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Abstract
Serverless cloud computing is a subset of cloud computing considerably adopted
to build modern web applications, while the underlying server and infrastructure
management duties are abstracted from customers to the cloud vendors. In serverless
computing, customers must pay for the runtime consumed by their services, but they
are exempt from paying for the idle time. Prior to serverless containers, customers
needed to provision, scale, and manage servers, which was a bottleneck for rapidly
growing customer-facing applications where latency and scaling were a concern.
The viability of adopting a serverless platform for a web application regarding

performance, cost, and developer experiences is studied in this thesis. Three serverless
container-level services are employed in this study from AWS and GCP. The services
include GCP Cloud Run, GKE AutoPilot, and AWS EKS with AWS Fargate. Platform
as a Service (PaaS) underpins the former, and Container as a Service (CaaS) the
remainder. A single-page web application was created to perform incremental and
spike load tests on those services to assess the performance differences. Furthermore,
the cost differences are compared and analyzed. Lastly, the final element considered
while evaluating the developer experiences is the complexity of using the services
during the project implementation.
Based on the results of this research, it was determined that PaaS-based solutions

are a high-performing, affordable alternative for CaaS-based solutions in circumstances
where high levels of traffic are periodically anticipated, but sporadic latency is never
a concern. Given that this study has limitations, the author recommends additional
research to strengthen it.

Keywords Cloud computing, Serverless cloud computing, Platform as a Service,
Container as a Service, AWS Fargate, AWS EKS, GCP Cloud Run, GKE
AutoPilot
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1 Introduction
Cloud computing has gained widespread acceptance and adopted cloud computing
paradigms, particularly Infrastructure-as-a-Service (IaaS), with the offerings of on-
demand resources based on a pay-as-you-go pricing model [36]. The main reason
for the rising adaptation of cloud computing in the IT industry is its pay-as-you-go
pricing model, which allows customers to only pay for the resources they leverage [54].
Furthermore, they can lease as many on-demand resources as needed during a sudden
traffic surge without incurring additional up-front costs. This has enabled customers to
transform their running workloads from on-premise to a public cloud provider, where
they offload the burden of infrastructure management, such as hardware management,
to cloud provider [1]. However, customers are still responsible for configuring the
elasticity, including auto-scaling to handle a sudden spike in the incoming requests .
Customers are billed for the resources they allocate rather than the actual consumption.
Studies showed a substantial gap between cloud users’ actual usage and the resources
they allotted and paid for [2]. Historically, customers needed to rent or purchase
dedicated servers to run application workloads in a private cloud [1]. This was a
costly solution in most circumstances and required a substantial investment because
customers needed to hire experts to operate and maintain the underlying infrastructure.
When more computational power is needed, they must purchase more licenses and
hardware, then install and configure them before they can be used, lengthening lead
times and affecting productivity. Customers can now use a public cloud service
provider to provide a complex infrastructure in minutes.
Commercial cloud computing solutions delegate server and infrastructure mainte-

nance to cloud service providers, allowing customers to focus on building the business
logic rather than worrying about the underlying infrastructure. This increases the
likelihood of a faster time to market and increased revenue. Service providers are
constantly working on adding new features to a current service model or developing
one that will allow them to take on more duties. The serverless cloud computing
paradigm, which promises to relieve customers of infrastructure management respon-
sibilities, is one of the newest service model additions [4]. Customers only pay for
the processed requests, not server management or scalability. Although the phrase
"serverless" hints at that there are no servers running, it actually implies that server
administration has been decoupled from users [1, 79]. In addition, customers do not
need to know how many servers are required to handle a given quantity of requests.
Cloud service providers make on-demand scaling decisions and automatically scale
from zero to infinite. Vendors only charge customers for resource consumption during
runtime. Serverless computing’s cost model appeals to workloads that only need
to run occasionally because serverless scales to zero unless otherwise stated in the
configuration and eliminates the need to pay for any idle servers [1].
Container-as-a-Service (CaaS), a contemporary cloud service paradigm based

on container virtualization, is an emerging serverless cloud computing paradigm
subset. Vendors offer fully managed and serverless container platforms under the CaaS
model to their customers; for example, AWS Elastic Kubernetes Service (AWS EKS)
and GCP Google Kubernetes Service (GCP GKE) is a managed container service
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offerings. On the other hand, this thesis utilized the GCP GKE AutoPilot and AWS
EKS with AWS Fargate, which are part of serverless container service offerings.
One of the main discrepancies between a managed and serverless container service
offering is that customers need to create, manage, and apply security patches to nodes
to run the application workloads in managed container service offerings in contrast
to the serverless container platform. In serverless container service offerings, the
customers deploy the containerized application in a serverless cloud environmentwhere
containers are provisioned and executed in a restricted environment’s specification.
Previously, virtual machines (VMs) were used to emulate physical hardware resources
that run on their own independent Operating System (OS) on top of a hypervisor (a
virtual machine monitor, VMM) [20]. Vendors manage VMs and their underlying
host machines. They are responsible for keeping the underlying hardware up-to-date
and providing VMs to host on-demand containers as per necessities. Serverless
CaaS enables developers to build and deploy highly elastic containerized applications
utilizing their preferred programming language or frameworks, for instance, Golang,
Node.js, Java, .NET, and others [8].
Platform-as-a-Service (PaaS), a serverless computing paradigm, allows developers

to bring their code and deploy it leaving the underlying VMs management and scaling
responsibilities to the vendors [3]. In PaaS, customers’ applications run and execute
inside the containers, with less control over operations and the overall infrastructure.
When a container no longer receives any process requests for a brief period, it is scaled
to zero, and customers are not billed for it, even while the underlying VM continues to
function in the background and is hidden from customers’ view [5]. GCP Cloud Run
used in this study falls into PaaS, which is a serverless container service offering.
Serverless computing has proven useful and economically attractive to host

workloads for web applications, REST APIs backend, back-office administration,
lightweight data transformation, and many more. Studies showed the most prominent
uses for serverless computing include hosting web applications and the REST APIs
backend [24]. This research studied the viability of serverless container service on
CaaS and PaaS platforms across two public cloud providers (AWS, GCP) by developing
and deploying a containerized web application.
The PaaS and CaaS service models are discussed in section 2.4, and at the end of

section 2.4.6, a summary is presented to highlight the main differences among different
service models based on the shared responsibilities model between the vendors and
customers.

1.1 Problem Statement
This thesis calls the fully managed Kubernetes service a serverfull Kubernetes for
convenience. In a serverfull Kubernetes cluster in any public cloud, a minimum
quantity of VMs must always be running to serve any incoming traffic, even if there
is none for a while. Scaling to zero nodes off pick hour is possible manually or by
automation. Nevertheless, this has to be done by the customers. Additionally, it could
take a while to scale a VM (its size and family class may impact the scaling behavior)
amid a sudden traffic surge. In the worst-case situation, some nodesmight become stuck
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when auto-scaling. The author has experienced such inconsistent behavior of serverfull
Kubernetes in Microsoft Azure at work. Moreover, based on the author’s experience, in
many cases, a virtual machine may take five to fifteen minutes (sometimes over twenty
minutes) while scaling out a node. In such a case, as the necessary resources, including
CPU and memory are unavailable to all nodes simultaneously, the kube-scheduler
can no longer schedule additional Pods to worker nodes. This eventually results in
a higher response time for the page (sometimes website may freeze briefly), which
has an adverse effect on the user experience. This behavior can be a performance
bottleneck for the customer-facing application if the higher latency is not affordable.
Furthermore, customers must pay the machine’s per-hour bill even though the entire
serverfull Kubernetes cluster is idle. Upgrading the Kubernetes cluster, applying
the security patching to the nodes, rebooting the nodes periodically, updating the
node’s configuration, tightening the security configuration, optimizing the resource
utilization, finding the correct number for scaling the on-demand nodes and a bunches
of other operational duties falls into the customers’ table in the serverfull Kubernetes.
As a consequence, serverfull Kubernetes gradually accrues more operational overhead,
and often customers are left with no choice but to run the bare minimum number of
cluster nodes necessary to handle incoming requests. This forces customers to pay the
additional fees without fully utilising the resources.

1.2 Motivation
Serverless cloud computing is evolving and being used widely, a considerable number
of research papers were published on its use-cases, benefits, and drawbacks in data
analysis, web applications backend, Internet of Things (IoT) applications [32, 33, 34].
According to our research at Aalto University, at least one thesis evaluated the
language-specific runtime performance in FaaS on AWS and GCP. Furthermore, the
study analyzed the performance, cost differences, and application development and
deployment experiences between the FaaS and PaaS, where GCP App Engine was
used for the PaaS service [4]. Nonetheless, studies on the performance, cost analysis,
and convenience of the use of AWS EKS with AWS Fargate and GCP Cloud Run
for hosting web applications are still insufficient [15, 25, 26, 27, 29, 30]. This is
because GCP Cloud Run and AWS EKS with AWS Fargate compatibility, released
in the fourth quarter of 2019, are relatively new additions to the serverless product
fleet. On the other hand, GCP GKE Autopilot was released in the first quarter of 2021
[76]. Therefore, the author is motivated to study the container-level serverless cloud
computing services to compare the differences in performance, cost, development,
and deployment experience.
Studies show that AWS is the global market leader, and its market share was about

47.8% in the year 2018 [25, 61]. AWS was the dominant cloud service provider in the
fourth quarter of 2019, according to the research [28], with a market share of 32% and
revenue of $9.8 billion. Microsoft Azure came in second with 17% and $5.3 billion
in revenue, while Google Cloud placed third with only a 6% market share and $1.8
billion in revenue.
The author encountered unpleasant user experiences with serverless Kubernetes in
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Azure. This is why serverless Kubernetes in Microsoft Azure cloud is not considered
to utilize in this study. The reason we call it serverless Kubernetes is that public cloud
vendors manage and maintain the control and data plane of the Kubernetes cluster.
Customers can not see the data plane nodes because they’re concealed. IBM Cloud
was scoped out of this research since IBM Cloud is not as popular as Google Cloud or
AWS. Due to the mentioned reason, the author choose to conduct the research study in
AWS and GCP as they are the two big players based on market share and popularity. .

1.3 Scope and Goal
The rationale mentioned in the previous sections drove us to develop and deploy a
web application on serverless CaaS and PaaS platforms in AWS and GCP to evaluate
their differences in performance, cost, and the complexity of using the services.
A lightweight single-page web application was developed to wrap up the research

work. However, due to time constraints, developing a full-blown complete web
application was outside the scope. Three services from two separate public cloud
service providers were chosen to conduct the research, which included GCP Cloud
Run, GCP GKE AutoPilot, and AWS EKS with AWS Fargate. The latter two fall into
the category of CaaS service models. On the other hand, the former is part of PaaS
service model offerings. All three services in this study are part of serverless cloud
computing, as server management is abstracted from the customers’ duties. Customers
only need to take care of the application workload, while shifting the rest of duties to
the vendors.
The research’s primary goal is to examine if adopting a serverless computing

platform would be viable in terms of performance and cost variations, focusing on
container-level services, including CaaS and PaaS service models. In addition, the
author includes a summary of the research’s findings on how simple it is for a developer
to build and deploy a web application to each service. The developer experiences are
presented based on the author’s experience during the research. Being said that, the
purpose of this study is to provide research answers to the subsequent questions:

RQ1 Is a serverless CaaS and PaaS solution on the public cloud platforms for a
containerized web application a viable approach regarding cost and performance?

RQ2 How does developing and deploying a web application on a serverless CaaS
and PaaS solution influence the development experience?

1.4 Main Contribution
The main contribution is mentioned below:

• Evaluating the core features of the existing offerings among GCP Cloud Run,
GCP GKE AutoPilot, and AWS EKS with AWS Fargate.

• Partial implementation of setting up the cloud infrastructure via Infrastructure-
as-Code (IaC) to host the web application on the serverless computing platform.
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• Partial implementation of automated DevOps pipeline to deploy services auto-
matically. Due to time constraints, the workload and scope were too vast, so IaC
and the automated DevOps pipeline did not cover automating all services.

• Wrote the load tests scripts

• A single page web application is developed

• In-depth analysis of performance and cost including the summary of the author’s
development experiences

1.5 Thesis Structure
These five chapters have three main sections: background study of the research,
project setup and implementation, and performance and cost analysis. Chapters 2
and 3 are part of the research background section, whereas chapters 4 and 5 fall
into the implementation and evaluation sections, respectively. Chapter 2 covers the
relevant research concepts and technologies, for instance, virtualization, containers,
Docker, Kubernetes, Continuous Integration and Continuous Deployment (CI/CD),
various public cloud service models, and monolith and microservice architecture,
including their use cases, benefits, and drawbacks. However, chapter 3 discusses
serverless cloud computing, including its use cases, advantages, and disadvantages.
The implementation is presented in chapter 4. Chapter 5 evaluates the in-depth
performance, cost analysis, and ease of use of those services from a developer’s point
of view. Finally, chapter 6 concludes this thesis with some remarks and reflections
and presents future work.



2 Background
This chapter introduces two key components of cloud computing: virtualization and
containerization technology, cloud computing service models and technologies. In
addition, two most commonly used software design patterns are introduced. The
virtualization and containerization technologies that have fostered today’s cloud
computing are discussed in section 2.1. The architecture and components of Docker
are briefly discussed in section 2.2. Kubernetes is presented in section 2.3. Several
aspects of cloud computing are discussed in section 2.4. Continuous Integration
and Continuous Delivery (CI/CD) are discussed in section 2.5. Finally, section 2.6
reviewed and analyzed the two widely used software architecture patterns.

2.1 Virtualization Technologies
Virtualization is the foundation of cloud computing. It allows the creation of a simulated
computing environment by virtualizing the hardware resources of an underlying host
machine. This allows a single physical server or host machine to partition into several
VMs, also known as guest machines, on which each can interact independently while
sharing its host machine’s underlying resources. Moreover, each VM is platform-
independent; each VM acts as an independent computer, but in reality, it is just a
tiny portion of the host machine. When an application runs on top of a completely
isolated VM, it is not connected to its host machine, which sits below it. Since
virtualization creates multiple virtual resources from its host machine, it efficiently
utilizes hardware resources, reducing the overall cost associated with infrastructure,
maintenance, and energy consumption. Additionally, it enables better scalability,
portability of workloads, simpler-to-manage IT resources, and increased performance.
It helps cloud providers to boost the agility to create new cloud resources for their
customers, which mainly drives the cloud providers’ economics [6]. This section
presents two virtualization technologies and highlights their main discrepancies.

2.1.1 Hypervisor based virtualization

A hypervisor is a small piece of software that can create, coordinate and run VMs [20].
It is an interface between the VM and its underlying commodity hardware. It ensures
that each VM has access to its host machine’s resources. Furthermore, impinging
on each guest machine’s resources, including memory, storage, and CPU, ensures
that none of the VMs interfere. Virtualization also has some security challenges; for
instance, if a hypervisor is compromised, an attacker can potentially own and control
all the VMs since a hypervisor allows each of the VMs to communicate with each
other. On the other hand, it offers some security benefits; for example, when a VM is
infected with malicious programs, it can be quickly recovered to a particular point
in time, usually by the previously taken snapshots. If no snapshots are available for
Point-in-Time Recovery (PITR), the VMs can be deleted and recreated. There are two
distinct types of hypervisors [20, 22, 149]:
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• Type 1 or bare metal or native hypervisor: With bare-metal hypervisor
technology, the host machine’s OS and the VMs use the same hypervisor. It
runs directly on top of the hardware, controlling the resources of the underlying
host machine.
Figure 1 shows that Type 1 has no OS in between. Type 1 hypervisor is installed
directly on the underlying physical hardware. Connecting to an external monitor
during the bootup displays a Command Line Interface (CLI) prompt-like screen
where hardware and network-related details can be seen. Typically, VMs are
created and managed by connecting to the hypervisor from another machine.
The management console must be set up from another device to do that. Some
commercial and open source examples are VMWare vSphere with ESX/ESXi,
Microsoft Hyper-V, Citrix Hypervisor, Oracle VM, and KVM (Kernel-Based
Virtual Machine).
A bare-metal hypervisor controls and manages the guest machines. It has less
latency but better performance since there is no host OS overhead between
accessing the underlying physical hardware resources in contrast to Type 2.
In the 1960s, IBM developed native hypervisor technology that included the
CP/CMS OS, a mainframe-based product, and test software called SIMMON.

• Type 2 or hosted hypervisor: Type 2 runs on a orthodox OS. With this
technology, a VM runs as a process on the host by creating an abstracted layer
from the host machine. The guest OS is required to access the underlying
hardware resources via the host machine’s OS. This adds to the extra latency,
thus leading to slower performance in the end.

Figure 1: Type 1 and Type 2 Hypervisor

Figure 1 shows that the hypervisor runs on the host machine’s OS. Type 2
examples are Oracle VM virtual box, VMWare Fusion, Windows PC, and
Parallels Desktop. For example, users only need to install the Oracle VM virtual
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box on their machines to create and manage VMs with different OSs. They can,
for instance, import and export appliances, clone and take snapshots of a VM.
Virtualization in cloud computing provides excellent portability and is commonly
used to share VM snapshots across user accounts, between host machines, and as
custom base images in auto-scaling. This allows cloud providers to run numerous
VMs on the same physical host machine, allowing them to make efficient and
cost-effective use of the hardware resources. Virtualization technology abstracts
hardware from end-users, allowing them to focus on providing the computing
resources they require, such as storage, networking, servers, and database
instances. End users can adjust the machine configuration with just a few clicks,
which makes the user experience extremely satisfactory. This is why it has
become a game-changing technology in today’s cloud computing. Resource
provisioning would be highly laborious without the virtualization technology
due to the underlying hardware changes.
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Category Type 1 Type 2
Virtualization Hardware virtualization OS Virtualization
Security More secure Less Secure
Performance No OS overhead and higher

performance
Comparatively slower

System Depen-
dency

Directly access the underly-
ing hardware, including VMs
hosts

Directly not allowed to access
host hardware and its resources

Operation Guest OS and applications run
on the hypervisor

Runs on the host OS as an ap-
plication

Scalability Better Scalability Not somuchdue to the reliance
on the host OS

Management A separate machine is required
to administer VMs and control
the underlying hardware

From one machine VMs are
administered

Speed Faster Slower

Table 1: A comparison between the Type 1 and Type 2 Hypervisor

The advantages and disadvantages of Type 1 and Type 2 hypervisors are compared
in Table 1. Large enterprises choose Type 1 hypervisors in cloud computing because
they are more secure, require no middleware, and are independent of the host OS.
Users often need to install additional toolkits for Type 2 hypervisors in order to copy
and paste files from the host to the guest machine and vice versa. Type 2 must go
through the host machine’s hardware and resources for all operations, imposing some
latencies without utilizing full use of resources [149]. In developer environments,
when many OS variations are required, Type 2 is ideal.

2.1.2 Container based virtualization

In cloud computing and microservices, containers have become the de facto industry
standard. The Container technology era began with Docker back in 2013 [21]. We
discuss docker in section 2.2. A container image includes everything required to run
an application, for example, packaging the application source codes and associated
settings, along with its dependencies, and clear instructions in a Dockerfile on what
processes the container must run when it is orchestrated. A containerized application
must always run the same regardless of its underlying hardware. Each container
runs on its namespace and is separated from other container namespaces within the
same host machine, while all containers share the same kernel. The kernel manages
namespaces, and therefore it knows which namespaces are assigned to which process
while exposing one process for a container to the host machine. Furthermore, it
ensures the process can access resources only on its namespace during the Application
Programming Interface (API) call.
Containers do not use a hypervisor, so containers are faster. Resource provisioning

is significantly quicker, unlike hypervisor-based virtualization. However, container
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images are slim and small; for example, an alpine base image is 5MB in size
(compressed size is about 2.28MB) [91]. Technically, containers would require fewer
VMs and OS to handle more applications than Hypervisor-based virtualization. A
fully virtualized machine usually takes over a minute to boot because it includes an
entire copy of the OS, libraries, binaries, and other necessary dependencies to run
the application. Containers start in just milliseconds to seconds since it does not start
the entire copy of the OS. Also, unlike containers, virtualized hardware resources
need to be preallocated, including memory, storage, and CPU, while creating a VM.
This allows running many containers on a single OS while isolating the container file
systems and processes from each other. This would be practically impossible within
the given equal resource limits when we run separate copies of the full OS on their
VMs. Unlike VMs, it is significantly faster to test and deploy a particular application
on different OS using containers. Containers, while fast and lightweight, have one key
disadvantage over VMs: they are restricted to the host OS.

Figure 2: Container and Hypervisor based architecture.

Figure 2 shows the architectural differences between containers and VMs. Con-
tainers run on the host OS, while the VM runs on its guest OS.
Container process isolation and resource allocation happen at the OS level. The

Linux kernel has native support for process isolation and limiting resource usage using
namespaces and groups (control groups), respectively. Namespaces are responsible
for partitioning the kernel resources, allowing each service to access just the resources
associated with its namespace. CGroups manage and control the granular resource
usage (CPU, memory, Network I/O, or access to the file system) to a particular process
or a set of processes. There are several sorts of namespaces in the Linux kernel, each
with its own set of features [14, 84].

• User namespace: Each user has a unique UID, and a user can be assigned to a
group or multiple groups. Each group has its group ID. A process can run in its
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user space with root privileges, while others can run processes without a root in
its user namespace.

• Process namespace (PID): Assigns PIDs for a set of processes in each user
namespace. Each PID is independent of other PIDs that reside in other names-
paces. The first process is assigned to PID 1, becoming the parent process in a
namespace. In addition to this, all its child processes get the subsequent PIDs.

• Network namespace: Isolates, virtualizes, and manages each component of the
network stack- firewall rules, socket listing, private IP address, routing table,
and network interfaces.

• Mount namespace: Responsible for controlling and isolating mount points in
a user namespace for running containers. Processes running in a particular
mount namespace can mount and unmount the file systems. This ensures each
container is running.

• Interprocess communication namespace (IPC): Isolates specific IPC re-
sources such as Portable Operating System Interface (POSIX) message queues
and System V IPC resources. When we create objects in an IPC namespace,
they can not be seen by other processes outside that namespace, allowing only
visibility to all member processes.

• Unix time-sharing namespace (UTS): Provides isolation of host and domain
names for containers in a single system.

• Cgroups:Allows processes into organized hierarchical groups to limit, prioritize
and monitor the system’s resource usage, including Network bandwidth, Disk,
CPU, Memory, and devices.

• Time Namespace: Allows containers to see different system clock times within
the same host in a way akin to UTS.

Container technology has outclassed the performance compared to hypervisor-
based virtualization technology. According to studies, containers have a lower Quality
of Service (QoS) in terms of storage transaction speed [58]. Knowing that containers
share the same kernel as the host machine, posing many security risks [43]. Container
processes, for example, can access the host machine’s file systems via mount points
when running as a root user or in "privileged" mode. Additionally, container processes
have essentially identical privilege rights to the running processes on their host
machines. Container runtimes require root user privileges to allow functionality,
including port binding, networking, and mounting file systems. The direct access to the
host machine’s kernel substantially increases the attack surface. Attackers were able to
execute arbitrary code, obtain privileges, and alter memory via various kernel flaws,
according to the report [83]. As a result, an attacker who can exploit kernel issues
inside containers can also exploit them on the host machine. Conversely, on a VM, the
process is a little more difficult and time-consuming because attackers must exploit the
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VM Kernel and the VM Hypervisor. Studies show that [43] running a container inside
a VM can minimize the attack surface. Before breaking into the host machine systems,
an attacker must exploit the VM kernel, the hypervisor, and the host machine’s kernel
[50]. When attackers undertake Denial-of-Service (DoS) and Privilege escalation
attacks on a host machine where multiple containers are running inside VM, attackers
can gain full control of a subset of containers while the remaining containers remain
still under the full control of legitimate users [50]. Container runtime engines and
containers can be run in non-root users to reduce conceivable security flaws[89].

Although, in serverless cloud computing, container resources are pre-allocated before
containers are even orchestrated. However, if container resource limits are not pre-
allocated before containers are provisioned, running containers will consume the
resources available on the host when more computing resources are necessary. Since
the host kernel is shared with containers; therefore this could pose issues in multi-
tenancy architecture because the containers and resource isolation are less efficacious
than VMs.
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2.2 Docker
Docker is an open-source software project makes it easier to swiftly develop, test,
package, ship, and run applications across multiple platforms quickly [11]. Developers
can use Docker to package the entire application, including binaries, runtime, and
all dependencies, into a single Docker image. Besides that, DevOps teams can
control infrastructure correspondingly; they manage the applications with docker. The
following are some of the most common Docker use cases:

• Run applications from developers’ local physical or VMs to hybrid, public,
private, or community clouds.

• Fast, consistent delivery of applications using CI/CD workflows.

• Scalable and responsive deployment.

• Using the same hardware to run huge workloads.

Figure 3: Docker Architecture [101]

Figure 3 illustrates the architecture of docker based on the client-server architecture
model. Docker comprises a docker engine in which docker or docker-compose, a
CLI client, works as a client and dockerd, a long-running daemon process, acts as a
server [101]. The Docker client talks with the Docker daemon over a UNIX socket
or network interface via the Representational State Transfer API (REST API) [101].
Users interact with the docker engine executing docker commands. Briefly, we present
various docker components below [7, 10, 11, 49, 101, 102].

• Docker Daemon: Docker daemon handles the API calls and manages docker
objects, including images, containers, volumes, and networks. Users can not
interact directly with the Docker daemon.
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• Docker Client:Users interact with Docker daemon invoking Docker commands
to create and remove images, containers, networks, and volumes. For example,
when a user issues a Docker command, for instance, docker pull, the Docker
client immediately sends the command to the docker daemon, which executes it.
A remote connection between a Docker client and a daemon is also conceivable.
Typically, they reside on the same machine.

• Docker Registry: A Docker registry stores and manages docker images. By
default, images are fetched from the Docker Hub, a public registry, unless a
separate container registry is specified. Commercial examples of container
registries includeDockerHub, Quay, AmazonElasticContainerRegistry, Alibaba
Container Registry, Google Container Registry, and GitLab Container Registry.

• Docker Images: A Docker image is a read-only template that can be built,
providing step-by-step instructions in a Dockerfile. However, a Dockerfile is
written in text format, which typically resides at the project’s root and contains
instructions about commands that a user could run in the CLI using a Docker
client. Docker executes each instruction sequentially in a Dockerfile. Every
instruction given in a Dockerfile creates a layer in the Docker image.

• Docker Container: Users can administer running or stopped containers. Users
can also attach a persistence data volume to a container while running a container
on a separate private network if necessary or even create new images based on
the existing container state.

• Docker Compose: A docker-compose allows users to run multi-container
applications. For example, docker object instructions are written in compose.yml
file to orchestrate multiple containers such as frontend, backend, and database
containers to run an application.

2.3 Kubernetes
Containers are the core technology of serverless cloud computing. Google has been
running applications on containers since it introduced container management tools
more than a decade ago. Google first developed Borg for their internal use to run
containerized applications, including Google Search, Gmail, and Google Compute
Engine. It was built for managing batch jobs and long-running services. Borg
was a robust tool that offered service discovery, auto-scaling, load balancing, quota
management, and VM lifecycle management. Omega was developed to improve the
Borg’s ecosystem, which was a descendant of the Borg, but they had to re-architecture
from the ground up. Google used Borg and Omega for their internal services. After
Borg and Omega, Kubernetes was the third container orchestration tool developed by
Google. A container orchestration tool help to orchestrate a batch of containers and
streamline their life cycles. Most container orchestration tools provide more or less
similar features from a user point of view. Some popular container orchestration tools
are Kubernetes, Docker Swarm, OpenShift, Marathon, and Apache Mesos [44]. In this
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thesis, the instance or container instance refers to the replica in the Kubernetes context.
The author might call it replica, instance, or container instance in the Kubernetes
context throughout the thesis for convenience.
Google createdKubernetes, a technology formanaging and orchestrating containers

[12]. It enables automated deployment, auto-scaling and self-healing, automated
rolling out, rollbacks a deployment to a previous release with zero downtime. After
introducing Kubernetes, its interest grew exponentially among developers. More
importantly, this growing business interest led Google to build its global public cloud
infrastructure. Kubernetes was built based on Borg to ease deploying and managing
distributed complex systems while providing a great developer experience to write
and run containerized applications within a cluster [48].

Figure 4: A managed Kubernetes cluster architecture

A Kubernetes cluster comprises one or more VMs, often three. Within a cluster,
these VMs are known as nodes. Each node within the cluster shares computing
resources, for example, storage. A single node can serve as the master and worker
nodes in a cluster. As a result, the single-node cluster handles all workloads. If a node
dies, the cluster and any services or application workload running on that cluster also
die. One node serves as the master node and the others as worker nodes when a cluster
comprises more than one node. The master node periodically checks the worker nodes’
health. If it discovers any unhealthy nodes in the cluster, no new application workloads
are scheduled on that node. It also determines which cluster worker nodes should be
used for which application workloads. The cluster’s nodes can communicate with one
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another. Workloads for applications, such as containerized apps deployed as Pods, are
hosted on worker nodes [9].
Kubectl is a command-line interface (CLI) client, and operators use it to commu-

nicate with the Kubernetes cluster, mainly through the master node. Kube-apiserver
sits on the master node and receives commands sent to the cluster using kubectl. Then
kube-apiserver passes the requests to the kube-controller-manager, which is in charge
of handling worker nodes operations. Kubelet, which resides on the worker nodes,
eventually receives commands from the master node.
Figure 4 shows a severfull Kubernetes cluster diagram based on the client-server

architecture. The Kubernetes cluster diagram is divided into the control plane (also
known as the master node) and the data plane (known as the worker node or nodes).
Each of the worker nodes has its own Linux/Windows environment. Containers live
within Pods, and Pods live within the nodes. The master node runs all the essential
processes , including Kube API Server, Kube Scheduler, and Kube ControllerManager,
which are required to manage and run a cluster. Additionally, the master node uses
a key-value data store called etcd which is hosted by the master node. In the public
cloud, a serverfull Kubernetes cluster is divided into two parts based on the operational
duties:

• Control planes are managed by cloud providers, which orchestrate the computing
resources for an application along with all other Kubernetes services. Vendors’
responsibility is to keep the master node up and running always.

• Data plane nodes run the applicationworkloads, andcustomers’ duty to configure,
apply security patches, and keep the nodes up to date. At least one cluster
node, typically a VM that runs the container runtime and the Kubernetes node
components, is needed to run the application workloads and supporting services.

Figure 5:Managed AWS EKS running workloads on serverless AWS Fargate

Figure 5 shows the master node running on AWS EKS service and serverless
Kubernetes Pods running on AWS Fargate, with AWSmanaging, provisioning, scaling,
and maintaining the underlying master and Fargate nodes. On the right-hand side, it
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can be seen that customers only need to create a Fargate profile and configure Pods
on which Fargate profile their application workloads must run. Figures 4 and 5 differ
primarily in terms of operational responsibilities and pricing approach, where Figure
5 delegates node administration and configuration to the cloud service provider. We
go through AWS EKS with AWS Fargate in section 3.5 in depth. The following are
some of the core components of Kubernetes [9, 12, 14, 103, 104].

• Pod consists of one or more containers. Containers reside within the Pods.
Containers are co-located and co-scheduled within a Pod and tightly coupled.
When a Pod dies, all the containers within a pod die as well. Before the
application containers startup, each Pod runs the init containers. Each container
in a pod has access to the same resources. Containers within the same pod
communicate using localhost, but containers in different Pods use the pod
IP address. Kubernetes considers Pods to be single-functioning units scaled
according to the configuration. Pods live briefly and can be evicted anytime due
to resource unavailability and the configuration specified on the deployment.yaml
file. By default, the kube-scheduler does not schedule any application deployment
Pods to a master node due to security concerns.

• Kubectl is a CLI tool that allows users to interact with Kubernetes’ API server
via kubectl commands.

• DaemonSet is responsible for running at least one single Pod in some or all of
the nodes. Pods are added to nodes when some workloads run on the cluster.
Depending on the settings, when a node is removed from a cluster, running
Pods are either terminated or transferred to another node within the cluster. If a
DaemonSet is removed, the Pods it spawned are cleaned up.

• Worker Nodes are commonly known as nodes. A Kubernetes cluster consists
of at least one node that serves as both the master and worker node. However, a
single-node Kubernetes cluster is often used for local application development
using Minikube or similar tools. Clusters must have more than one node in any
production-grade cluster environment. Worker nodes are used to host Pods.
Node provides all of the services required to run Pods.

• ReplicaSet guarantees at any given time the specified number of desired copies
of an identical pod running

• ReplicationController assures that a certain number of homogeneous Pods
are always operational at a given time. It also guarantees that the number of
specified Pods in the specification is met by terminating extra Pods or launching
more Pods.

• Deployment ensures that only a certain amount of Pods are down while they
are being updated, thanks to deployment. It ensures that at least 75% of
the appropriate Pods are up by default (25 percent max unavailable). Pods,
Containers, and ReplicaSets are all specified in Deployments. The deployment
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specification specifies the intended state, and the deployment controller gradually
advances the current state in the direction of the intended state. One of the
most significant Deployment use cases is to roll back to an earlier version of the
application deployment.

• Service is an abstraction that exposes the application operating on Pods or a
set of Pods. Each pod gets assigned to an IP address while a set of Pods are
assigned to a single Domain Name System (DNS) name, allowing them to load
balance across them.

• Horizontal Pod Autoscaler (HPA) adjusts the number of deployment Pods,
replica sets, or replication controllers. This enables an application to expand
to fulfill rising demand and scale when resources aren’t required, freeing up
nodes for other uses. The HPA adjusts an application’s resource utilization based
on the predefined configuration of the minimum and the maximum number of
replicas and the metric value of a target CPU or memory percentage utilization
specified in the Kubernetes manifest file. The HPA does not apply to objects
that cannot be scaled, such as DaemonSets.

• Vertical Pod Autoscaler (VPA) automatically scales the CPU and memory
reservations for existing Kubernetes Pods. This increases resource utilization
while freeing CPU and memory for other Pods.

• Cluster Autoscaler (CA) helps to adjust (scale in and scale out based on
demands) the number of nodes within a cluster.

• Pod Disruption Budget (PDB) helps prevent Pods from being removed and
the application from becoming completely non-functional.

• Add-ons enhance Kubernetes functionality. It implements cluster functionalities
using Kubernetes resources such as DaemonSet, and Deployment. The duty
of an add-ons manager is to create and manage add-ons. DNS (serves DNS
records inside cluster), Web UI (Web-based User Interface for monitoring
and troubleshooting any running apps in the cluster), Cluster-level logging
(responsible for storing container logs), and so on are examples of Kubernetes
add-ons.

Kubernetes comprises several objects that collectively compose the control plane
[9]. Some of the important components of the control plane are briefly discussed
below [9, 12, 14, 103, 104].

• Etcd is the primary datastore Kubernetes uses to avoid race conditions and
networking by storing distributed cluster data such as metadata, configuration,
and state data. In a nutshell, it stores and replicates the state within a Kubernetes
cluster. It is a distributed key-value data store.

• Kube-apiserver exposes the Kubernetes API. Its main responsibility is to scale
cluster instances horizontally.
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• Kube Scheduler assigns newly created Pods to a node on which they will
operate. Before a pod is assigned to a node, the scheduler considers a variety
of parameters, including affinity and anti-affinity setups, deadlines, resource
requirements, and inter-workload interference, among others.

• Kube Controller Manager handles controller operations. Although they are
contained in a single binary, the controller processes run as a single process.
Contrarily, every controller process is a unique process. A few controllers are as
follows:

– Node Controller: The main duty is to observe and respond when a node
goes down.

– Endpoints Controller: Creates the endpoints objects, including hooking
Pods and services.

– Service Account and Token Controller: Creates the default accounts
and API access token for new Kubernetes cluster namespaces.

– Job Controller: Notices job objects and creates Pods to complete tasks.

• Cloud Controller Managerwas first released as an alpha release in Kubernetes
version 1.6. Cloud providers can use this component to run cloud-specific code
alongside the Kubernetes controller. This also allows a cluster to interface with
the cloud provider’s API while separating components that deal with the cloud
platform from those that only interact with the cluster.

Node components ofKubernetes run on every node, provide theKubernetes runtime
environment, and maintain all running Pods. Some of the core node components are
outlined below [9, 12, 14, 103].

• Kubelet is a cluster agent runs on each node in the cluster to ensure containers
run within Pods.

• Container Runtime is software responsible for running containers. Container
runtime includes containerd, docker, CRI-O, and so on.

• Kube Proxy runs on every single node within the Kuberntes cluster and
responsible for creating and managing networking rules (IP tables) on the nodes.
This allows Pods to communicate over the network inside and outside the cluster
from network sessions.
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Responsibility Serverfull Kubernetes
Cluster

Serverless Kubernetes

Control Plane Vendor managed Vendor managed
Data Plane configura-
tion andmaintenance in-
cludes OS upgrade, se-
curity configuration

Customer managed Vendor managed

Node auto-scaling con-
figuration

Customer managed (re-
quires calculating the
capacity to house the
workload)

Vendor managed

Pod autoscaling config-
uration

Customer managed Customer managed

Pricing model Compute resources are
billed per second with
a one-minute minimum
usage

Customers never pay
for the node’s comput-
ing, but the Pods run-
time consumption of re-
sources (virtual CPU,
memory) billed by sec-
onds

Monitoring Customers monitor their
nodes resource utiliza-
tion and adjust the con-
figuration accordingly to
accommodate workload

Vendor managed (auto
health monitoring, auto-
healing

Table 2: Notable comparison between managed Kubernetes and serverless Kubernetes

Based on the shared responsibility model, serverfull and serverless Kubernetes can
be distinct based on the responsibilities in Table 2. In contrast to serverfull Kubernetes,
Table 2 demonstrates that customers still have responsibilities for Pod Configuration,
security, and data management in serverless Kubernetes. After a cluster is created,
there is no option to halt it; customers can either delete it or create a new one. On
the other hand, in serverfull Kubernetes, customers can shut down the clusters any
time they want. Both serverless and serverfull Kubernetes serve as CaaS, which is
discussed in section 2.4.2.

2.4 Cloud Computing
Cloud computing is a pay-as-you-go, on-demand delivery of computing resources
accessed over the internet [19]. Customers can consume resources, including data
storage, servers, networking capabilities, software development tools, and services,
but they do not own, buy or maintain any physical data centers or servers. There is not
yet a widely accepted definition of cloud computing [53]. As mentioned in numerous
publications, many have presented their own [17, 18]. The National Institute of
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Standards and Technology (NIST), which is based in the United States of America and
develops standards, recommendations, and guidelines, provided the definition of cloud
computing that has been most frequently cited by scholars [53]. The cloud computing
is a "model for enabling ubiquitous, convenient, on-demand network access to a shared
pool of configurable computing resources that can be rapidly provisioned and released
with minimal management effort or service provider interaction," according to NIST
[66].

Figure 6: A conceptual architecture of cloud computing [47]

Figure 6 shows that cloud computing comprises a wide range of services, including
its underlying physical hardware and networking capabilities that build the infrastruc-
ture. For example, a storage service provides block or file-based services, identity, and
access management services; a data service provides column or record-based services;
and a compute service provides all the computational services [47].
Cloud computing gives consumers access to a wide range of technology, allowing

them to construct nearly anything on top of public or hybrid clouds. They enable faster
provisioning of large-scale on-demand resources. New versions of an application
can be deployed in a matter of minutes. Users are granted different levels of control
depending on the service models. For example, Users do not have access to the OS
when using PaaS, but they do with Infrastructure as a Service (IaaS).
Figure 7 shows different cloud computing service models. Light Grey, Green, and

yellow colored rectangle boxes represent vendor- and customer-managed responsibility,
respectively. Cloud service providers are responsible for securing physical data centers
across different regions. They are also responsible for keeping the underlying hardware
resources secure, up-to-date, and healthy without causing any service interruptions
and for the availability of the computing resources at all times, including during
peak demand, so that customers can conduct business without service downtime.
Cloud service providers and customers work together in a shared responsibility model
to ensure security and adherence to cloud computing compliance standards and
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Figure 7: Different types of cloud computing service model

regulations. Typically, cloud service providers’ responsibility is the security of the
cloud, while customers’ responsibility is the security of the cloud [97]. The whole
cloud infrastructure worldwide and all the services offered and run on top of it are
protected by cloud service providers, including hardware, facilities, software, and
computing resources. On the other hand, customers’ responsibilities differ depending
on whatever services they utilize [97].
Public cloud providers frequently struggle to keep all their services up and operating

worldwide within their vast infrastructure. The authors [47] presented the total hours
of service outages for various cloud providers that occurred from 2009 to 2011, which
directly interrupted a large number of cloud-hosted services around the world. Amazon
Elastic Block Storage (AWS EBS) services outages happened in 2011, 2012, and 2013
and affected a wide range of enterprises [47, 73, 74]. Outages of Amazon EBS, ECS,
and RDS services occurred in 2021 and affected Gitlab, Reddit, Xero, and Imgur,
among other unknown business sites [70, 71, 98]. However, Amazon’s competitors,
Google and Azure Cloud, have also failed to maintain 100% availability for all of their
services [71, 72]. The report showed that various cloud providers failed to maintain
100% uptime for their service offerings in 2020 [100]. Furthermore, the Hong Kong
data center of Alibaba Cloud was nearly 12 hours down in 2015 [78]. This is why it is
recommended to design and implement fault-tolerant systems for production sites to
maintain service availability in the event of outages and, if possible, automatically
failover to a different zone or region, although this is costly. The following sections
briefly present different service deployment models in cloud computing.

2.4.1 Infrastructure as a Service

Infrastructure as a Service is a cloud computing service offering on-demand, pay-
as-you-go basis, computing, networking, and storage resources to consumers [36].
Typically, cloud computing service providers manage the underlying physical infras-
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tructure while clients install the necessary tools, including the OSs, binaries, and
middleware to host their programs or applications. VMs run on shared hardware
resources consumed by many customers. Nevertheless, running VMs on dedicated
hardware is also an option for customers, whereby at the hardware level, dedicated
VMs that belong to other accounts or subscriptions are physically isolated. Also,
they might share the underlying hardware with other VMs within the same account or
subscriptions not dedicated to VMs. In addition to dedicated VMs, most cloud service
providers provide dedicated hosts, which allow customers to build VMs on physical
servers dedicated solely to them. This enables customers to employ server-bound
licenses while adhering to all compliance and regulatory obligations. Dedicated hosts
also provide more control and visibility. Customers use the same physical server over
time and control how VMs are placed on top of it [36, 54].
Many cloud providers represent IaaS as a general-purpose computing resource

with the limitless capability and ability to scale resources, in a matter of minutes, a
large, diverse array of workloads, particularly in case of a sudden spike of workloads.
IaaS is most commonly used for data analytics, data storage, business applications, data
backup and recovery, data warehouse workloads, and dev and staging environments as
well [138].
An IaaS pricing strategy, generally based on the consumption basis, offers gran-

ularity which means customers are charged for the resources they use. However,
consumers willing to use cloud providers’ services for long-term commitment contract
terms- typically from one to three years can get discounts off the regular prices. In
addition, many cloud providers offer unused computing resources at a discount for
spot instances (VMs or servers). Spot instances/virtual servers stop, hibernate, or
terminate when cloud providers need to reclaim the computing capacity or the hourly
spot price rate exceeds a customer’s hourly spot price request [105].
In contrast to traditional computing, IaaS is often more efficient regarding resource

consumption, resulting in significant cost savings. Spinning new compute resources
can be time-consuming because eachVM is bundledwith its OS, adding extra overhead.
Although IaaS abstracts away the management of low-level hardware components,
developers must still maintain VMs, runtimes, binaries, tool security patches, backups,
and OS systems. Customers can preserve control of their servers with IaaS. On
the other hand, customers cannot retain root or superuser access rights in a fully
managed RDS database instance. Managing and maintaining many backend fleet
servers in a large enterprise necessitates many dedicated workforces. Amazon Elastic
Compute Cloud, Alibaba Elastic Compute Service, Google Compute Engine, IBM
Cloud Compute, and Oracle Cloud Infrastructure- Compute are examples of IaaS
services. Auto-scaling may take time to fire up a new VM with the OSs on it during
periods of heavy traffic demand, which is one of the significant drawbacks [138].

2.4.2 Container as a Service

Container as a Service is an efficient and convenient way to deploy software efficiently
and run containerized applications on its own user spaces without managing servers
still being isolated from each other and their host machines. Containerized applications
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run independently with minimal dependencies. Containerization helps developers to
concentrate on developing business applications rather than hurdling with orchestrating
and managing the infrastructure. Developers only need to build the application images
to run on different environments, including Linux or Windows, and container service
providers automatically enable the operation at any unprecedented scale. These features
make containerization applications more portable. Testing applications across several
platforms are cost-efficient. This makes it easier to maintain applications at scale
and enables developers to build and release applications faster without compromising
security. Containers can be easily deployed and run across private, public, and hybrid
clouds due to their portability. Cloud providers usually use container orchestration and
management tools to provision and manage enterprise-level containerized applications
using Kubernetes, OpenShift, Docker Swarm, and Borg. Some commercial CaaS
services are GCP GKE, GCP GKE AutoPilot, and AWS EKS. Besides hosting
applications, CaaS can help with CI/CD to find defects early in the development
process and boost project release velocitywithout fiddlingwith the CI/CD infrastructure
[107].

2.4.3 Platform as a Service

Cloud service providers have dramatically changed how applications are built and run
in cloud computing. In the PaaS model, developers can easily and quickly build and
deploy apps using cloud vendor-supported programming languages or bring their own
programming languages runtimes and frameworks in a fully managed platform without
ever having to deal with the nuisance of constructing and maintaining the underlying
infrastructure [139]. This also includes auto-scaling the computing resources from
zero to planet-scale during sudden traffic spikes without concern about below or
under-provisioning the computing resources. PaaS eliminates the need to manage OSs
and hardware instead of IaaS. PaaS also includes monitoring and server management
that includes OSs, runtime environments, middleware, database management systems,
language stacks, backups, security patches, and upgrades whenever required to ensure
customer services are secured, up-to-date, and working correctly. With PaaS, API
development and management, Internet of Things (IoT), agile development, and
DevOps, cloud-native development is simple since it offers built-in frameworks for
cloud-native app development, supports for CI/CD automation, and a wide range of
popular programming languages, tools, and application environments [34, 35, 139].
The primary benefits of PaaS are the faster time to market business applications, easily
scalable in minutes, almost zero server management for the business apps, almost
low to no risk while testing and adopting new technologies, leverage of SSL/TLS
certificates without incurring any additional cost by default and traffic splitting and
application versioning. In the PaaS computing pricing model, customers only pay for
the consumed resources on a pay-as-you-go basis. Examples of PaaS are Google Cloud
App Engine, Amazon Beanstalk, IBM Cloud Foundry and Code Engine, Heroku,
Azure App Service, and Alibaba Simple Application Server. Overall, PaaS is designed
to eliminate the cost of managing and buying the underlying physical hardware
management, middleware, software licenses, development tools, and database systems
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needed for development. Customers only need to build and manage their applications
while cloud providers manage everything else that sits below the applications [35, 54].

2.4.4 Database as a Service

Database as a service (DBaaS) is a fully managed cloud computing service for
hosting data using a preferred database engine[99]. Customers can use cloud databases
with almost no administrative effort using this model [53]. Customers can set up
the database backup window to take incremental backups regularly. They can use
the maintenance window to apply any minor patches they choose. Besides cloud
services, they can manage databases and database users, monitor performance-related
indicators on the dashboard, and integrate databases with on-premise applications.
Cloud service providers offer multiple levels of security for the managed database
instances, including network isolation and data encryption at rest and in transit using
SSL [99]. With DBaaS, cloud service providers handle the underlying infrastructure,
which includes the data storage, database software, licenses, any needed software,
data replication, automatic failover, minor updates for keeping the service up-to-date
and secured as part of a subscription or pay-as-you-go fee-based pricing strategy[99].
Besides upfront purchases, customers are charged on a pay-as-you-go basis [99].

They can purchase the database instance upfront to commit to long-term contract
terms ranging from one to three years with a discount on regular prices. In the DBaaS
model, customers must pay for the underlying platform if the database instance spans
multiple zones or regions. Examples of commercial DBaaS include Google Cloud
SQL, Azure SQL Database, AWS Aurora, Alibaba ApsaraDB RDS, IBM Cloud
Databases forMongoDB, and AWSDynamoDB. The data stored on the cloud database
relies entirely on the service provider, albeit there is a risk of data unavailability
if the service goes down [55]. With DBaaS, customers can not fully control the
underlying database instance; they are not granted the superuser or root user privileges
in contrast to an on-premise database server or self-hosted database instance on the
cloud where customers have complete control over the database instance with much
administrative work. Some cloud providers allow customers to update the database
instance configurations with higher specifications, for example, adding additional
memory and CPU, if required to handle load after launching the application at a later
stage without provisioning a new database instance which offloads a considerable
amount of database administration work. Cloud providers also provide service level
agreements (SLAs) for database instance availability of 99.95% [109, 110]. Cloud
providers handle the data storage growth incrementally overtime when necessary.
Customers can seamlessly upgrade to the latest supported major database engine
version in just a few clicks.

2.4.5 Software as a Service

Software as a Service (SaaS) offers cloud-hosted, on-demand, ready-to-use complete
software applications, typically web-based applications, mobile apps, or desktop
clients, where customers are charged for a pay-as-you-go basis or a monthly or annual
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subscription fee [92]. As shown in Figure 7, the stack’s top layer is SaaS. In the SaaS
service model, customers receive a fully functional application that requires them to
set up some application-specific settings and control user management [54]. However,
SaaS vendor providers develop and maintain the applications, their deployments,
and underlying infrastructures, everything about the service delivery, for instance,
virtual servers, data storage, middleware, networking, OSs, binaries, and networking
[54]. The account creation and management, granting access to customers, provide
automatic upgrades and security patches to the software are managed by the SaaS
vendors, usually invisible to customers. Depending on the type of application, some
may need some customization work to set up before they can be used, including
ServiceNow or Office 365. The vendors also provide SLAs to meet the agreed-upon
service availability, performance, and security. Customers can also purchase on-
demand resources at additional cost, adding more application users. SaaS can run on
multi-tenant architecture in which one software instance can serve many users. The
main advantage of using SaaS is dramatically lower upfront costs, easy application
access over the internet, offline functionality, seamless integration, rapid deployment,
on-demand scalability, upgrading business solutions quickly and easily, and forecasting
the total cost of ownership (TCO) with greater accuracy. Examples of SaaS are Zoom,
office365, DropBox, Slack, Oracle Netsuite, and Hubspot. According to a Gartner
analysis, SaaS solutions sales will expand rapidly from US$ 270 billion in 2020
to over US$ 332 billion in 2021, with an estimated annual growth rate of over 23
percent [77]. SaaS innovative solutions will drive the growth of artificial intelligence
(AI), autonomous IT management, blockchain, machine learning (ML), chatbots,
augmented reality (AR), virtual reality (VR), and digital assistants to the Internet of
Things (IoT) [92]. Some SaaS vendors migrate their on-premises business solutions to
the cloud without enabling the full advantages of the SaaS cloud delivery model; call
it SaaS. This type of SaaS model has some limitations, including the slow upgrades
process, significant support bills, disconnected systems, high IT operational costs,
performance issues- all of which prevent agility in business and, reduce innovations,
and eventually lead to poor user experiences.

2.4.6 Function as a Service

Serverless cloud computing is a subset of cloud computing, while Function as a
Service (FaaS) is a subset of serverless cloud computing. The event-driven serverless
computing paradigm, or FaaS, focuses on enabling developers to create, deploy,
and run microservices applications as functions without maintaining the underlying
infrastructure [57, 123]. Application code or containers only run under the FaaS model
in response to events or requests [79].
FaaS platforms execute a small piece of code in response to an event after users

deploy code to a serverless platform. An HTTP request, a message in a highly available
(HA) distributed asynchronous message queue service, or a single database query can
all be considered an event. Functions are executed in FaaS in a stateless ephemeral
container, and a single function’s lifetime can be milliseconds. Because FaaS functions
are stateless, state information is not guaranteed between function invocations [79].
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FaaS platforms, for instance, GCP Cloud Functions, Azure Cloud Functions, and AWS
Lambda, deploy, monitor, auto-scale, route traffic, aggregate logs, and manage cloud
functions. FaaS, on the other hand, cannot entirely abstract away all operational logic
from FaaS users. FaaS users can still update the Memory and CPU configurations of
the container [57].
The Faas model ensures high service availability across zonal availability in each

geographic region or multiple regional deployments without incurring additional
costs. FaaS supports seamless integration with cloud services, including backend
databases, application load balancers (ALBs), and data caching. Developers can
upload application source code as a zip file or bring the application container image
[157]. With Faas, microservices application code can execute in parallel, and each
event is triggered separately, scaling precisely in milliseconds to less than seconds,
from a few requests to virtually at any scale per second. Developers can optimize the
compute resources, configuring the proper memory size to reduce the code execution
time. Moreover, developers, if needed, may also keep the functions initialized and
hyper-ready by letting the code execute concurrently to respond in double digits
milliseconds. FaaS can be used for latency-sensitive backend API services, data
processing, batch jobs or scheduled jobs, dynamic web applications, mobile backends,
IoT backend, and machine learning [157].
In summary, distinguishing between different cloud computing service models

might be challenging. DBaaS, PaaS, and SaaS could be serverless since servers
are invisible to customers and not the customer’s responsibility to manage servers
compared to FaaS. CaaS can fall into serverless and fully manage based, for example,
in GCP GKE clusters (fully managed based), customers manage the worker nodes,
while in GKE AutoPilot (serverless, meaning that customers have no access to the
cluster’s node), the vendor manages them. However, the main difference between
these service models is the shared responsibility, mainly operational accountability,
between vendors and customers. Unlike IaaS platforms, serverless architecture offers
substantial compromises in control, cost, and flexibility. With IaaS, consumers pay
for the VMs and other resources needed to run applications from when they are
provisioned until they are explicitly decommissioned, unlike a serverless platform.
Modularizing an application forces developers to consider the cost of their code
instead of scalability, and high availability, which have historically been the main
areas of development efforts. PaaS, like FaaS, abstracts the server management from
customers, but it differs from FaaS because it deploys functions as a deployment unit.
In SaaS, vendors are ultimately responsible for securing their platform, including
physical and application security, which vendors handle. Vendors are responsible
for their data security. They do not own customer data and are not liable for how
customers use the applications. As a result, they must ensure that malicious data is
not exfiltrated, unintended exposure is avoided, and that malware is not introduced.
In contrast to IaaS, CaaS uses containers as its primary resource rather than VMs.
CaaS is an extension of IaaS because customers build, run, and manage applications
on containers without contriving to build and maintain the infrastructure or platform.
However, they yet require to write their application code and manage data. In CaaS,
vendors deliver the container engines, orchestration, and the underlying compute to
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clients as a service, allowing customers to control runtime and scale. Conversely, PaaS
provides the platform to build, execute, and administer their applications while shifting
the server management and scaling responsibilities to the vendors. Another example
would be, after deploying a web application service successfully in PaaS, vendors
provide a domain name with SSL/TLS certificates activated, which vendors manage.
Customers never have to pay for the domain name or SSL/TLS certificates. A custom
domain mapping feature is available from the service itself. In CaaS, depending on
the vendors, customers are given either an IP address to access the service publicly
or a domain name without the SSL/TLS certificates, which means that they must
manage and buy their own SSL/TLS certificates, including a registered domain name
to point the service endpoint to their registered domain. For instance, GCP Cloud Run
provides a custom domain name with TLS certificates; however, GKE AutoPilot only
provides the public IP address when an Ingress service is created. However, AWS
EKS provides a custom domain name without SSL/TLS certificates after successfully
creating an Ingress service with an ALB. In short, PaaS is commonly termed an
application platform, while on the other hand, CaaS is termed a container platform. In
PaaS and CaaS, data and application security is still the customers’ duty.
The services used in the thesis fall into CaaS and PaaS models. For example, GCP

Cloud Run, discussed in section 3.4, falls into a PaaS model, while AWS Fargate, AWS
EKS, and GCP GKE, GKE AutoPilot fall into the CaaS model. The CaaS services are
discussed in section 3.5, 3.6. The relational database services (GCP Cloud SQL and
AWS RDS) utilized in this thesis fall into the DBaaS, discussed in section 3.4.

2.5 Continuous Integration and Continuous Delivery
CI/CD is a collection of processes to automate software development’s builds, tests, and
deployment stages. CI/CD automation reduces delivery times, offers a faster feedback
loop for the software development teams, increases visibility, and enhances the stability
of software with faster release velocity throughout the software development life cycle
(SDLC), which leads to better customer satisfaction and product quality [60]. CI/CD
consists of three steps: (i) Continuous Integration, (ii) Continuous Delivery, and
(iii) Continuous Deployment. In CI/CD, continuous integration is abbreviated as
CI, whereas continuous delivery and continuous deployment is abbreviated as CD
[124]. Some popular CI/CD tools are Jenkins, CircleCI, Gitlab, Spinnaker, GoCD,
Google Cloud Platform (GCP) CodeBuild, Amazon Web Service (AWS) CodeBuild,
CodeDeploy, and CodePipeline [124]. The key concept of CI/CD is to make small
changes to the codebase, build, test, and roll out a new production release faster and
frequently to respond quickly to constantly changing business requirements. This
section briefly discusses the main concept of CI/CD.
In Figure 8, the blue color represents that when a developer commits code changes

to a version control system, a CI pipeline is triggered to build and test the application
code. The green color indicates that build artifacts are stored in an artifact repository
such as JFrog Artifactory, Nexus, or in a cloud container registry and storage service,
including Amazon Simple Storage Service (AWS S3) or Google Cloud Storage. The
yellow hue denotes the deployment of application code to a test or pre-production
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Figure 8: A typical CI/CD process [121]

environment for integration and performance testing. The red color means the code is
deployed to the production environments using an automated pipeline. The deployment
of new versions of code to pre-production or production environments can be a manual
or automated operation, depending on the organization.

2.5.1 Continuous Integration

Continuous Integration (CI) is an automation process in software development to
merge (integrate) application code changes and updates from various team members
in a shared repository. When developers make changes to their application code
before merging it to the main branch, an automatically triggered CI pipeline typically
validates those changes by building the application. In addition, the CI pipeline runs
different levels of automated tests, typically license checking, static code analysis,
and unit and integration tests, to ensure the changes do not break the application. In
most cases, teams configure the minimum threshold for the code coverage for the
repository. If the new changes do not satisfy the code quality, the pipeline status is
shown as failed, which means the code is not ready to merge into the main branch.
This entails testing everything from functions and classes to the various modules that
comprise the application. Continuous Integration helps to detect bugs at the early stage
of software development in each iteration. For example, if the CI pipeline discovers
any application code that breaks the entire or part of the application, CI makes it easy
to detect those bugs at the early stages so that developers can get them fixed quickly
and frequently [124].

2.5.2 Continuous Delivery

Continuous Delivery (CD) ensures the code base is always ready for production
deployment. The CD is the intermediate phase of a release pipeline, which begins
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with CI introduced in the previous section and finishes with Continuous Deployment
described in the next section. During this phase, integration, performance, and
functional testing are performed against applications in a production-like environment.
In software development, various teams work with pre-production environments in
addition to production environments, where CD aids in the effective use of automation
to quickly push code to various environments [124].

2.5.3 Continuous Deployment

Continuous Deployment (CD) is the process of repeatedly building, testing, configuring
and delivering software into production environments or end-users hands in a timely,
efficient, and secure manner. The expanded form of continuous delivery, known
as continuous deployment, automates software release from one version to another,
with the option of adding a manual approval step to comply with regulatory or other
control requirements[60]. Typically, continuous deployment supports the blue-green
and canary deployment strategies, two of the most popular deployment strategies for
minimizing risks and application downtime. The blue-green deployment strategy runs
two identical copies of the production environment; a new version (green) and the
existing (blue) version. This uses the load balancing approach to reroute 100% of
traffic from the existing (blue) one to the new (green) one without any perceptible
change for end-users. The blue environment will be pulled down once the deployment
is thoroughly tested in green. If any incidents are discovered during monitoring, all
traffic is redirected to the blue environment, which is still operational [23]. On the other
hand, canary deployment uses a similar approach to blue-green deployment but adopts
a slightly different method. Canary deployment is a strategy for releasing software
in small, incremental steps to a small group of users or servers. The loadbalancer
distributes a tiny fraction of users traffic to test the new version of the application,
which is delivered to a relatively small percentage of Canary servers. The changes are
rolled out to the other servers once the roll out has proven successful in a subset of the
environment. When a deployment fails, the rest of the servers are unaffected, allowing
the canary deployment more control over the application’s downtime [125].
To summarize, in CI/CD, the CD refers to continuous delivery rather than

Ccntinuous deployment [124]. The significant distinction is that code updates are
available to end-users once all essential tests are passed in continuous deployment.
In contrast, automation pauses when developers push to production in continuous
delivery. The primary duties of CI/CD is summarized below [124, 128]:

• Continuous integration automates builds, tests, and integrates code changes
in a shared repository.

• Continuous delivery automates code changes to production-like environments.

• Continuous deployment automates the deployment of new software versions
to production environments.
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2.6 Software Architecture Patterns
Software architecture patterns aid in defining the properties and behavior of everything
from individual components to the overall system. This defines how a group of
components work together to form the complete system, what role each component
should serve, and how they should communicate. Business boundaries clearly define
the scope of a well-designed software architecture pattern. The software architectural
pattern help in the development of a robust system that is easy to integrate with
other systems and reuse and replace parts of components as required. A well-defined
design pattern can drive productivity and efficiency. In serverless cloud computing,
microservice architecture demands architectural changes to implement Function-as-a-
Service (FaaS) to leverage the benefits fully. Each microservice must be lightweight to
maximize resource efficiency. The monolith and microservice architectures are briefly
discussed in this section.

2.6.1 Monolith Architecture

A typical monolith application has a three-tiered architecture: a user interface, a
backend that handles business logic, and a traditional database that stores user data.
Usually, these layers are owned by different teams [39]. The entire application uses
one type of database engine and one programming language to write the backend
business logic. A monolithic application’s processes are also closely connected,
operated from a single binary, and run as a single service [39]. Within the application,
components have interfaces and can communicate via interfaces, function calls, and
method invocations.
A modularized monolith can assist organizations if each module’s binding context

is adequately defined and parallelism can be achieved. For example, Shopify [94], an
online e-commerce site, demonstrated how it transformed from a typical monolith to
a modularized monolith architecture. They achieved this by extensively refactoring
their code base, allowing for code reuse, identifying dependencies, and isolating them
through decoupling and enforcing the boundaries for each module.

Figure 9:Modular monolith architecture codebase example at shopify [94]

Figure 9 displays the codebase of Shopify before and after it was restructured. On
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the left-hand side, it can be seen that a large monolith codebase was created using
the Model-View-Controller (MVC) design pattern, where the whole application’s
business logic was placed under the controller’s folder [94]. The right-hand side
shows that the entire application was split into smaller components or modules, with
each component having its controllers to handle the business logic. Several processes
are highly dependent on each other, which increases the likelihood of single-process
failure. Neither a single module can be deployed separately nor executed independently.
Nonetheless, many applications start with comparatively smaller codebases at the
early stage with a single, lightweight executable binary entity, but over time, adding or
refactoring business logic becomes more complex. Adding a new technology stack,
for example, a new framework and programming languages or a database engine
becomes very difficult. This complexity becomes a barrier to experimenting with
new innovative ideas. A minor change in the whole application must be deployed,
and it directly affects the entire application, and changes need to be fully deployed to
production. Eventually, this slows the release frequency, increasing the cost to roll out
a new feature to production and stay competitive with its competitor. In addition, this
adds the risk for the application’s availability and the scalability cost since deploying
the whole application requires powerful containers or VMs [93, 95]. Some possible
drawbacks of the monolith are listed below [41, 88]:

• Scaling
Components or sub-components (modules or sub-modules) can only be scaled
by scaling the entire application. Every monolith application must often utilize
the computing resources correctly because a subset of the application may
experience more traffic and others not- due to the end user’s interest. Customers
on e-commerce sites, for example, are more likely to peruse things than to buy
them. Because parts of the system cannot be scaled out or scaled in, this results
in resource underutilization.

• Testing
Testing becomes more difficult and expensive as the code base expands over
time. Typically, each tiny change must pass regression tests to guarantee that
nothing fails before being deployed to production, which can take a long time
for an extensive monolith application.
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• Deployment limitations
The monolith application works as a single unit in the form of a combination of
all its modules, which means every change needs to deploy the entire application.
Modules never work independently, so if something goes wrong that requires the
application to restart, usually restarting time is longer in contrast tomicroservices.
Technically, this means all the users are affected during a restart, and their
sessions are terminated. Running a monolith application in containers can avoid
application downtime in such situations. Overall, deployment duration increases
as the code base increases, as does the container image size.

• Technology restrictions
Upgrading technology stacks is always challenging; it increases risk and costs
because all components, including the database engine, must use the same
technology stack. In most cases, this necessitates rewriting the entire application
using new frameworks or programming languages, which is costly and time-
consuming. This hinders the company’s ability to apply new tools and innovative
ideas to stay ahead of the competition. New tools must be compatible with the
application, which is typically a challenging operation due to the changes that
must be made in the sub-modules.

• Dependency management
With a monolith, components are interdependent, and changing and upgrading
libraries might break other dependent components. Maintaining multiple
versions of a single tool or framework adds extra overhead and increases the
cost of keeping them up-to-date whenever a new security patch is released.

• Maintainability
Large monolithic applications become more complex to maintain over time,
resulting in fewer releases. This has a direct impact on the productivity of
teams. Developers leave organizations often, raising concerns about increasing
the technical debt, and new developers finding their way around a massive
codebase might take a long time. Finally, new problem patches take a long time
to implement because of the code’s complexity and reliance on other libraries.

A monolithic architectural pattern can work well in some circumstances, despite
the fact that it always has limitations. In monoliths, components are not distributed,
unlike microservices. Components can communicate directly among themselves as
they reside within the same application. Unlike microservices, they do not need to
traverse the internet to communicate with other components. Testing, debugging,
and log tracing are much more straightforward than distributed microservices. The
following section discusses the pros and cons of microservices. However, container
monolith applications can empower many benefits because cloud providers offer
powerful container specifications or VMs that can rapidly auto-scale and deploy
applications. Updating a container image is faster and network efficient. Container
boot time duration is smaller and speeds up the release rollout process. Cloud providers
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offer container orchestration and management tools, simplifying container life cycle
management. By fully leveraging the container orchestration tool, deploying a newer
version to production and rolling it out to a previous version using some CI/CD
pipeline became remarkably easy. Monolith architecture can scale horizontally [85].
So this architecture is unable to scale when data volume increases. If one application
runs multiple instances, each instance must access the data, which uses caching while
increasing the I/O traffic and memory consumption. Studies suggested that monolith
can be a good choice for organizations if the below requirements apply to them [45]:

• Team is smaller

• Relatively smaller codebase

• Communication is rather fast and easy

• Geographically, teams are located close to each other

2.6.2 Microservice Architecture

Microservices is a software architectural pattern in which the entire application is
segregated into smaller units of independent service components. These service
components are developed, owned, and maintained by self-contained teams, and they
communicate with each other over the well-defined lightweight REST APIs, event
streaming, and message brokers. Each service component is finely grained with its life
cycles, independently deployable, autonomous, and loosely coupled, which collaborate
in distributed systems. Furthermore, each service can be built on its technology stack
and programming languages, including database systems. Individual microservices
are designed to serve one business logic, and the end users or system can access via
the APIs. Organizations that have adopted the microservices approach can launch new
products and add new functionality or features without touching the entire application,
increasing the software release velocity, reliability, resilience, and safety. In addition,
individual microservices scale independently, reducing the overall cost and waste
associated with the entire application life cycle.
The authors stated that, overwhelmingly, the organizations adopted microservices

approaches to software development to work (WoW) with extensive software systems
in which scaling was a significant factor [42]. They had a great interest in improving
changeability, independent microservices manageability, and simplified testability
but particularly replaceability of each microservice in the entire application instead
of finding a universal process. The authors mentioned the successful microservices
transformation case of Gilt, an online retailer in the fashion industry, which started with
a monolithic web application developed in Ruby on Rails in 2007 [40]. By 2009, their
application could not scale in response to serving on-demand traffic. To overcome this
bottleneck, they split out the entire application into smaller, independently deployable
units by which they were able to deal with the sudden spiked traffic. Today, they run
over 450 microservices in their single application, on which each microservice runs
on multiple separate VMs. Some large organizations and many more have already
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transitioned from monolith to microservices architecture, such as Samsung, Uber,
Netflix, Amazon, Github, SoundCloud, and LinkedIn, as their existing large monolith
codebase limited the rapid feature development, deployment and maintenance, which
became a considerable overhead [47, 68, 69, 75].
According to an AWS whitepaper [96], microservices are not a new concept, over a
decade old concept, in software development and a combination of multiple concepts,
which are listed below:

• Service Oriented Architecture (SOA)

• Agile Software Development

• API or Event Driven Design

• DevOps

In many cases, microservices follow a footprint of Twelve-Factor-App’s design
pattern. In cloud computing, in an advanced serverless microservice architecture, an
application can be built using thousands of microservices with almost zero administra-
tion, which reduces the overall cost without worrying about provisioning, configuring,
and monitoring the underlying infrastructure, lessening the architectural burden,
and simplifies the deployment. Often the greater complexity comes with handling
inter-service communication, auto service health status, and replacement of unhealthy
services but not the services themselves [96]. Some services offer inter-service
discovery and communication so that services can talk to each other in distributed
systems, for example, AWS ECS, AWS App Mesh, and Alibaba Cloud Service Mesh
(ASM). In distributed microservices, data management becomes challenging and has
some trade-off consistency about performance. Typically, business transactions in
a distributed application architecture span multiple microservices wherein a single
ACID (Atomicity, Consistency, Isolation, Durability) transaction might end up with
partial execution. To handle such scenarios, AWS commonly leverages the distributed
saga pattern to redo partially processed transactions. Conversely, a saga orchestrates a
botched transition by orchestrating compensating transactions to reverse the changes of
preceding transactions [96]. Commercial examples of such technologies are AWS Step
Functions, GCP Workflows, Alibaba Serverless Workflows, and so on. Microservices
architecture on public cloud platforms allow development teams to take advantage
of event-driven architecture patterns which complement cloud-native application
development.

• Technological freedom
An oversized system comprises many microservices where many, if not each, are
built using different technologies. This brings much flexibility to choosing the
right tool without sticking to a more standardized technology stack system-wide.
When a particular stack or microservices performance hinders the business
value, organizations can use a completely different technology stack to achieve
the performance boost. Technology is growing faster; therefore, to stay ahead
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of competitors choosing the right tool can help boost performance, better user
experiences, reliability, software security, and less time to roll out the product to
markets. Trying out and adopting new tools or technology might bring multiple
degrees of risks and overheads. On top of that, teams associated with developing,
testing, and deploying microservices need coaching and training; in typical
cases, the learning curve is significantly steep. For example, if needed, teams can
implement a data analysis service component using Python instead of Julia or R
programming languages. Moreover, each service can have its database engine,
where one could benefit more from a document andMemcached database and the
other from an RDS and Redis. Often we have experienced organizations sharing
the same backend database for all their microservices for a single application.
Still, the preference is to keep one database for a single microservice.

• Resilience
In a microservices architecture, if one or more components or sub-components
of a system stop working, the rest of the system can still work, unlike in monolith
architecture. It is possible to run a monolith system on different machines to
eliminate the chance of failure. Contrarily, we can leverage microservices to
create fault-tolerant systems, and guarantee high availability regarding networks,
VMs, and container failures.

• Flexible scaling
Users deploy and run smaller systems units independently with microservices,
allowing us to run services on less powerful containers, VMs, or hardware.
This allows organizations to optimize costs efficiently and effectively while
provisioning services at scale on demand. This ensures that they are not
provisioning containers or VMs with extra CPU, memory, and storage resources;
in a situation where it is unnecessary. One of the most significant advantages
of scaling in microservices is that it only scales part of the systems based on
the traffic pattern without scaling the rest of the system. On the other hand,
a monolith architecture scales the entire application, which requires powerful
computing resources and is costly.

• Composability
With a microservices system, composability reduces the overall system devel-
opment time, allowing compound benefits of function reusability over time
by outside parties or new systems. A Monolith system limits composability
because it offers a single interface to be consumed from the outside.

• Organizational alignment
A common problem with managing large codebases across different teams in
different geographical locations brings extra challenges, risks, and overhead. It
is easier for smaller teams co-located to work on a smaller codebase while being
more productive. With a microservices approach, teams work in smaller code
bases of a system. Typically, small cross-functional agile teamwork often leads
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to better team throughput. Co-located teams, if needed, can switch ownership
to different services between teams.

• Optimizing for replaceability
In a large organization, the code bases of a monolith system grow over time,
which usually introduces dependencies. Nonetheless, team members leave the
company as knowledge gaps widen, and no one wants to touch the codebases to
refactor to improve the logic. The codebase for a microservice is supposed to be
smaller, so the hurdles to modifying or rewriting the entire codebase are low.

• Ease of partial deployment
In practice, monolith system deployment introduces significant impacts and high
risk and sometimes requires service downtime if the platform lacks support.
Ideally, the entire application must be rolled out to production for a new revision
release if a single line of code changes the entire code base, which is expensive.
In a microservices architecture, changes are only deployed to its associated
services without touching the rest of the system, which reduces the cost and
deployment time. If a service fails after deployment, it can be rolled back to
the previously deployed version faster, in typical cases, in just a few minutes.
According to the author, a German company, mainly working in digital media
named Haufe-Lexware, was able to reduce the platform downtime to thirty
minutes from five days by automating the problematic areas of the deployment
process during a transition period from monolith to their microservices journey
[39].

Figure 10:Monolithic and Microservice Architecture

Figure 10 illustrates monolithic and microservices architecture differences. It can
be seen that the monolith has three layers: a frontend, a backend layer (the business
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logic layer), and a data layer [45]. The data layer communicates with the persistent
backend database. However, each microservice can have, optionally, its database
engine, which means developers can change any table structures and database schema
within a single microservice without depending on other microservices.
The author stated that there are two different kinds of challenges to tackle while

adopting microservices; one of them is the technical challenges, and the other one is
the organizational challenges [40]. A microservice architecture that is too fine-grained
can cause performance degradation because of the added network latency.
Reusing code in distributed microservices can be challenging because each service

has its repository. The options are to copy code, push the shared library for standard
functionality into a service, or split libraries. On the other hand, monolith simplifies
code reusability itself. Monitoring microservices is more complex as opposed to the
monolith. Developers and DevOps teams must choose the right tool to aggregate
monitoring metrics logs from each distributed microservices for the infrastructure and
the application logs. DevOps teams also need to deal with tracing information across
multiple microservices [39]. When a client requests a service, it generates a correlation
ID (also called request ID) [87]. This correlation ID must be passed into the message to
all downstream services that handle the request. Microservices run multiple copies of
each service instance, including the read replicas of the database instance. This means
DevOps teams have more services to maintain. Introducing different programming
languages and frameworks (Polyglot) for different microservices adds additional
costs in development and maintenance. Distributed services run over the network
independently to ensure minimal latency, but fast and reliable network connections are
required. On top of that, data security at rest and in transit (data encryption) is essential
to avoid any security breaches across distributed services. Function-as-a-service
microservice patterns can not avoid code duplication. In microservices, systems
testing is complex compared to monolithic applications. Some organizations might
end up implementing monolith in distributed systems in the name of microservices;
often, organizations need to define a well-defined bound context for each service. Many
cloud providers offer DevOps solutions that can integrate into other cloud services,
abstracting the complexity of setting up a CI/CD pipeline and helping organizations
have a faster deployment process for monolith and microservices architecture.
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Feature Monolith Microservice
Partial Deploy-
ment

Not possible. The entire ap-
plication has to be deployed

Possible. Each microser-
vice can be deployed inde-
pendently, regardless of the
entire application

Release Fre-
quency

When the codebase grows,
release frequency reduces,
but in the initial stage, it is
faster

High release cadency but
can be slower in the initial
stage

Technical debt in
codebase

As the codebase grows, so
do the technical knowledge
gaps

Minimizes technical debt.

Resilience If a single error occurs, the
application stops working

If one service stops work-
ing, the rest of the services
work

Performance No communication over-
head, but existing technol-
ogy might underperform
due to tools limitations

Several tools boost perfor-
mance, but communication
adds overhead because of
their distributed nature.

Refactoring code-
base

Refactoring is time-
consuming and expensive
due to the tightly coupled
codebase. One small
change can break other
parts of the codebase

Refactoring is easier since
the codebase follows the
Single Responsibility Prin-
ciple (SRP)

Choosing the
right tool

Hard to replace an exist-
ing programming language
or framework without a big
rewriting as the codebase
grows

Changing to a different
programming language or
framework is relatively
easy because of the small
codebase

Scalability Part of the application can-
not be scaled. The entire
application has to be scaled

Scalability can be per-
formed on a microservice
basis

Monitoring Easy to trace calls andmon-
itor from one place

Different services need to
be aggregated in a central-
ized monitoring system

Integration with
external systems

Difficult. Much easier

Testability Easy More complex
DevOps Skills Some basic levels of De-

vOps skills are required
Good DevOps skills are re-
quired

Table 3: Comparison between the monolith and microservice architecture
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Table 3 shows the pros and cons of the monolith and microservice architecture
styles. Based on the data in Table 3, we can draw the conclusion that a larger codebase
is better suited for the microservice architecture. On the other hand, monolith might be
a better fit for a smaller codebase if the codebase remains that way for many years [45].
The following chapter briefly covers the pros, limitations, and application scenarios of
serverless computing. We also recapitulate the container-level services utilized in this
study.
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3 Serverless Cloud Computing
This chapter introduces serverless cloud computing and some of its widespread use
cases, benefits, and drawbacks. We cover the GCP Cloud Run’s core values and
functionalities in section 3.4. Section 3.5 discusses the AWS EKS service with AWS
Fargate. GKE AutoPilot was covered in section 3.6. Furthermore, at the end of section
3.6 we highlighted and contrasted the features of AWS Fargate, GCP GKE AutoPilot,
and GCP Cloud Run exploring their pricing policies.
Defining serverless succinctly is tricky in a concise manner because the definition

may coincide with the definitions of CaaS, PaaS, DaaS, and SaaS [38]. Based on the
various degrees of developers’ duty and authority over the infrastructure, serverless
computing can be succinctly explained. The term serverless computing (commonly
known as serverless) refers to a cloud computing execution paradigm in which end
users simply delegate the operational responsibilities to a cloud service provider, for
instance, the underlying computing capacity, high availability, creating on demand
resources, elasticity, other resources [38]. Serverless does not imply that no servers
are running; instead, it defines customers’ experience with such servers, as servers are
not visible to host their application code [79].
The underlying backend infrastructure, maintenance of servers or infrastructure,

and any operational tasks like provision, deployment, schedule, scale, backup data,
and applying security fixes are the responsibility of cloud service providers. Without
worrying about managing servers, serverless allows developers to spend more time
optimizing and developing the application code. Because serverless requires no
extensive knowledge of the underlying infrastructure, developers can undertake
operational tasks in smaller businesses. However, they may set up, configure, and
manage the automated CI/CD pipeline as part of the operational tasks.
With serverless, the cloud service provider’s responsibility is to guarantee that on-

demand computing resources are accessible at any scale to run customer applications
or respond to events. They also need to ensure that auto-scaling scales resources up or
down in response to the sudden spike or decreases in incoming traffic surges.
Customers must pay for the consumed runtime resources while running the

application runtime never pay for idle computing capacity. However, when the
application receives no incoming requests for a brief spell, they need to scale resources
to zero [126].
In conclusion, serverless technology frees businesses from the burden of managing

servers, allowing them to focus on developing interesting, creative ideas, creating
cutting-edge applications at a reasonable cost, and releasing them frequently to the
market sooner and at a more affordable price, resulting in increased turnover, and
enhancing customer happiness [67].
The author wants to clarify that cold start and cold start instances refer to the same

thing, while warm instances as warm start instances in this thesis. This is used for the
convenience of addressing them the same way.
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3.1 History
In 2006, AWS launched the beta version of EC2, a service offering for VMs [153].
Soon after, in 2008, Google launched its first product, Google App Engine (GAE)
[154]. GAE is a fully managed PaaS-based service offering that abstracts away the
underlying server management for the users [59, 155]. As a result, Google became
the first cloud provider to allow developers to run code on their platform without
having to manage servers. With AWS Lambda, AWS launched the first serverless
offering in 2014, making them the industry’s first serverless computing platform. In
2016, after the introduction of AWS Lambda, serverless computing began to gain
popularity in the software industry as a way to construct modern web applications.
Following AWS, several cloud service providers entered the serverless computing
field with their offerings. Initially, serverless computing offerings were confined to
FaaS. Serverless is expanding its application spectrum with serverless offerings from
cloud vendors. Microsoft Azure Cloud Functions, GCP Cloud Functions, GCP Cloud
Run, AWS Fargate, and IBM Cloud Functions are examples of commercial serverless
computing solutions. Apart from commercial serverless offerings, there are a few
popular open-source serverless solutions for running workloads in private clouds, such
as Kubeless, Fission, Knative, and OpenFaaS [79].

3.2 Advantages and Limitations
Themost important perks and limitations of using serverless architecture are introduced
in this section. The following are some of the most commonly cited advantages of
serverless computing [4, 38, 61, 127].

• Efficient resource utilization
Resource consumption is more efficient because container lifetimes are often
shorter in serverless platforms. There is no need to reserve computing resources
for a specific consumer when there are no active requests because resources are
allocated on demand. On the other hand, service providers share computing
capacity between consumers and switch container instances or workloads inside
the distributed cluster. On the converse, research reveals that a large portion of
computing resources is underutilized [80]. For example, resources are allocated
as needed to handle tens of thousands of inbound requests over some time.
Furthermore, resources are assigned elsewhere when no active requests are
processed. In traditional IT infrastructure, this would be a substantial overhead
because the ALB might need to be capable of handling tens of thousands of
concurrent connections with a small number of servers. A standby ALB could
always operate in typical IT infrastructure, even if there is no incoming traffic
to provide automatic failover capabilities, which wastes significant computing
power. Serverless computing can potentially make computing "greener" by
reducing the amount of computing power wasted on idle capacity.

• No compute time cost
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One of the notablemonetary advantages of serverless computing is that customers
never pay for running computing resources, such as containers or VMs, when
the application is idle or not running. Furthermore, no costs are involved in
provisioning, creating, and terminating new containers to scale the application,
allowing users to scale up and down from zero to thousands of containers and
vice versa with minimal labor and expense. There are no costs associated with
serverless database services if the database is inactive.

• Effortless auto-scaling within seconds
Applications hosted on serverless platforms can scale and heal automatically
within seconds without user input. Users no longer need to consider how many
application instances must run or how to handle load balancing when adjusting
application instances. In the event of a spike in inbound traffic, the application
automatically scales up instances required to cope with the increased demand.

• Zero server Ops
Serverless abstracts server management from the users, allowing them to
concentrate on adding more business logic and tightening the application
security.

• Minimal operational costs
An application employing serverless architecture minimizes operational costs
because there are no servers to manage. Furthermore, in smaller businesses,
developers can handle operational tasks combined with their development tasks
without the help of a specific team of system operation engineers.

• Fast to market and stay competitive
Using a serverless microservices architecture with rich, intuitive features at
more affordable prices, organizations can construct and market faster customer-
oriented services focusing on innovation and customer satisfaction, resulting in
increased revenue and enduring client relationships. This is because releasing a
new application does not include uploading source code to servers or configuring
the backend. In a matter of minutes, a new revision of the application can be
rolled out if a application new functionality added or updated. Developers can
update code all at once, albeit doing so is unnecessary. This enables businesses to
adapt to remain viable and provide the same level and QoS as their competitors.

• Cheaper alternative
An application using serverless architecture provisioning resources on-demand
and consumers paying for a pay-as-you-go basis, when appropriately managed,
can reduce overheads significantly in any organization. Serverless offloads
infrastructure management and reduces the workload of system operations
engineers, allowing them to increase productivity and streamline operations
without spending much money upfront. According to the author’s findings, in
41% of use cases, the cost is more important than the performance. Compared
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to performance-focused use cases, cost-focused use cases are twice as famous
(23 percent). Cost and performance are equally important in 15% of the use
cases. Finally, for 22% of use cases, the trade-off remains unknown [46].

Because serverless computing has many advantages, businesses are adopting it
for many applications. However, there are also some applications where serverless is
not a good fit or where technological and commercial trade-offs must be made. The
drawbacks of employing serverless computing are outlined below [4, 38, 61, 127]:

• Introduces security concerns
With serverless computing, resources are shared between consumers (or multi-
tenancy), meaning that code from other consumers is executed on a single server
at a given period. Unless multi-tenant servers are configured correctly, data
exposure is risky.

• Challenges in monitoring and application debugging
Debugging is tricky as the backend processes are invisible to developers, and
the application is split into functions.

• Not ideal for long-running batch process
The cost of hosting an application with long processes in a serverless infrastruc-
ture may be higher than in a traditional one because vendors bill by the time code
runs. Therefore, running long-running batch jobs in a serverless architecture is
not recommended because the cost could be too high.

• Performance may be affected due to startup latency
With no constant traffic pattern, serverless apps will not always run. In such
cases, serverless applications need a cold start which means that a container
instance must be created to process the request, as no instances are available to
do so. As a result of the cold start, the application’s performance may suffer, and
the end-user may encounter some latency. A delay of milliseconds to seconds
is expected during a cold start since it has to create on-demand resources and
initialize the application code in newly created containers. Even while the delay
would be insignificant in long-running batch activities, this directly impacts the
user experience, whichmay not be acceptable for time-sensitive applications such
as financial trading applications, mobile apps, or the application backend. The
pattern of incoming requests determines cold starts; for example, applications
with consistent incoming requests are unlikely to experience cold starts. On
the other hand, cold starts are more likely to occur when traffic patterns are
irregular or shift significantly.

• Vendor lock-in
The more backend services a vendor is given access to, the more reliant the
application becomes on them. It may be more difficult to switch vendors after
adopting a serverless architecture with just one provider, especially if they each
have slightly different capabilities and processes.
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• Lack of uniformity, guidelines, best practices, and documentation Because
serverless is still a novel idea, shortage of expertise and knowledge may raise
hidden issues structuring the source code and repository management. However,
asmore research is undertaken and serverless computing becomesmore common,
the situation is improving.
Aside from the disadvantages mentioned above, an IBM serverless study
revealed certain hurdles in using or implementing a serverless [67]. When asked
what obstacles their organisations faced in adopting or expanding serverless
computing, more than half of the users highlighted a number of issues, including
[67]:

– Security concerns
– Complexity of serverless architecture
– Difficulty predicting performance in production environments
– When developing serverless applications, there is uncertainty about the
time and expenses associated.

– The cost of running applications with long-running processes is higher.
– Determining which applications will profit from serverless frameworks is
challenging.

Furthermore, when non-users were asked about their barriers to serverless
adoption, about 25% of them concluded the following [67]:

– Insufficient advocates in the organization
– Uncertainty over the adoption process is involved regarding time and costs
– Necessary security requirements are not in place
– Learning curve is quite steep and complex for serverless architecture
– Difficulty in managing, sharing, and securing data
– Lack of serverless expertise in the organization
– Moving applications fromdevelopment and testing to production is difficult.
– There is no clear mechanism to calculate Return on Investment (ROI) or
track specific advantages.

In conclusion, the IBM survey found that despite its shortcomings and challenges,
users and non-users of serverless architectures concur that the technology has much to
offer. Additionally, both groups believe that serverless application development will
advance substantially during the next two years in their respective businesses [67].
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3.3 Use cases
Serverless is well-suited for a wide range of workloads. Serverless and traditional
systems are interchangeable in terms of functionality. Other non-functional variables
influencing when to utilize serverless include the level of control over operations
necessary, cost, performance, and the nature of the application workload. However,
serverless is suitable for the below-listed workloads [37]:

• Unpredictable variance in scaling due to sporadic or irregular inbound traffic
patterns.

• Asynchronous and concurrency is a requirement

• Stateless and ephemeral workload with shorter startup times.

• The ability to boost developers’ productivity and release new software versions
multiple times daily.

• Microservice workloads that execute a series of steps

• Scheduled batch jobs require intense parallel computation, IO, or network access.

• Mobile backend and web apps with HTTP REST APIs

• The ability to respond to messages and scale up or down as needed, for instance,
Sensor data for IoT.

• Stream processing workloads

The workload types listed below for serverless computing might not be appropriate:

• Tasks that run for a long time and consume many resources. AWS Lambda,
for example, allows users to allocate up to 10GB of memory and six vCPUs
per container. GCP Cloud Run, on the other hand, limits each container to four
vCPUs.

• If latency in seconds is not accepted due to cold starts.

The first example would be image and video manipulation to boost performance
for any service. For example, when users upload images or videos to any web service,
a serverless function is triggered to resize images, provide dynamic thumbnails, and
adjust video transcoding for any target devices. Additionally, when users upload
artifacts to cloud storage, a FaaS function can help perform a security scan to detect
malicious objects. Other use cases include when users upload HR data to some
cloud storage. A web application with erratic incoming traffic request patterns is
another example. In a serverfull Kubernetes cluster, for example, worker nodes (VMs)
run continuously (unless otherwise defined) even if no incoming traffic is received,
implying that users are charged for the computing resources they consume. Users do not
need to provide worker nodes in serverless Kubernetes clusters to deploy application
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Pods, meaning they only need to pay for the time; pods consume computing resources.
Cloud service providers handle provisioning, maintaining, and administering the
needed nodes (VMs) within the clusters to allocate Pods on demand. The third
example would be to create cloud-based data processing apps that transform and store
unstructured data as it arrives. From Google Cloud sources, transformations can be
triggered. An event is triggered and delivered to a Cloud Run service when a .csv file
is generated. The data is extracted, structured, and stored in a BigQuery table [136].
IBM’s and Insights MDI’s survey reports showed that more than 1200 IT experts

from mid to large-sized businesses, including developers and executives, participated
[67]. According to the report, 37% of users utilize serverless for customer relationship
management systems. This is nearly twice as much as they used on the supply chain
(20%) and just over 1% more than they used on data analytics and business intelligence
(36%). Serverless was used by 30% of users for databases and HR applications, while
finance stood at 31%, just 1% higher [67].

3.4 GCP Cloud Run
GCP Cloud Run is a serverless container platform allowing developers to develop and
deploy containerized applications at any scale without managing servers. Developers
can write applications in any language of their choice. Although they can bring
any libraries, dependencies, or OSs with the applications, they can also bring their
binaries. Cloud Run provides incoming traffic management capability when deploying
a new application version. It allows developers to gradually release a new application
revision, divide the traffic between revisions, and even roll back to an earlier iteration.
Cloud Run delivers a stable Hypertext Transfer Protocol Secure (HTTPS) Uniform
Resource Locator (URL) after the initial deployment of a service. Each Cloud Run
service has a secure HTTPS URL. Furthermore, it manages and controls Transport
Layer Security (TLS) and automatically renews the certificate before it expires [136].
Users can choose a particular region but not the zones to deploy a service using

Cloud Run. A region may consist of one or more zone. Data and traffic are load-
balanced automatically across zones as necessary within a region. Each zone has a
scheduler to provide auto-scaling capabilities. In case of a zonal failure or outage, a
scheduler will allow the extra computing capacity in-zone as it is aware of the load
received by the other zones. Data plane operations are unaffected by zonal failures
since Cloud Run stores data and the deployed container regionally. In the case of a
zonal failure, traffic is automatically redirected to the other zones. Because Cloud Run
does not replicate data across regions, in the event of a regional outage, the Cloud Run
service will be unavailable until the problem is rectified [132].
The developer workflow for Google Cloud Run may be broken down into three

simple steps. First, developers write the application in their preferred language. The
application must have an HTTP server to start the application. Second, the application
must be built and packaged as a docker container image. The container image is then
deployed to Cloud Run as the third and final step. Cloud run creates a secure invokable
HTTPS service endpoint and a unique resource name [52].
The GA of the second-generation execution environment was made available by
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Figure 11: GCP Cloud Run developer workflow [52]

Cloud Run on December 6, 2022 [86]. By default, Cloud Run services run in a
first-generation execution environment for the cloud run services. It emulates most
OS calls but not all and allows for faster cold start times. However, users can change
to a second-generation execution environment if they want. Nevertheless, the jobs that
run on the second generation can not be changed for the cloud-run jobs [135].
After assessing the advantages and disadvantages between the first and second-

generation execution environments, we presented them below as highlights [134]:

• We can use less than 512 MiB of memory, but a second-generation execution
environment requires at least 512 MiB.

• We anticipate a massive cold start due to infrequent traffic, necessitating frequent
scaling out from zero. Second-generation execution environments are faster
under steady load but take longer too cold start than first-generation execution
environments.

• The second generation performs better and supports a network file system than
the first.

The key advantage of adopting the first generation over the second is the faster
cold start time, which reduces container provisioning time while dealing with burst
traffic. The author extensively researched GCP Cloud Run to comprehend its salient
characteristics fully. The following is a summary of the key feature findings:

• Concurrency: Developers can change the concurrency configuration. A
container instance can receive up to eighty concurrent requests simultaneously
by default. In case of high resource utilization, for example, when a container
CPU is heavily used, Cloud Run may not send requests to a container instance
to avoid performance degradation. Developers can also limit concurrency by
configuring one request to be received at a time by a container instance in the
following situations where [114]:

– An application is CPU or memory-intensive, where each request consumes
the available CPU or memory.
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– An application cannot handle multiple requests concurrently, for example,
if it depends on the global state where multiple requests can not be shared.

Because many containers must be created to manage the abrupt traffic surges,
setting concurrency to onewill likely harm the application’s scaling performance.

Figure 12: Comparison between different level of concurrency [114]

The left-hand side of figure 12 shows that when concurrency is set to one, each
request is handled by one container instance. On the right-hand side of the
figure, it displays that one container instance can handle three simultaneous
incoming requests. This figure shows how concurrency settings are crucial in
dealing with incoming requests.
A case study demonstrated how concurrency settings to different numbers for
the same Cloud Run application affected the total number of container instances
needed overtime to handle requests.

Figure 13: Comparison between different concurrency settings [114]
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In figure 13, the green line represents total requests over time, while the blue
line shows the total number of container instances needed to handle the requests.
To experiment, 400 clients made three incoming requests per second to an
application running in GCP Cloud Run, in this case, study [114]. We can see
that when concurrency was set to a maximum of one, hundreds of containers
were needed to handle requests. When concurrency was set to eighty; however,
comparatively fewer container instances were required to handle the same volume
of incoming requests, as shown in the right hand.

• Container instance security: A Cloud Run container instance is sandboxed
using gVisor [116]. Studies show that gVisor is arguably secure compared to runC
(runC is a lightweight container runtime) [51]. GVisor is an open-source project
developed in the Go programming language, which incorporates an additional
layer of segregation between the host OS and containerized applications [115].
GVisor works as a guest kernel, intercepting application system calls without
virtualized hardware translation. User Mode Linux (UML) and gVisor are
similar, but UML internally virtualizes the hardware, leaving a fixed resource
footprint. GVisor offers a customizable resource footprint depending on threads
and memory mappings while reducing the fixed cost of virtualization [115, 116].
This could decrease performance for system call-intensive applications. GVisor
currently does not support all system calls for the amd64 architecture, and some
syscalls have partial implementations [117].

Figure 14: A gVisor sits between the application and the host kernel [115]

• Container instance auto-scaling and self-healing: CloudRun scales container
instances by default, depending on the incoming requests. However, developers
can specify the number of mins and max instances when configuring auto-
scaling. The min-instance and max-instance are both set by default to zero and
three, respectively. Users can increase the max-instance number per service
basis by editing Quotas. Configuring the max-instance number ensures that the
number of container instances must not surpass the upper limit at any given
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time during the traffic surge. However, in some cases, Cloud Run may launch
slightly more container instances, for a short period, than the given maximum
instance value, for example, during rapid traffic surges. Cloud Run will replace
a failed container with a new instance if it fails. Cloud Run queues incoming
requests for up to ten seconds if there are not enough container instances to
fulfill the traffic demand. When no instances become available to handle the
queue request during that period, the request fails with an error code of 429 on
Cloud Run. By default, a Cloud Run container instance allocates CPU resources
only when processing a request, and users are charged per request. Although
there are no requests to handle, users can allocate CPU resources for containers
until their lifecycle. This would incur costs for the users as long as a container
instance exists [118].
Request timeout is set to five minutes by default, but it can be increased to
sixty minutes, implying that a response must return within that time frame. The
request is completed if a response is not returned within the timeout frame and
an HTTP error code of 504 is issued. For example, Cloud Run initiates a new
request if a client reconnects due to a client or Cloud Run failures. Cloud Run
does not ensure that the client will connect to the same container instance of the
service [131].
Cloud Run terminates a container instance if it has not received any traffic for a
maximum of 15 minutes. Before termination, the grace period often prevails
for up to 15 minutes [118]. This reduces the negative impact of cold starts. A
cold start means no operating containers receive inbound requests to invoke
functions or API calls. While inbound requests are queued for ten seconds,
one or more containers must be created. This adds overhead, primarily latency,
which can negatively impact the end-user experience. It is known that large
container images can raise security concerns by including more than the code
requires. However, the size of the container image has no bearing on the cold
start or request processing times, and it does not count against the containers’
available memory [119].

Figure 15: Comparison between Cloud Run’s cold start and warm instance
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In figure 15, the author demonstrated that container image size has almost no
impact on how long it takes to complete a cold start [108]. The cold start duration
was almost identical between a Go container image size of 8MB and a NodeJS
container image size of 900MB. It is worth noting that the same amount of
memory and vCPU resources were allocated for Go and Node.js containers [81].
However, developers can reduce latency by keeping the smallest instances warm.
A warm container instance is kept on standby to handle incoming requests,
resulting in some consumer expenses, although no requests are handled. A
warm start (sometimes refer to hot start) means that it does not recycle prior API
calls or function invocations, and it is ready to receive incoming client requests.
While cold starts save money, they introduce latency to the request-response
process. The following factors, for example, impact the number of container
instances scheduled to accommodate a sudden spike in incoming traffic [118]:

– CPU utilization of existing container instances. If a container instance is
60% utilized, a new one is usually added to the container fleet.

– Minimum number of container instances
– Maximum number of container instances
– Number of concurrency set

• Pricing models: There are two different types of pricing policies a customer
can enable:

– Request based: Customers pay a per-request fee even though no incoming
requests are processed, and the CPU is not allocated.

– Instance based: Customers never pay for a per-request fee; instead, they
pay for the entire lifetime of an instance, and the CPU is always allocated.

This thesis deals with an instance-based pricing model where customers are
billed for only the resources they use. Cloud Run charges customers past the
free tier usage to the nearest 100 milliseconds only for the allocated CPU and
Memory when [120]:

– The container instance is starting.
– The container instance is shutting down gracefully, handling the SIGTERM
signal. New incoming requests are routed to other container instances
when a container instance needs to be shut down, and requests currently
being processed are given time to complete. Before being shut down, the
container instance receives a SIGTERM signal announcing the start of 10
seconds with a SIGKILL signal.

– The Container instance processes at least one request or event.

In addition to that, customers are also charged for the total number of requests
as well as for the network egress [120]. However, they are not billed for during

52



Figure 16: GCP Cloud Run Pricing Model [120]

the container instance initialization and termination phase, as shown in figure
16. They are only charged for the time it takes to complete the request. If
CPU resources are always allocated, they are invoiced with a lower rate pricing
method for the whole life of each container instance, from when it is started to
when it is terminated, with a minimum of one minute. They are not charged if
Cloud Run decides to leave the container running when it is not serving requests
for some reason.

3.5 AWS Elastic Kubernetes Service with AWS Fargate
The AWS EKS, a serverfull Kubernetes service, helps run, manage, and scale
applications in the cloud and on-premises while avoiding a single point of failure
(SPOF). It automatically scales up and down applications and runs in a HA architecture
across multiple availability zones (AZs), with networking and security integrations.
The AWS service provider automatically deploys all security patches to the cluster
nodes to safeguard the cluster environment. The etcd persistent layer and theKubernetes
API servers’ scalability and availability are guaranteed by AWS for each cluster. A
single-tenant Kubernetes control plane is present in each cluster in Amazon EKS. The
infrastructure for the control plane is not shared between clusters or AWS accounts
[129]. Amazon EKS distributes the Kubernetes control plane across three availability
zones (AZs) to offer high availability, and it detects and replaces any control panel
nodes that are not functioning properly. At least two API server and three etcd instances
are deployed across three Availability Zones on the control plane (AZ) [129]. Amazon
EKS offers a Service Level Agreement (SLA) for the API server endpoint availability
[122]. Using network policies offered by Amazon VPC (Virtual Private Cloud), an
Amazon EKS cluster enforces traffic limits. Unless they are allowed with Kubernetes
Role-Based Access Control (RBAC) policies, components of the Amazon EKS control
plane do not have the authority to view or receive communication from other clusters
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or AWS accounts [129]. A VPC is a virtual network logically isolated from the
other VPCs, allowing customers complete control over virtual network configuration,
tightening security, and restricting network connectivity to and from the VPC.
Amazon EKS supports bothAmazon EC2 andAWSFargate for running Kubernetes

applications. In contrast to self-managed EC2 nodes, AWS Fargate offers serverless
computing for containers, enabling customers to run application workloads without
managing worker nodes. AWS EKS allows customers to operate OS-dependent
applications on the same cluster by supporting Windows nodes. Windows servers run
on the node to enable running Windows applications as worker nodes alongside Linux
worker nodes. Linux worker nodes run on Linux servers. A container base image
runs on a Windows server, so a Windows application can be deployed to a Windows
container. This thesis project operates with Linux-based containers, so discussing
Windows containers is out of the scope.
AWSFargate offers on-demand compute capacity for containers runningKubernetes

Pods as part of an Amazon EKS cluster. Fargate allows the Kubernetes Pod to run
with only the computational capacity users request, and each Pod runs in its isolated
VM environment, independent of resource sharing with other Pods. Customers only
pay for their Pods, allowing them to boost their app utilization and cost-efficiency with
no additional effort. Fargate eliminates server provisioning and management, allowing
them to choose and pay for computing resources per application while enhancing
security. This removes the underlying nodes’ ability to be customized or controlled by
the customers. Fargate allows developers to concentrate on designing and building
applications. Moreover, GPU workloads are presently not supported on Fargate with
AWS EKS. Fargate’s SLA guarantees 99.99% of monthly uptime percentage for
computing resources [137]. For vCPU and memory, Fargate Pods are invoiced at the
standard Fargate rate, and each cluster user’s run is billed at the standard AWS EKS
rate.
The Amazon EKS on AWS Fargate log router, which streams the container logs to

AWS CloudWatch, is built on Fluent Bit. The service AWS CloudWatch is used for
storing and monitoring logs [133]. Fluent Bit is a multi-platform open-source project
that facilitates log processing and forwarding by collecting data such as metrics and
logs from various sources, enriching them with filters, and sending them to multiple
destinations. A log router enables users to leverage AWS services for log analytics
and storage. Customers do not need to run a sidecar container for Fluent Bit; Amazon
does. Customers only need to set up the log router [133].
Fargate allows 20 GB of container storage for each running pod. Pod storage

is ephemeral, which means that when a pod terminates, the storage is deleted.
Furthermore, pod storage is secured by default by employing Fargate-managed keys
with an AES-256 (Advanced Encryption Standard) encryption algorithm to ensure
security.
A customer must create and configure at least one Fargate profile in the EKS cluster

before scheduling Pods on AWS Fargate. They can specify which Pods should run on
Fargate using the Fargate profile. A Fargate profile is immutable, meaning it cannot be
altered after creation. The customer must provide a Pod execution role for the Amazon
EKS components that execute on the Fargate infrastructure after creating a Fargate
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profile. A Pod execution role is added to the RBAC to authorize the Kubernetes
cluster, allowing kubelets executing on AWS Fargate to register with the AWS EKS
cluster. This permits Fargate infrastructure to appear as AWS EKS cluster nodes.
The Identity and Access Management (IAM) permissions associated with the Pod
execution role cannot be assumed by the container executing in the Fargate Pod. To
grant authorization to the containers in the Fargate Pod to access other AWS services,
the IAM roles for service accounts must be used [129].

3.6 GCP GKE AutoPilot
Google handles the cluster management, which includes the nodes, resilience, avail-
ability, scaling, security, and other predefined settings, as part of the serverless
Kubernetes service offering of GKE AutoPilot. AutoPilot clusters are optimized
to run production workloads, and compute resources are provisioned following the
instructions in the Kubernetes manifest files. The simplified configuration adheres
to GKE’s best practices and recommendations for the cluster and workload setup,
scalability, and security.
Since GKEmustmanage the underlying nodes to host the workload Pods, customers

are never billed for any unused or underutilized nodes capacity. Furthermore, customers
do not pay for system Pods, OS costs, unallocated space, or unscheduled workloads.
There is no minimum duration for AutoPilot resources; billing is done in increments
of seconds. However, The same flat fee per cluster applies regardless of whether a
cluster is single-zone, multi-zone, regional, or Autopilot. If resources are not provided
in the Pod specification, GKE AutoPilot optimizes resource usage to lower costs based
on the compute instance classes. Each computing instance class contains a set of
standard resource requests. GKE AutoPilot includes SLA that provides 99,95% of the
control plane’s availability and 99,9% for the Pods in multiple zones [146].
To sum up, in both serverless Kubernetes offerings in AWS and GCP, users

can either delete or always run a cluster. For example, suppose users must stop
the Kubernetes cluster to save money during the quiet period; in that case, that is
impossible, unlike a serverfull Kubernetes cluster. The Kubernetes per-hour cluster
bill remains valid whether workloads run or not.
AWS EKS and GKE AutoPilot do not offer a console option for connecting to

the RDS database from the EKS cluster. Suppose the private RDS database instance
is created in a different VPC than the EKS cluster. In that case, a VPC peering is
required to communicate with each other.
Before concluding this chapter, we highlight the core feature differences between

the services presented in Table 4 based on the discussion from section 3.4, 3.5, 3.6. The
fundamental concept of AWS EKS with AWS Fargate and GKE AutoPilot is identical;
both services abstract cluster management out of customers’ responsibility, allowing
them to focus on developing business logic. Both service providers automatically
scale nodes to accommodate the cluster’s number of Pods. Customers must configure
the circumstances under which Pods must be scaled accordingly; vendors are not
responsible.
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Category GCP Cloud Run AWS EKS with
Fargate

GCP GKE Au-
toPilot

Isolation Level GVisor Dedicated VM GVisor
Multi-containers Can not deploy

more than one
container at a time

Can deploy multi-
ple containers at a
time

Can deploy many
containers simul-
taneously

GPU support Yes with Anthos No Yes
Logging StackDriver CloudWatch CloudWatch
Application Revi-
sions/Versions

Yes No (but possible
with kubectl roll-
out command)

No (but possible
with kubectl roll-
out command)

Windows Con-
tainers

No No Yes

Deployment unit Container image Kubernetes Pod Kubernetes Pod
Deployment Spec Knative service

(Pod)
Kubernetes Pod Kubernetes Pod

Cluster Pre-
Provisioning

Optional with An-
thos

Required EKS No

Scale to zero Yes No as they do
not support alpha
cluster in AWS

Only with alpha
clusterUsingHPA

DeveloperExperi-
ence

Very happy Not as happy as
GCP Cloud Run

Not as happy as
GCP Cloud Run

Learning curve Very low Very high and re-
quire fairly good
knowledge about
Kubernetes

Not as high as
AWS EKS

Standalone capa-
bility to host ap-
plications

Available as stan-
dalone, because it
does not need any
Kubernetes clus-
ter

AWS Fargate, is
not available as
standalone with-
out the support of
ECS/EKS.

Standalone

Integration to the
cloud eco-system

Integration can be
done only to a
handful number of
GCP services

Offers deep inte-
gration with the
AWS eco-system

Well integration
with GCP eco-
system

Release Year General availabil-
ity (GA) was re-
leased in Novem-
ber 2019 but the
beta was launched
in April 2019)

AWS EKS added
support for run-
ning Pods onAWS
Fargate on De-
cember 3, 2019.

February 2021

Table 4: Comparison among GCP Cloud Run, GKE AutoPilot, and AWS EKS with
Fargate
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4 Design and Implementation
This chapter introduces the thesis project and all of its associated technologies. Section
4.1 begins with the project introduction. Section 4.2 and 4.3 discuss project architecture
and its deployment to different services, respectively. Section 4.4 presents the synthetic
test setup for the performance, and cost analysis, whereas section 4.7 briefly presents
other technologies employed in the project.
An application has multiple environments in a real-world scenario, including

development, staging, testing, and production. The author had only one production
environment in this project.

4.1 Project Introduction
A lightweight single-page web application was developed for this thesis project to
assess the performance, cost, and developer experiences. The project plan was to
develop a few APIs that sufficiently address thesis research questions. Developing a
grandiloquent website is not the goal of this research.
The web application project is an online store where clients can browse from any

device selection of laptops from the website’s home page. Clients can sort laptops
by brand. Additionally, they can view the product’s information, which includes the
name, price, image, and description. They can check out to purchase a product, but
they must first log in to the website to place an order.
At the early stage of the project, the author considered decoupling the frontend using

a JavaScript framework. However, the idea was dropped due to the time constraints of
the thesis and the added complexity. Decoupling the frontend from the backend could
offer many benefits but introduces greater complexity. The frontend implementation
was done utilizing the templates served by the Django backend. The main motivation
was to keep the application simple so that the thesis’s primary pursuit could receive
greater focus.
The backend database stores the signed-up users’ information. Users can remove

or add a product to their cart without signing into the website. They only need to
log in to check out and place a purchase. They must provide the delivery address
when they proceed with an order. Note that the system does not ask for an address
when they first register on the website. Providing an address is only required when
placing an order. They do not need to pay to place an order because a payment solution
system in our project has yet to be fully implemented. The order record is saved to
the database when users’ orders are placed. They can find the order details in the
order tabs after they log in to the website. The order status remains pending until
the website administrator marks the status as delivered or completed. When an order
is marked as delivered, the client has received their orders. Furthermore, an admin
can administer the website by adding or deleting products. Each product is added to
a particular category by the brand name. An admin can update information about a
product name and its associated information, for example, product description, image
if necessary. Moreover, an admin can also alter order information, for instance. This
project also implemented a CRUD REST API. An authorized Django admin user can
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manipulate products, orders, and categories of the products by making REST API
calls using a client.

4.2 Architecture
The project’s architecture is simple, as we were in the early phase. This project was
solely created for the thesis work, so no real-world use cases or actual users exist. Some
dummy users were created to conduct the performance tests as stated in section 4.4. The
architecture, however, can be modernized and upgraded by incorporating new features.
Although the web application was intended to deploy on serverless computing, it may
still be deployed to bare metal. Apart from FaaS, this web application can be deployed
on any platform, including Linux or OSX.
The backend of this application uses the Django framework. Due to the author’s

prior software development experience, the Django framework and PostgreSQL are
chosen. Django is a popular Python programming language-based web framework that
helps to rapidly build better, secure, clean, pragmatically designed web applications
with less code [56]. The Django framework follows a software-designed pattern called

Figure 17: Django MVT pattern

Model-View-Template (MVT). Figure 17 shows that the model acts like an interface of
the data, the view is the user interface, and the template contains the static components,
for example, HTML output and the special Django template syntax, which explains
how dynamic data is incorporated [90].
The backend incorporates a fully managed relational database service storing

all stateful data. As this project used two cloud providers, two fully managed SQL
services were required to host the database. One vendor-specific SQL service for
both providers was not used because it would be difficult to highlight the actual cost
and performance variations, consumption rates, and the complexity of setting up,
implementing, and deploying the project and service usage.
The vendors patch the minor versions automatically, and conversely, the customers

upgrade the database instance size and the major engine version as part of their duty.

58



When a database cannot handle incoming connection requests because of sudden
spikes in traffic for a while, that does not mean that, in such circumstances, cloud
providers would automatically adjust the database instance size for customers on
the fly to accommodate the connection overhead, as it is not their duty. This means
that customers must upgrade to a database instance that is the right size for their use
cases. They can always take advantage of enabling the query insights and vendors’
recommendations for improving the performance of the database. The database’s
disk space can expand automatically when data grows over time. A Solid State Disk
(SSD) disk was utilized for better performance for the database, which retains data
for one day. The cloud vendor oversees and maintains the database’s underpinning
infrastructure. They must still monitor the instance memory, maximum concurrent
connections utilization, and CPU consumption of the database even though the public
cloud vendors relieve customers of many administrative tasks off their shoulders.
They must configure and tweak the database’s parameters to maximize performance
efficiency.
Employing a NoSQL serverless document database service, including Google’s

Firestore or Amazon’s Aurora Serverless was opted out as the web application did
not have a real-world use case scenario where the user requests spike periodically. A
serverless database may be preferable if the website has many visitors. The architecture
design could have benefited from incorporating them because they automatically start
and stop based on the application’s needs on demand. In contrast, customers must
continue paying for the computing resource to fully managed services by the minute,
even when the database is idle and not processing user queries. In this project, a
fully managed cloud database instance was employed. Specifications of the database
configuration used in the project are given below:

Features Cloud SQL for Post-
greSQL

Amazon RDS for Post-
greSQL

Database engine version 14.7 14.7
Connection limit 400 849
SSD size 10 GiB 20 GiB
Memory 8 GiB 8 GiB
vCPU 2 2
Network performance
(Gbps) up to

2 5

Table 5: Database instance specifications used in GCP and AWS

Provisioning a database instance of the same size and feature offerings is technically
impossible. The same feature means the database instance has the same bandwidth,
network performance capabilities, and identical vCPU and memory specifications.
For instance, AWS offers far more choices for database instance types than IBM and
Google Cloud. For this thesis study, the various database instance types and their
characteristics—such as maximum network bandwidth, maximum connection limits,
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and maximum throughput capabilities—were thoroughly evaluated. The option that
best satisfies the requirements of the other Cloud SQL instance type was chosen. The
primary factors considered, along with the additional variables specified in Table
5, include the number of vCPUs, memory, and the maximum connection limit. By
design, each Cloud Run service is only allowed a maximum of 100 connections to the
database instance. The number of database connections grows when the number of
instances deployed for each service increases.

Figure 18: APIs of the project for the non-admin users

Figure 18 shows that users can browse different API endpoints. Besides that,
this project implemented a REST API service for products. The REST APIs are the
followings:

GET /api/v1/products/ - List all products
POST /api/v1/products/ - Create a new product
GET /api/v1/products/<id>/ - Retrieve a specific product
PUT /api/v1/products/<id>/ - Update a specific product
DELETE /api/v1/products/<id>/ - Delete a specific product

Figure 19:Web application’s architecture on GCP Cloud Run

The backend database and serverless Kubernetes run on the same VPC for each
architecture presented in figures 20 and 21. Secret manager, backend database in
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Figure 20:Web application’s architecture on GCP GKE AutoPilot

Figure 21:Web application’s architecture on AWS EKS With Fargate

figures 20, and 21 are separate services; not part of the Kubernetes cluster. The secret
manager shown in Figure 21 in AWS called AWS Secrets Manager. In this thesis, for
simplicity, we call it Secret Manager. The ALB, controlled by the Ingress, resides
outside the cluster. Fargate has only one profile with two namespaces, kube-system and
default. On the other hand, a single VPC houses Cloud Run and CloudSQL, depicted
in figure 19. Figure 20 exhibits that Cloud SQL Proxy ships as a sidecar container
within the same Pod where the application container resides, and only authorized
network and encrypted communication are allowed to the Cloud SQL. A sidecar
container is a secondary container that runs alongside the main application container,
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which is also known as the main car, within the same Pod [63]. The securely encrypted
and authenticated communication is accomplished by workload identity, which uses
a token for each Cloud Proxy’s API calls and maps the GCP service account to a
Kubernetes service account. GKE AutoPilot enables the Workload Identity by default,
but customers must configure the workload identity to use the AutoPilot Pods. The
CloudSQL Proxy container cannot listen for any incoming HTTP requests on port 80
of the application container. The application container communicates with Ingress
using HTTP port 80. The sidecar and the application container communicate using
port 5432.

4.3 Web Application Deployment
When a backend service can connect to the database instance, container registry, secret
manager, and other utilized services, deploying the service to GCP Cloud Run, GKE
AutoPilot, and AWS EKS with Fargate is straightforward. Providing the necessary
permissions to different services is a prerequisite to communicating among them.
However, as the single Ingress solution does not work for GKE AutoPilot and AWS
EKS, it is essential to fully grasp how Kubernetes Ingress operates to expose the
services on the AWS and GCP cloud platforms to the public.
The author leveraged Terraform and Cloud Formation early in the project to

orchestrate the service creation and deployment on GCP and AWS due to prior working
experience in the industry with those tools. Hashicorp created Terraform, which
is a de facto IaC tool in the industry allows customers to provision and manage
any cloud resources in human-readable configuration files[16]. On the other hand,
AWS Cloud Formation allows customers to provision and manages resources only on
AWS [31]. However, in the early stage of the project, AWS EKS cluster creation was
automated and version-controlled utilizing Cloud Formation. The version control of the
Infrastructure-as-Code (IaC) was not given priority because the project’s completion
marks the end of the project lifecycle. As a result, the author decided to drop any
further platform development throughout the project using those tools. Instead, the
author leveraged alternative solutions, such as GCP Cloud Build, Gcloud, and AWS
SDK/CLI, to provision and deploy services to GCP Cloud Run, GKE AutoPilot, and
AWS EKS with Fargate. Cloud Build is discussed in section 4.7.3. An automated
CI pipeline was developed early on since the source code is hosted in gitlab.com. A
few scheduled pipelines were developed for the thesis project in gitlab.com to run the
performance tests on AWS and GCP at regular intervals. Section 4.7.2 briefly gave
GitLab a little introduction.

4.3.1 GCP Cloud Run

The author runs the following command from the author’s local computer to create a
Cloud Run service named webapp-service in the Frankfurt region. Additionally, if
a service name is omitted, a name will be suggested with the default value once the
command is executed successfully. In this thesis, gen1 means the first generation and
gen2 to the second.
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gcloud alpha run deploy webapp-service-gen1-cold-start \
--region europe-west3 \
--image $CLOUD_RUN_IMAGE \
--add-cloudsql-instances $PSQL_INSTANCE \
--execution-environment gen1 \
--allow-unauthenticated \
--min-instances 0 \
--max-instances 6 \
--cpu 1 \
--memory 512Mi

A Docker image is deployed to create the Cloud Run service on a managed
platform in the Frankfurt area. The docker image size of this project was 293MB.
The Docker image, retrieved from Google’s Artifact Registry, contains the application
code, packages, and their dependencies for the web application. The default value
of the execution environment is managed. This denotes that the service runs in the
fully managed version of Cloud Run, choosing a suitable execution environment
for customers. Since the Cloud SQL information is embedded, Cloud Run should
establish a connection to the designated Cloud SQL instance. Furthermore, the
service must utilize the execution environment of gen1, which has a faster cold start
capability. Adding the allow-unauthenticated flag means that users do not need to be
authenticated while browsing the website. Important to note that the minimum and
maximum number of instances by default is zero and three, respectively, regardless
of the execution environments. Customers can set the max instance to ten without
raising any support tickets to GCP. The minimum instance size of zero means there
will not be any instances to keep warm when there are no incoming user requests for a
while. Updating an existing Cloud Run service is made straightforward.

gcloud run services update webapp-service \
--region europe-west3 \
--image europe-west3-docker.pkg.dev/ \
$PROJECT_ID/$REPO/$IMAGE_NAME

The above command updates an existing Cloud Run service by leveraging the
most recent docker image from the GCP Artifact Registry. Figure 22 portrays the
service deployment process to Cloud Run. The deployment is automated via a
Cloud Build-specific script that builds, pushes, makes migrations (generates the SQL
command if changes are made to the database model), and migrates (executes those
SQL commands to the database) changes into the database. Furthermore, the script
creates (if the service does not exist) or updates the existing Cloud Run service and
routes 100% traffic to the newly created application revision.
The author deployed two GCP Cloud Run services of the web application for each

execution environment, each connected to the same backend database. Each execution
environment (gen1 and gen2) had two services deployed. One for the cold start, and the
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Figure 22: Deployment architecture for the Google Cloud Run

other for the warm start, which means four GCP Cloud Run services were employed
for the web application.

4.3.2 AWS EKS with Fargate and GKE AutoPilot

The deployment of updating a new version of the application of the service to GKE
AutoPilot and AWS EKS was not automated. The author runs the kubectl command
to create/update application running in the Kubernetes cluster. The cluster creation
in AWS EKS with AWS Fargate is only automated. Since the scope is expansive
compared to time limitations; therefore, the author discarded automating the service
deployment via a pipeline in GKE AutoPilot and AWS EKS. The following command
deploys and updates the application in the Kubernetes cluster.

kubectl create -f deployment.yaml
kubectl apply -f deployment.yaml

The kubectl create command creates a resource in the Kubernetes cluster from
the deployment manifest file. In contrast, the kubectl apply command applies a
configuration to the resource that was created by the kubectl create command when
any changes are made to deployment.yaml file.
Kubernetes, by default, uses the rolling update strategy to ensure zero application

downtime when deploying a new revision to the running Kubernetes cluster. The
rolling update strategy enforces that resource Pods are gradually replaced by rolling
updates to achieve zero application downtime throughout the update process. As a
result, the application is always usable, even when a new application reversion is being
deployed. A rolling update is viable when an application cannot afford downtime for
seconds to minutes.
GKE AutoPilot and AWS EKS with AWS Fargate had their own GCP CloudSQL

and AWS RDS for PostgreSQL database for the web application.
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4.4 Test Setup
This section briefly introduces two different performance test types performed on
AWS and GCP. The successive chapter presents the performance test results.
The performance test’s objective was to assess the web application performance

and how well the system—the platform—performs under various circumstances when
the load fluctuates over average traffic patterns. The platform’s performance assessment
is measured based on the container/instance start times in AWS and GCP. On the other
hand, the web application’s performance is measured against each successful HTTP
request response time. All tests were conducted using K6, which is a JavaScript-based
load-testing framework. K6 is discussed in section 4.7.1 succinctly. Two different
types of load testing were planned and executed to evaluate the serverless platforms’
performance and the web application backend created for this thesis. Both load testing
mentioned below was run against GCP Cloud Run, GCP GKE AutoPilot, and AWS
EKS with AWS Fargate services used in this thesis. The synthetic load tests were
conducted in this project with the simulated virtual users (VUs). A simulated virtual
user mimics the behaviour of an actual user. Since running the performance load tests
are time-consuming and expensive with numerous VUs and for a longer duration [62].
Therefore, the author decided to keep the maximum duration of incremental load tests
at ten and seven minutes for the spike load tests to minimize the total project costs.
The load testing results are analyzed in the following chapter.

• Incremental Load Testing assesses the platform’s performance under traffic
surges that are more intense than in a typical load test. In proportion to the
increase in load, the ramp-up stage lasts longer. Examples of such events
are paydays and end-of-work weeks; the website anticipates frequent higher
traffic than the average. These tests were carried out to ensure the platform’s
availability, stability, reliability, and scalability in heavy use. Furthermore, these
tests recognize any response time degradation or platform issues when the load
exceeds the typical usage.
The following table best explains the incremental load tests that were run against
different HTTP endpoints on GCP Cloud Run.
Table 6 shows that the total duration for the incremental load tests was executed
for ten minutes with 500 VUs, including 30 seconds of the ramp-down period to
scale down to zero VUs. The loads were generated gradually to put the platforms
under stress at various time intervals with different VU counts. These tests were
performed only against GCP Cloud Run.

• Spike Testing evaluates how rapidly resources are created to manage abrupt
increases and decreases in incoming traffic load for a brief period without
inducing higher latency. Furthermore, these tests were conducted to determine if
the system can function normally and survive when subjected to sudden, heavy
traffic inflows. For instance, an excellent example of such events is Black Friday,
ticket sales opening for concerts, and new product launches. Another scenario
is when a website expects a spike in traffic after a marketing campaign that lasts
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GCP Cloud Run incremental load test case scenario
Duration in minutes Number of VUs
1 50
2 100
2 300
1 500
1,5 350
1 450
1 100
0,5 0

Table 6: Test case scenario for the incremental load tests

only a short while. In both scenarios, traffic surges dramatically with high loads
in a very short or nonexistent ramp-up phase. Real users in such situations often
browse a certain page and then leave; they do not hang around doing additional
actions [62]. Spike load tests were performed against GCP Cloud Run, AWS
GKE AutoPilot, and AWS EKS with Fargate.

GCP Cloud Run test case scenario
Duration in minutes Number of VUs
1 50
5 500
1 0
AWS EKS/Fargate and GKE AutoPilot test case scenario

1 10
5 60
1 0

Table 7: Test case scenarios for the spike load tests

Table 7 shows that the total test duration for the spike load testing was seven
minutes, including one minute of a graceful ramp-down period. The GCP Cloud
Run spike load tests started with fifty VUs to generate one minute load. The
following five minutes test runs with 500 VUs while the last one minute is set to
ramp down to zero VUs. The spike tests continued running until the allotted
test duration times out. On the other hand, the spike load test duration remains
identical for the GKE AutoPilot and AWS EKS with Fargate, except for the
number of VUs. The spike test started with ten VUs for the first minute and
bumped into sixty VUs for the following five minutes, while the last minute was
set for ramping down to zero VUs.

Table 7 demonstrates that the spike load tests ran for two different scenarios over
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three stages, while Table 6 ran tests over eight stages. A graceful-stop was specified
to allow K6 to complete ongoing iterations. Technically, if the graceful-stop is not
specified when the test contained a total test duration or ramp-down period, K6 might
interrupt ongoing iterations. These interruptions could result in skewed metrics and
unexpected test results [106]. The author examined the test data after all test runs were
finished to determine if any iterations were interrupted during the test run. The author
noticed two or three occurrences where a few iterations were interrupted, which is
negligible.
Due to the vCPU quota limit—set by default by the vendors at eight vCPU for the

Frankfurt region of AWS and GKE—a similar volume of incremental and spike load
tests could not be performed in GKE AutoPilot. One fundamental discrepancy between
the two is that in GKE AutoPilot, only three Pods can be created with one vCPU for
each container, whereas six in AWS Fargate with one vCPU for each container. For
instance, GKE AutoPilot runs two containers in one Pod, as demonstrated in figure
20. The reason they differ is due to the way they are designed to work. Regardless,
AWS does not depend on sidecar containers to communicate to the backend database,
which is an advantage. Thus, AWS allows customers to leverage more Pods while
staying under the quota limit compared to GKE AutoPilot. To prevent surpassing the
maximum allotted vCPU in both load test scenarios, as shown in Table 7, the number
of VUs was modified by setting the maximum permissible replication to two. More
VUs result in increased loads on the web application; therefore, more replicas must be
created to handle the incoming requests. Suppose more than three pods are created
in GKE AutoPilot during the load tests. In that case, the application Pods are left
pending since there is not a vCPU available to schedule them to the worker nodes,
which directly affects the request response time. This is why the number of VUs had
to be reduced to sixty for spike load tests in GKE AutoPilot to stay under the quota
usage. This led to the abandonment of the incremental load testing against the AWS
EKS with AWS Fargate and GCP GKE AutoPilot.
The internet connection utilized to run the performance tests from the author’s

workstation had Mbps download and upload speeds of 250 and 50, respectively. If the
default MTU size is larger (max 9000 bits), each packet can transmit more data over
the network. The Maximum Transmission Unit (MTU) size, which is 1500 bits by
default, is not altered. All performance tests were executed from Helsinki, Finland,
and the author’s workstation. Figure 23 shows the workstation’s specifications.
k6 is heavily multi-threaded and uses much memory to generate large loads.

Suppose extensive load tests hit the maximum resource utilization for CPU and
memory. In that instance, the tests might encounter certain throttling restrictions,
resulting in a higher response time for the result metrics. However, we did not have
any extensive performance test scenarios in our case, as we had only 500 VUs. For
instance, a load test with 1000 VUs might use one to five GB of memory [147]. The
author did not notice any hardware resource constraints during the performance tests
as the resource utilization stayed below 60%, which means that resources were never
a bottleneck to generate loads throughout the performance tests from the author’s
workstation.

67



Figure 23:Workstation’s specificatin

4.5 Platform Configuration and Performance
This section highlights the platform’s configuration for the performance tests in AWS
and GCP. The following chapter presents and analyses the test results.
Container startup times measure the performance of the platform. The initial

hypothesis is that GCP Cloud Run’s container instance startup time would be much
lower than its counterparts GKE AutoPilot and AWS EKS with Fargate [81]. The first
time when Kubernetes pulls an image, it can take several minutes to start a container
when the image size exceeds a few hundred MBs to GBs over time. Furthermore,
vendors acknowledged this an issue still [82]. The main contributory factor to the
slowness is that the container runtime must fetch the container image from a container
registry before a container can start. Although Kubernetes uses image caching on the
underlying nodes to solve this issue, this reduces the container startup time for the
subsequent containers but remains a challenge for the first container image pulls [82].
GCP Cloud Run creates a new container instance depending on the number of

concurrent incoming HTTP requests. As discussed in chapter 3 concurrency limit for
incoming requests may be impacted if the instance CPU utilization is 60%. But users
can only configure the concurrency but not the CPU utilization, as this is invisible
to them. On the other hand, in serverless Kubernetes, figure 24 demonstrates that
HPA was configured based on the CPU utilization metrics. The target CPU utilization
metrics were set to 50, 60, and 70 during the performance tests, and the data is shown
in the following chapter. The minimum and maximum instances were assigned to one
and six for the application container for GCP Cloud Run, whereas GKE AutoPilot and
AWS EKS had two max instances. This means that one instance must always be warm
to handle the influx of requests over time, and a maximum of two and six containers
can be launched to handle the incoming requests for GKE AutoPilot, AWS EKS with
Fargate, and Cloud Run, respectively.
The load tests were carried out in GCP Cloud Run with a minimum instance size of

zero and one; the results are shown in the successive chapter. This project utilizes the
stable version of the GKE cluster, which does not support the alpha APIs. Regardless,
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the GKE cluster does not support HPAScaleToZero feature, which is enabled only in
the alpha cluster. This is why setting the minimum instance to zero was not possible
based on the metric utilization. However, under any circumstances, more than six
containers would not be created, which is a hard limit in Kubernetes. Conversely,
this rule does not apply to GCP Cloud Run while performing load tests. Typically,
load tests exceed the max instance size boundaries depending on the sustained load
patterns [118].

Figure 24: A HPA manifest file used in GKE AutoPilot and AWS EKS

Instance Specifi-
cation

AWS
EKS/Fargate

GCP Cloud Run GKE AutoPilot

vCPU limit 1 1 1
Memory limit 512 Mi 512 Mi 512 Mi

Table 8: Container instance specifications used in different services

All services presented in Table 8 reside in the Frankfurt region, as mentioned
earlier in chapter 3. Furthermore, it displays the container instance specifications
utilized in the thesis. The primary motivation for using identical and smaller instance
sizes is to minimize the performance and cost gap. However, if the services are located
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in different parts of the world, network latency may significantly impact how quickly
a web application responds to HTTP requests. This is why they are geographically
co-located so that compared results in the following chapter can be more accurate.
The same container configuration is used for all spike and incremental load testing.

4.6 Web Application Performance
The section introduces the HTTP endpoints of the web application selected to perform
the performance tests against the deployed services in GCP and AWS to measure
the HTTP requests response time. The web application incorporated a PostgreSQL
backend database presented in Table 5. In addition, Table 8 presents the application
container specifications.
The performance tests were divided into two groups. These groups are categorized

based on the database queries. The first group of tests (let us call it group1) involves
the endpoints that query the database to fetch the product’s information to the visitors.
These tests only make the HTTP GET requests, implying no data is manipulated in the
backend database. The second group of tests (let us call it group2) was run against the
endpoints, which never involved any database calls or queries; for example, browsing
the login and signup pages. In these tests, simulated users do not log in or sign up to
the pages. They only visit the pages. The following table shows the HTTP endpoints
selected for the performance tests of the web application created for this thesis.

group1 group2
/home
/store

/login
/signup

Make calls to the backend database
of the web application to fetch prod-
ucts information

No calls to the backend database

Table 9: Spike and Incremental load testing endpoints

Performance testing of the rest of the HTTP endpoints in our web application for
the research study was not viable due to time constraints and project costs. However,
to achieve the research goal, load testing all of the HTTP endpoints is optional because
the objective can be achieved by testing a few endpoints.

4.7 Adapted Relevant Services
The services and technology employed to implement the project are described in
this section. There are two sets of services: (i) cloud-specific services specialized
to clouds and (ii) non-cloud-specific services. Cloud-specific services refer to AWS
and GCP services. AWS and GCP-exclusive services, on the other hand, refer to
non-cloud-specific services. K6 and GitLab fall into the non-cloud-specific services,
while the rest in this section are cloud-specific services. The cloud-specific services

70



from AWS and GCP may overlap because similar services serve identical purposes to
the end users but with different price rates, capabilities, and SLAs.

4.7.1 K6

K6 is a free, open-source, developer-centric, extendable, high-performant modern
load testing tool written in Golang and JavaScript that makes performance testing
easy and productive for developers and engineering teams. Grafana Lab created K6 in
2017 [144]. It has a built-in CLI, which is backed with developer-friendly APIs. It
helps in testing chaos and reliability, load testing, performance, and synthetic system
monitoring, as well as detecting performance regressions and faults early in the SDLC.
K6 offers a GUI version in their managed cloud with different pricing models. In the
K6 cloud, users can only run up to 50 cloud tests for free [143]. As of today, users can
write test cases only in JavaScript. This tool integrates well with standard CI tools and
can output test results to various backends and formats, including Kafka, DataDog,
NewRelic, JSON, and more. This tool’s architecture has some trade-offs as it does not
run natively on a modern web browser. Furthermore, it does not run on Node.js [145].

4.7.2 GitLab

This thesis used GitLab to version control source code. GitLab is a collaborative
Software development platform for DevSecOps projects and includes an intuitive
web interface on top of Git. Git is a distributed and popular version control system
[13]. Gitlab offers three different types of subscriptions to its users: (i) free, (ii)
premium, and (iii) ultimate [141]. We chose the free tier for this thesis because there
are no additional costs. GitLab free tier offers shared runners to run pipeline jobs on
their managed infrastructures. However, the free tier only allows us to run 400 CI
minutes monthly [141, 142]. This is why we set up a local workstation to function as
a private runner so that all the workloads could be executed. The pipeline is triggered
automatically when a new commit is pushed into a Merge Request (MR) and main
branches. Furthermore, when pipeline jobs pass successfully, a new Docker image of
the Django application is published to the remote container registry in AWS and GCP.
The main is the default branch for our project in GitLab.

4.7.3 GCP Cloud Build

GCP Cloud build is a managed service that executes builds on the GCP’s compute
capacity powered by the GCP Compute Engine service. Customers are billed per build
minute. The price of each build minute is decided by the size of the machine type
utilized for the build, such as vCPU, RAM, and so on. While writing this thesis, only
the first generation of GA service offerings for the Cloud Build was available, whereas
the second generation was in Preview. Second-generation offer better connection
service offerings between the third-party source code providers and Cloud Build [148].
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4.7.4 AWS/GCP Secret Manager

The secret manager is a centralized, secure, highly available storage system for storing
and managing secrets, including API keys, passwords, other confidential data. The
secret manager works as a single source of truth to manage, access, and audit secrets
across GCP and AWS Cloud [150]. Secret data is stored based on the user-selected
regions, and cloud providers handle the data replication automatically. Importantly,
secret data is immutable, and the only way to update it is to generate a new secret
value, which is also version controlled. Confidential data can be purged depending
on the configuration. Confidential data is encrypted in transit and rest with TLS and
REST with AES-256-bit encryption keys by default [150]. The IAM roles allow users
to grant the least privileges and access rights to confidential data. However, an audit
log is created for each request made to the secrets. Secrets are rotated by configuring
a rotation policy; in contrast, the expiration policy governs the secrets’ life cycle
[150, 151].

4.7.5 AWS/GCP PostgreSQL

Each cloud vendor names the RDS for PostgreSQL differently. For example, in AWS,
they call it AWS RDS for PostgreSQL; however, GCP quotes it as GCP CloudSQL
for PostgreSQL. Both are fully managed relational database service that helps create,
manage, maintain, and administer PostgreSQL databases on their cloud platform.
Each vendor hosts, organizes, controls, and administers the underlying VM for each
instance. Each VM runs the database applications and service agents for logging and
monitoring. Customers can configure and manage database instances, including the
database instance’s size, zones, redundancy, data backup frequency, instance updates
time window to deploy security or minor patches, replication configuration, user and
database administration, and much more. The database is stored on a persistent disk, a
scalable and durable network storage device connecting to the VM. The pay-as-you-go
pricing model is determined by the user-defined configuration, which includes storage,
CPU, memory, the number of IPs assigned to the instance, and the quantity of traffic
leaving the database instance [65]. Their functionality is similar to that provided by
a locally hosted PostgreSQL instance. With a few exceptions, the instance deprives
the customer of superuser privileges in general. Only three RDS engine types with
various instance size capacities are now available on GCP, compared to seven engine
types on AWS. One of the key differences is that GCP’s current offerings start with
disk space as low as 10 GB, whereas AWS’s minimum disk space requirement is 20
GB [65, 111, 112].

4.7.6 AWS/GCP Container Registry

A container registry is a secure, fast, scalable, and highly available serverless managed
service that supports private and publicly accessible repositories with fine-grained
access control. GCP Container Registry was used in the early stages of the project
implementation to store and manage Docker images for GCP Cloud Run and GKE
AutoPilot. Since GCP Container Registry is deprecated in favor of the GCP Artifact
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Registry, the images were migrated to Artifact Registry. According to GCP, Artifact
Registry is the next generation of container registries on the GCP platform. AWS
Container Registry and GCP Artifact Registry offer vulnerability assessments for
known vulnerabilities and exposures after images are published to the registry. One
of the most prominent distinctions is that GCP provides the capability to deploy an
image to GCP GKE, Cloud Run, and Compute Engine in just a matter of a single click
from the service itself, in contrast to AWS Container Registry [152, 156].
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5 Evaluation
This chapter provides an insightful analysis of the web application and the platform’s
performance, evaluates the cost variations, and compares the developer experiences.
Section 5.1.1 demonstrate the platform performance, whereas section 5.1.4 assesses
the web application’s performance. Section 5.2 calculates and examines the cost
differences. Finally, section 5.3 evaluates the developer experiences, which include
the application development and deployment experiences.
The author wants to clarify that this study was not conducted to determine which

serverless CaaS and PaaS services deliver the best performance and cheapest-to-run.
This study’s sole intent was to explore how these services’ performances and costs
differ to decide which platform to use if the performance and the costs become the key
factors in choosing a platform.

5.1 Performance Analysis
A web application’s QoS is typically measured based on response time, throughput,
and service availability [62]. The synthetic tests were conducted through load testing
to assess the platform’s performance, which evaluates how well the platform and the
web application support the anticipated workload by running scripts that generate
load to simulate the customer behavior at various load levels. The study bases its
assessment of the web application’s QoS based on the availability and the response
time to requests. The platform performance is measured based on container startup
latency. This chapter utilizes observational and metric data to identify the performance
bottleneck and explains why performance may have declined.
Two different serverless CaaS and one PaaS service were put under performance

tests from AWS and GCP: GKE AutoPilot, AWS EKS with Fargate, and GCP Cloud
Run. The former two CaaS services operate pretty differently from the latter one. The
GCP Cloud Run represents the PaaS service model, while the remainder is CaaS. This
section compares and contrasts the performance of the chosen said services. Note that
all load tests were run sporadically at different times during May and June 2023.
The spike and incremental load test results presented in this chapter are randomly

chosen from many test runs. The intention was to avoid picking up the best results from
the test results. For example, spike/incremental load tests were performed ten times for
one or more HTTP endpoints of the web application, of which one or two test results
were portrayed in the subsequent tables and graphs. The primary reason is that results
varied for the same HTTP endpoint from one test run to another. Technically, the
results could have been more consistent, as observed. In theory, the author anticipated
that the results would be closed in most cases, but that was not in practice.
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5.1.1 GCP Cloud Run Platform Performance

This section introduces and evaluates the platform performances of GCP Cloud Run
used in this study. The monitoring logs and observations are the basis for the startup
container latency statistics shown for all figures in this chapter. These numbers showed
how long a cold start container took to handle the initial requests in AWS and GCP.
Figure 25 shows the container startup latency differences between the first and

second generation execution environments in GCP Cloud Run while performing the
performance tests. Cloud Run fires up new instances on demand based on the needs;
their startup time has direct impact in the request latency and throughput of the service.
The startup latency is noticeable in web applications where a sporadically large traffic
volume is anticipated. Since the incoming request must wait for a new computing
capacity to be available before the piles of requests can be started to process.

Figure 25: Container startup latency in GCP Cloud Run

Figure 25 demonstrates that the cold start time for the second-generation execution
environment was slightly longer than for the first-generation. In the above figure,
gen1 and gen2 warm means the web application was deployed on those keeping one
instance warm. However, the data presented for the container instances were created
on-demand to highlight how fast they started a container from the ground up.
Since Cloud Run only holds onto incoming user requests for a maximum of ten

seconds, as a consequence, requests are dropped if new instances are not launched
within that time frame. This means that the higher the container startup latency, the
fewer requests a service can process at any given time. The above figure shows that
the overall instance startup time for the first-generation execution environment stays
below ten seconds, which means that the probability of getting requests dropped in
99% of cases is none, particularly for gen1 cold than gen1 warm. Although gen1 warm
remain under ten seconds, there is still a small probability of getting some requests
dropped from the queue. Additionally, the second-generation cold start instance’s
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container startup latency was below nine seconds in the 50 percent percentile. This
entails that none of the requests will be aborted since they will be processed before the
requests queue times out. However, the container starting latency in the 95 and 99
percent percentiles for gen2 cold and warm were more than the ten-second request
queue duration, resulting in many incoming requests perhaps being discarded. In
contrast, there is a substantial likelihood that a few requests will be dropped even at
the 50 percent percentile when using gen2 warm. The per-second request throughput
is directly impacted by the container starting latency and is also correlated with it.
The proof of the correlation is noticed in the following section by examining the total
HTTP requests metrics.
Based on the GCP Cloud Run metrics data, the author observed that in 99% cases,

each container had around 85 concurrent requests served while running load tests,
although the max concurrent request was at 80. The CPU utilization was at 92%
during the peak hour of the load tests.
One possible performance improvement could be utilizing the startup CPU boost

feature, which helps minimize the startup latency by temporarily allocating a bit more
CPU to a container instance during startup. Whatsoever, the author did not utilize the
CPU boost feature during the instance startup in this project.

Figure 26: GCP Cloud Run container startup latency

GCP Cloud Run does not provide a readiness probe as of now. Technically,
instantly the requests are sent to the newly spawned container instances. A readiness
probe periodically checks if the container is ready to serve traffic when adding a new
container. Instead, GCP Cloud Run offers a startup probe that users can configure,
acting like a readiness probe. The author did not configure any HTTP startup probes for
this project mainly for two factors. First, adding a health check would have increased
the cold start time by a few seconds, which might have directly impacted the request
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throughput. Second, to eliminate the high latency that a small percentage of visitors
experience because of the cold start.

Figure 27: GCP Cloud Run request latency

Figure 27 illustrates the request latency reaching the Cloud Run services in seconds.
Latency is calculated from when a request arrives at a running container until it exits.
Nevertheless, container startup delay is not included. The figure displays that in 99%
cases, gen2 warm had a more significant latency than the rest. In addition, gen1 cold
suffered the least, except in the 50% and 95% percentiles, where it experienced the
most latency than the rest. Noticeably gen1 warm and gen2 cold had similar request
latency in 95% and 99% cases.
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5.1.2 GCP GKE AutoPilot and AWS EKS with Fargate Platform Performance

This section analyses the platform performance differences between the GKEAutoPilot
and AWS EKS with AWS Fargate.
Figures 28, 29 show the time to cold start a container during the load tests in AWS

and GCP. The most interesting data is noticeable in figure 28 for GKE AutoPilot
container startup latency. The main reason behind this is the sidecar container for the
database proxy. Based on the metric data and observation, the application container
(main car) was created in under 18 seconds but, on average, 14 seconds in GKE
AutoPilot. However, the application container needs to connect to the database.
Therefore, as long as the sidecar container cannot communicate with the database
instance and application container, the application container can not function, indicating
the request can not be severed.
The health check on AWS was set to the default value of fifteen seconds. In GCP,

however, it was set to five seconds. The author decided to minimize GCP’s health
check interval from fifteen to five seconds because it typically takes a while compared
to AWS to get a container running before it can receive user requests. This allows it to
accept user requests at least ten seconds earlier than its counterpart in AWS. Once a
new application container is created, the ALB performs periodic checks on the health
check endpoint. The ALB classifies the container as healthy and begins delivering
the incoming user requests to the following application container if the health check
endpoints return an HTTP success status code in the range of 200-299 for AWS and
200-399 for GCP. The test scenarios were presented in section 4.4.

Figure 28: GCP GKE AutoPilot and AWS Fargate container startup latency.

The drift in container startup latency between them is due to the sidecar container,
contributing to the high cold start latency. The author examined the API call logs and
found that the GKE AutoPilot occasionally took over two minutes before serving the
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Figure 29: A screenshot is added from the k9s CLI tool for GKE AutoPilot. K9s is an
open-source project that lets users interact with the Kubernetes cluster.

first request. One of the possible reasons behind this is that GKE AutoPilot needed to
create new worker nodes to host the newly created application Pods, which contributed
directly to a higher cold start. Furthermore, the author examined the first request rarely
served in under 70 seconds. The negative impact of this was also observed in the
first warm container (which was running always) as it had over 93% CPU load for
over three minutes when the load started growing gradually. Due to this behavior,
the GKE AutoPilot processed comparatively fewer requests than its counterparts and
experienced relatively a higher latency. These results are also visible in the application
performance tests comparison sections.
Figure 29 demonstrates and breaks down the time a GKE AutoPilot cold start

container consumes before a container can be associated with the ALB. The health
check time is excluded from the screenshot.
Figure 30 demonstrates that the GKE AutoPilot has a more significant container

startup latency than the AWS Fargate. Additionally, GKE AutoPilot’s distributions are
skewed towards higher values due to some positive skewness and higher variability.
AWS Fargate, on the other hand, exhibits a more condensed dispersion and is essentially
nearly constant. The startup container latency data presented in Figure 27 and 28 is
based on the monitoring logs and observations. These figures demonstrated how long
a cold start container took to process the first requests.

5.1.3 Database Performance

This section explains the database overhead encountered during the load tests executed
on AWS and GCP services. Although the author did not intend to present the database
platform’s performance, it is good to mention that the database became a bottleneck,
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Figure 30: AWS EKS with AWS Fargate and GKE AutoPilot container startup time at
different percentiles.

as this can impact the overall request-response time during the load tests. Therefore,
this section briefly discusses the overhead of database performance.
Figure 31 shows that the author sporadically performed only one test run to just

one instance of Cloud Run to avoid overheads to the database. The database CPU
utilization remained below 4% when no load tests were conducted.

Figure 31: Database CPU utilization while running load tests on GCP Cloud Run at
various time intervals

Figure 31 demonstrates that the backend database hit the maximum CPU utilization
limit for several minutes while performing the incremental and spike load tests on GCP
Cloud Run at various time intervals. During the spike and incremental load tests, 500
VUs made approximately 300 calls per second to the application. The CPU resource
utilization remained over 99% for nearly four minutes during the spike tests, negatively
impacting the overall request-response time. The incremental load tests generate loads
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with 500 VUs only for a single minute, whereas the spike tests maintain an equal
number of VUs for five minutes. Due to this reasons, the CPU overhead is much more
prominent in spike tests. The author observed the similar behavior while running
the spike tests in AWS EKS with AWS Fargate with 500 VUs. The CPU utilization
was over 99% in AWS RDS for the PostgreSQL instance. To conclude, the databases
experienced a similar overhead in GCP Cloud SQL and AWS RDS while performing
the load tests, which contributed to the requests’ latency. The database metrics were
examined for AWS and GCP, but no connection errors were found. Furthermore, test
results did not report any failed or timed-out HTTP requests. On the other hand, the
backend database for the application hosted in GKE AutoPilot and AWS EKS with
AWS Fargate did not encounter a significant resource overhead when tested against
them with sixty VUs.

5.1.4 Web Application Performance

This section evaluates the web application’s performance on GCP Cloud Run, GKE
AutoPilot, and AWS EKS with AWS Fargate. First, the GCP Cloud Run’s performance
results are compared between gen1 and gen2 execution environments. Second, the
load test results of the GKE AutoPiot and AWS EKS with Fargate’s are analyzed and
contrasted. Finally, the performance of the GCP Cloud Run is compared to that of the
AWS EKS with Fargate.
The average request response time presented in this chapter is the sum of the HTTP

request sending, waiting, and receiving times. Table 10 shows the request response
time for the spike tests performed against the GCP Cloud Run gen1 and gen2 execution
environments. The test results on the left-hand side of each column for all tables
in this section were from the group1 HTTP endpoints. Table 10 demonstrates no
considerable performance difference between group1 and group2 HTTP endpoints
regarding minimum HTTP request-response times. There is a discernible performance
difference between gen1 and gen2 for the maximum request response time. According
to GCP [134], one of the primary reasons is that gen2 performs better under sustained
loads and offers quicker CPU and network performance than gen1.
Since group2 HTTP endpoints did not interact with the backend database, their

throughput per-second was comparatively more observable. However, gen1 had a
slightly faster average response time for group1 HTTP endpoints than gen2. Gen1
warm had the best results in this category. Gen2 (HTTP endpoints for group1) generally
had some latency. However, there were no significant latency variations in the average
response time for group2 HTTP endpoints for gen1 and gen2.
The response time for the 90th and 95th percentiles for gen1, including cold

and warm, performed better than its counterpart for gen2. On the contrary, group2
HTTP endpoints had a slightly higher performance than gen2. There is a considerable
performance difference between the first and second generations, as seen by the 95th
percentile (2600 ms in gen1 warm) being lower than the 95th percentile (5320 ms in
gen2 warm). This indicates that the gen1 warm instance’s response time distribution
is skewed toward faster response times, while the gen2 warm instance suffered longer.
Moreover, the remaining 5% of the gen2 warm response time is higher than that figure.
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The test results contradicted the author’s initial prediction that the warm instances in
generations first and second would perform better than the cold start instances.

gen1 cold gen1 warm gen2 cold gen2 warm

Total
HTTP
requests

108888 319750
109310 331420
177946 527562

126792 328982
123918 343340
178627 492098

83510 339646
81144 354304
130652 434524

84950 359686
86060 330878
126502 481764

Minimum
response
time
(ms)

43.64 46.61
42.87 46.26
43.24 45.42

42.94 45.92
43.12 46.34
130.03 46.53

42.64 45.23
43.44 46.19
43.06 45.90

42.87 45.22
42.89 45.84
43.43 46.12

Maximum
response
time
(ms)

26400 25600
25740 25550
25690 51150

25700 60000
25470 25500
60000 25530

15170 13230
13250 24700
13270 25700

14380 25910
51430 25620
25720 13040

Average
response
time
(ms)

911.67 379.49
908.13 375.86
764.66 350.90

782.85 391.05
801.51 382.85
760.76 362.10

1190 395.85
1220 375.18
1040 377.45

1170 375.94
1150 385.03
1070 372.66

Median
response
time
(ms)

251.44 60.99
239.89 68.68
229.62 119.86

229.87 100.14
227.37 119.43
216.05 99.86

661.82 141.63
847.82 94.96
288.76 55.02

594.65 118.83
411.35 90.87
651.56 121.90

Req. per
second

259 761
260 789
296 879

301 783
294 817
289 820

198 808
193 843
217 723

202 856
204 787
210 802

90th per-
centile
(time in
ms)

2600 1570
2660 1470
2270 1140

2170 1410
2340 1220
2260 1300

3020 1110
2960 1320
4020 1590

3600 1110
4050 1350
2910 1400

95th per-
centile
(time in
ms)

2930 2230
2950 1970
2570 1300

2610 1700
2600 1500
2560 1600

3620 1350
3320 1530
4710 2670

3990 1250
5320 1710
3380 1590

Table 10:Web application spike and incremental load test results. The data presented
in bold represents the incremental load test results, while the rest from the spike test
results performed on GCP Cloud Run’s first and second-generation environments
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The data presented on the right and left-hand side of the columns gen1 and gen2 is
from group1 and group2 test results, respectively.
The incremental load test results for the GCP Cloud Run are shown in bold in

Table 10. Ten minutes were allotted for the tests. The average latency was nearly
the same, except for the gen1 warm, where the minimum response time for group1
HTTP endpoint calls was three times greater. On the other hand, gen1’s maximum
latency was significantly greater than gen2’s. In addition, the latency for gen1 warm
was one minute, followed by the gen1 cold, which had almost the same latency as
gen1 warm. This indicates that gen1 warm had difficulty serving user requests with
minimal latency. Gen2 performed significantly better than Gen1 in this area as they
had comparatively faster response time. The typical latency for HTTP endpoints in
group2 was nearly the same. Alternatively, the average latency for group2 HTTP
endpoints, gen2, had shorter latency than gen1.
The significant performance difference was noticeable in the 90th and 95th

percentiles latency for gen1 and gen2. Gen2 cold had nearly twice the latency for both
percentiles than gen1 cold. However, gen1 warm surpassed gen2 warm in terms of
performance. Gen2 cold suffered from performance bottlenecks as the response time
was notably impacted.
In conclusion, the author inspected that the response times of generations first and

second varied at different test runs. The maximum response time can occasionally
vary from one test result to another, which is not uncommon. The main takeaway is
that while the maximum response time may occasionally differ, the average response
time remains nearly the same.
The response time for the group1 HTTP endpoints of the web application may

suffer a bit because the database instance reached the maximum CPU utilization during
the test runs for several minutes, as described in section 5.1.3. This would degrade the
request processing, thus eventually contributing to a slow response time.
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Target percentage of CPU utilization
50 percent 60 percent 70 percent

Average response
time (ms)

116.36 127.00
243.63 206.07

204.41 186.55
242.70 228.06

134.45 137.17
292.55 315.54

Minimum re-
sponse time
(ms)

26.39 26.73
39.29 41.17

25.39 25.47
39.27 41.43

26.87 26.65
39.53 42.09

Median response
time (ms)

81.30 91.92
112.37 156.85

80.41 84.61
110.35 185.45

91.10 90.35
138.75 266.62

Maximum re-
sponse time
(ms)

1140 1250
2310 1570

2300 1990
2150 1590

1130 1140
2100 2250

Total HTTP re-
quests

160422 148782
51264 93548

61084 66892
51460 86330

136500 135688
42676 64996

Request per sec-
ond

381 354
122 222

145 159
122 205

324 323
101 154

90th percentile
(ms)

260.79 262.26
706.89 430.45

593.43 520.42
687.91 461.24

279.26 289.87
758.99 616.11

95th percentile
(ms)

310.69 308.76
915.76 527.82

780.62 678.60
894.74 556.70

319.80 335.65
925.48 744.05

Table 11: Spike test results based on CPUmetrics utilization in AWS EKSwith Fargate
and GCP AutoPilot. The bold ones represent the test results from GKE AutoPilot, and
the normal ones are from the AWS EKS with AWS Fargate.

Table 11 demonstrates the test results basedon theCPUmetrics utilization at various
thresholds. The 90th and 95th percentiles show that the latency difference between
the two is quite significant. In AWS, it was evident that a relatively small portion of
requests experienced higher latency, as indicated by the higher 95th percentile value.
The fact that the 90th percentile is lower than the 95th percentile implies that most
requests had faster response times, while a smaller segment of requests experienced
longer response times. Based on the analysis, the AWS EKS with AWS Fargate
performed well for most requests compared to GKE AutoPilot, with a large portion
of the requests experiencing response times below or equal to 310.69 ms for group1
and the group2 308 ms. However, a subset of requests experienced longer response
times, as indicated by the 95th percentile value of 925.48 ms for group1 and 744.05
ms for group2 in GKE AutoPilot. Furthermore, it can be seen that the typical latency
for GKE AutoPilot was two folds slower than AWS’s. The per-second throughput was
substantially higher in AWS than in GCP. Table 11 shows that the overall performance
of the AWS EKS with AWS Fargate was significantly better in nearly every category
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presented in the table.
Table 11 displays the CPU utilization at various thresholds of fifty, sixty, and

seventy percent, indicating that when the Pod workload exceeds the threshold limits
during the test runs, a new Pod must be deployed to accommodate the incoming traffic.
The load test results illustrated in the 95th percentile show that at 50% CPU

utilization, the latency did not differ much. On the other hand, the 60% CPU utilization
had relatively worse performance compared to 50 and 70 in AWS. GKE AutoPilot had
nearly the same latency at 50 and 60. Ideally, this is due to the small set of virtual
users utilized to run the tests. At least, that was the author’s prediction. Therefore, in
AWS, the author performed another set of tests to validate the prediction with 500
VUs, as we conducted for GCP Cloud Run. The following table shows the test results
run against AWS EKS with AWS Fargate.

Target percentage of CPU utilization in AWS EKS with AWS Fargate
50 percent 60 percent 70 percent

Average response
time (ms)

1080 433.79
1120 427.32

1270 482.01
1100 413.17

2120 526.38
1890 549.33

Minimum re-
sponse time
(ms)

24.58 0.069
24.62 26.31

25.17 26.42
25.13 26.30

0.08 26.25
25.03 26.81

Median response
time (ms)

91.62 82.76
96.03 80.3

78.84 82.97
104.05 85.79

83.41 82.20
90.36 83.56

Maximum re-
sponse time
(ms)

15200 4480
12320 5820

19830 5620
15850 5220

22380 4800
18260 5280

Total HTTP re-
quests

91454 290234
88350 286262

78354 262994
89954 303710

47264 233756
53004 222486

Request per sec-
ond

217 691
210 692

186 626
214 723

112 556
125 529

90th percentile
(ms)

2970 1550
3010 1510

5730 1830
2940 1590

8270 1830
7410 1860

95th percentile
(ms)

4540 2410
4880 1920

9080 2220
4320 1930

10620 2180
9570 2370

Table 12: Spike test results based on CPU metrics utilization in AWS EKS with AWS
Fargate. The highlighted results show that the lower the target for CPU utilization is
set the lower the latency and higher throughput.

Table 12 shows the data from two spike test runs performed against the AWS EKS
with Fargate. The data demonstrated that the author’s prediction was entirely correct.
The average latency was significantly higher for the 70th percent of CPU utilization
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than it was for the 50th percent and 60th percent. Adding together the test scores
reveals that the 50th percentile performed better across the board. If the latency for
the 90th and 95th percentiles from the two runs are added, it is evident that the 50th
had a shorter response time than the rest. The minimum response time of 0.069ms and
0.08ms appears to be an anomaly.

AWS EKS with Far-
gate

GCP Cloud Run

Average response time
(ms)

1080 433.79 911.67 379.49

Maximum response
time (ms)

15200 4480 26400 25600

Total HTTP requests 91454 290234 108888 319750
Request per second 217 691 259 761
90th percentile (ms) 2970 1550 2600 1570
95th percentile (ms) 4540 2410 2930 2230

Table 13: Spike test results between AWS EKS with Fargate and GCP Cloud Run.
The results are shown for AWS when the target CPU utilization was 50 percent. GCP
Cloud Run represents the data of gen1 cold.

Table 13 shows that the spike tests were performed with 500 virtual users and
were allotted seven minutes. The data shows that the average latency was slightly less
in GCP Cloud Run than AWS EKS, while AWS performed better in the category of
maximum response time. However, the most noticeable performance difference can be
seen in the 90th and 95th percentile latency. Overall, GCP Cloud Run performed better
as the 95th percentile was 2.6 and 1.5 seconds for group1 and group2, respectively.
Even though the maximum instance size was set to six for AWS and GCP, Cloud

Run created more instances to handle the requests during the intense traffic surge
during the spike load tests. The number of instances created in GCP during this
specific test run, for which data is presented in the table, in GCP Cloud Run was not
examined by the author. Cloud Run’s monitoring metrics showed that it usually created
more than nine instances but never exceeded twelve. The author would not conclude
that GCP Cloud Run topped the performance of AWS EKS with Fargate. If an equal
number of instances are not considered a comparison parameter, the GCP Cloud Run
PaaS platform for the web application performed relatively better than AWS EKS with
the Fargate CaaS platform.
Based on the performance test results, both platforms performed (GCP Cloud Run

and AWS EKS with AWS Fargate) quite well, while the GKE AutoPilot was slightly
behind. The only drawback in GCP Cloud Run is that users may encounter occasional
latency of more than eight seconds for the first user requests. This behavior might
be noticeable only for the cold start instance if the web application has few frequent
visitors.
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5.1.5 Summary

This section spotlights the main findings of the performance analysis and presents
our reasonable opinions on the possible bottleneck that was observed in the previous
sections.
Based on the performance analysis and findings, it was identified that GCP Cloud

outclassed the serverless Kubernetes services utilized in this study. The group1 HTTP
endpoints could perform better if a more powerful database instance were used. At
times, particularly during the spike load tests, the database appears to have overhead,
as the requests are needed to fetch the data from the backend database. On the other
hand, group2 HTTP endpoints performed better in terms of throughput and request
latency due to not having any database calls. Since the data query requires CPU
computing power, perhaps, having a database instance of 4 vCPU would have been
better.
The author used the imagePullPolicy always flag in the Kubernetes deployment

manifest file intentionally so that none of those services can take advantage of image
caching on the node. This concept does not apply to the Pod that is already running
on a node, for instance, in our case, the warm replica, which always ran. Since each
application Pod was deployed to a new AWS Fargate node, AWS could never cache
the images on the node. When the Pod died, the node died as well. While running the
performance tests, the author manually examined this using the k9s tool. The same
behavior was observed for the GKE AutoPilot. The author was well aware of this
behavior. Therefore, tests were run with precaution over two months after many hours
or days of intervals from one run to another.
One of themain reasons theGKEAutoPilot had poorperformance due to consuming

much time in getting the application Pod ready. The existing container, which already
serves piles of requests, experiences CPU overhead. It processed many of the user
requests, eventually leading to poor performance. For example, this poor performance
might not have been noticed if more containers were simultaneously during the tests
run and the tests had a longer duration. For example, AWS Fargate creates the node
faster. While in GKE AutoPilot, it was comparatively slow to create a node to host the
application Pod. Furthermore, in figure 30, we noticed that in 95% of cases, the first
request was served in 86 seconds, while AWS Fargate did that in under 27 seconds.
The time gap of 59 seconds between them makes AWS a winner, which allows it to
process more requests, directly contributing to reducing the latency and taking on
more requests.
The network latency may play a role to some extent as the tests were performed

at different times of the day. Studies showed that cloud vendors may choose CPU
resources of the underlying server from a different hardware generation to maximize
their resources’ use and predictability [64]. This may directly impact the request
response time, and latency may vary if the cold start instances serve the request.
Since the GCP Cloud Run had the advantage of firing up more instances, allowing

Cloud Run to process more requests while lessening latency. Nevertheless, the cold
start instance was significantly faster to sever the initial requests than GKE AutoPilot
and AWS Fargate. In contrast, in serverless Kubernetes, it is a hard limit, meaning that
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under any circumstances, the maximum number of replicas must not exceed.
The next section evaluate the costs for this thesis’s PaaS and CaaS services.

5.2 Cost Analysis
This chapter analyses the cost differences for AWS EKS with Fargate, GCP GKE
AutoPilot, and GCP Cloud Run based on resource utilization throughout the per-
formance tests. The cost differences between GCP and AWS are not computed for
the other related services used in this research because they are not in the scope of
this study. This is why they were excluded from the cost analysis. For example, this
study does not assess the cost of network egress bandwidth, database instance cost,
and other relevant services utilized in this project. Presenting the actual incurred
costs for vCPU and memory runtime for each round of spike and incremental load
tests is very cumbersome. The author monitored the first round of incurred costs and
multiplied by ten to calculate the ten rounds of total incurred costs for the spike load
tests. Suppose ten rounds of costs were monitored for the vCPU and memory runtime
for the performance. The prices may fluctuate by a small margin of a few seconds to
minutes due to the on-demand scaling behavior. Section 5.2.1 calculates costs for the
CaaS services, whereas section 5.2.2 evaluates the PaaS. Furthermore, section 5.2.3
contrast and highlights the cost difference among the services used in this study. The
prices are shown in the thesis in USD for the Frankfurt region (eu-central-1 for AWS,
europe-west3 for GCP).
GCP region europe-west3 falls into the Tier 2 pricing model. All regions in Tier 2

have the same pricing strategy for GCP Cloud Run. Tier 2 assures substantially higher
reliability, is less prone to malfunctions, and has higher service availability than Tier
1. This is why the price in the Tier 2 region is higher than in the Tier 1 region. AWS
EKS with AWS Fargate price varies by region. However, unlike GCP, AWS does not
have the concept of a Tier 1 and Tier 2 pricing model.
In this thesis, one GB equals 10243 bytes, but one gibibytes (GiB) equals 10003

bytes. A GiB-second, for instance, is equivalent to running an instance of one GiB for
one second or an instance of 512 mebibytes (MiB) for two seconds and 256 MiB for
four seconds. The vCPU-second unit operates on the same principles. This project
utilized one vCPU and 512 MiB of memory for each instance.

5.2.1 AWS EKS With AWS Fargate and GKE AutoPilot

The cost results presented in this section are only for the spike tests executed on AWS
EKS with AWS Fargate and GCP GKE AutoPilot. There are two different types of
resources grouped in the calculation: one is the Kubernetes cluster’s per-hour flat fees
which apply even though the cluster is idle, meaning that the cluster serves no user
requests. The second is the runtime resource consumption, for instance, the vCPU,
memory, and ephemeral storage. For the entire project life cycle, which lasted for
almost two months, the ephemeral storage bill was only $0.3 from GKE AutoPilot.
By default, when a Pod is created in GKE AutoPilot, a non-persistant storage is
created along with it. The size of the ephemeral storage is one GB containing no data
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(emptyDir). The ephemeral storage does not apply to AWS Fargate because all Pod
runs in AWS Fargate is given 20 GB container storage free of charge. Therefore, the
ephemeral storage bill calculation is excluded as this is negligible since the bill is
too small. However, the cost calculation focuses on the billable time for vCPU and
memory for the performance tests, including the Kubernetes cluster’s per-hour flat
fee. The cluster’s cost calculation is presented based on the billable runtime of the
performance tests. For instance, one round of performance tests based on the various
vCPU metrics (50, 60, and 70 percent) for the group1 and group2 HTTP endpoints
took about 139,63 minutes, rounding it to 140 minutes. The results are presented for
the ten spike tests performed during the performance tests.

Service
Name

Number
of
Cluster

Per Hour
Price

Region
(Frankfurt)

Total cost
incurred
for perfor-
mance tests
for 20 hours

Estimated
monthly
cost for 720
hours

AWS
EKS

1 $0.10 eu-central-
1

$2 $72

GKE
AutoPi-
lot

1 $0.10 europe-
west3

$2 $72

Table 14: Hourly flat fee of AWS EKS and GKE AutoPilot Kubernetes cluster

Table 14 shows the total Kubernetes cluster’s per-hour flat fee incurred for the
spike load tests in AWS and GCP. Table 14 demonstrates that regardless of cluster
size, a flat fee of $0.10 per hour applies for each cluster in addition to the resources
(CPU, memory, and ephemeral storage) application workload consumes during the
runtime. If a cluster is created until decommissioned, the per-hour flat fees must be
paid even if there is no inbound traffic. The estimated monthly cost is projected based
on the per-hour bill for the cluster.
The incurred cost presented in Table 14 for the Kubernetes clusters is shown only

for the ten rounds of spike load tests. In each round, two spike load tests were executed,
for example, one for the group1 and the other for the group2 HTTP endpoints, as
stated in Table 9. The tests were conducted at various target CPU percentage metrics
utilization, for instance, 50, 60, and 70. For example, when the target CPU utilization
was 50 percent, the spike tests were executed against two groups of HTTP endpoints.
This means that six tests were performed for two groups of HTTP endpoints in each
round due to the target CPU utilization set at various metrics. This translates into sixty
spike tests carried out on a single serverless Kubernetes cluster in AWS and GCP.
The spike tests were completed for each round (six load tests) under two hours time
window.
Since the data set for the costs are relatively small in figure 32, it is hard to

understand how much it would cost in AWS and GCP for the runtime if we do not
estimate with a higher billable runtime hour. We provide an estimated cost for the
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Figure 32: The incurred cost in AWS and GCP for the spike load tests

billable runtime hours of 1080 for the CaaS services in Table 15. The billable hour of
1080 for forecasting is chosen arbitrarily.
Table 15 displays the general-purpose Pods (also known as default Pods) price.

The per-second billing price for the Frankfurt region for AWS and GCP is presented.
The fees for AWS Fargate are calculated based on the Linux/X86 architecture, as it
was utilized in the project. Furthermore, it shows that GCP’s per-second vCPU and
memory cost is more expensive than the AWS Fargate.

Service Name vCPU and
memory

Kubernetes
cluster

ephemeral
storage
(100 GB)

Total Cost

AWS EKS with
AWS Fargate

$55.80 $108 $14.25 $178.05

GKE AutoPilot $68.73 $108 $7.62 $184.35

Table 15: Estimated cost for AWS and GCP for the billable runtime. The cost is 1080
hours of billable time for cluster, vCPU, memory, and ephemeral storage.

Based on the calculation in figure 15 for the vCPU and memory runtime bill for
GCP is 23.13% more expensive than the AWS, whereas the ephemeral storage of
GCP is 87.04% cheaper than the AWS. Overall, the total forecasted cost of GCP is
3.42% more costly than AWS. The overall cost for GCP would be much higher if a
project does not have much utilization of ephemeral storage. Customers can save up to
23.13% only in vCPU and memory resource consumption. CPU and memory cost
factors do not alone decide if the GCP is more expensive in general because there
are other factors, including database instance costs, network bandwidth, ALB, and
additional costs associated with the relevant services used in the project.
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5.2.2 GCP Cloud Run

This section breaks down the incurred costs for the GCP Cloud Run during the
performance tests.
Figure 33 demonstrates the total costs incurred for the incremental and spike load

tests. Gen1 and Gen2 warm instances are slightly less expensive overall. The main
reason for this is that during the spike and incremental load testing, six and nine
instances, one of which was a warm instance, were respectively created. Typically,
nine instances were concurrently produced for the incremental load tests briefly. Note
that the warm instance has a substantially lower per-second cost. As a result, compared
to cold start instances, the overall pricing cost variance is slightly lower for gen1 and
gen2 warm instances. The data presented in this figure is the collective costs of ten
spike and incremental load tests. The figure shows that the total runtime computing
costs of CPU and memory were 5.64% more expensive for the cold start instances than
the warm instances, while the total expenses were 2.25% more expensive. Suppose
the computing consumption is substantively more significant; the price discrepancies
between them would be much more noticeable.

Figure 33: Estimated incurred cost calculation for GCP Cloud Run for generation first
and the second.

GCP Cloud Run has distinct pricing policies for cold and warm start instances. The
cost of a warm start instance per second is less than that of a cold start. GCP Cloud
Run also charges $0.4 for a million requests. The data presented for gen1 and gen2
for the HTTP request is based on the rough calculation from a few test results. The
actual number is close to 3.8 million. However, for the convenience of the calculation,
it was rounded up to 4 million. There are no fees for requests served by the warm start
instance as they do not tally up to the per million request fees. Furthermore, the warm
start instance has an advantage over the cold start instance because it costs less per
second to allocate vCPU and memory during active usage. Suppose a warm container
instance runs for five days and is idle for two days before the service is terminated.
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According to the warm instance billing policies, the inactive instance bill is applied
for two days, and the remaining three days are charged to the usual per-second invoice.
The idle period cost per second for the warm start instance is significantly less

than the active period. The billable CPU and memory are charged simultaneously per
second while the warm start instance is inactive. In contrast, a distinct CPU and RAM
price rate applies when the instance is active.
There are no per-second price variations between the first and second-generation

execution environments. For instance, gen1 and gen2 cold start instances have the same
per-second bill. On the other hand, gen1 and gen2 warm have the same per-second
billing policies. Customers are not charged for idle container instances for the cold
start instance.

Figure 34: Estimated cost calculation for GCP Cloud Run Cold vs Warm instance

Figure 34 demonstrates an estimated bill of 1080 hours (equivalent to 45 days)
for the warm and cold start instances. The cost is calculated based on the per-second
billable vCPU and memory utilization. The cold start instance means no instance
is kept warm, and the CPU is allocated only during the request processing. On the
other hand, the warm instance’s CPU is always allocated as the instance runs always.
When the warm start instance does not process any request, it remains idle. One of
the significant cost differences between the cold start and warm instance is that the
warm instance is 55.56% and 45.83% cheaper compared to the cold start instance
when the CPU is not idle for vCPU and memory, respectively. One interesting fact is
that the cold start instance does not charge customers when the CPU is idle, meaning
no request is processed. Conversely, this is quite the opposite of warm instances, as
the idle fees are applied when vCPU and memory are idle. For instance, as the above
figure shows, a minimal per-second per-GiB bill is charged. In such circumstances,
a per second $0.00000350 is charged for the vCPU and memory. The request per
million fees is not included in this figure. This is because per million request fees are
not applied for the warm instance but for the cold start instances. Suppose the cold
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start instance processed twenty million user requests; therefore extra $8 bill would be
added as an additional cost on top of billable vCPU and memory costs.
The estimated price for the warm instance will be different if more instances

are created, which is the norm when sudden traffic is considerable. Suppose three
instances are running while processing the user requests, of which one is the warm
instance. In such cases, the price calculation for the cold start instance applies the
regular per second bill, and the warm instance would get two different price values:
one for the idle and the other when the request is processed. The following figure
explains this better.

Figure 35: Estimated cost calculation for GCP Cloud Run cold start andwarm instance.

Figure 35 illustrates that service A utilizes warm instances. When the traffic
surges abruptly, it creates cold-start instances to handle incoming requests. Cold start
instances incur two-thirds of the total billable hours, whereas warm instances incur
one-third of billing hours. Inversely, service B only utilized the cold start instances
to serve the incoming traffic, incurring the most cost for the project, as shown in the
figure.
Finally, running a warm instance can be much cheaper than a cold start instance,

depending on the use cases. For example, running a service with three instances,
including one warm instance, could be relatively less expensive than running a cold
start instance.

5.2.3 Summary

The section spotlights the cost variations that are examined in the prior sections. The
summary is presented to emphasize the primary outcome of the cost analysis.
In our project, we had one replica running at all times when performing the load

tests in AWS EKS with AWS Fargate and GCP GKE AutoPilot. Let us call this replica
a warm instance replica, which means it runs always even though no traffic is prevalent
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on the website. AWS and GCP do not offer a pricing policy like GCP Cloud Run for
the warm instance. The warm and cold start replicas incur the same per-second bill.
Due to this pricing distinction, GCP Cloud Run is relatively cheaper than those.
The following table demonstrates the cost differences between the three services of

AWS and GCP. The costs are estimated for the 1080 hours of active CPU and memory,
excluding the ephemeral storage bill, because we did not use the ephemeral storage in
our project. The cold start instance per-second bill is shown in the table for the GCP
Cloud Run. The estimated request for the 1080 billable hours is 20 million.

Service Name Total Cost
GKE AutoPilot $176,73
AWS EKS with AWS
Fargate

$163.80

GCP Cloud Run $152,24

Table 16: Estimated cost for the billable runtime of GKE AutoPilot, AWS EKS with
AWS Fargate, and GCP Cloud Run

The AWS EKS with AWS Fargate and GKE Autopilot would add more bills if the
ephemeral storages were used in the project. In the case of GCP Cloud Run, if we
had calculated the estimated cost by the warm instances inactive and active billable
hours, the price would have dropped, as we noticed in figure 35. The more warm
instances are used, the lower the price in GCP Cloud Run. The forecasted per million
request bill may lower the cost if the request counts are lower than anticipated for the
calculation. Based on the data presented in Table 16, we can conclude that GCP Cloud
Run is the cheapest among them, while AWS stood second and the GKE AutoPilot
the third. GKE AutoPilot is 7.89%, 16,08% more expensive than the AWS EKS with
AWS Fargate and GCP Cloud Run, respectively. On the other hand, GCP Cloud Run
is 7.59% less costly than the AWS EKS with AWS Fargate.
In conclusion, predicting the monthly costs of using the GCP Cloud Run service

is challenging because GCP Cloud Run creates more instances briefly to handle the
traffic than the max configured allowed container instances at any given time. Based on
the metrics data and observations, we found that the spike tests never produced more
than six instances. In contrast, the incremental load tests were different; sometimes,
they started nine, ten, and even twelve max instances simultaneously briefly, which
could add up more to the bills. This is why the exact cost forecasting often might need
to be corrected due to the inconsistency in scaling behavior. In contrast, serverless
Kubernetes always adhere to the number of replicas stated in the HPA. As a result, the
serverless Kubernetes cost forecast may be more accurate than the GCP Cloud Run.
Nevertheless, the actual cost estimation is nearly impossible in serverless computing
as the costs depend on the on-demand resource consumption [64].
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5.3 Developer Experience
The developer experiences presented in this section are based on the author’s experi-
ences while using the services in the project. The developer experiences are divided
into two sections based on the application development and deployment experiences
on AWS, and GCP.

5.3.1 Application Development Experience

This section highlights the application development experiences for this thesis. After
developing the web application, the entire Django project’s only change is required
in the settings.py file. In Django, a settings.py file contains information about the
database configuration, API keys, the static files configuration, tightening the security-
related configuration, and all other configuration information needed to run the web
application. The deployment, particularly to Google Cloud Run, GKE AutoPilot,
and AWS Kubernetes with Fargate, would not function with a uniform settings.py
file for all services without modification. The application was set up in settings.py
so that during the application runtime, the backend retrieves environment variables,
secrets, and database connection secrets from the AWS and GCP Secret Manager to
establish the database connection for the application to operate. This is why, during
the project implementation phase, the settings.py file on the project level was tweaked
so that application can be deployed following the best practices of AWS EKS, GKE
AutoPilot, and GCP Cloud Run.

5.3.2 Application Deployment Experience

This section highlights the key takeaways from the service deployment experiences
from AWS and GCP. Service providers’ official documentation is the best source of
truth to learn about the services. The most crucial thing for a developer to keep in
mind when using Kubernetes services in the public cloud is that just because a feature
is available in Kubernetes does not necessarily mean that it is enabled in serverless
or servefull Kubernetes public cloud service offerings, for example, in AWS EKS
and GKE AutoPilot. This is because these services are built on top of Kubernetes,
with additional features and benefits distinct to each cloud platform. For instance, the
metric server is baked with the Kubernetes cluster in GKE AutoPilot by default. So
users do not need to install it after the cluster creation, unlike the AWS EKS cluster.
Suppose the metric server is not installed in the AWS EKS cluster. In that case, HPA
can not communicate to the resource metric or the custom APIs; as a result, HPA
will not create replicas. However, for HPA to work, it needs to be made aware of the
application Pod’s resource utilization. A developer who does not have prior experience
working with the public cloud’s Kubernetes might get confused to understand why
HPA works in GCP GKE AutoPilot but not in AWS EKS. This is why a developer
must read the vendor’s service-specific documentation in the first place to understand
the service offerings and their limitations.
An ingress controller must be installed in the AWS EKS cluster after creating a

cluster so that the service can be accessible to the public. Otherwise, the application
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can not be made public, whereas the GCP does not require this step. The application
is exposed to the public via an ALB when an Ingress service is created. For example,
changing the serviceType: LoadBalancer in AWS in service.yaml manifest file does
not create an ALB but makes the classic load balancer. The primary distinction
between the two is that a Classic Load Balancer routes TCP (or Layer 4) traffic, while
an ALB transports HTTP/HTTPS traffic (or Layer 7).
One interesting finding in AWS EKS Fargate was that every application Pod was

deployed to its own Fargate node. The node was terminated when a Pod’s life cycle
ended. This behavior differs from GKE AutoPilot; many application Pods were
scheduled to the same node as inspected, running the performance tests. The author
observed that after creating the GKE AutoPilot and AWS EKS clusters, in each cluster,
two nodes were created. In the GCP cluster, one node runs only system-related Pods,
not allocating application Pods from the application deployment. On the other hand,
the other node runs the application Pods in addition to the system-related Pods. When
the HPA creates more replicas during the traffic surge, application Pods are hosted on
newly created nodes.
GCP Cloud Run is among the simplest to deploy a service, compared to GKE

AutoPilot and AWS EKS. GCP Cloud Run only needs a minimal configuration from
a developer; it takes care of the rest. Developers can choose which GCP CloudSQL
database instance an application should connect to and which secrets should be
accessed from the GCP Secret Manager. In addition, they can configure or update
environment variables, health check and change the HTTP request timeout. However,
the default value of HTTP request timeout is five minutes. If necessary, they can
specify the session affinity to serve the same visitors with request responses within
the lifetime of the same container instances. They can configure a new revision to
serve traffic to a specific percentage of visitors gradually rather than to all visitors
instantly when it is launched. They can roll back an application revision to a previously
deployed version at any time.
The Kubernetes manifest files were almost identical except for the deployment.yaml,

and ingress.yaml files in AWS EKS with AWS Fargate and GCP GKE AutoPilot.
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6 Conclusions and Future Work
This thesis assessed the viability of CaaS and PaaS services for serverless cloud
computing in AWS and GCP for a web application based on performance, cost, and
developer experience. The performance tests were carried out by running synthetic
tests on CaaS and PaaS services to compare and contrast the performance variations.
This study utilized GCP Cloud Run as a PaaS service; on the other hand, GCP GKE
AutoPilot and AWS EKS with AWS Fargate as a CaaS service. The cost was analyzed
based on the resource runtime consumption for the performance tests. The PaaS and
CaaS services costs were contrasted. Finally, the developer’s experience using the
CaaS and PaaS services in developing and deploying a web application to each of
those services was assessed.

6.1 Conclusions
The answers are based on the research work’s inspections, performance test results,
cost analysis, and findings.

RQ1 Is a serverless CaaS and PaaS solution on the public cloud platforms for a
containerized web application a viable approach regarding cost and performance?
The performance of PaaS-based solutions between the first and the second gener-

ations was comparable. The first-generation execution environment performed, on
average, far better than the second if we base our conclusions on the request latency.
However, the first generation’s warm instance had a lower request response time than
the first generation’s cold start instance overall. Furthermore, the second-generation
execution environment outclassed the first regarding the higher request latencies, even
though the second generation occasionally had higher latency. The first-generation cold
start instance had the lowest latency for the container startup. Even though the high
request response time can occur in the second generation of the execution environment
occasionally, this could lead to a poor end users experience for the customer-facing
applications.
The performance test results revealed that GCP Cloud Run had a lower latency and

higher throughput. On average, GCP Cloud Run provided better performance in terms
of request response time. However, certain users may experience more significant
latency due to the occasional cold start, which is relatively low in AWS EKS with AWS
Fargate. On the contrary, the spike test findings demonstrate that AWS EKS had lower
latency and higher throughput per second. The GKEAutoPilot occasionally encounters
higher latency, which directly contributes to unfavorable user experiences for the
customer-facing web application. The results of the performance load testing indicate
that GCP Cloud Run has lower latency and higher request throughput than CaaS-based
solutions, which translates into lower costs and satisfied clients. In addition, the
findings of the cost analysis demonstrated that GCP Cloud Run is more cost-efficient
than CaaS-based solutions.
One of the PaaS platform’s standout performance characteristics was its ability to

scale quickly during an unexpectedly large spike in traffic without degrading request
throughput and average latency. Inversely, the CaaS platforms can scale comparatively
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slowly to accommodate the creasing load, directly contributing to a temporary increase
in response time. The cost calculations in previous chapter showed that PaaS is
considerably more affordable than the CaaS platforms for web a application with
occasional significant traffic volumes. The PaaS-based solution would better suit large
monolith web application projects.
In conclusion, PaaS-based solutions might be an option for monolithic web

applications if the sporadic high latency never becomes a concern. However, the
microservice-based web application is recommended to use the CaaS-based solutions
as multiple services for a single web application can be run simultaneously, unlike
PaaS. The smaller the images the faster to pull; therefore a container can initialise
the application quickly and can serve the user requests much rapidly in CaaS. The
multi-container features of GCP Cloud Run are in Preview a the time of writing
this thesis. Once the necessary capabilities are added, GCP Cloud Run could be a
great candidate to host a web application based on the microservice architecture.
Nevertheless, the PaaS offerings from different public cloud vendors must be carefully
considered. They may impact the application scaling and performance behavior while
raising the costs.

RQ2 How does developing and hosting a web application on a serverless CaaS
and PaaS solution influence the development experience?
With PaaS, a developer can deploy a web application in a matter of minutes while

requiring little to no knowledge of the underlying technologies. The CaaS platforms,
on the other hand, demand extensive knowledge of Kubernetes in order to employ a
web application because the services are run on Kubernetes. Moreover, a developer’s
excellent expertise in Kubernetes is required to optimize resource usage, tighten
security, improve application performance, and save costs. Additionally, third-party
monitoring tools, such as DataDog and Grafana, must be integrated into CaaS for
detailed monitoring of the web application’s performance and API calls. Between
the CaaS and PaaS, the least workload and knowledge are needed in PaaS to deploy
a web application, which means that time to market is relatively faster compared to
traditional architectures. This frees up a developer’s time to build the business logic
rather than tinkering how the pertinent services would interact if used in CaaS-based
solutions. In summary, PaaS would be an economically viable choice compared to
CaaS for an extensive monolith web application where significant traffic is anticipated,
provided the occasional high request response time is not a concern.

6.2 Future Work
Due to time constraints, it was impossible to do a thorough analysis to improve the
study or explore comparable services from other major public cloud vendors, such as
Microsoft Azure, IBM Cloud, and Alibaba Cloud. Based on the findings of our study,
additional work can be conducted to supplement this research, which has limitations.
The author proposes the ensuing work that could be enhanced.

• This thesis research covered only two major public cloud vendors for serverless
services. Additionally, the study could be expanded to use additional similar
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service offerings from big players, includingMicrosoft Azure, IBM, and Alibaba
Cloud.

• This project utilizes a fully managed database service from AWS and GCP. A
database connection pooling solution could be enhanced for a fully managed
database to improve database performance by temporarily storing the most
frequently used queries in memory. Database connection pooling is a technique
for keeping database connections open so other incoming connections can utilize
the idle connections instead of creating a new connection for each call made
to the backend from the frontend. Database connection pooling can be used
in serverless Kubernetes to implement the per-container database connection
limitations. For instance, a single production and test environment container
instance may be limited to thirty connections simultaneously to the database.
In contrast, a single development environment container instance may make
up to fifty simultaneous connections. If not, the database connection limit
will be reached when numerous connections are opened, eventually leading
to additional CPU overhead. However, future studies may consider using a
serverless database service to examine the price, performance, and developer
experiences.

• A Content Delivery Network (CDN) service might be implemented to serve
static content files, including images, CSS, JS, and even the most frequently
used database queries. An API Gateway, which functions as a front door to
access the backend services and assists developers in building, publishing, and
securing APIs at any scale, would be an excellent addition to the architecture.
The project implementation utilizes an ALB for serverless Kubernetes, which
incurs a per-hour ALB fee; switching to an Nginx ingress controller would
reduce cost if the Nginx runs as a Pod in the Kubernetes cluster.

• The web application’s functionality can be expanded by including new features.
The front and back ends might be separated using a well-known JavaScript-based
framework, including Next.js or React.js. A payment system could be integrated
with a third party, for example, PayPal. The API calls could be authenticated
using a short-lived Token.

• The web application lacked real-world use cases or actual users, as synthetic tests
were conducted to simulate the behaviorof real users. Future enhancementsmight
examine analyzing a real-world use case for cost and performance evaluation.
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