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Abstract 

With robots becoming increasingly common in human occupied spaces, 

there has been a growing body of research into the problem of socially con-

scious robot navigation. A robot must be able to predict and anticipate the 

movements of people around it in order to navigate in a way that is socially 

acceptable, or it may face rejection and therefore failure. Often this motion 

prediction is achieved using neural networks or artificial intelligence to pre-

dict the trajectories or flow of people, requiring large amounts of expensive 

and time-consuming real-world data collection. Therefore, many recent 

studies have attempted to find a way to create simulated human trajectory 

data. A variety of methods have been used to achieve this, the main ones be-

ing path planning algorithms and pedestrian simulators, but no study has 

evaluated these methods against each other and real-world data. This thesis 

compares the ability of two path planning algorithms (A* and RRT*) and a 

pedestrian simulator (PTV Vissim) to make realistic maps of dynamics. It 

concludes that A*-based path planners are the best choice when balancing 

the ability to replicate realistic people flow with the ease of generating large 

amounts of data.  

Keywords  people flow, maps of dynamics, occupancy maps, motion pre-
diction, trajectory dataset 
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1 Introduction 
 

1.1 Motivation and objective 

 

The use of robots in human-occupied spaces has become increasingly com-
mon, with robots today employed in a variety of settings such as libraries, 
museums, restaurants, and shops [1], [2]. To be socially accepted in these 
shared spaces, robots must be able to predict and adapt to the movements 
and behaviour of the people around them, avoiding collisions or hindering 
people’s intended trajectories. 

Until recently, many autonomous robots have treated people simply as ob-
stacles, using strategies such as keeping a minimum distance and stop-and-
wait behaviour to guarantee safety when interacting with humans or travel-
ling through a crowd [2]. However, for people to feel comfortable in the pres-
ence of a moving robot, engineers must consider more than safety alone [3]: 
the robot must navigate in a socially conscious way by respecting personal 
space, not cutting through social groups, moving at an acceptable velocity 
and approaching from a visible direction so as not to “sneak up” on people 
[4]. 

To achieve this, the robot must therefore be able to predict the actions of the 
people in its environment so that it can anticipate and respond to them as it 
moves through their space, much as a human does instinctively. This prob-
lem of motion prediction has been the focus of much research, with a variety 
of methods employed ranging from simple physics-based simulations to ad-
vanced machine-learning models based on real human trajectory data [5]–
[7]. However, each of these has its disadvantages: for example, simple math-
ematical models fail to capture the complexities of human behaviour, while 
neural networks and machine-learning models require large amounts of data 
to train on. 

Some recent research has focused on the gathering of training data for these 
models. In 2013, Brscic et al. [8] released a large dataset of real human tra-
jectories tracked in the ATC shopping centre in Japan over the course of 96 
days (“the ATC dataset”). Similarly, Dondrup et al. [9] provided 6251 human 
tracks taken by a roving robot in the University of Birmingham library (“the 
KTH dataset”). Various studies [10]–[13] have since used these or similar da-
tasets to train a variety of different motion prediction models, however, most 
of these models are only applicable to the environment they were trained on, 
i.e., the place the tracking data was obtained. They cannot generalise to a new 
environment, predicting the movements of people in a previously unseen 
space.  
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Maps of dynamics (MoDs) have been employed as one solution to this prob-
lem. Based on occupancy grid maps, a MoD is a directional map shown as a 
grid overlaid on a floorplan, displaying the probability of a person moving in 
a certain direction from any given cell. Using MoDs, Verdoja et al [14] at-
tempted to predict people flow based on environmental geometry. They de-
veloped a neural network that takes images of a floorplan as input and out-
puts a MoD for that environment. The model was trained on one day of tra-
jectories from the ATC dataset [8] and evaluated in the KTH environment 
[9]. The results were encouraging, showing that people flow MoDs can be 
learned based on environmental geometry and predicted for unseen environ-
ments.  

To improve the generalisation abilities of these kinds of models, data from a 
variety of different environments is required. Real-world data is difficult, 
time-consuming, and expensive to attain, so existing datasets are often small, 
limited to one environment, and rarely contain the occupancy information 
needed to create MoDs. Synthetic datasets are generally larger and contain 
more environments, but are often private and therefore inaccessible (e.g., 
[15]), or their resemblance to real-world data is unexplored (e.g., [16]).  

Additionally, there are many ways to create synthetic trajectory data, such as 
path planning algorithms and pedestrian simulators, but these methods have 
never been tested against one another and a source of real-world data. There-
fore, there is a need to determine the best method of creating realistic simu-
lated human trajectory data.  

1.2 Research objective and methods 

 

This master’s thesis aims to develop a way of generating realistic synthetic 
human trajectory data, enabling the creation of data in a variety of novel en-
vironments. This will be evaluated by creating MoDs from each source of syn-
thetic data and evaluating its likeness to MoDs created from real-world data, 
something which has not previously been studied. The research questions are 
therefore: 

1. What methods are available for generating synthetic trajectory data? 

2. Which of these methods are most suitable for the creation of MoDs, 

considering efficiency and data fidelity? 

Three ways of generating synthetic data are tested: using the traditional path 
planners A* and RRT* to generate trajectories based on the optimal path 
through the environment, and using a commercially available pedestrian 
simulator (PTV Vissim [17]) to generate trajectories based on the social-force 
model. These are evaluated by plotting trajectories through the ATC environ-
ment and comparing the synthetic data’s MoDs to those generated using the 
existing training data [8]. 
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Once a method of generating this synthetic trajectory data is selected, an al-
gorithm is developed that generates a random floorplan of a new environ-
ment and plots trajectories through it. This algorithm is then used to produce 
a large dataset of novel environments and trajectories.  

As a final evaluation method, the ability of the synthetic MoDs to be used as 
training data for a motion prediction model is tested using the neural net-
work created by Verdoja et al. [14]. The network is trained on a mixture of 
the new synthetic data and the real-world ATC data, and its ability to gener-
alise to a new environment (KTH) is evaluated and compared to the original 
(ATC only) network.  

1.3 Thesis structure 

 

This thesis is structured as follows: Chapter 2 presents an introduction of 

the key concepts and overview of the relevant literature. Chapter 3 outlines 

the methodology used in this thesis. Chapter 4 explains the evaluation 

criteria for the generated trajectories and presents the results. Chapter 5 

provides a discussion of the results. Chapter 6 concludes the thesis, providing 

an overview of the contributions and suggesting opportunities for future 

work. 

1.4 Applications 

 

Once a method of generating synthetic human trajectory data has been 

developed that is proven to create similar maps of dynamics to real-world 

data, large synthetic datasets can be generated. This will benefit existing 

models, such as that developed by Verdoja et al. [14], and new models which 

are yet to be tested. For example, the 8-directional model may be updated to 

also consider which direction an agent has entered the cell from, allowing for 

more accurate predictions but resulting in 64 directional probabilities per 

cell. To allow for this level of complexity, a large amount of training data will 

be required. 

The ability to generalise motion prediction to new environments will have 

many applications to indoor robotic navigation for a variety of purposes. For 

example, socially conscious robots working in an indoor environment will be 

able to navigate more quickly and efficiently, and reduce the risk of collisions, 

making their operation safer [18].  

This can even extend to the scenario of robots working in a space 

environment. Already, NASA (National Aeronautics and Space 

Administration) have deployed small helper robots named “Astrobee” to the 

ISS (International Space Station) to assist human astronauts with routine 

chores such as recording experiments, moving cargo, or taking inventory 

[19]. With NASA planning to build a habitat on the moon as part of the 

Artemis mission [20] launching November 2024 [21], there will likely be a 
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need for robust indoor robot navigation systems in the near future. 

Technologies are required to be deployed in a suitable environment on Earth 

before they can be deployed in space, and therefore there is a pressing need 

to develop and implement these robot navigation strategies to allow for 

testing before they are required in harsher environments. 
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2 Background 

 

2.1 History 

 

2.1.1 Robotics and automation 
 

Since ancient times, humans have been inventing tools and machines to 
make their lives easier.  Modern methods of automation began with the arri-
val of the Industrial Revolution in 17th-18th Century England, a transition 
from cottage industry and hand production methods to industrialised, fac-
tory-based manufacturing using machines and machine tools [22].  

In the 1860s, a method for the mass-manufacture of steel was invented [23], 
and a “Second Industrial Revolution” began. This led to the development of 
the automotive industry, with early car manufacturing involving manual as-
sembly by human engineers. Assembly lines were introduced into this pro-
cess by the Ford Motor Company in 1913, cutting production time while re-
quiring less manpower [24]. An engineering manager at this company, D.S. 
Harder, coined the term “automation” in 1946, setting up the Automation 
Department at Ford that same year [11], [15]. 

The term “robot” was first used in 1920 by Czech playwright Karel Capek [16], 
[17], coming from the Czech word robota meaning “forced labour”. The term 
was then popularised by American science fiction writer Isaac Asimov in a 
collection of short stories published between 1938 and 1942 [29]. In 1961 ro-
bots made their way from science fiction to reality, with the first industrial 
robot, the Unimate, introduced by General Motors into their factory in New 
Jersey, USA [29], [30]. The Unimate was a hydraulically actuated manipula-
tor with only one job: extracting parts from a die-casting machine as part of 
the automobile production process. By 1973 there were 3000 robots in oper-
ation around the world [31]. 

2.1.2 Mobile robots 
 

The first autonomous mobile robots were created at the University of Bristol 
in 1948-49 [32], [33]. Popularly known as “tortoises” due to their shape, size 
and slow speed [32], these robots represented the start of the field of cyber-
netics, a predecessor to artificial intelligence [34]. After the tortoises, from 
1966-72, Shakey the Robot was developed in Stanford University, imple-
menting one of the first path planning algorithms to navigate through the 
corridors of the university while opening doors, turning off light switches and 
pushing objects around [35], [36]. Shakey was the first mobile robot to utilise 
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computer vision to allow it to see and make decisions about its environment 
[37].  

The next advances in mobile robotics came in the form of autonomous guided 
vehicles (AGVs). These robots move autonomously between locations, usu-
ally carrying or towing a payload, by following marked lines or induction 
loops on the floor [34]. They are still prevalent in many factories today, 
mainly utilising laser-guided systems to navigate [38]. However, they are not 
without their limitations: if the path is blocked by an obstacle, they have no 
way to navigate around it, and if there are many such vehicles in operation 
then traffic or queues along the paths can form. 

The first mobile robot designed to operate outside of a factory setting was the 
HelpMate. Introduced in 1992 by Krishnamurthy and Evans [39], the Help-
Mate was designed to be used in hospitals for fetch and carry tasks, reducing 
some of the workload of human nurses. It was inspired by the design of the 
AGVs but required fewer modifications to the environment. This robot fea-
tured the first implementation of socially compliant navigation: Krishna-
murthy and Evans described the robot as “exhibiting human like behaviour 
as it navigates down crowded hallways in the hospital” [39]. It achieved this 
mainly through its obstacle-avoidance module, where sensor information 
was collected to build a local, robot-centred map of the environment, which 
then allowed the robot to choose a path that would allow it to navigate around 
the obstacle. It interacted with humans around it using a system of flashing 
lights and pre-recorded voice messages. Crucially, it was received well by 
people in the hospital – the authors state that they had “observed that hospi-
tal staff, patients and visitors enjoy playing with the robot” [39]. 

Today, mobile robots are becoming increasingly commonplace in our every-
day lives. Robots are still used in their original roles in factories and indus-
trial settings, but more and more are becoming available for use in public and 
private spaces in roles such as service, cleaning, tour guides, security, trans-
portation, and many more [40]. For example, the cleaning robot market 
alone is projected to grow from 9.8 billion USD in 2022 to 25.9 billion USD 
in 2027, with 21% of this growth attributed to the increasing popularity of 
personal cleaning robots such as the Roomba (iRobot Corporation, USA) 
[41]. Crucial to the success of these robots is social acceptance – a robot 
deemed threatening, scary, or unpredictable will not be accepted into peo-
ple’s lives.  

2.2 The need for socially compliant robot navigation 

 

When navigating in crowded environments, humans follow implicit social 
rules to avoid collisions, for example keeping to the right side of a corridor, 
passing on the left, and maintaining an appropriate social distance from 
other pedestrians [42], [43]. A robot entering this environment must also be 
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able to follow these unwritten rules: it must be able to adapt its velocity based 
on the people surrounding it, choose trajectories to minimise risk of interfer-
ence or collisions, and not hinder people’s intended trajectories. If the robot 
is found to “get in the way”, it may be deemed “annoying” and face rejection.  

For example, the Marty robot developed by Badger Technologies and imple-
mented in Giant Food Stores in the USA in 2019 [44] faced a negative re-
sponse from humans trying to do their shopping around it. The robot was 
designed to scan the floors of the shop to detect and identify hazards such as 
spills, then alert customers and a human employee in an attempt to prevent 
accidents until it could be cleaned [45]. However, it was not received well by 
customers or employees, with quotes such as “I was initially terrified it would 
run over my foot or something” [46], and “it’s really not doing much of any-
thing besides getting in the way” [47] featured in major US news outlets. Its 
collision avoidance system – designed to cause the robot to stop when it de-
tected a person coming too close – led to people feeling that they were being 
stalked by the robot as it stop-started its way down the aisles [46]. This back-
lash led Walmart to decide not to move forward with their own grocery store 
robot in 2020, because “they found shoppers didn’t like the machines moving 
around while they were in the store” [48], [49]. 

This example shows the need for socially compliant navigation. A robot must 
be able to interact with people without causing annoyance or getting in the 
way, avoiding collisions without having to stop and start frequently like 
Marty. A socially compliant robot therefore must aim to be as unobtrusive to 
people in its environment as possible. This thesis explores one way of doing 
this: by being able to predict the flow of people in a space, a robot can ensure 
that it is “going with the flow” and not obstructing high-traffic areas.  

2.3 Socially conscious robots in space 

 

Robots have been used in space exploration almost since the beginning, both 

in orbit and on extraterrestrial bodies, for a variety of tasks including repairs, 

maintenance, surveying, collecting samples, and assisting human astronauts 

[50]. Robots have even been successfully deployed inside spacecraft: 

recently, NASA introduced the “Astrobee”, a system of three free-flying 

robots that can work autonomously or by remote control to assist astronauts 

aboard the ISS with a variety of tasks [19]. These replace the popular 

“SPHERES” project, a system of three free-flying satellites inside the ISS that 

have been assisting astronauts for the past decade, providing a platform to 

test new hardware and software [51].  

 

Long-term human habitation in space is expected to be the next stage of 

space exploration [52]–[54], requiring the construction of habitats and 

human-occupied spaces. To save valuable astronaut time, these habitats are 



 

19 

 

likely to be cleaned and maintained by robot assistants who will be sharing 

the same indoor space as humans. In this environment, socially conscious 

robot navigation is extremely important. The isolation and confinement of 

space travel can already negatively affect the mental health of astronauts 

[55], and the addition of robots navigating in an obtrusive or annoying way 

may exacerbate these issues. Unlike the example of Marty the grocery store 

robot (see Section 2.2), where shoppers annoyed by the robot could choose 

to shop elsewhere, astronauts and robots must co-exist for long periods of 

time with no reprieve.  

 

Additionally, new technologies frequently break down or require redesigning 

in response to real-world testing. In space, repair and redesign is extremely 

difficult, and so any robot operating in a space environment must be proven 

to work in a similar environment on Earth first. This is true for all space 

technologies: both NASA [56] and ESA (European Space Agency) [57] use 

Technology Readiness Levels (TRLs) to decide when a system or technology 

is ready to fly in space. Systems must progress through nine TRLs [58] to be 

deployed in space, with TRL 6 being “system/subsystem model or prototype 

demonstration in a relevant environment (ground or space)” [56]. Therefore, 

there is a need to develop socially conscious robotic navigation systems that 

are proven to work efficiently and reliably on Earth before similar systems 

can be deployed in space. 

2.4 Motion tracking 

 

To allow for socially compliant behaviour, a robot must be able to predict the 
motion of people in its space. While many mathematical models exist allow-
ing short-term prediction of motion (i.e., a few seconds), accurate long-term 
predictions require knowledge of real-world motion, and therefore human 
trajectory data must be gathered using motion tracking. One such method 
that is often used to gather larger datasets is static sensing, where cameras or 
laser range finders are placed within a space to observe and track individual 
people’s trajectories as they move through the environment.  

Additionally, while navigating, a robot must be able to track and react to peo-
ple around it in real-time. This can be achieved using dynamic sensing, where 
a robot uses its onboard sensors to actively track and learn from people, up-
dating its predictions as it encounters humans in motion around it. 

This section covers three of the most common motion tracking methods, in-
cluding those used in gathering parts of the training (ATC) and validation 
(KTH) datasets used by this thesis. 

2.4.1 Camera-based tracking 
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With the increasing number of surveillance cameras present in public spaces, 
camera-based tracking methods have the advantage of hardware often al-
ready being in place. They also allow easy detection and tracking of individ-
uals across different spaces where there is not necessarily full camera cover-
age, allowing long trajectories to be tracked. Many studies have developed 
this type of tracking process, mainly for surveillance purposes [59]–[61].  

However, camera-based tracking has many limitations: changes in lighting 
or viewing angle can make identification of individuals using feature detec-
tion algorithms difficult, and there are ethical concerns regarding this type of 
tracking. Additionally, if an existing camera system is not already in the 
space, it can be expensive to install, with hardware, cybersecurity, and instal-
lation costs in the order of  thousands of euros at a minimum [62]. This type 
of tracking also results in limited information regarding the environment it-
self: the geometry of the space can only be reconstructed from what the cam-
era sees, and no occupancy information is provided [16], which is essential 
for robot navigation. 

2.4.2 Static laser range finders 
 

The largest available set of real-world human trajectory data (the ATC da-
taset) was gathered by Brscic et al. [8] in the Asia-Pacific Trade Centre (ATC) 
in Osaka, Japan. The tracking was achieved using overhead 3D laser range 
finders distributed around the main concourse areas in the shopping centre. 
These gave estimations of the height, position, and body direction of people 
in the space, and the results from all sensors were combined to create a com-
plete picture of the environment. The sensors had to be calibrated manually 
using markers in predetermined locations around the shopping centre, and 
43 PCs were used to receive the sensor data and send it to another computer 
for central processing. The accuracy of this data was confirmed using footage 
from security cameras covering the space, and was compared to localised la-
ser range finding data taken by a roving robot inside the tracking area. The 
total dataset covers an area of 900m2 and was taken between October 24th, 
2012, and November 29th, 2013 (92 days).  

This same system of sensors in the ATC was used in two further studies to 
collect data on people’s interactions with a robot. A study by Kato et al. [63] 
used the overhead tracking system to decide whether people were intending 
to interact with the robot based on their trajectories. A study by Kidokoro et 
al. [64] used the system to test robot navigation strategies to prevent crowd-
ing around it, reducing congestion in smaller spaces. Other, smaller-scale 
studies have also successfully used similar methods of tracking [65], [66].  

Tracking using these types of static 3D range sensors overcomes some of the 
limitations of camera-based approaches. Data is automatically anonymous 
due to the nature of the sensors, and a person can be tracked based on non-
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identifying characteristics such as their height. The system is not affected by 
changing background obstacles, as the positions of obstacles will be recorded 
in the LIDAR data. This saves time compared to camera-based tracking, 
where obstacles having to be tagged manually by a human reviewer watching 
camera footage or detected using an algorithm. The system also handles a 
variety of ranges well (wide and narrow areas) without issues of focusing. 

However, these sensors are not without their limitations: Brscic et al. [8] 
found that their system performed well only on weekdays when people den-
sity in the ATC was low. On the weekends, they observed an increase in all 
measures of error. The system also produced a number of false positives as it 
could not distinguish between human and non-human objects, for example 
a person with a child vs. a person with a suitcase. This is not an issue experi-
enced by camera-based tracking systems, which can use feature identifica-
tion to accurately distinguish humans from objects. The laser-based system 
also found it difficult to detect children generally, as they often tend to walk 
close to their parents, making it difficult to distinguish between individuals. 

2.4.3 Dynamic tracking 
 

Dynamic tracking methods use a moving robot fitted with sensors to track 
people around a space. These sensors can include lasers [67]–[69], cameras 
[70]–[72], or a combination of both [9], [72], [73]. Many recent studies have 
used this combination approach. 

Using a robot outfitted with an RGB-D camera and a mounted laser scanner 
navigating through the University of Birmingham library for ten hours, Don-
drup et al. [9] collected 6521 human trajectories, which they published as an 
open source dataset (the KTH dataset). Tracking focused on the detection of 
upper bodies using the cameras and legs using the laser sensors, and was im-
plemented using a real-time Robot Operating System (ROS)-based tracking 
framework and processing pipeline developed by the authors. 

This approach suffers from susceptibility to sensor noise, but this is also true 
for static laser-based systems. Limited field of view is an additional issue, as 
only objects and people close to the robot can be tracked. This results in 
shorter trajectories being gathered due to people moving out of view of the 
robot, whereas static approaches can track people wherever in the environ-
ment sensors are present. This specific study also had issues detecting people 
who were sitting down, as the camera system was optimised for detecting 
upper bodies that were walking/standing, but this was overcome somewhat 
by combining data from both sensors in the tracker. 

While these limitations are not trivial, this approach also has numerous ad-
vantages compared to static systems: creating a picture of a human from two 
different sensors reduces overall error, and the setup is relatively cheap to 
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implement (the camera used was an Asus Xtion RGB-D camera, a commer-
cially available camera designed for gesture-based control of video games). 
There is no requirement to outfit the entire space with sensors, and pro-
cessing happens within the robot rather than requiring a dedicated room of 
computers. This type of tracking also works in new or unknown environ-
ments: the robot can be installed in the space within minutes and build a 
picture of it using the laser sensor as it navigates around. This makes it a 
more flexible approach compared to the relatively high setup costs of static 
methods. 

This approach can also be used for real-time motion learning and prediction: 
a robot can track people around it as it moves and adjust its behaviour ac-
cordingly. For example, people walk on different sides of a corridor and 
through different sides of doorways depending on the driving side of the 
country they are in [42]. A robot trained to navigate in a country with left-
hand driving laws could potentially find itself constantly moving against the 
flow of people in a right-hand driving country. However, using dynamic 
tracking, the robot could quickly learn and update its assumptions on the 
people flow and move in a more socially conscious manner. 

2.5 Path planning algorithms 

 

The simplest method for generating trajectories, whether for a robot to follow 
or to create synthetic trajectory data, is to use a path planning algorithm. 
These algorithms plan a continuous path from a given starting location to a 
goal location, usually taking the shortest possible (optimal) route while 
avoiding collisions with obstacles. This section will discuss some of the most 
common planners: Dijkstra’s algorithm, A* and RRT. 

2.5.1 Dijkstra’s algorithm 
 

Dijkstra's algorithm was first published in 1959 by the Dutch computer sci-
entist Edsger W. Dijkstra [74]. Originally designed to find the shortest route 
between two cities connected via a network of roads, it is used today in appli-
cations such as Google Maps [75]. It has many variants, including A* and A* 
re-planner.  

Dijkstra's algorithm is a greedy algorithm, which is defined by the Dictionary 
of Algorithms and Data Structures as “an algorithm that always takes the best 
immediate, or local, solution while finding an answer” [76]. To be imple-
mented, it requires a starting node, a goal node, intermediate nodes, and 
weighted paths between them. The weights of these paths can be determined 
using a cost function, for example based on travel time or Euclidean distance. 
Nodes are visited in order of Euclidean distance from the starting node [77]. 
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The basic version of the algorithm follows the following steps to find the 
shortest path between a starting node s and goal node g [78]: 

1. Assign each node n a distance value d(n) denoting the length of the 

shortest path from the start node s to n. Initially, set d(s) = 0 and d(n) 

= ∞ for all n ≠ s.  

2. For each unvisited node u, find the distance from u to s through each 

of its neighbouring visited nodes. If this distance is smaller than the 

current value of d(u), set d(u) to this new distance. Once all paths 

through visited neighbouring nodes have been computed, u is marked 

as visited.  

3. The algorithm stops when the goal node g is marked as visited, or the 

smallest distance d(n) from u to s is infinity (meaning there is no con-

nection between the start node and the remaining unvisited nodes).  

An example problem for Dijkstra’s algorithm is given in Figure 1. It shows a 
network of nodes connected by paths, where each path has a length attached 
to it. The start node A is marked in red, and the goal node G is marked in 
green.  

 

Figure 1: Network of nodes connected by weighted paths. 

 

Dijkstra’s algorithm takes the following steps to find the shortest path from 
A to G: 

• u = B. B to A through A = 4. 4 < ∞, therefore d(b) = 4. 

• u = C. C to A through B = 4 + d(b) = 8. C to A through A = 4. 4 < 8 < 

∞, therefore d(c) = 4. 

• u = D. D to A through C = 1 + d(c) = 5. 5 < ∞, therefore d(d) = 5. 

• u = E. E to A through B = 5 + d(b) = 9. E to A through D = 2 + d(d) = 

7. 7 < 9 < ∞, therefore d(e) = 7. 
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• u = F. F to A through C = 4 + d(c) = 8. F to A through E = 2 + d(e) = 9. 

8 < 9 < ∞, therefore d(f) = 8. 

• u = G. G to A through C = 5 + d(c) = 9. G to A through F = 3 + d(f) = 

11. 9 < 11 < ∞ therefore d(g) = 9. The goal node has now been visited 

so the algorithm terminates. 

2.5.2 A* 
 

First proposed in 1968 by Hart, Nilsson and Raphael [79], the first imple-
mentation of the A* planning algorithm was in Shakey the Robot around 1972 
[36] (see Section 2.1.2). A* is an extension of Dijkstra’s algorithm [74], add-
ing heuristics in the form of a cost equation, where the Euclidean distance 
from each node to the goal influences the cost of that node [80]. The algo-
rithm then selects a path that minimises the total cost of the path 𝐶𝑛 (shown 
in (1), adapted from [81] eq. (1)): 

𝐶𝑛 = 𝑐𝑜,𝑛 + 𝑚𝑖𝑛𝑗(𝑑𝑛,𝑝 + 𝑑𝑝,𝑔) (1) 

 

Where 𝑐𝑜,𝑛 is the estimated cost from the origin 𝑜 to current node 𝑛, 𝑑𝑛,𝑝 is 

the cost from node 𝑛 to the next node 𝑝, and 𝑑𝑝,𝑔 is the estimated distance 

from 𝑝 to the goal. An example of a path plotted by the MATLAB implemen-
tation of the A* planner can be seen in Figure 2. 

 

Figure 2: Example path calculated by the A* algorithm, implemented in 

MATLAB. 

 

A* is simple and computationally efficient, and its cost function can be easily 
modified to better suit different scenarios [75]. Its efficiency and optimality 
has led to A*-based algorithms being widely used for pathfinding in modern 
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computer games, for example in Age of Empires, Civilization V, and Counter-
Strike [82]. Other implementations of A* also exist, such as hybrid A*, dy-
namic A* (or D*), Theta*, and many more [81]. It is mainly used in static 
environments where an optimal solution is required [75].  

2.5.3 RRT 
 

While Dijkstra and A* are both graph-search algorithms (they search through 
all vertices/nodes in a graph), RRT (Rapidly-exploring Random Tree) is a 
sampling-based method. This type of method randomly chooses a point in 
the search space, determines if it is in a free space (unoccupied by an obsta-
cle), finds a nearby point on the existing path, and uses a simple planner to 
connect between the old and new points [83]. This produces a tree-like path. 
This type of algorithm has high randomness and will not automatically return 
an optimal solution [84], but is faster than A* in high-dimensional spaces 
(e.g., increasing degrees of freedom) as it does not need to search through all 
nodes in a graph [85]. 

RRT uses this sampling-based approach to build trajectories by creating a 
random tree across the space, eventually connecting the start and goal loca-
tions. It does this using the following steps [83]: 

1. Initialise a search tree T. 

2. While this tree is smaller than the maximum tree size, randomly sam-

ple a point p in the space (typically this point is biased towards the 

goal point). 

3. Find the nearest node n in the tree to the new point p and use a simple 

local planner to find a path between these points (usually a straight 

line).  

4. If this path is collision free, add the new path from n to p to the tree.  

5. Continue these steps until the goal point is sampled. 

Other variants of RRT also exist. In bidirectional RRT, trees are grown both 
forwards from the start and backwards from the goal points with the aim of 
connecting in the middle, speeding up computation. In RRT*, instead of con-
necting from p to its nearest node n, a test is performed on all nearby nodes 
and the shortest path between p and the tree is selected. RRT* therefore ap-
proaches an optimal solution as the number of nodes increases [83]. An ex-
ample of a path plotted by the MATLAB implementation of the RRT* planner 
can be seen in Figure 3. 
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Figure 3: Example path calculated by the RRT* algorithm, implemented in 

MATLAB. 

 

2.6 Simple forms of motion prediction 

 

Motion prediction is a complex topic, with studies using many different ap-
proaches to predict the likely future movements of people, ranging from sim-
ple physics-based approaches to advanced machine-learning techniques. 
This section covers some of the simpler methods, presented using the three-
phased classification system proposed by Nguyen and Jayawardena [5]: 
physical, statistical, and co-operative methods.  

2.6.1 Physical models 
 

Physical prediction models use the basic laws of physics to predict the move-
ment of objects in motion. For example, Brownian motion (the random 
movement of particles, usually in a liquid or a gas) has been used as an ap-
proximation of human motion in some studies [86]. This model falsely as-
sumes that people can move completely randomly in any direction at any 
time, but has the advantage of avoiding the need to estimate velocity or ac-
celeration; the only variable needed to simulate motion is position. 

Another physical approach is the kinematic model. This uses basic equations 
of motion to calculate an object’s future position given variables such as its 
initial time, location, velocity, and acceleration. Examples of studies utilising 
this approach include Payeur et al. [87], who used a cubic equation as a tra-
jectory model to allow the tracking of the acceleration variable, and Jeung et 
al. [88], who used a combination of simple motion equations and patterns of 
motion to predict an object’s future location.  
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Physical prediction methods are the simplest form of motion prediction, and 
therefore require the least computational power, providing real-time pro-
cessing advantages. However, they are not suitable for describing the motion 
of living objects: they make many assumptions regarding motion and the 
conditions in which it is occurring (for example, they fail to consider the pres-
ence of obstacles), and are only accurate for durations of around a second [5]. 

2.6.2 Statistical models 
 

Statistical models allow longer-term motion predictions through learning 
and prediction stages. Where physical models use simple mathematics to 
predict an object’s future position, statistical models use data of its past mo-
tions to calculate the probabilities of future possible states. As suggested by 
Vasquez and Fraichard [89], these models can be classed as belonging to one 
of two main groups: grid-based and cluster-based. 

Grid-based techniques are based on occupancy grids, a concept first sug-
gested in 1989 by A. Elfes [90], [91] following work on evidence grids at Car-
negie Mellon University in the 1980s [92]. An occupancy grid represents a 
(usually 2D) map or floorplan as a grid, with each cell containing a probabil-
istic estimate for the occupation of that cell. These can be as simple as binary 
estimations (occupied/unoccupied) or as complex as directional estimations 
(e.g., which direction a person leaving that cell is most likely to leave by). 
These prediction methods are usually done in steps as follows [5]: 

1. Define the grid with estimates of each cell’s occupancy state. 

2. Aggregate statistical data of the moving objects onto the grid, forming 

moving pattern data. 

3. Use algorithms or machine learning to extract movement rules from 

this pattern. 

4. Calculate the transition probabilities for each cell, predicting the tra-

jectory of an object in that cell. 

Figure 4 shows an example of an occupancy grid map.  
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Figure 4: Example occupancy grid map, where empty areas are 

represented as white space, and the symbols stand for varying probabilities 

of occupancy ([93], Fig 3). 

 

There are several considerations to be made when using these grid-based 
methods: 

1. Size of the grid: when discussing indoor navigation, the length of 

one human step is usually the main unit of reference. Step length de-

pends on a variety of factors such as age, height, and weight, but is 

generally taken to be around 79 cm for men and 66 cm for women 

[94]. Therefore most studies use a grid with cells less than 1 m in size 

[5].  

2. Learning algorithm: a suitable algorithm must be chosen to assess 

the statistical data and learn the transition rules/motion patterns.  

3. Prediction algorithm: a suitable algorithm must be chosen to take 

this learned transition data and estimate the transition probabilities 

between cells. The model used for this is very important and must be 

chosen to fit the individual study. Typically, Markovian or modified 

Markovian models are used [95], [96]. Sometimes, additional mecha-

nisms are included: Bayes’ Theorem has been used as a way to model 

the probability that a pedestrian will visit a sub-goal location along the 

way to their target destination [10]. The prediction algorithm should 

be able to make short- or long-term predictions depending on the 

problem (i.e., movement only to the next cell, or considering move-

ment through all cells along the entire trajectory). 

In cluster-based methods, sets of similar trajectories are clustered together. 
A representative trajectory is then computed for each cluster, and these are 
used for motion prediction. The steps for this method are as follows [5]: 
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1. Trajectory data is collected and stored. 

2. Trajectories are split into segments. 

3. An algorithm groups these trajectories into clusters. 

4. Representative trajectories are computed for each cluster, including 

the mean and standard deviations for the trajectories in the cluster. 

5. Given a new partially observed trajectory, it can be predicted by com-

paring it to the representative trajectories. 

Cluster-based methods work best to predict full trajectories from partially 
observed data, and therefore are best suited to real-time motion prediction 
of trajectories observed while navigating. Additionally, the grouping of tra-
jectories is not a trivial problem: trajectories differ in length, start and end 
points, direction, shape, etc, and therefore deciding on the defining factor for 
a cluster can be complicated.  

All statistical models come with limitations: they can only be used when data 
has been collected and analysed beforehand as predictions can only be made 
after the learning process. There is also a question of how much data is nec-
essary to achieve a good prediction. Additionally, simple implementations of 
these methods struggle to adapt to new environments, as the learning is 
based purely on the data provided to them. 

2.6.3 Co-operative models 
 

Both the statistical and physical models assume that objects move inde-
pendently of one another, with their motion only depending on past and cur-
rent states, goal location, and non-dynamic obstacles (such as the walls of the 
environment). Co-operative models differ from these in that they consider 
the awareness of people around the robot. For example, pedestrians may co-
operate to avoid obstacles by choosing routes that avoid collisions with both 
the obstacle and each other, groups of people may move together towards a 
certain direction, or people may hinder a robot’s intended trajectory due to 
curiosity (coming up to it and blocking its route). Physical and statistical 
models would fail to take these behaviours into account. Therefore, co-oper-
ative models are best suited to the following problems [5]: 

1. Collision avoidance in crowds, where environments are complex and 

traditional methods may not be able to predict any safe route, result-

ing in the robot not moving. 

2. Following or accompanying human guides. 

3. Motion prediction considering human intention. 

Various co-operative methods have been proposed. Berg et al. [97], [98] 
adopted a physical-based prediction method (Velocity Obstacle: a set of ve-
locities that when taken by the robot will result in collision with another ob-
ject moving at a constant velocity), which they adapted to consider the 
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reactions of moving objects (creating Optimal Reciprocal Collision 
Avoidance: the robot considers that other moving objects are following their 
own collision-avoidance reasoning and therefore a constant velocity 
assumption of the other party may be untrue). Guy et al. [13] developed this 
into a model named Reciprocal Collision Avoidance for Pedestrians by add-
ing response and observation time parameters, where the robot will consider 
human reaction times to impending collisions and that transferring to a new 
velocity to avoid collision takes a certain amount of time. 

These methods are also used in ensuring that a robot does not interfere with 
personal space. Weinrich et al. [99] proposed a method that adapts a robot’s 
behaviour to allow avoidance of a pedestrian based on observed and pre-
dicted motion. This is particularly important when trying to avoid interfering 
with people who do not wish to interact with the robot. Tracking of people 
was achieved using laser-range finders both on the robot and externally in 
the environment [100], followed by cluster-based motion prediction, a grid-
based method to store “belief distribution maps” (i.e., occupancy grids), and 
online lifelong learning to allow the robot to update its predictions based on 
observed behaviour. A cost function developed from the Dynamic Window 
Approach [101] was used to predict the collision-avoidance behaviour em-
ployed by the pedestrian. The resulting predictions allowed a robot to pass a 
person in a corridor without impeding them, even when passing in very close 
proximity.  

Co-operative approaches can result in better motion prediction as they con-
sider human behaviour and thinking, however, this is not a trivial task. Ex-
isting studies employing these methods have limited prediction accuracy, 
and there is scope for additional research in this area. Additionally, most 
studies are based on behaviour predictions for a healthy adult human. Chil-
dren, the elderly and disabled may react in different ways which are not cur-
rently modelled. Co-operative models also suffer from similar limitations to 
statistical models in that they require data collection and analysis prior to 
implementation, with all the disadvantages associated with this. 

2.6.4 Summary 
 

An overview of these methods can be seen in Table 1. Figure 5 presents a sim-
ple comparison of the performance of each of these prediction methods. 

Table 1: Classification of methods for human motion prediction (adapted 

from [5], Table 2.1). 

Prediction 
method 

Learning 
method 

Parameters Challenges 
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Physical Online Location, velocity, 
acceleration, orien-
tation, time 

Motion models, noisy 
sensor measurements 

Statistical Offline As above + statistics 
of motion patterns, 
motion rules 

Pattern-based tech-
niques, transformation 
possibility algorithm 

Co-opera-
tive 

Online & 
offline 

As above + aware-
ness of living objects 

Understanding the 
awareness of living ob-
jects 

 

 

Figure 5: Comparison of example predictions by each of the model 

categories ([5], Fig. 2.1). 

 

2.7 Advanced forms of motion prediction 

 

The previously mentioned motion prediction methods, while varied in their 
approaches, often only focus on the recent prior movements of pedestrians, 
and struggle to make long-term predictions [102]–[104]. More advanced 
prediction models can allow robots to pre-emptively make routing decisions 
based on the trajectories of the people around them, allowing them to appear 
to avoid collisions more intuitively. Additionally, using methods such as ma-
chine learning and artificial intelligence, robots can begin to predict the flow 
of people in a space, allowing them to move in a more socially compliant way 
by “going with the flow” or avoiding points of congestion.  

2.7.1 The social force model 
 

The social force model is an important component of state-of-the-art human 
motion prediction and simulation, and is often used as the basis for predic-
tion models [105] or as a comparison to new methods [12]. Introduced by 
Helbing and Molnar in 1998 [43], the model is based on the idea that human 
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motion is subject to “social forces”: that pedestrians tend to walk at a certain 
speed, keep a certain distance from walls and other people, and are attracted 
to certain locations. These “social forces” were first suggested by K. Lewin, a 
German-American psychologist, in 1951 [106]. 

The model takes into account 4 factors [43]:  

1. Efficiency of route: a pedestrian usually aims to take the shortest 

possible route to their destination. 

2. Social distance: a pedestrian’s motion is influenced by the presence 

of others around them, with this influence dependant on their desired 

velocity and the people density in the space. 

3. Attractive effects: pedestrians are attracted to other people and ob-

jects (e.g., friends, street artists, window displays). 

4. Random behaviour: represented as a “fluctuations” term in the 

equation to allow for random, unpredictable behaviour such as stop-

ping suddenly or changing route. 

Though this model was suggested over 20 years ago, it is still used as the basis 
for robot navigation algorithms by many studies today [43], [107]–[109]. The 
social force model is the basis of many pedestrian simulators [110], [111], pro-
grams used for a variety of purposes such as pedestrian flow analysis in build-
ing design, evacuation planning, or evaluation of public transport accessibil-
ity [112]. 

2.7.2 Maps of Dynamics (MoDs) 
 

A Map of Dynamics (MoD) is a type of grid-based technique, similar to an 
occupancy map, that provides a spatial model of dynamics as a feature of the 
environment [102]. In this thesis, they will be discussed in the context of en-
coding the dynamics of human motion, though they can also be used for other 
applications – for example, to model the flow of fluids such as air and water 
[113].  

There are three dynamics perception methods that can be used to build MoDs 
[102]: velocity measurements, trajectory measurements, and spatial config-
uration changes (differences between consecutive observations). These per-
ception methods lead to three main types of MoDs [14]: 

1. Trajectory maps: motion information from trajectory measure-

ments is stored as a mixture model. 

2. Directional maps: motion information from velocity measure-

ments is stored as a set of local mixture models. 

3. Configuration maps: motion information is not retained – instead 

spatial configuration change measurements are used to store the pat-

tern of changes caused by motion. 
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An example of a directional MoD can be seen in Figure 6. 

 

Figure 6: Example of a directional MoD created by Verdoja et al. ([14], 

Figure 1(b)). 

 

Using local tracking sensors and a MoD, a robot navigating through a new 
environment can both comply with the motion of people around it and antic-
ipate the dynamics of people in unseen areas, allowing it to move with the 
flow in the space rather than constantly trying to avoid collisions. This allows 
more socially compliant movement and allows the robot to travel through a 
space without impeding the people flow [102]. 

2.7.3 Neural networks  
 

A neural network is an advanced artificial intelligence method that allows a 
computer to learn from data and solve complex problems. A basic neural net-
work has three types of layers: input layers, where input nodes process the 
data; multiple hidden layers, where the data is analysed as it passes through 
them; and output layers, which give the final results of the data processing. 
Each layer consists of nodes, where each node is a processing unit performing 
calculations on input variables and outputting output variables [114], [115]. 
Neural networks allow deep learning: according to Amazon Web Services, 
this means they “can learn and model the relationships between input and 
output data that are nonlinear and complex” [116], giving them an advantage 
over other machine learning techniques. They are ideal for complicated 
learning problems such as predicting human motion. 

Doellinger et al. [15] used Convolutional Neural Networks (CNNs) to take a 
static map of an environment and predict occupancy distributions for that 
space, outputting occupancy maps. Simulated trajectory data was used to 
train and validate the model, and it was tested against ground truth data 
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recorded by a robot using laser scanners. The CNN performed notably better 
at predicting motion than blurred Gaussian static maps and a Voronoi ap-
proach, and especially outperformed these methods when predicting high oc-
cupancies in narrow passages. The resulting occupancy maps allowed the re-
searchers to find waiting positions for the robot that didn’t interfere with 
people when they blocked areas it needed to move into, and avoid areas 
where it was likely to encounter narrow corridors or areas of high occupancy. 

Doellinger et al. [6] then extended this work [15] to learn the dynamics of 
human motion. They again used a CNN which this time took crops of floor 
plans as an input and overlayed a grid, computing the probability distribu-
tions for the direction of motion in each cell based on the direction taken in 
the last time step. The transition probabilities calculated from this were then 
used as a prior motion model to improve multi-target tracking methods. 

Similarly, Verdoja et al. [14] trained a CNN on real-world human trajectory 
data (the ATC dataset [8]). Their aim was to produce a network that could 
predict human motion based on the geometry of the environment. Two days 
of data from the ATC dataset were used to construct MoDs containing an 8-
directional per-cell transition model, with one day used for training and the 
other for validation. The KTH dataset [9] was then used as an unseen envi-
ronment for evaluation. The model was assessed for how well it could predict 
trajectories within the same environment on a different day, how well it could 
predict trajectories in an unseen environment, and what effect the choice of 
grid resolution for the MoD had on the performance.  

Evaluated against the floor field model, their approach was found to perform 
better in an unseen environment (though highly impacted by grid resolu-
tion), but worse in the ATC environment on a different day. This was likely 
because there are large open spaces in the ATC where geometry alone was 
not enough for the CNN to make accurate predictions, whereas the floor field 
model makes local predictions on the specific information in that section of 
the environment. However, the model showed remarkable ability to general-
ise to a new environment, performing well in the KTH environment at a grid 
resolution of 0.4 m/cell.  

2.8 Simulating human trajectories 

 

Though powerful methods of motion prediction, neural networks require 
large amounts of training data, and this is not always readily available due to 
the difficulty in gathering real-world data. The datasets used in this thesis 
(ATC [8] and KTH [9]) consist of both trajectories and LIDAR scans of their 
respective environments, allowing occupancy maps to be created. However, 
each dataset is limited to trajectories and maps for one space. Datasets from 
a variety of environments were gathered by the University of Freiburg [117], 
containing both occupancy maps and trajectories, but the trajectory coverage 
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of the environments are limited and therefore unsuitable for the creation of 
MoDs.  

Additionally, many real-world datasets do not contain nor allow for the cre-
ation of occupancy maps. For example, Pellegrini et al. [118] and Lerner et al. 
[119] used cameras to track pedestrians in static street scenarios to create 
models for short-term motion predictions. The datasets therefore consist 
only of tracked videos, which provide enough data to produce accurate occu-
pancy maps. Similarly, data captured by Robicquet et al. [120] and Oh et al. 
[121] using drones and CCTV cameras respectively contain labelled tracked 
objects but no occupancy representations of their environments.  

Using existing synthetic datasets also presents problems: many are private 
and therefore unavailable (e.g., the dataset created by Doellinger et al. [15]), 
or their similarity to real trajectories is unexplored (e.g., Occ-Traj120 [16]). 

Therefore, there is a need for methods to be developed that enable the crea-
tion of synthetic trajectory data given an occupancy map. For the purposes of 
this thesis, these methods must be able to generate trajectories that result in 
MoDs similar to the real-life data, create enough trajectories to cover the map 
within a reasonable amount of time, and have the ability to generate trajec-
tories in unseen environments. This section will provide an overview of meth-
ods used in previous work to achieve this. 

2.8.1 Path planning algorithms 
 

Occ-Traj120 [16] is a dataset consisting of 400 occupancy maps, each con-
taining a few hundred associated trajectories, with a total of around 120,000 
trajectories in the dataset. These trajectories were simulated using an RRT* 
based planner, with its objective function modified to account for the 
smoothness of the trajectory instead of simply optimising for the shortest 
path length. Start and end locations were decided randomly. However, the 
paper presents no comparison of the data to real-world trajectories, and 
therefore their similarity to real human motion behaviour is unknown. 

Aiming to predict occupancy distributions of pedestrians, Doellinger et al. 
[15] used a pedestrian simulation based on the A* path planning algorithm 
to generate training and validation data for a neural network. The perfor-
mance of the model was evaluated by predicting occupancy distributions on 
new maps and comparing these to real-world data recorded by the authors 
using a static laser scanner. 

In a later study, Doellinger et al. [6] found that this A* method worked only 
to model static occupancy data, whereas dynamic data required the simula-
tion of suboptimal behaviour. They therefore used an extended version of the 
A* search, using a value iteration method rather than computing the shortest 
path, to generate their training data. 
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2.8.2 Neural networks 
 

Zhi et al. [7] introduced the Occupancy-Conditional Trajectory Network 
framework, a generative model combining kernel methods (algorithms used 
for pattern analysis) and neural networks to generalise observed motion pat-
terns from previous environments and allow individual trajectories to be gen-
erated as continuous functions. These trajectories could therefore be queried 
at arbitrary resolutions. Using training data from Occ-Traj120 [16], the 
trained network was able to generate trajectories in occupancy maps of new, 
unseen environments, allowing motion prediction in a novel environment. 
While this network presents a way to synthetically generate trajectories, the 
level of complexity of the trajectories is unnecessary for the purpose of this 
thesis (learning maps of dynamics). Additionally, these trajectories have not 
been compared to real-world data, and so there is no existing measure of 
their realism.  

Kulkarni et al. [122] analysed the performance of a variety of Recurrent Neu-
ral Architectures (RNNs), Generative Adversarial Networks (GANs) and non-
parametric copulas when generating synthetic trajectory data. A variety of 
evaluation metrics were used, including the statistical similarity between 
real-world and simulated data. The real-world data came from the Nokia mo-
bile dataset [123], consisting of trajectories obtained in Switzerland using 
GPS, WLAN, GSM and Bluetooth. They found that copulas (when used as a 
generative model) have an advantage over all other methods, while also being 
more computationally efficient than neural network-based methods. How-
ever, this study focused on a city environment with a network of roads, al-
lowing synthetic trajectories to follow pre-defined paths, meaning their suit-
ability for plotting trajectories in a less structured, indoor environment is un-
known. 

2.8.3 Pedestrian simulators 
 

Pedestrian simulation models can be divided into three main categories [111]: 
cellular automata, social force, and lattice gas theory. These models all pro-
vide microscopic simulation (the simulation of individual pedestrians and 
complex interactions between agents), which has been the subject of most 
pedestrian flow research [124].  

1. Cellular automata 

The environment is separated into cells, each containing a maximum of one 
person. All cells are the same size, usually based on the amount of space a 
person in a crowd takes up, which in most studies is said to be 0.4 x 0.4 m 
[111], [125]–[128]. A simple transition rule determines to which cell a pedes-
trian will next move to from their current cell. This is dependent on the oc-
cupancy status of the cells in their neighbourhood, i.e., the cells above, right, 
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left and below them [125]. At each time step, the simulation is updated and 
every pedestrian either moves to a new cell or stays where they are. There-
fore, all pedestrians have the same walking speed. 

These simulators are simple to understand and implement, but large simula-
tions consume a lot of memory as the number of cells increases [129]. Addi-
tionally, they fail to capture real human behaviour, as they falsely assume 
that every pedestrian is the same size and walks at the same speed.  

2. Social force 

In many pedestrian simulators, the social force model is combined with con-
cepts from Computational Fluid Dynamics [111] to simulate human motion. 
A pedestrian is influenced by attractive and repulsive forces that affect their 
trajectory and velocity, similar to forces in fluid molecules. The pedestrian is 
also attracted by their destination and their desired velocity, and repelled by 
people and obstacles (such as walls). Certain people and objects can provide 
attractive forces, such as friends of the pedestrian or shop window displays.  

Since its introduction, there has been much research on the social force 
model and some key parameters have been calibrated: for example, the re-
pulsive forces in indoor environments [130], [131], the desired speed range 
of pedestrians to simulate a variety of phenomena [132], and repulsive forces 
between multiple pedestrians and pedestrians and objects [133]. The social 
force model is the basis of many commercial pedestrian simulators, such as 
Vissim [17] and SimWalk [134]. 

3. Lattice gas theory 

In lattice gas theory, the environment is divided into a lattice of cells and pe-
destrian behaviour is influenced by a drift strength factor. This drift strength 
factor can be used to guide pedestrians towards a goal location [135]. This 
type of simulation is mainly used to model evacuation behaviour, as factors 
such as environmental temperature field  (e.g., causing pedestrians to move 
away from a fire) [136] or crowd density [137] can easily be incorporated. 
Some studies also incorporate other models such as game theory  (to deal 
with the interactions of multiple pedestrians trying to enter the same area) 
[124], or swarm intelligence (to better simulate crowd dynamics) [138].  

The lattice gas theory has also been used to augment the social force model: 
Saboia and Goldenstein [139] found that the social force model failed to 
properly simulate pedestrians when population density in a space was low, 
with individuals appearing to move randomly. Applying concepts from the 
lattice gas theory caused the simulator to produce “softer and more coherent 
trajectories” compared to just the social force model. 
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3 Methodology 

 

3.1 Introduction 

 

To be able to incorporate socially conscious behaviour into its navigation de-
cisions, a robot must be able to anticipate the motions of people around it. 
However, current methods of reliable, long-term human motion prediction 
require prior data from the space the robot is operating in, and therefore are 
unable to generalise to new environments. A neural network developed by 
Verdoja et al. [14] aims to address this problem by predicting the people flow 
in an environment from its geometry. This network was previously trained 
on maps of dynamics (MoDs) created from a subset of the ATC data [8], and 
showed encouraging results when generalising to the KTH environment, but 
it is hypothesised that its performance could be improved further with expo-
sure to more training data from a variety of environments. 

As real-world data is difficult to acquire, and many existing synthetic datasets 
are unavailable or unsuitable, a reliable method of generating synthetic hu-
man trajectory data is needed. This method must be able to generate trajec-
tories in any environment given its occupancy map, and produce a MoD sim-
ilar to one that would be created by real pedestrians moving in that environ-
ment. This thesis aims to implement and evaluate two different approaches 
to this – path planning algorithms, and a pedestrian simulator.  

The methodology used for this thesis can therefore be summarised by the 
following stages: 

1. Determine the most suitable methods for generating synthetic human 

trajectory data, balancing efficiency with data fidelity. 

2. Generate a large amount of synthetic human trajectory data using 

these methods in the ATC environment. 

3. Create MoDs from this data. 

4. Evaluate the synthetic ATC MoDs against the real-world ATC MoDs 

and determine which method produced the most realistic data. 

5. Train a neural network using the new synthetic data and determine its 

ability to be used as training data. 

3.2 Trajectories generated by path planning algorithms 

MATLAB was chosen as the program in which to implement the algorithms 
due to ease of setup and use. It offers various toolboxes and add-ons which 
provide a variety of path planning methods and take many different types of 
map as input - for example, occupancy maps, binary occupancy maps, and 
maps created from images. This allows trajectories to be plotted both in the 
ATC environment (using an image of the map) and randomly generated 
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synthetic environments (using simple matrices that provide a binary occu-
pancy map).  

3.2.1 Algorithm choice 
 

The requirements when choosing which path planning algorithms to use 
were as follows: 

1. Algorithms must be implementable in MATLAB. 

2. Algorithms must be computationally efficient, as they must be suitable 

for generating large amounts of synthetic data. 

3. One grid-based and one sampling-based algorithm should be chosen 

to compare the two searching methods. 

4. Algorithms must have customisable cost functions to allow for flexi-

bility of future work. 

5. Planned paths do not need to be optimal, but must be goal-oriented: 

pedestrians generally choose the shortest path to reach their destina-

tion [43], but also perform sub-optimal behaviour (as found by 

Doellinger et al. [6]). 

6. Algorithms must be suitable to plan a path for an omnidrive robot.  

The MATLAB Navigation Toolbox offers nine path planning algorithms 
[140], each based on one of A*, RRT or Frenet frame algorithms.  

The first algorithm selected was a grid-based algorithm. The options offered 
by MATLAB in this category are Frenet, graph-based A*, Hybrid A* and grid-
based A*. The Frenet frame algorithm was immediately ruled out as it is only 
useful in structured environments, such as along roads, where a rough path 
is already available [141], and is therefore listed by MATALB as only suitable 
for “Ackermann type vehicles for highway driving” [140]. Similarly, graph-
based A* was deemed unsuitable as it requires a graph such as a road network 
to plan paths [140], [142]. Hybrid A* is designed for vehicles with nonho-
lonomic constraints [143], [144] and therefore assumes that a vehicle has a 
minimum turning radius, an unnecessary constraint for this application as 
humans can turn on the spot. Therefore, the remaining candidate, grid-based 
A*, was chosen as the first algorithm. 

A* is goal-oriented and computationally efficient [75], making it ideal for 
generating large amounts of trajectories. The A* algorithm was implemented 
using the plannerAStarGrid object in MATLAB. The description of this object 
from the MATLAB documentation is given in the quote below. 

“The plannerAStarGrid object creates an A* path planner. The planner 
performs an A* search on an occupancy map and finds shortest obstacle-

free path between the specified start and goal grid locations as determined 
by heuristic cost.” [145] 
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The A* planner generates an optimal trajectory, which is often composed of 
straight lines, with diagonals a zigzag of vertical/horizontal movements. Alt-
hough these unnatural paths do not accurately replicate human movement, 
a map of dynamics represents the people flow in a space rather than focusing 
on individual trajectories. Therefore, in a large enough quantity, it was hy-
pothesised that A* generated trajectories may sufficiently approximate hu-
man motion for the purposes of this thesis. An example of A* generated tra-
jectories on the ATC map can be seen in Figure 7. 

 

Figure 7: A close-up look at trajectories generated by the A* algorithm on 

the ATC map. 

 

For the second algorithm, a sampling-based search was required. The op-
tions offered by MATLAB in this category are RRT, RRT*, Bidirectional RRT, 
and control-based RRT [140]. Control-based RRT returns sample control 
commands and durations for a robot to reach each state in the trajectory 
[146], adding a level of computation unnecessary for the generation of a hu-
man trajectory dataset. RRT does not aim to generate an optimal solution 
[85], and can sometimes take very convoluted routes to the goal, therefore 
failing to replicate the nature of human motion which tends to take straight, 
optimal paths, even when inefficient in terms of energy usage [147]. Bi-direc-
tional RRT is simply RRT that searches from both the start and goal simulta-
neously [148], making it unsuitable for the same reason. Therefore RRT*, 
which is an asymptotically-optimal version of RRT [149], is preferred in this 
case.  

RRT* explores the environment using rapidly exploring random trees, select-
ing the first collision-free path to the goal it comes across, and improving this 
path on subsequent iterations. While RRT* will generate an optimal path as 
the number of iterations approach infinity, here only a limited number of it-
erations will be performed, and therefore RRT* will likely result in longer 
routes to the goal than A*. However, it can generate more natural looking 
paths than A* due to its ability to generate curved trajectories. RRT* has also 
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previously been used to generate synthetic trajectory data, for example in the 
Occ-Traj120 dataset [16].  

The RRT* algorithm was implemented using the plannerRRTStar object in 

MATLAB. The description of this object from the MATLAB documentation is 
given in the quote below. 

“The plannerRRTStar object creates an asymptotically-optimal RRT plan-
ner, RRT*. The RRT* algorithm converges to an optimal solution in terms 

of the state space distance. Also, its runtime is a constant factor of the 
runtime of the RRT algorithm. RRT* is used to solve geometric planning 
problems. A geometric planning problem requires that any two random 

states drawn from the state space can be connected.” [149] 

An example of RRT* generated trajectories on the ATC map can be seen in 
Figure 8. 

 

Figure 8: A close-up look at trajectories generated by the RRT* algorithm 

on the ATC map. 

3.2.2 Map 
 

All path planning algorithms require a map to define the locations of obsta-
cles (such as walls) and free space that can be routed through. The map of the 
ATC used by the path planning algorithms was created using Paint.NET 
(v5.0.3, dotPDN LLC).  

First, the background image for tracing was made. This was achieved by lay-
ering a localisation map from the LIDAR data [8] over a floorplan of the ATC 
from a paper by Anvari and Wurdemann ([150], Fig 2). This floorplan was 
re-scaled and aligned with the LIDAR map, resulting in a traceable map 
showing both a well-defined floorplan and features present in the environ-
ment on the day the real data was gathered. The final image used for tracing 
can be seen in Figure 9.  
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Figure 9: LIDAR and floorplan of the ATC overlaid for tracing. 

 

The walls, pillars, stairs, and obstacles were then traced on a new layer to 
create the map. To ensure the path planners stayed within the walls of the 
ATC, a black mask was placed over the inaccessible areas. The final map can 
be seen in Figure 10.  

 

Figure 10: The map used by the path planning algorithms. 

 

This map was saved as a png image and imported into MATLAB. In MATLAB, 
for the implementations of the path planning algorithms using random 
start/goal locations (see Section 3.2.3), the image was downsized by a factor 
of 2 (halved) to reduce computation time using the built-in function im-
resize. The default interpolation method (bicubic [151]) was used for this. 

The function binaryOccupancyMap from the Robotics System Toolbox (ver-
sion 4.1, January 2023) was then used to convert the image to an occupancy 
map.  

3.2.3 Start/goal locations 
 

To plot a path, an algorithm needs to know where to start the trajectory and 
where to end it. Two approaches were taken to choosing the start and goal 
locations: specified, and random. The specified start/goal locations were 
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identified using the floorplan given in the paper by Anvari and Wurdemann 
([150], Fig. 2). The full floorplan can be seen in Figure 11, with the areas cir-
cled in yellow showing the entry/exit areas identified by the authors. 

 

Figure 11: ATC floorplan with marked sources and sinks ([150], Fig. 2). 

From this map, moving anticlockwise from the bottom right corner, the 

locations chosen were labelled in a table as “east/train exit”, “triangle stairs”, 

“stairs R”, “escalator R”, “stairs L”, “escalator L”, “ferries 1”, “ferries 2”, “ferry 

exit”, “restaurant”, and “main stairs”, and allocated a number from 1-9 

respectively. 

These sources were located on the map in Paint.NET by hovering the mouse 

over the marked areas and noting the pixel co-ordinates of the upper and 

lower boundaries of each location. For each location the equation of a line 

between the boundaries was then calculated (using 𝑦 = 𝑚𝑥 + 𝑐), and the 

boundary locations and line equation were saved in a table. This table was 

then imported into MATLAB. A sample of this table is given in Table 2. 

 

Table 2: The data for locations 1-3. 

 

Loca-
tion 
1: 

east/trai
n exit 

Loca-
tion 
2: 

trian-
gle 
stairs 

Location 
3: 

stairs 
R 

 x y x y x y 

start 2074 934 1300 416 1168 275 

end 2144 789 1324 443 1373 378 

m 
-

2.07143  1.125  
0.50243

9  

c 
5230.14

3  
-

1046.5  -311.849  
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When the path planning program went to choose a start and goal, it would 

generate a random number between 1 and 9, then look up the information 

for the corresponding location. Using the boundaries and the line equation, 

it would pick a random x value between the upper and lower boundaries and 

calculate the corresponding y. This would then be used as the start location, 

and the same process would be repeated for the goal.  

 

A random approach to choosing start/goal locations was also tested. For this 
method, the occupancy of the map was found by iterating through every cell 
of the binary occupancy map and noting the x and y location for each cell 
containing a “0” (unoccupied). The program would then choose a random 
unoccupied cell as the start and a random unoccupied cell as the goal.  

In both cases, if the planning algorithm reported no feasible path between 
the start and goal locations, a new start and goal location would be selected. 

3.2.4 Implementation 
 

The objects plannerAStarGrid and plannerRRTStar from the MATLAB Navi-
gation Toolbox (version 2.3, February 2023) were used to implement the 
path planning stage. Both implementations require an occupancy map and 
start/goal locations as input.  

The occupancy map was created using the png image of the ATC floorplan 
created earlier (Section 3.2.2). This map consists of a binary grid where cells 
containing an object (e.g., a wall) have the value “1” and empty cells have the 
value “0”. plannerAStarGrid uses this binary occupancy map object to per-
form the A* search. plannerRRTStar uses state space and state validator ob-

jects, where the state validator object is created using a validator occupancy 
map (in this case the binary occupancy map created for the A* planner). 

Settings for the planners were left as default where possible, except for the 
following: for the RRT* planner, the setting “ContinueAfterGoalReached” 
was set to false, “MaxIterations” was set to 2500, and “MaxConnectionDis-
tance” was set to 15. These settings were chosen through trial and error to 
minimise computation time while still generating natural looking paths.  

Neither the A* nor RRT* trajectories were smoothed after generation. Previ-
ous research, such as the Occ-Traj120 dataset [16], has used smoothed tra-
jectories, but the similarity of these trajectories to real data was not studied, 
and therefore the efficacy of smoothing for this purpose is not known. Addi-
tionally, generating smoothed trajectories using MATLAB (using function 
smoothedTrajectory, Automated Driving Toolbox version 3.6) was found to 
take a significantly longer amount of time than non-smoothed: for example, 
using the RRT* planner with random enter/exit locations, the time to gener-
ate one non-smoothed trajectory was 0.3 s, vs 11.7 s to plot a smoothed one. 
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While the original paper claims run times in the order of tens of milliseconds 
to produce smoothed trajectories, the increased time here is likely due to in-
efficiencies in MATLAB combined with hardware limitations, and likely non-
trivial to solve. Additionally, the aim of this thesis was to compare the default, 
unmodified versions of each method where possible.  

The cost functions for both algorithms were left as default. Although one of 
the goals in choosing algorithms was a customisable cost function, this was 
to allow more flexibility in future work. For example, Doellinger et al. [6] 
found that an unmodified A* search algorithm used to create synthetic tra-
jectory data did not provide enough examples of sub-optimal behaviour for 
their network to learn human behaviour. The modification of the cost func-
tion is left to future research as this thesis aims to evaluate the performance 
of the default A* algorithm. 

3.2.5 Output 
 

The trajectories generated by the path planners were outputted to a cell array 
t, where each cell contains a matrix of the x and y values of the trajectory. 
This cell array t was then fed into the custom-built function matToATC which 
generated the format required to build the MoD. The resulting output was a 
csv file consisting of six columns: time [s, unix format], person_id,  x [mm], 
y [mm], speed [mm/s], motion_angle [deg].  

The time variable was computed by first setting the variable c_time equal to 
the current unix timestamp. Next, the distance between the current point 
(𝑥1, 𝑦1) and the next point (𝑥2, 𝑦2) was calculated using the Euclidean dis-

tance formula, and the time it would take to walk this distance at a speed of 
1.3 m/s (an average walking speed for adults <39 years of age [152]) was 
found. This time was then added to the variable c_time. c_time was then up-
dated to equal time, with the effect of the unix timestamp progressing by one 

timestep. This therefore resulted in the formula shown in (2). 

𝑡𝑖𝑚𝑒 = 𝑐_𝑡𝑖𝑚𝑒 +
√(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2

1.3
 (2) 

 

The person ID corresponded simply to the number of each trajectory, i.e., 
each cell in t was a separate person ID. x and y were calculated by simply 

converting the x and y values in t from m to mm. Walking time was set to 1.3 
m/s, as used to calculate the time. Finally, the motion angle was calculated 
using the equation shown in (3). 

𝑚𝑜𝑡𝑖𝑜𝑛_𝑎𝑛𝑔𝑙𝑒 = 𝑡𝑎𝑛−1 (
𝑦2 − 𝑦1

𝑥2 − 𝑥1
) (3) 
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3.3 Trajectories generated by pedestrian simulator 

 

3.3.1 Choice of simulator 
 

A 2020 report by the University of Leeds [153] was used to compare different 
available pedestrian simulators and choose the most suitable one. The report 
reviews 33 different simulators, both commercial and open source, giving for 
each a short description, the URL link to download it, a screenshot of its UI, 
the language it is implemented in (e.g., Python), whether the simulation is 
2D or 3D, and the method it uses for simulation (e.g., the social force model). 
The author also tested each simulator and reported whether he was able to 
successfully install and run it, and on which operating system.  

From this report, it was determined that although open-source simulators 
are free to use and allow greater customisation, most do not appear to be 
actively maintained, and many failed to install/run when tested. There was 
also a lack of documentation for many of them. Therefore, it was decided that 
a commercially available simulator would be used for this thesis.  

The simulator chosen was PTV Vissim (PTV Vissim 2023, PTV Group). Vis-
sim is a commercially available traffic simulator that can simulate up to 
10,000 pedestrians at a time, and is widely used in both academia and indus-
try [154]. It was chosen mainly due to its ability to import CAD files (.dwg) as 
geometry, making it easy to accurately model and import the geometry of the 
ATC. The company offers both thesis and academic licences, and kindly pro-
vided a licence for the purpose of this thesis work. Vissim also comes with 
extensive documentation, with both video tutorials and a detailed manual 
available. It uses the Wiedemann traffic flow model [155] and Helbing and 
Molnar’s social force model [43] to simulate the movement of pedestrians 
[110].  

3.3.2 Map 
 

For continuity, the map for the pedestrian simulator was created from the 
same background image used to trace the path planning algorithm maps 
(seen in Figure 9). This image was imported into AutoCAD (AutoCAD 2024, 
Autodesk) as a background image and scaled using the x-axis scale marked 
on the floorplan (from the paper by Anvari and Wurdemann ([150], Fig. 2)).  

Vissim requires geometry to be imported as either an area or obstacle, so the 
internal area of the ATC was traced out on a layer named “Area”, with the 
walls and pillars traced on layers named “Walls” and “Pillars” respectively. 
The final drawing can be seen in Figure 12. This drawing was then saved as a 
dwg file and imported into Vissim. 
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Figure 12: Map of the ATC created in AutoCAD for use in Vissim (walkable 

area in green, walls/obstacles in orange, pillars in purple). 

 

3.3.3 Start/goal locations 
 

The start/goal locations for the pedestrian simulator were based on the en-
trance/exit locations shown in Figure 11. They were defined in Vissim by cre-
ating a new area at each location and placing a pedestrian input there. Then, 
a “static routing decision” was defined from that location to each of the other 
locations. In total, 12 areas were defined. The areas were not identical to the 
path planner implementations: for the path planners, the exit to the train 
stations and east part of the ATC the ferry ticket offices were each defined as 
one location, whereas for the pedestrian simulator they were defined as two 
each. The setup of areas, pedestrian inputs and routing decisions can be seen 
in Figure 13. 
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Figure 13: Map with walkable area (grey), obstacles (red), source areas 

(green), pedestrian inputs (dark blue) and pedestrian routing decisions 

(light blue/red) shown in Vissim. 

 

3.3.4 Implementation 
 

Each pedestrian input source was set to produce a volume of 500 pedestrians, 
and the simulation was run for 6000 seconds. It terminated around 3000 
seconds, and further runs would only produce 6019 trajectories before re-
peating exact routes, so the 6019 trajectories were accepted as enough to 
build a map of dynamics. Using the “Evaluation” tab in the software, the re-
sults were outputted to a csv file containing the needed parameters. These 
already matched the format outputted by the MATLAB matToATC function 

(see Section 3.2.5) and so required limited post-processing to change the 
units of the x and y co-ordinates to mm. 

3.4 Random room generator 

 

Based on a tutorial published by H. J. Petty on the website Medium [156], a 
random floorplan generator was created in MATLAB as a function named 
randomRoom. The algorithm uses the following steps to generate floorplans: 

1. A square occupancy map consisting of occupied cells (i.e., a square 

matrix with all cells containing value “1”) is created using the dimen-

sions specified by the variable dimensions. 

2. Random rooms are generated. The number of rooms to generate are 

specified by the variable numRooms. For each room, its height and width 

are determined by choosing a random value between variables min-

RoomSize and maxRoomSize. A random point on the map (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛) is 

chosen as the bottom left corner of the room. Using (4), the co-ordi-

nates of all four corners are found and stored in the variable rooms. 
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Each room is stored on a new row. These co-ordinates are then used 

to change the corresponding squares of the occupancy map from 1 to 

0, or “unoccupied”, creating a white rectangle on the map. 

𝑥𝑚𝑎𝑥 = 𝑥𝑚𝑖𝑛 + 𝑤𝑖𝑑𝑡ℎ 

𝑦𝑚𝑎𝑥 = 𝑦𝑚𝑖𝑛 + ℎ𝑒𝑖𝑔ℎ𝑡 
(4) 

 

3. After the rooms are generated, the variable rooms is sorted by its first 

point, the column containing (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛), creating a sorted list of the 

rooms from left to right as they appear on the map. For each room A, 

a random room B to its right is selected, and corridors are plotted be-

tween the two rooms, with the corridor width equal to 1/3 of the min-

imum room size. This is done by assigning each room pair a “type” 

from 1-6 based on their sizes and locations in relation to each other. 

The types of room pairs and how they are calculated is displayed in 

Table 3, along with visual examples of each pair connected by a corri-

dor. 

4. When all rooms and corridors have been plotted, the unoccupied 

squares on the map are found and stored in the variable pts to allow 

random start/goal choices by the path planner (see Section 3.2.3 for 

details on start/goal location choices).  
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Table 3: Types of room pairs with determining equations and an example 

image. 

Type 1 

𝐴𝑦𝑚𝑎𝑥 > 𝐵𝑦𝑚𝑖𝑛 

𝐴𝑦𝑚𝑎𝑥 < 𝐵𝑦𝑚𝑎𝑥 

𝐴𝑦𝑚𝑖𝑛 < 𝐵𝑦𝑚𝑎𝑥 

𝐴𝑦𝑚𝑖𝑛 > 𝐵𝑦𝑚𝑖𝑛 

 

 

Type 2 

𝐴𝑦𝑚𝑎𝑥 > 𝐵𝑦𝑚𝑖𝑛 

𝐴𝑦𝑚𝑎𝑥 < 𝐵𝑦𝑚𝑎𝑥 

𝐴𝑦𝑚𝑖𝑛 < 𝐵𝑦𝑚𝑖𝑛 

𝐴𝑦𝑚𝑖𝑛 < 𝐵𝑦𝑚𝑎𝑥 

 

 

Type 3 

𝐴𝑦𝑚𝑎𝑥 > 𝐵𝑦𝑚𝑖𝑛 

𝐴𝑦𝑚𝑎𝑥 > 𝐵𝑦𝑚𝑖𝑛 

𝐴𝑦𝑚𝑖𝑛 > 𝐵𝑦𝑚𝑖𝑛 

𝐴𝑦𝑚𝑖𝑛 < 𝐵𝑦𝑚𝑎𝑥 

 

 

Type 4 

𝐴𝑦𝑚𝑎𝑥 > 𝐵𝑦𝑚𝑖𝑛 

𝐴𝑦𝑚𝑎𝑥 > 𝐵𝑦𝑚𝑎𝑥 

𝐴𝑦𝑚𝑖𝑛 < 𝐵𝑦𝑚𝑖𝑛 

𝐴𝑦𝑚𝑖𝑛 < 𝐵𝑦𝑚𝑎𝑥 

 

 

Type 5 

𝐴𝑦𝑚𝑎𝑥 < 𝐵𝑦𝑚𝑖𝑛 

𝐴𝑦𝑚𝑎𝑥 < 𝐵𝑦𝑚𝑎𝑥 

𝐴𝑦𝑚𝑖𝑛 < 𝐵𝑦𝑚𝑖𝑛 

𝐴𝑦𝑚𝑖𝑛 < 𝐵𝑦𝑚𝑎𝑥 

 

 

Type 6 

𝐴𝑦𝑚𝑎𝑥 > 𝐵𝑦𝑚𝑖𝑛 

𝐴𝑦𝑚𝑎𝑥 > 𝐵𝑦𝑚𝑎𝑥 

𝐴𝑦𝑚𝑖𝑛 > 𝐵𝑦𝑚𝑖𝑛 

𝐴𝑦𝑚𝑖𝑛 > 𝐵𝑦𝑚𝑎𝑥 

 

 

 

An example of a random floorplan generated using this algorithm can be seen 
in Figure 14. 
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Figure 14: Example floorplan generated by the randomRoom algorithm. 

 

3.5 Creating maps of dynamics 

 

The code used to create the maps of dynamics is part of the directional flow 
project created by Verdoja et al. [14]. The code takes as input a csv file with 
headings time [s, unix format], person_id,  x [mm], y [mm], speed [mm/s], 
motion_angle [deg], along with the origin and resolution of the data. It also 
requires an occupancy map on which to display the results. 

To create a map of dynamics, the following steps are taken: 

1. The environment M is divided into cells 𝑐 ∈ 𝑀.  

2. For each cell c, an occupancy probability 𝑠(𝑐) ∈ [0,1] is defined, de-

scribing the probability that cell c is occupied. s is referred to as the 

static occupancy map of the environment. 

3. The static occupancy map s(c) for each cell is updated using (5), the 

transition model. For each of 8 directions 𝑖 ∈
(𝑁, 𝑁𝐸, 𝐸, 𝑆𝐸, 𝑆, 𝑆𝑊, 𝑊, 𝑁𝑊), it is determined what proportion of the 

trajectories in that cell are moving in that direction, or 𝑃(𝛿|𝑑(𝑐𝑖)). If 

no trajectories are present in that cell, the probability 𝑃(𝛿|𝑑(𝑐𝑖)) for 

each direction is set to the uniform model (0.125, or 1/8). 

𝑃(𝛿|𝑑(𝑐)) = ∑ 𝑑(𝑐𝑖)1𝑖(𝛿)

𝑘

𝑖=1

 (5) 
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Where 𝑑(𝑐) = (𝑑(𝑐1), … 𝑑(𝑐𝑘)| ∑ 𝑑(𝑐𝑖) = 1𝑘
𝑖=1 ), 𝑑(𝑐𝑖) is the probability of mov-

ing in direction 𝑖 from cell 𝑐, and the indicator function 1𝑖(𝛿) = 1 if 
2(𝑖−1)

𝑘
𝜋 ≤

𝛿 <
2𝑖

𝑘
𝜋, and 1𝑖(𝛿) = 0 otherwise [14]. 

4. The completed model 𝐝 is then referred to as the map of dynamics for 

the environment. 

Figure 15 shows 10 example trajectories from the real-life dataset, displayed 
on the occupancy grid map of the ATC environment. Each cell that a trajec-
tory passes through is marked with a dot.  

 

Figure 15: 10 example trajectories from the real-life dataset displayed on 

the occupancy map of the ATC environment, with zoomed-in section below. 
 

In total, five MoDs were created for the synthetic data sources: the pedestrian 
simulator, A* with random start/goal, A* with specified start/goal, RRT* 
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with random start/goal, and RRT* with specified start/goal. Two MoDs were 
created for each of the two days of ATC data used by Verdoja et al. [14]: 
Wednesday November 14, 2021, and Saturday November 18, 2012 (referred 
to henceforth as ATC Day 1 and ATC Day 2 respectively).  

3.6 Neural network 

 

The neural network created by Verdoja et al. [14] is a CNN with FC-DenseNet 
architecture [157]. The structure of this network is show in Figure 16. 

 

Figure 16: Structure of the neural network used to learn transition 

probabilities from MoDs ([14], Fig. 2). 
 

The network takes a 64 x 64 window of an MoD as input, and outputs 𝑑𝑐𝑟, the 
k-dimensional transition probability distribution, where cr is the centre pixel 
of the 64 x 64 input window. In the original paper and this thesis, k = 8 is 
used to model the probability of moving from the current cell in one of eight 
directions (N, NE, E, SE, S, SW, W, NW). Please refer to [14] for the exact 
structure of the network and [157] for the composition of the dense blocks. 

To train the neural network, first the MoDs created from the two datasets 
(ATC Day 1 and the random environments) are loaded. The ATC Day 2 data 
is used for validation. The window size and scale to be used by the network 
are specified (e.g., window_size = 64 and scale = 16 for a 64 x 64 window at 
0.8 m/cell). The data is then augmented, with input-output pairs randomly 

flipped vertically or horizontally followed by a random rotation of 0, 
1

2
𝜋, 𝜋, or 

3

2
𝜋 rad, each with equal probability.  

Next, the two datasets are concatenated using the pytorch function Concat-
Dataset. Adam is used as optimiser, with a fixed learning rate of 0.001. The 

network is trained in a supervised fashion, with mean squared error used as 
loss between predicted transition probabilities and the ground truth.  

The trained network can be used to predict a MoD in an unseen environment, 
in this case the KTH environment [9]. This network-predicted MoD can then 
be compared to the MoD created from the actual trajectory data in this envi-
ronment to evaluate its ability to generalise to new environments.  
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4 Results 

 

In this section, the ability of synthetic trajectory-generation methods to 

create realistic human trajectory data is evaluated. Maps of dynamics (MoDs) 

created using trajectories generated by five synthetic methods (A* and RRT* 

with specified start/goal and random start/goal, and a pedestrian simulator 

with specified start/goal) in the ATC environment are compared to MoDs 

generated from two days of real data from that environment.  

 

The ability of these synthetic methods to create realistic human trajectory 

data has not been studied before, and these methods have not been compared 

against each other to find which is most suitable for this purpose. Many 

previous studies involving the creation of synthetic human trajectory data 

have simply chosen a method with limited explanation as to why. Therefore, 

this section presents new evidence as to the ability of each of these methods 

to create MoDs that replicate real-world people flow. 

 

4.1 Evaluation of MoDs 

 

Two evaluation methods were used to compare the synthetically generated 

MoDs to those created from the ATC data. First, the Euclidean distance 

between the probabilities in each cell of the grid was found, to evaluate how 

different each cell in a synthetic map was to a real map. Next, the likelihood 

of the synthetic MoD predicting a trajectory from the real-world dataset was 

found. This was the evaluation metric used in the original paper.  

 

However, both of these methods suffer from limitations. They compare the 

maps on a cell-by-cell basis, rather than evaluating the map as a whole. 

Further, they can suffer from issues relating to the directional probability 

distributions: if a certain cell is strongly predicting that a person will travel 

in one particular direction, evaluation based on a trajectory going in a similar 

direction will produce the same result as one going in completely the 

opposite, making it difficult to evaluate to what extent the predictions of the 

map differ from the real data. 

 

To thoroughly evaluate the performance of the maps as a whole, a new 

evaluation method would need to be developed. However, as the 

development of this method is outside the scope of this thesis, this section 

will present results from the two existing methods. 

 

4.1.1 Euclidean distance of probabilities 
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The first evaluation method used was a simple comparison of the similarity 
of the maps of dynamics created by the synthetic and real-world data. The 
following steps were taken to calculate this: 

1. For the real and synthetic data MoDs, d1 and d2 respectively, the com-

mon cells in each map were found, as not every cell in one grid map 

was present in another (for example, the trajectories from the ATC da-

taset extend to areas further North on the map than the synthetic da-

tasets).  

2. For each common cell key, the 8 probabilities from d1 and d2 were 

stored in variables p1 and p2 respectively. 

3. The Euclidean distance between arrays p1 and p2 were found. 

4. The Euclidean distance between p1 and the probability of each direc-

tion being randomly chosen (0.125 or 1/8) was found. 

5. After every cell had been visited, the mean and median Euclidean dis-

tances between p1 and p2 were calculated. The mean distance between 

the synthetic map and random chance was also calculated and dis-

played.  

The Python code that performed this operation is shown below. 

def compare(d1,d2): 
    # find which keys are present in both models 
    common_keys = []; 
 
    for key in d1.cells.keys(): 
        if key in d2.cells.keys(): 
            common_keys.append(key) 
 
    print("No. of common keys: " + str(len(common_keys))) 
 
    # compare each common cell, finding the euclidean  
    # distance between each set of 8 probabilities 
    eucdist = [] 
    dist_to_rand = [] 
 
    for key in common_keys: 
        for k1,v1 in d1.cells[key].bins.items(): 
            for k2,v2 in d2.cells[key].bins.items(): 
                p1 = v1["probability"] 
                p2 = v2["probability"] 
                eucdist.append(np.linalg.norm(p1-p2)) 
                prand = 1/8 
                dist_to_rand.append(np.linalg.norm(p2-prand)) 
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    print("Mean distance: " + str(stats.mean(eucdist))) 
    print("Median distance: " + str(stats.median(eucdist))) 
    print("Average distance to random chance: " + 
str(stats.mean(dist_to_rand))) 
 

Each of the five synthetic data MoDs were thus compared with each of the 
two ATC data MoDs. The similarity of the five synthetic data MoDs to the 
uniform model (all eight directions having equal probabilities) was also de-
termined. The results of this are presented in Figure 17, Figure 18, and Figure 

19. 

 

Figure 17: Mean Euclidean distance between probabilities. 

 

 

Figure 18: Median Euclidean distance between probabilities. 

 



 

57 

 

 

Figure 19: Mean Euclidean distance to random chance. 
 

Looking only at the results comparing the synthetic data to the ATC data (Fig-

ure 17 and Figure 18), it appears that the two RRT* methods produce the clos-
est MoDs to those produced by the real data. Additionally, the pedestrian 
simulator appears to perform the worst by this measure, which goes against 
intuition as it was expected to produce the closest trajectories to the real-
world data. However, when compared to the uniform model in Figure 19, we 
can see that the Euclidean distances for RRT* MoDs are very low, meaning 
they are producing MoDs where each cell contains probabilities almost equal 
to choosing any random direction.  

To further investigate this, the MoDs for A* random and RRT* random were 
plotted in MATLAB (Figure 20). To produce these figures, the 8 directional 
probabilities for each cell were plotted as arrows, with each arrow scaled de-
pending on its probability.  
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Figure 20: Directional probabilities for A* (left, blue) and RRT* (right, red) 

with random start/goal method. 
 

From Figure 20 it can be noted that the A* planner produces stronger direc-
tional probabilities, with clear lines visible showing the flow of trajectories, 
while RRT* appears to have almost equal probabilities in each direction. This 
matches the findings seen in Figure 19: the directional probabilities on the 
MoD produced using RRT* generated data are very similar to the uniform 
model. 

It was then hypothesized that the reason RRT* performed best in Figure 17 
was because of this strong directionality seen in the A* data. A simple exam-
ple can be used to illustrate this: taking a random cell c, we shall say that in 
the ATC data for this cell the probability of travelling N is 0.5 and the proba-
bilities for each of the other directions is 0.0625. In the A* data, we shall say 
that the probability of travelling NE is 0.5 and the other probabilities are 
0.0625. The mean Euclidean distance between the probabilities in the ATC 
and A* cells is therefore 0.109375. If we then take the RRT* data for that cell 
where every probability is 0.125 (uniform model), we find that the mean dis-
tance between the RRT* and the ATC is 0.101562. Therefore, the RRT* data 
appears to have generated values closer to the ATC data than A*, even though 
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the ATC and A* predicted the trajectory would travel in similar directions (N 
vs NE respectively). 

In short, this method of evaluation only indicates whether the trajectories 
generated by each method are going in exactly the same direction as the ATC 
data. It does not differentiate between cases where trajectories are going in 
similar directions (e.g., N and NE) versus completely different directions 
(e.g., N and E).  

4.1.2 Likelihood of predicting a trajectory from the real-world dataset 
 

One of the evaluation metrics used by Verdoja et al. [14] is the likelihood for 
trajectories in the original ATC dataset to be predicted by a MoD. Each tra-
jectory is composed of a sequence of points given as xy-coordinates and the 

angle between them 𝛿 ∈ [0,2𝜋). Therefore, given a transition model 𝑑 from 
the MoD, the likelihood of a specific trajectory t being generated can be com-
puted using (6). 

𝐿(𝑡|𝑑) =
1

𝑛
∑ 𝑃(𝛿𝑖|𝑑𝑐𝑖)

𝑛

𝑖=1

 (6) 

Where 𝑑𝑐𝑖 is the transition model for the cell 𝑐𝑖 with co-ordinates (𝑥𝑖, 𝑦𝑖), and 

𝑃(𝛿|𝑑(𝑐)) is computed using (5). The results of this metric for each of the five 

synthetic data sources, the uniform model (listed as “random” on the x-axis), 
and the ground truth (ATC Day 1) are presented in Figure 21. 
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Figure 21: Likelihood of the uniform model (“random”), the five synthetic 

data sources and the ground truth predicting a trajectory from the ATC Day 

1 dataset. 
 

From this, it is clear that the pedestrian simulator produces trajectories most 
similar to the ground truth, followed by the two A* methods, with RRT* 
methods predicting with a likelihood close to the uniform model. 

However, this method of evaluation likely suffers from similar limitations as 
the previously used Euclidean distance method. While this result seems more 
in line with expectations, it must be noted that the likelihood prediction also 
uses a discrete categorical distribution, evaluating only the likelihood that 
each individual cell would predict the trajectories going through it, rather 
than the map’s similarity to a real-data MoD as a whole.  

4.2 Generation of synthetic training data 

 

4.2.1 Choice of data creation method 
 

Based on the results seen in Figure 21, it was decided that A* would be the 
best method for creation of the synthetic data. While the pedestrian simula-
tor performed best in the evaluation, it is not suitable for generating large 
amounts of random data. Environments must be created in AutoCAD, im-
ported into Vissim, and start/goal locations defined manually. Routes be-
tween locations must also be loosely defined by connecting each area. While 
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the simulation itself is very quick to run, the pre-simulation steps require a 
large amount of work to be completed manually, whereas the path planning 
algorithms can be left unattended until completion. Both AutoCAD and Vis-
sim have scripting capabilities, but these are not trivial to set up, and still 
require manual work importing the maps from one program to another.  

The performance of both A* methods (specified start/goal and random 
start/goal) were almost identical, and therefore the random start/goal 
method was chosen due to its ease of implementation. It also allows for im-
plementation in new environments where no semantic information (e.g., the 
locations of exits/entrances) is known. This makes it ideal for use with the 
randomRoom function, which creates random occupancy maps with no seman-

tic data attached.  

4.2.2 Creation of the data 
 

Once the best method of generating synthetic trajectory data had been de-
cided, a dataset of synthetic human trajectory data was created. The program 
generateRandomEnvsTrajectories was written in MATLAB to generate a ran-
dom floorplan using the randomRoom algorithm (see Section 3.4) and plot n 
random trajectories in this environment. The parameters used to generate 
the rooms can be seen in Table 4. 

Table 4: Parameters used to generate the synthetic training data. 

Variable Description Value 

dimensions Dimensions (length/width) of the map in pixels 
(1 metre/pixel) 

50 

numRooms Number of rooms to generate on the map 10 

maxRoomSize Maximum room size 10 

minRoomSize Minimum room size 6 

n Number of trajectories to plot in each environ-
ment 

750 

nenv Number of environments to generate 100 

 

This data was then converted to the correct format using the matToATC algo-

rithm (see Section 3.2.5). To simplify the MoD building, the 100 random en-
vironments were then concatenated into one file. Each individual occupancy 
map was added to one large map, with a 10-pixel buffer of black cells added 
between each map to ensure they did not join together. The resulting map 
can be seen in Figure 22. 
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Figure 22: The 100 random environments concatenated into one map. 
 

The data was also concatenated, with only the person_id variable changed 
from the original data, to ensure that each map had its own unique set of 
pedestrians. (e.g., if map 1 contains pedestrians 1 - 750, map 2 contains pe-
destrians 751 – 1501). This data was then used to create a map of dynamics, 
seen in Figure 23. 

 

Figure 23: Map of Dynamics produced using the synthetic data. 
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Here, a problem was identified: each individual environment has a diagonal 
line through it of unknown origin. This was initially thought to be an issue 
with the concatenation of data in MATLAB, but was later determined to be 
an unknown bug in the code that creates the MoDs, as creation of an MoD 
for one environment alone also produces this line. Additionally, the line is 
not present in the raw trajectory data. The effect this line would have on the 
output when used as training data for the neural network was unknown, so it 
was decided to continue after some attempts at debugging. 

4.3 Neural network 

 

Next, the ability of the new synthetic trajectory dataset to be used to train a 

neural network was investigated. The network created by Verdoja et al. was 

presented with a mixture of the synthetic and real (ATC) MoDs, which it then 

used to learn people flow from the geometry of the environments. Its ability 

to generalise to a new environment (KTH) was then investigated.  

 

4.3.1 Training the network 
 

As the randomly generated maps were created using a MATLAB occupancy 
matrix, the images were only 50 x 50 pixels in size, for a resolution of 1 
m/pixel. The synthetic data was therefore upscaled by a factor of 20 to match 
the scale of the ATC data (0.05 m/pixel).  

The occupancy map containing all 100 environments (seen in Figure 22) was 
edited in GIMP (GIMP 2.10.8, The Gimp Team) to change the borders of the 
environments from solid black areas to thin black lines. This was done in at-
tempt to make the synthetic environments more closely resemble the KTH 
LIDAR map used for evaluation. This edited image can be seen in Figure 24.  

After this step, the map was upscaled by a factor of 20 (to match the upscaled 
data) using no interpolation method to preserve the sharpness of the borders 
(as upscaling with interpolation results in a blurry image). 
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Figure 24: The 100 random environments with edited borders. 
 

To ensure the scale was correct and the environments looked realistic, this 
map was overlaid on the KTH dataset’s LIDAR map, seen in Figure 25. 

 

Figure 25: A portion of the random environments map overlaid on the KTH 

LIDAR map, showing similar shape and scale. 
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The network was run with two variations of training data: 

1. Synthetic data only. 

2. Equal parts synthetic data and ATC Day 1 data. 

As in the original paper, the network was run for 100 epochs, and the resolu-
tion of 0.4m/cell was used as this had previously been found to produce the 
best results.  

4.3.2 Results 

 

The evaluation of the neural network was performed using the same metric 
as in Section 4.1.2: finding the likelihood that a MoD created by the trained 
network would predict a real trajectory in the new environment (KTH). Table 

5 presents the results of the original network compared to a uniform (random 
chance) model, and a traditional model (the floor field model built using the 
real-world trajectory data for each of ATC Day 1, ATC Day 2, and KTH).  

Table 6 presents the results of the new network trained on the synthetic data 
and a mix of synthetic and real-world data. Figure 26 shows the MoD created 
on the KTH environment using the network trained on an equal mix of syn-
thetic and ATC data. 

Table 5: Performance of the original network compared to the traditional 

model on the ATC and KTH environments, adapted from [14], Table 1. 

Model 𝓛 ATC day 2 𝓛 KTH 

Uniform 0.125 0.125 

Original (0.8m/cell) 0.195 0.140 

Original (0.4m/cell) 0.199 0.211 

ATC day 1 0.220 - 

ATC day 2 0.238 - 

KTH - 0.233 

 

Table 6: Performance of the new network trained on synthetic data. 

Model 𝓛 KTH 

Uniform 0.125 

Optimal (KTH) 0.233 

Synthetic only 0.080 

Synthetic + ATC (equal parts) 0.134 
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. 

 

Figure 26: MoD of the KTH environment produced by the network trained 

on an equal mix of synthetic and ATC data. 
 

From Tables 5 and 6 it is clear that the performance of the neural network 
has not improved compared to training on the ATC data alone. Using only 
the synthetic dataset as training data results in a generalisation ability worse 
than the uniform model (0.080), but when combined with ATC data per-
forms slightly better (0.134). In comparison, the original network trained on 
ATC data generalised to KTH with a likelihood of 0.211. 

This does not necessarily mean that there is a flaw in the method chosen for 
data generation: when the A* and real-data MoDs were compared using the 
same evaluation method, A* was seen to produce MoDs reasonably similar 
to those produced from the ATC data, and therefore the issue here is likely in 
the dataset. There are many possible explanations for this, which are dis-
cussed in detail in Section 5.4.  
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5 Discussion 

 

Based on the results obtained from each evaluation method, this section 

provides a discussion of the ability of the five synthetic data generation 

methods to approximate real human trajectory data, along with the 

limitations of the study. It also provides a discussion of the ability of this data 

to generalise to new environments when used to train a neural network, and 

some suggestions for improvement of the data.  

 

5.1 Trajectory generation 

 

Three methods were used to generate synthetic data for this thesis: 

 

1. A* path planning algorithm 

2. RRT* path planning algorithm 

3. Pedestrian simulator (PTV Vissim) 

 

5.1.1 Path planning algorithms 
 

The A* path planning algorithm generated trajectories with a clear 

preference for paths consisting of straight lines. These trajectories take the 

optimal path from the start to the goal, and en masse produce a MoD with 

clear directional preferences dependent on the geometry of the environment 

(for example, travelling in a straight line through the East corridor). MoDs 

created using A* generated data had a 0.182 likelihood of predicting real 

trajectories, compared to 0.231 using a map created from the ATC data 

(Figure 21), which constituted a reasonably good performance. This could, 

however, be improved, as only the default A* algorithm was tested in this 

thesis. For example, Doellinger et al. [6] used a custom cost function to 

replicate sub-optimal behaviour.  

 

The RRT* path planning algorithm generated tree-like paths that appeared 

to travel in almost random directions. This randomness was confirmed in the 

first stage of evaluation, where it was found that RRT* generated MoDs were 

very similar to those using the uniform model (an equal chance of choosing 

each of the eight directions). The second evaluation method confirmed this 

finding, showing that RRT* generated MoDs were the least likely to predict 

trajectories from the ATC data. Other studies that generated synthetic 

trajectory data using RRT* have used smoothed trajectories (such as in Occ-

Traj120 [16]. Future work could investigate the effects of smoothing on these 

results. 
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5.1.2 Pedestrian simulator  
 

The pedestrian simulator, as expected, generated MoDs that were the most 

similar to the ATC data’s MoD, and likely also trajectories most similar to the 

real data (though this has not been evaluated). However, it also required the 

most manual work to set up: the map had to be recreated in AutoCAD, 

imported into the simulator (which often resulted in areas not importing and 

requiring redrawing), and start/goal locations defined manually. 

Additionally, a pedestrian input had to be added to each start/goal location, 

and “pedestrian routing decisions” drawn between each location to allow 

people to transit from one location to another.  

 

While both AutoCAD and the pedestrian simulator have support for 

scripting, potentially allowing this process to be performed automatically and 

allowing for large amounts of synthetic data to be generated, it still remains 

far simpler to perform the map generation and path planning in the same 

program (in this case MATLAB). There is an additional learning curve 

required to use both AutoCAD and the simulator, especially to set up the 

scripting capabilities, and manual work would likely still be required in 

importing the maps from AutoCAD to Vissim and ensuring no errors are 

present. In contrast, using the programs produced in MATLAB for this thesis 

work, any number of random environments and trajectories can be 

generated, outputted in the correct format, and concatenated by simply 

changing a few variables in the MATLAB script. 

 

Additionally, while a licence for the simulator was kindly provided by PTV 

Group for the purposes of this thesis, Vissim is a commercial product and 

would require either an academic or full licence to be used in further 

research. In comparison, MATLAB licences are already provided by many 

universities for research use.  

 

However, the pedestrian simulator was both the fastest to run and produced 

the most realistic trajectories. Future work could focus on either creating or 

modifying an open-source simulator based on the social force model 

specifically for the purpose of generating synthetic datasets. This would 

provide an important contribution to this field of study, as when researching 

potential simulators for this thesis it was found that many open-source 

simulators are no longer maintained or simply do not work. 

 

5.1.3 Choice of start/goal locations 
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Two methods of choosing start/goal locations for the path planning 

algorithms were tested: specified and random. The synthetic MoDs created 

using specified locations performed slightly better when compared to the real 

MoD than those created using random locations, but not to an extent that 

outweighs the benefits of using randomly selected locations. Using random 

locations avoids issues mentioned previously, namely the need for semantic 

information attached to the occupancy map of the new environment, which 

would provide information on the entrance/exit locations such as doors and 

corridors. The random location choice also allows the generation of synthetic 

data to be almost entirely automated, with setting the variables and running 

the program being the only manual work required.  

 

5.1.4 Summary 

 

Based on these results, it was determined that the best method for generating 

synthetic human trajectory data for MoDs was A* with random start/goal 

locations. This provides a balance between efficiency and data efficacy, and 

requires the least manual work to create synthetic trajectory data. 

 

5.2 Evaluation methods 

 

The similarity of the synthetically generated MoDs was compared to the real 

data MoDs using two evaluation methods. The first produced unexpected 

results, and suffered from limitations relating to the uniformity of the 

distribution. The second produced results more in line with expectations, but 

still has similar limitations.  

 

5.2.1 Euclidean distance measure 

 

The first evaluation method, as previously mentioned in Section 4.1.1, simply 

measures the Euclidean distance of the probability distributions in each cell 

of the map. Theoretically, this should provide a measure of how similar two 

maps are, but instead effectively orders the maps according to how close their 

probability distributions are to uniformity. The closer to uniform an MoD is, 

the smaller its distance to a real MoD will be, compared to an MoD that 

predicts similar but not identical directions.  

 

Additionally, this method cannot tell whether the cell is predicting a similar 

direction or one totally opposite. This may also be a limitation of the second 

evaluation method, the likelihood measure, though the effects of this are not 

seen there and so this is unlikely to be an issue. Therefore, the first method, 

measuring Euclidean distance, is unsuitable as a method of evaluating the 
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similarity of MoDs to each other, but can provide an indication of how close 

to uniform a MoD is.  

 

5.2.2 Likelihood measure 

 

The second evaluation method calculates the average likelihood of the 

trajectories from the real-world dataset being predicted by a certain MoD. 

While a much more reliable method of evaluation, this method also suffers 

from limitations. Of note is the fact that a MoD will never perfectly predict 

these trajectories with a likelihood of 1; the optimal model (an MoD created 

from the real data) achieved a maximum likelihood of 0.231 (ATC Day 1).  

 

Similar to the previous method, the likelihood measure only performs a 

limited evaluation: evaluating individual cells’ performance when predicting 

trajectories. However, it is a reasonable metric for the purposes of this thesis 

as these limitations are mitigated somewhat by using it as a consistent 

measure across MoDs – i.e., the synthetic MoDs are only expected to 

generate likelihoods within the bounds of the uniform (0.125) and optimal 

(0.231) models.  

 

A method to evaluate the similarity of the synthetically generated trajectories 

to the real trajectories (before MoD creation) was explored. This would be 

achieved using steps similar to those outlined in Section 2.6.2: clustering 

similar trajectories, calculating a representative trajectory for each group, 

and comparing similar groups to one another. However, this is not a trivial 

issue: deciding the criteria for “similar trajectories” can be done in many 

ways, and presents a myriad of issues. For example, if clustering trajectories 

based on their direction of travel, a way to compare trajectories of vastly 

different lengths must be devised, and many trajectories travel in different 

directions along their paths, so deciding which segments should be used is a 

further issue. Future work may consider this as an evaluation method for this 

type of data, but it is complicated to implement, and an unnecessarily 

detailed metric for this thesis, which focuses on the quality of the MoDs. 

 

5.3 Neural network 

 

To investigate the ability of the newly created synthetic data to be used as 
training data for a motion prediction network, the synthetically created da-
taset of 100 random environments was used to train the network created by 
Verdoja et al. [14]. The network was tested twice, first with synthetic-only 
training data, and secondly with an equal mix of synthetic and real (ATC) 
training data.  
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The data was successfully presented to the network, and a trained network 
was outputted. This network was then used to predict a MoD for the KTH 
environment, and the synthetic data’s ability to generalise was evaluated. Un-
fortunately, the network trained only on synthetic data performed worse than 
even the uniform model. When combined with ATC data, the network per-
forms better (likelihood of 0.080 with synthetic alone, 0.134 with ATC + syn-
thetic), but still predicts KTH trajectories in the region of random chance 
(0.125).  

The disappointing performance of the trained network could be due to many 
factors. These include: 

• The resolution of the maps (50 x 50 pixels) 

• Similarity of the generated maps to LIDAR maps 

• Bugs in the data causing the diagonal line mentioned earlier 

• The large amounts of occupied black space between the maps caused 

by concatenating the data into one map 

• Similarity of the maps to real floorplans. 

These are discussed in detail in Section 5.4. 

5.4 Potential for improvement of synthetic data 

 

As seen in Section 4.3.2, training the neural network on the synthetic dataset 

of 100 random environments did not improve its performance. There are two 

potential sources of the problem: in the maps and in the trajectories. The 

trajectories are unlikely to be the issue, as the MoDs produced on the ATC 

map showed good similarity to the real ones, though they could potentially 

be improved further. It is likely that the issue is in the generation of the 

synthetic data. Potential reasons for the network’s poor performance and 

ways to improve the data are provided in this section. 

 

5.4.1 Trajectory generation 
 

A* was used as the path planning algorithm for the trajectory generation. It 
is unlikely to be contributing to the poor performance of the network, as the 
A* maps performed well when generating trajectories in the ATC environ-
ment (0.182 using the second evaluation metric, compared to 0.231 for the 
groundtruth). However, this could potentially be improved further. Two po-
tential methods were mentioned in Section 3.2: smoothing the trajectories, 
and using a custom cost function to better model human behaviour.  

Doellinger et al. [6] used a custom cost function with an A* based planner to 
generate synthetic human trajectories. They found that while A* alone was 
sufficient to model static occupancy distributions, in a dynamic domain the 
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simulation of sub-optimal behaviour was required. To achieve this, they used 
a value iteration method with a factor T influencing the amount of noise 

added to the trajectory, where 𝑇 =  0 generated optimal trajectories, and 

𝑇 → ∞ random trajectories. As part of the selection process for the path plan-
ning algorithms for this thesis included the ability to use a custom cost func-
tion, a similar factor could theoretically be implemented here to further im-
prove the trajectories’ realism. This would likely also improve the MoDs cre-
ated using this data.  

Another method that was not tested here is smoothing. The A* generated tra-
jectories consist of mainly straight lines, similar to human motion [147], but 
sometimes produce diagonals consisting of unnatural stepwise movements 
(see Figure 7). The effects of smoothing the trajectories on performance in 
this case are unknown, but could potentially lead to improvements.  

5.4.2 Resolution 

 

The random environments were generated as 50 x 50 occupancy matrices, 
providing a resolution of 1 m/pixel, compared to the ATC data’s 0.05 m/pixel. 
This low resolution resulted in the A* path planner taking large steps through 
the environment, resulting in poor coverage of the environment and sparse 
data. It is likely that there are a large number of cells missing data when the 
synthetic dataset is converted to an MoD, resulting in that cell defaulting to 
using the uniform model. An example of this sparseness can be seen in Figure 

27.  

Generating environments using larger dimensions (e.g., 10x all variables 
given in Table 4) produced strange looking floorplans, with either the map 
completely covered in overlapping rooms (i.e., resulting in one large white 
box in the middle), or with very few rooms, creating a network of mostly un-
connected corridors ending in small white boxes. Therefore, generating 
larger occupancy maps was a non-trivial problem.  

To improve the resolution of the maps, the code could be modified to take the 
image of the occupancy map, upscale it by a certain factor (e.g., x5 to produce 
a map with a resolution of 0.2 m/pixel), and plot trajectories through this. 
Alternatively, the randomRoom function could be edited to change the way it 

creates maps, to allow for the creation of larger environments without pro-
ducing strange behaviour. 
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Figure 27: 750 A* created trajectories on the 1st random environment with 

a resolution of 1 m/cell. 
 

5.4.3 Similarity to occupancy maps from LIDAR data 

 

The occupancy maps of both the KTH and ATC environments are built from 
LIDAR data, and therefore are very noisy. It can be clearly seen in Figure 26 
that when MoDs are built using LIDAR maps, the walls of the environment 
are not solid, consisting of cells in varying shades of grey along the general 
location of the walls, and noise in the form of glimpses through open door-
ways into other rooms. In contrast, the synthetic occupancy maps have well 
defined walls represented by solid, straight lines with no noise. 

5.4.4 Bugs in the data/MoD creation 

 

As mentioned briefly in Section 4.2.2, a diagonal line is present in the MoD 
for the 100 random environments that is not present in the trajectory data. 
At first, this was thought to be an issue in the concatenation stage where the 
100 environments were put into one large map, but the line is also present in 
MoDs created of individual environments. This can be seen in Figure 28. 
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Figure 28: Trajectories displayed in MATLAB (left) vs MoD (right) for one of 

the random environments. 

 

The cause of this line is currently unknown, but the data could clearly be 

improved by finding the source and removing the bug.  

 

5.4.5 Space between maps 

 

The large distances between each synthetic map could be contributing to the 
issue. The neural network takes a 64 x 64 window around a central pixel, 
which in the case of the ATC or KTH environments will most likely be inside 
the environment, or if not, the window will capture a good amount of the 
environment. However, in the synthetic maps, a buffer was added between 
each map to ensure that rooms and corridors from different environments 
would not connect, producing a lot of empty space. A central pixel could eas-
ily fall between maps, only capturing a small amount of four totally separate 
environments on the edges of the window. An example of this can be seen in 
Figure 29, which shows a potential 64 x 64 window that falls between 4 maps. 
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Figure 29: An example of a possible 64 x 64 window with limited trajectory 

data. 
 

This problem could theoretically be mitigated by reducing the buffer size 
(currently 10 pixels); however, some environments simply don’t have rooms 
in one or more of the corners of the map, producing an unavoidable gap. Gen-
erating rooms individually and creating MoDs from them currently requires 
a large amount of manual work, but could theoretically be automated with 
modifications to the MoD creation code.  

5.4.6 Similarity of random environments to real floorplans 
 

The variables used to create the random environments were arrived at 
through trial and error, attempting to create a map that looked visually sim-
ilar to a real floorplan. However, real environments vary greatly, as seen in 
the differences between the ATC and KTH environments: the KTH consists 
of mainly square or rectangular rooms and corridors, similar to the random 
environments, whereas the ATC has curved walls, pillars, stairs, and a large 
area of empty space. While similar to previously created synthetic occupancy 
maps (e.g., those used in Occ-Traj120 [16]), there is potential to improve the 
representation of varied environments through changes to the algorithm to 
allow features such as curved walls. However, this is unlikely to be causing 
the poor performance of the neural network at generalising to the KTH envi-
ronment as it is similar to the randomly created maps. 
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6 Conclusion 

 

6.1 Main points, findings and implications 

 

Two methods of trajectory generation were compared in this thesis: path 
planning algorithms and pedestrian simulators. A comparison of the availa-
ble path planning algorithms was performed with respect to their suitability 
for this task, and A* and RRT* were selected as the best contenders. The pe-
destrian simulator PTV Vissim was also tested.  

Comparing these three methods’ abilities to create realistic MoDs has not 

previously been researched, though they have each been used in separate 

studies to create synthetic datasets. Previous studies have also regularly 

failed to compare them to real world data, and the best method of data 

generation has not previously been decided upon, with researchers often 

choosing methods for synthetic data creation with little to no explanation as 

to why that method was selected. This thesis provides an indication of the 

ability of each of the two methods (path planning algorithms and pedestrian 

simulator) to create a MoD, as compared to one created from real-world data.  

The pedestrian simulator produced MoDs most similar to the real data (pre-
dicting real trajectories with a likelihood of 0.209, compared to the ground-
truth of 0.231), but required a lot of manual work to implement. A* per-
formed the best of the two path planning algorithms (likelihood of 0.184) and 
was chosen as the most suitable method to generate large amounts of syn-
thetic trajectory data in this case. 

The findings here imply that to generate the most realistic human trajecto-
ries, a pedestrian simulator such as Vissim should be used, but path planning 
algorithms perform reasonably well and are easier to automate when gener-
ating large datasets.  

The dataset created during this thesis work was able to be successfully used 
as training data for the neural network in its current state, though did not 
improve its performance. This could be for a variety of different reasons, and 
needs further study to confirm the cause of the issue, but provides an im-
portant starting point for the generation of this type of synthetic dataset.  

In general, synthetic data generation provides an exciting opportunity to im-
prove the performance of motion prediction algorithms. Real-world data, as 
mentioned in this thesis, can be time-consuming, difficult, and expensive to 
obtain, and is needed for many different applications. If synthetic data can 
be produced that is near or equal to the quality of real data, it has the poten-
tial to improve and speed up research into motion prediction. It would enable 
researchers to generate human-like trajectories in any environment given its 
occupancy map, which could then be used to train neural networks or 
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machine learning solutions and allow a robot to predict the people flow in 
any environment.  

However, some limitations to this do exist: for example, the practical size of 

datasets could be limited due to computational efficiency. When creating the 

synthetic dataset in this study, it took approximately one hour to generate 

75,000 trajectories. While seemingly a short amount of time, this was due to 

the limited resolution of the maps (50 x 50 pixels), and would certainly 

increase if a higher resolution was used. Additionally, converting these 

trajectories to the correct format for the neural network took a further two 

hours. This could become a problem when attempting to produce large 

datasets for training, especially if the resolution is increased.  

Time could also become an issue when creating maps of dynamics and 

training the network. For example, to create an MoD from the synthetic 

dataset here took approximately 45 minutes, and training the network 

required around 40 minutes, non-trivial amounts of time.  

These datasets also take up a large amount of storage space. For example, the 

75,000 trajectories generated here require 72.73 MB of space, not including 

the image of the occupancy map. Large datasets could demand large amounts 

of storage space, therefore being costly to store.  

However, many of these limitations also exist for real-world datasets, with 

real-world data taking even longer to acquire, requiring much more manual 

work than a synthetic dataset, and taking up large quantities of storage space 

(one day of ATC data is 201 MB in size [8]). Even though the data here took 

some time to generate, no human input was required once the program was 

started, and so other work could be performed simultaneously.  

Overall, if the data fidelity of the synthetically created dataset can be 

improved, synthetic human trajectory data offers an easy, low-cost, low-

effort way to generate people flow maps. 

 

6.2 Opportunities for future work 

 

As discussed previously, the two main evaluation methods used in this thesis 

suffer from limitations, as they are both comparisons of discrete categorical 

data. Future work could develop a more robust evaluation method which can 

compare MoDs as a whole, rather than cell-by-cell. Additionally, there is a 

need for an evaluation method which can consider whether cells in two MoDs 

are predicting a similar direction or one that is completely opposite. There is 

scope to develop a method to compare raw trajectory data, though this is a 
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non-trivial issue, and unnecessary for this thesis as the creation of MoDs does 

not require individual trajectories to be perfectly realistic. 

 

All methods of synthetic data generation were run with settings left to default 

where possible, however there are many variables that can be changed with 

each method, and the effects of changing these were not considered in this 

thesis. For example, as discussed in Section 5.4.1, the cost function of A* 

could be modified to produce more realistic looking trajectories. 

Additionally, the trajectories from the path planning algorithms were not 

smoothed after generation. Smoothed RRT* trajectories, though not 

evaluated in this thesis, appear visually to be less random and more similar 

to real human motion, so there is opportunity to evaluate the effect of 

smoothing on MoD realism.  

 

The pedestrian simulator, while not trivial to automate, produced the most 

similar MoDs to the real data, and therefore performed the best of the three 

methods. Future research could develop an open-source simulator 

specifically for this problem, based on the social force model, to automate the 

generation of large numbers of novel environments and corresponding 

trajectory data.  

 

Finally, the accurate prediction of human motion is only one piece of the 

puzzle: future research is needed to learn how to incorporate this knowledge 

into robot navigation algorithms, enabling a new generation of indoor robots 

to move in a more socially conscious way, and to co-exist unobtrusively with 

humans. 
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