization Act
for Fiscal Year 2017 requires all defense acquisitions to use the Modular Open-System
Approach (MOSA) to the maximum extent possible as of 2019. MOSA is not a standard,
technically speaking, but a business and technical strategy. FACE could be considered a
concrete example of a standard that fits within MOSA [124].

DO-178C

DO-178C, Software Considerations in Airborne Systems and Equipment Certification
(and its European equivalent, ED-12), is the certification standard and main document
by which certification agencies, such as the FAA or EASA, approve flight software. The
current edition was developed in 2011 and approved in 2012, and is the successor to DO-

36

Chapter 2. Fundamentals

178B, which dates back to 1992 [125]. Although there is no publicly experimental data
to demonstrate its effectiveness, it is clear that the standard has been a success: since its
inception, there has not been a single fatal accident on a commercial aircraft attributed to
a software error [126].

The objective of DO-178C is to provide guidance for the development of flight sys-
tems software, so as to ensure that it performs its intended function with an appropriate
level of confidence. DO-178C is goal-based and companies can use a variety of means
to achieve compliance as long as they meet the goals in question. To demonstrate com-
pliance with the standard, companies must provide various documents (the nature and
number of these documents varies, depending on the criticality of the software in ques-
tion) related to their development processes. To establish the criticality of the software,
the Design Assurance Level (DAL) defined in ARP4754 is used, in which each level cor-
responds to the different effects that a failure condition in the system can cause [127].
Specifically, all software whose anomalous behavior, as shown by the system safety as-
sessment process, would cause or contribute to a failure of system functions...

• ...resulting in a catastrophic failure condition for the aircraft, will be categorized as
DAL A.

• ...resulting in a hazardous/sever-major failure condition for the aircraft, will be cat-
egorized as DAL B.

• ...resulting in a major failure condition for the aircraft, will be categorized as DAL
C.

• ...resulting in a minor failure condition for the aircraft, will be categorized as DAL
D.

• ...with no effect on aircraft operational capability or pilot workload, will be catego-
rized as DAL E.

In turn, failure conditions are categorized according to their consequences [128]:

• Minor failure conditions would not significantly reduce airplane safety, and would
involve crew actions that are well within their capability.

• Major failure conditions would reduce the capability of the airplane or the ability
of the crew to cope with adverse operating conditions to the extent that there would
be, for example, a significant reduction in safety margins or functional capabilities,
a significant increase in crew workload or in conditions impairing crew efficiency,
or discomfort to occupants, possibly including injuries.

• Hazardous failure conditions would reduce the capability of the airplane or the abil-
ity of the crew to cope with adverse operating conditions to the extent that there

37

Chapter 2. Fundamentals

would be (a) a large reduction in safety margins or functional capabilities; (b) phys-
ical distress or higher workload such that the flight crew cannot be relied on to
perform their tasks accurately or completely; or (c) serious or fatal injury to a rela-
tively small number of the occupants.

• Catastrophic failure conditions would result in multiple fatalities, usually with the
loss of the airplane.

As can be deduced, a hypervisor or an operating system that provides time and space
partitioning should be certified to the same level of criticality as the most critical of the
functionalities that runs on top of it. The great advantage offered by the use of these
elements is that software of different DALs could coexist on the same platform, since the
hypervisor/RTOS guarantees that the failure of one partition would not affect the rest of
the partitions of the system.

2.2.2. Space Software Standards

There are several standards that categorize software criticality in the space industry. The
two most commonly used are ECSS-Q-ST-80C, defined by the European Space Agency
and commonly used in European projects, and NASA-GB-8719.13, defined by NASA
and commonly used in the USA. It should be noted that, as with standards in other similar
disciplines, the allocation to different levels of criticality is done by means of a safety
analysis at the system level, not at the software level. Thus, the criticality level is assigned
to each high-level function, and the software inherits the criticality level corresponding to
the function category that it implements [129].

ECSS-Q-ST-80C

According to the ECSS-Q-ST-80C, all software that if not executed, or if not correctly
executed, or whose anomalous behaviour could cause or contribute to a system failure
resulting in:

• ...catastrophic consequences, will be categorized as Category A software.

• ...critical consequences, will be categorized as Category B software.

• ...major consequences, will be categorized as Category C software.

• ...minor consequences, will be categorized as Category D software.

According to the standard, the consequences are:

• Catastrophic, if there is loss of life or severe detrimental environmental effects.

38

Chapter 2. Fundamentals

• Critical, if there is loss of mission, temporarily disabling (but not life-threatening)
injuries or major detrimental environmental effects.

• Major, if there is major mission degradation.

• Minor, if there is minor mission degradation or any other effect.

It is evident that there are many equivalences between the criticality levels defined by
this standard and the DALs defined in ARP4753 for aviation systems. The main difference
is that ECSS-Q-ST-80C does not contemplate a criticality level in which a failure has no
effect that affects safety (DAL E), and that the consequences contemplated according to
the space standard take more into account the achievement of the mission objective, while
in aviation (especially in commercial aviation) there are more human lives at stake, so this
aspect has more weight when assessing the consequences.

2.2.3. Automotive Software Standards

The two most popular standards for Automotive software are Automotive Open System
Architecture (AUTOSAR) and ISO 26262 (titled "Road vehicles - Functional Safety").
They are briefly presented below.

AUTOSAR

Automotive Open System Architecture (AUTOSAR) is a worldwide partnership founded
in 2003, aimed at establishing an open and standardized software architecture for auto-
motive ECUs. AUTOSAR defines a modular architecture that includes a series of basic
software modules, which can be used in vehicles from different manufacturers and elec-
tronic components from different suppliers, reducing development costs and containing
the increasing complexity of electronic and software architectures for automotive. In ad-
dition, it defines the interfaces to develop applications and builds a common development
methodology based on the standardized exchange. In this way, AUTOSAR encourages
scalability, portability, collaboration between partners and the sustainable use of natural
resources, without compromising product quality.

Today, we can distinguish between the AUTOSAR Classic Platform and the AU-
TOSAR Adaptive Platform. The AUTOSAR Classic Platform is the standard for OSEK-
based real-time ECUs, and is divided into three main layers [130]:

• Basic Software Layer: standardized software modules that do not fulfill any spe-
cific automotive function, but are necessary for the correct functioning of the upper
software layers.

39

Chapter 2. Fundamentals

• Runtime Environment (RTE): software layer that abstracts the applications from the
exchange of information between them and the Basic Software and between the ap-
plications themselves. This layer represents the interface against which applications
are developed.

• Application Layer: applications that interact with the RTE.

Demanding new use cases, such as highly automated driving, present a series of needs
such as frequent updates, great processing capacity or communication with the changing
environment, which cannot be covered with the AUTOSAR Classic Platform. For this
reason, the AUTOSAR Adaptive Platform was released in 2017, a new service-oriented
architecture that can meet the demands of the next generation of ECUs. One of the main
functional differences with respect to the Classic Platform is that the core of the Adaptive
Platform is an OS based on a POSIX subset, which opens up a range of possibilities (task
creation, memory allocation, use of signals, timers ...) to the application developer [131].
Other notable differences are that the ECUs of these systems base their communication
on Ethernet and have a dynamic architecture, in which applications can be updated over-
the-air during the life cycle of the vehicle.

Some of the requirements that AUTOSAR imposes are covered by the inherent charac-
teristics of hypervisors [132]. In an article proposing a Linux-based AUTOSAR platform,
Kotur et al. explain that the main line of future research for their work would be the ad-
dition of a hypervisor [133]. According to them, a hypervisor would help solve several
safety-related problems: for example, it helps a more efficient management of hardware
resources, so it could help avoid network congestion, which can eventually lead to laten-
cies and errors in the system. Of course, a hypervisor would also provide the necessary
temporal and spatial separation so that, in the event of an application failure, this failure
would not affect the rest of the system, which is a very important vulnerability if there is
no hypervisor or an OS that provides these TSP features.

ISO 26262

ISO 26262 (titled "Road vehicles - Functional Safety") is, since 2011, the functional
safety standard for electric and electronic systems installed in serial production road vehi-
cles [134]. The standard defines "functional safety" as the "absence of unreasonable risk
due to hazards caused by malfunctioning behavior of electrical/electronic systems" [135].

Similar to other critical real-time systems standards, such as DO178-C in aviation sys-
tems or ECSS-Q-ST-80C in space systems, ISO26262 uses a tiered risk categorization:
Automotive Safety Integrity Level (ASIL). ASILs establish the safety requirements for
automotive components in accordance with the ISO 26262 standard, based on the proba-
bility and acceptability of the automotive hazard. There are four ASILs: ASIL A, ASIL
B, ASIL C and ASIL D, with ASIL D being the one with the most stringent integrity

40

Chapter 2. Fundamentals

requirements (highest risk) and ASIL A the least stringent (least risk). Examples of el-
ements of a car that usually require ASIL-D grade would be airbags or electric power
steering system. For the power windows, ASIL-A grade is sufficient [136]. The head-
lights could have an ASIL-B grade and, for example, the active suspension of the vehicle
is considered in many cases to be ASIL-C grade. Note that the maximum level of risk,
according to the standard, is not equivalent with respect to those defined in its aviation
and space counterparts. While ASIL D refers to, at most, a loaded passenger van, the
potential danger from an aircraft loaded with passengers and fuel is greater.

2.3. Software-Based Fault Tolerance

This thesis focuses on using redundancy to propose a fault-tolerant architecture in a
safety-critical embedded system. Therefore, it is important to know some concepts re-
lated to software-based redundancy techniques, since these concepts are mentioned both
in the works related to this research, in chapter 3, and in the solution itself proposed in
this research, in chapters 4 and 5. This section provides a brief description of the essential
concepts:

Triple Modular Redundancy (TMR) is a common scheme to protect computer sys-
tems against failures. In its original version, proposed by Von Neumann in 1956 [137],
three modules or black boxes (they can be simple units or complex computers) calculate
a single output. Another element, called majority organ by Von Neumann, accepts the
inputs from these modules and provides the majority opinion as the final output.

Figure 2.8: Triple Modular Redundancy

Traditionally, in sectors such as space or aviation, TMR has been applied to hardware
elements to protect a system against Single Event Upsets (SEUs [138]) caused by radia-
tion. As electronic components (processors, memory, etc.) have become more powerful,
the application of TMR to software has become progressively more feasible and popular.

There are many variations and extensions to the original TMR concept in order to
make it more robust. For example, one of the most common is to extend the number
of modules used to redundant a single task to more than three (N-Modular Redun-
dancy [139]). On other occasions, in order to solve the problem of the majority organ

41

Chapter 2. Fundamentals

(more commonly called voter, nowadays) being a single point of failure, the voter itself
is also redundant [140], as shown in Figure 2.9.

Figure 2.9: TMR with redundant voter

Another variation, first presented by Czajkowski et al. and especially interesting for
systems with low computational resources, is Temporal Triple Modular Redundancy
(TTMR) [141]. The main difference between TTMR and TMR is based on the fact that
a redundant task with TTMR is executed only twice in the absence of error. As long as
there is no disagreement between the two tasks, it will continue to be executed twice: only
in case of disagreement will the task be executed a third time, to break the tie.

Figure 2.10: Flowchart of the TTMR algorithm [141]

2.4. Hypervisor Fault Tolerance

This thesis focuses on proposing a fault-tolerant architecture, through redundancy of crit-
ical tasks by means of virtualization, for a real-time embedded platform (such as those
found in the space, aviation and automotive sectors). Therefore, the hypervisor is the
main enabler tool and is assumed to be a secure and reliable element. However, the re-
ality is that virtualization infrastructure, including the hypervisor, are not exempt from
hardware errors, which can affect different virtual machines and can even lead to a total

42

Chapter 2. Fundamentals

system failure [142]. In order to provide as complete a view of the state of the art as
possible, as well as to outline possible lines of future work, this section collects some of
the main studies focused on recovery techniques and protection of the hypervisor itself.
Note that these studies are complementary to the work done in this thesis.

Many of the hypervisor recovery techniques are based on the microreboot concept,
which was introduced by Candea et al. in 2004 [143]. The main idea behind the microre-
boot is to avoid the expensive cost of completely rebooting a system after a failure, by
designing a much more fine-grained and selective mechanism, which allows recovering
the failed elements without harming the rest of the system elements, which continue to
run normally. Since then, there are works that have applied the use of microreboot to
recover the hypervisor after a failure, such as RootHammer or ReHype, both based on
Xen. RootHammer follows a simpler approach, as it does not act on hypervisor failures,
but is used to periodically reboot (rejuvenate) the system, trying to avoid the software
aging of the hypervisor [144]. To do this, it reboots both Xen and dom0 (see section
2.1.4 for more details about Xen) and saves the state of the other virtual machines, so
that execution can resume correctly after a few seconds. ReHype [145] is a mechanism
that allows the Xen hypervisor to recover from a failure, while preserving the state of the
virtual machines. ReHype allows the hypervisor to recover from 90% of the failures, and
has a relatively small footprint on Xen (approximately 900 LOC and 2MB of memory).
Unlike RootHammer, ReHype does not require a reboot of dom0, so the down time in-
volved in the rebooting is considerably less. Le and Tamir recently extended this work by
developing recovery mechanisms for driver virtual machines and privileged virtual ma-
chines [146]. Together with ReHype, the result is a robust virtualization infrastructure
based on Xen. The lines of research they leave open are related to silent failures that
ReHype is not able to detect, which are estimated to be 10-36% of the total failures.

Zhou and Tamir discuss how even microreboot involves unacceptably high latency
in some complex systems, and propose an alternative they call microreset, in which the
failing component is reset to a quiescent state that is highly likely to be valid [147]. To
demonstrate this, they develop NiLiHype, a mechanism that uses the microreset to imple-
ment recovery from a Xen hypervisor failure. In the tests performed, NiLiHype is able to
achieve almost the same failure recovery rate, but with up to 30 times lower latency.

Tan et al. propose TinyChecker [148], a nested virtualization-based alternative to
harden the protection of a hypervisor. TinyChecker is a very lightweight hypervisor that
runs between the hardware and the hypervisor to be enforced, and monitors the inter-
actions between them, so that it can detect potential errors and recover from them by
creating checkpoints. However, TinyChecker has not been fully implemented, and it is
expected that a fully functional version would impose a significant overhead on the sys-
tem. Furthermore, while its simplicity makes it less prone to failure than a conventional
hypervisor, it is still a single point of failure in the face of, for example, hardware faults.

A team from George Washington University has published a couple of papers that

43

Chapter 2. Fundamentals

also address the problem of the hypervisor being the single point of failure in a virtual-
ized system. Xentry [149] is a framework that enables early soft error detection to prevent
the propagation of errors from the hypervisor to the virtual machines. DualVisor [150] is
a tool that replicates both the execution and the data of the hypervisor, to protect it from
possible hardware errors. The article presents a partial prototype on which the tool’s over-
head is measured and presents future lines of work, which include not only completing the
prototype, but also studying the protection of the framework that implements DualVisor,
which is itself vulnerable to failures. Cerveira et al. follow a similar reasoning and analyse
how, despite what is often assumed, a significant percentage of virtual machines running
on a hypervisor remain fault-free even when the hypervisor fails, so they could continue
to run if migrated to a new hypervisor [151]. Both papers are intended for application in
data centres and cloud computing infrastructures and would imply a very high overhead
for embedded systems, but may be of interest for specific (computationally simple) cases
or as SoCs continue to increase their computational capabilities. For the same reason,
although perhaps not directly applicable to embedded systems at present, it is interesting
to consider work such as that of Sousa et al., in which researchers define requirements re-
garding the number of replicas needed to maintain availability given maximum numbers
of simultaneously faulty and recovering replicas [152]. There are also studies aimed at
reducing the overhead involved in Hypervisor-Based Fault Tolerance during a failure-free
state, such as the one by Zhu et al [153]. Some of the techniques studied are applicable ex-
clusively to Xen, which is the hypervisor used in the study, and others can be extrapolated
to a general use case. Regarding the migration of virtual machines to a new hypervisor,
Reiser and Kapitza have a paper in which they investigate how to alleviate the problem of
unavailability during this migration, and show that the reboot time can be reduced if the
initialisation of the new hypervisor is done in parallel to the normal execution of the old
one [154].

2.5. Single Event Upset

Single Event Upset (SEU) is a term that encompasses a number of phenomena associated
with the interaction of energetic particles (X-rays, gamma rays, cosmic ray neutrons and
musons, alpha particles, energetic ions...) with the silicon substrate of different electronic
components. The generation of charges in transistors can cause changes in internal volt-
ages, leading to corruption of stored or transmitted data. The most typical consequences
of SEUs are temporary loss of data in memories and flip-flops or transistor latchups. In a
component that is performing calculations (a processor, for example) or in a memory that
is storing data with which calculations are being performed, these consequences usually
result in a calculation error. These errors are usually temporary, as SEUs do not normally
cause permanent damage to electronic components [155].

SEUs have been detected since the 1950s, when nuclear experiments were being con-
ducted and anomalies were observed in the electronic test monitoring equipment. In 1972,

44

Chapter 2. Fundamentals

Hughes satellite experienced problems in its connection with ground operators for more
than a minute, and researchers Edward C. Smith, Al Holman, and Dan Binder first as-
sociated these problems with cosmic radiation and exposed this phenomenon in a paper
in 1975 [156]. The term Single Event Upset was first used a few years later, in 1979,
in a paper by Guenzer et al [157]. Since then, SEU detection and protection has been a
recurring theme in various industries, including the aviation and space industries. Over
the years, the components traditionally used in electronic systems associated with aircraft
have been designed to be less vulnerable to this type of error, but they continue to have
parts that are more sensitive than others. For example, first- and second-level caches or
the state machine that controls microprocessors are usually small and designed to have a
very high speed, so they do not have much charge. RAMs are another type of component
that is particularly vulnerable to ionizing particles. These problems are accentuated by the
trend in recent years to use COTS components to design flight systems faster and cheaper.
This is where error detection and correction mechanisms such as the one proposed in this
research come into play.

2.6. Summary

This chapter has explained some concepts that are indispensable to fully understand the
content of the rest of the thesis. It is worth mentioning that the chapter contains an orig-
inal contribution: an exhaustive survey that reviews the state of the art in safety-critical
embedded hypervisors, categorises them and compares them by means of different pa-
rameters. The survey will be used to choose a hypervisor with which to prototype the
solution proposed in this thesis, and the aim is that it will help other researchers to make
this kind of decisions in the future.

After understanding the concepts explained in this chapter, chapter 3 will deal with
the current state of the art in Hypervisor-Based Fault Tolerance techniques, presenting
the problem that gave rise to these techniques and reviewing the main works that develop
them. These works will be divided into two categories: those applied to safety-critical
embedded systems, more closely related to this thesis, and those applied in other contexts,
such as the implementation of large cloud servers, from which some contributions can be
extrapolated to embedded systems.

45

Chapter 3. Problem Statement and Related Work

3. PROBLEM STATEMENT AND RELATED WORK

This chapter briefly discusses the reasons why the use of virtualization techniques to
implement software-based redundancy has been studied in recent years. The chapter is
divided into three main sections:

• Section 3.1 details the problem that gave birth to redundancy techniques based on
the use of virtualization.

• Section 3.2 reviews the work that has been done in this area, both in relation to
embedded safety-critical systems and in relation to cloud servers and cluster com-
puting. Note that, although the latter scenario is quite different from the scenario
proposed for this thesis, some ideas can be extracted from the existing work that are
applicable to embedded systems or, at least, allow outlining lines of future work.

• Section 3.3 briefly summarises the chapter and introduces the contents of the fol-
lowing chapter.

3.1. Problem Statement

Traditionally, to protect systems from soft errors, industries such as aerospace have used
hardware redundancy techniques [158] or specifically hardened electronic components [159].
However, not only are these solutions too expensive for the commodity products being
developed in other industries (such as the automotive industry), but even the aerospace
industry is being forced to migrate to the use of COTS components, which are the only
option to meet the computational demands of today’s applications and, moreover, imply
a considerable cost reduction. While this change in trend is positive in many respects, it
implies the considerable challenge of protecting such components from failure through
alternative techniques, such as software-based redundancy.

However, hosting a task plus its redundant counterparts on the same processor presents
an obvious vulnerability: a hardware failure can affect all tasks at the same time. Not only
that, but the corruption of one of the tasks could affect the proper execution of the others.
The solution to this could be to separate the redundant tasks on different hardware, but
this means that the resulting redundancy-based fault-tolerance mechanism can become
too costly, both economically and in terms of weight, power consumption and efficiency.
Virtualization provides an alternative solution, since a sufficiently robust hypervisor is
able to guarantee the temporal and spatial separation of different tasks running on the
same device, enabling the possibility of redundant tasks without having to duplicate hard-
ware resources. In fact, a recent study by Frigerio et al. proves that virtualization is a
very substantial alternative to physical separation. The study describes a methodology to

46

Chapter 3. Problem Statement and Related Work

analyse a safety-critical (automotive) system from a system-level point of view through
various parameters, such as cost, application failure probability, system load and cable
length used [160]. This methodology is used to compare solutions where system ele-
ments are redundant through physical separation with solutions where a hypervisor is
used to address redundancy on the same hardware platform. The results not only show
that virtualization is a valid and comparable alternative to physical separation in terms of
performance, but also that it offers significant advantages in some situations.

Throughout this chapter we will review the work related to what are called Hypervisor-
Based Fault-Tolerance (HBFT) techniques, especially those applied to safety-critical em-
bedded systems. As will be seen, each of these works has limitations that make it
difficult to apply them to actual commercial use cases. These limitations and the
proposed solution to overcome them will be presented in chapter 4.

3.2. Hypervisor-Based Fault Tolerance (HBFT)

The term Hypervisor-Based Fault Tolerance was first used in a paper by Bressoud and
Schneider in December 1995 [161]. In it, the authors first put forward the idea of us-
ing a hypervisor to run both a primary virtual machine and its backup, so as to obtain a
fault-tolerant system without having to modify the hardware, operating system or appli-
cations. They also developed a prototype for HP’s PA-RISC instruction-set architecture,
using two processors connected by SCSI bus and Ethernet, on which they measured the
overhead of their approach to implementing fault-tolerance, and demonstrated that it was
an interesting option for future research. The HBFT concept has been developed in many
other papers since then and, of course, advances in recent decades (both in the software
of the hypervisors themselves and, more importantly, in the computational capabilities
of computers) have allowed both the approaches and the prototypes used to demonstrate
them to become more sophisticated. This section reviews some of the main studies on
HBFT, dividing them into two categories:

• One focused on the application of HBFT to safety-critical embedded systems. Note
that this is the category in which this thesis would be classified, and it is in this
specific field that we seek to extend knowledge and propose a novel solution.

• One oriented towards conventional computers and large server clusters. Most of the
HBFT work falls into this category. Although not directly related to the thesis, some
of the ideas developed in these papers could be extrapolated to embedded systems,
so the most relevant articles will be briefly summarised.

3.2.1. HBFT for Safety-Critical Embedded Systems

Campagna et al. were among the first to apply virtualization to implement a fault-tolerant
reference architecture in safety-critical embedded systems [84]. As an alternative to tradi-

47

Chapter 3. Problem Statement and Related Work

tional radiation hardening, which requires redesigning the processor and other electronic
components or using silicon technology specifically designed to withstand the effects of
radiation, they propose to protect the system through software replication on the same
COTS target, using a hypervisor to separate the redundant units. The objective of this
architecture is to be able to detect Single Event Upsets (SEUs) that can be caused by ion-
ising radiation impacting the processor. The targeted use case is payload processing in
space computers.

The architecture proposed by Campagna et al. is roughly divided into three layers:

• The Hardware Layer, which comprises the typical elements of a SoC (processor,
memory, I/O devices...).

• The Hypervisor Layer, which runs in the highest privilege mode on the processor,
and through which all hardware resources are managed and virtual machines are
scheduled, guaranteeing total independence (temporal and spatial) between them.

• The Application Layer, which includes both the application software and the error
detection mechanisms.

Figure 3.1: HBFT Architecture Proposed by Campagna et al. [84]

As can be seen in Figure 3.1, the error detection mechanism follows a task duplication
scheme: two virtual machines run an identical copy of the application software, and a third
virtual machine acts as a voter, checking the results and approving them as correct, if they
are the same, or sending an error status to the platform computer if they are not. With the
prototype they implement (using a COTS based on the LEON3 processor and XtratuM as
a hypervisor), they calculate that the overhead of the architecture is 108% (closest to the
minimum possible, taking into account that the architecture implies duplication of tasks)
and that it is potentially capable of detecting 96% of the SEU that can affect the system

48

Chapter 3. Problem Statement and Related Work

(without needing the timeout of a watchdog timer, which would allow detecting the rest
of the failures).

In a similar vein, Sabogal and George have an article in which they present Virtual-
ized Space Applications (ViSA), a framework that extends the Xen hypervisor to achieve
HBFT in flight systems [59]. The framework thus consists of three main layers: the Xen
hypervisor, the ViSA middleware and the mission-specific flight software, which is based
on NASA’s core Flight System (cFS).

Figure 3.2: HBFT Architecture Proposed by Sabogal and George [59]

As in any system using Xen, the first domain to be created is the Linux-based dom0
kernel, which in turn launches the ViSA service as a single process. From this domain the
rest of the domUs will be launched, and each domU runs an instance of ViSA middleware
and flight software. ViSA implements N-Modular redundancy between the domains, and
allows voting to take place at two different layers: at the ViSA level or at the cFS level.

Missimer et al. present a real-time system called Quest-V, which uses hardware virtu-
alization extensions to divide machine resources into different partitions, which they call
sandboxes [89]. For the most part, Quest-V works like a statically partitioned hypervisor
(i.e., it allocates resources to partitions statically, so that the hypervisor does not need to
schedule the different sandboxes over time). There are exceptions to this approach, and
one of them is precisely when a fault recovery procedure needs to be triggered: Quest-V
implements a N-Modular redundancy voting algorithm in which one of the sandboxes,
acting as a referee, captures the states of all sandboxes running a redundant algorithm,
and reaches a consensus on the outcome. Sandboxes that do not match the consensus
are assumed to be malfunctioning, and are restored to the state of all other functioning
sandboxes.

Quest-V allows to select between three different configurations, depending on where
the voting mechanism resides:

• The voting resides on the hypervisor. The main advantage of this configuration
is that there is no need to modify the sandbox operating system. On the other hand,

49

Chapter 3. Problem Statement and Related Work

Figure 3.3: Quest-V Architecture [89]

the voting mechanism is a single point of failure and makes it necessary to duplicate
the entire guest (sandbox).

• The voting resides in a sandbox. This configuration implies a simpler design and
redundancy is done at the application level, so it is not necessary to redundant the
entire guest (sandbox). The main disadvantage is that it involves modifying the
guest and that an additional sandbox is required just for the voter. This involves
an especially large overhead considering that Quest-V performs static partitioning,
so resources (such as CPU core) allocated to the voter cannot be used by the other
sandboxes.

• The vote is distributed across different sandboxes. This configuration causes
the modification of the guest operating systems, and also implies extra complexity,
as there has to be a physical device shared between different sandboxes. On the
other hand, it has some of the advantages of the other two configurations: no extra
sandbox is required for the voter, and redundancy is done at the application level.

Esposito et al. also use TMR (as well as TTMR) to protect multicore systems against
Single Event Upsets (SEUs) caused by radiation [162]. As in other similar solutions, the
architecture they propose can be roughly divided into three layers:

• The Hardware Layer includes, in addition to the resources of the COTS SoC on
which the system is based, three IP blocks running on the FPGA: a Watchdog Pro-
cessor to implement a signatures-based Control Flow Check, a majority voter that
communicates to the user the correct result after applying the TMR technique and
a System Watchdog Timer that allows to restart the system in case of error.

• The Platform Software Layer has a type 1 hypervisor as its main element. The hy-
pervisor provides the time and space partitioning necessary to isolate each partition

50

Chapter 3. Problem Statement and Related Work

from the others and is in charge of providing communication mechanisms between
partitions, so that they can exchange data securely.

• The Application Software Layer implements the fault tolerance mechanisms using
the two previous layers.

To choose the appropriate fault tolerance strategy, between TMR and TTMR, they
divide tasks between those with hard real-time requirements (failure to meet the task
deadline causes catastrophic consequences), to which they assign a TMR strategy, and
tasks with soft real-time or firm real-time requirements (failure to meet the task deadline
causes service degradation to some degree), to which they assign TTMR. As can be seen
in Section 2.3, the main difference between TMR and TTMR is that, in TTMR, the re-
dundant task is executed a third time to break the tie only if the first two executions do
not yield the same result, while in TMR it is always executed three times and the winning
result is voted by majority. TTMR is more efficient, since the task is executed only twice
if there is no error, but TMR has the advantage of being time deterministic.

Figure 3.4: TMR Strategy Workflow (figure
from [162])

Figure 3.5: TTMR Strategy Workflow (fig-
ure from [162])

To test the architecture, they implement a prototype with two tasks: a hard real-time
task of Control and a soft real-time task of Vision. For the vision task, which follows a
TTMR scheme, the third execution is carried out (if necessary) in the iteration after the
error detection (for the iteration in which the error is detected, data from the previous
iteration is used). The logic behind this is that such algorithms often rely on the history
of the results, so it is less harmful to use data from previous iterations than to run the risk
of introducing completely erroneous data, which will propagate over time.

Using this architecture and a fault injection simulation campaign, they found that the
vast majority of SEU faults are masked or silent by the mechanism. Of the faults detected,
only <0.3% and <0.6% respectively on CPU registers and Configuration registers put the
system in a state from which it could only be recovered through a reset.

51

Chapter 3. Problem Statement and Related Work

3.2.2. HBFT for Cloud Servers and Cluster Computing

Prior to its application to embedded safety-critical systems, there are works that apply
HBFT to general-purpose computers. In recent years, moreover, with the rise of Cloud
Servers and Cluster Computing, HBFT has gained momentum as an important mecha-
nism to harden systems against failures through software replication. Although the vast
differences between embedded processors and the computing systems that can be found
in a modern Cloud Server mean that the studies are not comparable, there are some ideas
that have fed into the studies presented in section 3.2.1, and some others that can be ap-
plied in the future. Because of this, this section brings together some of the most relevant
studies with respect to HBFT techniques on non-embedded computers and systems.

The work by Reisser et al. is probably the first to consider virtualization for redundant
applications on a single host [163]. The architecture proposed by the researchers is called
RESH (Redundant Execution on Single Host), and the prototype developed runs on the
Xen hypervisor. The fault tolerance mechanism is based on an N-Modular Redundancy
scheme in which voting takes place on dom0. In turn, to mitigate the typical Xen vul-
nerabilities (complexity and dependency on dom0), they divide dom0 into two parts: the
DomainNV, which provides low-level network drivers, a network protocol stack and the
voting mechanisms; and the rest of the Domain 0, which provides the rest of the priv-
ileged tasks (virtual drivers, monitoring, management of the guest virtual machines...).
Subsequently, some of the RESH authors extended the work to offer replication not only
on a single host, but also on different heterogeneous nodes hosted on different hosts and
communicated through asynchronous communication networks, to reinforce the system
against potential hardware failures [164]. This new solution, called VM-FIT, comple-
ments active replication with proactive recovery mechanisms. Both RESH and VM-FIT
are based on Xen, but similar solutions exist on other hypervisors, such as KVM (Jeffery
et al. [165]) or VmWare (Scales et al. [166]).

There are a couple of papers that also propose a virtualization and fault tolerance tech-
nique to improve the response time and availability of a cloud computing system, adding
an interesting new feature to make the algorithm adaptive. Malik and Huet’s work [167]
proposes a model called Adaptive Fault Tolerance in Real-time Cloud computing (AF-
TRC), which measures and updates the reliability of each of the nodes in the system using
an algorithm called Reliability Assessor (RA). In their Virtualization and Fault Tolerance
(VFT) model, Das and Khilar [168] propose a similar actor that they call Decision Maker
(DM), which tracks the Success Rate (SR) of each of the nodes and the Performance
Record (PR) of the physical servers on which these nodes are hosted. An algorithm called
Decision Maker (DM) checks that each node has completed its assigned task correctly
and on time, and increases or decreases its SR accordingly. If a node has failed, it is
reported to another actor, the Fault Handler (FH), which is in charge of trying to recover
the node to make it available again to the system. Although this type of scheme is not di-
rectly applicable to an embedded system, as it has far fewer hardware resources, the idea

52

Chapter 3. Problem Statement and Related Work

of tracking the health of virtual machines (both primary and redundant) and trying to re-
cover them after a failure is transferable and novel when applied to an embedded system,
although it is necessarily applied in a simpler way. There are also several other works
related to improving the availability of cloud data centres through redundancy at virtual
machine level in different host servers following complex algorithms [169] [170] [171].
However, unlike those mentioned above, these do not have features that can be extrapo-
lated to safety-critical embedded systems.

3.3. Summary

This chapter has analysed the state of the art in Hypervisor-Based Fault Tolerance tech-
niques, the main topic of this thesis. First, the motivation for the birth of these techniques
has been explained. Then, the main related works in safety-critical embedded systems
have been detailed, exposing their main advantages and disadvantages. Finally, some
works applying HBFT techniques in other contexts have been analysed, from which some
features can be extracted to propose a novel solution in embedded systems, such as health
and reliability monitoring of each partition of the system.

After reviewing the state of the art, Chapter 4 discusses the methodology we pro-
pose to implement a comprehensive fault tolerance solution, which takes into account and
addresses the main weaknesses of the works we have analysed in this chapter.

53

Chapter 4. Proposed Solution

4. PROPOSED SOLUTION

This chapter presents our proposed solution to the problem posed in Chapter 3. The
chapter is divided into five main sections:

• Section 4.1 summarises the characteristics of our related work, which have been
described in detail in Chapter 3. From this related work we extract the requirements
that our solution must meet in order to be more complete and more applicable in a
real use case.

• Section 4.2 describes the overall architecture of the proposed solution, its layers
and elements.

• Section 4.3 describes in detail the voter used in the solution, including its internal
structure and modes of operation. In addition, the possibility of redundancy of the
voter so that it does not involve a single point of failure is discussed.

• Section 4.4 describes the Health Monitoring partition, the other key element of the
solution, and the processes it carries out to ensure the correct functioning of the
system.

• Section 4.5 briefly summarises the chapter and introduces the contents of the fol-
lowing chapter.

4.1. Requirements

As discussed in Chapter 3, there are several works related to the application of virtualiza-
tion techniques to implement fault tolerance mechanisms. However, only a few of these
works are oriented towards their application in safety-critical embedded systems that can
be found in industries such as space, aviation or automotive. Table 4.1 shows, as a sum-
mary and to the best of our judgement, the strengths and weaknesses of the proposals
presented in each of these papers.

The aim of this thesis is to propose an HBFT solution that can potentially improve the
performance of previous work. To do this, we first use the information gathered in table
4.1 to establish some of the basic requirements that our solution should offer. The most
obvious conclusions are:

• The solution must use, at a minimum, TMR to redundant a task. This will allow
both error detection and identification of the malfunctioning partition.

• The voting mechanism should not involve a single point of failure.

54

Chapter 4. Proposed Solution

Table 4.1: Advantages and disadvantages of the related work

Advantages Disadvantages

Campagna
et al. [84]

- Hypervisor-independent
architecture (although it uses
the inter-partition
communication mechanisms
of XtratuM, so it needs a
similar mechanism in case
of migration to another
hypervisor).

- Errors can be detected,
but it is not possible to
identify which partition
is failing.

- The voting partition is
a single point of failure.

Sabogal and
George [59]

- N-Modular Redundancy:
not only the error is detected,
but the malfunctioning
partition can be identified.

- The voting mechanism
is distributed, so it is not a
single point of failure.

- Dependent on a
specific hypervisor: Xen.
In addition, Xen is based
on the Linux kernel and
therefore presents
significant difficulties in
dealing with certification
processes for real-time
safety-critical systems.

Missimer
et al. [89]

- N-Modular Redundancy:
not only the error is detected,
but the malfunctioning
partition can be identified.

- Possibility of distributing
the voting mechanism to
prevent it from becoming
a single point of failure.

- Dependent on a specific
hypervisor (Quest-V) and
therefore also on specific
hardware.

- Static partitioning also
limits the target to be
used, since there can be a
maximum of as many
partitions as processing
cores in the target
(important limitation for
monocore/dual-core
processors).

Esposito
et al. [162]

- N-Modular Redundancy:
not only the error is detected,
but the malfunctioning
partition can be identified.

-The voter is partially
implemented in the FPGA,
which potentially speeds up
the voting process and
lightens the corresponding
overhead on the processor.

- The voting partition is
a single point of failure.

55

Chapter 4. Proposed Solution

• The proposed solution must be independent of the hypervisor used. In case it is tied
to a hypervisor, it is preferable that it is not based on the Linux kernel, but that it is
as simple and safety-oriented as possible.

In addition, two features are proposed that would help boost the performance and
safety of the proposed solution:

• The solution should implement the complete voter logic on the FPGA, including its
redundant counterparts. This will improve the performance of the voter, lighten the
CPU load (especially since the voter is intended to be redundant) and allow the voter
to be made barely vulnerable, since it can be protected (in addition to redundancy)
by using a radiation tolerant FPGA.

• The architecture must include a Health Monitoring partition that allows, in case of
malfunctioning of a partition, to take the appropriate measures to try to recover it
and put it back in proper working order. These measures include tracking the health
of partitions, so that they can be replaced by healthy ones if they start to malfunction
frequently.

4.2. Architecture Definition

Similar to the solutions discussed above, the proposed architecture consists of at least
three different layers:

1. Hardware Layer. The software architecture is designed to be deployed on a
SoC/MPSoC. Note that, the more resources the SoC/MPSoC has (processor cores,
FPGA capacity, memory size...), the more partitions and applications can poten-
tially be deployed on it.

2. Hypervisor Layer. The hypervisor is one of the key elements of the architecture,
since it allows the isolation between software partitions, which is key to (1) offer
secure redundancy between applications, (2) allow the coexistence of applications
of different criticality on the same hardware platform.

3. Partition Layer. This layer encompasses everything that runs on top of the hyper-
visor. It could be further divided into:

OS Layer. This layer is optional, in fact, since there will be occasions in which
simplicity/determinism is sought and the choice is made not to use an operating
system, but rather that the applications run directly on the hardware virtualized by
the hypervisor.

Application Layer: This layer would encompass everything that runs on top
of the operating system (or the hypervisor, in the case of bare-metal applications).

56

Chapter 4. Proposed Solution

Note that this layer could also be split into other layers depending on the specific
use case, but is simplified to one for the sake of clarity.

The types of partitions, depending on whether they are oriented to host safe/secure
applications or general/non-safe applications, as well as whether they use an operating
system or not, are shown graphically in Figure 4.1.

Figure 4.1: Possible partition types

The Partition Layer can be divided into different domains, transversal to the layers.
In our architecture, we can distinguish a Safe Domain, in which the application to be
protected by TMR (as well as its redundant counterparts) runs, and a General Domain,
in which all applications that do not require special protection and are not redundant
run. Depending on the type of system, applications with and/or without hard real-time
requirements (on an RTOS such as RTEMS or FreeRTOS or on a GPOS such as Linux)
can run in the General Domain. Finally, a Health Monitoring partition is responsible for
monitoring the correct functioning of the hypervisor and the partitions that make up each
of the domains. The layers of the Partition Layer architecture and domains can be seen
graphically in Figure 4.2.

Figure 4.2: Architecture of the proposed solution

57

Chapter 4. Proposed Solution

As explained in section 2.3, there are many options for redundant software tasks in
order to obtain a fault-tolerant system. The most traditional approach is TMR, while
the different alternatives that have emerged subsequently are usually aimed at reducing
redundancy overhead while sacrificing as little performance as possible. However, for
our solution we are going to opt for redundancy through TMR for two main reasons:

• Firstly, because in the scenario we are contemplating, the COTS components on
which the software runs are powerful enough so that the overhead caused by re-
dundancy does not cause any harm to the system.

• Secondly, because in this type of system, application determinism is more highly
valued, meaning that it is possible to know exactly when and for how long each
application will run. In this way, the rest of the system is easier to plan if the same
applications are always run for the same time (unlike, for example, in the case of
TTMR).

It might seem sensible to use NMR instead of TMR, to redundant Safe Partitions.
Indeed, it is an option, since, normally, applications running on a Safe Partition are not
very heavy in terms of memory occupation. To give an example, if we encapsulate a
benchmark representative of a real space application, such as NIR HAWAII-2RG (more
details on this benchmark can be found in section 5.3), in a partition on the XtratuM hy-
pervisor and a COTS such as the Zynq-7000 SoC, we observe that the partition occupies
a total of 215,596 bytes. This size, compared to the size of the memory devices next to
which this SoC is usually deployed (typically, 1 GB of DDR3 SDRAM), can be consid-
ered almost negligible, since it is barely 0.02% of the total available memory. Even in
more complex cases (for example, if we were to add an RTOS to the Safe Partition), the
partition size is still very small compared to the total available memory. For this reason,
it would be perfectly reasonable not to skimp on the number of redundant Safe Partitions.
However, what can be a limiting factor in many occasions is the number of partitions we
can fit in the same scheduling plan, taking into account that, sometimes, Safe Partitions
must run several times per second (for example, processes associated with attitude and
orbit control of a satellite usually run in ranges between 0.5-10Hz [172] [173]). Although
the power of COTS processors is also significantly higher than the power of processors
traditionally used in the space sector, if we add to this the fact that the scheduling cycle
must include Health Monitoring tasks and other system applications, such as General Par-
titions, the ability to combine all the applications in a single scheduling plan is clearly a
more limiting factor than the available memory.

For this reason, we henceforth opt for TMR to expose this solution, and in section
4.4.2 we propose cold redundancy methods to strengthen the TMR scheme without satu-
rating the scheduling plan. Note, however, that using NMR in cases where a very powerful
processor is available can be a good way to further strengthen the solution. Note also that
the logic of this solution is directly extrapolable to a use case where NMR is applied,

58

Chapter 4. Proposed Solution

having in the latter case a majority/plurality [174] voter to decide which partitions are
operating correctly and which are not.

In addition, as suggested in section 2.3, the voter is also redundant to prevent it from
being a single point of failure. In order for this not to incur a very large overhead (in terms
of code size and execution time), the triple voter will be implemented in the FPGA. Thus,
as shown in Figure 4.3, the triple-voter will coexist in the FPGA with the IP cores that
implement the specific functionality required by each mission.

Figure 4.3: FPGA Components

4.3. Voter

As described in previous sections, the voter logic, including its redundant counterparts,
will be implemented in FPGA. Therefore, it has been decided to keep its logic as simple
as possible. The voter will receive two inputs from each of the active Safe Partitions that
will participate in the voting process:

1. The identifier of each of the partitions participating in the voting process.

2. The result calculated by each of the partitions that have identified themselves.

With this, it executes a series of conditional statements and reaches a conclusion,
which it will communicate at each iteration to the Health Monitoring partition. The deci-
sions made on the basis of this conclusion are part of the remit of the Health Monitoring
partition, not of the voter. However, like the Health Monitoring partition, the voter will
keep his own tally of the number of times a partition has failed, so that tie-breakers
can be established in cases of disagreement.

59

Chapter 4. Proposed Solution

4.3.1. Voter Operating Modes

As will be seen later, there are cases where partitions can be halted, if they show anoma-
lous behaviour on too many occasions and pose a risk to the rest of the system. Therefore,
it is possible that, at certain times, the voter may not have three partitions to compare
results. Depending on the number of active partitions, we define three modes of operation
of the voter:

• Normal mode: this is the optimal case, in which the voter has the results of three
partitions (one partition plus two redundant counterparts).

• Degraded mode: this is the case where there are only two active partitions (one
partition plus one redundant counterpart).

• Very degraded mode: this is the case where only one active partition remains and
has no redundant counterparts.

Normal Mode

In normal mode, the voter counts the votes of three active partitions. From each of them
it receives an identifier and a result, so the voter receives a total of six inputs. The voter’s
task is simple: compare the results of each of the partitions and reach a conclusion, in the
form of three different outputs.

1. Result. The result is decided by majority vote. In case of a tie (which can occur
only if the three partitions compute three different results), the voter chooses the
result of the partition that has failed the least number of times previously. In case
of a tie in the number of times two or three partitions have failed, it is decided
randomly.

2. Reliability level. The reliability level depends on the number of partitions that
agreed on the result decided by the voter:

• If all three partitions agree on the calculated result, the voter sets a VERY
HIGH reliability level.

• If two of the three partitions agree on the calculated outcome, the voter sets a
HIGH reliability level.

• If all three partitions disagreed on the calculated result, the voter sets a LOW
reliability level.

3. Faulty partition. The voter also reports which partition is considered to have
failed. Note that this depends directly on the reliability level:

60

Chapter 4. Proposed Solution

Figure 4.4: Voter logic - Normal Mode

• If the reliability level is very high, no partition has failed, so this field will be
empty or it should report that no partition has failed.

• If the reliability level is high, only one partition has failed, so the voter will
report the ID of the failed partition.

• If the reliability level is low, even if the result of one of them is chosen based
on the failure history or on chance, the failure of the other two is not recorded,
because there are not enough guarantees and it could be detrimental to reduce
the reliability level of these two partitions.

This logic is represented graphically in the flowchart in Figures 4.4 (which represents
the general Normal Mode scheme) and 4.5 (which represents the tie-breaker when the
three active partitions yield different results).

61

Chapter 4. Proposed Solution

Figure 4.5: Voter logic - Tie-breaker in Normal Mode

Degraded Mode

The degraded mode is a simplification of the normal mode. In this case, because the
Health Monitoring partition has decided to halt all other partitions, there are only two
active partitions left that can participate in the vote. Therefore, the voter receives a total
of four inputs: from each of these partitions, an identifier and the result it has calculated.
Similar to the normal mode, the voter compares the results of each of the partitions and
reach a conclusion, but in this case in the form of two different outputs.

1. Result. Note that, by having two partitions, the degraded mode still allows us to
check that, in case both agree, there are enough guarantees of the correctness of the
result. In case of disagreement, the result chosen will be that of the partition that
has failed the least number of times previously. In case both have failed the same
number of times, it will be chosen randomly between the two.

2. Reliability level. In degraded mode, the voter only offers two different reliability
levels:

• If the two partitions agree on the calculated result, the voter sets a HIGH
reliability level.

• If the two partitions disagree on the calculated result, the voter sets a LOW
reliability level.

Again, although having two partitions allows to guarantee a certain level of assur-
ance regarding the correctness of the result when the partitions agree, it is impossible
to guarantee which of the two partitions is failing when they do not agree. Therefore,

62

Chapter 4. Proposed Solution

Figure 4.6: Voter logic - Degraded Mode

even if the result is decided by the failure history of the partitions, the voter will not de-
cide which is the faulty partition (note that it would not make sense to keep increasing
the failure counter of the partition that has failed more times in the past, since it would
always be decided that the same one is failing).

The logic of the degraded mode is represented graphically in the flowchart in Figure
4.6.

Highly Degraded Mode

The highly degraded mode is an extreme case in which the voter is simplified as much as
possible. Note that, in this case, there is only one active partition, so the voter receives
only two inputs: the partition identifier and the calculated result.

This mode of operation has no internal logic and simply produces two outputs:

1. Result. Having no other results to compare with, the voter assumes as correct the

63

Chapter 4. Proposed Solution

result of the only remaining active partition.

2. Reliability level. The voter always assumes that the reliability level for that result
is LOW, as it has not been able to corroborate it with other partitions.

Figure 4.7: Voter logic -
Highly Degraded Mode

The simple logic of the highly degraded mode is repre-
sented graphically in the flowchart in Figure 4.7.

Behaviour in Cases of Low Reliability

As can be seen, although at least three redundant partitions
are used to avoid such cases, there are occasions when the
voters calculate a result but give it a low level of reliability.
The decision of how to operate in these cases will be made
at the system level and depends entirely on the nature of
the mission or objective of the system. It is clear that this
solution is oriented to safety-critical systems and what the
voters decide will always be relevant to the safety of the sys-
tem, but within this category we can obtain a wide range of
scenarios. Mainly, with respect to how to act when the relia-
bility of the calculated result is low, we can classify them in
two types:

• Scenarios in which the least risky thing to do is to
ignore the calculated result and wait for another
iteration. Examples of these scenarios could be air-
craft guidance functions, which often use algorithms
(such as Kalman Filters) and in which an incorrect re-
sult would be carried forward in successive iterations and yet the results of previous
iterations could alleviate the fact that no calculation was performed in the current
iteration.

• Scenarios where it is equally or more detrimental
to not reach a conclusion on the value of the cal-
culated result. An example of this scenario could
be a real-time communications decryption algorithm,
where failing to decrypt the frame received by the sys-
tem in one iteration can be just as detrimental as de-
crypting it wrong.

Note that, in the first case, it may be most reasonable not to use the result that the
voters produce in a given iteration when it has a low reliability, to avoid higher risks;
while in the second case, it may be worthwhile to perform a best-effort guess and consider

64

Chapter 4. Proposed Solution

the result calculated by the voters as valid despite its low reliability. Again, this decision
will depend on the specific mission or objective of the system and must be evaluated on a
case-by-case basis.

4.3.2. Redundant Voters

As stated in Section 4.1, one of the keys to differentiate it from similar works such as
Campagna et al. [77] or Esposito et al. [162] the voting mechanism should not involve a
single point of failure. In this case, by implementing the voter in the FPGA, it is especially
easy (and implies a very low overhead) to redundant the mechanism, which will be repli-
cated three times in three different areas of the FPGA. This will allow to remain confident
in the outcome of the voter even if one of them is damaged. However, it is expected that
all the three voters will always agree, since the same partitions provide them with inputs,
so the decision logic when comparing the results of the three voters will be simpler:

1. The result is decided by majority. If two of the voters agree on a result, it is estab-
lished as the correct result. If there is a total disagreement between the three voters,
this is a very anomalous case, since very different things would have to happen
within each voter (who, in addition, receive inputs from the same sources), so it is
considered a critical failure of the system and would cause a reset of the hypervisor.
If the hypervisor has been reset too many times, as stated above, the system would
enter Safe Mode.

2. The reliability level of the result is decided by majority vote. If all three voters
agree on the result but there is total disagreement on the level of reliability (i.e., one
reports a reliability level VERY HIGH, one HIGH and one LOW), the reliability
level is set to HIGH. If only two voters agree on the result and disagree on the
reliability level, the lower reliability level is chosen from among the two voters.

3. The faulty partition is decided by majority vote. If at least two of the voters
indicate that one or more partitions are faulty, it is decided that they are faulty. If
only one partition indicates that any of the partitions are faulty, no action will be
taken. Note that this means that no action will be taken outside the voters’ domain
(i.e., Health Monitoring will not assume failure on the part of that partition), but
internally that voter will have increased the failure counter of the partition it has
considered faulty.

This logic is represented graphically in the flowchart in Figure 4.8.

65

Chapter 4. Proposed Solution

Fi
gu

re
4.

8:
M

an
ag

em
en

to
fr

ed
un

da
nt

vo
te

rd
ec

is
io

ns

66

Chapter 4. Proposed Solution

4.4. Health Monitoring

The Health Monitoring partition is an essential element of the architecture. Its function
is twofold: on the one hand, to constantly monitor the health and correct functioning
of the hypervisor and of each of the partitions. On the other hand, either because it
detects an error or because the voter informs it that a partition has failed in its calculations
(which could indicate a malfunction of that partition), the Health Monitoring partition is
responsible for taking the appropriate measures to restore the health of the system as far
as possible. The measures can vary from resetting a partition, restarting the hypervisor
itself or even completely changing the system configuration.

4.4.1. Hypervisor health check process

In the work presented in this thesis, the hypervisor is the means used to provide a fault-
tolerant solution at the application level. For this reason, hypervisor fault detection and
correction are outside the scope of the research. In addition to the mechanisms that each
hypervisor implements to protect itself, in section 2.4 a series of investigations aimed at
strengthening the correct execution of the hypervisor by means of different techniques
have been presented. Even so, the solution presented in this thesis contemplates a basic
check of the hypervisor’s health, which is explained in this section.

Typically, hypervisors follow a finite-state machine model in which at least a normal
operational state, an initialization state and an error state can be distinguished. The HM
partition must constantly check that the hypervisor is in the expected operating mode. If
it is not possible to access this information, or even in parallel to the hypervisor status
check, the HM partition shall (after identification) monitor the variables/parameters that
allow verifying that the hypervisor is operating correctly.

In the event of a hypervisor error, the HM partition will reset the hypervisor and
restart the same partitions that were running up to that moment, provided that the nature
of the mission allows it. If the HM partition detects several consecutive errors (the exact
number will depend on the specific scenario and mission), it will restart the hypervisor by
loading the safe configuration. This configuration (often referred to as safe mode) must
be planned prior to each mission and must be triggered automatically in case of critical
failure, without confirmation from the ground. The safe mode should maintain the system
in a state of reduced but stable functionality until appropriate actions are taken remotely
to restore normal operation by the operations team. Although not every failure triggers
the launch of safe mode, the HM partition must communicate any actions it takes on the
hypervisor or partitions to the operators, even when it is able to autonomously recover the
system.

This whole process can be seen graphically represented in the flowchart in Figure 4.9.

67

Chapter 4. Proposed Solution

Figure 4.9: Hypervisor health check process flowchart

4.4.2. Partitions health check process

As explained above, we have opted for a TMR scheme rather than an NMR scheme to
expose the solution. This is because, although the memory of the COTS devices targeted
by this solution is usually large enough to accommodate a high number of redundant
copies, in many occasions we can find a limiting factor in the number of partitions that
can be scheduled in one cycle of the scheduling plan. However, one way to strengthen the
TMR scheme without further increasing the number of partitions running simultaneously
is to use cold redundancy mechanisms. In other words: in addition to applying TMR,
it is perfectly reasonable to store in memory one or more Safe Partitions that remain on
standby and are activated when the Health Monitoring partition considers that they should
replace one of the Safe Partitions currently running. In this way we obtain a double
advantage:

1. Further strengthen the hot redundancy that we get by running several Safe Partitions

68

Chapter 4. Proposed Solution

in parallel with cold redundancy, by having more Safe Partitions in standby.

2. Allow to permanently replace any of the Safe Partitions running in hot redundancy,
in case it shows a malfunction during long periods of time, without degrading the
performance of the system.

After the health of the hypervisor is checked, the Health Monitoring partition should
also check that the health status of each partition is correct at each iteration. To do this,
it can check monitoring parameters and the internal parameters of each partition, which
should show the expected values (the specific details of this check depend on the particular
hypervisor being used). In case we use a simple hypervisor that does not provide too much
information about partition status, or even in addition to these checks, partitions can be
instructed to send a keepalive message to the HM at each iteration, so that the HM notices
if a partition is down without having to check any of its parameters.

If any Safe Partition is not in the expected state or has crashed and its keepalive mes-
sage is not received, the HM resets the partition. Resetting a partition should be an anoma-
lous and very occasional situation, so if the same partition has been reset several times (the
exact number depends on the particular system, we will call it K), it is assumed that it is
severely malfunctioning, so the partition is halted in order not to compromise the health
of the rest of the system and to prevent it from consuming resources unnecessarily. In
case the partition is halted, the HM immediately checks if there is another Safe Partition
in cold redundancy that can replace it. If there is no other partition in cold redundancy,
the failed partition will be halted anyway, and the HM will configure the Voter to run in
Degraded Mode (if there are two Safe Partitions left) or Highly Degraded Mode (if there
is only one left). It is possible, depending on the hypervisor, the partitions themselves and
the power of the platform on which they run, that the process of resetting a partition or
replacing an active partition with a partition that is in cold redundancy may not be imme-
diate. Therefore, as part of the process of resetting or replacing a partition, the HM
will instruct the voter to enter degraded mode until the new partition is fully reset
and operational.

The same logic applies to General Partitions, keeping in mind that there may be no hot
or cold redundant partitions for these partitions. In this case, the HM will simply check
their health, reset the partition in case of error and halt the partition if the error is repeated
too many times.

Regarding itself: for obvious reasons, the HM cannot be trusted to monitor its own
health correctly (since, in case of malfunction, we would not be able to trust its decisions).
Still, as an additional precaution, the HM performs a check of its current state. If it finds
any error, given the importance of the HM in the system, it will be considered a critical
error and the hypervisor will be reset. Just as when checking the health of the hypervisor,
there is a maximum number of times the hypervisor can be reset before launching Safe
Mode. It is important to note, however, that the rest of the partitions could run correctly
without Health Monitoring, although there would be no protection in case any of these

69

Chapter 4. Proposed Solution

partitions fail. It is also important to clarify that the way to add an additional layer of
protection would be to establish a new agent (it can be another partition) with minimalist
functionality, which exclusively monitors the health of the HM and resets it if necessary.

This logic is represented in the flowchart in Figure 4.10.

Figure 4.10: Partitions health check process flowchart

4.4.3. Partitions results check process

Finally, after checking the health of the hypervisor and each partition on the system, the
Health Monitoring partition checks if any of the redundant safe partitions have calculated
an erroneous result, as judged by the Voter (see section 4.3 for more details on the voting
process).

Like the Voter, the Health Monitoring partition keeps track of the number of times
each partition has failed. However, these counts are independent of each other and are
used for different purposes: while the Voter uses the number of failures of a partition to
quantitatively assess its reliability, in order to choose the result calculated by that parti-

70

Chapter 4. Proposed Solution

tion over the result calculated by another redundant partition, the HM uses the count to
qualitatively assess whether the partition is healthy enough to continue running without
compromising the safety of the system.

The first step in the result checking process is the reading of the Voter outputs, which
will signal a partition in case it has failed. If a partition has failed, the HM will increment
its failure counter. If this counter exceeds a safety number (which will depend on the
particular use case), the partition will be assumed to be continuously malfunctioning, and
it will be reset. As in previous processes, if the partition has been reset too many times,
it will be halted permanently. In this case, the halted partition will be replaced as long
as there are partitions in cold redundancy that can take its place, and if not, the system
operation mode will be degraded.

After this, the HM will check, for each active partition, if there is a partition in cold
redundancy whose failure counter is less than the number of failures of the active partition.
If so, it will proceed to replace the active partition with the partition with fewer failures.
The goal of this action is to always run the three partitions that have historically failed the
least.

This process is illustrated graphically in Figure 4.11.

Figure 4.11: Partitions results check process flowchart

71

Chapter 4. Proposed Solution

4.5. Summary

In this chapter, we have outlined our proposed solution for implementing a novel HBFT
mechanism. On the one hand, a novel contribution of our solution is the Health Monitor-
ing partition, which is responsible not only for monitoring the state of the hypervisor and
the other partitions, but also for taking appropriate recovery measures if any part of the
system is malfunctioning. Another novel aspect of the solution is the deployment of cold
redundancy partitions, which are on standby until Health Monitoring commands them to
replace any of the active partitions if they are failing too frequently. Finally, our system’s
Voter, which runs entirely on the FPGA, is a complex element with several modes of op-
eration, depending on the number of partitions participating in the voting process. This
Voter also tracks the success rate in the calculations of each partition, so that it can assign
a reliability to each partition. This novel feature allows the system to be robust to multiple
failures, as we will see later.

After outlining our solution, Chapter 5 explains the development of a simplified but
representative prototype of all the functionality explained in this chapter.

72

Chapter 5. Prototype

5. PROTOTYPE

This chapter presents a prototype demonstrating the solution proposed in Chapter 4.
The chapter is divided into seven main sections:

• Section 5.1 contains the description of the general architecture of the prototype,
which is a particularisation of the architecture presented in chapter 4. It includes
the selection of the hypervisor, according to the particular needs of the prototype
and to the state-of-the-art study carried out in chapter 2.

• Section 5.2 describes the hardware used to develop the prototype (based on SoC
technology) and the bootloaders used to configure the hardware at boot time.

• Section 5.3 comprehensively describes the aerospace software used to demonstrate
the fault tolerance of the solution: the NIR HAWAII-2RG Benchmark.

• Section 5.4 describes the two modes of operation of the prototype. This section
includes the memory allocation of each partition of the modes of operation and
their scheduling plan.

• Section 5.5 describes a series of tests performed on the prototype’s Health Monitor-
ing partition to verify that it responds adequately to the different failures that may
occur in the system.

• Section 5.6 describes the prototype voter, a simplification of the voter discussed
in Chapter 4. This section includes both a software-implemented version of the
prototype and a version implemented in the programmable logic of the chosen SoC.

• Section 5.7 briefly summarises the chapter and introduces the contents of the fol-
lowing chapter.

5.1. Prototype Architecture

According to section 4.2, the prototype architecture will have three clearly differentiated
layers:

• Hardware Layer. The board chosen to deploy the prototype is the MicroZed, a
low-cost development board based on the Xilinx Zynq-7000 SoC. Some details
about this board are explained in section 5.2.

• Hypervisor Layer. In Chapter 4, an exhaustive study of the existing literature on
the application of hypervisors to real-time safety-critical systems has been carried

73

Chapter 5. Prototype

out (the result of this study is summarized in Tables 2.4, 2.5, 2.6 and 2.7). Among all
the options, the XtratuM hypervisor has been chosen to implement the prototype,
for several reasons:

– It is a hypervisor conceived from the outset for real-time safety-critical sys-
tems.

– It offers paravirtualization, which should potentially alleviate the hypervisor’s
footprint on the system1 .

– It offers, among others, support for ARM Cortex-A9 processors, which is the
one chosen to develop the prototype due to availability at the time of the re-
search.

– It allows to deploy, in addition to real-time partitions (bare-metal, RTEMS,
LithOS), partitions with Linux as operating system, which allows reusability
and deployment of legacy applications.

– Widely promoted in the aerospace industry, both by private companies and
public bodies such as ESA and CNES.

– Its internal structure, which follows the ARINC 653 style (see section 2.1.3
for more details on this specification), makes it easily adaptable to aviation
systems, beyond the space sector.

– There is work, such as that of the OVERSEE [79] project, that looks at the
possibility of applying XtratuM to automotive systems and has done work in
that direction.

– Finally, by ease in the framework of the project in which this industrial doc-
torate is developed. XtratuM is a Spanish company and there are currently
working ties with both SENER Aeroespacial and Universidad Carlos III de
Madrid, the two entities involved in this thesis.

• Partition Layer. A total of five partitions will be deployed for the prototype:

– The three Safe Partitions instances will run three identical applications, based
on the HAWAII-2RG NIR space benchmark. This benchmark will allow us
to base the prototype on an application that is used in current space observing
systems (more details on the benchmark are discussed later in section 5.3).

– One partition will be dedicated to running the Health Monitoring, following
the processes described in section 4.4.

– A final partition will be dedicated to a dual objective. In a first version of the
prototype, in order to be able to start testing it as soon as possible, this partition
will implement a software version of the voter. Later on, the voter will

1There is no evidence on the footprint implied by the use of XtratuM on any platform or architecture.
Part of the research will be dedicated to perform overhead tests on the hardware platform we have chosen,
so that the first data can be obtained.

74

Chapter 5. Prototype

be implemented on the FPGA as described in chapter 4, so that, in addition,
its performance can be compared with respect to the software version. At
that time, the resources (in terms of memory and CPU utilization) dedicated
to the voter partition will be used to implement a general partition (i.e., as
explained in section 4.2, a partition hosting a general/non-safe application).

Figure 5.1: Prototype Architecture

5.2. Hardware Layer

The prototype used to demonstrate the solution proposed in this thesis is deployed on the
low-cost development board Microzed, from Avnet. In turn, this board is based on the
Zynq-7000 SoC, from Xilinx. This section is dedicated to briefly outline the characteris-
tics of the hardware used, as well as to present the bootloaders used to configure it before
the hypervisor, as the main software element, takes control of the system.

5.2.1. System on Chip

In section 2.1.3 we discussed how industries such as space, aviation or automotive are
tending to follow other industries in using System on Chips (SoCs) to implement safety-
critical system solutions. A SoC is nothing more than a chip on which all the typical
components of a complete electronic system are integrated [175]. This usually includes a
CPU, FPGA, memory interfaces, I/O devices and sometimes more specific devices such
as ADC converters, transceivers or graphics processing units. When an SoC has more
than one processor among its components, they are often referred to as MPSoCs (Multi-
Processor System on Chip) [176]. Today, there are commercial SoCs that offer very high
performance, meeting the demand of more and more sectors (including safety-critical
ones) to be able to host high-demand applications in very little physical space, which
means that they offer very high efficiency, both economically and in terms of SWaP (Size,
Weight and Power consumption).

75

Chapter 5. Prototype

The adoption of these devices in safety-critical industries involves a series of impor-
tant challenges that are being and will continue to be investigated in the coming years,
mainly related to interference between internal components if one of them fails. Some-
thing similar happens at the processor level: the high processing capacity of the processors
that these SoCs integrate makes it possible to deploy a lot of functionality in a single pro-
cessing core, so isolation and redundancy techniques that guarantee the safety of each
application are essential. This is the focus of the research reflected in this thesis and, of
course, the prototype used to test it should be deployed in an SoC. The SoC chosen, due
to its characteristics, the maturity of the associated software tools and its availability at
the time of the research, is the Zynq-7000 from Xilinx. Its main features are described
below.

Zynq-7000

Zynq-7000 refers to a whole family of SoCs that integrate, among others, a processing
system (PS) based on a single-core or dual-core ARM Cortex-A9 processor and a pro-
grammable logic (PL) based on a 28nm FPGA from Xilinx. Both domains (PS and PL)
are connected by more than 3,000 interconnects offering a bandwidth of up to 100Gb/s,
which is above what a solution with separate chips could offer.

The differences between the different models covered by this family are centered on
the number and power of the processing cores and the capacity of the FPGA they inte-
grate. Avnet’s Microzed board is based on one of the Zynq-7000 models. Specifically, on
the XC7Z010-1CLG400C SoC, details of which are reflected in Tables 5.1 (Processing
System) and 5.2 (Programmable Logic).

Table 5.1: Z-7010 Processing System characteristics

Device Name Z-7010
Part Number XC7Z010

Processor Dual-Core ARM Cortex-A9 MPCore (up to 866MHz)

Processor Extensions
NEON™ SIMD Engine and Single/Double Precision

Floating Point Unit per processor
L1 Cache 32KB Instruction, 32KB Data per processor
L2 Cache 512KB

On-Chip Memory 256KB
External Memory Support DDR3, DDR3L, DDR2, LPDDR2

External Static Memory Support 2x Quad-SPI, NAND, NOR
DMA Channels 8 (4 dedicated to PL)

Peripherals 2x UART, 2x CAN 2.0B, 2x I2C, 2x SPI, 4x 32b GPIO
Peripherals w/ built-in DMA 2x USB 2.0 (OTG), 2x Tri-mode Gigabit Ethernet, 2x SD/SDIO

Security
RSA Authentication of FSBL,

AES and SHA 256b Decryption and Auth. for Secure Boot

PS to PL Interface Ports
2x AXI 32b Master, 2x AXI 32b Slave,

4x AXI 64b/32b Memory, AXI 64b ACP, 16 Interrupts

76

Chapter 5. Prototype

Table 5.2: Z-7010 Programmable Logic characteristics

7 Series PL Equivalent Artix-7
Logic Cells 28K

Look-Up Tables (LUTs) 17,600
Flip-Flops 35,200

Total Block RAM (# 36Kb Blocks) 2.1Mb (60)
DSP Slices 80
PCI Express -

AMS/XADC
2x 12 bit, MSPS ADCs with
up to 17 Differential Inputs

Security
AES & SHA 256b Decryption &

Auth. for Secure PL Config
Speed Grades -1

Avnet Microzed

The Microzed is an Avnet development board based on the Zynq-7000 SoC from Xilinx.
In addition to this SoC, it contains the components and interfaces typically required to
support SoC designs: among them, memory devices, USB and Ethernet communication
interfaces and clocks.

Table 5.3 lists some of the main features of the Avnet Microzed used to implement the
prototype [177]:

Table 5.3: Avnet Microzed characteristics

SoC XC7Z010-1CLG400C

Memory
1 GB of DDR3 SDRAM
128 Mb of QSPI Flash
Micro SD card interface

Communications
10/100/1000 Ethernet
USB 2.0
USB-UART

User I/O
108 User I/O (100 PL, 8 PS MIO)
PL I/O configurable as up to 48 LVDS pairs or 100 single-ended I/O

Other

2x6 Digilent Pmod® interface (8 PS MIO connections for user I/O)
AMD Xilinx PC4 JTAG configuration port
PS JTAG pins accessible via Pmod or I/O headers
33.33 MHz oscillator
User LED and push button

77

Chapter 5. Prototype

5.2.2. Bootloaders

As a previous step to hand over control to the hypervisor, there must be a basic application
that is normally known as bootloader, which contains all the software needed to boot the
system. In the case of the work of this thesis, the bootloader is divided into two distinct
parts:

• The First-Stage BootLoader (FSBL) is a basic bootloader provided by Xilinx,
the SoC manufacturer, that is responsible, among other things, for bringing the
processor out of reset, programming the FPGA with the appropriate bitstream and
hands over the control to the next bootloader.

• The Second-Stage BootLoader (SSBL) is a more complex bootloader developed
for this research, in which the necessary tests are performed to verify that the sys-
tem is ready to start with its nominal operation (Initiated Built-In Tests -IBIT-). In
addition, before finishing its execution, this bootloader is responsible for configur-
ing the hypervisor and giving it control. This control flow can be seen graphically
in Figure 5.2.

Figure 5.2: Bootloaders Control Flow

IBITs include:

• DDRAM memory integrity test.

• Interrupt Controller test.

• DMA (Direct Memory Access) test.

• QSPI (Quad Serial Peripheral Interface) test.

78

Chapter 5. Prototype

• Device Configuration Interface driver test.

• SCU (System Controller Unit) Private Timer test using a counter (polling mode).

• SCU Private Timer test using interrupts (interrupt mode).

• SCU Private Watchdog Timer test using interrupts (interrupt mode).

• TTC (Triple Timer Counter) device test.

• UART (Universal Asynchronous Receiver-Transmitter) interfaces test.

• GPIO (General Purpose Input/Output) interfaces test.

• XADC (Xiling Analog to Digital Converters) temperature and voltage sensors test.

5.3. NIR HAWAII-2RG Benchmark

Since the fault-tolerance mechanism explained in Chapter 4 is intended to operate in
safety-critical embedded systems, it is desirable to implement a use case related to this
type of systems in order to test the prototype. For commercial and confidentiality reasons,
it is not easy to access real operational software from sectors such as aviation, space or
automotive. However, the European Space Agency (ESA) provides access to the bench-
marking software Near InfraRed (NIR) HAWAII 2-RG Data Processing Algorithms. As
the name suggests, this software implements algorithms that allow processing of raw
frames captured by the HAWAII 2-RG NIR detector. This detector is currently widely
used in different space missions and projects, such as the Hubble Space Telescope (Wild
Field Camera 3), the NIFS Gemini North, the James Webb Space Telescope (Near In-
frared Spectrograph) or the X-Shooter of the European Southern Observatory, at Cerro
Paranal.

In a simplified way, the different steps of the algorithm for processing the images
(which are in the form of a two-dimensional array of pixels), once the data have been
collected and converted by an analogue-to-digital converter, are described below:

• Saturation detection: the algorithm checks if any of the pixels are over the satura-
tion level, to take this into account in future steps.

• Co-Adding: the algorithm adds the frames of each group to reduce read-out noise.

• Super-Bias subtraction: the algorithm subtracts a bias frame from the frame ob-
tained by the detector, so that the pixel-to-pixel variation in offset is eliminated.

• Non-linearity correction: the algorithm corrects the non-linearity of the detector
using a 4th degree polynomial.

• Reference pixel subtraction: the algorithm eliminates common noise.

79

Chapter 5. Prototype

Figure 5.3: NIR HAWAII 2-RG Data Processing Algorithms Steps (ESA)

• Cosmic ray detection: the algorithm estimates flux and detected disturbances
caused by cosmic rays and corrects them.

In order to make this software useful for our prototype testing, two main modifi-
cations have been made to the original source code distributed by ESA. Firstly, the
necessary modifications have been adopted to make it run on the Xilinx Zynq 7000 SoC
(ARM processor), as the original distribution is intended to be deployed on LEON and
PowerPC processors. In addition, instead of generating random data, a fixed set of input
data has been defined, so that different partitions can redundantly run the algorithm in
the same conditions and their outputs can be compared for errors.

5.4. Operational Modes

5.4.1. Partitions Memory Allocation

To configure a system running XNG (hypervisor configuration, partitions, scheduling,
resource allocation, interrupts...), a series of XML files are used. Through these files and
a dedicated software tool, a file called XtratuM Configuration File (XCF) is compiled and
loaded into a memory area determined by the user, where the hypervisor can read the
configuration and act accordingly.

Although a single XCF can offer some flexibility (e.g., more than one scheduling plan
can be configured in a single XCF and the user can switch between them at run time), the

80

Chapter 5. Prototype

user can also load more than one XCF into memory, and completely change the system
configuration during execution. Therefore, when the final executable of a system using
XNG is generated, it consists of at least 3 parts:

• The executable of the hypervisor itself (there must be a bootloader which, after per-
forming the initialisation tests, hands over the execution control to the hypervisor.
This bootloader has been described in section 5.2.2).

• One or more XCFs (the bootloader must also write in a processor register the con-
figuration of the XCF to be used by default, so that the hypervisor can find it).

• One or more partitions.

In the case of the prototype, two different XCFs are used: one describing the Nominal
Mode configuration and one describing the Safe Mode configuration. The idea behind
this is that in each of the modes of operation the hypervisor has no visibility or access
to the partitions that do not correspond to that mode. This is especially important in the
case of Safe Mode, where we want to run basic functionality while waiting for an external
agent to reset the system (see section 5.4.3 for more details). In addition, six partitions
are loaded into memory:

• Partition 0: NIR#0, Safe Partition (first copy).

• Partition 1: NIR#1, Safe Partition (second copy).

• Partition 2: NIR#2, Safe Partition (third copy).

• Partition 3: Health Monitoring partition.

• Partition 4: Voter (General Partition when Voter is running on FPGA).

• Partition 5: Safe Mode.

• Partition 6: NIR#3, Safe Partition in cold redundancy (can replace partitions 0, 1
or 2 when the HM partition deems it necessary).

Each of these partitions is allocated 64MB of memory. This is more than enough for
the tasks they have to perform, but even so, most of the Avnet Microzed’s DDR3 SDRAM
memory (1GB total memory) is still note used. Table 5.4 contains the memory allocation
of the different elements of the final system executable.

81

Chapter 5. Prototype

Table 5.4: Memory allocation of the system executable

Start Address
Reserved
Size (kB)

Real Size (kB)

Hypervisor Executable 0x200000 - 1.55
XCF (Nominal Mode) 0x300000 - 69.70
XCF (Safe Mode) 0x400000 - 45.24
Partition 0 0x4000000 65,536 137.45
Partition 1 0x8000000 65,536 137.45
Partition 2 0xC000000 65,536 137.45
Partition 3 0x10000000 65,536 15.47
Partition 4 0x14000000 65,536 17.21
Partition 5 0x18000000 65,536 6.48
Partition 6 0x1C000000 65,536 137.45

5.4.2. Nominal Mode

The Nominal Mode is the main mode of operation of the prototype. In it, the five par-
titions described in section 5.1 run at a frequency of 0.5Hz: the three Safe Partitions
(#NIR0, #NIR1 and #NIR2), the Health Monitoring partition and the partition used to im-
plement the Voter, when it runs in software (this partition is used to implement a General
Partition, when the Voter runs in the FPGA). In addition, during Nominal Mode execu-
tion, there is a redundant standby partition (#NIR3) that can replace one of the active
Safe Partitions (#NIR2) if the Health Monitoring partition deems it appropriate and or-
ders this replacement. All partitions are loaded in memory in the positions indicated in
section 5.4.1 and the substitution between #NIR2 and #NIR3 is executed by changing the
scheduling plan: plan 0 schedules #NIR2, while plan 1 schedules #NIR3. Only the HM
partition has the privileges to execute the scheduling plan switch.

The Nominal Mode scheduling plans are shown in Tables 5.5 and 5.6.

Table 5.5: Prototype scheduling policy - Plan 0

Core 0 Core 1Partition
Number

Partition
Name Start Duration Start Duration

0 NIR #0 0ms 500ms - -
1 NIR #1 - - 0ms 500ms
2 NIR #2 500ms 500ms - -
3 Health Monitoring 1600ms 400ms - -
4 Voter/General - - 1000ms 400ms

For the sake of clarity, Tables 5.5 and 5.6 are represented graphically in Figures 5.4
and 5.5:

82

Chapter 5. Prototype

Table 5.6: Prototype scheduling policy - Plan 1

Core 0 Core 1Partition
Number

Partition
Name Start Duration Start Duration

0 NIR #0 0ms 500ms - -
1 NIR #1 - - 0ms 500ms
3 Health Monitoring 1600ms 400ms - -
4 Voter/General - - 1000ms 400ms
6 NIR #3 500ms 500ms - -

Figure 5.4: Scheduling policy for prototype partitions - Plan 0

5.4.3. Safe Mode

During the life cycle planning of a spacecraft, the possibility of the spacecraft entering
a state often referred to as "safe mode" is considered, to protect the vehicle when an
anomalous and potentially dangerous failure occurs to the system. In this mode of opera-
tion, faults are isolated to prevent propagation, communication with ground is established,
and the vehicle is oriented in a power-positive and thermally stable configuration [178].
This mode is maintained indefinitely until operators take the necessary steps to restore the
system remotely.

In the case of the prototype proposed in this chapter, it is not the specific actions per-
formed by the Safe Mode that are of interest, but the system’s ability to migrate from the
Operational Mode to the Safe Mode, so that the partitions that were running in the Oper-
ational Mode stop running and consuming system resources, and one or more partitions
that make up the Safe Mode start running. Therefore, the Safe Mode of the prototype will
consist of a partition isolated from the rest, whose functionality is very simple: it will
send a message to the console and will enter an infinite loop (in which it would wait for
the reset from Ground in a real use case).

This Safe Mode has its own XtratuM Configuration File (XCF), in which the rest of
the partitions (that do not belong to the Safe Mode) are not contemplated (therefore, no

83

Chapter 5. Prototype

Figure 5.5: Scheduling policy for prototype partitions - Plan 1

resources are assigned to them) and in which there is only one scheduling plan that exe-
cutes partition 5 cyclically with a frequency of 0.5Hz. To obtain even more assurance that
Safe Mode will be executed correctly, even in the event that one of the processing cores
is malfunctioning, the two available cores will execute the Safe Mode code sequentially.

Table 5.7: Prototype scheduling policy - Core 0

Partition Number Partition Name Start Duration
Partition 5 Safe Mode 0s 1s

Table 5.8: Prototype scheduling policy - Core 1

Partition Number Partition Name Start Duration
Partition 5 Safe Mode 1s 1s

Note that in any of the operational modes all the partitions and XCFs are loaded in
memory, in the positions indicated in table 5.4, but depending on the XCF used, the
hypervisor will be aware of some or others and will allocate resources to them according
to what is established in the XCF. Once the system is in one of the operational modes, the
only way to migrate to the other is to reset the system and configure the hypervisor with
the XCF corresponding to the new operational mode.

5.5. Health Monitoring

The developed prototype includes a Health Monitoring partition that implements all the
functionality described in section 4.4. A series of tests performed on this Health Monitor-
ing partition are described below, in order to verify that it takes the appropriate measures
in case of system failures. In section 5.5.1 we generate errors that affect the state of the
hypervisor, in section 5.5.2 we generate errors that affect the state of one or more parti-
tions and, finally, in section 5.5.3 we generate errors that affect the calculations performed
by the Safe Partitions.

84

Chapter 5. Prototype

Figure 5.6: Scheduling policy for the Safe Mode

5.5.1. Hypervisor health check

Listing 5.1: Execution of the prototype and standard reset of the hypervisor

[P0] I n i t i a l i z e d .
[P1] I n i t i a l i z e d .
[P0] I t e r a t i o n comple t ed .
[P1] I t e r a t i o n comple t ed .
[P2] I n i t i a l i z e d .
[P2] I t e r a t i o n comple t ed .
[VOTER] I n i t i a l i z e d .
[HM] H e a l t h M o n i t o r i n g i n i t i a l i z e d .
[P0] I t e r a t i o n comple t ed .
[P1] I t e r a t i o n comple t ed .
[P2] I t e r a t i o n comple t ed .
[VOTER] The c a l c u l a t i o n s o f P0 , P1 and P2 a g r e e .
[P0] I t e r a t i o n comple t ed .
[P1] I t e r a t i o n comple t ed .
[P2] I t e r a t i o n comple t ed .
[VOTER] The c a l c u l a t i o n s o f P0 , P1 and P2 a g r e e .
[P1] I t e r a t i o n comple t ed .
[P0] I t e r a t i o n comple t ed .
[P2] I t e r a t i o n comple t ed .
[VOTER] The c a l c u l a t i o n s o f P0 , P1 and P2 a g r e e .
[HM] H y p e r v i s o r i s go ing t o be r e s e t .
I t has been r e s e t 0 t imes b e f o r e .

After restarting the hypervisor, the partitions run the same way again and the hyper-
visor restarts another two times. The console output is shown below when the hypervi-
sor restarts for the third time, exceeding the maximum number of times allowed before
switching to safe mode:

Listing 5.2: Execution of the prototype and launching of Safe Mode

[XNG−DBG: 0] h y p e r v i s o r r e s e t
[P0] I n i t i a l i z e d .
[P1] I n i t i a l i z e d .

85

Chapter 5. Prototype

[P1] I t e r a t i o n comple t ed .
[P0] I t e r a t i o n comple t ed .
[P2] I n i t i a l i z e d .
[P2] I t e r a t i o n comple t ed .
[VOTER] I n i t i a l i z e d .
[HM] H e a l t h M o n i t o r i n g i n i t i a l i z e d .
[P0] I t e r a t i o n comple t ed .
[P1] I t e r a t i o n comple t ed .
[P2] I t e r a t i o n comple t ed .
[VOTER] The c a l c u l a t i o n s o f P0 , P1 and P2 a g r e e .
[P0] I t e r a t i o n comple t ed .
[P1] I t e r a t i o n comple t ed .
[P2] I t e r a t i o n comple t ed .
[VOTER] The c a l c u l a t i o n s o f P0 , P1 and P2 a g r e e .
[P0] I t e r a t i o n comple t ed .
[P1] I t e r a t i o n comple t ed .
[P2] I t e r a t i o n comple t ed .
[VOTER] The c a l c u l a t i o n s o f P0 , P1 and P2 a g r e e .
[HM] H y p e r v i s o r i s go ing t o be r e s e t .
I t has been r e s e t 2 t imes b e f o r e .
[HM] Launching s a f e mode . . .

Having ordered a hypervisor reset three times, the HM partition assumes that some-
thing is not working properly, so it launches safe mode. On a space system, typically,
safe mode disables all non-essential system functionality and runs only essential func-
tions such as Attitude and Orbit Control, thermal control, or ground communication, as
ground operators will likely need to take action to recover the system.

Listing 5.3: Safe Mode execution

[XNG−DBG: 0] h y p e r v i s o r r e s e t
[SAFE MODE] Non− e s s e n t i a l f u n c t i o n s a r e s h u t down .
Wai t i ng t o be r e s e t from ground . . .
[SAFE MODE] Non− e s s e n t i a l f u n c t i o n s a r e s h u t down .
Wai t i ng t o be r e s e t from ground . . .
[SAFE MODE] Non− e s s e n t i a l f u n c t i o n s a r e s h u t down .
Wai t i ng t o be r e s e t from ground . . .

XNG provides partitions with access to two different virtual clocks:

• The virtual system clock is the representation of a physical real-time clock. It is a
monotonically increasing clock that allows any partition to query the time elapsed
since the hypervisor was last reset.

86

Chapter 5. Prototype

• The virtual execution clock is a monotonically increasing clock local to each vir-
tual CPU, which returns the time that this virtual CPU has run since the last partition
reset. This clock also takes into account the time used by the hypervisor for its own
tasks (e.g. service dispatching, IRQ handling).

Using the virtual system clock, we can measure the time it takes XNG to reset the
hypervisor in the use cases used to test the hypervisor health check process. Note that
in this use case two different resets occur: in one case, a normal reset is performed
(which restores the system to its nominal operation); in the other, a reset is performed
that launches Safe Mode. Reset times have been measured for 10 standard resets and 10
resets that launch Safe Mode. These figures, shown in Table 5.9, correspond to the time
elapsed between the moment when the hypervisor is reset by order of the HM partition
and the moment when, once the system has been reset, the first partition (according to the
scheduling plan) starts running.

Table 5.9: XNG reset time

Reset number
Time required to perform

reset (standard) in us
Time required to perform

reset (Safe Mode) in us
1 20315 5006
2 20363 5005
3 20307 5006
4 20368 5011
5 20317 5006
6 20322 5005
7 20318 5011
8 20314 5010
9 20364 5007

10 20305 5011
Mean time (us) 20,329.3 5,007.8

As can be seen, there is a clear difference between the time it takes for the hypervi-
sor to reset when loading the nominal configuration and when loading Safe Mode. This
difference is not surprising, since both configurations are very different in terms of mem-
ory occupation and resource consumption (the nominal configuration not only loads more
partitions, but each of these is heavier than the partition running Safe Mode). However, in
either case, the time it takes for the hypervisor to reset itself is much less than the major
frame of the scheduler of the use case we are applying. If we assume, that the redun-
dancy scheme proposed in this thesis is intended for systems with low frequency cyclic
behaviour (0.5-20Hz), we can derive that the impact of a system reset is minimal in terms
of execution time.

87

Chapter 5. Prototype

5.5.2. Partitions health check

Before injecting faults continuously into the system, we test the mechanism for detecting
and correcting partition health faults. Initially, the system execution starts normally. With
debug traces enabled, the console output is shown below:

Listing 5.4: Normal execution of the system

[XNG−DBG: 0] h y p e r v i s o r r e s e t
[P0] I n i t i a l i z e d .
[P1] I n i t i a l i z e d .
[P1] I t e r a t i o n comple t ed .
[P0] I t e r a t i o n comple t ed .
[P2] I n i t i a l i z e d .
[P2] I t e r a t i o n comple t ed .
[VOTER] I n i t i a l i z e d .
[VOTER] The c a l c u l a t i o n s o f P0 , P1 and P2 a g r e e .
[HM] I n i t i a l i z e d .
[P0] I t e r a t i o n comple t ed .
[P1] I t e r a t i o n comple t ed .
[P2] I t e r a t i o n comple t ed .
[VOTER] The c a l c u l a t i o n s o f P0 , P1 and P2 a g r e e .
[P1] I t e r a t i o n comple t ed .
[P0] I t e r a t i o n comple t ed .
[P2] I t e r a t i o n comple t ed .
[VOTER] The c a l c u l a t i o n s o f P0 , P1 and P2 a g r e e .

In one of the iterations, the HM itself will inject a fault that will cause the suspension
of partition P2. In the next iteration, therefore, the HM will detect in the usual check that
P2 is not in the expected state. The voter realizes that it is not receiving inputs from P2 on
the next iteration, so it automatically goes into Degraded Mode. Subsequently, the HM
will reset P2 and the system will resume normal activity. The console output is shown
below:

Listing 5.5: Reset of P2 partition

[VOTER] The c a l c u l a t i o n s o f P0 , P1 and P2 a g r e e .
[HM] I n j e c t i n g f a u l t in P2 . . .
[P0] I t e r a t i o n comple t ed .
[P1] I t e r a t i o n comple t ed .
[VOTER] P2 n o t a c t i v e : e n t e r i n g Degraded Mode .
[VOTER] The c a l c u l a t i o n s o f P0 and P1 a g r e e .
[HM] P2 i s n o t in t h e e x p e c t e d s t a t e .

88

Chapter 5. Prototype

[HM] R e s e t t i n g p a r t i t i o n P2 .
[P0] I t e r a t i o n comple t ed .
[P1] I t e r a t i o n comple t ed .
[P2] I n i t i a l i z e d .
[P2] I t e r a t i o n comple t ed .
[VOTER] The c a l c u l a t i o n s o f P0 , P1 and P2 a g r e e .
[P1] I t e r a t i o n comple t ed .
[P0] I t e r a t i o n comple t ed .
[P2] I t e r a t i o n comple t ed .
[VOTER] The c a l c u l a t i o n s o f P0 , P1 and P2 a g r e e .

If we inject that error cyclically, the HM will eventually make the decision to halt par-
tition P2 (the prototype configuration at the time of this test states that each partition can
be reset a maximum of 2 times before assuming it is severely malfunctioning). After halt-
ing P2, the HM checks if there is any partition in cold redundancy (i.e., loaded in memory
but not active) that can replace P2. In this case there is: partition P6. Therefore, the HM
performs a scheduling plan change: it stops scheduling P2 and proceeds to schedule P6
instead. After this, the execution of the system continues normally, as indicated by the
console output if we activate the debug traces:

Listing 5.6: Halt and substitution of P2

[P0] I t e r a t i o n comple t ed .
[P1] I t e r a t i o n comple t ed .
[P2] I t e r a t i o n comple t ed .
[VOTER] The c a l c u l a t i o n s o f P0 , P1 and P2 a g r e e .
[P0] I t e r a t i o n comple t ed .
[P1] I t e r a t i o n comple t ed .
[P2] I t e r a t i o n comple t ed .
[VOTER The c a l c u l a t i o n s o f P0 , P1 and P2 a g r e e .
[HM] I n j e c t i n g f a u l t in P2 . . .
[P0] I t e r a t i o n comple t ed .
[P1] I t e r a t i o n comple t ed .
[VOTER] P2 n o t a c t i v e : e n t e r i n g Degraded Mode .
[VOTER] The c a l c u l a t i o n s o f P0 and P1 a g r e e .
[HM] P2 i s n o t in t h e e x p e c t e d s t a t e .
[HM] P2 has been r e s e t t o o many t imes . H a l t i n g p a r t i t i o n P2 .
[HM] P6 i s a v a i l a b l e t o s u b s t i t u t e P2 . Changing sched . p l a n .
[P0] I t e r a t i o n comple t ed .
[P1] I t e r a t i o n comple t ed .
[P6] I n i t .
[P6] I t e r a t i o n comple t ed .
[VOTER] The c a l c u l a t i o n s o f P0 , P1 and P6 a g r e e .

89

Chapter 5. Prototype

[P0] I t e r a t i o n comple t ed .
[P1] I t e r a t i o n comple t ed .
[P6] I t e r a t i o n comple t ed .
[VOTER] The c a l c u l a t i o n s o f P0 , P1 and P6 a g r e e .

After verifying that the partition health check mechanism is working and taking cor-
responding measures, a fault injection campaign of two types is performed:

1. Type I Partition Health Failure: using direct hypercalls to the hypervisor, a parti-
tion is suspended or shut down.

2. Type II Partition Health Failure: a trap is implemented on each partition, which
is executed randomly, in which the partition is locked in an infinite loop. This trap is
intended to simulate a failure in which the partition is not suspended or terminated
in the normal way, but is blocked and stops responding to inputs.

As expected, Type I failures are detected 100% of the time by the partitions health
check process by the HM. Type II failures are not detected by the standard partition health
check, as the partition may freeze in a normal operational state. If communication chan-
nels are established between each partition and the HM and the handshaking mechanism
mentioned in section 4.4.2 is implemented, Type II failures are also detected, so the HM
is able to detect 100% of partition health failures.

5.5.3. Partitions results check process

Finally, before injecting frequent failures in the partition calculations to check that the sys-
tem recovers correctly from them, we check that the failure detection mechanism works.
In a first scenario, partition P6, which is the backup partition (see section 5.4 for details),
is not loaded into memory. P0, P1 and P2 run continuously calculating the same results.
After a certain time instant, we start forcing P2 to compute wrong results. At first, the
system will simply detect these failures and will not react in any special way. After failing
three times, the Health Monitoring partition will reset the P2 partition.

Listing 5.7: P2 fault inyection and reset

[P0] I t e r a t i o n comple t ed .
[P1] I t e r a t i o n comple t ed .
[P2] I t e r a t i o n comple t ed .
[VOTER] The c a l c u l a t i o n s o f P0 , P1 and P2 a g r e e .
[HM] I n j e c t i n g f a u l t in P2 . . .
[P0] I t e r a t i o n comple t ed .
[P1] I t e r a t i o n comple t ed .
[P2] I t e r a t i o n comple t ed .
[VOTER] P2 has f a i l e d in i t s c a l c u l a t i o n s .

90

Chapter 5. Prototype

[HM] I n j e c t i n g f a u l t in P2 . . .
[P0] I t e r a t i o n comple t ed .
[P1] I t e r a t i o n comple t ed .
[P2] I t e r a t i o n comple t ed .
[VOTER] P2 has f a i l e d in i t s c a l c u l a t i o n s .
[HM] I n j e c t i n g f a u l t in P2 . . .
[P0] I t e r a t i o n comple t ed .
[P1] I t e r a t i o n comple t ed .
[P2] I t e r a t i o n comple t ed .
[VOTER] P2 has f a i l e d in i t s c a l c u l a t i o n s .
[HM] P2 has f a i l e d t o o many t imes .
[HM] R e s e t t i n g P2 . . .
[P0] I t e r a t i o n comple t ed .
[P1] I t e r a t i o n comple t ed .
[P2] I t e r a t i o n comple t ed .

If we keep injecting faults into Partition P2, the HM partition will continue to reset
it until, after 2 resets (the prototype configuration at the time of this test states that each
partition can be reset a maximum of 2 times before assuming it is severely malfunction-
ing), the HM partition halts P2 partition permanently. As in this example there is no
backup partition, the voter detects that there are only two active partitions and activates
the Degraded Mode.

Listing 5.8: P2 fault inyection and halt

[HM] I n j e c t i n g f a u l t in P2 . . .
[P0] I t e r a t i o n comple t ed .
[P1] I t e r a t i o n comple t ed .
[P2] I t e r a t i o n comple t ed .
[VOTER] P2 has f a i l e d in i t s c a l c u l a t i o n s .
[HM] P2 has f a i l e d t o o many t imes .
[HM] P2 has been r e s e t t o o many t imes .
[HM] H a l t i n g P2 . . .
[P0] I t e r a t i o n comple t ed .
[P1] I t e r a t i o n comple t ed .
[VOTER] Only two p a r t i t i o n s a r e a c t i v e .
E n t e r i n g Degraded Mode . . .
[VOTER] The c a l c u l a t i o n s o f P0 and P1 a g r e e .
[P0] I t e r a t i o n comple t ed .
[P1] I t e r a t i o n comple t ed .
[VOTER] The c a l c u l a t i o n s o f P0 and P1 a g r e e .

In a second scenario, we do load backup partition (P6) in memory. In this case, after
the first failure of P2, the system detects that there is a partition (P6) with fewer failures, so

91

Chapter 5. Prototype

it proceeds to replace P2 with P6. If we subsequently inject two consecutive failures in P6,
the failure counter of P6 will again exceed that of P2 and the HM partition will perform
the replacement again. Although there may be several substitutions at first, it takes a
short time for the system to find an equilibrium where the three healthiest partitions are
continuously running.

Listing 5.9: P2 fault inyection and substitution

[P0] I t e r a t i o n comple t ed .
[P1] I t e r a t i o n comple t ed .
[P2] I t e r a t i o n comple t ed .
[VOTER] The c a l c u l a t i o n s o f P0 , P1 and P2 a g r e e .
[HM] I n j e c t i n g f a u l t in P2 . . .
[P0] I t e r a t i o n comple t ed .
[P1] I t e r a t i o n comple t ed .
[P2] I t e r a t i o n comple t ed .
[VOTER] P2 has f a i l e d in i t s c a l c u l a t i o n s .
[HM] There i s a h e a l t h i e r backup p a r t i t i o n .
Changing s c h e d u l i n g p l a n . . .
[P0] I t e r a t i o n comple t ed .
[P1] I t e r a t i o n comple t ed .
[P6] I t e r a t i o n comple t ed .
[VOTER] The c a l c u l a t i o n s o f P0 , P1 and P6 a g r e e .
[HM] I n j e c t i n g f a u l t in P6 . . .
[P0] I t e r a t i o n comple t ed .
[P1] I t e r a t i o n comple t ed .
[P6] I t e r a t i o n comple t ed .
[VOTER] P6 has f a i l e d in i t s c a l c u l a t i o n s .
[HM] I n j e c t i n g f a u l t in P6 . . .
[P0] I t e r a t i o n comple t ed .
[P1] I t e r a t i o n comple t ed .
[P6] I t e r a t i o n comple t ed .
[VOTER] P6 has f a i l e d in i t s c a l c u l a t i o n s .
[HM] There i s a h e a l t h i e r backup p a r t i t i o n .
Changing s c h e d u l i n g p l a n . . .
[P0] I t e r a t i o n comple t ed .
[P1] I t e r a t i o n comple t ed .
[P2] I t e r a t i o n comple t ed .
[VOTER] The c a l c u l a t i o n s o f P0 , P1 and P2 a g r e e .

92

Chapter 5. Prototype

5.6. Voter

For the prototype, a version of the voter has been developed to test all the fault tolerance
mechanism proposed in chapter 4 and to take metrics on the performance of the voter.
In addition, both a software version and a hardware version (FPGA electronic design) of
the voter have been developed in order to compare them and establish which version is
more suitable for the fault tolerance mechanism. The following sections describe these
two versions of the voter.

5.6.1. Software Voter

Since the prototype is limited (e.g., there is only one partition in cold redundancy to
replace an active partition that goes down), a limited version of the voter has been de-
veloped in a software partition. Although not complete, this version allows to test the
functionality discussed in chapter 4 and allows to measure how long it takes to run the
voter as a software process on the hardware chosen for the prototype.

This software version of the voter was developed before the FPGA version, in order to
start testing the fault tolerance mechanism. In these tests, the voter runs as an additional
partition scheduled by the hypervisor in the manner explained in section 5.4.2. In this
way, the voter communicates with the HM and with the partitions that vote using the
inter-partition communication mechanisms provided by the hypervisor. When the voter
is implemented on the FPGA, the resources used by the former voter partition can be
repurposed for other functionality (e.g., to implement a General Partition).

Figure 5.7 graphically represents the simplified version of the prototype voter:

As can be seen, in this simplified version partitions P0 and P1 are always going to be
active (note that this does not mean that they compute correct results, only that they will
keep running during the whole testing time). Partition P2 is the one that can be halted by
the HM, and replaced by partition P6 in case the latter is available. Therefore, to check
the operating mode in which it is, the first thing the voter will do after reading the votes of
P0 and P1 is to check if it is receiving data through the communication channel with P2.
If not, it will try to read the results from P6, since it is possible that the HM has changed
the active partition due to an error in P2. If it does not find results on this communication
channel either, it will proceed to activate the Degraded Mode. Both the Normal Mode and
the Degraded Mode work exactly as described in Section 4.3.1.

5.6.2. FPGA Voter

The voter prototype proposed in Section 5.6.1 serves to test the validity and effectiveness
in terms of fault detection and correction of the architecture proposed in Chapter 4, as it
covers the functionality needed to perform the fault injection tests proposed in Chapter 6.

93

Chapter 5. Prototype

Figure 5.7: Voter prototype simplification

However, there are a number of potential advantages if this voting logic is migrated to IP
blocks implemented on the FPGA. The main ones are:

• Improve voter execution time by parallelizing voter instructions and pipelining.

• Robust the voting process by parallel execution (without sacrificing execution
time) of several instances of the voter.

• Relieve computational load on the CPU to execute other software partitions.

Although the FPGA digital design does not fall within our field of expertise, the voter
is a relatively simple block, so we have proposed a first approach to the FPGA voter
prototype. For this prototype we have implemented the Normal Mode of the voter, since
the other modes are simplifications of it. Figure 5.8 represents the RTL design of the
resulting digital circuit:

As can be seen, the design has three inputs (the values calculated by each of the three
voting partitions) and three outputs (the final valid value, the reliability of this value and
the ID of the failed partition, if any). In addition, there are inputs and outputs necessary

94

Chapter 5. Prototype

Figure 5.8: RTL description of the voter prototype

for the correct signalling and operation of the design (start, clk, reset_n, finish). The
design is divided into several blocks:

• The p_comp block records the inputs and makes a comparison between them to
check if they match each other and generate signals according to this comparison.

• The p_sel block reads the outgoing signals from the p_comp block and decides if
any partition has failed. It also generates the signal that will allow deciding the
correct result.

• The p_mux block uses the decision signal generated in the p_sel block to define the
final output of the system.

• The p_counters block keeps the internal count of the failures of each partition,
identifies both the faulty partition (if any) and the reliability of the final decision,
and signals the end of a voting iteration.

• The p_sel_all_diff block is responsible for performing tie-breaking in case the three
outputs are different. The tie-breaking is based on the failure history of each parti-
tion and, ultimately (in case of a total tie), on random decisions.

• The p_rand block generates pseudo-random numbers for tie-breaking in case of
a total tie (all inputs differ and there is a tie in the failure history of at least two
partitions).

95

Chapter 5. Prototype

5.7. Summary

In this chapter, we have explained the development of the prototype that demonstrates
the capabilities of the solution described in chapter 4. We have proposed an architecture,
which is a particularisation of the architecture of the solution, and we have justified the
choice of a specific hardware and hypervisor (with the help of the survey carried out in
chapter 2). We have explained the distribution in memory of each of the components of
the architecture and the prototype’s modes of operation. Finally, for the Voter, we have
proposed and developed two different versions: one running in a software partition, like
the rest of the components of the architecture, and the other running on the FPGA.

Chapter 6 will test the prototype. First, by unit testing the error detection and cor-
rection capabilities of the Health Monitoring partition, and then by performing a fault
injection campaign to test the fault detection and correction rate of the solution in dif-
ferent scenarios. We perform two additional tests: one that measures the footprint of
the hypervisor and another one that compares the performance and overhead of the two
versions of the Voter.

96

Chapter 6. Evaluation

6. EVALUATION

This chapter contains the evaluation of the proposed solution and, in particular, of the
prototype developed to implement it. The chapter is divided into four main sections:

• Section 6.1 is dedicated to measure the overhead involved in using the XtratuM
hypervisor with respect to not be using it. Since virtualization is one of the main
added values of the proposed solution, and since there is practically no evidence on
the overhead of virtualization in general (and XtratuM in particular) on embedded
systems, it is convenient to perform a couple of experiments to obtain an estimation.

• Section 6.2 is dedicated to set up and run a fault injection campaign in which,
according to different statistical distributions, faults are randomly generated in the
partition calculations. With the results, an estimation of the fault detection and
correction capability of the proposed solution in different scenarios can be obtained.

• Section 6.3 is dedicated to compare the performances of the software prototype
and the hardware prototype of the Voter, as well as to draw conclusions on the
convenience of using one or the other.

• Section 6.4 briefly summarises the chapter and introduces the contents of the fol-
lowing chapter.

6.1. XtratuM Performance Measurement

XNG is a paravirtualization hypervisor (see section 2.1.2 for more details), so it is ex-
pected that its use does not involve a large overhead. However, there is no actual pub-
lished information, neither in the developer’s sources nor in research papers, about the
CPU overhead involved in using XNG on any platform. As part of the work performed
and reflected in this thesis, this overhead has been measured using a couple of different
benchmarks and under different conditions, in order to obtain an estimate as representative
as possible.

• First, the Dhrystone benchmark on the Linux operating system was used to measure
the difference between the number of instructions required on one of the MicroZed
board cores when XNG virtualizes the hardware and when running without hyper-
visor. For this test, a single processor core is used since, currently, XNG does not
support Symmetric Multi-Processing mode when running Linux as a guest OS on
an ARM platform.

97

Chapter 6. Evaluation

• Secondly, the NIR HAWAII-2RG benchmark is used, to obtain an estimate in a
scenario closer to a real case in which the MIA architecture could run. In addition,
the most recent version of the hypervisor (which allows the use of the two processor
cores of the MicroZed) is used in this test, since the benchmark runs without the
need of an operating system and, therefore, we are not bound to the limitations
imposed by the Linux BSP.

Some details of the HAWAII-2RG NIR benchmark have been explained in Chapter 5,
section 5.3, since it is the same benchmark used to implement the critical partitions of the
prototype. A brief description of the Dhrystone benchmark is given below. Subsequently,
the results obtained in the performance tests will be presented.

6.1.1. Dhrystone Benchmark

Dhrystone is a synthetic benchmark created by Reinhold Weicker in 1984 [179]. This
means that, like other synthetic benchmarks, it is a simple program that mimics the pro-
cessor usage of other software programs to measure the performance of a machine. In-
stead of using MIPS (Million Instructions Per Second), which may not be meaningful
when comparing different instruction sets (such as RISC or CISC), Dhrystone uses the
unit DMIPS (Dhrystone MIPS) to reflect the average value of the number of instructions
executed per second.

Although it has been a widely used benchmark for decades, Dhrystone has a number
of limitations that make it desirable to also use other benchmarks to complete the mea-
surement of a machine’s performance [180]. For example, it places too much weight on
integer computation and the small size of its code means that it can sometimes be ab-
sorbed by the instruction cache of a modern CPU, altering the measurement. Although
many of its limitations are alleviated due to the nature of our measurements (we want to
measure the performance of the same physical platform with and without hypervisor, not
compare two completely different platforms), we will complete the measurement using a
benchmark more representative of a space application.

6.1.2. Performance Results

Once the benchmarks to be used have been explained, the conditions under which they
are run and the results obtained by comparing the execution with and without hypervisor
are shown below.

Drhystone Results

The Dhrystone benchmark has been used to measure the difference between the number
of instructions that can be performed by a processing core of the MicroZed card (based

98

Chapter 6. Evaluation

on the Zynq-7000 SoC [181]) when XNG virtualizes the hardware and when running
without hypervisor. A single processor core is used because, currently, XNG does not
support Symmetric Multi-Processing mode when running Linux as a guest OS on an
ARM platform. The same benchmark is executed twice under the following conditions:

• Benchmark: Dhrystone.

• Dhrystone version: 2.1 (Language: C).

• Number of iterations through the benchmark main loop: 100,000,000.

• Target platform: MicroZed (a single ARM Cortex-A9 core is used).

• Operating System: Linux.

• SMP: Disabled.

• Linux kernel version: 5.4.

In addition to using the same kernel, the file system of the Linux image on which
the benchmark runs is exactly the same, to ensure that both runs run in exactly the same
environment, with the only exception of the hypervisor.

The output from the benchmark is expressed in number of Dhrystones per second
(the number of iterations of the main code loop per second). Using XNG to virtualize
the hardware, the processor core was able to run 1,376,841.5 Dhrystones per second,
compared to the 1,427,551.8 Dhrystones per second it runs without a hypervisor. From
this it can be concluded that, for the operations proposed by this benchmark and under the
conditions described above, XNG causes an overhead of 3.683% in the processor.

Table 6.1: XNG overhead using the Drhystone benchmark

Dhrystsones per second
with XNG

Dhrystone per second
without hypervisor

XNG overhead

1,376,841.5 1,427,551.8 3.683%

NIR HAWAII-2RG Results

The HAWAII-2RG NIR benchmark is a bare-metal benchmark, i.e. it does not run on any
operating system. Therefore, since we are not subject to the restrictions imposed by the
Linux BSP, we can use the most modern version of XNG for Zynq-7000 (XNG SMP).
As mentioned above, in addition, in order to make the XNG footprint measurement as
accurate as possible, the necessary modifications have been made to the code to run the
benchmark with a fixed and deterministic set of input data. The benchmark is run with
the following configuration parameters:

99

Chapter 6. Evaluation

• Fixed-Point algorithms.

• Version: 20120629.

• Image Size: 1024x1024.

• Number of groups per exposure: 5*.

• Number of frames per group: 1.

• Number of discard frames between groups: 0.

• Time between groups: 18 seconds.

• Offset due to UINT.

• Threshold for cosmic ray: 6.

*This determines the number of times that the main loop of the benchmark will be exe-
cuted.

In addition, compiler optimizations (-O0) are disabled and the following compiler
options are used:

Listing 6.1: Compilation options for measurement on the NIR benchmark HAWAII-2RG

−mfloa t −a b i=h a r d −mthumb −fno−b u i l t i n
−fno− s h o r t −enums − f f r e e s t a n d i n g

The first measurement of the difference between using the hypervisor and not using it
to run the benchmark is surprisingly high:

Table 6.2: XNG overhead measured with the NIR benchmark HAWAII-2RG

Execution time w/o hypervisor Execution time using XNG XNG overhead
33,260,972 us 46,339,466 us +39.32%

Since this result is not in agreement with either the overhead calculated with the Dhry-
stone benchmark or with what would be expected from a paravirtualizing hypervisor, we
decided to take further steps to help determine what might account for this large dif-
ference. First, the main loop of the benchmark, which is described in section 5.3 and
depicted in Figure 5.3, is simplified. To do this, we first run the loop only executing the
first functionality (saturation detection). After measuring the overhead in this case, the
loop is run again executing also the next function (co-adding), and functions are added
in consecutive runs of the benchmark. The objective of this test is to check if the over-
head produced by XNG is constant throughout the algorithm or if it is produced by some
specific functionality. The results obtained are shown in Table 6.3.

It can be clearly observed that the overhead produced by the hypervisor remains at the
expected levels (below 5%) during almost the entire execution of the algorithm. It is by

100

Chapter 6. Evaluation

Table 6.3: XNG overhead along the different steps of the algorithm

Accumulated
execution time w/o

hypervisor (us)

Accumulated
execution time
with XNG (us)

XNG
overhead

(accumulated)
detectSaturarion(...) 163,045 166,350 +2.02%
subtractSuperBias(...) 433,732 405,415 -6.53%
nonLinearityCorrectionPolynomial(...) 1,210,229 1,225,404 +1.25%
subtractReferencePixelTopBottom(...) 1,413,121 1,472,817 +4.22%
subtractReferencePixelSides(...) 1,632,519 1,662,486 +1.84%
detectCosmicRay(...) 20,585,551 21,510,220 +4.49%
progressiveLinearLeastSquaresFit(...) 33,125,011 46,376,317 +40%
calculateFinalSignalFrame(...) 33,180,992 46,568,883 40,34%
Total time 33,180,992 46,568,883 40,34%

running the progressiveLinearLeastSquaresFit(...) function that the overhead shoots up to
40%.

The first suspicion is that the type of operations performed in this function, because
of the interactions they may require between the hypervisor and the hardware, are partic-
ularly costly to virtualize. However, as can be verified by a quick inspection of the code,
there do not seem to be any operations in this function that do not appear in other previ-
ous functions. In any case, to rule out that this is the problem, a new test is performed in
which each of the testbench functions is executed in isolation 20 times, and the execution
time required for this is checked using XNG and without using it. The results obtained
are shown in Table 6.4.

Table 6.4: XNG overhead for each of the steps of the algorithm measured in isolation

Functionality
Execution time w/o

hypervisor (us) – 20 iterations
Execution time with

XNG (us) – 20 iterations
XNG

overhead
detectSaturarion(. . .) 672,975 740,683 +10.06%
substractSuperBias(. . .) 1,082,783 1,034,087 -4.50%
nonLinearityCorrectionPolynomial(. . .) 2,971,145 3,225,484 +8.56%
substractReferencePixelTopBottom(. . .) 945,749 1,142,183 +20.77%
substractReferencePixelSides(. . .) 893,973 851,632 -4.74%
detectCosmicRays(. . .) 110,032,418 114,140,811 +3.73%
progressiveLinearLeastSquaresFit(. . .) 2,270,418 2,447,094 +7.78%
calculateFinalSignalFrame(. . .) 68,394 74,763 +9.31%
Total time 118,937,854 123,656,737 +3.97%

When running the functions of the algorithm in isolation, even when they are run
repeatedly (note how computationally demanding the tests are for some functions), the
overhead does not skyrocket as much. In fact, if we add up the time required to run
all these tests (and thus run the entire algorithm), the overhead of XNG remains at the
expected levels. However, if we decide to run the entire loop 20 times consecutively
(instead of running the functions in isolation, as we have done previously), the overhead
rises again, as shown in Table 6.5.

101

Chapter 6. Evaluation

Table 6.5: XNG overhead for 20 iterations of the algorithm

Execution time w/o
hypervisor – 20 iterations

Execution time using
XNG – 20 iterations

XNG overhead
– 20 iterations

190,460,151 us 277,853,467 us +45.58%

What seems to be clear from the results is that XNG has a low overhead similar to
that measured in section 6.1.2 for most cases (<5%). However, on some occasions, when
running several different functions consecutively, it seems to saturate and the overhead
increases significantly. This could be due to the hypervisor, during its normal operation
when interacting with the hardware and partitions, constantly occupying a portion of the
processor’s instruction cache, so that it saturates earlier when the partition is performing
tasks. The information gathered from these tests will be made available to fentISS, the
developer of XNG, for consideration in future updates of the hypervisor. Although it is
not the direct objective of this research, the results obtained in this test are interesting and
raise new lines of future work, as will be discussed in Chapter 7.

6.2. Fault Injection

Once we have verified the correct functioning of the testing process of the results that
calculate the redundant partitions, we proceed to a fault injection campaign to evaluate the
performance of the fault tolerance mechanism. First, we will analyse the ability to detect
and correct Single Event Upsets, the most common error to which electronic components
that are in contact with energetic particles, such as space radiation with which aircraft
of various types have to deal with, are exposed. Subsequently, the ability to detect and
correct an extremely rare but possible phenomenon will be analysed: the simultaneous
occurrence, in different virtual machines, of two Single Event Upsets.

6.2.1. SEU Injection

During the fault injection campaign conducted to test the prototype described in Chapter
5, the effect of an SEU affecting the computations of one of the virtual machines running
one of the safety-critical applications is simulated. In the prototype, the safety-critical
applications are redundant instances of a space benchmark that performs computations
based on images detected by an infrared camera. To simulate the effect of SEUs, at each
iteration and in each virtual machine there is a probability that a bit of the variable that
hosts the final computation of the algorithm will be flipped.

Table 6.6: SEU Correction Capability

of SEU
Occurrences

Correctly
Masked

Incorrectly
Masked

Correction (%)

214 214 0 100%

102

Chapter 6. Evaluation

As expected and as reflected in the table 6.6, which collects the simulation data, the
algorithm is able to detect and correct all SEUs. In the simulation it is established that
there is a 25% probability of SEUs in each iteration for each virtual machine. The al-
gorithm runs at 0.5Hz for 800 seconds. Note that, in order to obtain a large number of
SEUs to corroborate the expected result, the probability of SEU in the simulation is much
higher than the probability of SEU even in adverse situations of high radiation.

6.2.2. Double SEU Occurrences

In the scheme we propose, there is an extremely anomalous situation, which is that two
SEUs occur in different virtual machines at the same time (during the same iteration;
in the prototype, which runs applications at 0.5Hz, this means that two SEUs occur in
different virtual machines in a given slot of 2 seconds). To outline how difficult it is for
this to happen, we turn below to some scientific papers that study the rate at which SEUs
occur in different systems. Obviously, this depends on several factors, among which we
can list the electronic device that undergoes them, how well it is shielded from radiation
or the environment in which it operates.

Taber and Normand analyse data from military and experimental flights in search
of SEUs caused by energetic neutrons created by cosmic rays in the atmosphere [138].
The approximate altitude of these flights was 30,000 feet (over 9km) and the electronics
studied were unshielded SRAM memories. After 118 total flights and 783 cumulative
flight hours, 136 upsets due to cosmic radiation were observed. This implies that, under
these conditions, it would take 5.76 hours on average to observe a single upset. In the
400-second simulation we ran earlier, there would be less than a 2% chance of observing
a single upset.

Figure 6.1: Cumulative avionics upsets (image from Taber and Normand [138])

Blake and Mandel monitored for 2 years a satellite subsystem, operating in a low polar

103

Chapter 6. Evaluation

orbit, containing 384 Harris HM-6508 RAMs [182]. A total of 72 SEUs were observed
during the satellite’s 731-day flight. In their paper they analyse that, on average, one SEU
is expected to occur every 12.6 days, and two SEUs are expected to occur on the same
day once every two years. The probability of two independent events occurring within
two seconds is therefore absurdly low.

Other more modern papers analyse the rate of SEUs in more depth according to
the particles that cause them and the devices that suffer them, such as Kuznetsov’s pa-
per [183]. The conclusion is the same: the occurrence of SEUs per second in the scenar-
ios it considers is very low. Even in very aggressive scenarios, such as the one studied by
Campbell et al. [184], which analyse SEUs in particularly harsh orbits from a radiation
point of view and focus on certain days when there was a solar flare, the rate at which
SEUs occur is much lower than the one we use in the simulations of the next experiments.

Double SEU randomly generated

From the above, it does not make much practical sense to analyse the effect of two or
more independent and simultaneous SEUs. However, to test the theory of what would
happen in these cases, two scenarios are presented that force these errors to occur with
some frequency:

• Scenario 1: each of the three active virtual machines in the prototype have a 20%
chance of suffering an SEU in each iteration.

• Scenario 2: each of the three active virtual machines in the prototype has a 33.33%
probability of suffering a SEU in each iteration.

Data on the number of independent double SEUs suffered and the system’s ability to
correct them are collected in Table 6.7.

Table 6.7: Correction of double SEU occurrences randomly generated

Double SEU
Occurrences

Correctly
Masked

Incorrectly
Masked

Correction (%)

Scenario 1 39 16 23 41%
Scenario 2 95 29 64 30%
Total 132 45 87 34%

Note that the results are as expected: being random (the SEUs occur independently
in any of the three virtual machines), the correction rate of the fault tolerance mechanism
tends to 33.33% since, in case the three virtual machines yield different results, it ends up
deciding between them randomly.

104

Chapter 6. Evaluation

Double SEU due to Hardware Damage

As mentioned above, SEUs generally involve a transient error and do not cause permanent
damage to the devices that suffer from it. However, under the right circumstances (both
because of the electronic component or circuit and the properties of the particle interacting
with it), a "parasitic" thyristor inherent in CMOS designs can be activated and produce
an apparent short circuit in a transistor that is often referred to as a latchup [185] and
sometimes destroys the device due to overcurrent. There are other single event effects
that can cause what are called hard errors, i.e. permanent damage to electronic devices,
such as snapbacks [186], burnouts or gate ruptures [187].

It makes much more sense to consider a scenario in which the resources used by one
of the virtual machines have been damaged by one of these phenomena, and in which it
would be more likely to encounter double SEUs. In these scenarios, one of the virtual
machines (actually, one of the resources used by this virtual machine) would have been
permanently damaged. If this error causes the virtual machine to start failing permanently
going forward, the HM would make the decision to either halt it and replace it, if there
is any partition in cold redundancy, or halt it and set the voter to degraded mode, if there
is no other partition that can replace it. However, there is also the possibility that, due to
permanent damage to the virtual machine, its probability of failure in the future increases.
In these cases, the added feature in this work of keeping count of the failures of a virtual
machine to assess its reliability greatly increases the voter’s accuracy with respect to sys-
tems that do not have this feature. Over several iterations, the voter would assume that
the virtual machine with the highest probability of failure is the least reliable so, in case
of a triple tie (a double SEU causes the virtual machines to yield different results), it will
assume the failure of the virtual machine that has been damaged. Since it has a higher
probability of failure, the voter will usually get it right (it will be wrong only when the
healthy virtual machines fail, an event which, as we have seen, is extremely rare).

Again, in the following experiments we have greatly exaggerated the probability of
SEUs in each virtual machine, especially in those that have not been damaged by a
latchout or some similar phenomenon. This is in order to force the occurrence of dou-
ble SEUs and to be able to test the algorithm in the worst and most unlikely situations.

In the following experiment, we consider a scenario in which one of the virtual ma-
chines (P2) has been permanently damaged and its failure probability is high (it fails in
one out of three iterations). The other two virtual machines (P0 and P1) maintain their
low (albeit exaggerated for the experiment) probability of failure (failure in one out of 10
iterations). Table 6.8 shows the number of double SEUs originated under these conditions
and the correction capacity of the mechanism for this type of errors. Although the table
does not reflect it, since all these cases have been combined in table 6.6, the correction
capacity of SEUs in this scenario is still 100%.

It can be deduced both from the data and from the debug traces of the program that the
voter immediately detects that the P2 virtual machine is failing more than the others, so

105

Chapter 6. Evaluation

Table 6.8: Correction of double SEU occurrences when one VM has a higher failure
probability due to HW damage

Simulation
time (s)

of double SEU
Occurrences

Correctly
Masked

Incorrectly
Masked

Correction (%)

200 16 6 10 37,5%
400 34 14 20 41,18%
600 48 22 26 45,83%
800 69 34 35 49,28%

that its reliability level drops considerably with respect to the other two. In this situation,
in case of double SEU (and therefore discrepancy between the results returned by each
virtual machine), the voter will tend to randomly choose (since the failure probabilities of
the two healthy virtual machines, P0 and P1, are equal) the other malfunctioning virtual
machine between P0 and P1. This makes that, as the simulation gets going, the correction
capability of double SEUs tends to 50%.

We can also consider a scenario in which two virtual machines have been permanently
damaged and, therefore, their probability of failure increases (failure in one out of three
iterations). This situation can occur, for example, if two of the virtual machines share a
processing core that has been damaged. The other virtual machine, which, for safety rea-
sons, uses the other processor core, maintains its (albeit exaggerated for the experiment)
low probability of failure. We propose two different scenarios: one in which the healthy
virtual machine has in each iteration a 10% probability of failure and another in which it
has a 5% probability of failure. The data from both experiments are reflected in tables 6.9
and 6.10, respectively.
Table 6.9: Correction of double SEU occurrences when two VMs have a higher failure

probability due to HW damage - Scenario 1

Simulation
time (s)

of double SEU
Occurrences

Correctly
Masked

Incorrectly
Masked

Correction (%)

200 16 11 5 68,75%
400 30 19 11 63,33%
600 48 31 17 64,58%
800 63 44 19 69,84%

We can analyse that the data makes sense: as single SEUs occur, the corrupted virtual
machines lose credibility in the eyes of the voter. Eventually, in case of a double SEU (and
therefore, a triple tie between the results that the virtual machines produce), the voter will
always decide that the two damaged virtual machines are wrong. This will cause the
voting to fail only when the healthy partition has failed: i.e., the correction capability
in this case depends directly on the failure probability of the healthy machine; the less
the healthy machine fails, the less the mechanism will fail to detect double SEUs. This
explains the difference in correction percentage between scenario 1 and scenario 2 of the

106

Chapter 6. Evaluation

Table 6.10: Correction of double SEU occurrences when two VMs have a higher failure
probability due to HW damage - Scenario 2

Simulation
time (s)

of double SEU
Occurrences

Correctly
Masked

Incorrectly
Masked

Correction (%)

200 14 11 3 78,57%
400 26 20 6 76,92%
600 40 33 7 82,50%
800 56 47 9 83,92%

last experiment.

Note that the probability of failure of a SEU occurring on a virtual machine that is
healthy (none of the components it uses have been permanently damaged) is extremely
low, so that, in reality, the probability of correcting double SEUs in this type of scenario
(two damaged virtual machines) tends to 100%. In fact, if we use a probability of failure
closer to reality on the healthy virtual machine (1% probability of SEU which, despite
being closer, is still well above the actual probability of failure even in very aggressive
radiation situations), we obtain a 100% correction of double SEUs. The data collected by
running this third scenario are shown in Table 6.11.
Table 6.11: Correction of double SEU occurrences when two VMs have a higher failure

probability due to HW damage - Scenario 3

Simulation
time (s)

of double SEU
Occurrences

Correctly
Masked

Incorrectly
Masked

Correction (%)

200 14 14 0 100%
400 25 25 0 100%
600 39 39 0 100%
800 55 55 0 100%

It is important to emphasize that the data collected in this section do not corre-
spond to the fault correction capability of our solution, but to the correction capabil-
ity of double SEUs, an extremely rare situation, as reasoned above. The correction
capacity of SEUs (much more frequent than double SEUs, although still infrequent)
is, in any scenario, 100%.

6.2.3. Test Conclusions

Several conclusions can be drawn from the tests performed:

• The correction of SEUs due to radiation is, similar to other studies, 100%.

• The correction capacity of the mechanism when two SEUs randomly occur at the
same time (although this is a practically impossible situation) is, similarly to other
studies, 33%.

107

Chapter 6. Evaluation

• The great advantage of this mechanism lies in its ability to correct for double
SEUs when they occur due to hardware damage or degradation. This situation,
unlike the previous one, is plausible, and the correction capacity of the mechanism
increases as we approximate the statistical distributions of SEU occurrence to real
values. In the scenarios proposed, we have obtained correction capacities of approx-
imately 50%, 70%, 84% and, in the most realistic case, 100%. In other similar
studies, failure correction mechanisms masked 33% of failures.

6.3. Trade-Off between SW and FPGA Voters

In this section we collect data on the performance of both the software voter and the FPGA
(IP) voter implemented in the prototype. Then, based on the data, some conclusions about
the suitability of using one or the other will be drawn.

6.3.1. Software Voter

Obviously, the voting process will require a different amount of time depending on the
inputs received and the operating mode of the voter (Normal, Degraded or Very degraded;
see section 4.3.1 for more details). For this experiment, the Normal operating mode
has been used, as the other two are simplifications of it. With respect to the inputs, three
different scenarios are considered:

• Scenario 1: the vote of the three partitions is identical.

• Scenario 2: the vote of two partitions coincides and that of the remaining one
differs.

• Scenario 3: the vote of the three partitions is different.

The voting process runs on the same SoC used to test the prototype (its characteristics
are shown in Table 5.1). The default clock rate of the processor (666.67 MHz) is used.
Note that the Zynq-7000 SoC is a relatively powerful SoC compared to other embedded
devices, especially in safety-critical industries such as space or aviation, so the chosen
clock rate, without being maximum, is still high. In slower devices, the voting process
could take longer.

Table 6.12: Voting process execution time in Scenario 1

Scenario 1
(100 iterations)

Scenario 1
(mean)

Clock cycles 4,704 47
Time (ns) 7,060 71

108

Chapter 6. Evaluation

First, the time required for the software voting process is evaluated when the three
inputs are identical. Note that this case will be the usual case since, as explained in
section 6.2.2, the presence of errors is in principle an unusual phenomenon. Table 6.12
shows the execution time of the voting process under these conditions for 100 iterations,
as well as the average time for each vote.

As expected, this scenario is the fastest of the three, because it involves the least
checks. Table 6.13 show the execution time of the voting process in scenarios 2 and 3. It
is noteworthy that scenario 3 is the slowest, since it always involves a tie-breaking process
based on the failure history of the partitions and, in case of a tie in the failure history, on
a random decision. Details on the voting process can be found in Section 4.3.

Table 6.13: Voting process execution time in Scenarios 2 and 3

Scenario 2
(100 iterations)

Scenario 2
(mean)

Scenario 3
(100 iterations)

Scenario 3
(mean)

Clock cycles 5,942 60 6,788 68
Time (ns) 8,910 89 10,180 102

6.3.2. FPGA (IP) Voter

As explained in Section 5.6.2, the RTL design of the Normal operating mode of the voter
has been implemented for the hardware voter prototype. A series of snapshots of simu-
lations done on this RTL design under different conditions are shown below. For these
simulations, the same three scenarios have been considered as in the previous section.
First, Figures 6.2 and 6.3 show the simulation when the inputs of the three partitions
participating in the voting process are equal.

Figure 6.2: Simulation when every input is equal (I)

Figure 6.2 shows how at the beginning all inputs are 0. If the start of the simulation is
signalled, in just a couple of clock cycles the end is indicated: the correct result is 0 and

109

Chapter 6. Evaluation

Figure 6.3: Simulation when every input is equal (II)

the reliability is 3 (VERY HIGH). Figure 6.3 shows how, by changing the input inputs (all
to 16) and signaling the start, again, in a couple of clock cycles the system is calculating
the output: the correct result is selected (16), reliability level 3 (VERY HIGH) is set and
it is indicated that no partition has failed (-1).

Figures 6.4 and 6.5 show the behaviour of the system when one of the inputs is differ-
ent from the other two.

Figure 6.4: Simulation when one of the inputs is different (I)

In the case of Figure 6.4, the system comes from an iteration in which all inputs were
equal (16). However, in the next iteration the value of partition C changes to 9. The final
result selected is still 16 but, in this case, it is indicated that partition 3 has failed and the
result is given a reliability level of 2 (HIGH). Similarly, Figure 6.5 shows an iteration in
which the inputs of partitions A and C are equal (15), but partition B differs (9). In this
case, the final result is 15, again with reliability level 2 (HIGH), and it is indicated that
partition B has failed. It can also be seen how, in these scenarios, the failure counter of

110

Chapter 6. Evaluation

Figure 6.5: Simulation when one of the inputs is different (II)

each of the faulty partitions is increased internally.

Finally, Figures 6.6 and 6.7 show the behaviour of the system when all inputs are
different.

Figure 6.6: Simulation when all the inputs are different (I)

Figure 6.6 shows a scenario in which the failure counter of partition C is higher than
that of partitions A and B, whose failure history is identical (none of them has failed so
far). Therefore, when the three partitions yield different results (16, 13 and 9, respec-
tively), the system will randomly decide between partition A and partition B inputs. This
alternation in the decision can be observed in the selected_inputs signal. However, in
Figure 6.7 the scenario is different: the failure counter of partition A is lower than the
rest, so when a tie occurs, the system will decide to give validity to the input of partition
A. In both cases, the reliability level is 1 (LOW) and, precisely because of the reliability
level of the assumption, neither faulty partition is indicated, nor the fault counter of any
partition is increased (see section 4.3 for more details about this logic).

111

Chapter 6. Evaluation

Figure 6.7: Simulation when all the inputs are different (II)

As can be seen from the figures presented in this section, the Normal operating mode
of the voter takes 2 FPGA clock cycles to execute, regardless of the inputs. If the clock
is at 100 MHz, a very conservative frequency given the low complexity of the block,
these two cycles would take 20 nanoseconds to execute. The clock would allow a higher
frequency: for example, at 150 MHz these two cycles would take 13.33 nanoseconds.
Furthermore, if the information flow at the input of the block is continuous, a pipelined
structure would allow valid outputs in half the time, at 6.67 nanoseconds. All this infor-
mation is shown in Table 6.14.

Table 6.14: Execution time of the hardware (FPGA) voter

Scenario 1 Scenario 2 Scenario 3 Mean
FPGA clock cycles 2 2 2 2
Execution time (ns)
at 100 MHz

20 20 20 20

Execution time (ns)
at 150 MHz

13.33 13.33 13.33 13.33

FPGA clock cycles
using pipelining

1 1 1 1

Execution time (ns)
at 150 MHz and
using pipelining

6.67 6.67 6.67 6.67

6.3.3. Trade-Off Conclusions

From the experiments conducted, it is evident that implementing the voter in programmable
logic as hardware, rather than as a software application, makes sense and has multiple ad-
vantages. First, it frees the software workload that can be used for other applications that

112

Chapter 6. Evaluation

cannot be implemented in hardware. Also, the execution of a voter iteration is almost
72% faster in its hardware version than in its software version, even if we choose a
very conservative frequency for the FPGA clock and the case that runs faster in software
for the comparison.

To all this we must add the biggest advantage of implementing the voter in FPGA:
the voter itself can be redundant so that it does not represent a single point of failure
without causing a time overhead. Thus, two instances of the voter in software will take
twice as long to run as one, three instances will take three times as long as one, and so
on. In FPGA, using sufficient resources and running the redundant voters in parallel, the
voting process will take the same even if it is redundant several times. Table 6.15 reflects
the time savings using the hardware voter when the voting process is redundant.

Table 6.15: Execution time for multiple redundant voters

Number of
voters

Hardware Voter
(scenario 1) in ns

Software Voter
(scenario 1) in ns

Time reduction using
the hardware voter

1 20 71 71.83%
2 20 142 85.92%
3 20 213 90.61%
...
n 20 71 * n 1 - (20 / (71*n))

Therefore, the main advantages we hypothesized in section 5.6.2 are fulfilled when
using the hardware voter instead of the software voter:

• Improve voter execution time by parallelizing voter instructions and pipelining: At
a minimum, the hardware voter runs almost 72% faster than the software
voter.

• Robust the voting process by parallel execution (without sacrificing execution time)
of several instances of the voter: The time savings increase more and more as
redundant voters are added, since in the FPGA they do not necessarily imply a
time overhead. By making the voter redundant by applying TMR, for example,
with the hardware versions we can obtain an execution time more than 90%
lower.

• Relieve computational load on the CPU to execute other software partitions: There
no longer has to be a software partition in charge of the voting process, so the
memory and processor resources allocated to another task can be reused.

6.4. Summary

In this chapter, the different tests carried out on the prototype developed in chapter 5 are
explained. Firstly, an experiment is carried out to try to measure the overhead involved in

113

Chapter 6. Evaluation

the use of the XNG hypervisor in two different conditions: with and without the operating
system. The results are inconclusive, but a hypothesis is put forward that could explain
them. Secondly, the fault detection and correction capabilities of the prototype are unit
tested by injecting faults in isolation and checking that the system responds as expected.
Then, an exhaustive fault injection campaign is run to test the system’s error correction
and recovery rate. We have found that the system recovers from 100% of SEUs and its
ability to recover from double SEUs is higher than normal in certain cases, due to partition
health monitoring. Finally, the SW and FPGA versions of Voter are compared in terms of
voting process speed and system overhead. We have found that, at a minimum, the FPGA
voter runs 72% faster than the software voter, and this difference is even greater when the
number of voters is increased, so that this is not a single point of system failure.

Once the prototype and solution have been evaluated, Chapter 7 will draw the overall
conclusions of the research and set out possible lines of future work.

114

Chapter 7. Conclusions and Future Work

7. CONCLUSIONS AND FUTURE WORK

This chapter contains the conclusions drawn from the research work carried out and
sets out some lines of future work. The chapter is divided into three main sections:

• Section 7.1 reviews the objectives set at the beginning of the thesis and justifies how
these have been met. Furthermore, it compares the solution proposed and developed
during this research work with the solution offered by related works.

• Section 7.2 collects the main contributions of the research carried out, dividing
them into several categories:

– Publications in academic journals.

– Specialized conferences in which there is an associated publication.

– Specialized conferences in which there has only been a presentation of the
work carried out, without an associated publication.

– Some projects in the aerospace sector in which the results obtained in the
research carried out during the doctoral thesis have been used.

• Section 7.3 establishes some of the lines of work that we consider most interesting
to continue the work carried out during the investigation.

7.1. Conclusions

During this doctoral thesis, a fault tolerance mechanism based on the use of a hypervi-
sor has been proposed, developed and tested. Both this final objective and the specific
objectives that were set to achieve it have been fulfilled, as justified below:

O1 Study and selection of the appropriate tools and environments for the research.
For price, ease of use and availability of associated development environments, the
Zynq-7000 family of SoCs has been chosen as the hardware environment to deploy
the mechanism. In addition, an exhaustive review of the state of the art in embedded
hypervisors has been carried out to select the most appropriate one for our use case.
The chosen one has been XtratuM, from the company fentISS, but the survey will
serve as a basis for similar decisions in other research projects. An experiment
has also been conducted to measure the footprint of the XtratuM hypervisor on our
platform, as there are no studies on the subject. Although we obtain some results,
they are inconclusive and are proposed as the basis for a future line of work.

115

Chapter 7. Conclusions and Future Work

O2 Co-design and implementation of a hypervisor-based space system that will
enable the deployment of mixed-criticality applications.
A space system has been designed and developed that allows the deployment of
critical partitions and non-critical or general-purpose partitions. In addition, the
system has a partition that monitors the health status of the hypervisor and the rest
of the partitions and takes the appropriate measures (from resetting the hypervisor
itself, a partition or even replacing one of the partitions with another partition that
is on standby if the first one is not working properly or is giving wrong results too
often) if it detects any malfunction, as well as a voter that allows executing the fault
tolerant mechanism. Two different versions of the voter have been implemented to
compare their performance: a first version on a software partition and a second one
on a IP core running on the FPGA.

O3 Definition and implementation of a space use case for applying the Hypervisor-
Based Fault Tolerance (HBFT) mechanism.
To test the developed fault tolerance mechanism, we decided to use a real use case
of space systems: the ESA Near InfraRed (NIR) HAWAII 2-RG Data Processing
Algorithms benchmarking software, which allows the processing of raw frames
captured by the HAWAII 2-RG NIR detector. This detector is being used in several
real space missions, such as the Hubble Space Telescope and the James Webb Space
Telescope. This data processing algorithm is the functionality to be made redundant
by the mechanism.

O4 Investigation of the effect of the HBFT mechanism on system safety and relia-
bility.
We have performed an exhaustive fault injection campaign and it has been found
that, as expected, the fault tolerance mechanism is able to detect and correct 100%
of single SEUs occurring in one of the redundant partitions. Furthermore, we have
contemplated a scenario that other similar studies do not contemplate, which is the
potential occurrence of double SEUs if part of the hardware has been permanently
damaged (in case there is no damage, the probability of two SEUs appearing at the
same time is negligible). Because we have proposed and implemented a voter that
tracks the health of each partition based on its success history, the system quickly
detects the partition that has been damaged, so it assigns a low reliability to that par-
tition and the probability of detection and correction of failures also tends to 100%
(see tables 6.8, 6.9, 6.10 and 6.11). Finally, we have compared the footprint of using
the fault tolerance mechanism when the voter runs as a software partition or when
it runs in the FPGA. The conclusion is that the FPGA voter has a much smaller
footprint, especially if it is decided to redundant the voter itself, which is necessary
so that the voter does not become a single point of failure of the mechanism.

O5 Dissemination of results in specialized congresses related to the space industry
and in research journals.

116

Chapter 7. Conclusions and Future Work

The work done during the PhD has been widely disseminated both in research jour-
nals (an article has been published in IEEE Access, journal with an impact index of
Q1 according to the Journal Citation Reports, and another article is currently under
review in that same journal) and in renowned conferences of the space sector, such
as the Flight Software Workshop organized by NASA, in specialized boards of the
European Space Agency or in the Space Engineering Congress organized by the
Spanish Institute of Engineering.

O6 Strengthening of the links between the university (Universidad Carlos III de
Madrid) and the company (SENER Aeroespacial) to allow future collabora-
tions in space projects.
The work carried out during the thesis has been framed within the Madrid Flight on
Chip project, in which SENER Aeroespacial and Universidad Carlos III de Madrid
have collaborated closely. The possibility of both institutions continuing the work
in a continuation of Madrid Flight on Chip is currently being considered. The work
done during the thesis is being directly applied in space projects (such as SAFEST
or ORU, described in sections 7.2.4 and 7.2.4) and Defence projects (details of
which cannot be given for confidentiality reasons).

The academic and industrial nature of our work has allowed it to be very practically
oriented and it differs from related works, since it combines certain advantages that fa-
cilitate its application in real projects. The work of Campagna et al. [84] is the first to
consider the use of HPBF mechanisms in safety-critical embedded systems, but these
mechanisms have several limitations: among others, there is no triple redundancy, so the
failing partition cannot be detected (only the existence of the failure), the voting mech-
anism is a single point of failure because it is not redundant, and no health monitoring
measures are taken when an error is detected. Sabogal and George [59] and Missimer
et al. [89] propose solutions in which the vote is distributed and, therefore, the voting
mechanism is no longer a single point of failure. However, both solutions are extensions
of existing software products (Xen and Quest-V, respectively) and are limited to the use
of these products, so they are not a usable mechanism in most commercial safety-critical
systems. Moreover, as in the case of the Campagna et al. work, the voting mechanism
consumes software resources like the other applications. To date, the most complete work
according to our criteria is that of Esposito et al. [162] but there are some substantial dif-
ferences between our work and theirs. For example, they contemplate the use of TTMR,
which we have discarded for determinism reasons, and we have contemplated the possi-
bility and effect of redundancy of the voter in the FPGA, increasing the reliability of the
system without sacrificing performance. Table 7.1 summarizes some of these differences.

The main advantage (that is not fully reflected on table 7.1) of our work over the
others, including that of Esposito et al., is the Health Monitoring measures taken. We
have applied a concept that until now had not been applied in embedded systems, but
only in cloud servers, which usually have much greater resources and run many virtual

117

Chapter 7. Conclusions and Future Work

Table 7.1: Advantages of our work with respect to previous solutions

Campagna
et al. [84]

Sabogal and
George [59]

Missimer
et al. [89]

Esposito
et al. [162]

Our
solution

Independent of a
specific hypervisor

Yes No No Yes Yes

Detects the faulty
partition

No Yes Yes Yes Yes

Redundant voting
mechanism

No Yes Yes No Yes

HW-Accelerated
voting mechanism

No No No Yes Yes

Allows for dynamic
partitioning

Yes Yes No Yes Yes

Health Monitoring
actionsa No No Yes Yes Yes

aNote that although this category indicates whether there is any health monitoring action in the solution,
the actions differ for each solution.

machines in parallel: monitoring the health of each of these machines. A priori, applying
this concept to an embedded system where redundant partitions are reduced to three does
not seem to make much sense. However, if cold redundant partitions are configured and
loaded in memory, which do not consume processing resources when in standby, this
model has great potential: if any of the partitions (or any of the resources they use) is
damaged, it can be replaced by a healthy one, so that the healthiest partitions are always
running and offering a higher percentage of success in their calculations. This feature is
what allows our solution to dramatically increase the system’s success rate in the event
that the effects of radiation or other accidents permanently damage part of the hardware,
as discussed in section 6.2.2.

7.2. Contributions

7.2.1. Journals

During the development of the thesis, an article [188] has been published in IEEE Access
(journal with an impact index of Q1 according to the Journal Citation Reports):

Tamara Lugo, Santiago Lozano, Javier Fernández, and Jesús Carretero. A Sur-
vey of Techniques for Reducing Interference in Real-Time Applications on Multicore
Platforms. IEEE Access, 10:21853–21882, 2022. doi: 10.1109/ACCESS.2022.3151891.

This survey reviews and categorizes the techniques that have tried to reduce interfer-
ence in real-time multicore systems, especially those reflected in the existing scientific

118

Chapter 7. Conclusions and Future Work

literature since 2015. In addition, it presents proposals that use interference reduction
techniques without considering the predictability issue. The review is analytical and in-
spects the advantages and disadvantages of each studied proposal.

Another article is currently under review in IEEE Access:

Santiago Lozano, Tamara Lugo and Jesús Carretero. A Comprehensive Survey
on the Use of Hypervisors in Safety-Critical Systems.

The article provides a comprehensive review of the use of hypervisors in safety-critical
embedded systems. In addition to reviewing all the articles published in recent years on
the subject, hypervisors are categorised and compared according to different parameters,
so that the survey can be used as a basis for future research or real industry projects.

7.2.2. Conferences with Publication

III and IV Space Engineering Congress

The Institute of Engineering of Spain (IEE), through its Space Committee, organizes bian-
nually the Space Engineering Congress (CIE), an event that has the objectives of encour-
aging and contributing to the progress of space engineering, promoting the contact and
development of space engineering and increase social interest, especially among young
people and women, and promoting and contributing to the improvement of engineering
education and research.

During the III edition of the congress, in 2020, we had the opportunity to present the
objectives of the PhD and the Madrid Flight on Chip project, which had just started. This
edition of the congress was held telematically due to the COVID-19 pandemic situation.
In addition, during this edition a book of extended abstracts was collected, for which we
also sent a contribution. In 2022, the IV edition of the congress was held and the Space
Interdisciplinary Week (SIE) was established. On this occasion, we were invited to make
a face-to-face presentation at the Spanish Engineering Institute in Madrid, and we had the
opportunity to present the work done to date, after having presented the objectives two
years earlier.

The paper published in the 2020 session (Santiago Lozano, Juan Fombellida, Car-
los Rodríguez, Cristina Tato, Jesús Carretero. MFOC Project: MPSoC-Based Multi-
Purpose Execution Platform. In III Congreso de Ingeniería Espacial : El espacio, la
última frontera, 27-29 Octubre 2020, Madrid, España. ISBN: 978-84-09-31948-0. pp.
120-122) can be consulted in the book of abstracts.

For the 2022 session, the program is available on the congress website (https://
www.eiecongress.com/). Our presentation was held on June 23rd in session 02 B -
Space Infrastructure.

119

https://drive.google.com/file/d/11QkYZ_CtXfx9CAwx2Le0H6Ys961cwvbt/view
https://www.eiecongress.com/
https://www.eiecongress.com/

Chapter 7. Conclusions and Future Work

4S Symposium 2020 (Cancelled)

The Small Satellites, Systems and Services (4S) Symposium is a biannual event organized
by the French Space Agency (CNES) and the European Space Agency (ESA), where
aerospace industry players from all over the world, especially Europeans, meet to address
technical discussions about systems and mission analysis, small satellite applications such
as Earth Observation, science, telecommunication and navigation. The 2020 edition was
to be held in May in Vilamoura, Portugal. For that edition, we submitted an abstract and
were accepted as speakers, given the potential applicability of the work developed in this
thesis for missions carried out by small satellites. We were also invited to submit a paper
on the subject. The paper was called:

Santiago Lozano, Aranzazu Fernández, Juan Fombellida, Jesús Carretero. Inte-
grated Solution for Space Applications Deployment in MPSoC. In Proceedings of the
’The 4S Symposium - Small Satellites Systems and Services’.

Unfortunately, the event was postponed twice due to the pandemic situation by COVID-
19 and, finally, due to the Organizing Committee’s refusal to hold it online, it was can-
celled.

7.2.3. Conferences (Presentation-Only)

Flight Software Workshop 2022

The Flight Software Workshop is a presentation-only conference held annually in the
United States (although the 2021 and 2022 editions were held online, due to the COVID-
19 pandemic situation) and brings together engineers from leading companies and orga-
nizations from around the world to discuss flight architectures, software development,
validation and development techniques and other challenges related to flight software.
The importance of this workshop can be deduced from its Organizing Committee, formed
in 2022 by NASA’s Jet Propulsion Laboratory (JPL), Johns Hopkins University Applied
Physics Laboratory, Southwest Research Institute and The Aerospace Corporation.

During 2021, we attended the workshop as listeners. After the good experience and
after verifying the importance of the workshop and the quality of the material shared in
it, during the year 2022 we sent an abstract exposing the work done in the PhD so far in
the context of the Madrid Fligh on Chip project, and we were invited to make a 25 minute
presentation for all workshop attendees.

The lecture was recorded and is available on YouTube under the title FSW 2022:
MIA: Multi-Purpose Space Platform using cFS and TSP - Santiago Lozano: https:
//www.youtube.com/watch?v=SSXHYNODE9M.

120

https://www.youtube.com/watch?v=SSXHYNODE9M
https://www.youtube.com/watch?v=SSXHYNODE9M

Chapter 7. Conclusions and Future Work

Go2Space-HUBs Hackaton

Go2Space-HUBs is a collaborative project between Madrid (Spain), Coimbra (Portugal)
and Tallinn (Estonia) that aims to secure the creation and prosperity of European compa-
nies related to the space sector, fostering the creation of networks between these compa-
nies to create value and innovation. In addition to facilitating the transfer of knowledge
and technology, this project places great emphasis on the creation of new companies and
assistance to newly formed small and medium-sized enterprises and start-ups. As part of
the project, three hackathons were organized, bringing together companies and organiza-
tions with a long history in the sector, such as SENER Aeroespacial and the Universidad
Carlos III de Madrid, with small and medium-sized companies. One of the hackathons
was held in Madrid in February 2021, and we were invited to disseminate the work done
during the PhD and the Madrid Flight on Chip project.

The hackathon website, where you can find my name and that of Víctor Pedro Gil
(UC3M) among the attendees and presentations, is the following: https://go2space-hubs.
eu/hackathon-2021/

ESA Joint Board on Communication Satellite Programmes 5G Advisory Committee

The European Space Agency has a committee called the Joint Board on Communication
Satellite Programmes 5G Advisory Committee (5JAC), which is dedicated to monitor-
ing and discussing the current status of communication satellite technologies, especially
those dedicated to providing 5G cell phone coverage. Part of this committee’s remit is
to promote and disseminate initiatives that help develop these types of technologies. As
a result, we were invited to present to the committee the results of the PhD and MFOC
project and their possible applicability to communications satellites, and it is hoped that
this may bear fruit in the form of future collaborations between ESA and UC3M/SENER.

7.2.4. Projects and Proposals

As previously mentioned in Chapter 2, when we exposed some of the most used soft-
ware standards in the space, aviation and automotive industry, this thesis is delivered as
a requirement to obtain the degree of an Industrial Ph.D. According to art.15 bis of RD
99/2011 of January 28, the designation "Doctorado Industrial" (Industrial Ph.D.) applies
to those programs that are totally or partially carried out within a company and aims to
promote research in companies in technological sectors. In our particular case, the the-
sis has been carried out both within SENER Aeroespacial and Universidad Carlos III de
Madrid. Due to this collaborative nature, the contributions that this research has been
able to offer to industrial activities are especially interesting. The projects and project
proposals in which the results of this research have been used, totally or partially, are
listed below.

121

https://go2space-hubs.eu/hackathon-2021/
https://go2space-hubs.eu/hackathon-2021/

Chapter 7. Conclusions and Future Work

Madrid Flight on Chip

The Madrid Flight on Chip (MFoC) project is the main project in which the work reflected
in this thesis has been developed. MFoC is a research and innovation project co-funded
by the Community of Madrid and the European Union. The main objective of MFoC is
the development of the techniques and methodologies needed to improve the production
of future generation aerospace satellite systems. These new techniques and methodolo-
gies will allow much more cost-effective space missions than in the past and with a much
shorter development time, using SoC technology but maintaining the high level of relia-
bility characteristic of this type of mission. In the long term, this could place Madrid in a
privileged position in the small satellite market.

The project has explored modern hardware architectures, including high-capacity FP-
GAs and multicore processors, in search of techniques to address typical space mission
problems such as power consumption and resistance to cosmic radiation. In the software
area, some of the most important challenges faced by the project are the protection of
applications through virtualization-based redundancy (work reflected in this thesis), the
streamlining of model-based design, the promotion of component reusability between
different space missions, and the automatic generation and testing of code.

S.A.F.E.S.T.

SAFEST (Smart Avionics for Flight Termination System) is a proposal to implement an
Autonomous Flight Termination System, i.e. a system that is able to decide on-board and
autonomously when and how to terminate a flying vehicle (e.g. a launcher). This system
is based on low-cost COTS avionics and uses the platform developed in MFOC (including
the virtualization provided by the hypervisor) as the basis for developing the system, thus
reusing both the work done in the project and the work done in the PhD.

Currently, the proposal has been accepted and SAFEST will start as a SENER Aeroes-
pacial led project in 2023.

ORU

ORU-BOAS is a proposal to implement a modular Orbital Replacement Unit (ORU) con-
cept at TRL 6 compatible with different standard interfaces. This ORU will be a plug
and play module for in-orbit demonstrators and will serve as a Satellite Construction Kit
for future space missions. This system is based on low-cost COTS avionics and uses the
platform developed in MFOC (including the virtualization provided by the hypervisor) as
the basis for developing the system, thus reusing both the work done in the project and
the work done in the PhD.

Currently, the proposal has been accepted and ORU will start as a SENER Aeroespa-
cial led project in 2023.

122

Chapter 7. Conclusions and Future Work

Defence projects

The know-how acquired during the research described in this thesis, as well as some of its
results, have been applied in several defence projects in which SENER has participated,
directly or indirectly. For confidentiality reasons, details of these projects and the way in
which the know-how acquired and the results obtained have been used cannot be given.

7.3. Future work

The work done in this research can be continued in different directions. Below are some
of what we consider to be the most interesting ones:

• As we have explained in section 2.3, there are variations to Triple Modular Redun-
dancy (TMR), usually oriented either to robusten redundancy or to lighten the over-
head that redundancy implies. For the latter case, there are Approximate TMR
mechanisms, which use approximate and lighter copies of the software to be re-
dundant instead of exact copies, or Reduce Precision Redundancy (RPR), which
use low-precision data and operations, simplifying the operations with the aim of
obtaining calculations that are similar (not exactly the same) to the original. For
simplicity and determinism, and given that the software to be redundant is not par-
ticularly heavy, during this research we have chosen to implement a classical TMR
mechanism, but the implications of its alternatives on the overhead, determinism
and robustness of the fault tolerance mechanism implemented could be studied in
more depth, making a trade-off between the reliability they achieve versus the over-
head they imply, and assessing in which use cases they could be recommended.

• NMR is a mechanism similar to TMR but in which N copies of the redundant soft-
ware are used, instead of only three. Each redundant copy not only takes up memory
space, but has to have an associated time slot in which this copy gets exclusive ac-
cess to platform resources, such as the processor. In our use case, memory was not
a limiting factor, but the time given to each partition by the scheduler is, so we have
opted for a TMR mechanism that we make more robust by means of cold redundant
partitions (i.e. redundant partitions in standby, which are activated only in case they
are going to replace one of the partitions that are running at a given time). However,
it would be interesting to perform a trade-off to establish when NMR should be
applied (and how many copies would be used) based on the size of the redundant
partition and the time it takes for each of these partitions to run a full cycle.

• To provide a comprehensive fault tolerance solution, the mechanism proposed in
this thesis could be applied together with one or more Hypervisor Fault Tolerance
(HFT) mechanisms (see section 2.4), so that not only the software applications are
protected by using HBFT techniques, but also the hypervisor execution itself is
protected by HFT techniques.

123

Chapter 7. Conclusions and Future Work

• We have conducted an experiment to measure the overhead involved in using
XNG as a hypervisor (see section 6.1 for more details). Although we obtained
interesting results, they are inconclusive: in most cases, the hypervisor overhead
is in a reasonable range: between 3% and 5% more execution time. However, in
certain cases, this overhead soars up to 40%. One hypothesis we have put forward is
that the hypervisor may be occupying a significant part of the processor’s instruction
cache and, if an application contains a large number of different instructions in a
short period of time, this cache saturates and the application’s execution time is
severely affected. This hypothesis has not been tested, as it deviates from the main
objective of the research, but it is an interesting line of work for the future, as it
would not only apply to XNG, but it is a problem that could be generalised to other
hypervisors or operating systems. We are currently considering the continuation of
this research in a Final Degree Project for a student of the Bachelor in Computer
Science and Engineering at UC3M.

• Finally, it would be desirable to repeat the fault injection experiments discussed
in chapter 6, but applying real irradiation campaigns with low-energy protons or
heavy ions, rather than simulations.

124

Chapter 7. Conclusions and Future Work

BIBLIOGRAPHY

[1] J. A. N. Lee, “Claims to the term ’time-sharing’,” IEEE Annals of the History of
Computing, vol. 14, no. 1, pp. 16–54, 1992.

[2] C. Strachey, “Time sharing in large fast computers,” in Communications of the
ACM, ASSOC COMPUTING MACHINERY 1515 BROADWAY, NEW YORK,
NY 10036, vol. 2, 1959, pp. 12–13.

[3] F. J. Corbató, M. Merwin-Daggett, and R. C. Daley, “An experimental time-
sharing system,” in Proceedings of the May 1-3, 1962, Spring Joint Computer
Conference, ser. AIEE-IRE ’62 (Spring), San Francisco, California: Association
for Computing Machinery, 1962, pp. 335–344. doi: 10.1145/1460833.1460871.
[Online]. Available: https://doi.org/10.1145/1460833.1460871.

[4] J. A. N. Lee, R. M. Fano, A. L. Scherr, F. J. Corbato, and V. A. Vyssotsky, “Project
mac (time-sharing computing project),” IEEE Annals of the History of Comput-
ing, vol. 14, no. 2, pp. 9–13, 1992.

[5] J. G. Kemeny and T. E. Kurtz, “Dartmouth time-sharing,” Science, vol. 162,
no. 3850, pp. 223–228, 1968.

[6] J. E. O’Neill, “’prestige luster’ and ’snow-balling effects’: Ibm’s development of
computer time-sharing,” IEEE Annals of the History of Computing, vol. 17, no. 2,
pp. 50–54, 1995.

[7] L. A. Belady, R. P. Parmelee, and C. A. Scalzi, “The ibm history of memory
management technology,” IBM Journal of Research and Development, vol. 25,
no. 5, pp. 491–492, 1981.

[8] R. J. Creasy, “The origin of the vm/370 time-sharing system,” IBM Journal of
Research and Development, vol. 25, no. 5, pp. 483–490, 1981.

[9] J. Siebert, “Instructional use of a mainframe interactive image analysis system,”
Photogrammetric engineering and remote sensing, vol. 49, no. 8, pp. 1159–1165,
1983.

[10] G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable third gen-
eration architectures,” Communications of the ACM, vol. 17, no. 7, pp. 412–421,
1974.

[11] R. R. Schaller, “Moore’s law: Past, present and future,” IEEE spectrum, vol. 34,
no. 6, pp. 52–59, 1997.

[12] H.-m. D. Toong and A. Gupta, “Personal computers,” Scientific American, vol. 247,
no. 6, pp. 86–107, 1982.

[13] D. M. Lee, “Usage pattern and sources of assistance for personal computer users,”
MiS Quarterly, pp. 313–325, 1986.

125

https://doi.org/10.1145/1460833.1460871
https://doi.org/10.1145/1460833.1460871

Chapter 7. Conclusions and Future Work

[14] V. Aggarwal, V. Gopalakrishnan, R. Jana, K. K. Ramakrishnan, and V. A. Vaisham-
payan, “Optimizing cloud resources for delivering iptv services through virtual-
ization,” IEEE Transactions on Multimedia, vol. 15, no. 4, pp. 789–801, 2013.

[15] L. Qu, C. Assi, and K. Shaban, “Delay-aware scheduling and resource optimiza-
tion with network function virtualization,” IEEE Transactions on Communica-
tions, vol. 64, no. 9, pp. 3746–3758, 2016.

[16] E. Ray and E. Schultz, “Virtualization security,” in Proceedings of the 5th Annual
Workshop on Cyber Security and Information Intelligence Research: Cyber Se-
curity and Information Intelligence Challenges and Strategies, ser. CSIIRW ’09,
Oak Ridge, Tennessee, USA: Association for Computing Machinery, 2009.

[17] Yichao Jin, Yonggang Wen, and Qinghua Chen, “Energy efficiency and server
virtualization in data centers: An empirical investigation,” in 2012 Proceedings
IEEE INFOCOM Workshops, 2012, pp. 133–138.

[18] A. N. Al-Quzweeni, A. Q. Lawey, T. E. H. Elgorashi, and J. M. H. Elmirghani,
“Optimized energy aware 5g network function virtualization,” IEEE Access, vol. 7,
pp. 44 939–44 958, 2019.

[19] C.-W. Lin, B. Kim, and S. Shiraishi, “Hardware virtualization and task allocation
for plug-and-play automotive systems,” IEEE Design Test, pp. 1–1, 2019. doi:
10.1109/MDAT.2019.2932936.

[20] A. Desai, R. Oza, P. Sharma, and B. Patel, “Hypervisor: A survey on concepts
and taxonomy,” International Journal of Innovative Technology and Exploring
Engineering, vol. 2, no. 3, pp. 222–225, 2013.

[21] A. Carvalho et al., “Full virtualization on low-end hardware: A case study,” in
IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Soci-
ety, 2016, pp. 4784–4789. doi: 10.1109/IECON.2016.7794064.

[22] J. Sahoo, S. Mohapatra, and R. Lath, “Virtualization: A survey on concepts, taxon-
omy and associated security issues,” in 2010 Second International Conference on
Computer and Network Technology, 2010, pp. 222–226. doi: 10.1109/ICCNT.
2010.49.

[23] B. Ðord̄ević, V. Timčenko, S. Savić, and N. Davidović, “Comparing hypervisor
virtualization performance with the example of citrix hypervisor (xenserver) and
microsoft hyper-v,” in 2020 19th International Symposium INFOTEH-JAHORINA
(INFOTEH), 2020, pp. 1–6. doi: 10.1109/INFOTEH48170.2020.9066288.

[24] A. Chierici and R. Veraldi, “A quantitative comparison between xen and kvm,” in
Journal of Physics: Conference Series, vol. 4, Bristol, England: IOP Publishing,
2010, p. 042 005.

126

https://doi.org/10.1109/MDAT.2019.2932936
https://doi.org/10.1109/IECON.2016.7794064
https://doi.org/10.1109/ICCNT.2010.49
https://doi.org/10.1109/ICCNT.2010.49
https://doi.org/10.1109/INFOTEH48170.2020.9066288

Chapter 7. Conclusions and Future Work

[25] W. Chen, H. Lu, L. Shen, Z. Wang, N. Xiao, and D. Chen, “A novel hardware as-
sisted full virtualization technique,” in 2008 The 9th International Conference for
Young Computer Scientists, IEEE, New York, NY, USA: IEEE, 2008, pp. 1292–
1297.

[26] J. Nakajima et al., “Optimizing virtual machines using hybrid virtualization,” in
Proceedings of the 2011 ACM Symposium on Applied Computing, 2011, pp. 573–
578.

[27] C. Boettcher, R. DeLong, J. Rushby, and W. Sifre, “The mils component inte-
gration approach to secure information sharing,” in 2008 IEEE/AIAA 27th Digital
Avionics Systems Conference, 2008, pp. 1.C.2-1-1.C.2–14. doi: 10.1109/DASC.
2008.4702758.

[28] B. Sutterfield, J. A. Hoschette, and P. Anton, “Future integrated modular avionics
for jet fighter mission computers,” in 2008 IEEE/AIAA 27th Digital Avionics Sys-
tems Conference, 2008, 1.A.4-1-1.A.4–11. doi: 10.1109/DASC.2008.4702749.

[29] L. M. Kinnan, “Use of multicore processors in avionics systems and its potential
impact on implementation and certification,” in 2009 IEEE/AIAA 28th Digital
Avionics Systems Conference, 2009, 1.E.4-1-1.E.4–6. doi: 10.1109/DASC.2009.
5347560.

[30] R. Wilhelm, C. Ferdinand, C. Cullmann, D. Grund, J. Reineke, and B. Triquet,
“Designing predictable multicore architectures for avionics and automotive sys-
tems,” in Proc. of the Workshop on Reconciling Performance with Predictability
(RePP), Oct. 2009.

[31] B. Annighoefer et al., “Challenges and ways forward for avionics platforms and
their development in 2019,” in 2019 IEEE/AIAA 38th Digital Avionics Systems
Conference (DASC), 2019, pp. 1–10. doi: 10.1109/DASC43569.2019.9081794.

[32] C. Cullmann et al., “Predictability considerations in the design of multi-core em-
bedded systems,” in Proceedings of Embedded Real Time Software and Systems,
May 2010, pp. 36–42.

[33] D. Kliem and S. Voigt, “A multi-core fpga-based soc architecture with domain
segregation,” in 2012 International Conference on Reconfigurable Computing
and FPGAs, 2012, pp. 1–7.

[34] P. Bieber, F. Boniol, M. Boyer, E. Noulard, and C. Pagetti, “New challenges for
future avionic architectures,” Aeropsacelab Journal, vol. 04, May 2012.

[35] M. A. Sánchez-Puebla and J. Carretero, “A new approach for distributed comput-
ing in avionics systems,” in Proceedings of the 1st international symposium on
Information and communication technologies, 2003, pp. 579–584.

[36] P. J. Prisaznuk, “Integrated modular avionics,” in Proceedings of the IEEE 1992
National Aerospace and Electronics Conference, NAECON 1992, 1992, 39–45
vol.1.

127

https://doi.org/10.1109/DASC.2008.4702758
https://doi.org/10.1109/DASC.2008.4702758
https://doi.org/10.1109/DASC.2008.4702749
https://doi.org/10.1109/DASC.2009.5347560
https://doi.org/10.1109/DASC.2009.5347560
https://doi.org/10.1109/DASC43569.2019.9081794

Chapter 7. Conclusions and Future Work

[37] C. B. Watkins and R. Walter, “Transitioning from federated avionics architec-
tures to integrated modular avionics,” in 2007 IEEE/AIAA 26th Digital Avionics
Systems Conference, New York, NY, USA: IEEE, 2007, 2.A.1-1-2.A.1–10. doi:
10.1109/DASC.2007.4391842.

[38] P. J. Prisaznuk, “Arinc 653 role in integrated modular avionics (ima),” in 2008
IEEE/AIAA 27th Digital Avionics Systems Conference, 2008, 1.E.5-1-1.E.5–10.
doi: 10.1109/DASC.2008.4702770.

[39] A. E. E. Committee et al., Arinc 653: Avionics application software standard
interface (draft 15), 1996.

[40] A. Cook and K. Hunt, “Arinc 653 — achieving software re-use,” Microprocessors
and Microsystems, vol. 20, no. 8, pp. 479–483, 1997.

[41] S. H. VanderLeest, “Taming interrupts: Deterministic asynchronicity in an arinc
653 environment,” in 2014 IEEE/AIAA 33rd Digital Avionics Systems Conference
(DASC), 2014, 8A3-1-8A3–11. doi: 10.1109/DASC.2014.6979531.

[42] S. H. VanderLeest and D. White, “Mpsoc hypervisor: The safe and secure fu-
ture of avionics,” in 2015 IEEE/AIAA 34th Digital Avionics Systems Conference
(DASC), 2015, 6B5-1-6B5–14. doi: 10.1109/DASC.2015.7311448.

[43] N. Diniz and J. Rufino, “Arinc 653 in space,” in DASIA 2005-Data Systems in
Aerospace, vol. 602, Paris, France: ASD Eurospace, 2005.

[44] T. Gaska, C. Watkin, and Y. Chen, “Integrated modular avionics - past, present,
and future,” IEEE Aerospace and Electronic Systems Magazine, vol. 30, no. 9,
pp. 12–23, 2015. doi: 10.1109/MAES.2015.150014.

[45] J. Windsor and K. Hjortnaes, “Time and space partitioning in spacecraft avionics,”
in 2009 Third IEEE International Conference on Space Mission Challenges for
Information Technology, 2009, pp. 13–20. doi: 10.1109/SMC-IT.2009.11.

[46] J. Andersson, M. Hjorth, F. Johansson, and S. Habinc, “Leon processor devices
for space missions: First 20 years of leon in space,” in 2017 6th International
Conference on Space Mission Challenges for Information Technology (SMC-IT),
IEEE, New York, NY, USA: IEEE, 2017, pp. 136–141.

[47] D. Paikowsky, “What is new space? the changing ecosystem of global space ac-
tivity,” New Space, vol. 5, no. 2, pp. 84–88, 2017.

[48] M. Höyhtyä, M. Corici, S. Covaci, and M. Guta, “5g and beyond for new space:
Vision and research challenges,” in Advances in Communications Satellite Sys-
tems. Proceedings of the 37th International Communications Satellite Systems
Conference (ICSSC-2019), 2019, pp. 1–16. doi: 10.1049/cp.2019.1236.

128

https://doi.org/10.1109/DASC.2007.4391842
https://doi.org/10.1109/DASC.2008.4702770
https://doi.org/10.1109/DASC.2014.6979531
https://doi.org/10.1109/DASC.2015.7311448
https://doi.org/10.1109/MAES.2015.150014
https://doi.org/10.1109/SMC-IT.2009.11
https://doi.org/10.1049/cp.2019.1236

Chapter 7. Conclusions and Future Work

[49] S. Trujillo, A. Crespo, A. Alonso, and J. Pérez, “Multipartes: Multi-core partition-
ing and virtualization for easing the certification of mixed-criticality systems,”
Microprocessors and Microsystems, vol. 38, no. 8, Part B, pp. 921–932, 2014.
doi: https://doi .org/10.1016/j.micpro .2014.09.004. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S0141933114001380.

[50] A. Hughes and A. Awad, “Quantifying performance determinism in virtualized
mixed-criticality systems,” in 2019 IEEE 22nd International Symposium on Real-
Time Distributed Computing (ISORC), New York, NY, USA: IEEE, 2019, pp. 181–
184. doi: 10.1109/ISORC.2019.00041.

[51] H. Guissouma, H. Klare, E. Sax, and E. Burger, “An empirical study on the cur-
rent and future challenges of automotive software release and configuration man-
agement,” in 2018 44th Euromicro Conference on Software Engineering and Ad-
vanced Applications (SEAA), New York, NY, USA: IEEE, 2018, pp. 298–305.
doi: 10.1109/SEAA.2018.00056.

[52] R. Chitkara, W. Ballhaus, B. Kliem, S. Berings, and B. Weiss, “Spotlight on au-
tomotive pwc semiconductor report,” PriceWaterhouseCoopers, Report, 2013.

[53] M. Z. MANIC, M. Z. PONOS, M. Z. BJELICA, and D. SAMARDZIJA, “Pro-
posal for graphics sharing in a mixed criticality automotive digital cockpit,” in
2020 IEEE International Conference on Consumer Electronics (ICCE), New York,
NY, USA: IEEE, 2020, pp. 1–4. doi: 10.1109/ICCE46568.2020.9212310.

[54] R. Schneider et al., “Efficient virtualization for functional integration on modern
microcontrollers in safety-relevant domains,” SAE Technical Papers, vol. 1, Apr.
2014. doi: 10.4271/2014-01-0206.

[55] S. Karthik et al., “Hypervisor based approach for integrated cockpit solutions,”
in 2018 IEEE 8th International Conference on Consumer Electronics - Berlin
(ICCE-Berlin), New York, NY, USA: IEEE, 2018, pp. 1–6. doi: 10.1109/ICCE-
Berlin.2018.8576222.

[56] M. Strobl, M. Kucera, A. Foeldi, T. Waas, N. Balbierer, and C. Hilbert, “Towards
automotive virtualization,” in 2013 International Conference on Applied Elec-
tronics, New York, NY, USA: IEEE, 2013, pp. 1–6.

[57] T. Gaska, Y. Chen, and D. Summerville, “Leveraging driverless car investment in
next generation integrated modular avionics (ima),” in 2016 IEEE/AIAA 35th Dig-
ital Avionics Systems Conference (DASC), 2016, pp. 1–9. doi: 10.1109/DASC.
2016.7778073.

[58] M. Raho, A. Spyridakis, M. Paolino, and D. Raho, “Kvm, xen and docker: A
performance analysis for arm based nfv and cloud computing,” in 2015 IEEE
3rd Workshop on Advances in Information, Electronic and Electrical Engineering
(AIEEE), New York, NY, USA: IEEE, 2015, pp. 1–8. doi: 10.1109/AIEEE.
2015.7367280.

129

https://doi.org/https://doi.org/10.1016/j.micpro.2014.09.004
https://www.sciencedirect.com/science/article/pii/S0141933114001380
https://www.sciencedirect.com/science/article/pii/S0141933114001380
https://doi.org/10.1109/ISORC.2019.00041
https://doi.org/10.1109/SEAA.2018.00056
https://doi.org/10.1109/ICCE46568.2020.9212310
https://doi.org/10.4271/2014-01-0206
https://doi.org/10.1109/ICCE-Berlin.2018.8576222
https://doi.org/10.1109/ICCE-Berlin.2018.8576222
https://doi.org/10.1109/DASC.2016.7778073
https://doi.org/10.1109/DASC.2016.7778073
https://doi.org/10.1109/AIEEE.2015.7367280
https://doi.org/10.1109/AIEEE.2015.7367280

Chapter 7. Conclusions and Future Work

[59] D. Sabogal and A. D. George, “Towards resilient spaceflight systems with virtu-
alization,” in 2018 IEEE Aerospace Conference, 2018, pp. 1–8. doi: 10.1109/
AERO.2018.8396689.

[60] S. H. VanderLeest, “Arinc 653 hypervisor,” in 29th Digital Avionics Systems Con-
ference, 2010, 5.E.2-1-5.E.2–20. doi: 10.1109/DASC.2010.5655298.

[61] S. H. VanderLeest, D. Greve, and P. Skentzos, “A safe secure arinc 653 hyper-
visor,” in 2013 IEEE/AIAA 32nd Digital Avionics Systems Conference (DASC),
2013, 7B4-1-7B4–17. doi: 10.1109/DASC.2013.6712638.

[62] S. H. VanderLeest, “Designing a future airborne capability environment (face) hy-
pervisor for safety and security,” in 2017 IEEE/AIAA 36th Digital Avionics Sys-
tems Conference (DASC), 2017, pp. 1–9. doi: 10.1109/DASC.2017.8102056.

[63] A. I. Kistijantoro and A. Gilbran, “Improving arinc 653 system reliability by using
fault-tolerant partition scheduling,” in 2018 5th International Conference on Ad-
vanced Informatics: Concept Theory and Applications (ICAICTA), 2018, pp. 182–
187. doi: 10.1109/ICAICTA.2018.8541309.

[64] T. Bijlsma et al., “A distributed safety mechanism using middleware and hypervi-
sors for autonomous vehicles,” in 2020 Design, Automation Test in Europe Con-
ference Exhibition (DATE), New York, NY, USA: IEEE, 2020, pp. 1175–1180.
doi: 10.23919/DATE48585.2020.9116268.

[65] A. Avanzini, P. Valente, D. Faggioli, and P. Gai, “Integrating linux and the real-
time erika os through the xen hypervisor,” in 10th IEEE International Symposium
on Industrial Embedded Systems (SIES), New York, NY, USA: IEEE, 2015, pp. 1–
7. doi: 10.1109/SIES.2015.7185063.

[66] B. Schulz and B. Annighöfer, “Evaluation of adaptive partitioning and real-time
capability for virtualization with xen hypervisor,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 58, no. 1, pp. 206–217, 2022. doi: 10.1109/TAES.
2021.3104941.

[67] C. Dall and J. Nieh, “Kvm/arm: The design and implementation of the linux arm
hypervisor,” SIGPLAN Not., vol. 49, no. 4, pp. 333–348, Feb. 2014. doi: 10.
1145/2644865.2541946. [Online]. Available: https://doi.org/10.1145/
2644865.2541946.

[68] J.-S. Ma, H.-Y. Kim, and W. Choi, “Kvm-qemu virtualization with arm64bit server
system,” in Cloud Computing, Y. Zhang, L. Peng, and C.-H. Youn, Eds., New
York, NY, USA: Springer International Publishing, 2016, pp. 334–343.

[69] R. Russell, “Virtio: Towards a de-facto standard for virtual i/o devices,” ACM
SIGOPS Oper. Syst. Rev., vol. 42, no. 5, pp. 95–103, Jul. 2008. doi: 10.1145/
1400097 . 1400108. [Online]. Available: https : / / doi . org / 10 . 1145 /
1400097.1400108.

130

https://doi.org/10.1109/AERO.2018.8396689
https://doi.org/10.1109/AERO.2018.8396689
https://doi.org/10.1109/DASC.2010.5655298
https://doi.org/10.1109/DASC.2013.6712638
https://doi.org/10.1109/DASC.2017.8102056
https://doi.org/10.1109/ICAICTA.2018.8541309
https://doi.org/10.23919/DATE48585.2020.9116268
https://doi.org/10.1109/SIES.2015.7185063
https://doi.org/10.1109/TAES.2021.3104941
https://doi.org/10.1109/TAES.2021.3104941
https://doi.org/10.1145/2644865.2541946
https://doi.org/10.1145/2644865.2541946
https://doi.org/10.1145/2644865.2541946
https://doi.org/10.1145/2644865.2541946
https://doi.org/10.1145/1400097.1400108
https://doi.org/10.1145/1400097.1400108
https://doi.org/10.1145/1400097.1400108
https://doi.org/10.1145/1400097.1400108

Chapter 7. Conclusions and Future Work

[70] V. K. Manik and D. Arora, “Performance comparison of commercial vmm: Esxi,
xen, hyper-v kvm,” in 2016 3rd International Conference on Computing for Sus-
tainable Global Development (INDIACom), New York, NY, USA: IEEE, 2016,
pp. 1771–1775.

[71] G. P. C. Tran, Y.-A. Chen, D.-I. Kang, J. P. Walters, and S. P. Crago, “Hyper-
visor performance analysis for real-time workloads,” in 2016 IEEE High Per-
formance Extreme Computing Conference (HPEC), New York, NY, USA: IEEE,
2016, pp. 1–7. doi: 10.1109/HPEC.2016.7761610.

[72] H. Shi, X. Li, and Y. Zhao, “Database performance comparison of xen, kvm
and osv using cassandra,” in 2018 2nd IEEE Advanced Information Manage-
ment,Communicates,Electronic and Automation Control Conference (IMCEC),
New York, NY, USA: IEEE, 2018, pp. 27–30. doi: 10.1109/IMCEC.2018.
8469189.

[73] T. Müller, H. Askaripoor, and A. Knoll, “Performance analysis of kvm hypervi-
sor using a self-driving developer kit,” in IECON 2022 – 48th Annual Confer-
ence of the IEEE Industrial Electronics Society, 2022, pp. 1–7. doi: 10.1109/
IECON49645.2022.9968908.

[74] M. Masmano, I. Ripoll, A. Crespo, and J. Metge, “Xtratum: A hypervisor for
safety critical embedded systems,” in 11th Real-Time Linux Workshop, Citeseer,
2009, pp. 263–272.

[75] A. Crespo, I. Ripoll, M. Masmano, P. Arberet, and J. Metge, “Xtratum an open
source hypervisor for tsp embedded systems in aerospace,” Data Systems In Aerospace
DASIA, Istanbul (Turkey), 2009.

[76] R. Zhou, Q. Zhou, Y. Sheng, and K.-C. Li, “Xtratum/ppc: A hypervisor for parti-
tioned system on powerpc processors,” The Journal of Supercomputing, vol. 63,
no. 2, pp. 593–610, 2013.

[77] E. Carrascosa, J. Coronel, M. Masmano, P. Balbastre, and A. Crespo, “Xtratum
hypervisor redesign for leon4 multicore processor,” SIGBED Rev., vol. 11, no. 2,
pp. 27–31, Sep. 2014. doi: 10.1145/2668138.2668142. [Online]. Available:
https://doi.org/10.1145/2668138.2668142.

[78] J. Galizzi et al., “Temporal duplex-triplex on cots processors with xtratum,” DA-
SIA 2016-Data Systems In Aerospace, vol. 736, p. 20, 2016.

[79] A. Platschek and G. Schiesser, “Migrating a osek run-time environment to the
oversee platform,” in Proceedings of 13th Real-Time Linux Workshop, 2011.

[80] A. Larrucea, J. Perez, I. Agirre, V. Brocal, and R. Obermaisser, “A modular safety
case for an iec-61508 compliant generic hypervisor,” in 2015 Euromicro Confer-
ence on Digital System Design, 2015, pp. 571–574. doi: 10.1109/DSD.2015.27.

131

https://doi.org/10.1109/HPEC.2016.7761610
https://doi.org/10.1109/IMCEC.2018.8469189
https://doi.org/10.1109/IMCEC.2018.8469189
https://doi.org/10.1109/IECON49645.2022.9968908
https://doi.org/10.1109/IECON49645.2022.9968908
https://doi.org/10.1145/2668138.2668142
https://doi.org/10.1145/2668138.2668142
https://doi.org/10.1109/DSD.2015.27

Chapter 7. Conclusions and Future Work

[81] V. Muttillo, L. Tiberi, L. Pomante, and P. Serri, “Benchmarking analysis and char-
acterization of hypervisors for space multicore systems,” Journal of Aerospace
Information Systems, vol. 16, no. 11, pp. 500–511, 2019.

[82] S.-w. Kim, J.-W. Choi, J.-Y. Jeong, and B.-S. Yoo, “Development of rtems smp
platform based on xtratum virtualization environment for satellite flight software,”
Journal of the Korean Society for Aeronautical & Space Sciences, vol. 48, no. 6,
pp. 467–478, 2020.

[83] S.-W. Kim, B.-S. Yoo, J.-Y. Jeong, and J.-W. Choi, “Overhead analysis of xtra-
tum for space in smp envrionment,” IEMEK Journal of Embedded Systems and
Applications, vol. 15, no. 4, pp. 177–187, 2020.

[84] S. Campagna, M. Hussain, and M. Violante, “Hypervisor-based virtual hardware
for fault tolerance in cots processors targeting space applications,” in 2010 IEEE
25th International Symposium on Defect and Fault Tolerance in VLSI Systems,
2010, pp. 44–51. doi: 10.1109/DFT.2010.12.

[85] S. Grixti, N. Sammut, M. Hernek, E. Carrascosa, M. Masmano, and A. Crespo,
“Separation kernel robustness testing: The xtratum case study,” in 2016 IEEE In-
ternational Conference on Cluster Computing (CLUSTER), New York, NY, USA:
IEEE, 2016, pp. 524–531. doi: 10.1109/CLUSTER.2016.91.

[86] L. Masing et al., “Xandar: Exploiting the x-by-construction paradigm in model-
based development of safety-critical systems,” in 2022 Design, Automation and
Test in Europe Conference and Exhibition (DATE), 2022, pp. 1–5. doi: 10.23919/
DATE54114.2022.9774534.

[87] T. Poggi et al., “A hypervisor architecture for low-power real-time embedded
systems,” in 2018 21st Euromicro Conference on Digital System Design (DSD),
2018, pp. 252–259. doi: 10.1109/DSD.2018.00054.

[88] A. Crespo, P. Balbastre, J. Simó, J. Coronel, D. Gracia Pérez, and P. Bonnot,
“Hypervisor-based multicore feedback control of mixed-criticality systems,” IEEE
Access, vol. 6, pp. 50 627–50 640, 2018. doi: 10.1109/ACCESS.2018.2869094.

[89] E. Missimer, R. West, and Y. Li, “Distributed real-time fault tolerance on a virtu-
alized multi-core system,” OSPERT 2014, p. 17, 2014.

[90] A. Tavares, A. Dídimo, T. Lobo, P. Cardoso, J. Cabral, and S. Montenegro, “Ro-
dosvisor — an arinc 653 quasi-compliant hypervisor: Cpu, memory and i/o virtu-
alization,” in Proceedings of 2012 IEEE 17th International Conference on Emerg-
ing Technologies Factory Automation (ETFA 2012), New York, NY, USA: IEEE,
2012, pp. 1–10. doi: 10.1109/ETFA.2012.6489588.

[91] A. Carvalho et al., “Functionality farming in pok/rodosvisor,” in International
Journal of Computer Science and Software Engineering (IJCSSE), Aug. 2016,
pp. 161–174.

132

https://doi.org/10.1109/DFT.2010.12
https://doi.org/10.1109/CLUSTER.2016.91
https://doi.org/10.23919/DATE54114.2022.9774534
https://doi.org/10.23919/DATE54114.2022.9774534
https://doi.org/10.1109/DSD.2018.00054
https://doi.org/10.1109/ACCESS.2018.2869094
https://doi.org/10.1109/ETFA.2012.6489588

Chapter 7. Conclusions and Future Work

[92] S. Pinto, A. Tavares, and S. Montenegro, “Space and time partitioning with hard-
ware support for space applications,” Data Systems In Aerospace (DASIA), Euro-
pean Space Agency,(Special Publication) ESA SP, 2016.

[93] J. Martins, J. Alves, J. Cabral, A. Tavares, and S. Pinto, “Urtzvisor: A secure
and safe real-time hypervisor,” Electronics, vol. 6, no. 4, 2017. doi: 10.3390/
electronics6040093.

[94] S. Pinto, J. Martins, J. Lopes, M. Abreu, and A. Tavares, “Secssy hypervisor:
Security-safety synergy for aerospace,” in DAta Systems in Aerospace (DASIA),
Jun. 2017.

[95] J. Winter, “Trusted computing building blocks for embedded linux-based arm
trustzone platforms,” in Proceedings of the 3rd ACM Workshop on Scalable Trusted
Computing, ser. STC ’08, Alexandria, Virginia, USA: Association for Computing
Machinery, 2008, pp. 21–30. doi: 10.1145/1456455.1456460. [Online]. Avail-
able: https://doi.org/10.1145/1456455.1456460.

[96] M. Cereia and I. Bertolotti, “Virtual machines for distributed real-time systems,”
Computer Standards & Interfaces, vol. 31, pp. 30–39, Jan. 2009. doi: 10.1016/
j.csi.2007.10.010.

[97] S. W. Kim, C. Lee, M. Jeon, H. Y. Kwon, H. W. Lee, and C. Yoo, “Secure device
access for automotive software,” in 2013 International Conference on Connected
Vehicles and Expo (ICCVE), 2013, pp. 177–181. doi: 10.1109/ICCVE.2013.
6799789.

[98] G. Cicero, A. Biondi, G. Buttazzo, and A. Patel, “Reconciling security with vir-
tualization: A dual-hypervisor design for arm trustzone,” in 2018 IEEE Interna-
tional Conference on Industrial Technology (ICIT), 2018, pp. 1628–1633. doi:
10.1109/ICIT.2018.8352425.

[99] P. Lucas, K. Chappuis, B. Boutin, J. Vetter, and D. Raho, “Vosysmonitor, a trustzone-
based hypervisor for iso 26262 mixed-critical system,” in Proceedings of the 23rd
Conference of Open Innovations Association FRUCT, ser. FRUCT’23, Bologna,
Italy: FRUCT Oy, 2018.

[100] D. Dasari, M. Pressler, A. Hamann, D. Ziegenbein, and P. Austin, “Applying
reservation-based scheduling to a uc-based hypervisor: An industrial case study,”
in 2020 Design, Automation Test in Europe Conference Exhibition (DATE), San
Jose, CA, USA: EDA Consortium, 2020, pp. 987–990. doi: 10.23919/DATE48585.
2020.9116385.

[101] R. Ramsauer, J. Kiszka, D. Lohmann, and W. Mauerer, “Look mum, no vm exits!
(almost),” ArXiv, vol. abs/1705.06932, 2017.

[102] C. Hernàndez et al., “Selene: Self-monitored dependable platform for high-performance
safety-critical systems,” in 2020 23rd Euromicro Conference on Digital System
Design (DSD), New York, NY, USA: IEEE, 2020, pp. 370–377. doi: 10.1109/
DSD51259.2020.00066.

133

https://doi.org/10.3390/electronics6040093
https://doi.org/10.3390/electronics6040093
https://doi.org/10.1145/1456455.1456460
https://doi.org/10.1145/1456455.1456460
https://doi.org/10.1016/j.csi.2007.10.010
https://doi.org/10.1016/j.csi.2007.10.010
https://doi.org/10.1109/ICCVE.2013.6799789
https://doi.org/10.1109/ICCVE.2013.6799789
https://doi.org/10.1109/ICIT.2018.8352425
https://doi.org/10.23919/DATE48585.2020.9116385
https://doi.org/10.23919/DATE48585.2020.9116385
https://doi.org/10.1109/DSD51259.2020.00066
https://doi.org/10.1109/DSD51259.2020.00066

Chapter 7. Conclusions and Future Work

[103] A. Golchin, S. Sinha, and R. West, “Boomerang: Real-time i/o meets legacy sys-
tems,” in 2020 IEEE Real-Time and Embedded Technology and Applications Sym-
posium (RTAS), New York, NY, USA: IEEE, 2020, pp. 390–402. doi: 10.1109/
RTAS48715.2020.00013.

[104] J. Martins, A. Tavares, M. Solieri, M. Bertogna, and S. Pinto, “Bao: A Lightweight
Static Partitioning Hypervisor for Modern Multi-Core Embedded Systems,” in
Workshop on Next Generation Real-Time Embedded Systems (NG-RES 2020), M.
Bertogna and F. Terraneo, Eds., ser. OpenAccess Series in Informatics (OASIcs),
vol. 77, Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2020, 3:1–3:14. doi: 10.4230/OASIcs.NG-RES.2020.3. [Online]. Available:
https://drops.dagstuhl.de/opus/volltexte/2020/11779.

[105] G. Heiser and B. Leslie, “The okl4 microvisor: Convergence point of microker-
nels and hypervisors,” in Proceedings of the First ACM Asia-Pacific Workshop on
Workshop on Systems, ser. APSys ’10, New Delhi, India: Association for Com-
puting Machinery, 2010, pp. 19–24. doi: 10.1145/1851276.1851282. [Online].
Available: https://doi.org/10.1145/1851276.1851282.

[106] G. Heiser, “Hypervisors for consumer electronics,” in 2009 6th IEEE Consumer
Communications and Networking Conference, New York, NY, USA: IEEE, 2009,
pp. 1–5. doi: 10.1109/CCNC.2009.4784922.

[107] E. de Matos and M. Ahvenjärvi, “Sel4 microkernel for virtualization use-cases:
Potential directions towards a standard vmm,” arXiv preprint arXiv:2210.04328,
2022.

[108] U. Steinberg and B. Kauer, “Nova: A microhypervisor-based secure virtualiza-
tion architecture,” in Proceedings of the 5th European Conference on Computer
Systems, ser. EuroSys ’10, Paris, France: Association for Computing Machin-
ery, 2010, pp. 209–222. doi: 10.1145/1755913.1755935. [Online]. Available:
https://doi.org/10.1145/1755913.1755935.

[109] H. Li, X. Xu, J. Ren, and Y. Dong, “Acrn: A big little hypervisor for iot de-
velopment,” in Proceedings of the 15th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, ser. VEE 2019, Providence, RI,
USA: Association for Computing Machinery, 2019, pp. 31–44. doi: 10.1145/
3313808 . 3313816. [Online]. Available: https : / / doi . org / 10 . 1145 /
3313808.3313816.

[110] K. Lampka and A. Lackorzynski, “Using hypervisor technology for safe and se-
cure deployment of high-performance multicore platforms in future vehicles,”
in 2019 26th IEEE International Conference on Electronics, Circuits and Sys-
tems (ICECS), New York, NY, USA: IEEE, 2019, pp. 783–786. doi: 10.1109/
ICECS46596.2019.8964912.

134

https://doi.org/10.1109/RTAS48715.2020.00013
https://doi.org/10.1109/RTAS48715.2020.00013
https://doi.org/10.4230/OASIcs.NG-RES.2020.3
https://drops.dagstuhl.de/opus/volltexte/2020/11779
https://doi.org/10.1145/1851276.1851282
https://doi.org/10.1145/1851276.1851282
https://doi.org/10.1109/CCNC.2009.4784922
https://doi.org/10.1145/1755913.1755935
https://doi.org/10.1145/1755913.1755935
https://doi.org/10.1145/3313808.3313816
https://doi.org/10.1145/3313808.3313816
https://doi.org/10.1145/3313808.3313816
https://doi.org/10.1145/3313808.3313816
https://doi.org/10.1109/ICECS46596.2019.8964912
https://doi.org/10.1109/ICECS46596.2019.8964912

Chapter 7. Conclusions and Future Work

[111] T. Kim, D. Kang, S. Kim, J. Shin, D. Lim, and V. Dupre, “Qplus-hyper: A hypervi-
sor for safety-critical systems,” in The 9th International Symposium on Embedded
Technology (ISET), New York, NY, USA: IEEE, 2014, pp. 102–103.

[112] H. Joe et al., “Remote graphical processing for dual display of rtos and gpos on an
embedded hypervisor,” in 2015 IEEE 20th Conference on Emerging Technologies
Factory Automation (ETFA), New York, NY, USA: IEEE, 2015, pp. 1–4. doi: 10.
1109/ETFA.2015.7301581.

[113] Y. Lim and H. Kim, “Cache-aware real-time virtualization for clustered multi-
core platforms,” IEEE Access, vol. 7, pp. 128 628–128 640, 2019. doi: 10.1109/
ACCESS.2019.2939859.

[114] D. Reinhardt and G. Morgan, “An embedded hypervisor for safety-relevant au-
tomotive e/e-systems,” in Proceedings of the 9th IEEE International Symposium
on Industrial Embedded Systems (SIES 2014), New York, NY, USA: IEEE, Jun.
2014, pp. 189–198. doi: 10.1109/SIES.2014.6871203.

[115] M. Lemerre, E. Ohayon, D. Chabrol, M. Jan, and M.-B. Jacques, “Method and
tools for mixed-criticality real-time applications within pharos,” 2012 IEEE 15th
International Symposium on Object/Component/Service-Oriented Real-Time Dis-
tributed Computing Workshops, vol. 0, pp. 41–48, Mar. 2011. doi: 10.1109/
ISORCW.2011.15.

[116] Q. ul Ain, U. Anwar, M. A. Mehmood, and A. Waheed, “Httm-design and im-
plementation of a type-2 hypervisor for mips64 based systems,” in Journal of
Physics: Conference Series, IOP Publishing, vol. 787, 2017, p. 012 006.

[117] Q. Ain and M. A. Mehmood, “Runtime performance evaluation and optimiza-
tion of type-2 hypervisor for mips64 architecture,” Journal of King Saud Uni-
versity - Computer and Information Sciences, vol. 34, no. 2, pp. 295–307, 2022.
doi: https://doi .org/10.1016/j.jksuci .2019.11.006. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S1319157819308390.

[118] M. Project, Minos - Flexible Virtualization Solution for Embedded System, ver-
sion 0.4, 2022. [Online]. Available: https://github.com/minosproject/
minos.

[119] B. Janßen, F. Korkmaz, H. Derya, M. Hübner, M. L. Ferreira, and J. C. Ferreira,
“Towards a type 0 hypervisor for dynamic reconfigurable systems,” in 2017 In-
ternational Conference on ReConFigurable Computing and FPGAs (ReConFig),
2017, pp. 1–7. doi: 10.1109/RECONFIG.2017.8279825.

[120] Z. Jiang, N. C. Audsley, and P. Dong, “Bluevisor: A scalable real-time hardware
hypervisor for many-core embedded systems,” in 2018 IEEE Real-Time and Em-
bedded Technology and Applications Symposium (RTAS), 2018, pp. 75–84. doi:
10.1109/RTAS.2018.00013.

135

https://doi.org/10.1109/ETFA.2015.7301581
https://doi.org/10.1109/ETFA.2015.7301581
https://doi.org/10.1109/ACCESS.2019.2939859
https://doi.org/10.1109/ACCESS.2019.2939859
https://doi.org/10.1109/SIES.2014.6871203
https://doi.org/10.1109/ISORCW.2011.15
https://doi.org/10.1109/ISORCW.2011.15
https://doi.org/https://doi.org/10.1016/j.jksuci.2019.11.006
https://www.sciencedirect.com/science/article/pii/S1319157819308390
https://www.sciencedirect.com/science/article/pii/S1319157819308390
https://github.com/minosproject/minos
https://github.com/minosproject/minos
https://doi.org/10.1109/RECONFIG.2017.8279825
https://doi.org/10.1109/RTAS.2018.00013

Chapter 7. Conclusions and Future Work

[121] E. Hamelin, M. Ait Hmid, A. Naji, and Y. Mouafo-Tchinda, “Selection and evalu-
ation of an embedded hypervisor: Application to an automotive platform,” in 10th
European Congress of Embedded Real Time Software and Systems (ERTS 2020),
Paris, France: Association Aéronautique et Astronautique de France, Jan. 2020.

[122] T. O. Group, “Future airborne capability environment,” The Open Group, Stan-
dard, 2020.

[123] J. Tokar, “A comparison of avionics open system architectures,” ACM SIGAda
Ada Letters, vol. 36, pp. 22–26, May 2017. doi: 10.1145/3092893.3092897.

[124] T. Gaska, “Optimizing an incremental modular open system approach (mosa) in
avionics systems for balanced architecture decisions,” in 2012 IEEE/AIAA 31st
Digital Avionics Systems Conference (DASC), 2012, pp. 7D1-1-7D1–19. doi: 10.
1109/DASC.2012.6382420.

[125] T. K. Ferrell and U. D. Ferrell, “Rtca do-178b/eurocae ed-12b,” in Digital Avion-
ics Handbook, Boca Raton, FL, USA: CRC Press, 2000, pp. 467–478.

[126] C. Holloway, “Towards understanding the do-178c / ed-12c assurance case,” in
7th IET International Conference on System Safety, incorporating the Cyber Se-
curity Conference 2012, 2012, pp. 1–6. doi: 10.1049/cp.2012.1499.

[127] L. Rierson, Developing safety-critical software: a practical guide for aviation
software and DO-178C compliance. Boca Raton, FL, USA: CRC Press, 2017.

[128] F. De Florio, “Chapter 4 - airworthiness requirements,” in Airworthiness (Third
Edition), F. De Florio, Ed., Third Edition, Oxford, England: Butterworth-Heinemann,
2016, pp. 37–83. doi: https://doi.org/10.1016/B978-0-08-100888-1.
00004-5. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/B9780081008881000045.

[129] J.-P. Blanquart et al., “Software safety-a journey across domains and safety stan-
dards,” in 9th European Congress on Embedded Real Time Software and Sys-
tems (ERTS 2018), Paris, France: Association Aéronautique et Astronautique de
France, 2018.

[130] S. Fürst et al., “Autosar–a worldwide standard is on the road,” in 14th Inter-
national VDI Congress Electronic Systems for Vehicles, Baden-Baden, vol. 62,
Düsseldorf, Germany: VDI Wissensforum GmbH, 2009, p. 5.

[131] S. Fürst and M. Bechter, “Autosar for connected and autonomous vehicles: The
autosar adaptive platform,” in 2016 46th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks Workshop (DSN-W), New York, NY,
USA: IEEE, 2016, pp. 215–217. doi: 10.1109/DSN-W.2016.24.

[132] D. Reinhardt, D. Kaule, and M. Kucera, “Achieving a scalable e/e-architecture
using autosar and virtualization,” SAE International Journal of Passenger Cars -
Electronic and Electrical Systems, vol. 6, May 2013. doi: 10.4271/2013-01-
1399.

136

https://doi.org/10.1145/3092893.3092897
https://doi.org/10.1109/DASC.2012.6382420
https://doi.org/10.1109/DASC.2012.6382420
https://doi.org/10.1049/cp.2012.1499
https://doi.org/https://doi.org/10.1016/B978-0-08-100888-1.00004-5
https://doi.org/https://doi.org/10.1016/B978-0-08-100888-1.00004-5
https://www.sciencedirect.com/science/article/pii/B9780081008881000045
https://www.sciencedirect.com/science/article/pii/B9780081008881000045
https://doi.org/10.1109/DSN-W.2016.24
https://doi.org/10.4271/2013-01-1399
https://doi.org/10.4271/2013-01-1399

Chapter 7. Conclusions and Future Work

[133] M. Kotur, M. Dragojević, G. Velikić, and I. Bašičević, “Digital cockpit in autosar
adaptive context,” in 2018 IEEE 8th International Conference on Consumer Elec-
tronics - Berlin (ICCE-Berlin), New York, NY, USA: IEEE, 2018, pp. 1–4. doi:
10.1109/ICCE-Berlin.2018.8576209.

[134] S.-H. Jeon, J.-H. Cho, Y. Jung, S. Park, and T.-M. Han, “Automotive hardware
development according to iso 26262,” in 13th International Conference on Ad-
vanced Communication Technology (ICACT2011), 2011, pp. 588–592.

[135] A. Abdulkhaleq, M. Baumeister, H. Böhmert, and S. Wagner, “Missing no in-
teraction—using stpa for identifying hazardous interactions of automated driv-
ing systems,” International Journal of Safety Science, vol. 2, no. 01, pp. 115–24,
2018.

[136] F. Z. Rokhani et al., “Asil determination for motorbike’s electronics throttle con-
trol system (etcs) mulfunction,” in EPJ Web of Conferences, vol. 162, Les Ulis,
France: EDP Sciences, 2017, p. 01 066.

[137] J. Von Neumann, “Probabilistic logics and the synthesis of reliable organisms
from unreliable components,” Automata studies, vol. 34, no. 34, pp. 43–98, 1956.

[138] A. Taber and E. Normand, “Single event upset in avionics,” IEEE Transactions on
Nuclear Science, vol. 40, no. 2, pp. 120–126, 1993. doi: 10.1109/23.212327.

[139] I. Koren and S. Y. H. Su, “Reliability analysis of n-modular redundancy sys-
tems with intermittent and permanent faults,” IEEE Transactions on Computers,
vol. 28, no. 7, pp. 514–520, 1979.

[140] R. E. Lyons and W. Vanderkulk, “The use of triple-modular redundancy to im-
prove computer reliability,” IBM Journal of Research and Development, vol. 6,
no. 2, pp. 200–209, 1962. doi: 10.1147/rd.62.0200.

[141] D. Czajkowski, M. Pagey, P. Samudrala, M. Goksel, and M. Viehman, “Low
power, high-speed radiation hardened computer and flight experiment,” in 2005
IEEE Aerospace Conference, 2005, pp. 1–10. doi: 10 . 1109 / AERO . 2005 .
1559559.

[142] X. Xu and H. H. Huang, “On soft error reliability of virtualization infrastructure,”
IEEE Transactions on Computers, vol. 65, no. 12, pp. 3727–3739, 2016.

[143] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox, “Microreboot
— a technique for cheap recovery,” in Proceedings of the 6th Conference on
Symposium on Operating Systems Design & Implementation - Volume 6,
ser. OSDI’04, San Francisco, CA: USENIX Association, 2004, p. 3.

[144] K. Kourai and S. Chiba, “Fast software rejuvenation of virtual machine monitors,”
IEEE Transactions on Dependable and Secure Computing, vol. 8, no. 6, pp. 839–
851, 2011. doi: 10.1109/TDSC.2010.20.

137

https://doi.org/10.1109/ICCE-Berlin.2018.8576209
https://doi.org/10.1109/23.212327
https://doi.org/10.1147/rd.62.0200
https://doi.org/10.1109/AERO.2005.1559559
https://doi.org/10.1109/AERO.2005.1559559
https://doi.org/10.1109/TDSC.2010.20

Chapter 7. Conclusions and Future Work

[145] M. Le and Y. Tamir, “Rehype: Enabling vm survival across hypervisor failures,”
SIGPLAN Not., vol. 46, no. 7, pp. 63–74, Mar. 2011. doi: 10.1145/2007477.
1952692. [Online]. Available: https : / / doi . org / 10 . 1145 / 2007477 .
1952692.

[146] M. Le and Y. Tamir, “Resilient virtualized systems using rehype,” ArXiv, vol. abs/2101.09282,
2021.

[147] D. Zhou and Y. Tamir, “Fast hypervisor recovery without reboot,” in 2018 48th
Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), 2018, pp. 115–126. doi: 10.1109/DSN.2018.00024.

[148] C. Tan, Y. Xia, H. Chen, and B. Zang, “Tinychecker: Transparent protection of
vms against hypervisor failures with nested virtualization,” in IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks Workshops (DSN 2012),
IEEE, 2012, pp. 1–6.

[149] X. Xu, R. C. Chiang, and H. H. Huang, “Xentry: Hypervisor-level soft error de-
tection,” in 2014 43rd International Conference on Parallel Processing, 2014,
pp. 341–350. doi: 10.1109/ICPP.2014.43.

[150] X. Xu and H. H. Huang, “Dualvisor: Redundant hypervisor execution for achiev-
ing hardware error resilience in datacenters,” in 2015 15th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing, 2015, pp. 485–494.
doi: 10.1109/CCGrid.2015.30.

[151] F. Cerveira, R. Barbosa, and H. Madeira, “Mitigating virtualization failures through
migration to a co-located hypervisor,” IEEE Access, vol. 9, pp. 105 255–105 269,
2021.

[152] P. Sousa, N. F. Neves, P. Verissimo, and W. H. Sanders, “Proactive resilience revis-
ited: The delicate balance between resisting intrusions and remaining available,”
in 2006 25th IEEE Symposium on Reliable Distributed Systems (SRDS’06), 2006,
pp. 71–82. doi: 10.1109/SRDS.2006.37.

[153] J. Zhu, W. Dong, Z. Jiang, X. Shi, Z. Xiao, and X. Li, “Improving the performance
of hypervisor-based fault tolerance,” in 2010 IEEE International Symposium on
Parallel Distributed Processing (IPDPS), 2010, pp. 1–10. doi: 10.1109/IPDPS.
2010.5470357.

[154] H. P. Reiser and R. Kapitza, “Hypervisor-based efficient proactive recovery,” in
2007 26th IEEE International Symposium on Reliable Distributed Systems (SRDS
2007), 2007, pp. 83–92. doi: 10.1109/SRDS.2007.25.

[155] A. Oates, “7 - reliability of silicon integrated circuits,” in Reliability Characteri-
sation of Electrical and Electronic Systems, J. Swingler, Ed., Oxford: Woodhead
Publishing, 2015, pp. 115–141. doi: https://doi.org/10.1016/B978-1-
78242-221-1.00007-1.

138

https://doi.org/10.1145/2007477.1952692
https://doi.org/10.1145/2007477.1952692
https://doi.org/10.1145/2007477.1952692
https://doi.org/10.1145/2007477.1952692
https://doi.org/10.1109/DSN.2018.00024
https://doi.org/10.1109/ICPP.2014.43
https://doi.org/10.1109/CCGrid.2015.30
https://doi.org/10.1109/SRDS.2006.37
https://doi.org/10.1109/IPDPS.2010.5470357
https://doi.org/10.1109/IPDPS.2010.5470357
https://doi.org/10.1109/SRDS.2007.25
https://doi.org/https://doi.org/10.1016/B978-1-78242-221-1.00007-1
https://doi.org/https://doi.org/10.1016/B978-1-78242-221-1.00007-1

Chapter 7. Conclusions and Future Work

[156] D. Binder, E. C. Smith, and A. B. Holman, “Satellite anomalies from galactic
cosmic rays,” IEEE Transactions on Nuclear Science, vol. 22, no. 6, pp. 2675–
2680, 1975. doi: 10.1109/TNS.1975.4328188.

[157] C. S. Guenzer, E. A. Wolicki, and R. G. Allas, “Single event upset of dynamic
rams by neutrons and protons,” IEEE Transactions on Nuclear Science, vol. 26,
no. 6, pp. 5048–5052, 1979. doi: 10.1109/TNS.1979.4330270.

[158] Y. Yeh, “Triple-triple redundant 777 primary flight computer,” in 1996 IEEE
Aerospace Applications Conference. Proceedings, vol. 1, 1996, 293–307 vol.1.
doi: 10.1109/AERO.1996.495891.

[159] R. Berger et al., “The rad750/sup tm/-a radiation hardened powerpc/sup tm/ pro-
cessor for high performance spaceborne applications,” in 2001 IEEE Aerospace
Conference Proceedings (Cat. No.01TH8542), vol. 5, 2001, 2263–2272 vol.5. doi:
10.1109/AERO.2001.931184.

[160] A. Frigerio, B. Vermeulen, and K. Goossens, “Isolation of redundant and mixed-
critical automotive applications: Effects on the system architecture,” in 2021 IEEE
93rd Vehicular Technology Conference (VTC2021-Spring), 2021, pp. 1–6. doi:
10.1109/VTC2021-Spring51267.2021.9448672.

[161] T. C. Bressoud and F. B. Schneider, “Hypervisor-based fault tolerance,” in Pro-
ceedings of the fifteenth ACM symposium on Operating systems principles, 1995,
pp. 1–11.

[162] S. Esposito, S. Avramenko, and M. Violante, “On the consolidation of mixed crit-
icalities applications on multicore architectures,” in 2016 17th Latin-American
Test Symposium (LATS), 2016, pp. 57–62. doi: 10.1109/LATW.2016.7483340.

[163] H. P. Reiser, F. J. Hauck, R. Kapitza, and W. Schröder-Preikschat, “Hypervisor-
based redundant execution on a single physical host,” in Proc. of the 6th European
Dependable Computing Conf., Supplemental Volume-EDCC, Citeseer, vol. 6, 2006,
pp. 67–68.

[164] H. P. Reiser and R. Kapitza, “Vm-fit: Supporting intrusion tolerance with virtu-
alisation technology,” in Proceedings of the Workshop on Recent Advances on
Intrusion-Tolerant Systems, 2007.

[165] C. M. Jeffery and R. J. O. Figueiredo, “Towards byzantine fault tolerance in many-
core computing platforms,” in 13th Pacific Rim International Symposium on De-
pendable Computing (PRDC 2007), 2007, pp. 256–259. doi: 10.1109/PRDC.
2007.40.

[166] D. J. Scales, M. Nelson, and G. Venkitachalam, “The design of a practical sys-
tem for fault-tolerant virtual machines,” SIGOPS Oper. Syst. Rev., vol. 44, no. 4,
pp. 30–39, Dec. 2010. doi: 10.1145/1899928.1899932. [Online]. Available:
https://doi.org/10.1145/1899928.1899932.

139

https://doi.org/10.1109/TNS.1975.4328188
https://doi.org/10.1109/TNS.1979.4330270
https://doi.org/10.1109/AERO.1996.495891
https://doi.org/10.1109/AERO.2001.931184
https://doi.org/10.1109/VTC2021-Spring51267.2021.9448672
https://doi.org/10.1109/LATW.2016.7483340
https://doi.org/10.1109/PRDC.2007.40
https://doi.org/10.1109/PRDC.2007.40
https://doi.org/10.1145/1899928.1899932
https://doi.org/10.1145/1899928.1899932

Chapter 7. Conclusions and Future Work

[167] S. Malik and F. Huet, “Adaptive fault tolerance in real time cloud computing,” in
2011 IEEE World Congress on services, IEEE, 2011, pp. 280–287.

[168] P. Das and P. M. Khilar, “Vft: A virtualization and fault tolerance approach for
cloud computing,” in 2013 IEEE Conference on Information Communication Tech-
nologies, 2013, pp. 473–478. doi: 10.1109/CICT.2013.6558142.

[169] F. Machida, M. Kawato, and Y. Maeno, “Redundant virtual machine placement
for fault-tolerant consolidated server clusters,” in 2010 IEEE Network Operations
and Management Symposium - NOMS 2010, 2010, pp. 32–39. doi: 10.1109/
NOMS.2010.5488431.

[170] A. Zhou, S. Wang, C.-H. Hsu, M. H. Kim, and K.-s. Wong, “Virtual machine
placement with (m, n)-fault tolerance in cloud data center,” Cluster Computing,
vol. 22, no. 5, pp. 11 619–11 631, 2019.

[171] C. Gonzalez and B. Tang, “Ft-vmp: Fault-tolerant virtual machine placement in
cloud data centers,” in 2020 29th International Conference on Computer Commu-
nications and Networks (ICCCN), 2020, pp. 1–9. doi: 10.1109/ICCCN49398.
2020.9209676.

[172] F. Lenkszus, L. Emery, R. Soliday, H. Shang, O. Singh, and M. Borland, “Integra-
tion of orbit control with real-time feedback,” in Proceedings of the 2003 Particle
Accelerator Conference, IEEE, vol. 1, 2003, pp. 283–287.

[173] L. Szerdahelyi, S. Fugger, P. Espeillac, G. Monroig, T. Pareaud, and M. Casasco,
“The bepicolombo attitude and orbit control system,” in 9th International ESA
Conference on Guidance, Navigation and Control Systems, Jun. 2014.

[174] A. Karimi, F. Zarafshan, and A. b Jantan, “Pav: Parallel average voting algorithm
for fault-tolerant systems,” International Journal of Advanced Computer Science
and Applications, vol. 2, no. 1, 2011.

[175] G. Martin and H. Chang, “System-on-chip design,” in ASICON 2001. 2001 4th In-
ternational Conference on ASIC Proceedings (Cat. No. 01TH8549), IEEE, 2001,
pp. 12–17.

[176] W. Wolf, A. A. Jerraya, and G. Martin, “Multiprocessor system-on-chip (mpsoc)
technology,” IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol. 27, no. 10, pp. 1701–1713, 2008. doi: 10.1109/TCAD.
2008.923415.

[177] Microzed - development board based on the zynq-7000 soc, avnet.com/wps/
portal/us/products/avnet-boards/avnet-board-families/microzed/,
Accessed: 2022-05-15, 2022.

[178] T. Imken, T. Randolph, M. DiNicola, and A. Nicholas, “Modeling spacecraft safe
mode events,” in 2018 IEEE Aerospace Conference, IEEE, 2018, pp. 1–13.

[179] R. P. Weicker, “Dhrystone: A synthetic systems programming benchmark,” Com-
munications of the ACM, vol. 27, no. 10, pp. 1013–1030, 1984.

140

https://doi.org/10.1109/CICT.2013.6558142
https://doi.org/10.1109/NOMS.2010.5488431
https://doi.org/10.1109/NOMS.2010.5488431
https://doi.org/10.1109/ICCCN49398.2020.9209676
https://doi.org/10.1109/ICCCN49398.2020.9209676
https://doi.org/10.1109/TCAD.2008.923415
https://doi.org/10.1109/TCAD.2008.923415
avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/microzed/
avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/microzed/

Chapter 7. Conclusions and Future Work

[180] R. York, “Benchmarking in context: Dhrystone,” ARM, March, 2002.

[181] L. H. Crockett, R. Elliot, M. Enderwitz, and R. Stewart, The Zynq book: embedded
processing with the ARM Cortex-A9 on the Xilinx Zynq-7000 all programmable
SoC. Glasgow, Scotland: University of Strathclyde, 2014.

[182] J. B. Blake and R. Mandel, “On-orbit observations of single event upset in har-
ris hm-6508 1k rams,” IEEE Transactions on Nuclear Science, vol. 33, no. 6,
pp. 1616–1619, 1986. doi: 10.1109/TNS.1986.4334651.

[183] N. Kuznetsov, “The rate of single event upsets in electronic circuits onboard
spacecraft,” Cosmic Research, vol. 43, pp. 423–431, Nov. 2005. doi: 10.1007/
s10604-005-0066-9.

[184] A. Campbell, P. McDonald, and K. Ray, “Single event upset rates in space,” IEEE
Transactions on Nuclear Science, vol. 39, no. 6, pp. 1828–1835, 1992. doi: 10.
1109/23.211373.

[185] J. Schwank et al., “Effects of particle energy on proton-induced single-event latchup,”
IEEE Transactions on Nuclear Science, vol. 52, no. 6, pp. 2622–2629, 2005.

[186] R. Koga and W. A. Kolasinski, “Heavy ion induced snapback in cmos devices,”
IEEE Transactions on Nuclear Science, vol. 36, no. 6, pp. 2367–2374, 1989.

[187] J. L. Titus, “An updated perspective of single event gate rupture and single event
burnout in power mosfets,” IEEE Transactions on nuclear science, vol. 60, no. 3,
pp. 1912–1928, 2013.

[188] T. Lugo, S. Lozano, J. Fernández, and J. Carretero, “A survey of techniques for
reducing interference in real-time applications on multicore platforms,” IEEE Ac-
cess, vol. 10, pp. 21 853–21 882, 2022. doi: 10.1109/ACCESS.2022.3151891.

141

https://doi.org/10.1109/TNS.1986.4334651
https://doi.org/10.1007/s10604-005-0066-9
https://doi.org/10.1007/s10604-005-0066-9
https://doi.org/10.1109/23.211373
https://doi.org/10.1109/23.211373
https://doi.org/10.1109/ACCESS.2022.3151891

	Introduction
	Motivation
	Context
	Objectives
	Contributions
	Structure and Contents

	Fundamentals
	Virtualization
	Brief History of Virtualization
	Hypervisors
	Virtualization in Safety-Critical Embedded Systems
	Hypervisors for Safety-Critical Real-Time Systems
	Safety-Critical Real-Time Hypervisors Comparison

	Safety-Critical Embedded Systems Standards
	Aviation Software Standards
	Space Software Standards
	Automotive Software Standards

	Software-Based Fault Tolerance
	Hypervisor Fault Tolerance
	Single Event Upset
	Summary

	Problem Statement and Related Work
	Problem Statement
	Hypervisor-Based Fault Tolerance (HBFT)
	HBFT for Safety-Critical Embedded Systems
	HBFT for Cloud Servers and Cluster Computing

	Summary

	Proposed Solution
	Requirements
	Architecture Definition
	Voter
	Voter Operating Modes
	Redundant Voters

	Health Monitoring
	Hypervisor health check process
	Partitions health check process
	Partitions results check process

	Summary

	Prototype
	Prototype Architecture
	Hardware Layer
	System on Chip
	Bootloaders

	NIR HAWAII-2RG Benchmark
	Operational Modes
	Partitions Memory Allocation
	Nominal Mode
	Safe Mode

	Health Monitoring
	Hypervisor health check
	Partitions health check
	Partitions results check process

	Voter
	Software Voter
	FPGA Voter

	Summary

	Evaluation
	XtratuM Performance Measurement
	Dhrystone Benchmark
	Performance Results

	Fault Injection
	SEU Injection
	Double SEU Occurrences
	Test Conclusions

	Trade-Off between SW and FPGA Voters
	Software Voter
	FPGA (IP) Voter
	Trade-Off Conclusions

	Summary

	Conclusions and Future Work
	Conclusions
	Contributions
	Journals
	Conferences with Publication
	Conferences (Presentation-Only)
	Projects and Proposals

	Future work

	Bibliography

