
Aalto University

School of Science

Master’s Programme in Security and Cloud Computing

Juan Pablo Valencia Gómez

Leveraging spot instances for resource
provisioning in serverless computing

Master’s Thesis

Espoo, July 31, 2023

Supervisors: Professor Mario Di Francesco, Aalto University

Professor Raja Appuswamy, EURECOM

Aalto University
School of Science
Master’s Programme in Security and Cloud Computing

ABSTRACT OF
MASTER’S THESIS

Author: Juan Pablo Valencia Gómez

Title:
Leveraging spot instances for resource provisioning in serverless computing

Date: July 31, 2023 Pages: 55

Major: Security and Cloud Computing Code: SCI3113

Supervisors: Professor Mario Di Francesco
Professor Raja Appuswamy

Cloud computing has become a dominating paradigm across the IT industry.
However, keeping cloud costs under control is a major challenge for organizations.
One option to save costs is using spot instances: virtual machines that have highly
discounted prices at the expense of lower reliability and availability.

Serverless computing is a paradigm that allows developers to build and deploy ap-
plications in the cloud without provisioning or managing backend infrastructure.
Function as a Service (FaaS) is the prevalent delivery model of this paradigm,
which allows developers to execute functions in the cloud as a response to a re-
quest or an event. The developer focuses only on the code, and the cloud provider
handles the execution and scaling of the functions. This is convenient for devel-
opers, but comes with some limitations and can become very expensive at scale.

This thesis investigates leveraging spot instances for running serverless functions,
and potentially achieve both higher flexibility and cost reduction compared to
commercial FaaS solutions. For this purpose, we present a system design, suitable
for applications that tolerate some execution latency, and implement it in Google
Cloud Platform. Our implementation is compared against Google Cloud Run, a
service that offers a similar functionality.

Our system achieves significant cost savings: assuming a function execution time
of two minutes, our system has the same price as the Cloud Run solution at
around 8,000 requests per month, and at, for example, 20,000 requests per month,
the cost is less than half of Cloud Run. However, one important design decision
is that a spot instance is provisioned on the fly for every request. While this
introduces latency, it also allows the system to achieve no significant reduction
in reliability, as was confirmed in our evaluation.

Keywords: cloud computing, spot instances, serverless computing

Language: English

2

EURECOM
Master’s Programme in Security and Cloud Computing

RÉSUMÉ DE
THÈSE

Auteur: Juan Pablo Valencia Gómez

Titre:
Leveraging spot instances for resource provisioning in serverless computing

Date: Juillet 31, 2023 Pages: 55

Diplôme: Security and Cloud Computing Promo: 2023

Superviseurs: Professeur Mario Di Francesco
Professeur Raja Appuswamy

L’informatique en nuage (ou cloud computing) est devenue un paradigme dom-
inant dans l’industrie informatique. Cependant, la mâıtrise des coûts du cloud
est un défi majeur pour les organisations. Une option pour réduire les coûts est
d’utiliser des instances spot : des machines virtuelles dont les prix sont fortement
réduits au détriment d’une fiabilité et d’une disponibilité moindres.

L’informatique sans serveur (ou serverless computing) est un paradigme qui per-
met aux développeurs de créer et de déployer des applications dans le cloud sans
provisionner ni gérer l’infrastructure backend. La fonction en tant que service
(ou Function as a Service – FaaS) est le modèle de livraison prédominant de ce
paradigme, qui permet aux développeurs d’exécuter des fonctions dans le cloud
en réponse à une demande ou à un événement. Le développeur se concentre
uniquement sur le code, et le fournisseur de cloud gère l’exécution et la mise à
l’échelle des fonctions. Ceci est pratique pour les développeurs, mais présente
certaines limitations et peut devenir très coûteux à grande échelle.

Cette thèse étudie l’utilisation d’instances spot pour exécuter des fonctions sans
serveur (serverless functions), et potentiellement atteindre à la fois une plus
grande flexibilité et une réduction des coûts par rapport aux solutions FaaS com-
merciales. À cette fin, nous présentons une conception de système, adaptée aux
applications qui tolèrent une certaine latence d’exécution, et l’implémentons dans
Google Cloud Platform. Notre implémentation est comparée à Google Cloud Run,
un service qui offre une fonctionnalité similaire.

Notre système permet de réaliser des économies de coûts significatives : en sup-
posant un temps d’exécution de la fonction de deux minutes, notre système
présente un coût équivalent à celui de la solution Cloud Run à environ 8,000
requêtes par mois, et à, par exemple, 20,000 requêtes par mois, le coût est inférieur
à la moitié de Cloud Run. Cependant, une décision de conception importante est
qu’une instance spot est provisionnée à la volée pour chaque demande. Bien que
cela introduise une latence, cela permet également au système de ne pas réduire
significativement la fiabilité, comme confirmé dans notre évaluation.

Mots-clés: cloud computing, spot instances, serverless computing

Langue: Anglais

3

Acknowledgements

First of all, I would like to thank my parents Luis and Olga for all their love
and support. This achievement would not have been possible without them.

I would like to thank Professor Mario Di Francesco at Aalto University
for selecting me for this project and for his guidance and constructive feed-
back throughout its development. I would also like to thank Professor Raja
Appuswamy at EURECOM for his advice in the initial stages of this thesis.

Last but not least, I would like to thank all the friends I have made over
the past two years. They have made this journey the experience of a lifetime.

Espoo, July 31, 2023

Juan Pablo Valencia Gómez

4

Abbreviations and Acronyms

API Application Programming Interface
AWS Amazon Web Services
AZ Availability Zone
CD Continuous Deployment
CI Continuous Integration
FaaS Function as a Service
GCP Google Cloud Platform
HTTP Hypertext Transport Protocol
IaaS Infrastructure as a Service
JSON JavaScript Object Notation
PaaS Platform as a Service
REST Representational State Transfer
RPC Remote Procedure Call
SaaS Software as a Service
SLA Service Level Agreement
SLO Service Level Objective
VM Virtual Machine
VPC Virtual Private Cloud

5

Contents

Abbreviations and Acronyms 5

1 Introduction 8
1.1 Contributions . 9
1.2 Structure of the thesis . 10

2 Background 11
2.1 Cloud computing . 11
2.2 Computing resources in the cloud 15
2.3 Spot instances . 16
2.4 Serverless computing . 24
2.5 Related work . 27

3 Design 30
3.1 Motivation . 30
3.2 Requirements . 31
3.3 Preliminary considerations . 31
3.4 System design . 32

4 Implementation 37
4.1 Code structure . 37
4.2 Deployment considerations . 37
4.3 Controller . 38
4.4 Function container . 39
4.5 Worker . 39

5 Evaluation 41
5.1 Cost analysis . 41
5.2 Performance . 46
5.3 Benefits . 47
5.4 Drawbacks . 48

6

6 Conclusion 50

7

Chapter 1

Introduction

Cloud computing is a model for enabling on-demand access to computing re-
sources over the internet [32]. Users can quickly acquire and release resources
as needed, and pay only for the time of usage. As a consequence, users do
not need to plan ahead for the required capacity. These features have made
cloud computing extremely popular over the last decade.

The cloud allows engineers to innovate quickly, however, cloud spending in
an organization can easily become unmanageable without adequate visibility
and control. In a recent survey [13], 37% of the respondents said they have
been surprised by their cloud bills, 49% stated that getting their cloud costs
under control is a difficult process, and 89% identified that optimizing cloud
spending and reducing the costs was a top priority.

One of the main options to save costs in the cloud is leveraging spot in-
stances [31]. Spot instances are virtual machines allocated from spare com-
putational resources of the cloud providers. Users obtain access to these
instances at highly discounted prices (typically 30% to 90%), but with some
trade-offs: a request for obtaining a spot instance may fail if the cloud
provider does not have enough capacity at the time of requesting, and a run-
ning spot instance can be claimed back (interrupted) by the cloud provider
at any time with only a short notice (30 seconds to 2 minutes, depending on
the cloud provider).

Due to their unreliable nature, spot instances are best suited for stateless
and fault-tolerant workloads [4]. Some examples include big data analyt-
ics, batch processing, image or media rendering and transcoding, high per-
formance computing, CI/CD pipelines and training machine learning mod-
els. Some researchers have designed solutions to leverage spot instances
for running latency-sensitive web services [21], scientific computing work-
loads [28, 39] and seismic image processing [33] as well. One direction that
has been explored marginally, if at all, is serverless computing on top of spot

8

CHAPTER 1. INTRODUCTION 9

instances.
Serverless computing is a paradigm that emerged in the last few years,

which allows developers to build and deploy applications in the cloud with-
out provisioning or managing backend infrastructure [19]. In fact, the cloud
provider fully manages the scaling of the applications by adapting to the in-
crease and decrease of demand. Function as a Service (FaaS) is the prevalent
delivery model of serverless computing. In this model, a code function is
executed as response to a request or an event trigger.

While the main selling point of serverless computing is its ease of use, it is
necessary to understand well its features and limitations, and carefully con-
sider if it is an adequate solution for the intended use case. Understanding
its economic aspect is particularly important. In fact, for low work volumes
serverless can be very cost-effective, whereas it can become much more ex-
pensive than traditional cloud solutions such as Infrastructure as a Service
(IaaS) or Platform as a Service (PaaS) for large volumes [25]. Other draw-
backs of FaaS are vendor lock-in, bounded execution time, limited selection
of programming languages, and constraints on the computational resources
a function can use.

In this context, there is an opportunity to leverage spot instances to build
a system for running serverless functions. This could lead to cost reductions,
given the low price of spot instances, and also to higher flexibility, since
the system would not be subject to the restrictions that cloud providers
impose on FaaS solutions. However, the design needs to take into account
the unreliable nature of spot instances. This thesis explores this possibility by
designing a system and evaluating its effectiveness along different dimensions.

1.1 Contributions

The contributions of this thesis are as follows:

❼ A thorough examination of the characteristics of spot instances as avail-
able at different cloud providers.

❼ A literature review on spot instances, covering research that character-
izes their performance and availability, as well as applications built on
top of them.

❼ The design of a system to run serverless functions on spot instances,
along with a proof-of-concept implementation.

CHAPTER 1. INTRODUCTION 10

❼ An evaluation of the proposed solution in terms of both qualitative
(benefits and drawbacks) and quantitative (performance, costs) as-
pects.

1.2 Structure of the thesis

The rest of this thesis is structured as follows. Chapter 2 overviews cloud
computing, followed by a comprehensive examination on spot instances. It
also introduces serverless computing as well as the Function as a Service de-
livery model, and the related work. Chapter 3 presents the requirements,
scope and design for a system that leverages spot instances to run serverless
functions. Chapter 4 describes a proof-of-concept implementation of the con-
ceived solution. Chapter 5 evaluates the proposed system. Finally, Chapter 6
provides concluding remarks and presents suggestions for future work.

Chapter 2

Background

This chapter overviews the core concepts of cloud computing, followed by
a comprehensive discussion on spot instances. It then introduces serverless
computing, and the related work.

2.1 Cloud computing

2.1.1 General characteristics

Cloud computing is a model for enabling on-demand access to computing
resources over the internet [32]. These resources can include, for instance,
servers, networks, storage or applications.

There are a few key characteristics that differentiate cloud computing
from the “traditional” model of computing [22, 32]. First of all, cloud com-
puting offers the user the impression of infinite computing resources being
available. These resources can be acquired at any time, and so quickly that
users do not need to plan their capacity in advance. Moreover, cloud com-
puting eliminates up-front commitments by the users, favoring a “pay as you
go” model, wherein users can acquire and release resources as needed and
pay only for the time of usage.

The cloud is a cost-effective way for companies to provision computing
resources, since it offsets the costs associated with hosting infrastructure on-
premises [18]. This, in addition to the “pay as you go” model and the ability
to rapidly respond to changes in demand (known as elasticity), has made
cloud computing extremely popular over the last decade.

11

CHAPTER 2. BACKGROUND 12

2.1.2 Use cases

Cloud computing is especially suitable for use cases that present fluctuations
in the required computing resources [22], for instance, a service with periodic
spikes in traffic (e.g., high utilization during the day and low during the
night) or with increased traffic due to particular events (e.g., being featured
in the news, or the Black Friday sales for e-commerce sites). In this situation,
provisioning a data center to handle the peak load would be a high investment
and will lead to under-utilization for most of the time. Instead, using the
cloud and taking advantage of its elasticity to accommodate to the demand
can entail significant cost savings.

Another case where cloud computing stands out is when the demand is
unknown. For instance, it can be hard for a start-up company to accurately
estimate the amount of users they will have. Overestimating would result in
wasted resources, but underestimating could lead to a low quality of service,
which is a critical factor since it can turn away potential users [22]. Again,
the elasticity of the cloud can solve this problem.

Cloud computing is also employed to speed up big data analytics, since it
costs the same to use 1,000 machines for one hour than one machine for 1,000
hours [22]. Similarly, the cloud is leveraged to speed up scientific computing
workloads and the training of machine learning models.

Cloud providers have data centers in multiple locations around the world.
This eases the implementation of disaster recovery and business continuity
strategies [18], since it allows customers to set up redundancy in a cost-
effective way, and distribute the resources at different physical locations to
mitigate the impact of local phenomena such as power outages or natural
disasters.

The global reach of the cloud also allows companies to deploy applica-
tions near to where their end users are located, thereby reducing latency and
improving the quality of service. Furthermore, it facilitates compliance with
regulations that may limit where data can be stored and processed.

2.1.3 Service models

Traditionally, cloud computing has been divided into three service mod-
els [32]:

❼ Software as a Service (SaaS): an application software that is hosted on
the cloud, and that user accesses over the internet, typically through a
web browser, a mobile application, or an API [18]. The user does not
manage or control the application nor its underlying infrastructure.

CHAPTER 2. BACKGROUND 13

❼ Platform as a Service (PaaS): the user deploys an application onto
the cloud infrastructure of the provider. The provider takes care of
managing the underlying infrastructure, while the user focuses only on
developing the application.

❼ Infrastructure as a Service (IaaS): the user provisions low-level com-
puting resources offered by the provider, such as servers, networks and
storage. The user is responsible for configuring and managing said
resources, as well as the applications deployed on them.

2.1.4 Deployment models

Cloud computing is typically divided into deployment models as well [32]:

❼ Public cloud: a provider makes the computing resources available to
the general public. The cloud provider’s infrastructure is shared by all
the customers [18].

❼ Private cloud: the computing resources are dedicated to the use of
a single organization. The cloud infrastructure may be owned and
managed by the organization itself or by a third-party provider, and
may reside on or off premises [32].

❼ Hybrid cloud: when an organization makes use of both a private and
a public cloud, along with technology that allows to share data and
applications between them. One subset of this model is cloud bursting,
where the public cloud is used to offload tasks than cannot be handled
in the private cloud in times of high demand [22].

Amazon Web Services (AWS) is the largest public cloud provider, with
a market share of 32% in the first quarter of 2023 [36]. It is followed by
Microsoft Azure with 23% and Google Cloud Platform (GCP) with 10%.
These providers have also started expanding to the private cloud market
(therefore enabling hybrid possibilities too). Other vendors include Cisco,
Dell, HPE, IBM, Oracle and VMware [17].

In recent years there has been a rising trend to adopt a multi-cloud ap-
proach, that is, use multiple cloud providers. One motivation behind this is
to avoid “vendor lock-in”, where a company is dependent on a single provider
and faces great difficulties migrating to a different one. In addition, multi-
cloud offers extra redundancy to mitigate the impact of failures or outages
experienced by a particular provider.

CHAPTER 2. BACKGROUND 14

On a recent survey [1], 87% of the participants reported they are using
multi-cloud: 72% with a hybrid approach, 13% with multiple public providers
and 2% with multiple private providers. The rest of the respondents are using
a single provider: 11% a public one and 2% a private one.

2.1.5 Regions and zones

Cloud providers have data centers in multiple countries all around the world.
These locations are commonly referred to as regions. Each region is divided
into availability zones (AZs), also just called zones. The exact definition of
a zone varies across providers, but in general a zone can be defined as an
independent and isolated set of data centers.

As an example, the AWS region eu-north-1 is located in Stockholm (Swe-
den), and consists of three AZs (eu-north-1a, eu-north-1b, eu-north-1c).
There can be multiple regions located in the same country, for example, there
are two AWS regions in Japan (ap-northeast-1 in Tokyo and ap-northeast-3
in Osaka), each with their corresponding AZs.

The cost of a cloud service typically varies across regions. Also, some
services may be available only on some regions.

2.1.6 Cost management and optimization

On-demand access to computational resources and lack of upfront invest-
ments allow engineers to innovate quickly [40]. However, since engineers are
not typically used to think about costs and finance, cloud spending in an
organization can quickly become unmanageable without adequate visibility
and control. This phenomenon is known as cloud sprawl [37].

In a recent survey [13], 37% of the respondents said that they have been
surprised by their cloud bills. Moreover, 49% stated that getting their cloud
costs under control is a difficult process, and 89% identified that optimiz-
ing cloud spending and reducing the costs was a top priority. Among the
challenges to controlling cloud spending, participants mentioned lack of true
visibility into cloud usage and costs (53%), complex pricing models (50%),
and complex multi-cloud environments (49%).

There are a few strategies that businesses may use to optimize their cloud
costs, including appropriate selection of instance types for the workloads,
identifying and deleting unused resources, and using regions with lower cost
(keeping in mind that it could lead to increased latency). Additionally, cloud
providers offer discounts for long-term commitments. They also often offer
spare resources at discounted prices (e.g., spot instances), with the caveat
that they may be re-claimed at any time.

CHAPTER 2. BACKGROUND 15

Monitoring, controlling and optimizing cloud costs is an ongoing process.
The FinOps practice, a collaboration between engineering, finance and busi-
ness teams, has emerged to help companies in this task [40].

However, using the cloud can be very expensive for an organization,
even with adequate management and thorough optimization. Wang and
Casado [41] recently estimated that the cloud can be two to three times
more expensive than running on-premises for companies operating at scale.
The cloud is the most cost-effective way to get started for a company in its
early stages, but as the company grows, there is a point where it starts be-
ing weighed down by the cloud costs [41]. For this reason, there has been
a repatriation trend, that is, companies migrating some of their workloads
from the cloud into on-premises infrastructure.

2.2 Computing resources in the cloud

One of the main services offered by cloud providers is computing in the
form of virtual machines (VMs), also called instances. The service model in
this case corresponds to IaaS (Infrastructure as a Service). Examples include
AWS EC21 (Elastic Compute Cloud) and GCP Compute Engine2. The cloud
provider allows the user to choose the operating system (such as Windows
or different Linux distributions), as well as the resources that the VM will
have (e.g., the amount of RAM, the number of cores, whether it has a GPU,
and so on).

Typically there are multiple instance families and types from which the
user can choose. For instance, GCP has families of general purpose, compute
optimized, memory optimized and accelerator optimized instances [5]. Each
of these families has different available sizes. To illustrate, E2 is a general-
purpose instance family. An e2-standard-2 VM has 2 vCPUs and 8 GB of
RAM, while an e2-standard-8 has 8 vCPUs and 32 GB of RAM.

The cloud provider commits to maintain a level of service – usually of
99.99% availability – which means an instance will not be offline for more
than 4.32 minutes per month. This is known as a Service Level Agreement
(SLA). The provider pays a penalty to the customer if the agreement is
breached. As will be discussed later, some services are not covered by SLAs,
such as spot instances.

There are three purchase models for computing resources in the cloud:

❼ On-demand: the user creates and deletes instances whenever they

1https://aws.amazon.com/ec2/
2https://cloud.google.com/compute/

https://aws.amazon.com/ec2/
https://cloud.google.com/compute/

CHAPTER 2. BACKGROUND 16

choose. There are no long-term commitments. The user is charged
per second for the period of time the instance was running. This is the
most expensive model.

❼ Long-term commitment: the user commits in advance for a certain
amount of usage for a number of years (usually one or three). The
provider applies a discount accordingly.

❼ Spot: in exchange for lower instance availability and reliability, this
model offers discounts that generally exceed those of long-term commit-
ment, but without any commitments. The following section explores
in detail how this purchase model works.

2.3 Spot instances

2.3.1 General characteristics

Cloud providers need to provision a high amount of computing resources
in their data-centers to accommodate unpredictable user demands, giving
the impression of “infinite” resource availability. However they have a low
resource utilization on average (around 20 to 25% according to estimates [21,
31]). This incentivizes providers to sell the spare resources.

Spot instances are virtual machines (VMs) allocated from unused capacity
of on-demand and reserved instances. Users obtain access to these VMs at
highly discounted prices, but with some trade-offs:

❼ A spot instance may not be always obtainable. A request for obtaining
a spot instance may be delayed or fail if the cloud provider does not
have capacity for it at the moment.

❼ A running spot instance can be claimed back by the cloud provider at
any time.

In this sense, spot instances are beneficial both for cloud providers (extra
revenue and increase in resource utilization) and for users (lower prices).
However, because of their unreliable nature, spot instances are not subject
to any SLAs or uptime guarantees [4, 12, 14].

AWS was the first major cloud provider to introduce Spot Instances back
in 2009. Nowadays, both Azure and GCP offer them as well, under the name
of Spot VMs. It is also worth mentioning that GCP had a previous version
called Preemptible VMs, where the instances had a maximum running time
of 24 hours [7]. In the literature the terms transient and volatile are also

CHAPTER 2. BACKGROUND 17

used to refer to this kind of instances. Throughout this work we will use the
terms spot instances and spot VMs interchangeably.

As mentioned, spot instances can be reclaimed at any time by the cloud
provider. AWS calls these events interruptions [20], Azure evictions [14],
and GCP preemptions [12]. The literature also uses the term revocations.
Throughout this work we will use the term interruptions for consistency.
The warning time for an interruption is 2 minutes in AWS and 30 seconds in
Azure and GCP.

AWS and Azure make no guarantees about the discounts that spot in-
stances can have over on-demand VMs. They only mention that the discount
can be “up to 90%” [3, 10]. GCP, on the other hand, guarantees that the
discount will be at least 60% and at most 91% [12]. In all three providers
the discounts vary between regions, availability zones and instance types.

Spot instances are best suited for stateless and fault-tolerant workloads [4].
Some examples include big data analytics, batch processing, image or media
rendering and transcoding, high performance computing, CI/CD pipelines,
and training machine learning models.

2.3.2 Pricing models

AWS initially used a dynamic pricing scheme for spot instances. Potential
customers would place a bid, that is, specify the maximum price they were
willing to pay for an instance, and they would obtain it as long as the spot
price was less than or equal to the bid. When the spot price exceeded the
bid, the instance was interrupted.

The exact algorithm used by AWS to establish the spot price was never
disclosed, however, it has been argued that it leveraged an auction model [27].
This means that AWS would set the price to be the n-th highest bid for n

available spot instances, resulting in the n highest bidders obtaining them.
If a new bid arrived, AWS would update the price to be the new n-th bid,
and the previous holder will be interrupted. Similarly, if capacity decreased
and then there were only n − 1 available instances, AWS would update the
price and interrupt the n-th bidder. This behavior is illustrated in Figure
2.1.

It can be seen that in this pricing model the availability of spot instances
totally depended on the user bids and the spot prices. Moreover, the nature
of the model resulted in highly volatile prices, often rising above the prices
of on-demand instances [23]. For these reasons, research on spot instances
mainly focused on predicting prices and finding optimal bidding strategies.

From the user perspective, the complexity and volatility of the pricing
model was undesirable. Perhaps for this reason, the dynamic pricing mecha-

CHAPTER 2. BACKGROUND 18

1 1

Available spot
instances Bids

Spot
price

Available spot
instances

Available spot
instances

(a) New bid arrives (b) Capacity decreases

2

...

n-1

n

1

2

...

n-1

n

1

2

...

n-1

2

...

n-1

n

n+1

...

1

New spot
price

2

...

n-1

n

n+1

...

*

Instance
interrupted

New bid

Bids

1

New spot
price

2

...

n-1

n

n+1

...

Instance
interrupted

Bids

Figure 2.1: Behavior of the dynamic pricing model believed to have been
used by AWS.

nism of AWS was replaced in late 2017 by a much simpler one [6], in which the
spot prices fluctuate according to long-term trends on supply and demand,
and are guaranteed to never exceed the on-demand prices. While the new
pricing mechanism is still not transparent to users, it has much more stable
prices. This makes it more understandable, potentially attracting new users
and also making it easier for companies to estimate project budgets [31].

Under this new model, the interruptions of the spot instances are no
longer driven by the bids and the spot prices. Now, interruptions can happen
whenever AWS needs the capacity back. This renders most of the previous
research obsolete [30].

Baughman et al. [23] performed an empirical analysis comparing the old
and new AWS pricing models. They took into account nine months of pricing
history, encompassing the time before, during and after the model change,
and considered multiple instance types and availability zones. They found
that price changes indeed happen more infrequently after the change, and the
variance of the prices greatly decreased. This confirms that the new pricing
model is more stable.

More recently, Lee et al. [30] performed an empirical study where they
collected and analyzed 6 months of data from AWS, consisting of spot prices
and two spot availability metrics. Among other results, they found that the
spot price does not show any correlation with the other metrics, thus con-
firming that after the 2017 changes the price no longer reflects the availability
of spot instances.

Azure and GCP have similar pricing models as the current one of AWS.

CHAPTER 2. BACKGROUND 19

One implication of this model is that, since the price does not reflect avail-
ability, users have difficulties figuring out the availability of their resources.
Instance interruptions become unpredictable since users do not have visibility
over provider capacity. Cloud providers offer some statistics and historical
data to help users make decisions though, as will be discussed next.

2.3.3 Spot instances in different cloud providers

AWS

AWS started offering spot instances in 2009. As already mentioned, they
used a highly volatile pricing model until late 2017, when it was replaced by
a more stable one.

Creating a spot instance in AWS requires a spot instance request [20],
which includes the desired number of instances, the instance type and the
availability zone. The request is fulfilled immediately if enough capacity is
available. Otherwise, the request remains in an open state until the resources
become available. Once the request is fulfilled, the spot instance is launched.

There are two kinds of spot requests: one-time and persistent. The dif-
ference is that a persistent request is automatically resubmitted when the
spot instance is interrupted.

AWS has three different interruption behaviors, that is, what happens
when the instance is interrupted:

❼ Terminate (delete) the instance. Only available for one-time spot re-
quests.

❼ Stop the instance. Only available for persistent spot requests. The
instance is restarted when capacity becomes available.

❼ Hibernate the instance. Only available for persistent spot requests.
The instance is resumed when capacity becomes available.

The root volume (disk) is preserved on stopping and hibernating, and
on the latter case the RAM is preserved as well (i.e. it is saved to a file in
the root volume) [20]. The user is not charged for a stopped or hibernated
instance, but continues to pay for the root volume storage.

Even after the change in the pricing model, AWS still allows the user
to specify the maximum price they are willing to pay for a spot instance.
However, they discourage users to do so, since this could lead to higher inter-
ruption frequencies. If the user does not set a maximum price, the instance
is never interrupted due to pricing changes, but it can still be interrupted

CHAPTER 2. BACKGROUND 20

due to capacity shortages [20]. The spot price is guaranteed to never exceed
the on-demand price.

AWS publishes multiple metrics related to spot instances. Users can
leverage this data to pick the instance types and locations according to their
needs and constraints. They are:

❼ Pricing information: the current prices as well as the pricing history
over the past 90 days [10]. It can be filtered by instance type, operating
system and region.

❼ Frequency of interruption: the rate at which instances have been in-
terrupted in the previous month, filtered by instance type, operating
system and region [9]. The frequency is given in ranges: <5%, 5-10%,
10-15%, 15-20% and >20%.

❼ Spot placement score: indicates how likely is a spot instance request to
succeed [11]. It ranges from 1 to 10, with 10 meaning highly likely. The
user specifies the requirements of the spot instances, and AWS returns
the ten highest scored regions or availability zones.

The pricing history can be viewed on the AWS portal as well as obtained
programatically via the AWS CLI [10]. The same goes for the spot placement
score, with some restrictions [11]. The frequency of interruption is only
officially available on the website [9], but it can be programatically obtained
with the SpotInfo3 open-source CLI tool.

Lee et al. [30] performed an empirical study to determine the usefulness of
these different metrics. They issued 503 spot requests and tracked their inter-
ruptions over 24 hours. They found that taking into account both the spot
placement score and interruption frequency resulted in better interruption
predictions than using only the interruption frequency.

Azure

Azure started offering spot instances in 2017 under the name “Low-priority
VMs”. In 2019 they released “Spot VMs” and started phasing out Low-
priority VMs.

Creating a spot instance in Azure follows the same process as that for
an on-demand instance. The user only needs to specify the priority param-
eter to be spot, optionally specifying the eviction policy (analogous to the
interruption behavior in AWS) and maximum price [14].

The available eviction policies are:

3https://github.com/alexei-led/spotinfo

https://github.com/alexei-led/spotinfo

CHAPTER 2. BACKGROUND 21

❼ Deallocate (stop) the instance. The disk is preserved and the user is
still charged storage costs while the instance is stopped. An important
difference with AWS is that Azure does not automatically restart a
stopped spot instance – it can be restarted by the user provided that
the capacity is available [14].

❼ Delete the instance.

Just like AWS, Azure discourages users to specify a maximum price since
it can lead to higher interruption frequencies. Setting the maximum price
parameter to “-1” will cause the user to be charged at the current price
(which never exceeds the on-demand price) and never be interrupted based
on pricing changes [14].

Users can view the pricing history in the Azure portal or obtain it through
Azure Resource Graph [14]. The current prices can also be seen on the
website [3] or obtained programatically via an API [2].

Azure also offers the eviction rates (interruption frequencies) for the trail-
ing month. They can be seen in the portal or obtained through Azure Re-
source Graph [14]. The ranges are: 0-5%, 5-10%, 10-15%, 15-20% and 20+%.

GCP

GCP started offering spot instances under the name “Preemptible VMs” in
2015. These instances had a maximum running time of 24 hours. In 2021
they introduced “Spot VMs”, a new version of preemptible instances without
the 24 hour limit [7].

Creating a spot instance in GCP is essentially the same as creating an
on-demand instance. The user only needs to specify the provisioning model
parameter to be spot, and optionally specify the termination action (analo-
gous to the interruption behavior in AWS). Unlike AWS and Azure, GCP
does not support specifying a maximum price for the instance [12].

The available termination actions are:

❼ Stop the instance. The disk is preserved and the user is still charged
storage costs while the instance is stopped. An important difference
with AWS is that GCP does not automatically restart a stopped spot
instance [12]. It can be restarted by the user provided that the capacity
is available.

❼ Delete the instance.

GCP states that the spot prices change up to once every 30 days [12].
The current prices can be seen on the website [16], but there is no historical
data available. Interruption frequency is not provided by GCP either.

CHAPTER 2. BACKGROUND 22

Kadupitiya et al. [28] empirically analyzed the interruption frequencies in
GCP. However, the study was conducted on Preemptible VMs with the 24
hour running time limit. To the best of our knowledge, no study has been
made on the interruption frequencies of GCP Spot VMs.

2.3.4 Spot instance groups

Spot instances can operate as standalone VMs or as part of an instance group.
An example of such a group is an Azure Scale Set4, a managed group of VMs
that allows autoscaling, that is, automatically adding VMs to the group in
response to load increases, and removing them when the load decreases. It
also supports using multiple zones to increase resiliency. It is possible create
a Scale Set of spot VMs. It is also possible to use the “Spot Priority Mix”
feature, which allows to combine on-demand and spot instances in the same
group.

A Managed Instance Group (MIG)5 in GCP is similar to an Azure Scale
Set. It is possible create a MIG of Spot VMs, but it is not possible to use a
combination of on-demand and spot instances. MIGs can be in a single zone
or multiple zones within a region.

When using spot instances in this kind of groups, there is no guarantee
that capacity is going to be available. This means that creating a new spot
instance (either to replace an interrupted VM or to add a new one due to a
load increase) could potentially take a long time. Using multiple zones can
reduce the probability of mass interruptions and also increase the chances of
replacing interrupted instances quickly.

While Azure and GCP allow to use spot instances within instance groups,
AWS goes a step further with a dedicated product called called Spot Fleet6,
specifically designed to manage spot instance groups. In addition to the
aforementioned features of autoscaling, using multiple zones, and the ability
to combine on-demand and spot instances, Spot Fleet offers the advantage
of using multiple instance types in the same group. It also offers enhanced
control over instance selection with different allocation strategies. This allows
the users to optimize for factors like cost (Spot Fleet will choose the instance
types and AZs with lowest prices) or capacity (those with highest available
capacity).

4https://azure.microsoft.com/en-us/products/virtual-machine-
scale-sets/

5https://cloud.google.com/compute/docs/instance-groups/
6https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-

fleet.html

https://azure.microsoft.com/en-us/products/virtual-machine-scale-sets/
https://azure.microsoft.com/en-us/products/virtual-machine-scale-sets/
https://cloud.google.com/compute/docs/instance-groups/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-fleet.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-fleet.html

CHAPTER 2. BACKGROUND 23

It is also worth mentioning that all three cloud providers support using
spot instances as cluster nodes in their managed Kubernetes solutions (EKS,
AKS and GKE, in AWS, Azure and GCP respectively).

2.3.5 Fault-tolerance techniques for spot instances

There are generally three strategies that can be used to deal with spot inter-
ruptions [31]:

❼ Migration: the application deployed on spot instances is migrated to
other instances. This can be done proactively (by predicting when
an interruption will happen and migrating before that) or reactively
(migrating when the interruption notification is received).

❼ Checkpointing: the application state is periodically saved in persistent
storage. After an interruption, the work is resumed from the last saved
state instead of from the beginning.

❼ Replication: the application is deployed in multiple spot instances at
the same time, and possibly some non-spot instances too. When a
spot instance is interrupted, the application continues running on the
remaining instances. This can be combined with a load balancer to
distribute the traffic among the instances that are actually running.

Migration and checkpointing are suited for fault-tolerant and flexible ap-
plications, such as big data analytics, batch processing, image or media ren-
dering, high performance computing, CI/CD pipelines and training machine
learning models. These kinds of workloads usually tolerate delays, and the
impact of a spot interruption might not be very high. This is what cloud
providers generally recommend spot instances for [4].

Replication is suitable for applications that must always be available,
such as web services for example. Nevertheless, using spot instances for
these workloads is generally not recommended, since spot interruptions can
lead to service downtime. Built-in features like Spot Fleet (AWS) and Spot
Priority Mix (Azure) allow to easily combine spot and on-demand instances,
such that the service is not completely disrupted upon spot interruptions.
However, the quality of service may still be degraded since the surviving
instances might not be able to handle all incoming traffic.

CHAPTER 2. BACKGROUND 24

2.4 Serverless computing

2.4.1 Overview

Traditionally, cloud computing has been divided into three service models:
IaaS, PaaS and SaaS. More recently, the serverless computing paradigm has
emerged. Serverless allows developers to build and deploy applications with-
out provisioning or managing backend infrastructure. The name does not
mean that servers are not used, but that the servers are not visible to the
developer.

Serverless has some overlap with PaaS, but it has a few defining charac-
teristics [24]. First, there are no charges for idle resources: the user is only
charged for the time the code is running. This is known as “scaling to zero”
and is closer to the original “pay-as-you-go” promise of the cloud. Second,
scaling is controlled by the provider – the user does not need to configure
and fine-tune auto-scaling policies and usage metrics.

Function as a Service (FaaS) is a primary example of serverless comput-
ing [24]. In this model, a function is executed as response to a request or
an event trigger. The function has a limited running time and is required to
be stateless. Another example of serverless computing is Backend as a Ser-
vice (BaaS). In this model, developers outsource common backend features –
such as user authentication, geolocation, social media integration and push
notifications – to a cloud service provider [38].

It is important to thoroughly understand the features and limitations
of serverless, and carefully consider if it is the most appropriate solution
for a given use case. Otherwise, serverless could result in higher costs and
unexpected operational overhead [25, 29].

Eivy and Weinman [25] explored the economics of the serverless comput-
ing paradigm. First, they addressed the challenge of breaking down and un-
derstanding the complicated pricing model used by cloud providers. Then,
they performed an example comparison where serverless was found to be
three times more expensive than an IaaS solution. In Chapter 5, a similar
approach will be used to compare the costs of the proposed system against
a commercial FaaS solution.

2.4.2 Function as a Service (FaaS)

FaaS allows developers to execute code (more specifically, a function) in
response to a request or an event. Other than the function code, everything
else is controlled by the cloud provider, namely the hardware, operating
system and server software [19].

CHAPTER 2. BACKGROUND 25

FaaS offers automatic instant scaling (up and down), fully managed by the
cloud provider. Moreover, it offers “scaling to zero”, meaning that when the
function is not running there are no costs associated to idle resources. While
this makes it a cost-effective way to run sporadic workloads, one associated
issue is the so-called “cold start problem”: when a function has been scaled
to zero, it takes longer to start the first time it is called again, since an
execution environment needs to be provisioned first.

FaaS is well suited for independent and parallelizable tasks. Some use
cases include data processing, web backends, file transcoding, image or video
processing, and scientific simulation [19].

The popularity of FaaS lies on its ease of use: the developer focuses
only on coding the function and the cloud provider handles everything else.
However, this comes with a downside: vendor lock-in. Each cloud provider
has their own conventions and it can be very difficult to migrate a FaaS
project from one provider to another. However, there are some open-source
projects such as Knative that aim to make FaaS portable, and allow it to
run on hybrid or on-premises environments, as well as the public cloud.

FaaS is typically charged per function execution time and used resources.
The charges go by the GB-s, which corresponds to 1 GB of memory running
for 1 second. So, a function with 1 GB of memory running for 4 seconds
costs the same as one with 2 GB running for 2 seconds.

FaaS is generally very cost-effective for low work volumes, but it can
become much more expensive than a PaaS or an IaaS solution for high vol-
umes [25]. The rest of this thesis will explore this issue and compare the
costs of commercial FaaS against a custom platform built on top of IaaS
spot instances.

Hosted FaaS

All three main cloud providers have FaaS solutions: AWS Lambda7, Azure
Functions8 and Google Cloud Functions9. Each one has its differences, but
some common features are:

❼ They support multiple common programming languages, including Go,
JavaScript, Python, Java, among others.

❼ The functions can be triggered via an HTTP request or as a response
to an event taking place in another cloud service, such as a database,
a message queue or a storage service.

7https://aws.amazon.com/lambda/
8https://azure.microsoft.com/en-us/products/functions
9https://cloud.google.com/functions

https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/products/functions
https://cloud.google.com/functions

CHAPTER 2. BACKGROUND 26

❼ The functions have a maximum running time. If a function exceeds
that, an error is returned to the caller.

❼ Pricing: a function call is charged depending on how long it runs and
the amount of resources provisioned for it.

❼ Free tier: there is a number of requests per month free of charge (1
million in AWS and Azure, 2 million in GCP). After that there is a
small fee per million requests. There is also a monthly allowance of
GB-s free of charge.

Open-source FaaS

Open-source FaaS frameworks aim to overcome some of the downsides of
their hosted counterparts, such as vendor lock-in and limited selection of
programming languages [34]. Since they are not tied to any specific platform,
users can run them in on-premises, hybrid or public cloud environments. The
flexibility and portability, however, come with an increase in complexity,
since the user is now responsible for managing the infrastructure where the
framework will deploy the functions.

Some prominent projects in this regard are OpenFaaS10, Knative11 and
OpenWhisk12. They all run on Kubernetes, although OpenFaaS and Open-
Whisk support other execution environments too. All these projects support
deploying functions packaged as Docker containers, written in arbitrary pro-
gramming languages. Moreover, OpenFaaS and OpenWhisk also allow to
simply write function handlers, without the need of a Dockerfile, in a similar
way as hosted platforms like AWS Lambda.

Serverless containers

Cloud providers offer solutions for running containers that could be consid-
ered serverless. Some examples are AWS Fargate13, Azure Container In-
stances14 and Google Cloud Run15.

Each of these has different characteristics, and they are not directly com-
parable to each other. Among them, Google Cloud Run is the only one that

10https://www.openfaas.com/
11https://knative.dev/docs/
12https://openwhisk.apache.org/
13https://aws.amazon.com/fargate/
14https://azure.microsoft.com/en-us/products/container-instances/
15https://cloud.google.com/run/

https://www.openfaas.com/
https://knative.dev/docs/
https://openwhisk.apache.org/
https://aws.amazon.com/fargate/
https://azure.microsoft.com/en-us/products/container-instances/
https://cloud.google.com/run/

CHAPTER 2. BACKGROUND 27

truly satisfies the attributes of serverless computing, that is, ease of use with-
out the need to manage infrastructure, with auto-scaling fully managed by
the cloud provider and with scaling to zero. Azure Container Instances fulfills
the ease of use criterion, but does not auto-scale. AWS Fargate auto-scales,
but not to zero, and the user still needs to provision computing infrastructure
to run the containers (an ECS or EKS cluster).

It should be noted that open source FaaS solutions (such as OpenFaaS,
Knative and OpenWhisk) also provide the capability to run containers. In
fact, Google Cloud Run is built on top of Knative, and its pricing model is
very similar to that of Google Cloud Functions. Therefore, this service can
be thought of as an extension of the GCP hosted FaaS solution to support
containers.

2.5 Related work

Most of the existing research on spot instances focuses on AWS [21, 23, 27, 33,
35, 39], perhaps in part because it is the largest cloud provider, and in part
because other providers only started offering spot instances more recently.
Moreover, as mentioned in Subsection 2.3.2, most of the previous research
on spot instances became obsolete after the change of pricing model that
AWS introduced in late 2017. Nevertheless, there is recent research worth
mentioning.

Pham et al. [35] carried out an experimental evaluation of spot instances
in AWS. For that, they issued 3,840 spot requests in three different regions,
using multiple instance types. They ran different kinds of workloads in the
instances (low CPU and memory, CPU intensive, memory intensive). They
also tried different values for the “maximum price” parameter. The study
resulted in multiple findings. A few worth highlighting are:

❼ No correlation was found between the waiting time and running time
of the spot instances.

❼ Interruptions were not found to be related to the maximum price pa-
rameter nor to the workload running in the VM.

❼ Instances showed a minimum running time of 4 minutes before the
interruption. Moreover, less than 10% of the instances were interrupted
in the first 20 to 30 minutes.

Hao et al. [26] studied the VM startup times in AWS and GCP. They
took into account multiple regions, operating systems and instance types, as

CHAPTER 2. BACKGROUND 28

well as purchase models (on-demand and spot/preemptible). One of their
findings was that the startup time for spot/preemptible instances does not
present significant differences with that of on-demand instances.

Baughman et al. [23] explored the 2017 changes to the AWS spot pricing
model. They analyzed the pricing history over a period of nine months
encompassing the time before, during and after the changes. They found
that price events happen more infrequently after the change; moreover, the
mean and standard deviation of the prices greatly decreased. This confirms
that the new pricing model is more stable. Irwin et al. [27] presented a
comparison between the old and new pricing models, and analyzed the pros
and cons of each of them.

There is also research about building applications on top of spot instances.
Sampaio and Barbosa [39] presented an algorithm for scheduling scientific
computing workflows, along with a system to deploy the tasks in contain-
ers that run on a “virtual cluster” consisting of spot and on-demand in-
stances. The system includes a component that monitors the spot instances
and launches replacements on interruption events. When an interruption
happens, the container is migrated to another instance such that it can be
restored and continue running. The authors argue that the container migra-
tion takes 30 to 90 seconds, so it can be achieved in the 2 minute warning
period provided by AWS before an interruption.

Kadupitiya et al. [28] presented a scheduling algorithm for long-running
batch jobs in scientific computing. They also performed an empirical anal-
ysis of the preemption rates of GCP preemptible VMs (that have a 24-hour
running time limit) and leveraged the related findings to make decisions in
the scheduling algorithm.

Ali-Eldin et al. [21] designed a platform to serve latency-sensitive web
services using spot instances, seeking to maintain the service level objectives
(SLO). A load balancer runs in an on-demand instance, behind which appli-
cation servers are located as a mix of spot and on-demand instances. The
design includes predictors for the prices and failures of the spot instances,
in addition to the traffic the system will receive. An optimizer takes into
account the output of the predictors and computes which instance types to
deploy and on which purchase model (on-demand or spot). The system is
designed to over-provision resources to a certain extent, to handle both spot
interruptions and sudden increases in workload.

Okita et al. [33] propose a method for processing seismic images using
spot instances. They implemented a checkpointing mechanism combined
with other high performance computing techniques. They found that the
overhead of the checkpoint process results in lower system performance for
low interruption frequencies. In contrast, the performance significantly in-

CHAPTER 2. BACKGROUND 29

creases for high interruption frequencies, since having checkpoints reduces
the amount of work that need to be reprocessed.

Xu et al. [42] presented an in-memory storage system, where spot in-
stances handle read-only queries, and on-demand instances handle write
queries. Even though the paper assumes the previous AWS pricing model, it
is still worth mentioning since it showcases the use of a replication strategy
outside load-balanced web services.

Chapter 3

Design

This chapter presents the design of a system that leverages spot instances
to run serverless functions. First, we discuss the motivation for the system,
its requirements and some important assumptions. Then, we describe the
system along with its different components.

3.1 Motivation

Researchers have designed different systems to leverage spot instances for
real applications. Ali-Eldin et al. [21] proposed a system for running latency-
sensitive web services, Okita et al. [33] designed a system for seismic image
processing, and the works of Sampaio and Barbosa [39] and Kadupitiya et
al. [28] focus on scientific computing workloads. On the commercial side, the
company Spot.io1 offers several products to help customers optimize cloud
spending by using spot instances while maintaining availability. They use ma-
chine learning algorithms to predict interruptions and auto-replace instances.
Further details about how this is achieved are not publicly available.

One direction that has not been explored to the best of our knowledge
is serverless computing, more specifically serverless functions, on top of spot
instances. The main selling point of commercial FaaS is the ease of use,
but they suffer from several drawbacks such as: vendor lock-in, bounded
execution time, limited selection of programming languages and limitations
on the computational resources they can use (for example, they cannot use
a GPU). Plus, serverless functions can be quite expensive at scale [25].

Therefore, there is an opportunity to leverage spot instances for running
serverless functions, potentially achieving both higher flexibility and cost

1https://spot.io/products/

30

https://spot.io/products/

CHAPTER 3. DESIGN 31

reduction compared to hosted FaaS solutions. This is the objective of the
following design.

3.2 Requirements

The following requirements have been identified for the system:

❼ The user launches a function by sending an HTTP request. Event
triggers (launching a function when there is an event in another service
such as a database, storage or message queue) are out of scope.

❼ The function is executed on a spot instance.

❼ The function can be written in any programming language. It is packed
in a Docker image.

3.3 Preliminary considerations

There are a few design decisions to be made regarding the execution of server-
less functions on spot instances. The first one is determining whether there
will be one or multiple functions running concurrently on the same instance.
In our case, we have opted to run only one function to ensure it can utilize
the full resources of the VM.

The second decision is whether the spot instances will be reused for mul-
tiple function executions. In our case, we have chosen not to do that, and
instead create a new spot instance for each execution (and delete it once
the function completes). The reasons behind this choice are taken from the
work of Pham et al. [35], which showed that spot instances in AWS had a
minimum running time of 4 to 5 minutes, and less than 10% of the instances
were interrupted in the first 20 to 30 minutes.

It should be noted that this data is only empirical and exclusively con-
siders a limited number of AWS regions. Cloud providers do not officially
guarantee any minimum running time. Further experiments would be desir-
able to increase the confidence in the findings of this study. Therefore, we
do not assume that interruptions will not occur during the first few minutes.
Instead, we assume interruptions will be infrequent as long as the lifetime
of the spot instance is relatively short, hence our decision not to reuse the
instances for multiple executions. If an interruption does happen, the request
must be retried (see Subsection 3.4.4).

As a consequence of the above mentioned design decisions, every single
request to our system has an overhead of tens of seconds, which is the time

CHAPTER 3. DESIGN 32

required to create an instance for it. This makes our solution unsuitable for
latency-sensitive workloads (such as web services), but on the other hand
eases the complexity of handling spot instance interruptions.

3.4 System design

3.4.1 Components

On a high level, the system has two components:

❼ Controller: a web server that is always running, and that receives the
HTTP requests from the users. It is deployed on an on-demand VM.

❼ Worker: a server that executes a function. It is deployed on a spot
VM. A new spot VM is launched for each function execution, and is
destroyed after the function finishes.

Controller

Worker 1

Worker 2

Worker 3

User 1

User 3

User 2

Figure 3.1: A Worker is created for each function execution.

The user-facing side of the Controller (the web server) works with a short
polling mechanism. To execute a function, the user submits a POST request
to the Controller, and in its body sends the values for the function param-
eters. When the controller receives this request, it starts processing it and
sends back a request ID to the user. Subsequently, the user submits repeated
GET requests with this ID until the function result is returned.

CHAPTER 3. DESIGN 33

The reason for this choice is that the functions are expected to run for
multiple minutes (more on this on Chapter 5). If we used a long polling
strategy, the connection might close if the users are not careful to specify a
long enough timeout, leaving them without a way to retrieve the function
result afterwards.

To process a user request, the Controller first sends a request to the cloud
provider to create a new spot VM where the Worker runs. When the VM
launches and the Worker process starts, the Controller sends to it a “run job”
request along the argument values to be passed to the function. With this,
the Worker process launches a Docker container that contains the function,
and passes the arguments to it. When the container exits, the Worker returns
the function result to the Controller. Then, the Controller sends a request
to the cloud provider to delete the Worker’s spot VM.

The full sequence of the workflow is shown in Figure 3.2.

3.4.2 User requests

The Controller’s web server has three endpoints the user can call:

Path Method Description
/ GET Check if the server is running.
/job POST Submit a new job.
/job/:id GET Get the status of a given job.

The GET / request only returns HTTP status code 200. It is used as a
probe to verify the web server is up and running.

The body of the POST /job request consists of the function arguments
in JSON format. They are relayed as-is from the Controller to the Worker.
The response to the POST request has the following JSON structure:

{

"id": "string",

"status": "string"

}

The response to the GET /job/:id request has the following JSON struc-
ture:

{

"id": "string",

"status": "string",

"result": "string",

"error": "string"

}

CHAPTER 3. DESIGN 34

Possible values for the status field are: “Pending”, “In progress”, “Com-
pleted” and “Failed”. The error field is only present on “Failed” requests.

POST requests return HTTP status code 200. GET requests return this
code too, except when the status is “Failed”. In this case the code can be
503 (service unavailable) if the failure was caused by a spot interruption, or
500 (internal server error) for an unknown failure.

3.4.3 Controller-Worker communication

There are two methods that the Controller can call in the Worker:

❼ Ping: to verify the Worker server is running.

❼ Run job: receives the arguments, executes the function and returns the
result.

In principle, the Controller and Worker can communicate in any suitable
way over the network. Options include plain HTTP requests (such as a REST
API) or using a remote procedure call (RPC) framework such as gRPC.

The “ping” method does not receive or return any data. It is sufficient
that the request succeeds (for example, returning a 200 HTTP status code).
The “run job” method receives the arguments for the function as a JSON
string, and returns the result of the function as an arbitrary string (it can be
a JSON string but does not have to be).

3.4.4 Handling spot instance events

As mentioned in Section 2.3, spot instances present two trade-offs: they
might not be always obtainable, and a running instance might be interrupted
at any time with a short notice period. In the proposed design, both cases
are handled via retry.

If a request to create a spot instance fails (meaning the cloud provider
does not have capacity for it at the moment), the Controller can try again
with a different availability zone, instance type or even a different region.
This retry can be automatic, or alternatively, the Controller can return an
error to the user, who then submits the request again with the same argu-
ments.

For handling spot interruptions, the Worker process must monitor con-
stantly to detect if an interruption signal is sent to the spot VM. In case
this happens, an error is returned to the Controller. There are two options
here as well: the Controller can retry automatically to request a new spot

CHAPTER 3. DESIGN 35

instance to launch the function, or the Controller can return an error to the
user, who then submits the request again with the same arguments.

For simplicity, we opted for returning an error to the users and have them
retry the request, instead of making the Controller retry automatically. In
either case, the Controller must keep track of the regions, availability zones
and instance types it has tried, so that spot requests are not retried with the
same combination that has already failed.

CHAPTER 3. DESIGN 36

WorkerCloud providerController

WorkerCloud providerController

loop [try until success]

User

POST /job

<Pending, ID>

Create spot VM

Created

Ping

Response

Run job

GET /job/:id

<In progress>

Job result

Delete spot VM

GET /job/:id

<Completed, Job result>

Deleted

User

Figure 3.2: Full sequence of a function execution.

Chapter 4

Implementation

This chapter presents a proof of concept of the design introduced earlier, im-
plemented using the Go programming language and Google Cloud Platform
(GCP). The source code is available on GitHub1.

4.1 Code structure

For this proof of concept, we have chosen gRPC2 for the Controller-Worker
communication. gRPC is a mature, efficient and reliable framework for
server-to-server communication. It uses Protocol Buffers3 – a format for
serializing structured data, supported on multiple programming languages –
to send data between the participants.

The source code of the application is structured as a Go workspace with
three modules: controller, worker and proto, the last one of which con-
tains the Protocol Buffer definitions.

The Go compiler is used to produce the executable binaries of the contro-
ller and worker. These binaries are uploaded to Google Cloud Storage. The
Controller and Worker VMs download them from there and directly execute
them without the need of an interpreter.

4.2 Deployment considerations

A Virtual Private Cloud (VPC) in GCP is a virtual network that spans all
regions [15]. The Controller and Worker VMs must be in the same VPC so

1https://github.com/jpvg10/spot-faas
2https://grpc.io/
3https://protobuf.dev/

37

https://github.com/jpvg10/spot-faas
https://grpc.io/
https://protobuf.dev/

CHAPTER 4. IMPLEMENTATION 38

that they can communicate with each other. Moreover, the network must
have firewall rules in place that allow traffic to the ports where the web and
gRPC servers are running. In our case, the web server runs on port 8080 of
the Controller, and the gRPC server runs on port 50051 of the Worker.

The multi-region nature of VPCs could be leveraged to deploy Workers in
multiple regions. Doing so could result in cost savings (find regions with lower
prices) and higher availability (try different regions to increase the probability
of finding available capacity when needed), and the increase in latency due to
longer geographical distances would be negligible since the system is handling
requests that run in the order of minutes anyway. Nevertheless, for this
proof of concept we have only employed the region europe-north1, located in
Finland.

Both the Controller and the Worker instances need to be authorized to
access different GCP resources. This is achieved by using a Service Ac-
count [8], a mechanism that enables GCP instances to access other GCP
resources without needing secret keys or user credentials. Using the default
Compute Engine service account is enough for our purposes. This service
account is attached to the VMs on creation. In addition to the Service Ac-
count, it is necessary to specify the scopes the VM can access. Both VMs
need the storage-ro scope to access Cloud Storage, where the executable
binaries are stored, and additionally the Controller needs the compute-rw

scope to be able to create and delete VMs.

4.3 Controller

The web server was implemented using the Gin framework4. When the server
receives a POST /job request, it generates and ID for it and returns it to the
user. The ID, along with the request data, are stored on an array in memory.
This array is used to look up the request by its ID on GET /job/:id requests.
The array is updated with the function result when the Worker sends it.

The image chosen for the Controller VM was the standard GCP image
ubuntu-minimal-2204-lts. This image has the gcloud CLI tool pre-installed,
which is needed for pulling the Controller binary from Cloud Storage, and
for sending the requests to GCP to create and delete the Worker spot VMs.

4https://gin-gonic.com/

https://gin-gonic.com/

CHAPTER 4. IMPLEMENTATION 39

4.4 Function container

The function is packed in a Docker container. The only requirements imposed
to the code are:

❼ The arguments to the function are passed as a JSON string in an en-
vironment variable called FN ARGS

❼ The result of the function must be written to the standard output

Other than that, the user can choose any programming language and
implement any code structure freely.

A sample function in Node.js looks like this:

const fnArgs = JSON.parse(process.env.FN_ARGS);

const { a, b } = fnArgs;

console.log(a + b);

The Dockerfile for this function is:

FROM node:lts-alpine

COPY index.js index.js

ENV FN_ARGS "{ \"a\": 0, \"b\": 0 }"

CMD ["node", "index.js"]

The Docker image must be stored in some registry, such as Docker Hub5

or Google Artifact Registry6. In this proof of concept we used Docker Hub
and set the image as “public”.

4.5 Worker

The Worker VM needs to have Docker installed. To avoid installing Docker
every time and speed up the VM startup, we created a custom image with
Packer7. It is based on the standard GCP ubuntu-minimal-2204-lts image
and has Docker installed in it.

The Worker VM has a startup script (that is, a script that is executed au-
tomatically when the VM starts) that pulls the worker binary from Google
Cloud Storage and executes it. With this, the Worker server starts auto-
matically when the VM is created. For doing this, the VM needs the gcloud
CLI tool. It is already installed since the VM image is based on the ubuntu-
minimal-2204-lts image. The startup script is the following:

5https://hub.docker.com/
6https://cloud.google.com/artifact-registry/
7https://www.packer.io/

https://hub.docker.com/
https://cloud.google.com/artifact-registry/
https://www.packer.io/

CHAPTER 4. IMPLEMENTATION 40

mkdir /program

gcloud storage cp \\

gs://spot-thesis-files-2994/worker /program/worker

chmod +x /program/worker

/program/worker >> /program/log 2>&1

When the gRPC server receives a request, a Docker process is spawned.
It uses the specified Docker image and passes the arguments as a JSON string
in an environment variable called FN ARGS. An example of the command
used to spawn the process looks like this:

docker run -e FN_ARGS="{\"a\": 5, \"b\": 3}" jpvalencia/sum-fn

The output of the Docker process, which is the result of the function, is
captured by the Worker and returned as a string to the Controller.

To create and run the container, Docker must first pull the desired image
(in this example, jpvalencia/sum-fn) from Docker Hub (or the registry
where it is stored). This process may take some time, depending on how big
the image is, adding to the time overhead that our system imposes to each
function execution.

On spot interruptions, GCP first sends an “ACPI G2 Soft Off” signal to
the VM [12]. If the instance has a shutdown script, it is executed when this
signal is received. 30 seconds after the Soft Off signal, GCP sends an “ACPI
G3 Mechanical Off” signal, shutting down the instance.

To handle the spot interruptions, the Worker VM has a shutdown script
that finds the process ID (PID) of the Worker process and sends a SIGTERM
signal to it. The process captures this signal and immediately sends a reply
to the Controller with status “Failed”, an empty result, and an error

saying “Worker interrupted”. The shutdown script is the following:

pid=$(pidof worker)

kill -s SIGTERM $pid

Chapter 5

Evaluation

This chapter presents an evaluation of the system implementation along dif-
ferent dimensions, including costs and performance. Specifically, we perform
an analysis of the benefits and drawbacks of the proposed system.

5.1 Cost analysis

Next, we will carry out a cost comparison between the proposed system
(implemented in GCP) and Google Cloud Run. As a reminder, that is the
GCP service for running containers in a serverless fashion.

Since our system runs the functions as containers, we chose to compare
against Cloud Run instead of Cloud Functions. However, the pricing model
and the actual prices are the same for both services as of June 16, 2023,
except for the free tier allowance.

5.1.1 Assumptions

As explained in Section 3.3, our system has an overhead of tens of seconds
in each request since we are creating a new spot instance for every func-
tion execution. Consequently, we assume that our system executes latency-
insensitive jobs that potentially run for multiple minutes, and that can toler-
ate the overhead that our system incurs. For the following cost analysis, we
assume that a job runs for two minutes. This is an arbitrary duration, but
serves to emphasize that we are not dealing with high-traffic systems where
requests are served in the order of milliseconds, and it also provides an easy
way to map number of requests to total running time.

The resources provisioned for Cloud Run are 8 GB of memory and 2
vCPU. For our proposed system, we assume the instance type of the Con-

41

CHAPTER 5. EVALUATION 42

troller and Workers is the same: e2-standard-2. This instance type also has
8 GB of memory and 2 vCPU.

The GCP region will be europe-north1, which is located in Finland. All
the reported prices are in US Dollars, taken from the GCP website on June
16, 20231,2.

5.1.2 Google Cloud Run

Cloud Run pricing is divided between CPU and Memory:

❼ CPU: 0.000024 ✩ / vCPU-second

❼ Memory: 0.0000025 ✩ / GB-second

Furthermore, Cloud Run has a monthly free tier of 180,000 vCPU-seconds
and 360,000 GB-seconds.

The number of requests also influences the pricing. The free tier includes
2 million requests per month. Beyond that, there is a charge of ✩ 0.4 per
million requests. This might seem like a small price, but it can add up very
quickly for high-traffic services [25]. However, we do not take this factor into
account since our analysis focuses on much lower request frequencies, as it
will be apparent later.

An additional factor that affects the pricing is the egress traffic, that
is, transferring data to the public internet or to resources in different GCP
regions. We assume that the functions do not incur in these charges.

Under these assumptions, we can calculate how much our container will
cost in a month depending on how many requests it receives. Remember
that we assumed that one request takes two minutes. Let r be the number of
requests received in a month. Let s be the number of seconds our container
runs in a month:

s = r · 2 minutes ·
60 seconds

1 minute
= r · 120 seconds

Let c and m be the amount of CPU (vCPU-seconds) and memory (GB-
seconds) consumed by our container in a month. Remember we assumed it
has 2 vCPUs and 8 GB of memory:

c = 2 · s

m = 8 · s

1https://cloud.google.com/run/pricing
2https://cloud.google.com/compute/vm-instance-pricing

https://cloud.google.com/run/pricing
https://cloud.google.com/compute/vm-instance-pricing

CHAPTER 5. EVALUATION 43

Then, to calculate the total monthly cost, we subtract the CPU and
memory free tier from c and m respectively, and multiply by the CPU and
memory costs, taking into account that if the difference is negative (i.e. our
usage is below the free tier) we take 0 instead.

Total cost = max(c− 180000, 0) · 0.000024

+ max(m− 360000, 0) · 0.0000025 (5.1)

Applying this formula to some sample values of r, we obtain the following
costs per month:

r Total cost
0 0

1,000 2.94
2,000 11.10
5,000 35.58
10,000 76.38
15,000 117.18
20,000 157.98

Table 5.1: Cost by number of requests on Google Cloud Run.

5.1.3 Proposed system

In our proposed solution, the Controller is an on-demand instance, and the
Workers are spot instances. The instance type is e2-standard-2, which has 2
vCPUs and 8 GB of memory. The prices for this instance type are:

❼ On-demand price for one month: ✩ 53.85648

❼ Spot price for one hour: ✩ 0.024398

We assume that the Controller will be running for the whole month,
therefore, our system has a monthly fixed cost of ✩ 53.85648. The cost of the
Workers will depend on how many requests our system receives.

Remember that we assumed that one request takes two minutes. Let r be
the number of requests received in a month. Let h be the number of hours
our container runs in a month:

h = r · 2 minutes ·
1 hour

60 minutes
=

r

30

CHAPTER 5. EVALUATION 44

Then, the total cost of running the system for one month is calculated as
the monthly price of the on-demand instance plus h times the hourly price
of the spot instance:

Total cost = 53.85648 + (h · 0.024398) (5.2)

Applying this formula to some sample values of r, we obtain the following
costs per month:

r Total cost
0 53.86

1,000 54.67
2,000 55.48
5,000 57.92
10,000 61.99
15,000 66.06
20,000 70.12

Table 5.2: Cost by number of requests on our system.

5.1.4 Comparison

Always keeping in mind we assumed that one request takes two minutes, we
can see that for low values of r, Cloud Run is very cost-effective, and many
times cheaper than our proposed system. Due to the use of the Controller
VM, our system has a fixed monthly cost even when there are no requests.
On the other hand, Cloud Run exhibits the “scaling to zero” behavior: if we
do not get any requests, we do not pay anything.

However, Cloud Run costs start to add up quickly as the number of re-
quests per month increases, as shown in Figure 5.1. It is clear that Cloud
Run pricing scales much more steeply that our system. Beyond approxi-
mately 8,000 requests per month our system becomes cheaper than Cloud
Run. At 20,000 requests per month, our system is already less than half the
price of Cloud Run (i.e. 44% of the cost).

From Equations 5.1 and 5.2 we can calculate the exact number of requests
per month where both solutions have the same cost. First, let us fully expand
Equation 5.1 to express it in terms of r, and for simplicity assume we are

CHAPTER 5. EVALUATION 45

0 1000 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000
0

50

100

150

200

250

Cloud Run

Proposed

Requests

Figure 5.1: Price comparison between Cloud Run and our proposed system.

always above the free tier so that we can get rid of the max operator:

Total cost = (c− 180000) · 0.000024 + (m− 360000) · 0.0000025

= (2s− 180000) · 0.000024 + (8s− 360000) · 0.0000025

= (240r − 180000) · 0.000024 + (960r − 360000) · 0.0000025
(5.3)

Now, let us express Equation 5.2 in terms of r too:

Total cost = 53.85648 + (h · 0.024398)

= 53.85648 +
(r

30
· 0.024398

)

(5.4)

We can solve for r by setting Equations 5.3 and 5.4 equal:

53.85648 +
(r

30
· 0.024398

)

= (240r − 180000) · 0.000024

+ (960r − 360000) · 0.0000025

53.85648 + 0.000813267r = 0.00576r − 4.32 + 0.0024r − 0.9

59.07648 = 0.007346733r

r = 8041.19

8,041 requests per month, with our assumption that one request takes two
minutes, corresponds to around 268 hours, or around 11 days, of execution
time. It averages to roughly 11 requests per hour, or 1 request every 5.5
minutes.

CHAPTER 5. EVALUATION 46

5.2 Performance

To test and evaluate the system performance, we issued 50 requests over
the course of 3 days at different hours. The purpose was to measure the
overhead introduced by each phase of the execution, and also to see if any
spot interruptions occurred.

The function used for testing takes two numbers as arguments, a and b,
and returns their sum. An artificial sleep of 2 minutes was added to comply
with our assumption that the function takes this amount of time to complete.

The time events in the Controller are:

❼ t0: Receive POST request. Send a request to GCP to create a spot
VM.

❼ t1: Spot VM created.

❼ t2: Worker server replies to “ping” request and is ready to execute the
job. Send “run job” request to the Worker.

❼ t3: Receive job result.

Below are the statistics of the collected data, with the times calculated
relative to t0. All times are in seconds. To illustrate, a value of t2 = 55 would
mean that the Worker server was ready to execute the job 55 seconds after
the user sent the POST request to the system (t0).

Time Average Max Min
t1 10.1 24 8
t2 54.86 66 50
t3 187.6 199 181

Table 5.3: Times relative to t0.

It is also worth looking at the times calculated relative to the previous
event, e.g., a value of t2 = 40 would mean that the Worker server was ready
to execute the job 40 seconds after the spot VM was created (t1). These
statistics are presented in Table 5.4.

We can see that the creation of the spot instance (t1) takes on average 10
seconds. However, from Table 5.4 we observe that, after creation, it takes on
average 45 seconds for the Worker to be fully ready to receive requests (t2).
Therefore, the total average overhead of the spot creation is 55 seconds (t2
in Table 5.3).

CHAPTER 5. EVALUATION 47

Time Average Max Min
t1 10.1 24 8
t2 44.76 48 37
t3 132.74 135 129

Table 5.4: Times relative to ti−1.

Another observation is that, even though the function has a sleep of 2
minutes, the function execution in the Worker takes 2 minutes and 13 seconds
on average (t3 in Table 5.4). This can be explained by the time it takes to
pull the container image from Docker Hub.

Taking into account the overhead of creating the spot instance and pulling
the Docker image, the average time of the function execution, from the mo-
ment when the POST request is received to the moment when the function
result is returned, is 3 minutes and 8 seconds (t3 in Table 5.3).

None of the the 50 function executions suffered from spot interruptions.

5.3 Benefits

The proposed system has multiple benefits. The first and most important is
that, as it was already shown, after a certain number of requests per month
it achieves large cost reductions compared to Google Cloud Run.

Furthermore, our system is very flexible, as the memory and CPU spec-
ifications of the Worker can be customized as needed. This is also possible
in Google Cloud Run. However, our system can go one step further and use
special instance types (for example, compute optimized or memory optimized
instances), or instances with a GPU, things that are not possible with Cloud
Run as of now. Also, our system could be extended to use multiple GCP
regions, which is also not possible with Cloud Run.

In principle, our system does not have any limit on the function execution
time, overcoming the limitation imposed by cloud providers. Though in
Google Cloud Run the time limit is already high (60 minutes), in AWS
Lambda, for example, the maximum execution time is 15 minutes. Having
said this, very long-running functions can hinder the reliability assumptions
of our system, as will be discussed further in the next section.

Another benefit of our system is that the function code inside the con-
tainer is quite simple, since the it reads the arguments from an environment
variable and writes the result to the standard output. In comparison, in
Cloud Run the Docker container receives directly the HTTP requests from

CHAPTER 5. EVALUATION 48

the users, so one must implement a web server in the container.
A final benefit of our system is that the handling of spot instances is made

simpler than in the systems proposed by other researchers, for instance, Ali-
Eldin et al. [21], Sampaio and Barbosa [39], and Kadupitiya et al. [28]. First,
having a new instance for each function execution, we do not need to keep
track of which instances are running a function and which are idle, or be con-
cerned about the costs of idle spot instances. And second, handling the spot
instance interruptions is done via retry, compared to the above-mentioned
proposals which include models that attempt to predict the interruptions
based on historical data.

5.4 Drawbacks

The most significant drawback of our system is the per-request overhead. As
already explained in Section 3.3 and quantified in Section 5.2, creating a new
spot instance for each function execution takes tens of seconds, which makes
our system unsuitable for latency-sensitive workloads.

Another drawback is that initial setup is needed to deploy our system.
Namely, one must create the on-demand VM, deploy the Controller program
and set the correct GCP permissions so that it can create and delete the
Worker spot instances. In comparison, there is little to no initial setup in
Cloud Run.

Furthermore, our system does not solve the vendor lock-in problem. While
the Docker container that holds the function is platform-independent, the
Controller and Worker code is tied to the cloud provider, in this case GCP.
It can be argued that Cloud Run is more portable than our system, since it
is compatible with Knative.

An additional issue is that the Controller is a potential bottleneck. In our
cost analysis we assumed for simplicity that it has the same computational
resources as the Worker. However, it must be assessed what are the real
computational needs of the Controller. Scaling vertically the resources of the
Controller is a possible first solution. Another strategy that can help reduce
the load on the Controller is to implement an asynchronous mechanism for the
Controller-Worker communication. This frees up resources in the Controller,
since it would not need to keep the connection with the Worker open while
it is waiting for the function result. It would be important to test if this
strategy actually increases the capacity of the Controller, especially since
implementing the asynchronous communication with a mechanism such as a
message queue would result in an additional cost for the system.

Another problem with the current implementation of the Controller is

CHAPTER 5. EVALUATION 49

that it is storing the job information (ID, status, function arguments, function
result) in memory. A reboot of the Controller VM, or even a restart of the
Controller process, will result in the loss of all the job information. This
can be addressed by saving the information on persistent storage. An initial
solution could be co-locating a database server in the Controller instance,
saving the data to the persistent disk attached to the VM. This, however,
would affect the performance of the Controller, possibly requiring an increase
of its resources. An alternative would be to locate the database in an external
server. It should be assessed which is the best solution, since both result in
increased costs.

Finally there is the issue of the retries due to spot events. First of all,
this adds complexity to the user experience, although it could be mitigated
by having the Controller perform the retry automatically, hiding it from
the user. Either way, retrying the request means that the previous work
was lost, which translates in increased waiting time for the user to get the
function result, and importantly, increased costs for the system. Without a
proper understanding of the interruption frequencies, it is hard to estimate
the potential cost burden of the retries.

We base our assumptions about the interruption frequencies on the study
by Pham et al. [35], which found that spot instances in selected AWS regions
had a minimum running time of 4 to 5 minutes, and less than 10% of the
instances were interrupted in the first 20 to 30 minutes. However this is
not enough, since it only considers AWS and it was conducted more than
five years ago. These numbers might be completely different in other cloud
providers, or may not hold at all (for instance, not having a minimum running
time). An updated study on this topic would be valuable, even more if it
includes other cloud providers such as Azure and GCP. Nevertheless, even
if the assumptions still hold true, it means that our system has an upper
limit of the maximum function execution time, because if we go beyond this
time we might start running into frequent interruptions, having negative
impacts both in costs and performance. This is a fundamental limitation of
our design.

Chapter 6

Conclusion

This thesis explored the possibility of leveraging spot instances for running
serverless workloads. We started by providing a comprehensive description
of spot instances and their characteristics, drawing information from cloud
provider documentation as well as from published research. This included a
section dedicated to the pricing of spot instances, which is important because
the availability of the spot instances has been closely tied to the spot price
and the bids the users placed for the instances, but this is not the case
anymore. Understanding this fundamental change allowed us to shift the
research focus away from pricing. We also reviewed research about different
kinds of applications built on top of spot instances, such as latency-sensitive
web services [21], image processing [33], in-memory storage systems [42] and
scientific computing workloads [28, 39].

Then, we introduced the concept of serverless computing and Function
as a Service (FaaS). The main advantage of this model is the ease of use,
since it allows the developers to focus only on the code, and lets the cloud
provider handle the execution and scaling of the functions. This, however,
comes with some drawbacks such as vendor lock-in and being subject to the
restrictions imposed by cloud providers in terms of available programming
languages, bounded execution time and computational resource limitations.
In addition to this, serverless functions can become very expensive at scale.

Having established this background, we then presented the design for
our proposed system. The objective was to leverage spot instances to run
serverless functions, and potentially achieve cost savings and higher flexibil-
ity compared to commercial hosted FaaS solutions. The design consists of
two main components: the Controller, which is deployed on an on-demand
instance and receives requests from the users, and the Workers, which execute
the serverless functions and run on spot instances.

The outlined design was then implemented as a proof of concept using

50

CHAPTER 6. CONCLUSION 51

Go and GCP. This implementation was evaluated in terms of performance
and costs, compared against Google Cloud Run, which is a service that offers
a similar functionality as our system.

On one hand, our system was found to achieve significant cost savings
after around 8,000 requests per month. For low request frequencies, our sys-
tem is more expensive than Cloud Run due to the usage of an on-demand
instance for the Controller, but, for example, at 20,000 requests per month,
the cost of our system is less than half the cost of Google Cloud Run. On
the other hand, our system introduces an overhead to every request since it
creates a new spot instance for each function execution. For a function that
runs for 2 minutes, the average execution time in our system was 3 minutes
and 8 seconds. This makes our system unsuitable for latency-sensitive ap-
plications. The evaluation concluded with a detailed analysis of the benefits
and drawbacks of the proposed solution.

Some possible directions of future work have been identified. First of
all, it would be valuable to study in detail the interruption frequencies of
spot instances in the major cloud providers, especially regarding the initial
minutes of execution. This would benefit not only the current work but also
the whole field of research on spot instances. For the proposed system, having
better estimates for the interruption frequencies would allow factoring into
the analysis the cost of retrying requests.

Regarding the proposed system, the main improvement would be design-
ing and implementing a persistent storage solution for the job information,
taking into account performance and costs. Another idea worth exploring
would be using a message queue for the Controller-Worker communication,
assessing if it helps to reduce the load in the Controller, and weighing the
performance gains against the increased costs for the solution.

Finally, it would be important to asses what are the actual computational
resource requirements of the Controller, especially when receiving multiple
concurrent requests that imply maintaining multiple open connections to
Worker servers for several minutes.

Bibliography

[1] 2023 state of the cloud report. https://info.flexera.com/CM-REPORT-

State-of-the-Cloud. [Online; accessed 5-July-2023].

[2] Azure retail prices overview. https://learn.microsoft.com/en-us/

rest/api/cost-management/retail-prices/azure-retail-prices. [On-
line; accessed 5-July-2023].

[3] Azure spot virtual machines pricing. https://azure.microsoft.com/en-
us/pricing/spot-advisor/. [Online; accessed 5-July-2023].

[4] Best practices for EC2 spot. https://docs.aws.amazon.com/AWSEC2/

latest/UserGuide/spot-best-practices.html. [Online; accessed 5-
July-2023].

[5] Machine families resource and comparison guide. https://cloud.

google.com/compute/docs/machine-resource. [Online; accessed 5-July-
2023].

[6] New Amazon EC2 spot pricing model: Simplified purchasing with-
out bidding and fewer interruptions. https://aws.amazon.com/blogs/

compute/new-amazon-ec2-spot-pricing/. [Online; accessed 5-July-
2023].

[7] Preemptible VM instances. https://cloud.google.com/compute/docs/

instances/preemptible. [Online; accessed 5-July-2023].

[8] Service accounts. https://cloud.google.com/compute/docs/access/

service-accounts. [Online; accessed 5-July-2023].

[9] Spot instance advisor. https://aws.amazon.com/ec2/spot/instance-

advisor/. [Online; accessed 5-July-2023].

[10] Spot instance pricing history. https://docs.aws.amazon.com/AWSEC2/

latest/UserGuide/using-spot-instances-history.html. [Online; ac-
cessed 5-July-2023].

52

https://info.flexera.com/CM-REPORT-State-of-the-Cloud
https://info.flexera.com/CM-REPORT-State-of-the-Cloud
https://learn.microsoft.com/en-us/rest/api/cost-management/retail-prices/azure-retail-prices
https://learn.microsoft.com/en-us/rest/api/cost-management/retail-prices/azure-retail-prices
https://azure.microsoft.com/en-us/pricing/spot-advisor/
https://azure.microsoft.com/en-us/pricing/spot-advisor/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-best-practices.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-best-practices.html
https://cloud.google.com/compute/docs/machine-resource
https://cloud.google.com/compute/docs/machine-resource
https://aws.amazon.com/blogs/compute/new-amazon-ec2-spot-pricing/
https://aws.amazon.com/blogs/compute/new-amazon-ec2-spot-pricing/
https://cloud.google.com/compute/docs/instances/preemptible
https://cloud.google.com/compute/docs/instances/preemptible
https://cloud.google.com/compute/docs/access/service-accounts
https://cloud.google.com/compute/docs/access/service-accounts
https://aws.amazon.com/ec2/spot/instance-advisor/
https://aws.amazon.com/ec2/spot/instance-advisor/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances-history.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances-history.html

BIBLIOGRAPHY 53

[11] Spot placement score. https://docs.aws.amazon.com/AWSEC2/latest/

UserGuide/spot-placement-score.html. [Online; accessed 5-July-2023].

[12] Spot VMs. https://cloud.google.com/compute/docs/instances/spot.
[Online; accessed 5-July-2023].

[13] State of cloud cost report 2022. https://www.anodot.com/blog/state-

of-cloud-cost-report/. [Online; accessed 5-July-2023].

[14] Use Azure spot virtual machines. https://learn.microsoft.com/en-

us/azure/virtual-machines/spot-vms. [Online; accessed 5-July-2023].

[15] Virtual Private Cloud (VPC). https://cloud.google.com/vpc/. [On-
line; accessed 5-July-2023].

[16] VM instance pricing. https://cloud.google.com/compute/vm-

instance-pricing. [Online; accessed 5-July-2023].

[17] What is a private cloud? https://www.techtarget.com/

searchcloudcomputing/definition/private-cloud. [Online; accessed
5-July-2023].

[18] What is cloud computing? https://www.ibm.com/topics/cloud-

computing. [Online; accessed 5-July-2023].

[19] What is FaaS (Function-as-a-Service)? https://www.ibm.com/topics/

faas. [Online; accessed 5-July-2023].

[20] Work with spot instances. https://docs.aws.amazon.com/AWSEC2/

latest/UserGuide/spot-requests.html. [Online; accessed 5-July-2023].

[21] Ali-Eldin, A., Westin, J., Wang, B., Sharma, P., and Shenoy,

P. SpotWeb: Running latency-sensitive distributed web services on
transient cloud servers. In HPDC ’19: Proceedings of the 28th Interna-
tional Symposium on High-Performance Parallel and Distributed Com-
puting (2019), Association for Computing Machinery, pp. 1–12.

[22] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R.,

Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica,

I., and Zaharia, M. A view of cloud computing. Communications of
the ACM 53, 4 (Apr. 2010), 50–58.

[23] Baughman, M., Caton, S., Haas, C., Chard, R., Wolski, R.,

Foster, I., and Chard, K. Deconstructing the 2017 changes to AWS

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-placement-score.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-placement-score.html
https://cloud.google.com/compute/docs/instances/spot
https://www.anodot.com/blog/state-of-cloud-cost-report/
https://www.anodot.com/blog/state-of-cloud-cost-report/
https://learn.microsoft.com/en-us/azure/virtual-machines/spot-vms
https://learn.microsoft.com/en-us/azure/virtual-machines/spot-vms
https://cloud.google.com/vpc/
https://cloud.google.com/compute/vm-instance-pricing
https://cloud.google.com/compute/vm-instance-pricing
https://www.techtarget.com/searchcloudcomputing/definition/private-cloud
https://www.techtarget.com/searchcloudcomputing/definition/private-cloud
https://www.ibm.com/topics/cloud-computing
https://www.ibm.com/topics/cloud-computing
https://www.ibm.com/topics/faas
https://www.ibm.com/topics/faas
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-requests.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-requests.html

BIBLIOGRAPHY 54

spot market pricing. In ScienceCloud ’19: Proceedings of the 10th Work-
shop on Scientific Cloud Computing (2019), Association for Computing
Machinery, pp. 19–26.

[24] Castro, P., Ishakian, V., Muthusamy, V., and Slominski, A.

The rise of serverless computing. Communications of the ACM 62, 12
(Nov. 2019), 44–54.

[25] Eivy, A., and Weinman, J. Be wary of the economics of “serverless”
cloud computing. IEEE Cloud Computing 4, 2 (2017), 6–12.

[26] Hao, J., Jiang, T., Wang, W., and Kim, I. K. An empirical
analysis of VM startup times in public IaaS clouds. In 2021 IEEE
14th International Conference on Cloud Computing (CLOUD) (2021),
pp. 398–403.

[27] Irwin, D., Shenoy, P., Ambati, P., Sharma, P., Shastri, S.,

and Ali-Eldin, A. The price is (not) right: Reflections on pricing
for transient cloud servers. In 2019 28th International Conference on
Computer Communication and Networks (ICCCN) (2019), pp. 1–9.

[28] Kadupitiya, J., Jadhao, V., and Sharma, P. SciSpot: Scientific
computing on temporally constrained cloud preemptible VMs. IEEE
Transactions on Parallel and Distributed Systems 33, 12 (Dec. 2022),
3575–3588.

[29] Kuhlenkamp, J., Werner, S., and Tai, S. The ifs and buts of less is
more: A serverless computing reality check. In 2020 IEEE International
Conference on Cloud Engineering (IC2E) (2020), pp. 154–161.

[30] Lee, S., Hwang, J., and Lee, K. SpotLake: Diverse spot instance
dataset archive service. In 2022 IEEE International Symposium on
Workload Characterization (IISWC) (2022), pp. 242–255.

[31] Lin, L., Pan, L., and Liu, S. Methods for improving the availability
of spot instances: A survey. Computers in Industry 141 (Oct. 2022).

[32] Mell, P., and Grance, T. The NIST definition of cloud computing,
Sept. 2011.

[33] Okita, N. T., Camargo, A. W., Ribeiro, J., Coimbra, T. A.,

Benedicto, C., and Faccipieri, J. H. High-performance comput-
ing strategies for seismic-imaging software on the cluster and cloud-
computing environments. Geophysical Prospecting 70, 1 (Jan. 2022),
57–78.

BIBLIOGRAPHY 55

[34] Oleynikov, V. Overview of self-hosted serverless frame-
works for Kubernetes: OpenFaaS, Knative, OpenWhisk, Fission.
https://blog.palark.com/open-source-self-hosted-serverless-

frameworks-for-kubernetes/, 2022. [Online; accessed 5-July-2023].

[35] Pham, T.-P., Ristov, S., and Fahringer, T. Performance and
behavior characterization of Amazon EC2 spot instances. In 2018 IEEE
11th International Conference on Cloud Computing (CLOUD) (2018),
pp. 73–81.

[36] Richter, F. Amazon, Microsoft & Google dominate cloud
market. https://www.statista.com/chart/18819/worldwide-market-

share-of-leading-cloud-infrastructure-service-providers/, 2023.
[Online; accessed 5-July-2023].

[37] Rouse, M. Cloud sprawl. https://www.techopedia.com/definition/

31646/cloud-sprawl, 2017. [Online; accessed 5-July-2023].

[38] Rouse, M. Backend as a service. https://www.techopedia.com/

definition/29428/backend-as-a-service-baas, 2022. [Online; accessed
5-July-2023].

[39] Sampaio, A. M., and Barbosa, J. G. Constructing reliable com-
puting environments on top of Amazon EC2 spot instances. Algorithms
13, 8 (Aug. 2020).

[40] Storment, J., and Fuller, M. Cloud FinOps, 2nd Edition. O’Reilly
Media, Inc., 2023.

[41] Wang, S., and Casado, M. The cost of cloud, a trillion dollar para-
dox. https://a16z.com/2021/05/27/cost-of-cloud-paradox-market-

cap-cloud-lifecycle-scale-growth-repatriation-optimization/,
2021. [Online; accessed 5-July-2023].

[42] Xu, Z., Stewart, C., Deng, N., and Wang, X. Blending on-
demand and spot instances to lower costs for in-memory storage. In
IEEE INFOCOM 2016 - The 35th Annual IEEE International Confer-
ence on Computer Communications (2016), pp. 1–9.

https://blog.palark.com/open-source-self-hosted-serverless-frameworks-for-kubernetes/
https://blog.palark.com/open-source-self-hosted-serverless-frameworks-for-kubernetes/
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://www.techopedia.com/definition/31646/cloud-sprawl
https://www.techopedia.com/definition/31646/cloud-sprawl
https://www.techopedia.com/definition/29428/backend-as-a-service-baas
https://www.techopedia.com/definition/29428/backend-as-a-service-baas
https://a16z.com/2021/05/27/cost-of-cloud-paradox-market-cap-cloud-lifecycle-scale-growth-repatriation-optimization/
https://a16z.com/2021/05/27/cost-of-cloud-paradox-market-cap-cloud-lifecycle-scale-growth-repatriation-optimization/

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Contributions
	1.2 Structure of the thesis

	2 Background
	2.1 Cloud computing
	2.2 Computing resources in the cloud
	2.3 Spot instances
	2.4 Serverless computing
	2.5 Related work

	3 Design
	3.1 Motivation
	3.2 Requirements
	3.3 Preliminary considerations
	3.4 System design

	4 Implementation
	4.1 Code structure
	4.2 Deployment considerations
	4.3 Controller
	4.4 Function container
	4.5 Worker

	5 Evaluation
	5.1 Cost analysis
	5.2 Performance
	5.3 Benefits
	5.4 Drawbacks

	6 Conclusion

