
Aalto University
School of Science
Master’s Programme in Security and Cloud Computing (SECCLO)

Data aggregation for multi-instance security
management tools in telecommunication net-
work

Bipin Khatiwada

Master’s Thesis
Espoo, July 28, 2023

Supervisors: Professor Antti Ylä-Jääski, Aalto University
Professor Raja Appuswamy, EURECOM

Advisors: Juha Törrönen, Oy L M Ericsson Ab
Ngadhnjim Plaku (M.Sc.), Oy L M Ericsson Ab
Jari Huoppila (M.Sc.), Oy L M Ericsson Ab

Copyright © 2023 Bipin Khatiwada

Aalto University
School of Science
Master’s Programme in Security and Cloud Computing (SECCLO)

Thesis
Abstract

Author: Bipin Khatiwada

Title:
Data aggregation for multi-instance security management tools in telecommuni-
cation network

Date: July 28, 2023 Pages: 73

Major: Security and Cloud Computing Code: SCI3113

Supervisors: Professor Antti Ylä-Jääski
Professor Raja Appuswamy

Advisors: Juha Törrönen
Ngadhnjim Plaku (M.Sc.)
Jari Huoppila (M.Sc.)

Communication Service Providers employ multiple instances of network moni-
toring tools within extensive networks that span large geographical regions, en-
compassing entire countries. By collecting monitoring data from various nodes
and consolidating it in a central location, a comprehensive control dashboard
is established, presenting an overall network status categorized under different
perspectives.

In order to achieve this centralized view, we evaluated three architectural options:
polling data from individual nodes to a central node, asynchronous push of data
from individual nodes to a central node, and a cloud-based Extract, Transform,
Load (ETL) approach. Our analysis leads us to the conclusion that the third
option is most suitable for the telecommunication system use case.

Remarkably, we observed that the quantity of monitoring results is approximately
30 times greater than the total number of devices monitored within the network.
Implementing the ETL-based approach, we achieved favorable performance times
of 2.23 seconds, 7.16 seconds, and 27.96 seconds for small, medium, and large net-
works, respectively. Notably, the extraction operation required the most signifi-
cant amount of time, followed by the load and processing phases. Furthermore,
in terms of average memory consumption, the small, medium, and large networks
necessitated 323.59 MB, 497.34 MB, and 1668.59 MB, respectively. It is worth
noting that the relationship between the total number of devices in the system
and both performance and memory consumption is linear in nature.

Keywords: Data aggregation, ETL, Monitoring tool, Network monitoring

Language: English

2

EURECOM

Master’s Programme in Security and Cloud Computing (SECCLO)
Résumé de

thèse

Auteur: Bipin Khatiwada

Titre:
Data aggregation of multi-instance security management tools in telecommunica-
tion network

Date: 28 Juillet 2023 Pages: 73

Spécialisation: Big Data Security Promo: 2023

Superviseurs: Professeur Antti Ylä-Jääski
Professeur Raja Appuswamy

Conseillers: Juha Törrönen
Ngadhnjim Plaku (M.Sc.)
Jari Huoppila (M.Sc.)

Les fournisseurs de services de communication utilisent plusieurs instances
d’outils de surveillance de réseau au sein de vastes réseaux couvrant de gran-
des régions géographiques, englobant des pays entiers. En collectant les données
de surveillance à partir de différents nœuds et en les consolidant dans un emplace-
ment central, un tableau de bord de contrôle complet est établi, présentant l’état
global du réseau catégorisé selon différentes perspectives.

Afin d’obtenir cette vue centralisée, nous avons évalué trois options architectu-
rales : la collecte de données en interrogeant individuellement les nœuds pour les
transmettre à un nœud central, la transmission asynchrone de données depuis les
nœuds individuels vers un nœud central, et une approche basée sur l’Extraction,
la Transformation et le Chargement (ETL) dans le cloud. Notre analyse nous
conduit à la conclusion que la troisième option est la plus adaptée pour le cas
d’utilisation du système de télécommunication.

Remarquablement, nous avons observé que la quantité de résultats de surveillance
est d’environ 30 fois supérieure au nombre total de dispositifs surveillés dans le
réseau. En mettant en œuvre l’approche basée sur l’ETL, nous avons obtenu
des temps de performance favorables de 2,23 secondes, 7,16 secondes et 27,96
secondes respectivement pour les réseaux de petite, moyenne et grande taille. Il est
à noter que l’opération d’extraction a demandé le temps le plus important, suivi
du chargement et des phases de traitement. De plus, en termes de consommation
moyenne de mémoire, les réseaux de petite, moyenne et grande taille ont nécessité
respectivement 323,59 Mo, 497,34 Mo et 1668,59 Mo. Il convient de noter que la
relation entre le nombre total de dispositifs dans le système et les performances
ainsi que la consommation de mémoire est de nature linéaire.

Mots clés: Agrégation de données, ETL, Outil de monitoring, Monitoring
réseau

Langue: Anglais

3

Acknowledgements

I would like to express my sincere gratitude to the European Union for grant-
ing me a place in the Erasmus Mundus program with the Erasmus+ schol-
arship. I am immensely thankful to Professor Antti Ylä-Jääski from Aalto
University and Professor Raja Appuswamy from EURECOM for their invalu-
able supervision. I am also grateful to Juha Törrönen, Ngadhnjim Plaku, and
Jari Huoppila from Ericsson for their guidance and support.

Studying and collaborating with the SECCLO 2021 family has been an
incredible academic experience filled with joyful memories that will stay with
me for a lifetime. I would like to express my heartfelt appreciation to my
dear family for their unwavering support and belief in me. I also want to
acknowledge all my friends from IOE Pulchowk Campus, Pinnacle Campus,
and Intensive International Academy for their friendship and camaraderie.

Last but not least, I extend my sincere gratitude to Aalto University in
Finland, EURECOM in France, Amazon in Luxembourg, and Ericsson in
Finland for providing me with exceptional platforms for my studies, profes-
sional growth, and numerous opportunities that have shaped my career.

Espoo, July 28, 2023

Bipin Khatiwada

4

DECLARATION FOR THE MASTER’S THESIS

I warrant, that the thesis is my original work and that I have not received
outside assistance. Only the sources cited have been used in this report.
Parts that are direct quotes or paraphrases are identified as such.

In Espoo, Finland
Date: 28 July, 2023

DECLARATION POUR LE RAPPORT DE STAGE

Je garantis que le rapport est mon travail original et que je n’ai pas reçu
d’aide extérieure. Seules les sources citées ont été utilisées dans ce projet.
Les parties qui sont des citations directes ou des paraphrases sont identifiées
comme telles.

À Espoo, Finlande
Date: 28 Juillet, 2023

Bipin Khatiwada

5

Abbreviations and Acronyms

4G Fourth Generation
5G Fifth Generation
6G Sixth Generation
ACID Atomicity, Consistency, Isolation, and Durability
API Application Programming Interface
AWS Amazon Web Service
BBU Baseband unit
CAMS Central Aggregation and Monitoring System
CC Compliance Check
CCG Compliance Check Group
CCR Compliance Check Run
CCP Compliance Check Plan
CMS Cloud Monitoring System
CPU Central Processing Unit
CSP Communication Service Provider
DBMS Database Management System
DoS Denial of Service
DW Data Warehouse
EL Extract, Load
ELT Extract, Load, Transform
ESM Ericsson Security Manager
ETL Extract, Transform, Load
GB Giga Byte
GDPR General Data Protection Regulation
GCP Google Cloud Platform
GGSN GPRS Support Node
GPRS General Packet Radio Service
HTTP Hypertext Transfer Protocol
HSS Home Subscriber Server
ICT Information and Communication Technology

6

IDPS Intrusion Detection and Prevention System
I/O Input Output
IoT Internet of Things
ISP Internet Service Provider
MB Mega Byte
MME Mobile Management Entity
MSC Mobile Switching Center
NAC Network Access Control
NMT Network Monitoring Tool
NMS Network Management Service
OLAP Online Analytical Processing
OLTP Online Transaction Processing
PGW Packet Data Network Gateway
QoS Quality of Service
RAN Radio Access Network
RF Radio Frequency
RDBMS Relational Database Management System
S3 (Amazon) Simple Storage Service
SGW Serving Gateway
SIEM Security Information and Event Management
SQL Structured Query Language

7

Contents

Abbreviations and Acronyms 6

1 Introduction 10
1.1 Problem Statement . 11
1.2 Study Focus and Limitations 12
1.3 Research Questions . 12
1.4 Thesis Structure . 13

2 Background 14
2.1 Telecommunication network 14
2.2 Security of telecommunication network 16
2.3 Network monitoring and security management 17
2.4 Distributed databases . 18
2.5 Data management technologies for multi-instance architecture 19
2.6 Data management services in cloud 22
2.7 Data aggregation using GCP 24
2.8 Related Work . 25

3 System Study 28
3.1 System overview . 28
3.2 System Profiling: Requirements and Constraints 35
3.3 Architectural Design Choices 36

4 Implementation 42
4.1 Simulating NMT Node . 42
4.2 ETL infrastructure . 46
4.3 BigQuery for output data layer 46
4.4 Lookerstudio for Dashboard and Data visualization 49

5 Evaluation and Analysis 52
5.1 Setup and Performance Metrics 52

8

5.2 Devices and Records . 54
5.3 ETL performance . 55
5.4 Latency . 58
5.5 Resource Consumption . 59

6 Discussion 62
6.1 Evaluation of system’s effectiveness 62
6.2 Considerations for system configuration 62
6.3 Future Work . 64

7 Conclusion 66

9

Chapter 1

Introduction

The work presented in this thesis is a part of the research conducted at
Ericsson Oy, Finland. The primary objective of this research is to explore
the development of a network monitoring tool at Ericsson that can establish
a central monitoring system within a multi-instance deployment scenario.
In order to preserve the confidentiality of proprietary information, certain
component names and business-sensitive details have been anonymized or
represented in alternative terms.

Large-scale enterprises, such as Communications Service Providers (CSPs),
Internet Service Providers (ISPs), national health record systems, and mili-
tary networks, offer online services to a vast user base distributed across di-
verse geographic locations. These services encompass various functionalities
such as secure communication establishment, security and incident monitor-
ing systems, and data collection. Often, these systems consist of multiple
nodes or service instances operating in close proximity or across different ge-
ographic regions. Irrespective of their operational mode (distributed, single-
instance, multi-node, geo-redundant), these systems handle massive volumes
of data.

While these enterprises make use of public cloud service providers to some
extent, the majority of their system components reside in private clouds or
on in-house infrastructure. This preference is primarily attributed to the
sensitive nature of the services and data they handle. For example, telecom-
munication providers process highly sensitive communication data and user
records pertaining to a large population, which constitutes sensitive infor-
mation for any nation. Similarly, military networks isolate their data and
services from the public cloud due to national security concerns. Utilizing
public cloud services involves placing trust in corporations such as Google,
Amazon, Microsoft, or other cloud providers that may be owned, influenced,
or controlled by foreign governments. Therefore, private cloud infrastructure

10

CHAPTER 1. INTRODUCTION 11

is more commonly employed in enterprise systems of this nature.
These services must meet stringent requirements for high availability and

data confidentiality. Consequently, they are time-critical in nature and neces-
sitate extensive monitoring and data analysis to ensure uninterrupted service
provision and safeguard sensitive data. Data is often transmitted from var-
ious locations to a central agent, such as a headquarters or control room.
Time-critical information, such as indications of active Denial of Service
(DOS) attacks, unauthorized access, or suspicious node behavior within the
system, must be promptly available within a short timeframe, ranging from
milliseconds to a few minutes. This enables swift responses to threats. How-
ever, non-critical information, such as data for analytical purposes, does not
require real-time processing. In many cases, summarized data is sufficient for
the central agent, as opposed to the entire dataset. Regardless, enterprises
in this domain require the capability to aggregate information from differ-
ent geographic instances or subsystems in order to obtain a comprehensive
system perspective. A Central Aggregation and Monitoring System (CAMS)
serves as a crucial tool for providing an aggregated overview of the system
and acting as a central repository of information.

1.1 Problem Statement

Designing a CAMS for any given use case poses significant challenges, pri-
marily stemming from the vast amount of big data collected from each in-
stance, which presents diverse characteristics and is inherently difficult to
process. The real-time aggregation and processing of this data compound
the difficulty due to the sheer volume of raw data and logs that are collected.
Consequently, it becomes imperative to determine which data is crucial for a
given use case and how to efficiently process it. However, it remains crucial
to obtain a exhaustive picture of the entire network in order to establish
robust security measures and monitoring capabilities. Key decisions must be
made regarding the optimization of the processing workflow, the selection of
pertinent data to be collected, the execution of the processing operations,
and the presentation of relevant information on the dashboard.

Another significant challenge lies in ensuring compliance with customers’
data privacy requirements and various regulatory frameworks. For instance,
data collected from the European Union region must adhere to the General
Data Protection Regulation (GDPR) policy. In addition, health data col-
lected by provinces or hospitals may be subject to local regulations mandat-
ing the anonymization of data, enabling the central state to access statistical
information pertaining to each province, while restricting access to specific

CHAPTER 1. INTRODUCTION 12

patient details to within a particular hospital or municipality. Consequently,
any utilization of public cloud services must be approached with meticulous
planning and stringent considerations regarding data privacy regulations.

1.2 Study Focus and Limitations

The thesis will focus on designing the CAMS in the context of security mon-
itoring tool for CSP network. It will evaluate the different architectures and
provide a detail analyses on the tools itself along with the features. Following
are the main objectives of the thesis:

– Implementation and analytics decision specific to the CSP.

– Evaluate architectural choices for aggregating data from multiple nodes.

– Suggest effective data structure and data pipeline to obtain a holistic
network view through the CAMS dashboard.

In order to achieve the speculated outcome, we leverage the use of public
cloud, however the main objective is to validate the implementation idea and
not about fixating the choice to any (public) cloud provider. The implemen-
tation can be replicated in any private cloud, if required. The behavior and
implementation of each node in CAMS is out of the scope.

1.3 Research Questions

The aim of this thesis is to address the following research questions pertain-
ing to the design and development of a CAMS tailored specifically for CSP
networks:

• Q1. Which cloud architecture represents the optimal choice for con-
structing a CAMS for CSP networks, and how do three popular archi-
tectural options compare in this context?

• Q2. What are the essential considerations in terms of infrastructure de-
sign, data structure, data pipeline, and data visualization components
within the CAMS framework?

• Q3. How does system performance and resource consumption evolve
when scaling up the CAMS to handle increasing demands?

CHAPTER 1. INTRODUCTION 13

These research questions serve as the focal points of investigation in order
to provide comprehensive insights into the design and operational aspects of a
CAMS tailored specifically for CSP networks. By addressing these questions,
this research aims to contribute to the body of knowledge concerning the
efficient and effective implementation of CAMS within the context of CSP
networks.

1.4 Thesis Structure

The thesis will introduce key concepts and technologies in Chapter 2 - neces-
sary for understanding telecommunication network and CAMS. The last sec-
tion of this chapter provides the systematic study of the related work along
with exploring the current status and trend of data aggregation approaches.
Chapter 3 explains the system in detail. It introduces the key elements in
the system and how the nodes we use to collect data for designing the CAMS
operates. After that, we analyze the requirements and constraints. We then
present the architectural design choices considered along with the reasoning
behind. Chapter 4 will discuss the implementation procedures and describe
how it is set up for testing purpose. Following this, Chapter 5 will then eval-
uate the performance by defining metrics and different case scenarios. We
then analyze the output with different graphs of data visualization. Finally,
Chapter 6 will discuss the findings, evaluate strength and weakness of the
system, answer the research questions, put the spotlight on the contribution
of the work to the company, followed by the possible future work. In the
end, we provide concluding remarks.

Chapter 2

Background

This chapter presents a comprehensive overview of mobile telecommunication
systems, encompassing aspects such as security, network monitoring, security
management, and the utilisation of contemporary data technologies for data
aggregation. It also provides the indepth analysis of the related works.

2.1 Telecommunication network

Telecommunication networks encompass intricate systems that establish con-
nections among diverse devices, including mobile phones, landlines, and
the Internet of Things (IoT). It facilitates the transmission of a significant
amount of wireless communication worldwide, at any given time. The ap-
plications of mobile communication extend beyond phone calls and includes
various functionalities such as satellite communication, remote sensor data
retrieval, internet communication, and other diverse applications in contem-
porary society. The proliferation of mobile device users has led to the devel-
opment and expansion of more robust communication infrastructures.

The Radio Access Network (RAN) infrastructure facilitates connectivity
for various mobile devices, including phones, sensors, and Internet of Things
(IoT) devices, by establishing a link to the primary communication system
known as the core network. RAN assumes the responsibility of overseeing
the management of radio resources, ensuring data security, and facilitating
device mobility [45]. The three primary components that are considered
crucial are antennas, radios, and baseband units (BBUs).

The BBU is responsible for performing signal processing functions that
enable the transmission and reception of wireless and wired communication.
The device is capable of receiving radio signals from the core network and
executing various digital signal processing functions, including modulation,

14

CHAPTER 2. BACKGROUND 15

Figure 2.1: Basic RAN Architecture [45]

demodulation, encoding, decoding, encryption, and decryption. The concept
of the layer exists as an intermediary component facilitating the transmission
of signals between analogue and digital communication systems. Additional
responsibilities of it involve functions such as data compression, resource al-
location pertaining to frequency, time slots, power levels, and scheduling, in-
terference management, mobility management, and Quality of Service (QoS)
management. Therefore, it is an essential component within the RAN.

The mobile core network bundles numerous functionalities essential for
establishing and maintaining communication. As shown in the figure 2.2,
the core connects to multiple cell regions and manages the resources and
communication policies. Some of its purposes include [47]:

• Authenticating the end devices connected to the network

• Register, Identify, Track subscriber requests, billing, charges, etc.

• Track subscriber mobility, base station hopping during connection for
continuous service.

• Ensure QoS in connectivity.

Different devices are involved in the core network, including the Mobile
Switching Centre (MSC), Serving GPRS Support Node (GGSN), Mobility
Management Entity (MME), Serving Gateway (SGW), Packet Data Net-
work Gateway (PGW), and Home Subscriber Server (HSS). Each device has
a significant role in keeping the service alive, secure, and functioning well.
The specific architecture and details depend on the network generation: 2G,
3G, 4G, and 5G. Details about them are not required for this thesis. The

CHAPTER 2. BACKGROUND 16

range of a cell phone tower is 40 km in terms of usability; however, it is
usually set to cover 1.5 km to 5 km, and switching the user’s connection to
another cell tower happens over 0.8 to 1.6 km [43]. The cell tower range
depends on the population, type of antenna used, type of signal used (radio
frequency (RF) wave, millimetre wave, to name a few), choice of capacity
vs. range, geography, tower position, and a lot of other technical factors.
This implies that there are thousands of mobile phone base stations in a city.
There are about 7 million physical cell sites world-wide and about 10 million
logical sites [44]. In the typical scenario, a singular core encompasses the
base bands of a city or multiple proximate cities. This core, denoted as the
”network size,” is contingent upon the geographical extent it covers and the
quantity of base stations it interconnects. The dimensions of this core may
differ depending on the operator, the population served, and the geographic
region encompassed. We categorize operators as small, medium, or large
based on their respective network sizes, and the distinctive characteristics of
each category are outlined in section 3.2.

Figure 2.2: Core Network architecture [46]

.

2.2 Security of telecommunication network

Security in the telecommunication network involves a wide range of surfaces,
including the core, RAN, and end devices. In this thesis, we limit the security
focus to the BBUs, devices, and network related to the core. Some examples
of the attacks on these surfaces include:

CHAPTER 2. BACKGROUND 17

• False baseband

• Jamming attack

• Distributed Denial of Service (DDoS)

• Unauthorised access to network devices

Security is a critical need instead of a mere feature for such infrastruc-
ture, as the cost of its downtime is significant, affecting wide services and
the operation of businesses. Further, the security and privacy of the public
are associated with the telecommunication network as it handles tremen-
dous amounts of data, including user conversations, web browsing, sensor
readings, etc. The impact even extends to a national-level security threat.
Therefore, threat management and the enforcement of effective security poli-
cies are must. For this, understanding the overall system state is essential
for quickly identifying attacks and taking action in any of the compromised
system instances, which we will also refer to as ”nodes” from here on. A good
approach for this is a regular check of security compliance on each device.
More about security compliance is described in 3.1.2.

2.3 Network monitoring and security man-

agement

Network monitoring guides the operators through continuous surveillance
and analysis of network elements and other critical components. These com-
ponents include routers, switches, and base stations. It helps to understand
the state of existing network behaviour for the purpose of ensuring they oper-
ate on intended behaviour and troubleshoot any deviations [32]. Monitoring
tools collect different metrics and evaluate the key performance indicators to
identify the operation’s health and potential issues.

Security management in a telecom network involves several measures to
protect against threats and ensure integrity and confidentiality. These mech-
anisms include the compliance of each network component in terms of se-
curity protocols, firewalls, intrusion detection and prevention, encryption
and decryption, encoding and decoding, firewalls, routing, access controls,
authentication measures, customer information, operation information, con-
nection details, communication tunnels, and more. Management is done by
implementing secure policies, audits, threat assessment, unusual behaviour
detection, and incident response procedures.

CHAPTER 2. BACKGROUND 18

There are several tools available for these purposes. These include services
such as firewalls, Intrusion Detection and Prevention systems (IDPS), Secu-
rity Information and Event management (SIEM) solutions, Anti-malware and
Anti-virus solutions, and Network Access Control (NAC) systems. Different
vendors incorporate one or many such services into their products. Specific
to telecom network security and management, some of the market leaders
include: ”Ericsson Security Manager (ESM) [40] from Ericsson, ”NetGuard
Cybersecurity Dome” [41] from Nokia, ”eSight ICT Unified Management
Systems” [42] from Huawei, and ”Cisco Security Manager” [48] from Cisco.

2.4 Distributed databases

A distributed database refers to a system whose data is stored in multi-
ple storage locations. The storage location could be in a different database
management system, in several geographic locations, or in a heterogeneous
structure. The traditional single database is not sufficient to provide most
of the services that are global or enterprise-scale. The number of users, com-
puting power, sheer volume of data, and service requirements demand the
scaling of databases. Besides, in order to separate the data based on the
use case or security domain, it is often required to have a separate database
instance per domain.

In the context of telecommunication, an operator can have a database
close to their core network in order to facilitate the service quicker. Similarly,
in the use of the health care system, separate databases per region (hospital,
district, region) can be maintained separately so as to limit access. For
use cases like streaming and social sites, distributed databases help serve
contents to the customer fairly quickly by keeping the data source close to the
user. In a nutshell, having distributed databases in many use cases provides
benefits of performance improvement, massive scalability, and round-the-
clock reliability [49].

Enterprise systems with multi-instances (having multiple system nodes)
- as in the CSP network - keep their distributed database in the core system
and could manage a central database to store the data of each core. Depend-
ing on the architecture, some data may only remain in the core, while others
may be shared between the core and the central database. The advantage of
this central data collection is that it provides data backup and availability
to multiple nodes in different regions, thus providing a holistic picture of the
system.

Having a central node that collects data from each sub-node is a good
approach for central monitoring and getting an overall picture of the network.

CHAPTER 2. BACKGROUND 19

However, it is required to consider if it affects the privacy of users at each
node. And, once collected, access control is to be considered at the central
node, as access to data for any user might be limited to some nodes.

2.5 Data management technologies for multi-

instance architecture

As explained in the previous section, a system based on a multi-instance
architecture may need to aggregate data, either fully or partially. There are
different technologies and services available that cater to specific business
needs. In this section, we will discuss the major ones, which include:

Data Federation
Data federation is a concept in software processes where multiple inde-

pendent databases act as one under an abstract query layer. Despite data
being stored in multiple locations, a query executed will combine the results
of multiple data sources, combine them, and produce one single output view.
The data federation helps in reducing storage space, maintaining a single
source of truth, minimal coding, and easy access control [50]. Data is not
physically moved; instead, the top-level component dealing with the main
query calls multiple databases with subqueries. With this, there are some
other challenges, such as additional overhead due to the need to integrate
data from distributed sources, hassle in maintaining data consistency across
multiple sources, maintaining consistent security and access control, depen-
dency on source availability, and limited offline access.

Data Lake and Data Warehouse
Data lakes and data warehouses serve as centralized repositories for stor-

ing large volumes of data. While they both serve this purpose, they differ in
their approach and functionality.

A data lake is designed to store raw data in its original format, accom-
modating structured, semi-structured, and unstructured data. It can store
a wide variety of data types, including tables, files, social media data, sen-
sor data, and graphs. The primary objective of a data lake is to provide a
platform for exploratory and ad hoc analysis, allowing users to access and
analyze data in its raw form. This flexibility enables data scientists and an-
alysts to perform in-depth exploration and experimentation with the data,

CHAPTER 2. BACKGROUND 20

without the need for predefined structures or schemas.
On the other hand, a data warehouse is a structured environment that

maintains data in a historical and consolidated form. It organizes and op-
timizes the data to improve query performance and is primarily geared to-
wards Business Intelligence tasks[51]. A data warehouse structures the data
according to predefined schemas, transforming and aggregating it to facil-
itate efficient querying and reporting. Data warehouses are well-suited for
predefined queries and predefined analytics, providing a reliable and consis-
tent foundation for generating business insights.

OLAP and OLTP
Online Transaction Processing (OLTP) is the data processing and man-

agement approach that supports the real-time needs of the system by fetching
the data on demand for processing the service’s immediate requests. OLTP
focuses on processing high-volume transactional data to perform day-to-day
business transactions. Use cases include applications such as e-commerce,
banking, inventory, and order management. They have ACID (Atomicity,
Consistency, Isolation, and Durability) properties, handle concurrency, have
a fast response time, and typically follow data normalisation [39]. OLAP
(Online Analytical Processing) is a technology that powers complex, multi-
dimensional data analysis. A data warehouse, or Data lake, is the primary
database technology used for OLAP. They are therefore primary for busi-
ness intelligence and decision support. They allow you to analyse data from
multiple dimensions, split data sources for insights, deduce relationships, ag-
gregate, consolidate, and optimise for specific needs [39].

Data Mesh
DataMesh is an emerging approach to data engineering and management.

Traditionally, distributed data has been gathered in a central location and
processed for OLAP. With datamesh, the responsibility of managing data
and its access control is separate by its domains. Data is organized into
domains and data teams is responsible to carry out the processing in their
specific product-oriented way [36]. It advocates for the domain team to take
ownership and responsibility of the data instead of one central process that
manages or process the data. Each team can, however, use the same common
infrastructure to process the data. Therefore, the concept also goes hand in
hand with Data Federation. Well-defined APIs and data contract ensure the
domain team can provide required data upon requested by other teams. This
gives autonomy and accountability over own data.

CHAPTER 2. BACKGROUND 21

ETL, EL and ELT data pipelines
”Extract, Transform, and Load (ETL)” and ”Extract, Load, and Trans-

form (ELT)” are the two data processing approaches that can be implemented
in a centralised repository or data mesh architecture. [37] defines each term
as: Extract refers to the process of fetching a subset of information from the
data source to process. Transform is the actual processing of data, which
depends on the business need for data. Load refers to the storage of the
information in the information distribution centre. Figures 2.3 and 2.4 show
the flow diagram of ETL and ELT.

ETL, or Extract, Transform, Load, is a data integration process where
data is extracted from various sources, transformed into a consistent struc-
ture, and then loaded into a target data warehouse [52]. The transformation
step involves tasks like data pruning, cleaning, converting, aggregating, and
applying business rules. Typically, ETL is performed on a separate server or
as a separate process, and it is commonly used for handling batch-oriented
data.

Figure 2.3: ETL process[52]

In contrast, ELT is a relatively new approach to data integration [52].
With ELT, data is extracted from the source and directly loaded into the
target system. The transformation process takes place within the target
system itself, leveraging its processing capabilities. This can be a data lake
or a cloud data platform. Since the data transformation happens on the fly,
users have the flexibility to view the raw data and decide whether it needs
to be transformed. This approach enables more agile data processing, as
decisions can be made based on the initial state of the data.

Lastly, in the EL (Extract and Load) process, data is consumed as it is
without significant transformations [52]. This approach is best suited when
the data is already clean and accurate, requiring minimal modifications.

CHAPTER 2. BACKGROUND 22

Figure 2.4: ELT process[52]

2.6 Data management services in cloud

Major cloud providers offer a comprehensive range of data management ser-
vices, as previously discussed and beyond, under various names and branding.
Amazon Web Service (AWS), Google Cloud Platform (GCP), and Microsoft
Azure are widely recognised as the dominant players in the cloud service
provider industry. The cloud offers various data management options such
as Infrastructure as a Service (IaaS), Software as a Service (SaaS), and Plat-
form as a Service (PaaS), which can be selected based on the specific needs of
the organisation. Table 2.1 displays a selection of prevalent data management
services offered by cloud providers.

CHAPTER 2. BACKGROUND 23

Table 2.1: Data Services Provided by AWS, GCP, and Azure [33–35]

Data Service Type AWS GCP Azure
Relational Databases Amazon RDS,

Amazon Au-
rora

Cloud Span-
ner, Cloud
SQL

Azure SQL
Database

NoSQL Databases Amazon Dy-
namoDB

Cloud Fire-
store, Cloud
Bigtable

Azure Cosmos
DB

Data Warehousing Amazon Red-
shift

BigQuery Azure Synapse
Analytics,
Azure Data
Warehouse

Object Storage Amazon S3 Cloud Storage Azure Blob
Storage

Data Streaming Amazon Kine-
sis

Cloud Pub/-
Sub

Azure Event
Hubs, Azure
Stream Ana-
lytics

Data Integration AWS Glue Cloud
Dataflow,
Cloud Com-
poser

Azure Data
Factory, Azure
Data Catalog

Big Data Processing AWS Lake
Formation,
AWS Glue

Cloud Dat-
aproc, Cloud
Dataflow

Azure
Databricks,
Azure HDIn-
sight

Data Migration AWS Data-
Sync, AWS
Database Mi-
gration Service

Cloud Data
Transfer Ser-
vice, Cloud
Storage Trans-
fer Service

Azure Data
Box, Azure
Data Factory

Search and Analytics Amazon Elas-
ticsearch Ser-
vice

Cloud Data-
lab, Cloud
Data Catalog

Azure Data
Lake Ana-
lytics, Azure
Analysis Ser-
vices

Others AWS Snow-
ball, AWS
Data Pipeline

Cloud Memo-
rystore, Cloud
Filestore

Azure Data
Lake Storage,
Azure Queue
Storage, Azure
Table Storage

CHAPTER 2. BACKGROUND 24

2.7 Data aggregation using GCP

The understanding of various data management methodologies in Google
Cloud Platform (GCP) can potentially be applied to analogous cloud service
providers. In the realm of data aggregation from multiple nodes, Google
Cloud Platform (GCP) provides a range of services that effectively support
the management and aggregation of data. Several significant services that
are pertinent to this thesis are outlined here:[53]

Cloud Pub/Sub: This fully managed real-time messaging service en-
ables dependable and asynchronous communication between various distributed
system components. This platform facilitates the dissemination of messages
on specific subjects by data producers, which can subsequently be subscribed
to by data consumers for the purposes of processing and aggregation.

Cloud Dataflow is a comprehensive managed service designed to facil-
itate the execution of parallel data processing pipelines. The utilisation of
dataflow allows developers to construct data aggregation workflows that have
the capability to efficiently process and aggregate data from various sources in
a distributed and scalable fashion. The system offers support for both batch
and stream processing modes, thereby offering flexibility in accordance with
the data aggregation needs.

BigQuery, developed by Google, is a serverless data warehouse that pro-
vides robust querying functionalities for conducting extensive data analysis
at scale. Data aggregation can be achieved through the execution of SQL
queries across multiple nodes or partitions, enabling users to gather data
from diverse sources and derive significant insights.

Cloud Dataproc is a managed service that facilitates the processing and
analysis of large-scale data through the utilisation of Apache Hadoop and
Apache Spark. Users are able to utilise distributed processing frameworks in
order to consolidate data from multiple nodes and carry out intricate data
transformations and analysis.

Data Fusion is a fully managed data integration service provided by
GCP. This service streamlines the tasks of data ingestion, transformation,
and aggregation from multiple sources. The platform offers a graphical user
interface that facilitates the construction of data pipelines, enabling users to
seamlessly consolidate data from various nodes or systems.

The services offered by Google Cloud Platform (GCP) encompass the
necessary infrastructure, tools, and capabilities for efficiently consolidating
data from multiple nodes. These systems provide the advantages of scala-
bility, reliability, and user-friendliness, allowing organisations to effectively

CHAPTER 2. BACKGROUND 25

manage substantial amounts of data and derive valuable insights through the
process of data aggregation.

2.8 Related Work

Reviewed literature perceives cloud database management as a computing
service for handling cloud data [1]. It is guided by key design principles such
as dynamic scalability, availability, and dynamic resource allocation. Various
cloud database architectures exist to meet diverse requirements. Adam et al.
[1] classify DBMS architectures into two types: shared nothing and shared
disk. In the shared nothing approach, each node is self-sufficient and inde-
pendent, while in the shared disk approach, each node can have independent
memory but shared disk space. Another classification criterion is based on
the measures of capacity adjustment. Cloud compute power is elastic, allow-
ing for easier workload scaling. Scaling methods include scale up, where the
database is deployed on a single virtual server instance, and scale out, where
multiple instances of the same type are used, with the number of instances
adjusted according to the workload [6].

Cloud Monitoring Systems (CMS) research focuses on monitoring and
managing cloud activities. Birje et al. [10] provide a three-layered view of
CMS: Infrastructure, Platform, and Application layers. The infrastructure
layer monitors physical and virtual components such as CPU, memory, disks,
and traffic. The platform layer focuses on platform and service-related met-
rics, such as response time, process count, VM count, threads count, and
resource allocation per application. The application layer monitors system
status metrics, including CPU utilization, query latency, CPU usage, and
memory usage. Data generation in CMS systems can come from subnodes,
cloud computing operations, log analysis, events, network management, and
performance measures [10].

Silva et al. [11] propose an architecture for CAMS that comprises a mes-
sage bus, producers, aggregators, and consumers. Their work emphasizes se-
curity and privacy considerations for the entire system and evaluates regional
energy consumption, monthly charges, technical aspects, and homomorphic
aggregators. The architecture design process begins with choosing between
centralized and decentralized architectures. Monitoring, which includes col-
lection, filtering, aggregation, analysis, and reporting, is the subsequent step.

Data collection involves gathering metrics from various subsystems into
a central system. In a centralized system, all data is collected in a central
node and processed, which is cost-effective but introduces a single point of
failure and reduced scalability [21, 22]. In a decentralized system, CAMS

CHAPTER 2. BACKGROUND 26

acts as a lightweight client, querying information from subnodes. Literatures
[23, 25–27] describes five strategies for data collection: Push, Pull, Hybrid
Push, Hybrid Push Pull, and Adaptive Push. Updating data is a critical
architectural decision, with two major strategies: Periodic Update, where
data is updated at regular intervals [28], and Event-based Update, where
data is updated when an event occurs [29]. Filtering strategies can be based
on time, window, content, or threshold.

Aggregating data supports analytics, accurate results, resource optimiza-
tion, and process tuning [23, 24]. The architecture of a data aggregation
system depends on factors such as latency, feature requirements, security re-
quirements, and the granularity of presented metrics [9–12]. Karthick et al.
[12] conducted a survey on big data aggregation using the cloud, highlight-
ing the importance of resource and data aggregation into data centers on the
internet.

Data management has been studied in various use cases. Researchers
[2, 4, 7, 8] have analyzed the use of cloud services for data management and
processing. For instance, Pajic et al. [7] model data generated from laser
scanning or photogrammetry with billions of points using the cloud. Chaud-
hary et al. [8] focus on managing IoT data using cloud services. Cooper
et al. [4] analyze data engineering aspects in building Yahoo infrastructure,
while Sangat et al. [2] explore cloud-based sensor data management. These
applications generate vast amounts of data, requiring significant resources for
processing and timely service delivery. Although the structure and process-
ing of the data may differ across applications, the fundamental ideas of data
transfer, processing, and loading are similar. Therefore, knowledge of data
infrastructure in one use case can inspire the design of systems to handle Big
Data.

Various tools and frameworks are used in different use cases. Previous
works have employed MapReduce [3], graph theory [5], role-based approaches
[1], and object-oriented approaches [18]. Tsangaris et al. [5] refer to complex
tasks such as querying, search, information filtering, transformation, and
analysis as rich tasks, typically represented by graphs with nodes and edges.
Performance comparisons of multiple tools for cloud data management, in-
cluding MongoDB, Apache Spark, Bigtable, Hadoop, and Sherpa, have been
conducted in past studies [2–4, 13]. For instance, Sangat et al. [2] exper-
iment with Apache Spark and native MongoDB for storing, ingesting, and
retrieving sensor data, finding that Spark improves the ingestion process sig-
nificantly and performs better than Mongo for reading and writing. Apache
Spark is also shown to be effective for operations on point clouds, such as
range and knn queries [7]. MapReduce and related software are designed for
automating the parallelization of large-scale data analysis workloads, includ-

CHAPTER 2. BACKGROUND 27

ing Hadoop [4].
ETL and ELT are commonly used data management processes in the

cloud. ETL involves applying transformations before loading data into a data
warehouse for analysis, while ELT involves transforming the data at a later
stage when needed. ETL is useful when end requirements and the data to be
transformed are clear, but it involves significant I/O activity, string process-
ing, and variable transformation [15]. Zdravevski et al. [13] analyze different
dataflow scenarios in the ETL process that are common to many organiza-
tions, including scenarios involving no aggregation, aggregation in a fixed
time period, and aggregation based on session. Cloud computing provides
services that support the aforementioned stages and scenarios. Sreemathy et
al. [15] present an overview of big data analytics using cloud computing, with
a case study using Google’s BigQuery. The study indicates that BigQuery
is well-suited for complex analytical queries, often eliminating the need for
simple aggregation and filtering.

Offloading data to the cloud poses its own challenges, requiring caution
[3]. The security and privacy of aggregated data are crucial considerations.
Privacy regulations in the data collection region, data storage region, data
authenticity, and access control levels for different stakeholders are impor-
tant to note [3, 9]. Access control on data can be influenced by local rules
and regulations where the data is stored. For example, the US Patriot Act
allows the government to demand access to data on any computer without
consent or knowledge, even if it is hosted by a third party [3]. Similarly,
GDPR affects the processing and management of European user data [31].
Businesses operating in multiple regions with varying data laws must comply
with each regulation to operate legally. Therefore, careful consideration is
required when choosing the region, cloud service provider, and database ser-
vice provider [31]. Access management is a significant aspect of data security
in the cloud. Abadi et al. [3] propose cloud database access and management
based on three-schema and three-level object-oriented database architectures
[18].

Zhang et al. [9] investigated a use case of priority-based health data
aggregation with privacy preservation using the cloud. One example of an
attack mentioned in the paper involves an attacker forging an emergency call
to degrade network performance. The data collected itself can often include
sensitive information, such as patient or user data. Approaches mentioned in
the literature to mitigate these risks include encoding personally identifiable
information (PII) before pushing it to the cloud, using homomorphic aggre-
gators, employing private clouds, processing data using internal servers, and
implementing role-based access control for processed results.

Chapter 3

System Study

In this section, we discuss the overview of the NMT tool of the company on
which we base our study. We explain what the system is, its architecture,
and the constraints and requirements of CAMS for this system.

3.1 System overview

The Network Monitoring Tool (NMT) is a software that monitors the status
of the network and devices connected to it. NMT is a simplified security tool
that is inspired by Ericsson Security Manager (ESM). The actual implemen-
tation of the NMT is out of scope for this thesis, as the implementation is
concerned with the data output only. To uphold the secrecy of company’s
proprietary information, the terminologies and exact architecture of ESM
are not used in the NMT node. However, the architectural considerations
and data model of NMT are designed such that the knowledge gained from
the result of the thesis output can be extrapolated to the multi-instance
deployment of ESM.

Figure 3.1 shows the underlying physical architecture of the NMT system.
It connects to a Network Management service, which connects to the different
devices. Each NMT instance uses its own database to store the network
monitoring results. The devices could be of different types. In the figure,
device types ”C”, S,” and ”R” are shown.

Figure 3.2 shows where NMT is deployed in the physical network and how
it fits in the CSP network for monitoring purposes. Each CSP node connects
to thousands of cell stations. Each station has multiple devices necessary for
signal coverage in the deployed region. One of the critical communication
devices is the BBU. NMT connects to all the BBU devices connected to
the node and many of the devices in the node itself. For the huge network

28

CHAPTER 3. SYSTEM STUDY 29

Figure 3.1: NMT physical architecture

node, multiple NMTs can be used to cover all the BBUs and node devices.
The deployment can also be such that different NMT instances are used
to connect different nodes. The deployment is specific to the business and
operator requirements. This way, multi-instance NMT can also be deployed
in geo-redundant scenarios. The fleet of such NMT instances can therefore
cover the monitoring tasks of the entire network, regardless of the number of
nodes and devices it has.

Figure 3.2: Multi instance NMT deployment

A Central Aggregation and Monitoring System (CAMS) is a platform to
aggregate information from multiple instances of NMT and present a status

CHAPTER 3. SYSTEM STUDY 30

overview of the entire network. As shown in figure 3.3, it communicates
with each NMT. The protocol for communication with each NMT instance,
number of invocations, type of data transferred, and information presented
depend on the architectural design decisions, which will be the main focus
of the thesis. CAMS, however, is not responsible for being involved in the
monitoring and compliance check execution.

Figure 3.3: CAMS

Several terminologies and components of the NMT architecture are ex-
plained below:

3.1.1 Network Device and Device Type

Each device in the network is called a network device. In the context of NMT,
a device is a physical or software element that can be tested or monitored
for security policies. They are of different types, such as baseband, router,
switch, firewall, network element, hub, and any such element that constitutes
the telecommunication network. This does not include the end devices, for
instance, mobile phones, antennas, and physical hardware devices in cell
towers. In general, a network device has one or more modules, with each
module integrated into it. Each module has exactly one gateway for external
communication. These gateways are used directly or indirectly to perform
the monitoring actions and connect devices to run the compliance checks.

Figure 3.4 shows an example of such a generic network device. The de-
vice of type D1 has 4 modules: M1, M2, M3, and M4, each of which has
one gateway interface represented by ”g.”. The information associated with
each network device includes the device ID, device type, number of modules,

CHAPTER 3. SYSTEM STUDY 31

Figure 3.4: A generic Network Device

number of gateways per module, device-specific information, and supported
communication protocols.

3.1.2 Compliance

Compliance is the actual security specification that the network device should
adhere to. NMT will check the devices to see if they are in accordance with
the guidelines enforced by “compliance”. Compliance includes information
about:

• script to check compliance enforcement. This can be in Python, Ansi-
ble, or Shell.

• constraints to compare or implement

• supported device type(s)

Examples of compliance can include “Password is of valid length”, “Login
attempt count control”, and “SSH key validation”. Compliance can also be
referred to as compliance Check (CC), which refers to the act of checking the
compliance of a network device.

CHAPTER 3. SYSTEM STUDY 32

Compliance Example: Password is of valid length

0: Constraints:
0: minimum length = 8
0: maximum length = 32
0: include numbers = True
0: include special characters = True
0: special characters = “!@$%&̂*() +-[]—;:,.¡¿/?’#=”
0: Script:1

0: password = env.get(“$PASSWORD”)
0: has numbers = any(char.isdigit() for char in password)
0: has special chars = any(char in special characters for char in pass-

word)
0: pass length check = minimum length ¡= len(password) ¡= maxi-

mum length
0: pass numcheck = include numbers or not has numbers
0: pass specialcharcheck = include special characters or not

has special chars if pass length check and pass numcheck and
pass specialcharcheck then

0:
end
return “PASS” else

0:
end
raise Exception()

0: =0

Compliance Example 2: Login attempt control

0: Constraints:
0: max valid attempt = 3
0: successive attempt interval = 20s
0: block after max invalid attempts = True
0: Script:
0: ... // omited for brevity // ... =0

1In a well-designed system, passwords are usually not saved in raw form and is not (or,
should not be) accessible as shown in the example above. This script is for the demonstra-
tion purpose and is not related to any real world implementation.

CHAPTER 3. SYSTEM STUDY 33

3.1.3 Compliance Check Group (CCG)

A compliance check group is a logical group of two or more compliance checks.
All the related compliances can be grouped under a meaningful name. For
example, one small CCG can be named “Incoming API Request CCG” and
include compliances related to all the API calls being made to the service,
such as “number of API calls per client for a given interval”, “wait time
between successive API calls”, “maximum payload size”, “accepted HTTP
verbs,” etc. CCG is often a broad umbrella term that can include tens to
hundreds, if not thousands, of compliances. CCG also has information on
what device types or lists of assets it can run compliance checks on.

3.1.4 Compliance Check Run (CCR)

Also known as Compliance Run. While performing a security check of a
compliance against a device, the script will run in an isolated environment
to check if the device conforms to all the constraints defined in the given com-
pliance. This way, desired checks can be defined using compliance constraints
and a script. Associating each compliance with the supported device type,
a structure is defined to perform different security checks against different
device types.

3.1.5 NMT node

The NMT node refers to a deployment instance of NMT. There can be other
software alongside NMT, a wrapper, and different processing components
used beside NMT, as required. This all-in-one combination is called an NMT
node. This is responsible for the monitoring of the regional network. It
defines the CCG, compliances, and association of device type with the CCG
or compliance, creates plans to run the CCG, executes the CCG plans, and
stores the result in the local database. SQL is a commonly used option to
store all the information regarding the network and the run results.

3.1.6 CCG Plan and Execution

A CCG plan, or Compliance Check Plan (CCP), includes the execution plan
of a given CCG in any NMT node. The plan defines what CCG to run,
for which devices to check compliance, when to run, scheduling information,
and so on. Once the plan is ready, it is run by NMT. The process is called
Compliance Check Run (CCR). Since each compliance of CCG is run against
the defined number of assets, we can calculate the total number of records

CHAPTER 3. SYSTEM STUDY 34

in the output using the following equations:

Number of gateway execution point =
∑

device type

Number of device× Number of modules

(3.1)

Number of CC results = Number of gateway execution point× Number of compliances in CCP

(3.2)

Figure 3.5: Compliance Check workflow

Figure 3.5 shows how the compliance check is planned and executed. A
single CCP is formed by selecting some devices or all devices of a particular
device type. It is then matched with a subset of compliances under one CCG.
Once the plan is ready, it is executed. During the run, a script inside each
compliance is run against the selected device to check its compliance. The
CCR results are then generated, which contain the result status and output
logs.

3.1.7 Network Management Service (NMS)

This layer has the responsibility of identifying all network devices and estab-
lishing connections with them to enable the execution of compliance checks
when required by the Network Management Tool (NMT). The maintenance
of the device connection and the forwarding of commands from NMT to
the devices take place within this layer. Subsequently, NMT retrieves in-
formation about the network devices and compliance check specifics from a

CHAPTER 3. SYSTEM STUDY 35

database or other related services, and carries out the necessary actions. A
relational database management system (RDBMS) is utilized to store de-
tails about the network as well as the outcomes of the Compliance Check
Group (CCG) runs. The NMS can establish direct connections with the de-
vices themselves or establish connections through an interface for a group of
devices.

3.2 System Profiling: Requirements and Con-

straints

Each NMT node contains a certain number of basebands and multiple devices
of each type. Through the study of real-world systems and interviews with
the System Architect, we determine the quantity of devices of each type for
different operator sizes. Table 3.1 presents the number of devices of each type
present in different nodes based on the operator size. For security purposes,
we encode the device types as t1, t2, t3, t4, and so on. t1 is the baseband
type, which is also encoded as bb. The number of gateways for each device
type is provided thereafter. On average, 30 controls are applied per gateway
during the CCR, enabling us to calculate the total number of executions.
This table will serve as a reference during the implementation process.

The specific information necessary in the central node or aggregation node
may vary over time, contingent upon the use case and business requirements.
Consequently, the system implementation is devised with the awareness that
any subsequent new feature or information can be seamlessly incorporated.
In essence, it should possess feature-scalability. In this implementation, the
following output requirements are taken into account for the central node.

1. Trend of each CCG over whole network

• Number of compliance checks output distribution by CCG

• Percentage of output status distribution by CCG

• Performance of each CCG by node

• Sort the top few CCG based on latest run or result statuses

2. Trend of each node

• Number of compliance checks output distribution by node

• Percentage of compliance checks output distribution by node

• Performance of each node by CCG

CHAPTER 3. SYSTEM STUDY 36

• Sort the top few devices based on latest run or result statuses

3. Trend of each device type

• Distribution of different result statuses grouped by CCG

• Distribution of different result statuses grouped by nodes

• The top problematic device type to skew the result

• Sort the top few devices based on latest run or result statuses

4. Number of CCRs executed in certain nodes using certain policies for
certain time range

Table 3.1: Device type and Operator Sizes

Type
Operator Size

gateways controls
Executions

S M L S M L
bb 5000 20000 80000 1 30 150000 600000 2400000
t2 2 6 23 259 30 15540 46620 178710
t3 1 1 1 1 30 30 30 30
t4 16 64 255 5 30 2400 9600 38250
t5 48 192 765 5 30 7200 28800 114750
t6 2 6 24 1 30 60 180 720
t7 1 1 2 1 30 30 30 60
t8 5 18 72 1 30 150 540 2160
t9 2 6 24 1 30 60 180 720
t10 3 12 48 1 30 90 360 1440
t11 1 4 16 1 30 30 120 480
t12 1 2 8 1 30 30 60 240
t13 2 7 25 10 30 600 2100 7500
t14 1 2 8 1 30 30 60 240

Total 5085 20321 81271 Total executions 176250 688680 2745300
Note:
”Type” refers to device type
”controls” refers to the controls applied per gateway
”S”, ”M”, ”L” refers to network sizes: Small, Medium, and Large.

3.3 Architectural Design Choices

The requirements can be fulfilled through different architectures, offering a
wide range of possibilities. NMT nodes are deployed in multiple geographic

CHAPTER 3. SYSTEM STUDY 37

locations, necessitating the aggregation of data from each node via data
transfer over private or public networks. In order to attain the desired output,
we examine several options that were initially considered. These choices were
influenced by recommendations from the system architect and decisions based
on findings from the literature reviews conducted.

3.3.1 Architecture Option I: Poll-based / Synchronous
Approach

Figure 3.6: Polling-based Architecture

This option, depicted in Figure 3.6, entails the presence of a ”coordinator”
application that regularly sends requests to all NMT nodes and gathers the
data. Each NMT node maintains its own local database to store the results
of CCG runs. The coordinator has the option to cache the results or not.

Advantages: This approach is straightforward to implement since it
requires minimal modifications to the API of existing nodes for integrating
polling from the coordinator. By using query parameters, the coordinator can
specifically request the required data. Additionally, the polling frequency can
be adjusted based on the needs. Implementing caching reduces the number of
API calls to each node, thereby improving data access speed. Furthermore,
this approach can be extended to allow the coordinator to act as a proxy for
any node, enabling users to access more information or exercise control over
specific nodes.

CHAPTER 3. SYSTEM STUDY 38

Disadvantages: The coordinator needs to establish and maintain active
connections with each node, and it is responsible for monitoring the status of
active and inactive nodes. Depending on whether caching is enabled on the
coordinator and the number of requests received by the coordinator regarding
the status of any CCG run, the number of API calls to each node can increase
significantly.

3.3.2 Architecture Option II: Push-based/Asynchronous
Approach

Figure 3.7: Push-based Asynchronous Architecture

In this approach, illustrated in Figure 3.7, each node pushes the new CCG
run result to a message queue topic. The coordinator reads the results from
the message queue, processes them, and stores them locally. The coordinator
can then utilize the local database to provide aggregated statistics for the
entire dataset.

Advantage: This architecture eliminates the need for the coordinator to
establish and maintain active connections with each node. Once a run result
is available on a node, it is simply pushed to the queue, ensuring that the
latest result is immediately accessible in the message queue.

Disadvantage: To handle asynchronous events, an additional layer is
required in the coordinator to set up the message queue and categorize the

CHAPTER 3. SYSTEM STUDY 39

messages from each node based on the topic or source. Moreover, since
there is no direct communication established between the coordinator and
the nodes, the coordinator cannot directly pass user requests to the nodes.

3.3.3 Architecture Option III: ETL Approach

Figure 3.8: Cloud ETL Approach

In the ETL approach, depicted in Figure 3.8, each node pushes the result
of every CCG run or the combined results of multiple CCG runs within a
certain interval to a central cloud storage service. Once a new result is avail-
able in the storage, an ETL job is triggered. The job reads the latest file,
processes the data according to the requirements, and stores the analytics
result in a database. The ETL job is implemented as a serverless function,
although it can also be accomplished using other services provided by the
cloud provider. The processed result is then stored in a separate output
storage component, such as a database system, file storage, or querying plat-
form. This layer, either directly or with the assistance of a new API layer,
delivers the analytics result to the user.

Feature Scalability: Since the ETL function is triggered by the presence
of a new file in the cloud storage, multiple ETL functions can be triggered
for a single event. This allows the implementation of new features or output
statistics requirements through additional ETL functions.

CHAPTER 3. SYSTEM STUDY 40

Advantage: By separating each component, changes in the transforma-
tion function can be easily updated or horizontally scaled. This flexibility
allows the infrastructure size to be adjusted based on the information re-
quirements of the central node.

Disadvantage: The use of multiple cloud services introduces cost con-
siderations, which depend on factors such as data volume, bandwidth, traffic,
invocation, and memory usage. While the pay-per-use feature is beneficial
for networks with simple central nodes and fewer run results, the cost can
increase for larger, high-traffic nodes.

3.3.4 Choosing the best architecture plan

Upon implementing the Minimum Viable Product (MVP) for each of the
aforementioned options, it became evident that the ETL-based approach
outperformed the others in terms of scalability and customization. After
thorough discussions with project stakeholders, several compelling reasons
emerged in support of adopting the ETL-based approach.

Firstly, the ETL approach provides a highly scalable solution capable
of efficiently handling a large number of nodes and accommodating future
growth. Given that the NMT node aims to support an increasing number
of devices and expand compliance check coverage, the anticipated growth in
run results necessitates a scalable architecture. The ETL approach effectively
separates the computational load on the node side, alleviating strain on the
node’s API. In contrast, achieving scalability with the other options requires
significant effort and meticulous planning during system development.

Secondly, the ETL-based approach offers real-time processing capabilities
by allowing easy configuration of memory, processing power, and invocation
frequency. The inherent flexibility of the ETL approach enables seamless
system reconfiguration as needs evolve. It supports multiple data sources
and facilitates tailored transformations to adapt to specific formats. This
adaptability is crucial for accommodating changing requirements. The trans-
formation function can be easily updated or parallelized, ensuring resilience
and agility in the face of evolving needs.

Furthermore, leveraging cloud-based ETL provides access to powerful
tools and services for data transformation and enrichment. The availabil-
ity of cloud services reduces development time and allows a focus on the core
business logic rather than infrastructure implementation and maintenance.
This consideration was prioritized by the company’s stakeholders.

Cost-effectiveness also played a pivotal role in selecting the ETL-based
approach. The inherent flexibility of the cloud infrastructure, with its pay-
as-you-go pricing model and on-demand scalability, provides superior cost

CHAPTER 3. SYSTEM STUDY 41

efficiency compared to the other options. Additionally, the ETL-based ap-
proach requires fewer engineers for development and maintenance compared
to the other models, resulting in reduced project costs and shorter timelines.

Based on these comprehensive comparative analyses and taking into ac-
count the input from stakeholders, the ETL-based architectural option has
been chosen for implementation.

Chapter 4

Implementation

In this section, we will elucidate the implementation details of the selected
architecture. To execute the ETL approach, we employ the utilization of
Google Cloud Platform (GCP). The choice of GCP for this thesis is predi-
cated on the availability of cloud resources provided by the company during
the course of this work. Nevertheless, users have the liberty to opt for any
other public cloud platform or their own internal cloud system for production,
while ensuring the consistent functionality of the components.

We will now delve into the specifics of how each component is constructed,
fitted, and executed on GCP, which will be elaborated upon in the subsequent
subsections. The NMT system is designed to facilitate experimentation with
all three types of networks: low-traffic, medium-traffic, and heavy-traffic.

The source code is available on a Github repository 1.

4.1 Simulating NMT Node

The implementation of the NMT node does not focus on actual device scan-
ning and tasks related to network monitoring. The company already has
existing solutions for these purposes, which are beyond the scope of this the-
sis work. For implementation purposes, the NMT node will simply simulate
the output result of the node.

To automate the creation of multiple different configurations more effi-
ciently, the config.py script generates a config file. This script enables faster
creation of various configurations, allowing each node to have a different set
of config.yaml files for each run, thereby generating a new set of test data.
The config.yaml file includes details on how the test data should look, what
data it should include, and how many instances of data should be generated.

1https://github.com/bipinkh/data-aggregation-telco-network

42

CHAPTER 4. IMPLEMENTATION 43

Figure 4.1: NMT node simulation

A sample of the config file can be found in Figure 4.2. In this example, we
generate a config file for node node1l with 78164 basebands, 5842 devices of
type t2, 1 of type t3 and so on. The output will have about 10% error out-
puts, 17% fail outputs, 4.7% noreach, and 67% pass outputs. It also provides
value for CCG id, CCG name, run id, total controls and run time.

The information available in config file include:
- node name
- id, total controls, begin timestamp, and end timestamp used for the CCR
- number of devices of each device type to use for CCR
- id and name of CCG
- the distribution probability of different result statuses

To generate the output data, the script.py is executed by passing the
generated config file as a parameter. The command syntax is presented in
Figure 4.3. A sample of the generated output file is provided in Figure 4.4.
The output data file contains various details about the CCR, including the
ID, CCG details, and the runtime range. For each run, it includes the device
ID, compliance ID, and the run result. Additionally, information about each
device type corresponding to each device ID is available, enabling analysis of
the result distribution based on device types.

CHAPTER 4. IMPLEMENTATION 44

node : node1l
runs :
− dev i c e s :

bb : 78164
t10 : 42
t11 : 11
t12 : 9
t13 : 150
t14 : 10
t2 : 5842
t3 : 1
t4 : 510
t5 : 2295
t6 : 25
t7 : 2
t8 : 70
t9 : 25

c c g i d : ccg1
ccg name : sample ccg 1
r e s u l t c h an c e s :

e r r o r : 0 .10374874098684847
f a i l : 0 .1787522560020067
noreach : 0.0474815149848024
pass : 0 .6700174880263424

run id : ’231302624799 ’
t o t a l c o n t r o l s : 30
t s f rom : ’2023−06−27T23 :13 :02+03 :00 ’
t s u n t i l : ’2023−06−28T00 :58 :21+03 :00 ’

t o t a l r u n s : 1

Figure 4.2: Sample of config file

SYNTAX:
python s c r i p t . py [c o n f i g f i l e] [d a t a j s o n f i l e]

c o n f i g f i l e = l o c a t i o n o f the c on f i g f i l e to be used
d a t a j s o n f i l e = l o c a t i o n o f the output (j son) data f i l e

Example :
python s c r i p t . py c on f i g s / c on f i g r e g i o n 1 . yaml
data/ data r eg i on1 . j son

Figure 4.3: Command syntaxes for generating CCR results

CHAPTER 4. IMPLEMENTATION 45

{
” node id ” : ”node1xs ” ,
” t o t a l r u n s ” : 1 ,
” runs ” : [

{
” run id ” : ”231831669110” ,
” c c g i d ” : ” ccg1 ” ,
”ccg name ” : ” sample ccg 1” ,
” t o t a l a s s e t s c h e c k e d ” : 0 ,
” t o t a l c o n t r o l s ” : 30 ,
” t s f rom ” : ”2023−07−02T23 :18 :31+03 :00” ,
” t s u n t i l ” : ”2023−07−03T02 :01 :27+03 :00” ,
” r e s u l t s ” : [

{
” id ” : 1 ,
” d e v i c e i d ” : ”a0bb ” ,
” compl iance id ” : ” c1 ” ,
” r e s u l t ” : ” pass ”

} ,
{

” id ” : 2 ,
” d e v i c e i d ” : ”a0bb ” ,
” compl iance id ” : ” c2 ” ,
” r e s u l t ” : ” f a i l ”

}
// omitted f o r b r ev i ty //

] ,
” d ev i c e t ype s ” : {

”bb ” : [” a0bb ” , ”a1bb ” , ”a2bb ”] ,
” t1 ” : [” a0t1 ” , ” a1t1 ”] ,
” t2 ” : [” a0t2 ”] ,
” t3 ” : [” a0t3 ”]

}
}

]
}

Figure 4.4: Sample of CCR result

CHAPTER 4. IMPLEMENTATION 46

4.2 ETL infrastructure

The data-ingestion process utilizes Google Cloud Storage bucket as the stor-
age layer. The bucket is organized with nested buckets to store the results
from each node separately. The data file is named based on the date and
time when the node exports the file, facilitating easy tracking of the last
export time for any node. The structure of the bucket is depicted in Figure
4.5. Authorized API requests can insert new files into the bucket. Each node
utilizes its service account token to connect to the bucket.

Figure 4.5: GCP data-ingestion bucket structure

When a new file is present in the cloud storage, the ETL step is triggered
by Google EventArc’s trigger service. Event type google.cloud.storage.v1.finalized
is used for this purpose. This event type is activated when a new object is
created and finalized in the GCP bucket. Any write or modification process
on the object is considered ”finalized”.

For the ETL operation, Google Cloud Function is employed. A Python
function is triggered with the event object, which contains information about
the newly added file and the target bucket. The pseudocode outlining the
ETL process is presented in Algorithm 1.

4.3 BigQuery for output data layer

The BigQuery layer serves as the data warehouse and analytics layer in this
implementation. While it is possible to query the raw json files directly
from the cloud bucket, preprocessing the raw files and storing the computed
statistics can help reduce duplicate computation, improve processing effi-
ciency, and achieve faster query times. This, in turn, helps optimize costs

CHAPTER 4. IMPLEMENTATION 47

Algorithm 1 Pseudocode for ETL process

Constants: PROJECT ID, BQ DATASET ID, BQ TABLE ID

Function etl cloud event(cloud event):
Extract bucket name and file name from cloud event data
Call etl function with bucket name and file name as parameters
return “OK”

Function etl(bucket name, file name):
Retrieve data from Cloud Storage using bucket name and file name
Extract node id from data
Perform data transformation to compute result totals
Store results in BigQuery using node id

Function compute result totals(data):
Initialize empty lists all results and device specific
foreach run in data[‘runs’] do

Initialize stats dictionary
Initialize device stats dictionary
foreach result in run[‘results’] do

Increment the corresponding result type in the stats dictionary
Get or create the device stats information for this device type from
device stats ;
Increment the corresponding result type information for device
stats;

end
Add the stats dictionary to run
Add run to all results
Add device stats to device specific

end
return all results, device specific

Function store result in bigquery(node id, results, device specific):
Create BigQuery client
Create BigQuery dataset if it does not exist
Define the BigQuery table schema
Create BigQuery table reference
if table does not exist then

Create the BigQuery table with the schema
end
Prepare rows to insert
foreach data in results do

Create a row object with the data
Remove previous stats for the given node and run
Add the row to the rows to insert list

end
Insert the rows into BigQuery
foreach next 10000 data in device specific do

Create a row object with array of the data
Insert the row object into BigQuery

end

CHAPTER 4. IMPLEMENTATION 48

for cloud resources.
There are two tables in BigQuery that store the results of the ETL pro-

cess. Table 4.1 is used to store statistical overview data, while Table 4.2 is
used to store statistical data based on asset types. To optimize query per-
formance, the ccr_stats_overview table is first clustered by the ccg_id

column and then by the node_id column. Clustering by ccg_id improves
querying time as the central dashboard primarily accesses information based
on the CCG. Similarly, as queries based on node_id are also popular in the
dashboard, the second clustering by node_id further aids in grouping the
information according to the node ID.

Table 4.1: ccr stats overview table schema

column name datatype default remarks
run id STRING NULL
ccg id STRING NULL CCG id
ccg name STRING NULL CCG name
node id STRING NULL
stats pass INTEGER NULL total CC with pass result
stats fail INTEGER NULL total CC with failed result
stats error INTEGER NULL total CC with script error
stats noreach INTEGER NULL total CC for which devices

were unreachable
total devices checked INTEGER NULL
total compliances INTEGER NULL total unique CC
ts entry TIMESTAMP NULL timestamp when data was

stored in BigQuery
ts from TIMESTAMP NULL CCG run start timestamp
ts until TIMESTAMP NULL CCG run stop timestamp

BigQuery offers several ways to access the data from the tables. We use
following two in the implementation.

1. Using Query language
The SQL query language in the GCP console is the most straightfor-
ward method for data access. It allows for obtaining the data in the
precise format required. This approach is commonly used during de-
velopment and can be utilized by individuals with knowledge of SQL
queries and access to the query console.

2. Using APIs
BigQuery provides APIs that enable programmatic access to the data.

CHAPTER 4. IMPLEMENTATION 49

Table 4.2: ccr stats devicetype table schema

column name datatype default remarks
run id STRING NULLABLE
device type STRING NULLABLE type (enum) of device
node id STRING NULLABLE
ccg id STRING NULLABLE CCG id
stats pass INTEGER NULLABLE total CC with pass result
stats fail INTEGER NULLABLE total CC with failed result
stats error INTEGER NULLABLE total CC with script error
stats noreach INTEGER NULLABLE total CC for which devices

were unreachable

These APIs can be invoked directly or integrated with other cloud ser-
vices, such as Lookerstudio, to achieve the desired outcomes. Utilizing
APIs offers flexibility in accessing and retrieving data from BigQuery
tables.

4.4 Lookerstudio for Dashboard and Data vi-

sualization

Lookerstudio, another Google Cloud service, facilitates the creation of dash-
boards using various data sources, including BigQuery tables. It internally
invokes the BigQuery APIs as required to retrieve results. Lookerstudio of-
fers a range of tools to select different graphs or tables and define axes and
metrics. It can effortlessly connect to multiple table sources and blend the
data to provide unified results.

Figure 4.6 presents a snapshot of the complete dashboard. We will now
explain each section marked by numbers inside red circles. It is possible
to add multiple sections and pages within the dashboard. The selection of
sections displayed in the dashboard is determined based on the company’s
requirements and the desired information from the system.

Section 1 is the control area where control variables are located. These
variables can be used to filter the source dataset. All selections, sorting, and
filtering in other sections are applied to the data filtered by these control
variables. The first control variable allows the selection of nodes to visualize.
Only the results belonging to the selected nodes are displayed. Selecting a
single node allows for in-depth analysis of that node’s statistics, while se-
lecting all nodes provides a holistic view of the network status. The second

CHAPTER 4. IMPLEMENTATION 50

Figure 4.6: Dashboard

CHAPTER 4. IMPLEMENTATION 51

control variable enables the selection of policies, filtering the CCRs gener-
ated by applying the chosen policies. The third control variable allows for
choosing a date range to retrieve data from. By combining these three con-
trol variables, users have the option to select CCR data from specific nodes,
policies, and within a certain date range.

Section 2 presents the result status of different CCGs over the chosen
date range across all selected nodes. This section allows users to choose the
metric to display: pass%, fail%, noreach%, and error%. It provides insights
into the average behavior of each compliance on a particular day.

Section 3 displays the average CCG performance grouped by each node.
Each bar represents how the selected CCGs performed on average for all runs
made within the selected date range.

Section 4 illustrates the overall compliance performance, averaged across
all execution results from all selected nodes during the chosen time period.
The columns depict the percentages of different result statuses and the total
number of times the CCG has been applied.

Section 5 shows the number of CCRs that match the criteria set by the
control variables.

Section 6 presents the latest CCRs executed on all chosen nodes for all
selected CCGs. The table can be sorted by each column in ascending or
descending order. It provides information such as the CCR ID, the node it
was run on, the policy applied to it, the day of the run, the total number of
generated records, and the distribution of record statuses.

Section 7 and Section 8 provide a detailed breakdown by different
device types. Each section displays all device types on the X-axis, along
with the status metrics of pass% or allfails% (which includes the combined
sum of fail%, error%, and noreach%). Section 7 breaks down the result
statuses grouped by nodes, while Section 8 groups them by CCGs. These
sections help in understanding how different device types behave across nodes
and CCGs, allowing for the identification of problematic device types in the
network.

Section 9 provides a breakdown of device types with the number of
records available for each type. This represents the sum of all compliances
across all selected nodes and policies. It shows the actual number of records
used for each device type. This information can help identify if the graphs
in Section 7 or 8 are skewed by a few device types only.

Chapter 5

Evaluation and Analysis

5.1 Setup and Performance Metrics

To test the behavior of the system with different input sizes and network
sizes, separate tests are conducted for each network size category. For each
network type, five sets of CCGs are run on each of the three nodes. This
generates a total of fifteen sets of CCR results for the entire network. During
each compliance run, the number of each device type is randomly generated,
with a variation of approximately 20% more or less compared to the values
provided in Table 3.1. Similarly, the probabilities of different result types
are randomly chosen within certain ranges. The probability ranges for each
result status are set as follows: pass - (0.3, 0.99), fail - (0.09, 0.4), error
- (0.05, 0.3), and noreach - (0.03, 0.3). These values are then normalized so
that the sum of all probabilities is 1.0. This process generates different sets of
compliance results for all fifteen CCGs, with slight variations in the number
of assets checked, the number of records generated, and the distribution of
result statuses. Each CCR result is stored in a json file with the provided
structure shown in Figure 4.4. All the json files are subsequently uploaded
to the GCP bucket for data ingestion. The ETL process then processes each
result file in a separate instance of Cloud Function. During execution, the
following metrics are collected for each ETL process:

• etl total: Total time taken for the ETL process to complete.

• etl extract: Total time taken for the cloud function to fetch the file
from the Cloud Storage bucket.

• etl transform: Total time taken for the cloud function to process the
CCR result file and produce the output.

52

CHAPTER 5. EVALUATION AND ANALYSIS 53

• etl load: Total time taken for the cloud function to load the processed
result into the output table in BigQuery.

• bq prepare: Time taken for the cloud function to prepare the records
for insertion into the BigQuery table.

• bq insert np: Time taken for the cloud function to load the computed
result regarding node and policy-level details.

• bq insert a: Time taken for the cloud function to load the computed
result regarding asset type details. Memory consumed by each instance.

• records: Number of compliance check result items generated by each
ETL process.

• devices: Combined number of gateways from each device used in the
CCR.

Therefore, the following relation hold:

etl total = etl extract + etl transform + etl load

etl load = bq prepare + bq insert np + bq insert a

Once the metrics are available, a detailed analysis is conducted to examine
the behavior of each metric for different network sizes. The focus is on
understanding how memory, performance, and resource consumption vary
across different network sizes.

The objective is to gain insights into the factors that affect the system
and assess its scalability as the number of devices in the network increases.
Additionally, the goal is to analyze resource consumption patterns and iden-
tify any potential bottlenecks or areas for optimization. By understanding
these aspects, we can make informed decisions about system enhancements,
resource allocation, and scalability measures to ensure efficient operation and
performance.

CHAPTER 5. EVALUATION AND ANALYSIS 54

5.2 Devices and Records

Figure 5.1: Number of devices vs number of records

Figure 5.1 depicts the different number of devices used for compliance checks
across all fifteen CCRs, along with the corresponding number of records gen-
erated for each CCR. On average, the number of devices for small, medium,
and large networks is approximately 5,000, 20,000, and 85,000, respectively.
Similarly, the average number of records generated per CCR in small, medium,
and large networks is close to 175,000, 650,000, and 2.6 million, respectively.

In Figure 5.2, we observe the overall relationship between the number of
devices and the number of records generated during CCR for all network sizes.
Plotting the values for all network sizes reveals a linear relationship between
the number of devices and the count of records. A trendline is drawn along
with its equation to represent the linear relationship. This linear relationship

CHAPTER 5. EVALUATION AND ANALYSIS 55

Figure 5.2: Relation of number of devices and records

supports the formula for calculating the number of records,

records =
∑

device type

(devices× gateways× compliance per gateway)

records =
∑

device type

(devices×modules× 30) (5.1)

This equation corresponds to the equation of the linear regression gener-
ated for the given dataset in the figure 5.2:

30x+ 0 = 1

5.3 ETL performance

Figure 5.3 illustrates how the performance of the ETL process varies for each
given network size. The specific values for the time taken in each step are
presented in Table 5.1. For each network size, the extraction of the CCR
output file from the cloud storage bucket is the most time-consuming pro-
cess. Loading the computed result into BigQuery follows as the second-most
time-consuming task. The transformation task, on the other hand, takes less
time compared to the extraction and loading operations. On average, the
complete ETL process takes approximately 2.2 seconds to process 172 thou-
sand records, 7 seconds to process 654 thousand records, and 28 seconds to
process 2.6 million records.

CHAPTER 5. EVALUATION AND ANALYSIS 56

Table 5.1: ETL performance values on different network size

nwsize etl total extract transform load #devices #records
Small 2.234 1.235 0.216 0.779 5755.733 172672
Medium 7.156 4.581 0.822 1.743 21819.666 654590
Large 27.955 18.797 3.431 5.695 86666 2599980

Figure 5.3: ETL performance graph on different network size

Figure 5.4 presents the system’s performance scalability by comparing the
time taken by each ETL process with the number of devices used to generate
CCR results. It is observed that each ETL step exhibits a linear relationship
with the number of devices in the network. The graph includes values for
small, medium, and large networks, and a trendline is drawn to measure the
linear regression. This allows us to determine the equations for each linear
relationship.

CHAPTER 5. EVALUATION AND ANALYSIS 57

Figure 5.4: Scalability of ETL Performance

The slope of the trendline for the extraction step is the highest compared
to the slopes for the load and transform steps. As the number of records
increases, the ETL process takes more time to fetch the records from the
Cloud storage to its memory. The trend is similar for the load and transform
steps, but the increase in time is significantly less compared to the extraction
step. One reason for this is the benefit of maximum memory size provided
by the cloud function. With the provision of allowing maximum memory, the
transform and load steps can be processed faster with only a slight increase
in time. However, loading the file from Cloud storage is not as impacted by
the available memory size for the process.

The “Load” step encompasses various actions, each of which can be fur-
ther evaluated in terms of timing.

Table 5.2: “Load” performance in ETL on different network size

nwsize records etl load bq prepare bq insert a bq insert np
Small 172672 0.7797 0.3705 0.3631 0.0453
Medium 654590 1.7432 0.4211 1.2801 0.0414
Large 2599980 5.6956 0.4879 5.1489 0.0582

Table 5.2 provides the average time taken for the “load” step in the ETL
process for different network sizes. For loading 172 thousand records, the
operation takes 0.8 seconds, for 654 thousand records it takes 1.74 seconds,
and for loading 2.6 million records, it takes 5.7 seconds.

The “load” step comprises two components: preparing the records for in-
sertion and inserting the records. The time taken to insert the ”np” record,

CHAPTER 5. EVALUATION AND ANALYSIS 58

which contains statistics about the count of individual result types, is con-
stant, averaging around 0.4 to 0.5 seconds. This is because this record con-
sists of only one row, regardless of the number of records processed.

The preparation phase involves calculating the time required to establish
a connection to BigQuery and obtain the table reference. This time remains
approximately the same for all network sizes. However, the number of rows
containing device type information increases with the number of records.
This is because the number of device-level rows is directly proportional to
the number of records. As a result, the larger the number of records, the
longer it takes to load the device-level information. This relationship can
also be observed in Figure 5.5, where the size of the purple bar indicates
the increase in time taken to insert asset-level information as the number of
records increases.

Figure 5.5: “Load” time in ETL process for different network sizes

5.4 Latency

This timing also provides the latency value. We define latency as the time
period between the generation of CCR and observing the result in the central

CHAPTER 5. EVALUATION AND ANALYSIS 59

dashboard.

latency = Time to push CCR to cloud bucket

+ EventArc trigger time

+ ETL time

+ BigQuery execution time

+ Delay in refreshing dashboard

(5.2)

The time taken to push CCR to the cloud bucket depends on the im-
plementation of the node and the size of the records. The EventArc trigger
itself is negligible in terms of time. However, if the maximum number of
instances for the Cloud Function is reached, events may be queued until a
free instance becomes available. In such cases, the trigger time can increase.
The execution time of BigQuery depends on the number of records present
in the table. In simple terms, as the number of CCRs processed by the ETL
process increases, the size of the BigTable also increases, resulting in longer
BigQuery execution times. The analysis of the trend for this value is not
covered in this thesis. Additionally, the equation takes into account the de-
lay time from clicking the refresh button on the dashboard once the data is
available in BigTable.

5.5 Resource Consumption

Resources required to run the ETL process include processing power, database
size, concurrency, logging, and memory. However, in our application, exter-
nal API calls are not served, so the invocation count is not considered.

In this analysis, we will focus on memory consumption as it is a major
factor for billing and determining ETL time.

In Figure 5.6, we depict the memory consumption required by each Cloud
Function instance to process one CCR file. For the smaller network, with a
record size ranging from 147,000 to 193,000, the average memory used by the
Cloud instance is 323.59 MB, with a maximum of 352.06 MB and a minimum
of 286.61 MB. For the medium-sized network, with records ranging from
563,000 to 717,000, the average memory consumption is 497.34 MB, with a
maximum of 573.46 MB and a minimum of 379.32 MB. In the case of the
larger network, memory consumption ranges from 1,941.95 MB to 1,205.84
MB, with an average of 1,668.59 MB. This indicates that running a Cloud
Function with a maximum memory allocation of 2 GB is sufficient to handle
the system. Considering the potential increase in record count, a safe limit
for the maximum memory size would be between 2.5 GB to 3 GB.

CHAPTER 5. EVALUATION AND ANALYSIS 60

Figure 5.6: Memory consumption for different network size

Figure 5.7: Memory consumption over different device size

CHAPTER 5. EVALUATION AND ANALYSIS 61

Each CCR file is processed by an individual Cloud Function instance,
each of which has its own dedicated memory with a maximum limit. This
advantage of Cloud Function allows us to be less concerned about the changes
in memory limit with the increase in records coming from multiple nodes
simultaneously.

In Figure 5.7, we show how memory consumption varies when processing
CCRs of different device sizes. We plot the values for different network
sizes and observe the trendline. The relationship between memory consumed
and the number of devices is linear, with a slope of 0.017. We observe
that the variance in memory consumption is lowest for the small network
and highest for the larger network. This is due to the fact that as the
device count increases, the number of records generated during each CCR
varies. The number of records depends on the combined number of gateways,
which further depends on the number of different device types present in the
network.

Chapter 6

Discussion

This section discusses how the result and evaluation be useful for the company
and CSP system in general.

6.1 Evaluation of system’s effectiveness

The terminologies used in the implementation employ generic terms for the
system components and are based on a similar system architecture used for
NMT. Therefore, the results and analysis can be extrapolated to real-world
systems. The analysis demonstrates that the system’s performance grows
linearly with an increase in system size and data volume. The resources
utilized for each invocation remain below 1700 MB for the large network,
which is easily manageable for all the company’s customers. The average
processing time of less than 30 seconds for the large network and below 10
seconds for the medium-sized network is considered acceptable and does not
impose significant delays in system performance. Furthermore, the resources
can be tuned and resized according to the customers’ system size, allowing
for scalability and optimization based on individual requirements.

6.2 Considerations for system configuration

The current implementation provides the proof of concept, however, use of
it in real CSP network require some decisions and considerations.

Data security
The current implementation is deployed on the Google Cloud public ser-

vice. However, the business requirements and data protection policies in a

62

CHAPTER 6. DISCUSSION 63

CSP environment may prohibit the use of public cloud services. There are
two possible approaches to address this issue.

The first approach involves processing the data by removing sensitive in-
formation and details about the resources such as nodes, CCGs, and devices.
These details can be replaced or encoded with alternative identifiers, allow-
ing for the use of cloud services solely for data processing. The results can
then be decoded to provide meaningful insights into the original data.

The second approach is to build the entire infrastructure pipeline within
the customer’s premises, using in-house machines and servers. This approach
eliminates the need to rely on cloud service providers and allows for greater
trust and control over data security. Many cloud service providers offer the
option of bringing their cloud services to the customer’s premises, providing
private cloud security. One example of such an offering is AWS Outpost,
where AWS brings racks and servers to the customer’s building, allowing the
cloud services to run locally while still adhering to data policies and regula-
tions.

Performance configuration options
There are various configuration options that can be adjusted to meet the per-
formance requirements. These configuration options are available for cloud
functions and other cloud services. For cloud functions, some of the config-
uration options include:

• Maximum number of cloud function instances to run in parallel: This
determines the level of concurrency and can be adjusted based on the
workload and performance needs.

• Memory usage limit per instance: This defines the maximum amount
of memory allocated to each cloud function instance. Choosing an
appropriate memory limit can optimize performance.

• CPU choice: The option to select a specific CPU type for the cloud
function instances, which can impact performance depending on the
workload.

• Timeout: The maximum allowed execution time for a cloud function.
Setting an appropriate timeout value ensures efficient resource utiliza-
tion.

• Retry policies: Configuring retry policies for handling transient errors
or failures during execution.

CHAPTER 6. DISCUSSION 64

Other configurations available include resource labeling, access control
settings for storage, BigQuery, and cloud functions, specifying the function
entry point, runtime language, trigger type, service account for cloud function
updates, partitioning and clustering of tables, and choice of cloud storage
class.

Additionally, the choice of cloud storage class is an important consid-
eration. Different cloud providers offer different classes of storage options
for storing result files, with pricing varying based on factors such as storage
region, usage frequency, and backup requirements. These options can be
configured based on specific needs, regulatory requirements, and cost consid-
erations.

Furthermore, there are additional options for query optimization in Big-
Query, including query caching and query plan analysis. Based on user re-
quirements, frequently used or resource-intensive query operations can be
optimized. The use of EXPLAIN statements can help in understanding and
improving query performance. Techniques such as views, appropriate join
strategies, and efficient grouping and aggregation within the query itself can
also have a significant impact on performance.

6.3 Future Work

There are opportunities for performance improvement, dashboard updates,
and process logic enhancements in the implementation. The current imple-
mentation has demonstrated that the ETL total time scales linearly with the
number of devices and records, showcasing its scalability compared to other
approaches. However, further performance improvements can be achieved by
optimizing the algorithm to enable parallel thread counting. Additionally,
splitting CCR files into multiple chunks and processing them in parallel can
help reduce the ETL total time to a logarithmic scale. It is important to note
that achieving better performance may require additional processing power
and larger resources.

In terms of the dashboard, there is room for improvement by including
more analyses and results from complex queries. The specific analyses and
visualizations can be tailored to the use cases and requirements of the Se-
curity Officer. While the current implementation provides various charts
to analyze the network from multiple angles, it is not an exhaustive list of
potential outputs. Depending on the requirements, additional features and
visualizations can be incorporated to enhance the dashboard.

Furthermore, the process logic employed in the implementation can be
adapted based on specific requirements. Currently, the results are grouped

CHAPTER 6. DISCUSSION 65

by result status and further categorized by device types. However, if new
information needs arise in the CAMS requirement, the process logic can be
updated to accommodate the new data requirements. This would involve
modifying the cloud ETL function and potentially the BigTables to ensure
the updated logic is properly implemented.

Chapter 7

Conclusion

In this thesis, we investigated the imperative need for CSP networks to
comprehensively monitor their entire infrastructure by gathering information
from individual network nodes regarding the status of their network devices.
The approach for data aggregation from these nodes to the central control
node is contingent upon several factors, such as the use case of the system,
data type, data security considerations, and acceptable latency levels.

The primary objective of this study was to explore and evaluate vari-
ous methods of data aggregation from network monitoring tools deployed
across multiple nodes within the CSP network, encompassing the entire ge-
ographical region. We conducted a comparative analysis of each option and
subsequently focused on the most promising alternative, which we then im-
plemented and measured. The impetus behind these endeavors was the com-
pany’s aim to enhance the capacity of their network monitoring systems,
enabling a centralized control dashboard for comprehensive node activity
observation. This capability would facilitate prompt and informed decision-
making processes.

To begin, we conducted a meticulous evaluation of the existing system,
profiling it, and identifying pertinent issues and constraints that needed to
be addressed. Furthermore, we established specific requirements tailored to
networks of varying sizes — small, medium, and large. Subsequently, we
examined three different architectural approaches: synchronous pull-based,
asynchronous push-based, and cloud ETL, while also reviewing related works
in similar projects. In addition, we specified the data type to be employed,
customizing it to suit the existing system.

Our thorough evaluation of these three architectural options for establish-
ing a central view of a telecommunications network revealed that the cloud
ETL-based approach stood out as the most suitable choice. As part of our
research, we successfully implemented the ETL pipeline utilizing the Google

66

CHAPTER 7. CONCLUSION 67

Cloud Platform. Furthermore, we devised a test scenario comprising three
nodes, over five CCGs, and multiple compliance checks within each node.

The chosen implementation approach demonstrated good performance,
with processing times ranging from 2.23 seconds to 27.96 seconds across var-
ious network sizes, considering a ratio of 30 monitoring results per device.
The memory consumption exhibited a linear correlation with the number of
devices. Overall, the cloud ETL-based approach provides an efficient and
scalable solution for collecting and analyzing network monitoring data in
large-scale telecommunications networks. It effectively addresses the chal-
lenges of data collection, processing, and visualization, making it a favorable
choice for achieving a centralized view of the network.

Bibliography

[1] Mansaf Alam and Kashish Ara Shakil, “Cloud database management
system architecture,” UACEE International Journal of Computer Sci-
ence and its Applications, vol. 3, no. 1, pp. 27–31, 2013.

[2] Prajwol Sangat, Maria Indrawan-Santiago, and David Taniar, “Sensor
data management in the cloud: Data storage, data ingestion, and data
retrieval,” Concurrency and Computation: Practice and Experience,
vol. 30, no. 1, p. e4354, 2018.

[3] Daniel J Abadi, “Data management in the cloud: Limitations and
opportunities,” IEEE Data Eng. Bull., vol. 32, no. 1, pp. 3–12, 2009.

[4] Brian F Cooper, Eric Baldeschwieler, Rodrigo Fonseca, James J
Kistler, PPS Narayan, Chuck Neerdaels, Toby Negrin, Raghu Ramakr-
ishnan, Adam Silberstein, Utkarsh Srivastava, and others, “Building
a cloud for yahoo!,” IEEE Data Eng. Bull., vol. 32, no. 1, pp. 36–43,
2009.

[5] Manolis M Tsangaris, George Kakaletris, Herald Kllapi, Giorgos Pa-
panikos, Fragkiskos Pentaris, Paul Polydoras, Eva Sitaridi, Vassilis
Stoumpos, and Yannis E Ioannidis, “Dataflow Processing and Opti-
mization on Grid and Cloud Infrastructures,” IEEE Data Eng. Bull.,
vol. 32, no. 1, pp. 67–74, 2009.

[6] Gang Chen, HV Jagadish, Dawei Jiang, David Maier, Beng Chin
Ooi, Kian-Lee Tan, and Wang-Chiew Tan, “Federation in cloud data
management: Challenges and opportunities,” IEEE Transactions on
Knowledge and Data Engineering, vol. 26, no. 7, pp. 1670–1678, 2014.

[7] Vladimir Pajić, Miro Govedarica, and Mladen Amović, “Model of point
cloud data management system in big data paradigm,” ISPRS Inter-
national Journal of Geo-Information, vol. 7, no. 7, p. 265, 2018.

68

BIBLIOGRAPHY 69

[8] Rajat Chaudhary, Gagangeet Singh Aujla, Neeraj Kumar, and Joel
JPC Rodrigues, “Optimized big data management across multi-cloud
data centers: Software-defined-network-based analysis,” IEEE Com-
munications Magazine, vol. 56, no. 2, pp. 118–126, 2018.

[9] Kuan Zhang, Xiaohui Liang, Mrinmoy Baura, Rongxing Lu, and
Xuemin Sherman Shen, “PHDA: A priority based health data aggrega-
tion with privacy preservation for cloud assisted WBANs,” Information
Sciences, vol. 284, pp. 130–141, 2014.

[10] Mahantesh N Birje and Chetan Bulla, “Cloud monitoring system: ba-
sics, phases and challenges,” International Journal of Recent Technol-
ogy Engineering (IJRTE), vol. 8, no. 3, pp. 4732–4746, 2019.

[11] Leandro V Silva, Pedro Barbosa, Rodolfo Marinho, and Andrey Brito,
“Security and privacy aware data aggregation on cloud computing,”
Journal of Internet Services and Applications, vol. 9, no. 1, pp. 1–13,
2018.

[12] N Karthick and X Agnes Kalrani, “A survey on data aggregation in big
data and cloud computing,” International Journal of Computer Trends
and Technology (IJCTT), vol. 17, no. 1, pp. 28–32, 2014.

[13] Eftim Zdravevski, Cas Apanowicz, Krzysztof Stencel, and Dominik
Slezak, “Scalable cloud-based ETL for self-serving analytics,” in 2019
IEEE International Conference on Cloud Engineering (IC2E), pp. 124–
131, 2019.

[14] M Vijayalakshmi and RI Minu, “Incremental Load Processing on ETL
System through Cloud,” in 2022 International Conference for Advance-
ment in Technology (ICONAT), pp. 1–4, 2022.

[15] J Sreemathy, R Brindha, M Selva Nagalakshmi, N Suvekha, N Karthick
Ragul, and M Praveennandha, “Overview of etl tools and talend-data
integration,” in 2021 7th International Conference on Advanced Com-
puting and Communication Systems (ICACCS), vol. 1, pp. 1650–1654,
2021.

[16] Blend Berisha, Endrit Mëziu, and Isak Shabani, “Big data analytics in
Cloud computing: an overview,” Journal of Cloud Computing, vol. 11,
no. 1, p. 24, 2022.

[17] Peter Garraghan, Paul Townend, and Jie Xu, “An analysis of the server
characteristics and resource utilization in google cloud,” in 2013 IEEE

BIBLIOGRAPHY 70

International Conference on Cloud Engineering (IC2E), pp. 124–131,
2013.

[18] Piotr Habela, Krzysztof Stencel, and Kazimierz Subieta. ”Three-
level object-oriented database architecture based on virtual updateable
views.” International Conference on Advances in Information Systems,
pp. 80-89, 2006.

[19] Benjamin Reed Christopher, Utkarsh Srivastava, Ravi Kumar, and An-
drew Tomkins. ”Pig latin: a not–so–foreign language for data process-
ing.” In Proceedings of the 2008 ACM SIGMOD international confer-
ence on Management of data, pp. 1099, vol. 1110, 2008.

[20] Ronnie Chaiken, Bob Jenkins, Per-Åke Larson, Bill Ramsey, Darren
Shakib, Simon Weaver, and Jingren Zhou. ”Scope: easy and efficient
parallel processing of massive data sets.” Proceedings of the VLDB
Endowment, vol. 1, no. 2, pp. 1265-1276, 2008.

[21] Hadassa Daltrophe, Shlomi Dolev, and Zvi Lotker. ”Data Interpola-
tion: An Efficient Sampling Alternative for Big Data Aggregation.”
arXiv preprint arXiv:1210.3171, 2012.

[22] Linquan Zhang, Chuan Wu, Zongpeng Li, Chuanxiong Guo, Minghua
Chen, and Francis CM Lau. ”Moving Big Data to the Cloud: Online
Cost-Minimizing Algorithms.” Networking for Big Data, 2016. CRC
Press, Taylor & Francis Group.

[23] Mingwei Lin, Zhiqiang Yao, and Tianqiang Huang. ”A hybrid push
protocol for resource monitoring in cloud computing platforms.” Optik,
vol. 127, no. 4, pp. 2007-2011, 2016. Elsevier.

[24] Xuan Liu and Feng Xu. ”Cloud service monitoring system based on
SLA.” 2013 12th International Symposium on Distributed Computing
and Applications to Business, Engineering & Science, pp. 137-141,
2013. IEEE.

[25] JA Perez-Espinoza, Victor J Sosa-Sosa, and José Luis Gonzalez. ”Dis-
tribution and load balancing strategies in private cloud monitoring.”
2015 12th International Conference on Electrical Engineering, Com-
puting Science and Automatic Control (CCE), pp. 1-6, 2015. IEEE.

[26] Mauro Andreolini, Michele Colajanni, Marcello Pietri, and Stefa-
nia Tosi. ”Adaptive, scalable and reliable monitoring of big data on

BIBLIOGRAPHY 71

clouds.” Journal of Parallel and Distributed Computing, vol. 79, pp.
67-79, 2015. Elsevier.

[27] Gokce Gorbil, David Garcia Perez, and Eduardo Huedo Cuesta. ”Prin-
ciples of pervasive cloud monitoring.” Information Sciences and Sys-
tems 2014: Proceedings of the 29th International Symposium on Com-
puter and Information Sciences, pp. 117-124, 2014. Springer.

[28] Mauro Andreolini, Marcello Pietri, Stefania Tosi, Andrea Balboni,
and others. ”Monitoring large cloud-based systems.” CLOSER 2014-
Proceedings of the 4th International Conference on Cloud Computing
and Services Science, pp. 341-351, 2014. SciTePress.

[29] Javier Povedano-Molina, Jose M Lopez-Vega, Juan M Lopez-Soler, An-
tonio Corradi, and Luca Foschini. ”DARGOS: A highly adaptable and
scalable monitoring architecture for multi-tenant Clouds.” Future Gen-
eration Computer Systems, vol. 29, no. 8, pp. 2041-2056, 2013. Elsevier.

[30] L. Degambur, A. Mungur, S. Armoogum, and S. Pudaruth, “Resource
Allocation in 4G and 5G Networks: A Review,” International Jour-
nal of Communication Networks and Information Security (IJCNIS),
vol. 13, no. 3, Dec. 2021.

[31] Li, He and Yu, Lu and He, Wu. ”The impact of GDPR on global tech-
nology development” Journal of Global Information Technology Man-
agement, vol. 22, no. 1, pp. 1-6, 2019. Taylor & Francis.

[32] Lee, S., Levanti, K., Kim, H. S. ”Network monitoring: Present
and future.” Comput. Netw., vol. 65, no. 2, pp. 84-98, 2014. DOI:
10.1016/j.comnet.2014.03.007.

[33] Sherif Sakr, Anna Liu, Daniel M. Batista, and Mohammad Alomari.
”A Survey of Large Scale Data Management Approaches in Cloud En-
vironments.” IEEE Communications Surveys & Tutorials, vol. 13, no.
3, pp. 311-336, 2011. doi: 10.1109/SURV.2011.032211.00087.

[34] Muhammad Fajrul Falah, Yohanes Yohanie Fridelin Panduman,
Sritrusta Sukaridhoto, Arther Wilem Cornelius Tirie, M. Cahyo
Kriswantoro, Bayu Dwiyan Satria, Saifudin Usman. ”Comparison of
cloud computing providers for development of big data and internet
of things application.” Indonesian Journal of Electrical Engineering
and Computer Science, vol. 22, no. 3, pp. 1723-1730, June 2021. ISSN:
2502-4752. doi: 10.11591/ijeecs.v22.i3.pp1723-1730.

10.1109/SURV.2011.032211.00087
10.11591/ijeecs.v22.i3.pp1723-1730

BIBLIOGRAPHY 72

[35] Carey, Michael J., Onose, Nicola, and Petropoulos, Michalis. ”Data
Services.” Communications of the ACM, vol. 55, no. 6, pp. 86-97, June
2012. ISSN: 0001-0782. doi: 10.1145/2184319.2184340.

[36] Machado, I., Carretero, J., & Filipe, J. (2022). ”Data Mesh: Concepts
and Principles of a Paradigm Shift in Data Architectures.” Procedia
Computer Science, 196, 263-271. International Conference on ENTER-
prise Information Systems / ProjMAN - International Conference on
Project MANagement / HCist - International Conference on Health
and Social Care Information Systems and Technologies 2021. ISSN
1877-0509. doi: https://doi.org/10.1016/j.procs.2021.12.013.

[37] Tayade, D. M. ”Comparative study of ETL and E-LT in data warehous-
ing.” International Research Journal of Engineering and Technology,
vol. 6, pp. 2803–2807, 2019.

[38] Bogdanov, D., Kamm, L., Laur, S., Pruulmann-Vengerfeldt, P.,
Talviste, R., Willemson, J. ”Privacy-Preserving Statistical Data Anal-
ysis on Federated Databases.” In Privacy Technologies and Policy,
edited by B. Preneel and D. Ikonomou, pp. 30–55, Springer Interna-
tional Publishing, 2014.

[39] G. Satyanarayana Reddy, Rallabandi Srinivasu, M. Poorna Chander
Rao, and S. Kanth Reddy Rikkula. ”Data Warehousing, Data Min-
ing, OLAP and OLTP Technologies are Essential Elements to Sup-
port Decision-Making Process in Industries.” International Journal on
Computer Science and Engineering (IJCSE), vol. 02, no. 09, 2010, pp.
2865-2873.

[40] Ericsson. ”Security Manager.” Available online: https:

//www.ericsson.com/en/portfolio/new-businesses/

security-and-risk-management/security-manager (Accessed on
June 11, 2023).

[41] Nokia. ”Cybersecurity Dome.” Available online: https://www.nokia.

com/networks/security-portfolio/netguard/cybersecurity-dome/

(Accessed on June 11, 2023).

[42] Huawei. ”eSight.” Available online: https://e.huawei.com/en/

products/esight (Accessed on June 11, 2023).

[43] Dgtl Infra. ”Cell Tower Range: How Far Can They Reach?” Available
online: https://dgtlinfra.com/cell-tower-range-how-far-reach/

(Accessed on June 11, 2023).

10.1145/2184319.2184340
https://doi.org/10.1016/j.procs.2021.12.013
https://www.ericsson.com/en/portfolio/new-businesses/security-and-risk-management/security-manager
https://www.ericsson.com/en/portfolio/new-businesses/security-and-risk-management/security-manager
https://www.ericsson.com/en/portfolio/new-businesses/security-and-risk-management/security-manager
https://www.nokia.com/networks/security-portfolio/netguard/cybersecurity-dome/
https://www.nokia.com/networks/security-portfolio/netguard/cybersecurity-dome/
https://e.huawei.com/en/products/esight
https://e.huawei.com/en/products/esight
https://dgtlinfra.com/cell-tower-range-how-far-reach/

BIBLIOGRAPHY 73

[44] Operator Watch. ”How Many Cell Towers/Base Stations Are
There?” Available online: https://www.operatorwatch.com/2020/08/

how-many-cell-towers-base-stations.html (Accessed on June 11,
2023).

[45] TechTarget. ”Radio Access Network (RAN) - Definition.” Available
online: https://www.techtarget.com/searchnetworking/definition/

radio-access-network-RAN (Accessed on June 11, 2023).

[46] RouterFreak. ”Demystifying 5G RAN.” Available online: https://www.
routerfreak.com/demystified-5g-ran/ (Accessed on June 11, 2023).

[47] 5G.SystemsApproach. ”5G Architecture.” Available online: https://

5g.systemsapproach.org/arch.html (Accessed on June 11, 2023).

[48] Cisco. ”Security Manager.” Available online: https://www.cisco.com/
c/en/us/products/security/security-manager/index.html (Accessed
on June 11, 2023).

[49] Fauna. ”The Why and How of Distributed
Databases.” Available online: https://fauna.com/blog/

the-why-and-how-of-distributed-databases (Accessed on June
11, 2023).

[50] TIBCO. ”What is a Data Federation?” Available online: https://www.
tibco.com/reference-center/what-is-a-data-federation (Accessed
on June 11, 2023).

[51] Amazon Web Services (AWS). ”Data Warehousing.” Available on-
line: https://aws.amazon.com/data-warehouse/ (Accessed on June 11,
2023).

[52] Rivery. ”ETL vs. ELT: What’s the Difference?” Available online:
https://rivery.io/blog/etl-vs-elt/ (Accessed on June 11, 2023).

[53] Google Cloud. ”Google Cloud Storage.” Available online: https://

cloud.google.com/storage.

https://www.operatorwatch.com/2020/08/how-many-cell-towers-base-stations.html
https://www.operatorwatch.com/2020/08/how-many-cell-towers-base-stations.html
https://www.techtarget.com/searchnetworking/definition/radio-access-network-RAN
https://www.techtarget.com/searchnetworking/definition/radio-access-network-RAN
https://www.routerfreak.com/demystified-5g-ran/
https://www.routerfreak.com/demystified-5g-ran/
https://5g.systemsapproach.org/arch.html
https://5g.systemsapproach.org/arch.html
https://www.cisco.com/c/en/us/products/security/security-manager/index.html
https://www.cisco.com/c/en/us/products/security/security-manager/index.html
https://fauna.com/blog/the-why-and-how-of-distributed-databases
https://fauna.com/blog/the-why-and-how-of-distributed-databases
https://www.tibco.com/reference-center/what-is-a-data-federation
https://www.tibco.com/reference-center/what-is-a-data-federation
https://aws.amazon.com/data-warehouse/
https://rivery.io/blog/etl-vs-elt/
https://cloud.google.com/storage
https://cloud.google.com/storage

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Problem Statement
	1.2 Study Focus and Limitations
	1.3 Research Questions
	1.4 Thesis Structure

	2 Background
	2.1 Telecommunication network
	2.2 Security of telecommunication network
	2.3 Network monitoring and security management
	2.4 Distributed databases
	2.5 Data management technologies for multi-instance architecture
	2.6 Data management services in cloud
	2.7 Data aggregation using GCP
	2.8 Related Work

	3 System Study
	3.1 System overview
	3.2 System Profiling: Requirements and Constraints
	3.3 Architectural Design Choices

	4 Implementation
	4.1 Simulating NMT Node
	4.2 ETL infrastructure
	4.3 BigQuery for output data layer
	4.4 Lookerstudio for Dashboard and Data visualization

	5 Evaluation and Analysis
	5.1 Setup and Performance Metrics
	5.2 Devices and Records
	5.3 ETL performance
	5.4 Latency
	5.5 Resource Consumption

	6 Discussion
	6.1 Evaluation of system's effectiveness
	6.2 Considerations for system configuration
	6.3 Future Work

	7 Conclusion

