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Chapter 1

Introduction

1.1 Background

There is a need to establish safety-related activities to protect users and sys-

tems from potentially hazardous situations. No physical element presents zero risk,

hence safety-related procedures should account as the basis for the development of

any product. The paradigm developed for the protection of systems is known as

functional safety. Functional safety regulates the safety-related characteristics that

any system shall have by setting the bases for how safety product development can

be managed - safety lifecycle and requirements - and how it should be assessed -

testing principles [1]. Testing procedures respond to the need to verify and validate

systems with respect to the constraints that functional safety presents. In that way,

testing does not only involve functionality but also safety assessment, and it is re-

quired to have a detailed plan [2]. Therefore, functional safety is presented as the key

safety-enforcement framework whose main assets are the definition of safety-related

requirements and the planning of testing procedures.

During the development of the thesis, I had been granted a traineeship as a

trainee test engineer for KONE in the lift Critical Software Safety department. This

position shall give me a clear insight into the testing principles and safety imple-

mentations present in the development of electric/electronic/programable electronic

systems.
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1. Introduction

1.2 Objectives and Scope

The purpose of the thesis is to present the basis of functional safety and to expose

the safety standard IEC 61508 and its implementation. Objectives:

• Analyse functional safety.

• Analyse software testing procedures.

• Investigate the relation between safety guidelines and testing.

• Analysis of the safety standard IEC 61508.

• Application of the safety Standard IEC 61508 on an electric/electronic/pro-

gramable electronic system.

The established objectives should be achieved by a literature study about func-

tional safety and safety development lifecycle. After that, an analysis of the safety

Standard IEC 61508 shall be executed with a highlight on the application of the

standard on software safety implementation. With the recollected information, an

implementation of the software-safety needs of the standard will be sketched. The

object of study will be a mobile service robot known as TurtleBot3.

The scope of the thesis extends to the software aspect of functional safety, safety

lifecycles, and testing procedures. The application of the standard focused on the

application of the standard IEC 61508-3 to develop a testing plan for a study case.

Furthermore, the application section is focused on the needs and will be developed

until the theoretical procedures of verification and validation planning for the system

but the project will not present any real implementation.

1.3 Structure

The thesis is divided into three main chapters. Chapter 2 introduces the con-

ceptual elements and importance related to testing and functional safety. It also

introduces the safety standard IEC 61508. Chapter 3 provides the needed guide-

lines to implement the standard IEC 61508 within the software development and

safety development lifecycles. Chapter 4 presents a theoretical implementation of the

IEC 61508 standard, centred on software aspects. The implementation is performed

over a TurtleBot3 vehicle, a mobile service robot lent from the Aalto University
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1. Introduction

autonomous-driving research group, that serves as the study case. The conclusions

are presented in Chapter 5.
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Chapter 2

Brief study on functional safety

This chapter presents a brief analysis of functional safety, the importance of

software testing and showcases the safety standard IEC 61508 structure over safety-

related activities.

Functional safety is the study of hazardous failures and the mitigation of the

frequency at which those failures can happen. Its sole purpose is to protect users

from harm. The hazard occurrence frequency or consequences can be mitigated

by designing safety-related systems. Safety-related equipment is defined as the one

involved in the potential appearance of a hazard. Hence, systems such as industrial

process controls, process shutdown systems and automotive controls are considered

safety-related [1].

Figure 2.1: Simplistic safety functions role diagram

The goal of safety-related systems is to reduce the frequency, or probability, of

a hazardous event and/or the consequences of the hazardous event [3]. In order to
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2. Brief study on functional safety

ensure the successful mitigation of risks, verification and validation (V&V) of the

system, testing procedures have to be developed.

2.1 Software testing

Testing procedures of electric/electronic/programmable electronic-related appli-

cations account for almost the same, or more, resource-consuming activities and

associated costs than the development of said applications. Furthermore, testing

represents the deciding point over the correct functionality of a determined system.

Hence, it is important to have a plan for the testing needs and procedures that need

to be carried out.

Considering the software domain, testing probes software for faults and failures

while it is being executed; referred to as a dynamic analysis of the product. Software

testing can be defined as a process, or series of processes, designed to make sure

computer code does what it was designed to do and that it does not do anything

unintended [2]. Said in other words, testing confirms the existence of quality, not

establishing it, while discovering faults that collide with the requirements of the

system.

2.1.1 Software safety and development lifecycles

The software lifecycle is defined as the process of planning, writing, modifying,

and maintaining software. Software lifecycle extents from the start of the software

concievement to the decommissioning of the software. Analogously, the software

safety lifecycle is the process of planning, writing, modifying, and maintaining safety-

related software that implements the safety-related requirements of the system [4]

[5].

The software development lifecycle has to include defences against systematic

failures, as well as define the development stages of the system. Software safety-

lifecycle models should be used to provide safety-related guidelines over the test-

ing structure during the software development lifecycle [1]. To take into account

functional safety within the software development, a primary software development

lifecycle should be tailored to ensure the final overall development lifecycle covers
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2. Brief study on functional safety

the requirements of the safety-related systems [6]. An overview of the key compo-

nents a safety lifecycle should present, according to the safety standard IEC 61508,

is displayed in figure 2.2.

Figure 2.2: Overall safety lifecycle [6].

Test structuring is needed in order to effectively reach the overall software safety

lifecycle requirements. The allocation of different testing techniques is usually paired

with specific phases of the software development lifecycle. The main software testing

stages can be categorized as module testing and higher-order testing [2].

• Module testing: Process of testing the individual subprograms, subroutines, or

procedures in a program. There is an understanding and visibility of the code

(white-box oriented). The purpose of module tests is to find discrepancies be-

tween the program’s modules and the interface specifications. Module testing

presents two different integration approaches:
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2. Brief study on functional safety

– Nonincremental: Each module is independently tested and then combined

with other independently tested modules.

– Incremental: Combine a non-tested module with the rest of the tested

modules to check its compliance.

• Higher-order testing: Testing procedures associated with the translation and

communication of information.

– Function testing: Finds discrepancies between the program and the ex-

ternal specifications; being external specifications, the behaviour from

the point of view of the user. There is no direct contact with the code

(black-box oriented).

– System testing: Finds discrepancies between the product and its original

objectives. It does not focus on testing the functions of the complete

system (function testing), but tests if the product meets its objectives.

• Regression testing: Performed within each testing stage after making a func-

tional imprevement or repair on the developing system. Determines whether

the change has regressed other aspects of the program (error corrections are

more error-prone than normal software development).

• Acceptance testing: Compares the software product to its initial requirements

and the needs of the end-users. It is normally not considered the responsibility

of the development organization and it is performed by the customer.

• Installation testing: It is not related to specific phases in the development

lifecycle. Consists in the search for discrepancies between the installed system

and the original objectives and requirements.

In the next chapter of the thesis 3 it is shown how the overall safety lifecycle can

be catered alongside the V-model and showcases the required steps for the realisation

phase, which describes the safety-related system necessities.

2.2 Standard IEC 61508

The risk uncertainties regarding the development of safety-related systems

prompted the need for regulations since the beginning of the 1980s. The early 1990s

produced the basis for functional safety standards, with IEC 1508, which would

evolve into the current most used functional safety standard, the IEC 61508. The

first instance of the standard was published in 1998 and has been revised multiple
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2. Brief study on functional safety

times. The current version of the standard refers to 2010. The standard originated

from the need to regulate software engineering techniques as control mechanisms in

the context of the functional safety of programmable electronic systems. The safety

standard IEC 61508 is created and regulated by the International Electrotechnical

Commission (IEC) and accepted in the industrial sector as the main regulation

document over functional safety [7].

Figure 2.3: Industry connections with the IEC 61508 standard [8].

The standard is constructed based on the identification, assessment and dealing

of the possible risks a system presents. It is intended to satisfy the needs of all

the industry sectors and can be used to perform industry-specific or application-

specific functional safety evaluation and planning. Despite being formally focused

on hardware and software aspects of Electrical/Electronic/Programmable Electronic

(E/E/PE) systems, its principles form a framework for managing all aspects of safety

[7]. Different norms and standards have been developed from IEC 61508 depending

on the industrial application. Figure 2.3 shows how different industries have adapted

the standard for their purposes.

In this project, only the IEC 61508 is taken into account. The standard is struc-

tured in seven parts (plus one overview document).
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2. Brief study on functional safety

• Part 0: Functional safety and IEC 61508. - Overview of the standard

• Part 1: General Requirements - Defines safety lifecycle steps and safety assess-

ment

• Part 2: Requirements for Electrical/Electronic/Programmable Electronic

(E/E/PE) Safety-Related Systems - Interpretation of the part 1 requirements

in the context of hardware.

• Part 3: Software Requirements - Interpretation of the part 1 requirements in

the context of software.

• Part 4: Definitions and Abbreviations

• Part 5: Examples of Methods for the Determination of Safety Integrity Levels

(SIL) - Risk analysis examples and demonstration of SIL allocation.

• Part 6: Guidelines on the application of IEC 61508-2 and IEC 61508-3 -

Guidance over the application of the standard for hardware and software ne-

cessities respectively.

• Part 7: Overview of Techniques and Measures - Description of techniques used

in safety and software engineering.

2.3 Risk assessment and safety integrity level (SIL)

"There is no such thing as zero risk. This is because no physical item

has zero failure rate, no human being makes zero errors and no piece of

software design can foresee every operational possibility." [1]

The first step in functional safety development is the risk assessment of

the studied system. Risk can be defined as the probability and conse-

quence of a specified hazardous event occurring[3]. As presented earlier,

the IEC 61805 is a risk-based standard, hence, it is important to eval-

uate the system risks when performing a functional safety assessment.

The study about functional safety, based on risks, can be summarized

by: establishing the tolerable risk criteria, assessing the risks associated

with the equipment under control and determining the risk reduction

needed to meet the risk acceptance criteria [9].
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2.3.1 Risks

Risk tolerabilities depend on environmental, cultural and socio-economic

circumstances. The selection criteria can be qualitative or quantitative.

Qualitative criteria use time-frequency adverbs to describe the likeli-

hood of occurrence, such as frequent, occasional, etc; and situational

status to describe the consequences, such as critical, catastrophic, etc.

On the other hand, quantitative criteria use numbers, such as frequency

occurrence boundaries and impact percentages to describe the likelihood

and consequences. In both criteria, there has to be an agreement over the

boundaries represented by each term of occurrence and status and should

estimate the same kind of results when implemented. It is worth notic-

ing that both criteria need one another to ensure a suitable implemen-

tation as qualitative methods need some numbers to define boundaries

and quantitative ones need some words to ensure a consistent interpre-

tation[9].

The safety-related system’s main purpose is to reduce risks in order to

meet a tolerable frequency of hazardous events. Furthermore, a safety-

related system can be defined as a system that:

• implements the required safety functions to achieve achieve, or

maintain, the equipment under control, by usage of safe states;

• ensures the necessary safety integrity for the required safety func-

tions.

Risk assessment regarding the tolerable risk and the necessary risk re-

duction is used to determine the safety integrity requirements of the

E/E/PE safety-related system[3].

2.3.2 Safety integrity

Safety integrity applies solely to the safety-related systems and other

risk reduction measures and determines the likelihood that those sys-

tems achieve the necessary risk reduction under all the stated conditions

within a stated period of time. It is important to discern the concept of

12



2. Brief study on functional safety

safety integrity with risk [7].

Safety integrity can be divided into two components, hardware safety in-

tegrity and systematic safety integrity. Hardware safety integrity refers to

random hardware failures while systematic safety integrity refers system-

atic failures. The distribution of systematic failures presents a higher un-

certainty than hardware failures, which makes systematic failures harder

to predict.

Safety integrity levels are designed to distribute different levels of safety

integrity satisfaction in order to organize the development of safety in-

tegrity requirements specifications. Furthermore, the requirement spec-

ifications shall specify the safety integrity levels for the E/E/PE safety

systems[3]. The standard IEC 61508 presents four levels of safety in-

tegrity defined by the occurrence of dangerous failure on demand of the

safety function. Depending on the demand of failure occurrence that the

safety system has to manage, there are three different modes of operation

that SIL should contemplate:

• low demand mode: frequency of demands over operation on the

safety function is no greater than one per year.

• high demand mode: frequency of demands over operation on the

safety function is greater than one per year.

• continous mode: demand for operation of the safety function is con-

tinuous.

The aforementioned modes shall take into account the existence of a

EUC and a control system, associated human factors issues, and safety

protection features that comprise a safety-related system operating at the

specified demand mode (low, high, continuous) and other risk reduction

measures. Furthermore, the safety-related demands that the different

modes handle can come from [3]:

• General demands from the EUC.

• Demands arising from failures in the EUC control system.

• Demands arising from human failures.

Table 2.1 illustrate the SIL division depending on the mode of operation.
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Safety
integrity
level (SIL)

Average probability of a dan-
gerous failure on demand of
the safety function (PFDavg)

Average frequency of a dan-
gerous failure on demand
of the safety function [h−1]
(PFH)

4 ≥ 10−5 to < 10−4 ≥ 10−9 to < 10−8

3 ≥ 10−4 to < 10−3 ≥ 10−8 to < 10−7

2 ≥ 10−3 to < 10−2 ≥ 10−7 to < 10−6

1 ≥ 10−2 to < 10−1 ≥ 10−6 to < 10−5

Table 2.1: Safety integrity levels - target failure measures for a safety function
operating in low (PFDavg) and high/continuous (PFH) demand mode of operation

A SIL 4 represents the highest safety integrity level and SIL 1 the lowest.

SIL 1 and 2 are relatively easy to achieve through a well-defined design;

the latter will require more review and testing hence, more cost. SIL 3 in-

volves a significantly more substantial increase in effort and competence.

SIL 4 considers state-of-the-art practices such as "formal methods" in

design. The competence required is scarce and costs will be much higher

than the other levels [1].

Different quantitative and qualitative methodologies have been devel-

oped in order to establish the SILs for safety-related systems. Multiple

assessments of risk are taken into account and are contrasted with each

other when selecting appropriate SILs. Numerical Assessment, severity

matrices, LOPA and Risk Graphs are some examples of these method-

ologies, which are based on determining a failure rate [7]. Furthermore,

the techniques should not only ensure that a specific quantitative failure

rate has been met but aim for a failure rate "as low as reasonably prac-

ticable". This paradigm is known as ALARP . It is worth noting that

quantitative and qualitative conformances with SIL have to be equally

met and that ALARP can be applied independently on the applied cri-

teria [1].

14
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Figure 2.4: Tolerable risk and ALARP

2.4 Safety Requirements

Safety requirements are defined to specify the procedures and basis

needed to apply to a system in order to mitigate risks. The definitions

shall incorporate the need for the reduction of risks as well as the detailed

processes needed to make it effective. The safety requirements shall be

implemented via the use of safety functions. Note that safety require-

ments may need multiple safety functions to be properly fulfilled [7].

The bases to create safety integrity requirements for the safety functions

should be the software’s systematic capabilities so that the safety-related

software will be able to handle the needs of the safety functions. The al-

location of safety requirements to E/E/PE safety-related systems should

depend on the necessary risk reduction, the measures to achieve the risk

reduction and the correspondent SIL level of the requirement. Figure 2.5

exemplifies the safety requirement allocation diagram [10].
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Figure 2.5: Allocation of safety requirements to the E/E/PE safety-related systems
and other risk reduction measures

The description of safety requirements should follow the key points de-

scribed in the third part of the IEC 61508 standard [6]. Requirement

specifications need to consider:

• Safety and non-safety functions. Detection about when software is

(not) performing safety functions.

• Configuration/architecture of the system.

• Hardware safety integrity requirements.

• Software systematic capability requirements.

• Capacity and response times.

• Equipment and operator interfaces, including foreseeable misuse.

Accounting for the capabilities of the system architecture design, soft-

ware safety requirements specifications shall also consider:

• Software self-monitoring.

• Monitoring of the programable electronics hardware, sensors, and

actuators.

• Periodic testing of safety functions while the system is running.

• Enabling safety functions to be testable when the EUC is opera-

tional.

• Software functions to execute proof tests and diagnostic tests to

check the SIL requirement of the safety-related system.

16



Chapter 3

Safety standard IEC 61508

application guidelines

This chapter focuses on the software safety-related measures of the im-

plementation of the standard IEC 61508. It expands on software devel-

opment and the software safety lifecycle.

3.1 Software lifecycle and testing

The traditional waterfall model can be adjusted becoming the widely

used software development V-model, which in turn is tailored to match

the overall safety lifecycle necessities. The V-model will be used to show-

case the integration of the software development lifecycle with testing.

As figure 3.1 shows, the phases of software development are divided into

two branches. One side of the model (left-hand side) shows a typical

software development lifecycle proper of a waterfall model; it is known

as the verification branch. The other side (right-hand side) shows the

testing-related activities corresponding to the appropriate software de-

velopment stage; it is known as the validation branch. At each stage

of the verification branch, the testing plan for the appropriate testing

module should also be developed. The course of action starts at the re-

quirement definition step and ends in the validation testing step [11]. A
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3. Safety standard IEC 61508 application guidelines

more in-depth analysis about the requirements of the verification and

validation software activities regarding the safety lifecycle can be found

in subsections 3.2.6 and 3.2.7.

Figure 3.1: Software development lifecycle V-model [6].

The main testing stages of the presented V-model, following the testing

definitions established in section 2.1, are the following:

• Module (Unit) testing: Finds bugs in the internal processing logic

and data structures in individual modules. The creator of the test

has an understanding and visibility of the code [12].

• Integration testing (module testing): Validate whether the compo-

nents of the application are working and communicating correctly.

Checks interfacing faults that may occur in the module integrating

phase. The integration strategy, normally incremental (bottom-up,

top-down), has to be taken into account [12].

• Integration testing (Function and system testing): New delivered

applications are integrated with the whole system, so the appli-

cation is tested on the integrated environment [12].

• Validation testing (Acceptance testing): Normally executed by the

costumer. Validation if the delivery of the system meets the require-

ments of the customer [12].

The test completion criteria determine when testing activities shall end.

The most common criteria are [2]:

• Stop when the scheduled time for testing expires

• Stop when all the test cases execute without detecting errors.

18
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A more in-depth analysis about the requirements of the testing necessi-

ties regarding module and integration testing can be found in subsections

3.2.3 and 3.2.4.

3.2 Software safety lifecycle (realisation

phase)

This section expands on the framework applied to define software safety

lifecycles according to the standard IEC 61508. Furthermore, the block of

interest will be the "realisation" phase of the overall safety lifecycle 2.2.

The study case software safety-related plan requirements will be decided

from the definitions given by the aforementioned phase in the context

of software. Note that all the material that can be found in this section

belongs to the IEC 61508-3 [6].

The realisation phase of the software safety lifecycle sets the bases and

definitions for the application of the software requirements (IEC 61805-

3). The structure of the software safety lifecycle realisation phase can be

seen in figure 3.2.

Figure 3.2: Software safety lifecycle (realisation phase) [6].

3.2.1 Software safety requirements specification

Box 10.1 in figure 3.2.

Objectives: Establish the requirements for safety-related software con-
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3. Safety standard IEC 61508 application guidelines

sidering the software safety functions and capability requirements.

Definition of software safety functions and software systematic capabili-

ties for each E/E/PE safety-related system.

Requirements: The safety requirements will be created for each E/E/PE

safety-related system in order to ensure that they comply with the

E/E/PE capability and safety integrity level specified for each safety

function. These requirements need to follow the description and alloca-

tion presented in section 2.4.

Software safety functions needed to be taken into consideration:

• Functions that enable the EUC to achieve or maintain a safe state.

• Functions related to the detection, annunciation and management

of faults in the programmable electronics hardware.

• Functions related to the detection, annunciation and management

of sensor and actuators faults.

• Functions related to the detection, annunciation and management

of faults in the software itself (software self-monitoring).

• Functions related to the periodic testing of safety functions online

(self-checks).

• Functions related to the periodic testing of safety functions offline.

• Functions to allow the PE system to be safely modified.

• Interfaces to non-safety-related functions.

• Capacity and response time performance.

• Interfaces between the software and the PE system.

• Safety-related communications.

Software systematic capability requirements need to define:

• Safety integrity level(s) for each of the safety functions above.

• Independence requirements between functions

20
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3.2.2 Validation plan for software aspects of system

safety

Box 10.2 in figure 3.2.

Objective: Develop a plan for validating the safety-related software as-

pects of system safety.

Requirements: Planning shall specify the steps used to enforce the safety

requirements. The validation plan shall include:

• Details of when the validation shall take place.

• Details of who should carry out the validation.

• Identification of the relevant modes of the EUC operation including:

– Preparation for use, setting and adjustment.

– Operation modes.

– Shut-down/resetting/maintenance modes.

– Foreseeable abnormal conditions and reasonably foreseeable op-

erator misuse.

• Identification of the safety-related software which needs to be vali-

dated for each mode.

• Technical strategy for validation.

• Measures (techniques) and procedures that shall be used.

• Required environment in which validation is to take place.

• Pass/fail criteria:

– Required input signals with their sequences and their values.

– Anticipated output signals with their sequences and their val-

ues.

– Other acceptance criteria (memory usage, timing, value toler-

ances).

• Policies and procedures for evaluating results, particularly failures.

3.2.3 Software design and development

Box 10.3 in figure 3.2.

Objectives: Create a software architecture that fulfils the safety-related

21



3. Safety standard IEC 61508 application guidelines

software requirements with the required SIL. Evaluate requirements on

the software by the hardware architecture. Select an adequate set of tools

for the required SIL, over the safety lifecycle. Design and implement

software that fulfils requirements for safety-related software with respect

to SILs. Verify that requirements for safety-related software are achieved.

General requirements: The design method chosen shall possess features

that facilitate:

• Abstraction, modularity and other features which control complex-

ity

• The expression of:

– Functionality

– Information flow between elements

– Sequencing and time related information

– Timing constants

– Concurrency and synchronized access to shared resources

– Data structures and their properties

– Design assumptions and their dependencies

– Exception handling

– Design assumptions

– Comments

• Ability to represent several views of the design inluding structural

and behavioural views.

• Comprehension by developers

• Verification and Validation.

The design method has to allow the execution of safety-related practices

such as testability, software modification and integration capabilities.

It shall also allow to verify safety integrity levels and to attain at the

regulations established by them.

Software architecture design: Defines the major elements and subsys-

tems of the software, how they are interconnected, and how safety in-

tegrity is achieved.
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• Select and justify an integrated set of techniques and measures nec-

essary to fulfil the safety requirements and SILs. These techniques

and measures shall include software design strategies for fault tol-

erance and fault avoidance.

• Partition subsystems and elements according to:

– Whether the elements/subsystems have been previously veri-

fied; and their verification conditions

– Whether each element/subsystem is safety-related or not

– Regarding the software systematic capability of the subsys-

tem/element

• Determine all software/hardware interactions and their significance.

• Note if the architecture unambiguously defined or restricted to de-

fined features.

• Select the design features to be used for maintaining the safety

integrity of all data.

• Specify appropriate software architecture integration tests to ensure

the safety requirement is satisfied at the required SIL.

Support tools requirements, including programming languages: Support

online tools (can directly influence safety-related systems during run

time) and offline tools (cannot directly influence safety-related systems

during run time), including programming languages, have to be taken

into account. Online support tools shall be taken into account as a soft-

ware element of the software-related system. Offline support tools shall

be assessed and validated.

Software system design requirements: The software design (partitioning

of major elements of the architecture into a system of software mod-

ules) shall be planned before the specification requirements of the safety-

related system, the software architecture design and the validation plan

for software aspects of system safety. The software shall achieve modular-

ity, testability and the capability for safe modification. Software module

testing specifications shall originate from the specification of the software

system design. Integration testing shall be specified to comply with the

required safety integrity level.
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Requirements for code implementation: Code implementation shall take

into account its readability, clarity, testability and satisfy the specified

requirements of software module design, coding standards and safety

planning. Each software code module shall be reviewed accordingly.

Requirements for software module testing: Software modules shall be

verified (module testing) as presented in the software module test spec-

ification developed during software system design. Module testing shall

show whether or not each software module performs its intended func-

tion and does not perform unintended functions. The status of the test

(pass/fail) shall be specified and documented.

Requirements for software integration testing: Shall be specified during

software system design phase. Software system integration tests shall

state:

• Division of the software into manageable integration sets.

• Test cases and test data

• Types of tests to be performed

• Test environment, tools, configuration and programs

• Test criteria on which the completion of the test will be judged.

• Procedures for corrective action over failure of test.

Integration tests shall show that all software modules and software ele-

ments interact correctly to perform their intended function and do not

perform unintended functions.

3.2.4 Programmable electronics integration

Box 10.4 in figure 3.2.

Objectives: Integrate the software onto the target programmable elec-

tronic hardware. Combine hardware and software in safety-related pro-

grammable electronics.

Requirements: The hardware and software compatibility in the safety-

related PE shall be verified by integration tests. These integration tests
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shall be specified during the design and development phase. The soft-

ware/PE integration test specification shall state:

• The split of the system into integration levels.

• Test cases and test data.

• Types of tests to be performed.

• Test environment including tools. support software and configura-

tion description

• test criteria over the completion of the tests

In addition, the software/PE integration test specification shall distin-

guish between:

• The activities performed in the developer’s premises and the ones

in the user’s site.

• Merging of the software system on to the target PE hardware.

• Adding interfaces such as sensors and actuators; E/E/PE integra-

tion

• Applying the E/E/PE safety-related system to the EUC

Any change in the integrated system during the integration testing of

safety-related software/electronics shall be subject to impact analysis.

The impact analysis shall determine all software modules impacted and

forward actions.

3.2.5 Software modification

Box 10.5 in figure 3.2.

Objectives: Define the maintenance needs and actions for the functional

safety of the E/E/PE safety-related systems during operation and mod-

ification. Guide corrections, enhancements or adaptations to a validated

software, the software’s systematic capability has to be sustained.

Requirements: Software modifications procedures shall be make avail-

able. Modifications shall only be initiated if there is a software request

that is accepted, hence was accounted for, by the safety planning proce-

dures. The software modification request shall include the hazards which
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may be affected, the proposed modification and the reasons for the mod-

ification. Impact analysis is required for the proposed software modifi-

cation and it shall be documented. Impact analyses shall determine the

existence of a hazard, perform a risk analysis and determine the soft-

ware safety lifecycle phases that are affected. The safety planning of the

modifications shall:

• Detail the required actions in the specified software lifecycle phases.

• Identify the staff and specification of the required competence.

• Detail specification for the modification.

• Perform verification planning.

• Define the scope of revalidation and testing to the extent required

by the SIL.

Modifications shall be executed as stated in the plan. Modification details

shall be documented. Documentation shall include:

• Modification request

• Results of the impact analysis and the justified taken decisions.

• Software configuration management history.

• Deviation from normal operations and conditions.

• Information affected by the modification activity.

• Re-verification and re-validation of data and results

3.2.6 Software system safety validation

Box 10.6 in figure 3.2.

Objective: Ensure that the integrated system follows the software safety

requirement specification imposed by the SIL.

Requirements: The validation activities shall be specified in the valida-

tion plan. If the fact that the integrated system complies with the safety

requirement specification has already been verified in the safety valida-

tion planning, then the validation does not need to be repeated. Software

safety validation shall document:

• The division of responsibility for conformance (if needed).
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• The results of validating the software aspects.

• For each safety function:

– Chronological record of the validation activities.

– The version of the validation plan

– The safety function being validated.

– Tools, equipment and calibration data

– The results of the validation activity

– Discrepancies between expected and actual results.

• Analysis of discrepancies and the decision to continue the valida-

tion or return to an earlier part of the development lifecycle, if

discrepancies are found.

The validation of safety-related software aspects of system safety shall

take into account:

• Testing shall be the main validation method for software. In or-

der to supplement the validation activities, analysis, animation and

modelling may be used.

• The software shall be evaluated by means of simulating:

– input signals that would be present in normal operation

– anticipated occurrences

– undesired conditions that require the system to act

• The documented results of the validation and the documentation

that enables the developer product to meet the requirements of IEC

61508-1 and IEC 61508-2.

• The results of the validation shall meet the following requirements:

– The tests shall show compliance with the specified requirements

for the safety-related software. Hence, the software performs the

intended functions and does not perform unintended functions.

– Test cases and test results shall be documented for subsequent

analysis and assessment, as required by SIL.

– The documented results of the validation process shall state

either:

∗ The software has passed the validation

∗ The reasons for not passing validation
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3.2.7 Software verification

Objective: Test and evaluate the outcomes from a safety lifecycle phase

to ensure consistency and compliance with the inputs of the lifecycle

phase. The consistency and correctness of the relation between inputs

and outputs are given by desired safety integrity level.

Requirements: The software verification and development shall be

planned, and documented, concurrently for each phase of the software

lifecycle. The software verification shall be done as planned. The plan-

ning shall address:

• The evaluation of safety integrity requirements

• the selection and documentation of verification strategies, activities

and techniques

• The selection and usage of verification tools

• The evaluation of verification results

• The corrective actions to be taken

Verification documentation shall be performed after the satisfactory ver-

ification of each phase. It shall include:

• Identification of items to be verified

• Identification of the information from which it has been done the

verification

• non-conformances, such as software aspects poorly adapted to the

problem.

The output information from each phase shall include:

• Adequacy of the specification, design, or code for:

– Functionality

– Safety integrity, performance and other safety planning require-

ments

– Readability, by the development team

– Testability

– Safe modification

• Adequacy of the validation planning for describing the design of the

present phase.
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• Check incompatibilities between:

– the tests described in the current phase and the ones described

in the previous one.

– the outputs within the current phase

The following verification activities shall be executed for the chosen soft-

ware development lifecycle:

• Software safety requirements verification

– Check whether software safety requirements specification fulfils

the E/E/PE system safety requirement specification for func-

tionality, safety integrity, performance, and other safety plan-

ning requirements.

– Check whether the validation plan fulfils the software safety

requirement specification

– Check for incompatibilities between the software safety require-

ments specification and:

∗ the E/E/PE system safety requirements specification

∗ the validation plan

• Software architecture verification

– Check whether the software architecture design fulfils the soft-

ware safety requirements specifications

– Check the adequacy of the integration tests specified in the

software architecture design

– Check the adequacy of major elements with respect to:

∗ feasibility of the safety performance required

∗ testability for further verification

∗ readability by the development and verification team

∗ safe modification to permit further evolution

– Check for incompatibilities between:

∗ the software architecture design and the software safety re-

quirements specification

∗ the software architecture design and its integration tests

∗ the software architecture integration tests and the valida-

tion plan for software aspects of system safety
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• Software system design verification

– Check whether the software system design fulfils the software

architecture design

– Check whether the specified tests of the software system inte-

gration fulfil the software system design

– Check the adequacy of the attributes of each major element of

the software system design specification with respect to:

∗ feasibility of the safety performance required

∗ testability for further verification

∗ readability by the development and verification team

∗ safe modification to permit further evolution

– Check for incompatibilities between:

∗ the software system design specification and the software

safety architecture design

∗ the software system design specification and the software

system integration test specification

∗ the tests required by the software system integration test

specification and the software architecture integration test

specification

• Software module design verification

– Check whether the software module design specification fulfils

the software system design specification

– Check the adequacy of the software module test specification

with the software module design specification

– Check the adequacy of the attributes of each software module

with reference to:

∗ feasibility of the safety performance required

∗ testability for further verification

∗ readability by the development and verification team

∗ safe modification to permit further evolution

– check the incompatibilities between:

∗ the software module design specification and the software

system design specification

∗ the software module design specification and the software
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module test specification (for each software module)

∗ the software module test specification and the software sys-

tem integration test specification

• Code verification

– The source code shall be verified by static methods. it shall

achieve conformance to the software module design specifica-

tion, the required coding standards, and the validation plan.

• Data verification

– Data structure shall be verified

– The application data shall be verified for consistency with data

structures, completeness against the application requirements,

compatibility with the underlying system software, and correct-

ness of the data values

– Operational parameters shall be verified against the application

requirements

– Interfaces and associated software (sensors, actuators and off-

line interfaces) shall be verified for detection of anticipated in-

terface failures and tolerance to anticipated interface failures

– Communication interfaces and associated software shall be ver-

ified for an acceptable level of failure detection, protection

against corruption and data validation.

• Timing performance verification

– Verification of the predictability of behaviour in the time do-

main

• Software module testing (3.2.3)

• Software integration testing (3.2.3)

• PE integration testing (3.2.4)

• Software aspects of system safety validation (3.2.6)

3.3 Application of IEC 61508-3

This section of the thesis focuses on the implementation of IEC 61508-3.

For that, there exists the sixth part of the standard that walks the user
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through the steps needed to develop a testing plan; IEC 61508-6 [13]. It

is worth noting that parts two and three of the standard do not instruct

on the selection of an appropriate SIL for a given tolerable risk. However,

the aforementioned parts do give guidance over:

• Application measures and techniques corresponding to safety in-

tegrity levels (Annex B provides a table with the measures and

techniques associated to each SIL level for software-related safety

systems).

• Control of systematic failures and random failures by feature design.

Figure 3.3: Diagram of the application of IEC 61508-3 [13].
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The functional steps shown in the figure 3.3 above are defined using the

safety lifecycle requirements in the following way:

Obtain requirements for the E/E/PE safety-related system: Present the

relevant parts of the safety planning described in IEC 61508-2.

Software architecture: Determine the software architecture for all safety

functions allocated to software. Implement software architecture subsec-

tion within 3.2.3.

Review the E/E/PE safety-related system: Review with the system’s

supplier the software and hardware trade-off safety implications and

their architectures. Iterate until hardware and software compatibility

is reached.

Start the planning for software safety verification and validation: The

developing requirements of the planning for software safety verification

and validation are presented in subsections 3.2.3 and 3.2.2.

Design, develop and verify/test the software: The software testing shall

take into account the software safety planning, the software safety in-

tegrity level and the software safety lifecycle.

Operation and maintenance procedures: Develop the software aspects of

the maintenance and operation procedures that shall be followed when

operating the system. Shall be done in parallel with integration of the

verified software step. Subsection 3.2.5 shows how and what aspects the

procedures may define.

Integration of verified software into hardware: Integrate the verified

software onto the target device. Shall be done in parallel with the defini-

tion of operation and maintenance procedures. Subsection 3.2.4 presents

the requirements that have to be made for the integration purposes.

Carry out software validation: Validate the software in the integrated

E/E/PE safety-related systems. The specifications about this validation

process can be found in subsection 3.2.6.
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Provide system engineers with software and documentation: Deliver the

software safety validation results to system engineers.
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Chapter 4

Study case

In this section, the study case and the test planning guidelines are de-

fined. The E/E/PE system used is the burger model of a TurtleBot3.

The standard implementation for the system may seem superfluous as the

hazardous capabilities of the studied case are almost negligible. However,

it serves as a suitable showcase of the implementation guidelines of the

standard IEC 61508. The implementation will account for the genera-

tion of theoretical guidelines regarding how the application of the IEC

61508-3 shall be executed for the study case.

Figure 4.1: TurtleBot3 burger component architecture
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4.1 System description

In this section, the different specifications of the E/E/EP study case

system will be presented. The used study system is the burger model

of a TurtleBot3. TurtleBot is a small programmable, ROS-based mobile

robot designed as a teaching tool for the ROS platform. It possesses key

mobile robot’s technologies such as SLAM, navigation and manipulation

utilities, which allow the system to be suitable for home service robots

[14].

4.1.1 Hardware

The 138 x 178 x 192 mm and 1 kg of mass robot consist of a four-layered

structure with two driving wheels, a motion control unit (MCU) con-

taining an inertial measurement unit (IMU) , a single board computer

(SBC) , and a laser distance sensor. All the components of the robot

are powered up by a 11.1 V DC, 1800mAh Lipo battery.

Figure 4.2: Diagram of the hardware components connectivity

Single Board Computer (SBC)

The device capable of regulating and managing the information through-

out the TurtleBot3 is a single-board computer, most specifically, a

Raspberry Pi B3+. It is responsible for data handling, decision-making,

action planning and governing the rest of the components of the vehicle.

Furthermore, it is also capable of connecting to a remote computer (lap-

top) and receiving and sending commands, as well as sharing any of the

available data.
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Actuator system

Two DYNAMIXEL servomotors (XL430-W250) are used as the main

driving mechanism for the robot. They use a PID control and present

a stall torque of 1.4 N.m at 11.1 V. A dummy wheel is also present to

ensure stability.

The MCU is the main actuator controller. The IMU of the system is em-

bedded in the MCU board The MCU is under the regulation of the SBC

and executes the commands received regarding movement and odometry

data acquisition.

The robot has a maximum payload of 15 kg, a maximum translational

velocity of 0.22 m/s and a maximum rotational velocity of 2.84 rad/s.

Sensoric system

The main sensors used by the robot are a 360 Laser Distance Sensor

(LiDAR) and an inertial measurement unit (IMU). Despite not being

very relevant in the following functionalities, the servomotors are able

to withdraw velocity, angular positions, load, and trajectory, which can

be used as another sensor device. More sensors can be attached to the

robot to increase its functionalities, such as ultrasonic sensors, contact

switches or cameras. However, in this project, it is not considered the

addition of other components. The LiDAR, 360 Laser Distance Sensor

LDS-01, is a 2D 360 degrees scanner used to collect data to perform

SLAM (Simultaneous Localization and Mapping) and Navigation. It op-

erates at 5V and has a detection distance of 120 mm 3500 mm. The

accuracy and precision depend on the distance range as shown in the fol-

lowing table 4.1. The LASER presents a safety of Class 1 from IEC60825.
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Item Specifications
Distance range 120 ∼ 3500 mm
Distance accuracy (120 ∼ 499 mm) ±15 mm
Distance accuracy (500 ∼ 3500 mm) ±5.0%
Distance precision (120 ∼ 499 mm) ±10 mm
Distance precision (500 ∼ 3500 mm) ±3.5%
Angular range 360◦

Angular resolution 1◦

Scan rate 300± 10 rpm

Table 4.1: 360 Laser Distance Sensor, LDS-01, specifications

The IMU consists of a 3-axis gyroscope and a 3-axis accelerometer. It

is the main reliable source of information for odometry purposes, as it

enables the robot to locate itself as well as monitor its movement. It is

embedded in the MCU board. In this project, the information regarding

displacement in the z-direction (vertical displacement) and rotation over

x and y (pitch and roll) will not be considered. Only 2D planar mapping

is required.

4.1.2 Software

The TurtleBot3 operates with ROS (Robot Operating System). ROS

is an open-source software development kit that provides the building

blocks, such as libraries and software tools, to develop robot applica-

tions[15]. The ROS platform is able to control the main functionalities,

data management, action planning and connectivity procedures. There

are other software tools in use, such as the DYNAMIXEL SDK and

Arduino IDE, which are used for the lower control of the servomotors

and t he MCU driver. However, ROS is used to govern and manage the

actions that the MCU executes.

To control and monitor the robot, a remote computer can be linked to the

robot’s single-board computer (Raspberry Pi). ROS is used to establish a

connection between the remote computer and the single board computer

and publish data indistinctively in both machines.
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The main instructions used for the project are already built-in commands

to set up the ROS dependencies and interactions needed, as well as to

activate certain functionalities of the robot. Functionalities can be added

to the vehicle by programming with ROS-supported languages, such as

C++ or Python. The vehicle, as well as a remote computer, shall be

able to have ROS compatibility and contain the necessary up-to-date

packages The main ones used to verify the main functionalities of the

device are the following, extracted from the documentation guides of the

TurtleBot3 and compiled by the DigiTally team from Aalto University’s

Autonomous Driving research group [16].

• Initiate ROS environment [comm1]

1 $ roscore

• Access TurtleBot3 from computer via ssh [comm2]

1 $ ssh ubuntu@ <IP address of TurtleBot >

• Definition of TurtleBot type [comm3]

1 $ export TURTLEBOT3_MODEL=$burger

• Bring up basic packages (make the robot operational) [comm4]

1 $ roslaunch turtlebot3_bringup

turtlebot3_robot.launch

• Read ROS topics [comm5]

1 $ rostopic list

2 $ rostopic info /<topic >

• Activate teleoperation with keyboard [comm6]

1 $ roslaunch turtlebot3_teleop

turtlebot3_teleop_key.launch

• Activate SLAM [comm7]

1 $ roslaunch turtlebot3_slam turtlebot3_slam.

launch

• Activate Navigation [comm8]

1 $ roslaunch turtlebot3_navigation

turtlebot3_navigation.launch
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The ROS environment also includes visualization tools to help interpret

the data gathered. R-viz is a ROS visualization software tool used to

visualize the robot’s behaviour and show display the required data. It

can be considered to show what the robot senses and thinks it is hap-

pening. It is a ROS package that is also able to communicate with the

connected devices. Most of the navigation directives used in this project

are handled by r-viz. The study E/E/EP system has been operated with

ROS Kinematic Kane version and contains the main TurtleBot3 pack-

ages. Note that the single board computer and the external computer

use Ubuntu operating system on Linux.

4.1.3 Functionality

For the purpose of designing a test plan for the robot, some of the main

states and functionalities of the vehicle have been sorted into possible

modes of operation. Note that the robot’s capabilities extend beyond the

selected functionalities and that the selected functionalities have been

tailored for the purposes of the project, meaning that the capabilities of

the functionality may be greater than the ones presented.

These modes can be divided into standby states, where the robot remains

still and is awaiting instructions or readiness, and functional states,

where the robot executes some action.

Standby states

The standby modes may present a sequential increase in the usage readi-

ness of the robot. The robot should not be allowed to move and the main

purpose of these states is to prepare/set up the robot.

Disconnected: The robot is powered up; components have access to the

power supply but no orders shall be given. Communication with the

remote computer is not present. No movements allowed
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Idle: The robot is powered up. There is a connection between the robot

and the remote computer via ssh. The robot is ready to be initialized.

Connectivity self-check between single board computer and remote com-

puter should be done. No movements allowed.

Ready: The robot is powered up. There is a connection between the

robot and the remote computer. Roscore nodes are initialized; the robot

is ready for launch commands. Components and systems should be fully

operative. Self-check of components should be executed and reported

using ROS connectivity to the remote computer. LiDAR movement al-

lowed. Robot movement is allowed if self-checks are okay and order is

given.

A successful response from the following command [comm4] shall be a

key point to enter this state.

Functional modes

n order to make use of the functional modes, the E/E/EP system has to

be, at least, in the “Ready” state defined previously.

Teleoperation: Nodes that allow teleoperation are opened. The robot can

be teleoperated by the user from a remote computer with the keyword;

WASDX keys. Longitudinal, transversal and rotational movements over

the vertical axis shall be inputted; movement shall not be backward,

over the vertical axis or rotation over the longitudinal (roll) and trans-

verse(pitch) axis. Real-time communication with the robot. Collisions

may be permitted. Safety function shall be defined if severe collision

occurs. Low level of autonomy and safety.

A successful response from the command [comm7] shall be a key point

to enter this state.

SLAM: Nodes that allow SLAM are opened. R-viz is also operational.

This mode of operation shall be combined with the teleoperation func-

tionalities to move the robot and create the mapping. The map generated
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shall be a two-dimensional occupancy grid map (OGM). Teleoperation

functionality is the same as described above. Real-time communication

with the robot; mapping updates in r-viz shall also be up to date with the

robot’s progress. As the movement is controlled by the user, the safety

functionality and autonomy level are the same as in the teleoperated

mode.

A successful response from the command [comm8], SLAM, and command

[comm7], keyword teleoperation, shall be a key point to enter this state.

Navigation: Nodes that allow Navigation are opened. A map (OGM) file

is needed. R-viz tools are used to perform navigation. The estimation tool

in r-viz shall be used to initialize the robot orientation and position into

the loaded map. The goal tool in r-viz shall be used to set goal points and

orientation in the loaded map. Once a goal is set, the robot shall move

towards it avoiding collisions. The robot shall also update the mapping

while following the goal and shall be able to detect and avoid dynamic

obstacles. The robot shall not be able to recognize if obstacles belong

to the same or different entities but shall avoid them. The minimum

path shall be calculated when targeting the goal point. Safety functions

shall be defined when the target cannot be reached or imminent collision

occurs. Communication between the remote computer and robot shall

be up to date. Safety mechanisms are needed and the level of autonomy

is medium-high.

A successful response from the command [comm9] shall be a key point

to enter this state.

4.2 Standard application

The application of the standard is not fully covered in this section. Due

to time constraints, the implementation of the standard will only cover

the first three steps of the guidelines provided by the standard. Hence, a

rough characterization of the application of the standard will be devel-
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oped for the study case described above. The implementation has been

guided by section 3.3.

The software development lifecycle will be based on the V model pre-

sented in figure 3.1. It complies with the requirements specified in sub-

section 3.2.7.

4.2.1 Obtain requirements for the E/E/PE safety-

related system

Safety functions are used to mitigate the risk of creating accounted haz-

ardous situations. A key functionality of the safety functions is to bring

the system into a safe state in which the risk situation can be assessed

and controlled appropriately. The safety functions are defined taking

into account the safety integrity level (SIL) that is wanted to achieve.

Specific implementations and architectural measures of the E/E/PE

safety-related systems depend on what the SIL wanted to achieve.

Safety-related application

The following block related to safety functions and states has been de-

veloped to exemplify the application of the standard IEC61508 and is

not an intrinsic behaviour of the marketed robot. Furthermore, the im-

plementation and feasibility of these functions are out of the project

scope.

It should also be taken into consideration that this project expands on

the software measures that can be applied to perform an E/E/PE safety-

related system that mitigates certain risks. Meaning that, although me-

chanical constraints and elements can also be used as SIL-specific safety-

related systems, this analysis only accounts for software procedures.

Note that the states and functions defined tend to be as simplistic as

possible as they aim to showcase the utilities of the standard. Specifically,

the safety functions will be defined by focusing on:
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• Mitigation of the risk of bumping into objects, and;

• Regulation of the vehicle speed so that any collision shall not inflict

any injury.

SIL target

Taking into account the displayed definitions of the characteristics and

main functionalities of the studied system (Turtlebot3 burger model),

there would practically not be needed risk reduction mechanisms as the

system is hardly hazardous on its own. However, for the purpose of this

thesis, a higher-than-needed SIL of 3 target has been selected for the

E/E/PE safety-related system. A SIL level of 3 is normally attributed to

safety-related systems that perform a high-level risk reduction, typically

used to mitigate the risk of possible life-threatening situations.

Safe state

The main considered safety state shall be "Safe" state. When a diagnos-

tic indicates that a safety action must be taken, the system shall redirect

itself into the "Safe" state.

Definition: The robot is powered up. There is a connection between the

robot and the remote computer. Roscore nodes are initialized; the robot

is not ready for launch commands. Components and systems should in-

dicate their operativity status. Self-check of components should be ex-

ecuted and reported using ROS connectivity to the remote computer.

Fault detection should indicate the reason for the safe state activation.

LiDAR movement is not allowed. Robot movement is not allowed. The

safe state can only be recovered when no faults are active and manual

intervention allows for its recovery.

The aforementioned safe state shall be achieved using software safety-

related activities that comply with the SIL target specified. A list of

measures and techniques the software safety system shall take into ac-

count can be found in the annexe A of the IEC 61508-3 standard [6]. The
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main critical sectors, focused for the purposes of this thesis, that need su-

pervision will be the LiDAR, specifically the capabilities of detecting the

proximity of objects, and the IMU, specifically the capability to detect

translational and angular speeds and accelerations. These elements al-

together with the appropriate software will constitute the safety-related

systems.

Safety detection tool

There shall exist a safety detection software tool that monitors the sen-

sors’ data and decide whether the system shall be put into a safe state.

The tool may be referred to as "Diagnostics" and shall be responsible

for detecting if the system’s normal-mean functionality data is properly

handled, recurrently checking critical data and expressing faults. The

requirements of the detection tool shall comply with the support tools

specifications of subsection 3.2.3.

Safety functions

Safety functions are designed to address the two main desired mitigations

(stated in 4.2.1).

Safety distance: Addresses the mitigation of bumping into objects. This

safety function will be operating in high-demand mode as the software

safety systems responsible for braking may be triggered very often. To

consider the targetted SIL and according to table 2.1, the safety distance

function shall present a frequency of less than 10−7 dangerous failures

per hour.

The safety function shall monitor the proximity of objects when the sys-

tem is moving in some of the functional states (4.1.3). When the proxim-

ity value of an object is under a specified threshold (safety distance), the

safety function shall bring the system to its safe state. The information

about object proximity shall be gathered from the LiDAR of the system.

The acceptable boundaries from which to choose a suitable safe distance
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shall take into account the sensibility and range of the used LiDAR (ta-

ble 4.1). Note that the Turtlebot3 burger presents a body radius of 105

mm.

• Proposed safety distance boundaries: 120 ∼ 3500 mm

• Proposed default value: 150 mm

The safety function shall be allocated in a safety-related system com-

posed of the LiDAR and the MCU. This safety-related system will be

referred to as the safety distance system.

Safety speed: Addresses the mitigation of collision severity. This safety

function will be operating in low-demand mode as the software safety

systems responsible to account for breaches in the maximum allowed

operating speed will not be prompted very regularly. To consider the

targetted SIL and according to table 2.1, the safety distance function

shall present an average probability of less than 10−3 dangerous failures.

The safety function shall monitor the velocity of the vehicle when the

system is moving in some of the functional states (4.1.3). When the

system’s speed value is over a specified threshold (maximum allowed

speed), the safety function shall bring the system to its safe state. The

information about translational and angular speeds shall be gathered

from the IMU of the system. The acceptable boundaries from which to

choose a suitable safe distance shall take into account the sensibility and

range of the used servomotors.

• Proposed translational velocity boundaries: 0.1 ∼ 0.22 m/s

• Proposed angular velocity boundaries: 0.1 ∼ 2.84 rad/s

• Proposed default maximum translational velocity: 0.22 m/s

• Proposed default maximum angular velocity: 2.84 rad/s

The safety function shall be allocated in a safety-related system com-

posed of the IMU and the MCU. This safety-related system will be re-

ferred to as the safety speed system.

DISCLAMER: In a real-life situation, more safety functions shall be

presented, covering all the targeted SIL necessities. Safety systems would

have to be defined properly as stated in IEC 61508-2.
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4.2.2 Software architecture

Techniques and measures: To fulfil the SIL 3 target the software archi-

tecture shall present a defined status of the following techniques and

measures [6]:

• Fault detection

• Error detection codes

• Failure assertion programming

• Diverse monitor techniques

• Functionally diverse redundancy

• Stateless software design

• Graceful degradation

• Modular approach

• Use of trusted software elements

• Forward traceability between the software safety requirement spec-

ification and software architecture

• Backward traceability between software safety requirements speci-

fication and software architecture

• Structured diagrammatic methods

• Semi-formal methods

• Formal design and refinement methods

• Automatic software generation

• Computer-aided specification and design tools

• Cyclic behaviour, with guaranteed maximum cycle time

• Time-triggered architecture

• Event-driven, with guaranteed maximum response time

• Static resource allocation

• Static synchronisation of access to shared resources

The safety distance function safety software will be present in the SBC,

the LiDAR and the MCU. The safety speed function safety software will

be present in the SBC, the MCU. Note that the MCU is also responsible

for the data acquisition of the IMU. The LiDAR and the IMU are con-

sidered acquisition elements, the SBC is the decision-making element,

the MCU is the execution controller element and the servomotors are
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the actuators. Overall, acquisition elements report to decision-making

elements. Decision-making elements demand actions from the execution

controller. The execution controller formalizes the requests into direc-

tives that the actuators can execute.

The LiDAR shall give information regarding the distance of its surround-

ings continuously. If the SBC detects the LiDAR is operational and does

not give conclusive data about the violation of the safe distance pa-

rameter, the system shall be allowed to perform its normal operations.

Otherwise, the system shall perform the safety-related actions defined in

4.2.1. The appropriate actions shall be assessed by the SBC, which shall

give the according commands to the MCU. The SBC shall also display

accordingly the fault situation and status. The MCU shall be aware of

the safety situation and govern the actuators to perform the detailed

actions needed.

The software implementation and architecture presented above allow for

software modularity and integration testing. An example of modular tests

would be the ones developed for the detection of different sizes and po-

sition objects by LiDAR, speed detection by IMU, or speed correction

by servomotors. Integration tests could be developed to verify the in-

tegration of different modules such as the object detection module and

the speed manipulation module, for example, to test the braking of the

robot when an object is close.

ROS can be considered the main software tool of the project. It complies

with the latest tool requirements.

4.2.3 Planning for software safety verification and

validation

The validation plan shall be developed using the guidelines from 3.2.2.

And the verification plan shall be developed using the guidelines from

3.2.7.
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The rest of the steps regarding the application of the standard require

a real implementation of the safety-related software, as well as the ex-

ecution of testing procedures. As agreed with the owners of the robot

system and due to severe time constraints, these implementations shall

not be accounted for and are out of the scope of this thesis. This last

section was meant for showcasing an exemplification of how the standard

should be applied in a real E/E/PE system.
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Chapter 5

Conclusion

Functional safety is one of the most important frameworks in product de-

velopment. Its usability is highly spread within the industrial sector but

it is always treated with high discretion as it involves company-specific

procedures and sensitive information. For that reason, the availability of

comprehensive studies is reduced to a few books and the international

standard. This thesis has tried to compile the already existent informa-

tion into a comprehensible short document that presents the basis of

functional safety.

The study of functional safety and its applications paired with a trainee-

ship in a software safety team has been very useful for my learning pro-

cess. The ability to work as a test engineer has given me a lot of insights

into why and how functional safety is important and relevant in any

software-related production system, as well as to get a better under-

standing of the standard from which the safety functional paradigm is

regulated. Furthermore, the professional insight of software developers

and testers has provided a more realistic overview of how safety is built,

caressed and implemented in a real industrial environment.

The study case has been used as a support to showcase the different

stages of software safety procedures and to provide a more hands-down

experience in the project. However, due to time and system availability

constraints, the complete process of functional safety has not been ap-

plied to the system. Nevertheless, the opportunity to develop a safety

50



5. Conclusion

study on a real system has given me a broader, more accurate, perspec-

tive on the necessities and time required for safety implementations.

The most important learnings from this thesis have been:

• Functional safety as a paradigm and how it is applied to all indus-

trial environments

• Testing procedures and their place in the software development life-

cycle

• How safety is categorized; risks and safety integrity levels.

• The IEC 61508 application

The scope and focus of the thesis have changed over the course of its writ-

ing in favour of a more concrete and standard-oriented result. However,

there are some topics and actions that should give a more complete sta-

tus to the thesis and that can be assessed in the future. These descarded

topics include:

• Analysis of software development (different models and their ad-

vantage over safety implementations)

• Analysis over software and hardware integration (would lay some

of the basis about the functional safety paradigm importance)

• In-depth analysis of risk assessment techniques (LOPA, risk graphs,

severity matrices, ALARP, ...)

• Software testing metrics and analysis, statistical reasoning for test-

ing techniques

• Implementation and analysis of a real safety-related system

• Functional safety assessment of an E/E/PE system

• Integration validation of safety-related requirements between soft-

ware and hardware
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Appendix A

TurtleBot3 operations and

functionalities - Screenshots

A.1 Rostopic

List of topics that the robot has access to

Figure A.1: Rostopic list

A.2 Robot initialisation - bring up system

Turtlebot3 self-assesses itself when the system is operative. Showcase of

how data is displayed.
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A. TurtleBot3 operations and functionalities - Screenshots

Figure A.2: ROS bring up command and assessment

A.3 ROS diagnostics

Showcase of diagnostics tool of the robot. Fault detection and safety

information display shall be based on this.

Figure A.3: Diagnostics showcase capabilities
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A. TurtleBot3 operations and functionalities - Screenshots

A.4 TurtleBot3 teleoperation

Figure A.4: Teleoperation command

A.5 TurtleBot3 SLAM

Figure A.5: Initialization of SLAM directives. Showcase of R-viz
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A. TurtleBot3 operations and functionalities - Screenshots

Figure A.6: SLAM functionalities. Showcase of R-viz

A.6 TurtleBot3 Navigation

Figure A.7: Navigation functionality of the TurtleBot3. R-viz showcase
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