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Abstract

Road segmentation is a critical task for enabling the safe operation of autonomous
cars. Currently, most road segmentation models rely on manually labeled data
(supervised learning), making the training process very resource heavy. Also, there
is a lack of data in adverse conditions like winter and supervised models generalize
poorly to domains they have not seen during training.

In this thesis, a road segmentation model that requires no manual labeling (self-
supervised learning) is presented. Training and testing are conducted in challenging
winter driving conditions but the method can be adapted to any domain with no
modifications. The proposed method includes two parts: Position-Aided Road
Auto-labeling with Self-supervised features (PARAS) and learning from the PARAS
auto-labels. In PARAS auto-labeling, the driven area is extracted based on Global
Navigation Satellite System (GNSS) poses, and then the rest of the road is collected
by comparing the mean similarity to the driven area with a pre-trained self-supervised
feature extractor. Then a segmentation model is trained with the autogenerated
labels using a custom loss function. The proposed method improves the current
state of the art of self-supervised road segmentation in the winter driving domain
(74.8 IoU vs 73.0 IoU) but can’t yet compete with supervised methods. Most of the
error in our method is caused by the inability to collect all road pixels by comparing
feature similarity with the driven area. Performance could be increased by using a
more accurate feature extractor or more advanced similarity metric than the simple
mean that is used here.

The scalability of our proposed model is excellent as only GNSS and camera
sensors are required and it avoids the label-assigning problem that is present in
other approaches that utilize self-supervised features. In the current work, labels
are assigned by simply clustering similar features together or using manually labeled
data to learn projection from features to classes.
Keywords Autonomous driving, Computer vision, Road segmentation,

Self-supervised learning, Winter driving conditions
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itseohjattuja piirteitä talviolosuhteissa
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Tiivistelmä
Tien tunnistus pikselitasolla, eli segmentointi, kaikissa olosuhteissa on edellytys
turvalliselle autonomiselle ajamiselle. Tällä hetkellä suurin osa tien tunnistusmene-
telmistä nojaa manuaalisesti merkattuun koulutusdataan (ohjattu oppiminen) ja
datan merkkaaminen on hyvin aikaavievää prosessi. Lisäksi koulutusdataa ei löy-
dy juurikaan poikkeavissa olosuhteissa, kuten talvella, ja mallit toimivat heikosti
olosuhteissa, joissa niitä ei ole koulutettu.

Tässä työssä esitetään tien tunnistusmenetelmä, joka ei tarvitse lainkaan manuaa-
lisia merkintöjä(itse-ohjattu oppiminen). Koulutus ja testaus suoritetaan vaativissa
talviolosuhteissa, mutta menetelmää voidaan soveltaa mihin tahansa olosuhteisiin
ilman muutoksia. Menetelmässä on kaksi osaa: automaattinen tiemerkintöjen luon-
ti itsekehitetyllä PARAS (Position-Aided Road Auto-labeling with Self-supervised
features)-menetelmällä ja tiensegmentointimallin kouluttaminen näillä merkinnöillä.
PARAS-menetelmällä tiemerkinnät luodaan automaattisesti erottelemalla ajettu
alue sateellittipaikannauksen (GNSS) avulla ja vertaamalla muiden kuva-alueiden
samankaltaisuutta ajettuun alueeseen itseohjatulla piirteiden erotus mallilla. Tien
tunnistusmalli voidaan sitten kouluttaa tällä autogeneroidulla datalla. Autogene-
roitujen merkintöjen heikkouksia kompensoidaan itsekehitellyllä hukkafunktiolla.
Menetelmä parantaa nykyistä itseohjatun tientunnistuksen tasoa talviolosuhteissa
(74.8 IoU vs 73.0 IoU) mutta ei vielä pärjää ohjatuille menetelmille. Vaihe, jossa
koko tie etsitään vertaamalla muiden alueiden piirteitä ajetun alueen piirteisiin, on
menetelmän merkittävin virhelähde. Tarkkuuta voidaan parantaa käyttämällä pa-
rempaa piirteiden erotus mallia tai vertaamalla samankaltaisuutta kehittyneemmällä
tavalla kuin keskiarvo, jota on käytetty tässä työssä.

Menetelmän skaalautuvuus on erinomainen, sillä vaatimuksena on ainoastaan
kamera ja GNSS-paikannusanturi. Lisäksi muissa itseohjatuissa malleissa esiintyvä
ongelma luoda tiemerkinnät piirteiden perusteella ratkaistaan käyttämällä hyväksi
GNNS-paikkatietoa. Olemassa olevissa ratkaisuissa tiemerkinnät täytyy luoda jo-
ko yksinkertaisesti ryhmittämällä samankaltaiset piirteet yhteen tai kouluttamalla
manuaalisesti merkatulla datalla projektio piirteistä luokkamerkintöihin.
Avainsanat Autonomominen ajaminen, Konenäkö, Tien segmentointi, Itseohjattu

oppiminen, Talviajo-olosuhteet
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Terms
Convolutional Neural Network(CNN): Neural network architecture utilizing
2D kernels. Performs well in vision tasks because images contain 2D information
that is hard to process in 1D form.

Dense features: Spatially distributed features (for example one feature for each
8x8 image patch) instead of one feature per image. Enable downstream tasks like
segmentation.

East-North-Up (ENU): Cartesian coordinate system where a tangent plane
is placed on the surface of the earth and poses are presented in reference to that so
that the positive axis point to the east, north, and up. Errors are small close to the
reference point while coordinates are easier to process in this frame.

Gaussian Mixture Model (GMM): Combines multiple Gaussian distributions
to better model real-life properties.

Global Navigation Satellite System(GNSS): Global positioning system that is
based on timed radio signals sent by satellites orbiting Earth. Typical accuracy is in
the meter scale. The most common GNNS systems are GPS, Galileo, and GLONASS.

Ground Truth: The correct output, usually labeled by a human. Neural net-
works learn by adjusting their predictions toward Ground Truth.

Intersection over Union(IoU): Most common metric for segmentation accu-
racy. The shared area of the predicted segment and the ground truth segment is
divided by the united area. IoU = P red∧GT

P red∨GT
.

Loss function: Function that neural network tries to minimize. Commonly, just
the difference between predicted output and manually labeled Ground Truth.

Self-supervised learning: Learning without manually labeled data. Usually
relies on data augmentations by learning to pull augmentations of the same image
together and to push augmentations of different images apart.

Semantic segmentation: Task of assigning each pixel in an image into the correct
class. Typical classes in traffic scenes are pedestrian, car, road, sidewalk, and building.

Supervised learning: Learning from examples, requires manually labeled data.

Visual Transformer(ViT): Transformer architecture adapted for vision tasks.
Widely used in self-supervised vision models as the backbone.
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Abbreviations
D Mahalanobis distance (point to distribution)
L loss function
s scaling factor
u image pixel coordinate in width direction
v image pixel coordinate in height direction
XW world x-coordinate
YW world y-coordinate
ZW world z-coordinate

A attention tensor
C camera matrix
f feature vector
F feature correspondence between feature vectors
H homography matrix
P projection matrix from world coordinates to image coordinates
Q query tensor
R rotation matrix
T translation matrix
V value tensor
µ distribution mean
Σ distribution covariance
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1 Introduction

1.1 Autonomous driving
Autonomous road vehicles can provide many benefits. They remove human error from
driving and there is also a need for fewer cars and parking spaces as one vehicle can
serve more people through car sharing [1]. Autonomous cars enable providing flexible
transportation as a service that is accessible to everyone, compared to the current
situation where a car is an expensive investment that only part of the population can
afford. Autonomous operation and car sharing also support the transition to electric
vehicles by lowering the production numbers required to full fill all transportation
needs.

In order to do autonomous driving safely, three subtasks must be performed
successfully: situational and environmental awareness, navigation and path planning,
and maneuver control [2]. Situational and environmental awareness includes tracking
other road users most importantly cars and pedestrians, self-localization, and detecting
the road and lane the car is currently driving. Navigation and path planning include
finding a global path from the start point to the destination that is locally adjusted
to obstacles and conditions that have been detected. Maneuver control includes the
control of the actuators to follow the planned path smoothly and safely. All the steps
must be performed in real-time to allow safe operation in high-speed traffic.

The task of situational and environmental awareness is the most challenging out
of the three. The most important awareness tasks are object detection and semantic
segmentation. In object detection desired objects are located with rectangular bound-
ing boxes and classified. In autonomous driving, the most important objects that
must be detected are other road vehicles and pedestrians. In semantic segmentation,
classification is done at the pixel level. The most important semantic segmentation
classes in autonomous driving are road and sidewalk.

1.2 Neural networks for vision
After graphical processing units became viable for deep learning, neural networks have
been dominating the field of visual detection tasks including object detection and
semantic segmentation. Neural networks are inspired by the mechanism information
is processed in biological neural networks (i.e. brains) and they are able to process
complex data like images, text, and speech significantly better compared to classical
methods. Convolutional Neural Network (CNN) is a type of neural network designed
to operate on images with convolution operations. Before CNN:s images had to be
processed as 1D arrays before feeding them to the neural network which effectively lost
most of the contextual information of each pixel. CNN:s, on the other hand, use 2D
kernels that are able to retain the 2D context of the images and they presented huge
improvements over the previous state of the art. Most vision neural networks still
utilize CNNs in the core while the high-level architecture has improved significantly
from the first CNN implementations.

While neural networks offer better performance over classical methods in vision
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tasks they also have drawbacks that are important to understand. Feng et al. [3]
presented three major challenges for vision neural networks

1. Scalability: neural networks use a high number of parameters that require high
computational resources both when training and testing which makes cost-
effective scaling difficult. One solution to this problem is knowledge distillation
where the knowledge learned by a larger model is attached to a smaller network
while maintaining most of the generalization.

2. Robustness: neural networks are sensitive to small changes caused by noise,
occlusion, and weather effects. Sensitivity can be decreased by aiming for
high variation in the train set by collecting more data in different conditions.
However, neural networks usually learn from examples, meaning the desired
output must be marked in the training data, which can be very time-consuming.
An emerging alternative to this is self-supervised learning where labels are not
required.

3. Interpretability: Even though neural network architectures are handcrafted
with a general idea of what each part of the network should do there is very
little certainty about what is exactly happening inside. This can be addressed
by simplifying the architecture and by visualizing outputs in the hidden layers
of the network to gain a better understanding of the network.

All of these factors should be carefully considered when developing new neural
network-based vision models.

1.3 Semantic road segmentation
Under the general task of traffic segmentation road segmentation is a popular topic
of research where the goal is to detect all pixels that are part of the drivable area.
This is a crucial task for autonomous driving. The road segmentation networks are
usually trained and tested on a single dataset like KITTI [4] or Cityscapes[5] that
lack variability, especially in weather conditions. While these models perform well in
the domain they have been trained on they are not likely to perform well outside the
dataset. It is evident that these models can’t be used in real-life autonomous driving
where robustness to different conditions is a requirement.

A trivial solution for this issue would be to use more data in different driving
conditions, but in the case of road segmentation labeled data is very limited because
segmentation is one of the most demanding labeling tasks. Due to the lack of labeled
data, it is obvious that if a robust model is desired it is not feasible to just use
human-annotated data sets. Fortunately, a significant development in the field of
self-supervised segmentation has been made recently that enables learning without
hand-labeled datasets.
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1.4 Road segmentation in winter conditions
Winter driving conditions differ drastically from summer driving conditions: there is
little contrast in color between road and roadside areas, the edge between road and
roadside is not clearly defined and the road appearance can change from non-snow
covered to fully snow-covered. These factors make segmentation networks trained on
summer data infeasible to use in winter conditions. The same factors combined with
slippery road surfaces make winter conditions demanding to human drivers as well.
Snowy conditions are reported to increase the crash rate by 870% compared to dry
conditions [6]. In many countries, including Finland, winter conditions dominate half
of the year and in many other countries experience at least short periods of snowfall.
In order to implement autonomous driving in these regions perception algorithms,
including road segmentation, must adapt to winter conditions.

In this thesis, a self-supervised model for road segmentation in winter conditions is
developed to address this issue. The proposed method consists of two parts: Position-
Aided Road Auto-labeling with Self-supervised features (PARAS) and learning from
the PARAS auto-labeled data. In the PARAS auto-labeling process driven area
is extracted based on Global Navigation Satellite System (GNSS) poses and the
similarity of other image areas is compared to the extracted area to collect the rest
of the road. The performance of a self-supervised feature extractor is evaluated
against classic methods for determining the similarity. In the second part, a road
segmentation model is trained with the labels generated by PARAS, and a suitable
loss function is developed to increase performance.

1.5 Scope
Autonomous cars use mostly lidar, stereo cameras, and monocular cameras for
segmentation tasks. In this thesis, only one forward-facing monocular RGB camera
and GNSSIMU position sensor are used on train time and only one forward-facing
RGB camera is used on test time. In many approaches depth information from
lidar or stereo camera is used for the generation of training labels or it is fused with
the camera also on test time [7, 8]. Some models use labeled data from another
domain or extend labels in time [9, 10, 11, 12]. In this thesis, the model will not
see any labels at any point in the training procedure. The approach is completely
self-supervised. Even though our proposed method can be used in any conditions,
in this thesis training, and testing is conducted with daylight winter driving data.
Similarly, benchmarking against other methods is conducted with this data. Testing
in other conditions is not in the scope of this study.
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1.6 Objectives
Must have:

1. Develop a road segmentation model that can be trained without labels in a
self-supervised manner

2. Model works in winter conditions and can be easily adapted to any adverse
conditions

3. Beats supervised methods trained with summer data

4. Model has novelty. Not just a fine-tuned version of existing work.

Nice to have:

1. Beats current self-supervised state-of-the-art

2. Beats supervised methods trained with winter data
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2 State of the art
The state of the art of road segmentation can be divided into four subcategories:
classic methods, supervised neural networks, semi-supervised neural networks, and
self-supervised neural networks. The properties of each of them are briefly shown in
Table 2.1 and a detailed background study for each of them is presented below.

Table 2.1: Properties of different road segmentation methods.

Method Accuracy Labeling Feasible scenarios
Classic OK Not required Simple environments

Supervised Excellent Required Environments present in trainset
Semi-supervised Good Partially required Environments present in trainset
Self-supervised OK Not required Environments present in trainset

2.1 Classic methods
Classic methods try to segment the road based on manually defined features. The
most commonly used features are road color distribution, road edges, the road
vanishing point, and image horizon. Most approaches use a combination of multiple
features. He et al. [13] utilize a combination of multivariate Gaussian distribution
of road color and horizon, vanishing point, and edge detection to segment the road
from an image. This method fails in areas where road color is not distinguishable
from the background or road edges are not clear.

Almazan et al. [14] rely on probabilistic prior of average road location, road
location registered to the vanishing point, and road location registered to the horizon
location that are computed from a small dataset. To make a prediction, the horizon
line and vanishing point are detected and probability distributions are anchored to
these locations. Finally, these distributions are combined with the initial distribution
before producing a prediction. The prediction accuracy is strongly dependent on the
accuracy of the vanishing point and the road geometry. An ill-defined vanishing point
will produce very poor results and even if a vanishing point is defined accurately the
results hold only in straight road segments. Junction areas and curving roads are
handled very poorly with this method.

Lieb et al. [15] present an adaptive segmentation algorithm that predicts future
road segments based on the road appearance in the recent past. The road appearance
at a given distance is estimated by doing reverse optical flow until the region of
interest (ROI) is at the desired distance. Then features are extracted from this area
and the best match is searched in front of the vehicle using template matching. The
best match is chosen as the prediction for road position on that distance. Horizontal
ROI is matched at multiple distances to provide a rough outline for the road segment
and these Horizontal ROIs are then connected to produce a complete segmentation
output. This approach needs to only assume that the road looks similar to the
recent past and the road width is constant. The model is tested on data collected
from the Mojave desert that has similar aspects to winter driving conditions: the
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road edges are vague and there is little difference between the road and environment
color. Despite these challenges, the model performs well on the test set. However, in
urban conditions, a constant width of the road cannot be assumed which makes this
approach inapplicable to autonomous driving on its own.

Ozguna et al. [16] utilize depth information captured with a stereo camera to
segment road areas using disparity mapping. The performance on its own is quite
poor but this method is later used to autogenerate labels for a neural network with
better performance.

Liu et al. [17] fuse lidar with a monocular camera to segment the road. Lidar
points are projected to the image and hand-crafted features are created based on
the color and the point cloud information of the pixel. Classification of each pixel is
performed with a Markov network with belief propagation.

Li et al. [18] extract features based on the intensity, color, and texture of each
pixel and its close proximity with hand-crafted extractors. Road pixels are then
clustered together using Gaussian Mixture Model and separated from non-road
pixels. In this approach, satellite data is used and some processing steps require an
assumption of a bird’s eye view perspective to be made.

2.2 Supervised neural network models
Due to the shortcomings of classic methods, most road segmentation research in the
last 10 years has concentrated on neural networks. They can learn more complex
features compared to classic methods. The traditional approach is to use supervised
learning where the model learns from examples. The model is provided with input
images and the correct segmentation output (ground truth), where each pixel that
is part of the road is separated from the rest of the image. Based on the difference
between desired and model output parameters are tuned using backpropagation.
With supervised learning, high accuracy can be achieved even in complex tasks if
the training dataset is large and of good quality. However, it is time-consuming to
produce training data for segmentation because each pixel has to be annotated.

The top 1 published method [19] on popular Cityscapes dataset [5] benchmark
relies on deformable convolutions applied to vision transformer (ViT) like architecture.
Previously ViTs outperformed CNNs in large-scale vision tasks, but the presented
architecture brings CNNs back to the competition. The scope of the model is much
broader than traffic scene segmentation as it can be utilized in a similar fashion to
ViTs. These possibilities will be explored later in this thesis.

The Cityscapes top2 published method [20] implements additional boundary loss
term to refine the performance in segmentation boundary areas. The boundary loss
is computed by comparing the difference between predicted segmentation boundaries
and ground truth segmentation boundaries. The model backbone is based on the
architecture presented in [21] (HRNet) which is currently a common CNN-based
backbone in segmentation tasks.

The top1 published segmentation model in winter conditions is presented by
Vachmanus et al. [22]. The training and testing dataset is self-captured by the
researchers with a total size of 1200 images. The model backbone is Resnet50 [23]
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with ASPP module and pyramid supervision. The proposed model achieves the new
state-of-the-art on winter road scene segmentation with road class IoU of 95.6 %.

Supervised models can be combined with classic color models to improve the
performance of the model. Color models are not capable of road segmentation on their
own but add value when used as a post-processing method. Yadav et al. [24] present a
method where a CNN segmentation network produces an initial segmentation output
for the road. Then a color line model is fitted to the background and road pixels
and the probability of each point belonging to the road and background is computed.
The final prediction is produced by feeding the probabilities to Conditional Random
Field (CRF) model.

Alvarez et al. [25] present a hand-crafted color texture-based descriptor that
can separate road areas significantly better compared to previous approaches. The
novelty is to find a new color presentation that minimizes the variation inside an
image patch as this presentation seems to separate different image areas better. The
descriptor is combined with a segmentation network to refine the output of the neural
network.

2.3 Semi-supervised neural network models
Semi-supervised methods require ground truth data but can extend the labels to
different time instants or weather conditions. This lowers the required labeling effort
but does not eliminate it. It should be also noted that the further the auto-labeled
data is from the original domain the larger the error usually is.

The top1 method [9] in KITTI[4] dataset benchmark is a semi-supervised method
that can auto-label frames close to a manually labeled reference point. The KITTI
benchmark provides only 200 train and 200 test images so evidently ability to produce
more training data will improve the accuracy of the neural network model. Here
semantic cues and motion cues are combined to predict the labels near the ground
truth reference point. The backbone is HRNet in this approach as well.

Another semi-supervised approach is to use scheduled learning where the difficulty
of the training data is increased sequentially. Kothandaram et al. [26] present an
approach where the model is first trained with data from good driving conditions
including ground truth labels. Then unlabeled training data is divided into different
difficulty categories and the model is trained sequentially with each category starting
from the easiest category (closest to the original labeled dataset). The labels are
generated online based on the model trained on the previous category using entropy
minimization loss. This procedure is repeated until the target domain is achieved.
Finally, the model is fine-tuned using a small set of labeled data from the target
domain.

GAN-based data augmentation and neural style transfer allow the simulation
of adverse driving conditions to already labeled images from a different domain.
Generative Adversarial Networks (GANs) can generate whole new samples from the
source data set utilizing generator-discriminator architecture. The generator network
tries to produce new samples that the discriminator can’t separate from the original
data sample and the discriminator tries to separate all generated samples from real
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ones, resulting in realistic fake samples. Neural style transfer augmentation takes
style from one source image and content from another source image and combines
them. This enables the transformation of images into a new domain that is not
present in the original data set, summer to winter or day to night being obvious
examples.

Mus, at et al. [10] present an architecture that utilizes GAN modules to simulate
adverse driving conditions into real images. Training with the generated data provides
improved performance both on synthetic and real test data with adverse weather
conditions compared to baseline but performance is not on bar with supervised
methods. Choi et al. [27] present a GAN-based architecture where contents from
virtual environment street scene images are mapped into representations of real-life
images to generate new data samples. GAN-based style transfer architecture can
even be used to change images from the summer domain to the winter domain [11]
or from daylight style to low-light style [12] to enable training networks in conditions
that are not present in the original dataset.

2.4 Self-supervised neural network methods
Fully self-supervised methods don’t require any manual labeling, labels are either
generated automatically or not used at all. Mayr et al. [7] and Wang et al. [8]
auto-label segmentation data based on a disparity map generated with a stereo
camera. Road pixels are assumed to locate on the same plane so they will share the
same depth value in any given horizontal pixel row (disparity mapping). All pixels
that belong to the same plane with some threshold are labeled as road. These labels
are incomplete but the segmentation network trained with these labels produces
predictions that are significantly better than the labels that it is learning from. This
suggests that it is possible to train a good segmentation model with labels that only
segment part of the road in each image.

Laddha et al. [28] utilize a combination of location data and available street
maps for auto-labeling. With calibrated camera and location information, the road
extracted from a map can be projected to the image and used as a label for road
segmentation. A segmentation network can then be trained with these labels. This
approach relies strongly on the accuracy of the street maps.

One option is to use class activation mapping, where parts of the images that
have the highest effect on the predicted label are extracted. This idea was originally
presented by [29] and later improved in [30]. However neural networks don’t generally
use all pixels part of the object for classification so CAMs don’t produce accurate
segmentation outputs. The performance is even lower for complex classes like roads
that don’t clearly stand out from the background.

Later it was discovered that the poor segmentation performance of CAMs could
be improved by combining visual transformers with self-supervised training. Caron
et al. [31] presented a feature extractor that is able to create meaningful dense
feature representation of an image, completely self-supervised. The architecture
consists of a student and teacher network with a visual transformer backbone that
get a different transformation of the same image as an input. The student tries to
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produce the same feature representation as the teacher despite having different input
image transformations. The architecture is called DINO as it is doing knowledge
DIstillation with NO labels.

Hamilton et al.[32] continued the work presented by [31] by adding a segmen-
tation network to the feature extractor to produce a full self-supervised semantic
segmentation model. Loss is calculated based on correspondence with three different
image pairs: image with itself, image with its KNN nearest neighbor (chosen in the
feature space), and image with another random image. Loss is minimized when
the correspondence in the feature space is similar to the correspondence in the
segmentation space. Essentially, this process is distilling correspondence from feature
space to segmentation space. This model is called Self-supervised Transformer with
Energy-based Graph Optimization (STEGO). The vanilla STEGO architecture has
good performance on the Cityscapes dataset that consists of summer data but can’t
yet compete with supervised methods. The supervised state-of-the-art has 87.0 mIoU
on Cityscapes and STEGO achieves 21.0 mIoU. Despite the drastic difference in
mIoU STEGO can segment road areas reasonably well. The standard Cityscape
benchmark includes multiple classes in addition to road and mIoU is calculated
over all of them. When published, STEGO achieved the new state-of-the-art in
self-supervised segmentation in the Cityscapes benchmark.

The field of deep learning moves quickly so STEGO didn’t hold the first place for
long. Recently after STEGO was published, the new state-of-the-art was gained by
a model utilizing Visual Concept Embeddings (ViCE) [33] with mIoU of 25.2. The
major difference to STEGO is that superpixel transform is used instead of using a
pre-trained DINO backbone that has grid-like feature mapping.

Recently, also a new version of DINO has been published, named DINOv2 [34]
where the loss mechanism presented in DINO with the loss mechanism of iBOT
[35] and centering mechanism of SwAV [36]. The implementation is also optimized
which allows training on larger datasets. All of these factors together result in
better quality dense and image-level self-supervised features. Fully self-supervised
segmentation benchmarks have not been provided but linear probe evaluation where
a linear classifier is trained on top of the features DINOv2 achieves significantly
higher mIoU compared to DINO in all benchmarks including Cityscapes (66.2 mIoU
vs. 81.0 mIoU).

2.5 Research gap
The background study reviled that currently, the best-performing road segmentation
models are dependent on labeled data. Most approaches use the Cityscapes dataset
for training and testing which hides the shortcomings of the models in adverse
conditions. Some efforts have been made to collect and label winter driving data for
training suitable models for winter driving conditions but these datasets are small
and non-public. Self-supervised approaches have been presented to address the issue
of manual labeling but the accuracy leaves room for improvement.

Our PARAS auto-labeling combines recently published self-supervised dense
feature extraction models with GNSS pose data to present a novel self-supervised
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road segmentation architecture that aims to improve on the current state-of-the-art in
self-supervised road segmentation. At the same time, the lack of research in adverse
conditions is addressed by doing training and testing in varying winter conditions.
Winter conditions are very challenging for the current road segmentation models as
they have mostly been trained in summer conditions and neural networks generalize
poorly to conditions that they have not been trained on. On the other hand, existing
winter driving models use such small datasets that likely, they don’t generalize well
to different snow, light, and environmental conditions.
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3 PARAS auto-labeling
In this section, the label autogeneration process of our proposed method PARAS
is presented in detail, including the data used, the driven area extraction process,
and the method for comparing similarity with the driven area. The performance of
self-supervised features is tested against a classic GMM-based similarity metric.

3.1 Datasets
For our method, a dataset with the following properties is required:

1. time stamped or synchronized GNSS pose-image pairs

2. calibration parameters for projection from the ground plane to the image frame

3. winter driving conditions

The number of data sets that have all these properties is very limited even though
labels are not required here. The only larger dataset with these properties is the
Canadian Adverse Driving Conditions Dataset (CADCD) [37]. The performance of
neural networks is strongly correlated with the amount and quality of the data so
there is clearly a need for more raw winter driving data. With this motivation, a
new unlabeled winter driving dataset is collected. The advantages of self-supervised
learning become evident here: lack of data in the desired environment can be easily
tackled with new data because labeling is not required.

CADCD
Even though the raw size of CADCD is relatively large, 263 637 images, it has been
captured on a route of just 20 km with a high frame rate (10 Hz) and 8 different
cameras meaning that only 1/8th of the images are forward facing and the variation
between consecutive frames is small. Fortunately, a labeled (object level) subset of
the dataset samples approximately every fifth frame of the raw data and covers most
of the whole route. The labeled subset also includes synchronized GNSS poses. The
labeled dataset includes 7000 forward-facing images distributed to three different
driving days. On only one of the driving days, there is snow on the road, leaving
5430 images with desired properties.

In CADCD the extrinsic and intrinsic calibration parameters are provided. In-
trinsic parameters define the projection from camera coordinates to the image frame
and extrinsic parameters define the transformation between the camera frame and
the vehicle frame.

Self-collected dataset
Our dataset is collected in the Finland Espoo area on two different days in February
2023. Driving scenes include different snow conditions: full snow cover, partial snow
cover, and no snow cover on the road and different driving environments: suburban,
highway, and countryside roads. All data collection has been done during day time.
The specialty of the dataset is fully snow-covered countryside roads with very little



12

color contrast between road and roadside areas. This kind of data is not present in
the CADCD dataset. The driving scenes include suburbs, highways, countryside, and
intersections (Figure 3.1). A wide variety of scenes were included so that a model
trained with this data would work in any winter driving scenario.

Suburb Highway Countryside Intersection

Figure 3.1: Driving scenes from the self-collected dataset.

Data collection was conducted with Henry research car platform donated by
Henry Ford Foundation Finland. The platform is a 2019 Ford Focus retrofitted with
a high-quality sensor setup and an onboard computer that enables data collection
tasks. The sensor setup used in this dataset is:

1. Novatel PWRPAK 7DE GNSS with dual antenna and INS unit

2. FLIR blackfly S 2448x2048 forward-facing machine vision camera

The Novatel GNSS system is connected to Robot Operating System (ROS) that is
running on the onboard computer. The camera runs on its own program independent
from ROS but every time a frame is captured ROS timestamp is saved to allow
synchronization. Thus raw data is distributed to three different files: the GNSS pose
data is saved into a rosbag file, the camera data is saved to an AVI video file and
the image frame timestamps in ROS time are saved to a text file.

The raw data contains around 184 000 frames captured with 20Hz frequency
meaning there is little difference between consecutive frames. Thus it is justified to
downsample the data by only taking every fifth frame before any further processing
yielding 36 738 downsampled frames. The GNSS translations are extracted from
Novatel/oem7/bestpos topic which is published at 10 Hz frequency and the rotation
is extracted from Novatel/oem7/inspva topic which is published at 50 Hz frequency.

Each image can be paired with the closest GNSS pose simply by comparing the
timestamp of the image to all GNSS pose timestamps and then choosing the closest
one. 2D bounding boxes for cars are detected with pre-trained Yolo v5 [38] and saved
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to a text file. The data is now distributed to three different file types: image folder,
closest GNSS poses for each frame in a text file, and 2D bounding boxes for each
frame in a text file. This format is adapted from the CADCD dataset [37].

In order to project pixels to the world coordinate frame transformation between
these frames needs to be determined. Instead of defining the translation matrix,
rotation matrix, and camera matrix separately, the desired projection can be com-
puted from a single measurement, because the transform between world coordinates
and image pixel coordinates is a homography transform. By definition, homography
transform maps points from one plane to another. Now, the source plane is the
ground and the destination plane is the image. Homography transform should not
be confused with a camera matrix that maps 3D world coordinates to the image
frame such that the world coordinates frame origin is in the focal point and in the
same orientation as the camera.

By measuring a minimum of four point pairs of form [(u, v), (XW , YW )], where
(u, v) is the image coordinate and (XW , YW ) is the world coordinate, the homography
transform can be determined. The world coordinate-locations of the sample points are
measured with a laser measuring tool as illustrated in Figure 3.2. After measurements,
the optimal homography matrix is calculated with the OpenCV findHomography
method so that the least squares back projection error is minimized.

Calibration points in the world
coordinate frame

camera

YW

Calibration points in
image coordinate frame

Baselink

u

v

 

XW

Camera field of view

Figure 3.2: Camera calibration. The position of each point is measured in world
coordinates and image coordinates and then the homography transform between
these planes can be defined.
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3.2 Image to ENU projection
In this section, the necessary formulas are presented for projecting image coordinates
to world coordinates. Here we have two different cases. The calibration process of
our self-collected data set yields a homography matrix directly, but for CADCD the
homography matrix needs to be derived from the camera matrix, rotation matrix,
and translation matrix. For both the assumptions are the same:

1. The world coordinate origin is in the GNSS receiver location

2. The ground is assumed to be planar, meaning that 2D mapping from image
coordinates to the ground plane is desired. The accuracy of the mapping
depends on the distance between the ideal 2D road plane and the real road.

If the camera matrix is known the projection from camera coordinates to image
coordinates is defined as:

s

⎡⎢⎣u
v
1

⎤⎥⎦ = C
3×3

⎡⎢⎣x
y
z

⎤⎥⎦ , (3.1)

where s denotes the scaling factor and u and v are the image coordinates in pixel
units. C defines the projection from the camera frame to the image frame, also called
the camera matrix. x,y z are coordinates in the camera frame. The transformation
from the world coordinate frame to the camera frame is given by
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⎤⎥⎥⎥⎦ , (3.2)

where R defines the rotation matrix from the world coordinate frame to the camera
frame and T defines the translations from the world coordinate frame to the camera
frame. Together they form the transformation matrix that defines the full transfor-
mation from the world coordinate frame to the camera frame. XW , YW , and ZW are
the resulting coordinates in the world coordinate frame. Combining the rotation
matrix, translation matrix, and camera matrix yields
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⎡⎢⎢⎢⎣
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1

⎤⎥⎥⎥⎦ , (3.3)

where P is the projection matrix from world coordinates to image coordinates. As
we assume all world coordinates to be located in the ground plane we can remove
the ZW from the input coordinates and remove the corresponding column from the
projection matrix, which yields the homography matrix representation:
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s
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3×3

⎡⎢⎣XW
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⎤⎥⎦ . (3.4)

However, we need to project image coordinates to world coordinates, meaning that
we need to solve XW and YW from Equation 3.4 when u, v and H are known:

XW (u, v) = H12H23 −H13H22 + H22H33u−H23H32u−H12H33v + H13H32v

H11H22 −H12H21 + H21H32u−H22H31u−H11H32v + H12H31v
(3.5)

YW (u, v) = H11H23 −H13H21 + H21H33u−H23H31u−H11H33v + H13H31v

H11H22 −H12H21 + H21H32u−H22H31u−H11H32v + H12H31v
. (3.6)

The relationships between the world, camera, and image coordinates are illustrated
in Figure 3.3.

 

Image
coordinates

World
coordinates

Camera
coordinates

XWYW

ZW

u

v
y

x
z

Figure 3.3: World coordinates, camera coordinates and image coordinates visualized.
The camera coordinates origin is located in the focal point of the camera.

3.3 Driven area extraction
The first stage of the proposed method is to map the route that the car drives in the
immediate future to the image and extract all pixels close to that route. The driven
area extraction includes the following steps:

1. Transform GNSS poses to ENU frame

2. Transform image coordinates to ENU frame

3. Collect pixels close to the driven route

4. Remove vehicles
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Each of the steps are presented in detail below and the full process is illustrated in
Figure 3.4.

Transform GNSS poses to ENU frame
East-North-Up(ENU) frame mounted on the starting position of the car is chosen as
the global coordinate frame so the image must be converted to this frame. ENU is a
local tangent plane frame that uses a cartesian coordinate system that is mounted to
a reference point on the surface of the earth where the positive x-axis points to the
east, the positive y-axis to the north, and the positive z-axis up. ENU coordinates
are easier to process compared to the latitude-longitude system and the projection
error is small if distances from the origin point are small. GNSS poses are first
converted to cartesian Universal Transverse Mercator (UTM) frame using the utm
python library and then to ENU by subtracting the original position from the UTM
coordinates.

Transform image pixels to ENU-world coordinate frame
In the previous section mapping from image coordinates to the world coordinate
frame is solved. In this mapping, the origin is located in the GNSS receiver location.
However, the mapping from the image to the ENU frame can be easily solved by
multiplying the local world coordinates, with the ENU transformation matrix T ENU

that transforms local world coordinates to the global ENU frame:[︄
XENU(u, v)
YENU(u, v)

]︄
= T ENU

2×2

[︄
XW (u, v)
YW (u, v)

]︄
. (3.7)

Collect points in the driven route
Now the image is projected to ENU coordinates as well as the GNNS poses. The
next step is to collect all poses starting from the moment the image was taken until
the accumulated Euclidian distance between the poses reaches 50 m. This yields a
set of poses that present the vehicle’s route in the immediate future. It is desired
to somehow collect all pixels that are close to this path. Here, a least square error
circle is fitted to the poses with Scipy optimize package [39] and then all pixels closer
than 1m to this circle are collected. A circle provides a good fit for poses both in
straight and curving segments. The output of this process is a mask that is set to
True for pixels that are part of the driven route. The pseudocode for the operation
is presented in Algorithm 1.

Remove vehicles
In some cases, there can be cars in the area where the car drives during the next 50 m.
Cars have to be removed from the mask because it is not desirable to include other
cars in the drivable area. In most data sets bounding boxes for cars are provided
and if not other cars can be detected using an object detection algorithm. In this
thesis, pre-trained Yolo v5 is used [38].
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Algorithm 1 Collect points in the driven route
for imgIndex = 0 to numImgs do ▷ Go through all images

drivenDist← 0 ▷ Set driven distance to zero
i← imgIndex ▷ Set starting index to the current image
while driven < 50 do ▷ Repeat until 50m has been driven

i← i + 1 ▷ Go forward one pose
drivenDist← drivenDist + ||poses[i], poses[i− 1]||2 ▷ Current distance

end while
next50m← poses[imgIndex to i] ▷ Collect poses in the next 50m
xc, yc, r, maxAngle← fitCircle(next50m) ▷ Fit circle to the poses
for u = 0 to imgWidth do ▷ Go through each pixel

for v = 0 to imgHeight do
currentPose← [XENU [u, v], YENU [u, v]] ▷ Current pose
firstPose← poses[imgIndex] ▷ Starting pose
dist← ||[currentPose, [xc, yc]||2 ▷ Distance from circle center point
angle← ∠(currentPose, firstPose) ▷ Angle between poses
if (r − 1) < dist < (r + 1) & angle < maxAngle then

mask[u, v]← True ▷ True if distance and angle condition met
end if

end for
end for
save mask ▷ Save mask for current image

end for
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Figure 3.4: Driven area extraction process.
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3.4 Similarity comparison with Gaussian mixture model
Many real-life properties can be modeled as Gaussian distribution. The usability of
Gaussian distributions is inherited from the central limit theorem which states that
when adding together multiple independent observations of a random variable the
resulting distribution converges into Gaussian distribution [40]. However, sometimes
a single Gaussian distribution can’t model the problem accurately, so a combination
of multiple Gaussian distributions must be used. A combination of multiple Gaussian
distributions is called a Gaussian Mixture Model (GMM)[41]. The density function
f of a GMM is defined as

f =
K∑︂

i=1
ϕiN(µi, Σi), (3.8)

where ϕi is the weight of i:th Gaussian component and N(µi, Σi) is i:th multivariate
Gaussian distribution defined by mean vector µi and covariance matrix Σi.

It is justified to model the road with GMM instead of using one Gaussian
distribution because snowy roads usually have multiple distinctive parts that require
their own Gaussian components, like pure snow-covered parts and clear asphalt parts.
The suitability of GMM is tested with histogram visualization of the image where
the GNSS mask and the rest of the image are separated. Then GMM is fitted to the
GNSS mask to see the correspondence between the histogram and the fitted GMM
model. The result is presented in Figure 3.5.

GPS
mask

Figure 3.5: Distribution of driven area (GPS mask) compared to the rest of the
image and fitted GMM.
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Similarity with single pixel
After modeling the driven area as GMM, another critical task is to find the similarity
between a given image area and the fitted GMM model. Essentially we are looking for
a metric for measuring the distance between a point and a probability distribution. For
this purpose, Mahalanobis distance is well suited. It describes the distance between
a distribution and a point, taking into account both the mean and covariance of the
distribution. Mahalonobis distance is defined as

mahal(x, N(µ, Σ)) =
√︂

(x− µ)T Σ−1(x− µ), (3.9)

where d is the Mahalanobis distance, x is the point vector, S is the covariance
matrix of the distribution and µ is the mean vector of the distribution. Mahalanobis
distance measures the distance between a point and a distribution in N-dimensions.
Here three dimensions are used, one for each color channel (R, G, B). Mahalanobis
distance is separately computed for each component of GMM and multiplied with
the corresponding GMM weight ϕi to formulate a combined distance that represents
the similarity between a given point and the GMM:

D =
K∑︂

i=1
ϕimahal(x, N(µi, Σi)), (3.10)

where D is the combined Mahalanobis distance between point x and GMM consisting
of Gaussian components i = 1...K. However, this metric is not normalized to any
fixed scale. The minimum and maximum values change in each image, which is not
desired for a similarity metric that is used across images. Instead, it is desired to
produce similarity values that are always scaled between 0-1 so that the point with
the highest similarity in each image has a value of 1. This can be achieved by taking
the shortest Mahalonobis distance Dmin and dividing it by each of the distances D
which yields normalized values Dnorm in the range of 0-1:

Dnorm = D

Dmin

. (3.11)

Average similarity with image patch
It can be quite challenging to evaluate similarity based on a single point because
essentially the only available information is the color of the point. To get more
accurate results, a larger sample area is required. One option would be to just divide
the image into square patch samples but this would cause problems in the road
edge areas as the road geometry doesn’t agree with simple square patches. However,
knowledge of the road shape is available in the GNSS mask and it can be utilized
here to form more accurately shaped sample patches. In the same way that the
GNSS mask is computed, we can collect all pixels that belong to a specific strip on
either side of the GNSS mask to form a collection of strips that are of the same
shape as the GNSS mask by redefining the radius parameter. As the GNSS mask
follows the road curvature, the generated patches will also follow the road curvature.
The image is distributed to 0.5m wide segments in the world coordinates based on
the GNSS mask and the average Mahalanobis distance is then computed for these
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segments. A low average distance suggests that the segment is a close match with
the driven area.

3.5 Similarity comparison with self-supervised feature ex-
tractor

Neural networks can extract features from images that are more complex compared to
classic methods. The difficulty is training the network to create meaningful features.
Supervised segmentation networks usually utilize architecture, where images are first
transformed to feature space, and then segmentation labels are defined based on
those features. The working principle can be simplified as first creating meaningful
features for each image area and then grouping areas with similar features together.
However, this approach requires labeled data.

As briefly presented in the state-of-the-art section promising self-supervised
feature extractor architecture (DINO) has been published in [31] and the features
have been found suitable for segmentation (STEGO) in [32]. The results presented
with STEGO are promising but the accuracy has room for improvement. However,
in this study, there are two main advantages compared to that approach:

1. Only the road needs to be segmented. Other classes are not required. This
means all effort can be concentrated on separating road pixels and non-road
pixels.

2. Part of the road is extracted based on the GNSS poses and is available during
training.

In this context, the target is to create labels for road utilizing the GNSS mask. The
approach is similar to the GMM but instead of measuring the distance to the GMM,
the similarity of each image area is evaluated by comparing the DINO features in
the GNSS mask and each image area. DINO is chosen as the feature extractor based
on its performance and it has already been used for segmentation in STEGO.

Arcitechture
First, it is important to understand the architecture and training procedure used for
creating DINO as labels are directly derived from the features produced by DINO.
The backbone of DINO is a Visual Transformer (ViT). Transformers were originally
presented in the context of natural language processing [42]. Transformer takes a
sample text as input and in addition to each word being encoded to a vector, each
word has also positional encoding related to it. This way the model knows the
positional relationship between the words which is crucial when processing natural
language. The positional encoding is used for self-attention: when translating each
word the model can decide which words it should attend to instead of translating
word by word. Thanks to the self-attention mechanism and easily parallelizable
training that enable bigger training datasets transformer set the new state-of-the-art
in translation accuracy. After the success in the language domain, transformers
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have been implemented in the image processing context as well [43, 44, 45] yielding
so-called Visual Transformers (ViT). Visual transformers give positional encoding to
image patches instead of words but otherwise, the architecture is very similar. The
architecture of a Visual Transformer as used in DINO is presented in Figure 3.6.
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Figure 3.6: Visual transformer architecture. DINO only uses the class token value
fed through the projection head during train time but can still produce meaningful
dense features. Visualization inspired by [43].

In ViTs input image is first divided into image patches. Each of these image patches
is projected to a 1D vector by a linear layer. To capture the positional information,
the location of the image patch is also embedded in a 1D vector of the same size as
the patch vector. These two vectors are then summed together to produce a complete
embedding of the image patch. This embedding contains information about both
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the location and content of the image patch. These embeddings are generally called
tokens in the context of transformers Additionally, one extra embedding, called a class
token is added to the sequence. Its embedding is not connected to an image patch
like the other tokens. Instead, its task is to extract general classification information
about the image by attending all the patch tokens as the image is classified just
based on this token. All tokens, including the class token, are fed together to a
series of transformer encoder blocks. In each transformer encoder block, there are
the following operations: Layer norm, Multi-Head Attention, and MLP (Figure 3.7).
The layer norms are just regularization operations and the Multi-Head Attention
and MLP are the parts that are actively learning.

Transformer encoder Multi-Head Attention

Figure 3.7: Arcitechture of a transformer encoder block used in visual transformers.
Adapted from [42, 43].

The Attention block allows the model to attend to all tokens with different weights
to produce a new output token. First, the input is fed through three parallel linear
layers that are independent of each other. This outputs three different mappings
of the input that are called Value(V ), Key(K), and Query(Q) tensors respectively.
Then the V tensor is scaled based on the scaled Dot-Product Attention that is
defined as:

A = softmax(QKT

√
dk

)V , (3.12)

where A is the resulting attention tensor and dk is the dimension of the Q and K
tensor. The idea of the attention mechanism is to compute the new value vector of
each token as a weighted sum of the value vectors of all tokens. The weight for each
value pair is computed by taking the dot product with the query vector and the key
vector, dividing it with scaling factor dk, and finally normalizing with Softmax.
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Here Multi-Head Attention is used which means that there are multiple Attention
heads in parallel. These heads are completely independent of each other so their
advantage over single-head attention is that each head can learn a different mapping
for the Q, K, and V tensors and thus each head can attend to different parts of the
image. This behavior was confirmed by the authors of DINO who discovered that
different heads attended to subparts of an object accurately. The new value vector
from each of the heads is concatenated together and fed through a linear layer to
produce the final output of the Multi-Head Attention module. Finally, the output
of the Multi-Head Attention module is refined by an MLP to produce the output
of the transformer encoder block. There are skip connections around the Attention
module and the MLP inspired by residual networks [23].

Training procedure
When training ViTs with labels the performance has been barely better than with
CNNs and the attention maps are too sparse for segmentation [43]. The major
innovation in the DINO paper is to train these ViTs in a self-supervised manner
which produces good results in classification tasks while retaining spatially accurate
attention maps even though the model is not explicitly trained for that.

DINO training procedure starts by computing two random transformations for
an image and one of them is fed to the teacher network and one of them is fed to
the student network. The teacher and student networks share the same architecture,
where a Visual Transformer (ViT) backbone is combined with a projection head. The
projection head is a simple 3-layer multi-layer perceptron with a hidden layer size of
2048 that is followed by a Euclidian norm and weight normalized fully connected
layer. The projection head takes only the class token of the transformer as its input.

The output of the teacher network is centered by subtracting the mean over the
batch. Centering is followed by temperature softmax. Temperature softmax is an
operation where the output is randomized to a desired degree before feeding it to the
softmax. In practice randomizing can be done by diving the logits with a constant,
the larger the constant the more randomized the output is. If the constant is smaller
than 1 the operation sharpens the output between dimensions and if the constant
is larger than 1 the operation smooths the output between dimensions. In DINO
implementation temperature is set to 0.1 meaning that the output is sharpened
before softmax pushing dimensions further apart. The output of the student network
is not centered but temperature softmax is applied to it. The full training setup is
presented in Figure 3.8.
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Figure 3.8: DINO self-supervised training procedure. The model encourages a dense
understanding by feeding smaller local crops to the student while giving larger crops
to the teacher.

After temperature softmax, cross entropy loss is computed between the student
and the teacher. Backpropagation is only performed on the student network and
gradient flow is prevented to the teacher network. Teacher network weights are
updated by taking the exponential moving average of the student network weights.
Temperature softmax and centering were found to be necessary to avoid collapse.
Centering pushes the network to use more dimensions but at the same creates pressure
to output uniform distribution. This pressure is balanced with temperature softmax
with a low temperature that pushes dimensions further apart from each other. In
addition to augmentations of the same image, the network is given augmentations
of different images, and the loss is increased if similar output is given to different
images. This prevents the model from collapsing to a solution where all images are
given the same output.

Developing dense semantic understanding
The original scope of DINO is to do classification types of tasks where each image
is assigned a single feature vector so DINO can’t be used for segmentation as it
is. However, already in the original publication, the authors of DINO presented
visualizations of the transformer attention maps that were spatially very accurate.
Interestingly the DINO architecture seems to attend to the complete objects instead
of just small parts like supervised classifiers. DINO’s ability to attend to complete
objects is very counter-intuitive because it is trained just for classifications, not for
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an accurate semantic understanding of the image. The authors propose that this
behavior is enabled by the self-supervised training procedure.

Random transformations used in the self-supervised learning procedure are likely
a key aspect for developing semantic understanding. The transformations include
crops and distortions of the image. The teacher is only given global crops that
include more than 50% of the image area, but the student is also given substantially
smaller local crops. To minimize the loss the student must produce the same feature
representation despite only getting a small part of the image. The only way to
do this is to develop a complete understanding of the objects so that the model
knows to produce the same output despite only getting a random subpart of the
object. For example, if the teacher is given an image of a human and the student a
crop of just a hand, a leg, or a head the student should learn to produce the same
output in all of these cases that at the same time agrees with the teacher’s output.
The local-global crop augmentation on its own doesn’t breach the gap between the
classification domain and the segmentation domain. For that purpose, this training
procedure must be combined with a ViT backbone that by definition has a spatial
understanding of the image. It is possible to extract dense information from CNNs
as well but it is more complicated compared to transformers.

Hamilton et al. [32] presented that the dense understanding of DINO doesn’t end
to accurate attention maps, but it also can produce similar features for similar image
areas. The ability to create dense meaningful feature representation of an image
self-supervised is an important finding for segmentation. It enables self-supervised
segmentation by clustering similar features together. The ability to produce similar
features for similar image areas is tested by taking a query point from different parts
of the image and then finding the feature similarity across the image itself and with
one of its nearest neighbors. The result is presented in Figure 3.9. The feature
correspondences for road and roadside areas seem to be quite accurate inside the
image itself and only lose little accuracy when compared to the nearest neighbor.

Figure 3.9: Feature correspondence between DINO features in winter driving scenario.
Each heatmap color represents correspondence with the sample location of the same
color. The plotting tool is adapted from [32].
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Feature correspondences
The Python implementation for the feature extraction with pre-trained DINO is
borrowed from the public source code of STEGO [32]. The pre-trained DINO
backbone is used with the parameters specified in Table 3.1.

Table 3.1: Feature extraction parameters.

Backbone ViT-small
Trainset ImageNet[46]
Patch size 8x8 pixels
Patch feature vector size 1x384
Image input resolution 640x640
Feature space resolution 80x80 (640/8)
Output label resolution 640x640 (interpolated)

The frozen DINO image patch features are extracted after the last transformer block
as illustrated in Figure 3.6. These features are unnormalized as they don’t pass
through the projection head that includes the softmax normalizing like the class token
feature. Because our approach relies on feature correspondences like STEGO, using
the same kind of processing is justified. The feature correspondences are computed
using cosine similarity. Cosine similarity for unnormalized features is defined as

F hwij =
∑︂

c

f chwf cij

∥f chw∥∥f cij∥
, (3.13)

where F hwij is the correspondence between image patch (i, j) and (h, w). f cij and
f chw describe the value for channel c of the image patch feature vector for image
patch (i, j) and (h, w).

The authors of STEGO found that the model’s performance improved when zero
clamping and spatial centering is applied to the feature correspondences. In spatial
centering mean over all image patch correspondences is computed and subtracted
from the feature correspondence tensor:

F SC
hwij = 1

IJ

∑︂
i′j′

F hwi′j′ , (3.14)

where F SC
hwij is the spatially centered feature correspondence and (IJ) is the number

of image patches. In zero clamping all feature vector values that are negative are
set to zero so that all feature vector values are non-negative. Zero clamping can be
expressed as:

F SC,Clamp
hwij = max(0, F SC

hwij), (3.15)

where F SC,Clamp
hwij is the zero clamped feature vector and max takes maximum value

for each element of the vector.
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Similarity with GNSS mask
The feature correspondence describes the similarity between two image patches but it
still needs to be defined what patches should be compared to produce useful results.
A simple solution would be comparing each image area with a single query point
that is sampled from a fixed location in front of the vehicle as there is usually road.
However, the road is a complex area with variations in color and texture so presenting
the whole road with a single feature vector sampled in front of the vehicle is not a
satisfactory method. Additionally in some cases when the vehicle is turning it is
possible that this query point is not part of the road at all, leading to completely
incorrect results.

At this stage the GNSS mask becomes useful. Instead of just computing the
correspondence between a single point in front of the vehicle and each image area,
average correspondence with each image area and the whole GNSS mask is computed
(Figure 3.10). The GNSS mask is likely to contain a good representation of the
features present in the complete road area so any area that is part of the road should
produce high average correspondence. The average GNSS mask correspondence can
be defined as:

F SC,Clamp,GNSS
hw = 1

Nmask
patch

∑︂
i,j∈mask

F SC,Clamp
hwij , (3.16)

where Nmask
patch is the number of image patches in the GNSS mask and the sum is only

calculated over indices (i, j) that are part of the GNSS mask. This correspondence is
finally normalized to range 0-1 by dividing with the maximum correspondence value:

F SC,Clamp,GNSS,norm
hw = F SC,Clamp,GNSS

hw

F SC,Clamp,GNSS
max

(3.17)
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Figure 3.10: Computing average correspondence with GNSS mask. This process is
repeated for each image patch.

3.6 Label evaluation
Labels are autogenerated by comparing similarity with the driven area with point
level GMM, patch level GMM, and DINO self-supervised feature extractor. These
labels are visualized in Figure 3.11. DINO features seem to be more robust than
GMM features. Because DINO uses a visual transformer as its backbone, features
can encode information about their location inside the image in addition to the color
and texture type information. This helps the model filter out areas that have similar
color but locate further away from the road. Based on this test, DINO features are
chosen for the auto-labeling process.
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Image GMM GMM patches DINO

Figure 3.11: Comparison of labels autogenerated with different methods. DINO
feature correspondence is a more robust similarity metric compared to the GMM-
based methods.
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4 Learning from PARAS auto-labels
There is a clear difference between human-annotated ground truth and PARAS
labels that are automatically generated based on the average GNSS mask feature
correspondence. Human-annotated ground truth is binary (road or no road) and in
each frame, all road areas are segmented with little errors. PARAS labels on the
other hand are continuous in the range 0-1, 1 meaning high correspondence with
GNSS mask and 0 meaning low correspondence with GNSS mask and there might
be a significant amount of false positive and false negative areas in each label. False
negative means areas where our model has misclassified a road pixel to not road
class. False positive means areas where the model has misclassified a not road pixel
to road class.

The most prominent challenges here are capturing road areas with differences
in color and texture or spatial location compared to the road in the GNSS mask.
This follows directly from the process of how the PARAS labels are generated: only
similar road areas that are present in the GNSS mask have a high confidence value.
If the GNSS mask is dominated by snow-covered road then correspondence with
clean road areas is low and if the GNSS mask is dominated by mostly clean road
areas, snow-covered road areas will have low correspondence. Because the DINO
featurizer uses a visual transformer as its backbone spatial attention is embedded
into the architecture. This means that the features are not only determined by their
local features, like color and texture but also their location in the image and global
context. In road segmentation, this is in most cases desired behavior as roads have a
distinctive spatially connected structure where areas close to other road areas are
more likely to be road as well. However, in the exception cases like cross-sections
and separated road sections, this leads to large false-negative areas where road areas
have low label values. Example cases for poor PARAS label quality caused by road
color variance and road spatial variance are illustrated in Figures 4.2 and 4.1.

Figure 4.1: Poor detection of the adjacent lane due to different colors.



32

Figure 4.2: Poor detection of the road areas far away from own lane.

There are three major ways to affect the performance of the segmentation, given
the quality of the labels can’t be improved: data augmentation, model architecture,
and loss function. In this section, all of these factors are discussed to develop a
suitable configuration.

4.1 Model architecture
In this thesis, a well-established segmentation model called UNET [47] is used. UNET
architecture is named based on its schematic appearance that resembles the letter
U (Figure 4.3). UNET has two main components: downward pass where image
size decreases and channels increase and upward pass where image size increases
and channels decrease. The downward pass is a series of blocks that include a max-
pooling operation and two convolution operations. In each block, the first convolution
increases the number of channels and the max pooling operation downscales the
image size. The downward blocks are followed by an equal amount of upward blocks
that include an upscaling operation and two convolution operations. Upsampling
can be done with bilinear interpolation or an extra convolutional layer. The first
convolutional layer decreases the number of channels and the upscaling operation
increases the image size. There is also an input block with two convolutions that
maps the image from the input channel size to desired channel size for the first
downward block and an output block with a single convolution that maps the output
channels to the desired number of classes.

Additionally, there is a skip connection at each level connecting the downward
and upward blocks. The skip connection copies the output of the downward block
and concatenates it to the same level upward block skipping all blocks below that
level. This skip connection enables to combine deep contextual knowledge with
high-resolution spatial knowledge to produce high-resolution segmentation labels.
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Figure 4.3: UNET schematic view in the configuration it is used here. The number
of channels is at the top of the tensor and the resolution of the tensor is on the left
side. Inspired by original publication [47].

In our use case, it is desired to have a model that is translationally equivariant
meaning that if an object is translated in the image the output activations will remain
equivalent but they are just translated the same amount. Normal convolutional
layers are translationally equivariant but subsampling operations like pooling and
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striding operations do not necessarily [48, 49]. Ideally, the model should have a
minimal amount of subsampling to retain translational equivariance. UNET includes
subsampling operations that potentially hurt the translational equivariance but it is
compensated with skip connections that feed features that are not as deep but at
the same time also have less sub-sampling applied to them. It is justified to assume
that even though UNET is not perfectly translationally equivariant it is at least very
close to that.

4.2 Data augmentation
Data augmentation is a widely used technique in deep learning where training samples
are augmented before feeding them to the model to increase the generalizability
of the model. Geometric and color transformations and kernel filters are the most
common augmentations in road segmentation tasks. Combination of affine transfor-
mations, perspective transformations, mirroring, cropping, distortions, blur, noise,
and color changes improved segmentation F-score up to 2% with KITTI dataset
[50]. Abderrahim et al. [51] utilized inversion, distortion, rotations, and elastic
transformations when augmenting data for road detection in a satellite image per-
spective. Oliveira et al. [52] used only scaling and color space transformations in
Hue-Saturation-Lightness (HSV) color space. However, the improvements are quite
small compared to classification tasks. Taylor et al. [53] compared the effectiveness
of different data augmentations for classification and cropping was found to have the
highest improvement out of geometric methods (+14%) and color jittering highest
improvement out of color space transformations (+1.5%).

It seems that data augmentation yields only small improvements in segmentation
tasks. Nevertheless, perspective transform, cropping, and color jitter were tested but
none of them improved the performance in our case. The only augmentation used in
the final tests is a random horizontal flip. The probable cause for the ineffectiveness
of augmentations is the large size of the data set and model architecture that is
close to translational equivariance. The main advantage of data augmentation is to
prevent overfitting by artificially generating new samples that are not present in the
raw data. Here the risk of overfitting the shape and location of the road label is the
most critical as the labels have clear spatial bias. However, this risk is not realized
as our model is close to translationally equivariant and it is resilient to spacial bias
by nature.

4.3 Loss function
When choosing a loss function it is important to understand that neural networks
converge towards weights that minimize the loss function expected value for the
whole trainset. Although there are false positive and false negative areas in the
PARAS labels the effect of these errors in training is smaller assuming the errors are
close to randomly distributed across the train set. However, this is a simplification,
and with any real data, the errors in the labels are not randomly distributed which
is the case here also. The PARAS labels are more prone to false negatives than false
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positives and they tend to fail in specific conditions.
There is a selection of well-established loss functions for different purposes that

produce good learning outcomes. The common factor for all loss functions is that the
loss function should decrease when the error between the prediction and ground truth
decreases to provide a meaningful learning signal. The most common loss functions
are Mean Squared Error (MSE) loss and Cross Entropy loss. MSE loss is best suited
for regression problems where the goal is to find a relationship between input and
output variables. Cross Entropy loss is best suited for classification where inputs are
assigned to a set of classes. Cross Entropy loss is the most common loss function
also in segmentation tasks as they can be interpreted as pixel-level classification.

Cross entropy loss is defined as

Lce = −
∑︂

batch

∑︂
pixels

C∑︂
c=1

log
exp(xc)∑︁C

i=1 exp(xi)
yc, (4.1)

where c denotes class, xc denotes predicted logit for class c, xi denotes predicted logit
for class i and yc denotes ground truth probability for class c. In the numerator, the
predicted logit for class c and the ground truth probability for class c are multiplied,
which yields the highest values over all classes when the predicted logits and ground
truth have similar distributions over all classes. The predicted logits x don’t need to
be normalized to the range of 0-1 as there is a normalizing term in the denominator.
Before multiplication logits are divided by the sum of logit values over all classes,
which yields outputs that by definition sum to 1 over all classes.

Generally, the PARAS labels segment too little proportion of the image as a
road, and if just cross-entropy loss is used the model is not encouraged to expand
its predictions outside the PARAS label domain meaning that the predictions will
only include the most certain road areas. To accommodate this issue a balancing
loss term is added that encourages the model to predict a larger proportion of the
image as a road. This loss term is defined as:

Lb = 1−
∑︂

batch

∑︂
pixels

softmax(xbackground) (4.2)

The loss term is the sum of softmax normalized predictions that each pixel is road.
If all pixels are predicted to be road with 100 % certainty this term has a value
of 1. And if all pixels are predicted to not be road with 100 % certainty this term
has a value of 0. The loss term is subtracted from 1 to keep the loss positive in all
conditions to avoid collapse. Otherwise, the total loss could collapse to zero when
the balancing term is equal but negative to the cross entropy loss. Another positive
quality is that the balancing is done over a batch and not over a single image. Thus
the loss will encourage finding the best road pixel candidates over the whole batch
instead of forcing the prediction to be expanded equally in every image.

The total loss is then defined as:

L = Lb + Lce (4.3)

An important note is that there are no tuned parameters in this loss term, unlike
other self-supervised approaches [32], making the training procedure more robust and
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easier to implement. The functionality of this loss term comes from the relationship
between the cross-entropy loss and the balancing loss. The model is encouraged to
increase the predicted probability of a pixel if the balancing term decreases more
than the cross-entropy loss increases. Formally, the balancing term increases the
value of road prediction if −∆Lb > ∆Lce holds for this change.

4.4 Full training procedure
Now the full training procedure can be constructed after suitable data augmentations
(or justified lack of them), and the segmentation model and the loss function have
been defined. The training starts by running the auto-labeling process to produce
labels for the segmentation model. Then UNET is trained with our PARAS labels
using the custom loss function. The full training process is presented in Figure 4.4.

Input image

GNSS maskpseudolabelprediction

UNET

GNSS poses

get
mask

frozen DINO
featurizer

DINO
features

compute
correspondence

with mask

Cross entropy+Custom
balancing loss

Test

PARAS auto-labeling:
run once before

training

Train

Figure 4.4: Our proposed method for self-supervised road segmentation utilizing
GNSS poses and frozen DINO backbone for auto labeling training data.
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5 Results and Discussion
The quantitative and qualitative results of our model are presented here. A detailed
description of the datasets used and benchmarked model implementations are also
included. [54]

5.1 Data sets
The training set and test set used for each of the models when benchmarking are spec-
ified in Table 5.1 and a detailed description for each of the datasets is presented below.

Ours unlabeled
Combination of CADCD winter driving images and our self-collected winter driving
images. Scenes include suburbs, countryside, highways, and intersections. GNSS
poses are available but our model is the only one capable to utilize them.

Ours labeled
Currently, there are no published datasets that are recorded in winter conditions and
include semantic segmentation labels for roads. Thus a random split of 200 images
is separated from our dataset and manually labeled using the MATLAB polygon
labeling tool to allow accurate benchmarking. No shared images with the unlabeled
train set. Test sets of the same size are identical and can be directly compared
against each other. The labels include four different scenes. The driving scenes are
suburb, highway, countryside and intersection(Figure 5.1). Scene definitions enable
comparison between different conditions and finding the strong and weak areas of
the model.

(a) countryside (b) highway (c) intersection (d) suburb

Figure 5.1: Example of a labeled frame from each of the driving scenes used in the
test set.

Cityscapes labeled
The Cityscapes dataset includes 5000 frames with fine semantic annotations and
20 000 frames with coarse semantic annotations. Cityscapes includes 30 classes in
total but only road class predictions are used here. It is mostly recorded in cities in
summer conditions.
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Table 5.1: Dataset used for training and testing for benchmarked models.

Type Model Training set(N images) Test set(N images)
Supervised Cityscapes #3 Cityscapes labeled(25 000) ours labeled(150)

UNET (150) ours labeled(150) ours labeled(35)
UNET (100) ours labeled(100) ours labeled(35)
UNET (50) ours labeled(50) ours labeled(35)
UNET (20) ours labeled(20) ours labeled(35)

Self-supervised STEGO ours unlabeled(33 000) ours labeled(150)
Ours ours unlabeled(33 000) ours labeled(150)

5.2 Implementation
OURS=PARAS+UNET+Custom Loss
Labels are created with the PARAS auto-labeling method and UNET is trained
with these labels using the presented custom loss. Hyperparameters used are Adam
optimizer, batch size of 10 and learning rate of 1e-4. Training is stopped when IoU
with the validation set plateaus. The test score is computed from a separate test set
that the model has never seen, not even in validation, to follow the standard practice
of benchmarking. The validation set includes 50 images and the test set 150 images.
The same test-validation split is used with Cityscapes and STEGO to allow direct
comparison between these models.

STEGO
STEGO is chosen as the state-of-the-art self-supervised benchmark as it utilizes the
same DINO features as our model and its performance is #1 in the COCO benchmark
[55] and #2 in the Cityscapes benchmark [5]. STEGO is first tested with ViT-small
backbone with both 5 and 10 clusters and with and without cropping and CRF post-
processing. The cluster corresponding to the road is extracted for evaluation. Then
the best-performing setup is tested again with a ViT-base backbone. The results for
all of these setups are presented in Table 5.2. The CRF parameters are the same as
presented in the paper: 10 iterations with parameters (a = 4, b = 3, θα = 67, θβ =
3, θγ = 1) and BGRmean = (104.008, 116.669, 122.675) precomputed from ImageNet.
The hyperparameters are the same as used with the Cityscapes data set in the paper
(λrand = 0.9, λknn = 0.58, λself = 1.0, brand = 0.31, bknn = 0.18, bself = 0.46). Training
is stopped when the validation IoU plateaus and the model is then evaluated with
the test set.
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Table 5.2: STEGO parameters study. Best performance is achieved with ViT-small
backbone, with 5 clusters and without cropping and CRF.

Backbone Crop Clusters CRF IoU
ViT-small 10 63.0

✓ 10 62.0
10 ✓ 67.6

✓ 10 ✓ 64.9
5 73.0
5 ✓ 72.8

✓ 5 61.4
✓ 5 ✓ 64.8

ViT-base 5 ✓ 62.4
5 61.6

The best-performing setup is ViT-small-backbone with 5 clusters without crop and
CRF. The same setup with ViT-base-backbone achieves lower performance. Surpris-
ingly the parameters are almost the opposite compared to the optimal parameters
presented in the paper, where cropping, CRF, and ViT-base-backbone all increased
the performance over the baseline. However, the main advantage was increased
segmentation performance of fine details, which is not needed here as the road
usually covers quite large areas. Our parameter study also underlines the importance
of choosing the correct parameters for each use case. Variation between different
parameter combinations is quite large here.

Cityscapes #3
The Cityscapes supervised #3 model [56] is chosen to represent the current state of
the art of supervised traffic scene segmentation as it is easy to implement for images
of arbitrary size and its mIoU for all classes is only 0.7% lower than the #1 model
[19] and the IoU for road class is 0.1 % higher than the #1 model. For reference, it
achieves 85.4 mIoU for all classes and 99.0 IoU for the road class. The model runs
inference on multiple scales and then combines a final prediction from them. The
model backbone is an HRNet with OCR-block.

Pre-trained weights are downloaded for the #3 model that is trained with the
Cityscapes dataset. No modifications are done for the weights or the architecture.
Predictions include all Cityscapes classes but only the road class is extracted for
evaluation with the test set. The validation set is not used here for stopping the
training as the weights are pre-trained.

UNET
The same UNET model architecture and hyperparameters are used here as when
learning from the PARAS labels but cross-entropy loss is used instead of the custom
loss. The idea is to compare the performance between manually created labels and
PARAS labels. UNET is trained with 150,100,50 and 20 manually labeled images.
The validation set is the same 15 images and the test set is the same 35 images for
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all train sizes to enable direct comparison between different train set sizes. As the
supervised UNET models have smaller test sets they can’t be directly compared
to the other models but they still give a good indication of the performance that
supervised methods achieve.

5.3 Quantative results
Our model achieves 1.8% higher IoU than the self-supervised benchmark STEGO and
41.6 % higher IoU than the supervised benchmark trained with Cityscapes summer
data (Table 5.3). This means that our model has the highest IoU out of the methods
that don’t have access to manually labeled winter driving data.

Table 5.3: Benchmarking against supervised and self-supervised models.

Type Model Suburb Highway Country Intersection total
Supervised Cityscapes #3 32.3 36.0 29.3 36.7 33.2

UNET (150) 87.2 89.6 72.4 88.4 83.9
UNET (100) 87.2 89.4 73.2 85.1 83.6
UNET (50) 83.5 86.0 69.2 81.9 79.9
UNET (20) 79.3 78.0 59.8 71.7 72.4

Self-supervised STEGO 73.6 75.4 68.3 73.4 73.0
Ours 75.1 75.1 75.3 72.8 74.8

However, when trained with the manually labeled winter driving data, supervised
models achieve higher IoU, depending on the size of the trainset. The supervised
model trained with 20 images has a lower IoU than our method, but supervised
models trained with 50 or more images have a higher IoU than our model. It should
be noted that even the highest-performing supervised model that is trained with 150
labeled images only achieves an IoU of 83.9 %. For reference, the best-performing
supervised segmentation models in the Cityscapes benchmark achieve 99.0 % IoU for
road class with a dataset of 25 000 images and the best-performing supervised model
trained in winter conditions achieves 95.6 % IoU for road class with a dataset of
1200 images. There is a clear correlation that a larger dataset is required for better
performance.

The current trend in deep learning is to continuously increase the size of the
model to achieve ever-decreasing improvements over the previous state of the art. In
this study, a simple model is chosen on purpose to decrease the risk of overfitting
and lower the required computation. The number of parameters for benchmarked
models are presented in Figure 5.2. Supervised UNETs are only presented with train
set sizes of 20 and 150 for clarity.
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Figure 5.2: Size of the models and achieved IoU. Supervised models are marked with
red color and self-supervised with black color.

Current self-supervised segmentation models utilize frozen self-supervised featur-
izers as their backbone and these kinds of backbones are generally quite large. With
that kind of architecture, there is no way to make the model any smaller than the
backbone. Our approach is to run the featurizer only once through the dataset to
autogenerate labels. In a sense, the knowledge of the large backbone is distilled to
these labels, and then any model can be trained with these labels. In this study,
UNET is used, but any other model could have been chosen. It is likely that a more
advanced segmentation network could achieve higher accuracy than presented here
with UNET, but before all this study is a proof of concept for this kind of training
method.

5.4 Qualitative results
Qualitative evaluation is conducted by presenting predictions from different methods
in each of the driving scenes to allow direct visual comparison. Results are presented
in Figure 5.3. More visual results for specifically our model are presented in Figure
5.4. Based on visual evaluation our model can’t segment areas that are far away or
disconnected from the road where the car currently is driving as accurately as the
supervised methods but otherwise, the performance is quite similar. As presented in
the quantitative results, our model has very stable performance across scenes where
other models have higher variation. This is prominent in the visual results as well.
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Figure 5.3: Qualitative results against benchmarked models. Models are defined in
the horizontal axis and scenes in the vertical axis
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Figure 5.4: More qualitative results for our model.
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The performance of our model can be further evaluated by visualizing the distri-
bution of the false negative and false positive areas in different driving scenes (Figure
5.5). The common factor for all cases is that the road edge areas seem to be hard to
classify correctly. Most of both false positives and false negatives are located close
to the road edge area. Also, false negatives seem to be more common than false
positives, which in a sense is desired behavior as false positives can lead to dangerous
situations in autonomous driving. On the other hand in a pure benchmarking context,
it indicates that the model seems to be unbalanced and it should be encouraged to
expand the predictions even more.

There are also distinguishable differences for each scene. In suburb scenes false
positives are mostly on the road edge areas, which can be partially caused by cases
where sidewalks are classified as road. However, false negatives are more common
and mostly located on the sides close to the vehicle. Interestingly there seem to be
more false positives on the left side and more false positives on the right side. The
hypothesis for this behavior is that data has been collected mostly while driving on
the right side of the road, which means that the GNSS mask includes more samples
from the right lane and the labels have been generated based on the similarity with
the GNSS mask. Highway scenes include very few false positives. The false negatives
are mostly located on the road edge areas where the texture of the highway usually
changes from asphalt to snow-covered and thus they are difficult to detect. The
countryside scene is the only scene where false positives and false negatives are
distributed quite evenly. False positives are mostly located on the road edges like
in other scenes but they are distributed to a larger area. This is mostly caused by
the curvier road profile and unclear road boundary areas. False negatives are mostly
located close to the horizon, where the road is hard to separate from the roadside
areas because there is very little contrast between them. In intersection scenes false
negatives are much more common than false positives. False negatives are located
on the sides of the image and close to the horizon. These areas are hard to capture
by the auto-labeling process as they are usually far away from the GNSS mask.
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Figure 5.5: False negative and false positive distribution for each scene. Red areas
have a high number of false detections and blue areas have a low number of false
detections.
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5.5 Future improvements
None of the benchmarked models achieve the required performance for real au-
tonomous driving applications so the important question is if our model has the
highest potential out of the tested methods to justify further development towards a
more robust version.

Improving a supervised model is very straightforward. First, a more sophisticated
segmentation model can be chosen just like with our model. Secondly, more data can
be labeled. Based on previous work labeling 1000 images and choosing a suitable
segmentation model could yield over 95 % IoU. However, this is only in the exact
conditions where data has been collected. Even small changes from the current
domain most likely cause the performance of the model to drop and more data should
be labeled again from the new domain to retain the performance.

The important factor here is the number of different conditions the labeling has
to be repeated in. In Finland and any other country where there are four seasons,
labeling just summer and winter data most likely is not enough. There are multiple
unique driving conditions present in each of the seasons. And on top of that general
adverse conditions like fog and rain can be present in most of the seasons. In that
context, manual labeling becomes a very challenging and resource-heavy way to
teach the model. On the other hand, self-supervised models can be taught with no
human labeling effort, making them more scalable for different driving conditions.
Any improvements in the self-supervised models automatically apply to any driving
conditions. In that context, self-supervised models have more future potential than
supervised methods and it is justified to keep developing them.

Currently, best-performing self-supervised feature extractor networks use training
procedures where different data augmentations of the same image are pushed to
have similar features, and augmentations of different images are pushed to have
different features. However, there is a gap between the task of creating semantically
meaningful dense features and producing pixel-level semantic segmentation. This
gap is difficult to close, and currently, the most common solutions are clustering and
training a linear projection.

In clustering, features are grouped together based on their feature similarity but
this method comes with many problems. The number of clusters must be decided
beforehand and the segmentation class for each pixel is assigned just based on the
feature similarity. This may lead to behavior, where for example the wheels of all
vehicles are clustered together and the remaining parts of the vehicles are clustered
together, instead of clustering the same types of vehicles together. This kind of
behavior was observed also when training STEGO with winter driving data. The
model wasn’t able to cluster different kinds of road segments together because the
feature representation of the road was so different across different images. It is
obvious that clustering is not a satisfactory method to assign segmentation labels
based on the dense features, but at the moment there are no better ways to do it if
no labels are available.

Another common way to approach the problem is to train a one-layer linear pixel-
level classifier that learns to connect features to a segmentation class. This approach
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has significantly better accuracy but labeled data is required in order to train the linear
classifier, so these kinds of models are not considered fully self-supervised. However,
this is a good way to benchmark the quality of the self-supervised features because
the linear classifier has to classify each pixel only based on the feature vector without
looking at any other information. The best-performing self-supervised dense feature
extractors combined with linear supervised feature classifiers are already getting close
to the traditional completely supervised state-of-the-art in mIoU benchmarks. The
usefulness of such a setup might seem questionable as labeled data is required but
the performance is not quite on bar with the supervised state of the art. However,
there are some undeniable advantages to this kind of approach. First, the model
architecture is very simple as only the pre-trained feature extractor and one linear
layer are required. Second, training this kind of setup for a variety of custom tasks
is extremely fast and requires less data as only the linear layer needs to be trained.

The contribution of this thesis is to present a better way to utilize these self-
supervised features for road segmentation without having access to labels. Essentially
the GNSS information enables to segment the road more accurately than using simple
clustering while no manual labels are required like with the linear projection network.
The different ways to utilize self-supervised features are presented in Figure 5.6.
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Linear
projection

Compare
similarity

Image
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data

dense
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Figure 5.6: Using self-supervised features with clustering, linear projection layer, and
GNSS-based auto-labeling (PARAS).
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There are two main development areas for our model: improving PARAS auto-
labels and improving the segmentation model trained with the PARAS auto-labels.
The auto-labeling process can be improved by selecting a backbone that has the
ability to detect road areas more accurately when compared to the GNSS mask.
One potential backbone choice would be the updated version of DINO, DINOv2.
Additionally, the comparison to the GNSS mask can be done in a more advanced
way. Currently, the comparison is done simply by comparing correspondence with
a GNSS mask inside a single image without knowledge of road representation in
any other image, which leads to underestimated road labels. Alternatively, a bag of
features kind of approach could be implemented, where a larger database of known
road features is constructed from multiple images and then the correspondence of
each image patch is computed against this bag of features. The challenge here is
that the computational complexity increases when each image patch is compared
against a larger database of features.

The second development area is choosing a more advanced segmentation model.
UNET is a quite simple model and it is lacking behind the current state-of-art in
segmentation. It was chosen for this thesis based on its low parameter count and
long history. There are two possible directions to go with the segmentation model.
The first option is to use the same frozen backbone as in the auto-labeling process
and simply train a projection head on top of the backbone. Another option is to
choose a more sophisticated CNN architecture than the traditional UNET. However,
it is important to remember that neural networks learn from data so most likely
improvements in the auto-labeling process have a higher impact than changing the
segmentation model.

It is important to understand that all of these self-supervised methods rely on the
pre-trained feature extractor which brings its own challenges. The self-supervised
training of the dense feature extractor enables the usage of huge datasets which leads
to a model that can generalize to almost any domain. This pre-trained general-purpose
model can then be used in a variety of downstream tasks without modifications.
In practice, this means that the self-supervised dense feature extractor is once
trained with an extensive amount of computing resources and then the pre-trained
model is distributed for further use. For supervised models, the limiting factor is
mostly labeled data, for current self-supervised models the limiting factor is mostly
computing resources.

This leads to a situation where all users have to use the same general-purpose
pre-trained model instead of training a model with different data for different use
cases. This can lead to suboptimal performance in some conditions. While the train
sets are very large with millions and millions of images they still can’t include all
kinds of scenes. In this thesis, the model was found to generalize quite well to winter
driving conditions but even more extreme conditions can be present if the model is
used for example in the forest or mining industry.
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6 Conclusion
Road segmentation is a crucial task for autonomous mobility. Currently best perform-
ing road segmentation models rely on manually labeled data, which makes adaption
to new domains, like winter driving, difficult. Self-supervised feature learning offers
a way to learn image representation, without any labels. The quality of these fea-
tures is very promising but methods to utilize these features in downstream tasks
are still in the early stages. In this thesis, a road segmentation model utilizing
these self-supervised features is presented. The main contributions are the PARAS
auto-labeling process that creates road labels by comparing feature similarity to the
driven area extracted based on GNSS and the custom loss function that enables
better learning from the auto-labels. Training and testing are conducted in winter
conditions to underline the suitability to any domain.

Our proposed method has promising performance and improved the current state
of the art in self-supervised road segmentation in the winter driving domain (74.8 IoU
vs 73.0 IoU). While supervised models trained in the winter domain outperformed
our method, supervised methods trained in the summer domain performed very
poorly when tested in the winter domain, demonstrating the challenges of supervised
models. While state-of-the-art results are presented the full potential of our method
is not explored here. PARAS auto-labeling method can be improved by using a
more advanced method for comparing feature similarity with the driven area. A
bag of features type approach would allow cumulating features from multiple frames
when doing the comparison and could reduce the false negatives in the auto-labeling
process. Additionally, more advanced feature extractors have been published that
would likely increase the accuracy of the auto-labeling process. On the other hand,
the UNET model trained with the PARAS labels, is a very basic segmentation model
and more advanced models are available. Upgrading the segmentation model could
yield improvements in performance. However, auto-labels are imperfect and models
that perform well when trained on manually labeled data might not yield expected
results when trained with auto-labels.

Most importantly, this thesis presents a solution to the scalability problem
of road segmentation. Robust road segmentation models need huge amounts of
data, rendering manual labeling an infeasible method of training application-ready
solutions. Inevitably, the focus of road segmentation research will shift from improving
supervised methods to self-supervised learning and auto-labeling, and foremost, the
results presented in this thesis should encourage further research in this field.
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