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In today’s interconnected world, which contains a massive and rapidly growing
number of devices, it is important to have security measures that detect unex-
pected or unwanted behavior of those devices. Remote attestation – a procedure
for evaluating the software and hardware properties of a remote entity – is one of
those measures. Remote attestation has been used for a long time in Mobile De-
vice Management solutions to assess the security of computers and smartphones.
The rise of the Internet of Things (IoT) introduced a new research direction for
attestation, which involves IoT devices.

The current trend in the academic research of attestation involves a powerful
entity, called “verifier”, attesting and appraising a less powerful entity, called
“attester”. However, academic works have not considered the opposite scenario,
where a resource constrained device needs to evaluate the security of more pow-
erful devices. In addition, these works do not have the notion of a “relying party”
– the entity that receives the attestation results computed by the verifier to de-
termine the trustworthiness of the attester.

There are many scenarios where a resource constrained device might want to
evaluate the trustworthiness of a more powerful device. For example, a sensor or
wearable may need to assess the state of a smartphone before sending data to it,
or a network router may allow only trusted devices to connect to the network.

The aim of this thesis is to design an attestation procedure suitable for con-
strained relying parties. Developing the attestation procedure is done through
analyzing possible attestation result formats found in the industry, benchmarking
the suitable formats, proposing and formally analyzing an attestation protocol
for constrained relying parties, and implementing a prototype of a constrained
relying party.
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coding, serialization, attestation protocol, relying party, con-
strained devices, benchmark
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Chapter 1

Introduction

The Internet has become a tool for exchanging information between numerous
and different types of devices. Studying how to protect this information
exchange and to ensure that the information originated from a trusted source
is of paramount importance. Information protection is not the only factor to
be considered. The source generating the information must also be trusted.
Platform security is concerned with ensuring that the computing platform
(both hardware and software) is secure and behaving as expected [30].

One method to evaluate the security of a platform is remote attesta-
tion. Remote attestation is a procedure that allows the evaluation of some
properties or behavior of a device. Those properties or behavior can be key
possession, loaded code in memory, running processes or any other appli-
cation dependent metric. Attestation has been used in various applications
in both industry and academia. Large device manufacturers like Microsoft,
Google, Apple, and Huawei use attestation to evaluate the security of devices.
Their solutions enable evaluating the state of the devices that request online
services, so that outdated or compromised devices cannot misuse resources.

Meanwhile, remote attestation has gained popularity in academia due to
the rise of the Internet of Things (IoT). IoT devices tend to have limited
capabilities and are deployed on a large scale. Academic research has so far
focused on how remote attestation can be used to efficiently evaluate the
security of those small IoT devices.

Remote attestation architectures generally comprise of three main active
entities. The attester, the relying party, and the verifier. The attester, some-
times referred to as the prover, is the entity that needs to be evaluated. It
can be a small IoT device, a smartphone or a laptop. The relying party is an
entity that needs to know the state of the attester either to grant the attester
access to some resource or to ensure that the environment has not been com-
promised. The third active entity is the verifier which performs the actual
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CHAPTER 1. INTRODUCTION 9

evaluation of the attester and relies the information to the relying party. The
current literature focuses on the interaction between the attester and verifier
and completely abstracts the notion of the relying party. Furthermore, the
research focuses on the scenarios where the verifier is a powerful device and
the attester is a small device.

The aim of this thesis is to bridge the research gap in attestation for
constrained relying parties. The entity that performs the evaluation is not
necessary the entity that needs the evaluation. The distinction between these
roles has not been thoroughly studied in the literature. Furthermore, no
attestation schemes have been proposed for scenarios where the relying party
is a constrained device. Such scenarios are frequently occurring especially in
devices like sensors or wearables that might need to authenticate a device
before sending information to it.

The constrained relying parties this thesis studies conform to the defini-
tion of constrained nodes provided by the Internet Engineering Task Force
(IETF). The IETF classifies constrained nodes into three classes [16]:

• Class 0: very constrained devices that cannot communication directly
with the Internet and has less than 10 KiB of RAM and less than 100
KiB of flash (code).

• Class 1: constrained devices that can only use protocol stacks specifi-
cally designed for constrained nodes. Those nodes have approximately
10 KiB of RAM and 100 KiB of flash.

• Class 2: less constrained devices that are able to support the same
protocol stacks used in more powerful devices. They tend to have 50
KiB of RAM and 250 KiB of flash.

Creating attestation applications for these device classes especially class 0
and class 1 is a challenge. The relying party applications need to at least
verify that the results it received came from a trusted verifier, decode the
attestation results, and process the content of the results. The purpose of this
thesis is to study and present remote attestation schemes that will allow even
class 0 devices acting as relying parties to benefit from remote attestation.

1.1 Thesis Context

This thesis is done as part of Erasmus Mundus Joint Master’s program SEC-
CLO (Security and Cloud Computing) in collaboration between Aalto Uni-
versity in Finland and Denmark Technical University (DTU) in Denmark.
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The thesis is also done during an internship in Huawei’s Helsinki System
Security Lab (HSSL) which is part of Huawei’s Finland Research Center.
The center has been working on the security of consumer devices for more
than a decade and has contributed to developing hardware-assisted trusted
environments.

This thesis is done as part of the HSSL’s research of remote attestation
for consumer devices. The target of this project is to analyze and develop
attestation applications that can be deployed on Huawei’s open-source op-
erating system OpenHarmony. The operating system uses component-based
design that enables flexible integration of different components depending
on a device’s hardware capabilities [40]. The thesis focuses on attestation
applications that work on the Mini device class. Devices that belong to this
class have micro controller units and memory in the order of kilobytes.

1.2 Problem Statement

The study of attestation results produced by the verifier is an underdeveloped
area.

1. An impartial evaluation of the strengths and weaknesses of the formats
that can encode attestation results is missing. The attestation result
format is an important area to investigate as the attestation results
message size has a direct impact on the device’s buffer capacity and
transmission bandwidth. These resources cannot be taken for granted
in devices like that of class 0.

2. The attestation results need to be protected when communicated be-
tween the verifier and relying party. There is a gap in the research that
relates to attestation schemes for constrained relying parties. Most
proposed attestation protocols utilize public-key cryptography for in-
tegrity and authentication. However, a typical public-key cryptogra-
phy implementation consumes more resources compared to symmetric
cryptography implementation: not only tens of kilobytes of code in the
memory, but also more processing power, and more energy [39].

Therefore, there is a need to present an attestation solution that protects
attestation results in an efficient manner using symmetric cryptography.

The problem this thesis targets can be expressed as follows: Can small
devices benefit from remote attestation to assess the security of
more powerful devices. Attestation is a wide topic with multiple princi-
ples working together. In order to determine whether a small device can make
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use of attestation those different principles must be studied in the context of
constrained relying parties. The problem statement can be further divided
into research questions that tackle the suitable representation and encoding
of attestation results as well as how the attestation results can be protected
in a constrained environment. The research questions are as follows:

• RQ1: What are the important features that should be present when
encoding attestation results and what are the existing encoding formats
that have those features?

• RQ2: What is the most suitable attestation results format in a con-
strained environment?

• RQ3: Are there existing attestation protocols designed for constrained
relying parties?

• RQ4: How can a remote attestation protocol be resource efficient while
meeting the security requirements needed in an attestation solution?

• RQ5: Are the proposed solutions ensured to work in a constrained
environment?

1.3 Project Scope

This thesis is concerned with the analysis of attestation result formats and
the communication of those attestation results to a constrained relying party.
The attester’s metric collection mechanisms as well as the verification mech-
anisms are out of the scope of this thesis.

1.4 Contributions

The contributions of this thesis can be summarized as follows:

• C1: Provide an impartial evaluation of the strength and weaknesses of
available formats for encoding attestation results.

• C2: Implement and benchmark the encoding formats to determine the
most suitable one for a constrained relying party.

• C3: Survey remote attestation protocols designed for constrained re-
lying parties.
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• C4: Propose and formally verify a new attestation protocol for con-
strained relying parties based on symmetric cryptography.

• C5: Implement a remote attestation solution that combines the attes-
tation result format encoding with the symmetric cryptography-based
attestation protocol.

Some of the results of this thesis work have been published:

• The paper ”Platform Attestation in Consumer Devices” [62] submitted
to the 2023 33rd Conference of Open Innovations Association (FRUCT)
includes attestation result discussions from this work.

• A patent application ”Apparatus and Method for Remote Attestation
Using Symmetric Keys PCT/EP2023/066367” where the author is a
co-inventor has been filed. The patent is a variant of the protocol
described in this thesis.

Furthermore, a paper presenting the novel symmetric encryption-based at-
testation protocol for constrained relying parties will be submitted to the
NordSec 2023 conference.

1.5 Thesis Structure

• Chapter 2

This chapter explains the concepts and terms required to understand
the thesis. It gives an overview of attestation from how it is currently
used in the industry, the actors in an attestation procedure, then it
narrows down the discussion to attestation results. It also discusses
the encoding formats available in the industry.

• Chapter 3

This chapter provides an impartial analysis of the strength and weak-
nesses of possible encoding formats for attestation results. It answers
RQ1 and provide all the content relevant to achieving C1.

• Chapter 4

This chapter describes an implementation for a subset of the formats
surveyed in chapter 3. The subset consists of those formats that were
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deemed suitable for constrained environments. The implementations
are also benchmarked in terms of message size, encoding speed, de-
coding speed and memory footprint to determine which is the most
suitable format for constrained devices. The work in this chapter is
relevant to C2 and answers RQ2.

• Chapter 5

This chapter proposes a symmetric encryption-based attestation pro-
tocol specifically designed for constrained relying parties. The protocol
is initially proposed by HSSL and was modelled and improved as part
of this thesis work. In addition, the chapter analyzes the importance
and novelty of the protocol by surveying similar attestation protocols
in the literature. The work in this chapter is relevant to contributions
C3 and C4 and answers RQ3 and RQ4.

• Chapter 6

This chapter provides an implementation that combines the work done
in chapter 4 and 5. The purpose to highlight the feasibility of having
an attestation application running on a constrained relying party. The
work in this chapter is related to C6 and answers RQ6.

• Chapter 7

This chapter analyzes the results and the work of the entire thesis
and gives an explicit answer to the main problem this thesis is trying
to solve.

Figure 1.1 summarizes the relation between the contributions and chap-
ters and shows where each research question is answered.
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Chapter 2

Background

Attestation has been studied and investigated since the early 2000s [80]. The
first attestation methods were based on the Trusted Platform Module1 [77],
specified by the Trusted Computing Group [35] to attest boot-time identi-
ties of system software. It has gained popularity in various other applications
like Mobile Device Management (MDM) and Internet of Things (IoT). MDM
solutions use attestation to validate the state of a mobile devices based on in-
formation like the current version of the device’s operating system or whether
a device has been rooted.

Many organizations are using attestation in MDM to implement the zero-
trust security model [72]. Zero-trust in the context of MDM means that de-
vices should not be trusted simply because they belong to a particular vendor
or are part of the organization’s network. Instead, the devices are constantly
evaluated and granted access to resources on a least-privilege per-request
basis. The device’s state is evaluated based on policies that are constantly
developed, maintained and enforced [72]. Attestation is then found beneficial
in MDM as it provides a way to evaluate a device’s trustworthiness based on
the specified policies.

There is a large number of vendors that use remote attestation in their
MDM solutions [62]. Microsoft provides an attestation framework called
Device Health Attestation (MS-DHA) [58] that is used to assess the boot
state of Windows devices. MS-DHA can be used in any device that supports
the TPM and HTTPS connections. In addition, it enables devices to report
their security configuration in a tamper-resistant way. The state is later
evaluated by the MDM server to determine whether the device is compliant
or not.

1The TPM is a hardware chip with a cryptographic processor, volatile and non-volatile
memory. It allows the device it is embedded in to provide data sealing, integrity checks
[82], measurement reports, and attestation evidence.
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CHAPTER 2. BACKGROUND 16

Apple also provides its own framework called Managed Device Attestation
[7] for evaluating the security properties of Apple devices. Before enrolling to
an MDM, an organization’s certificate authority can request an attestation of
the enrolling device’s properties to ensure the device’s integrity. In addition,
the MDA framework is also used by the MDM to acquire fresh attestation
results after the initial certificate enrollment phase. Google also provides
an attestation service called Play Integrity [33] to test the authenticity of
an application, the phone using the application, or both. Play Integrity
provides information on the application’s certificate, whether the device is
able to enforce application integrity and whether the user has a licensed and
authentic version of the application. As another example, Huawei provides
an attestation service called SysIntegrity [41] that evaluates the integrity of
the devices in the Trusted Execution Environment (TEE).

These attestation frameworks are just a few examples of attestation being
used in practice. Remote attestation of Internet of Things (IoT) devices has
also been studied in the academic literature. The incorporation of small
devices in IoT environments led to an increase in the attack surface as any
vulnerable device with access to a system can be the infiltration point for
attackers [4]. Therefore, RA has gained more interest as a way to help
detect compromised devices in IoT networks. As a result of the increasing
popularity of attestation, standardization efforts for attestation terminology,
requirements, and architecture are being pursued to accommodate the diverse
range of attestation applications found in both industry and research. A set
of IETF RFCs for Remote ATtestation procedureS (RATS) [12] provides the
conceptual framework and terminology that will be used in this thesis.

The remainder of this chapter describes all the concepts used throughout
the thesis. It explains the goals and mechanisms of attestation, gives an
example of an attestation results object, and discusses encoding formats that
can be used to represent the attestation result object.

2.1 Attestation in Practice

Aside from MDM and mobile security solutions, there are numerous other
applications [12] where remote attestation would facilitate the verification
process and protect systems from attacks. For example, network operators
might only want to grant full network access to devices that meet some
definition of ”hygiene”. Therefore, they would need to get information about
the state of the devices and verify the validity of this information. Hence,
RA can be used in order to prevent vulnerable or compromised devices from
entering the network. In this scenario, the attester is any kind of device
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that wants to connect to the network and the relying party might be, for
example, a router or access point that grants access to the network. Trusted
Network Connect [85] is an example of such a network framework. It allows
the administrators of a network to set policies. Based on those policies access
to the network can be granted or denied.

Attestation can also be used in Hardware Watchdog implementations.
There is a class of malware that holds devices hostage and disables them
from updating. One solution to this malware is to implement a watchdog in
a protected environment like a Trusted Platform Module [34]. If this watch-
dog timer does not receive regular and fresh attestation results that contain
information about the state of the device, then it can force a reboot. The
attester in this scenario is any device that needs to be prevented from being
a victim to such a malware. The relying party in this scenario is a watchdog
that has the ability to reboot devices into a known operational state. The
authors in [45] proposed a network node that provides network resilience, a
feature useful in industrial IoT. This node utilizes security measures like re-
mote attestation and hardware watchdogs to monitor the state of the network
while reducing the downtime of production systems. The node contains an
authenticated watchdog that is able to reset the system in case of an attack.
Remote attestation is then used to report the firmware state to the Security
Operations Center (SOC). If the authenticated watchdog does not receive a
signed digest from the SOC in a certain period of time, the watchdog forces
a network reboot.

A small IoT device like a sensor or a wearable also needs to verify the
trustworthiness of the device it is transmitting the data to. One example
of such small devices is a medical implant like a pacemaker or insulin pump
that requires secure communication to a patient or doctor’s device. Remote
attestation can be used in these scenarios to validate the integrity of the
device the medical implants are sending information to. An example of an
attester in this case is a mobile phone and the sensor/implant is the relying
party. This use case is more related to the scope of this thesis where the
relying party is a resource-constrained device.

2.2 Attestation

Attestation is the process of verifying that an entity (called attester) is in
an intended operating state before authorizing it to perform an action or to
access a resource. To this end, the attester provides evidence that proves its
trustworthiness to another entity called the relying party [63]. This evidence
consists of a cryptographically protected set of claims about the attester and
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its environment. The relying party uses those claims to judge whether the
attester is secure or not. The collection process of the claims sent by the
target attester is done in a manner that is reliable such that the attester is
not able to lie about its trustworthiness properties. Section 2.2.1 explains
the different entities involved in the attestation procedure.

The end goal of attestation is to allow the relying party to decide whether
to trust the attestation target or not. Trust is the choice the system makes
about the attestation target. On the other hand, trustworthiness is the
quality that the system measures to determine whether to trust the target
[12]. Section 2.3 discusses in detail the parameters and notions that are used
to represent trustworthiness of a device.

Based on this notion of trust and trustworthiness, it can be considered
safe to trust a device/entity if the following conditions are met [56]:

1. The entity can be unambiguously identified. Which means that based
on the provided identification, the attestation system can know exactly
which entity it is communicating with.

2. The entity operates unhindered. Which means that there is nothing
that stops or influences the expected behavior of the entity.

3. The system has first-hand information that the entity is displaying
consistent and good behavior or it trusts someone that affirms the
entity’s good behavior.

All of these conditions are necessary in the attestation procedure in order
to establish trust.

2.2.1 Attestation Participants and Artifacts

The RATS architecture [12] provides a standard terminology that can be
applied to existing and emerging remote attestation procedures. These stan-
dard terms help unify the current and future research by defining standard
roles and actions. The actors in a RATS architecture are said to ”consume”
and ”produce” artifacts. Those actors can be divided into administrators
who set policies and devices/entities who use these policies in the attestation
protocol. The administrators set the rules based on which the other enti-
ties are able to prove and verify an attester’s trustworthiness. The overall
interaction between the different roles can be found in figure 2.1.

The attester is usually part of the target device that requires access to
some resource or action. It produces evidence about its operating state to
be appraised. The evidence may include configuration data, measurements,
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or inferences. The attester needs to have a trustworthy mechanism [62] that
collects claims for the verifier to validate. Some literature use the terms
attester and attestee to distinguish between the entity that is measuring and
generating the evidence (attester) and the entity that is measured (attestee).
Generally, the attester is implemented in a way that can be trusted where the
implementation relies on some hardware component or isolation mechanism.
There are generally three different categories of attesters that are able to
create evidence in a trusted manner. Those types use different mechanisms
to fulfil requirements 1-2 found in section 2.2. The three categories are:

1. Secure co-processors: these are hardware components separated from
the device’s CPU. There are many examples of such processors includ-
ing Hardware Security Modules (HSM) which are traditionally used
for key management and Trusted Platform Modules (TPMs) which are
used to assess the integrity of devices during boot [38]. These modules
are generally very restricted and cannot run arbitrary code. There are
other secure processors like Memory Encryption Engine (MEE) [37]
and Apple’s Secure Enclave Processor (SEP) [5] that can run custom
operating systems but typically only execute manufacturer-provided
code. Co-processors offer the most secure form for implementing at-
testation mechanisms as it requires physical access to device to break
such systems.

2. Processor secure environments: these utilize the secure mode of a de-
vices CPU or use some isolation techniques to protect the attester
from the rest of the system. This category can be further divided
into Process-based, VM-based and Split-world architectures. In the
process-based architecture, the attester is an individual process whose
runtime memory is encrypted such that no other process can read or
decrypt it. One example of such a category is SGX 2. While in VM-
based architectures, the attester is running on a guest virtual machine
isolated from the rest of the system. One example of such an Attester
type is Intel’s TDX 3. Finally, in Split-world architecture, a devices
hardware and software resources can be split between secure and non-
secure world. An example of such an architecture is ARM’s TrustZone.

3. Software-based: these are software applications that perform attesta-

2Intel’s Software Guard Extensions (SGX) is a set of processor extensions that enables
application isolation [76].

3Intel’s Trust Domains Extensions is a technology that helps deploy hardware-isolated
virtual machines. It is usually used by cloud tenants to secure their data from cloud
providers [44].
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tion by relying on some features in how the device and operating system
is loaded. For example, temporally isolated software attesters in the
bootloader can perform attestation before the rest of the system is
launched. Another example is software attesters that are isolated by
the devices privilege rings where the kernel running in ring 0 can attest
user processes running in ring 3.

These categories of attesters help guarantee that the evidence and claims
extracted can be trusted since the attester collecting and measuring evidence
is running in an isolated and tamper-resistant space. In addition, the keys
used for encryption and hashing help prove the attester’s identity.

The verifier is an entity that appraises the evidence produced by the
attester. It assesses the trustworthiness of the attester based on the rules
provided by the administrators. The rules include the appraisal policy for
evidence which is provided by the verifier owner administrator and is used
by the verifier to determine the validity of the evidence provided by the at-
tester. The verifier may also consult a secure statement called endorsement
that vouches for the capabilities of the attester. This Endorsement is pro-
vided by an endorser. In addition, the verifier also consults the reference
values produced by the reference value provider. Both the endorser and
the reference value provider are typically vendors.

One major difference between endorsements and reference values is that
an endorsement is a statement provided by a vendor that vouches for the
attester’s integrity. While the reference values are a set of expected measure-
ments that are used by the verifier to compare evidence. One example of an
endorsement is a manufacturer certificate that signs a public key whose pri-
vate key is only known to a device’s hardware. Therefore, the manufacturer
is guaranteeing that any message signed by that device’s private key is done
by the device’s signing capabilities in the hardware [84]. On the other hand,
reference values are the expected measurements or results that are provided
by e.g. the vendor. For example, they might include version numbers of oper-
ating system and bootloader, list of trusted certificates, trusted temperature
ranges, and trusted power supply characteristics. The verifier can then cross-
reference the claims collected in the evidence with these known acceptable
values. Based on the evidence, appraisal policy for evidence, endorsement,
and reference values artifacts, the verifier creates the attestation results.

The attestation results contain information about the attestee and
whether the verifier vouches for the trustworthiness of the attestee or not.
The relying party consults the appraisal policy for attestation results
which is a set of rules that guide the relying party on how to validate the at-
testation results produced by the verifier. Based on this appraisal policy and
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the values in the attestation results, the relying party determines whether it
can reliably grant application-specific resources to the attestee. It is assumed
that attestation architectures or protocols provide means of authentication
for the relying party, verifier and the different vendors and manufacturers.

Figure 2.1: Remote Attestation architecture according to the RATS RFC

2.2.2 Data Flow

The RATS architecture specifies two generic models that describe the data
flows during attestation. These data flow models include the Background
Check and Passport models. The choice of model to use is dependent on the
kind of system or environment RA is deployed in. In addition, these models
are just examples on possible ways the relying party, attester, and verifier can
communicate. Other interaction patterns also exist. For example, MS-DHA
protocol is a combination of the two models presented here.

2.2.2.1 Background Check Model

In the background check reference model, shown in figure 2.2a, the attester
sends the evidence directly to the relying party. In turn, the relying party for-
wards it to the verifier. It is analogous to an employer running a background
check on its new employee before allowing the employee to start working in
the company. The verifier attests the claims found in the evidence and com-
pares the values to its appraisal policy. Based on the appraisal policy and
claims, the verifier creates its verdict and adds it to the attestation results
along with any other information required by the relying party. Finally, the
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(a) Background-check Model (b) Passport Model

Figure 2.2: Data flow models

verifier sends the attestation result to the relying party. This model might
not be suitable for constrained relying party as it involves conducting two
separate sessions with the attester and verifier.

2.2.2.2 Passport Model

Similar to the physical passport that is carried by citizens in order to be
granted access to countries, the attester carries the attestation results pro-
duced by the verifier. The attester might not be able to understand the
attestation results; it stores and forwards it to the relying party whenever
the results are requested. The attester is also able to forward the cached at-
testation results to several relying parties. This model is suitable for resource-
constrained relying parties as the relying party only communicates with the
attester. Figure 2.2b illustrates the communication taking place between the
attestation entities in the passport model. In real-world applications, the
results include a timestamp and/or nonce that makes the results valid only
for a certain period of time. If the results are older than this duration, the
attester should produce a fresh set of claims and request new attestation
results from the verifier.

2.3 Attestation Results

As discussed in 2.2.1, attestation results are consumed by the relying party
and used to decide whether the attester can be authorized to conduct the
requested action or not. The verifier produces the attestation results after
appraising the evidence collected by the attester. The attestation results
should be in a format that the relying party can understand.
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According to RATS and Trusted Computing Group (TCG), attestation
results cn be defined defined as:

• “the output generated by a Verifier, typically including information
about an Attester, where the Verifier vouches for the validity of the
results”. (RATS RFC [12])

• “messages containing the results of attestation Evidence appraisals. At-
testation Results may contain Claims or other application specific As-
sertions meaningful to the Relying Party. Attestation Results are au-
thenticated and integrity and confidentiality protected by the Verifier.
Attestation Results from a Verifier are presumed to comply with Ver-
ifier Owner policies. Consequently, Attestation Results are actionable
values in the context of the Relying Party.” ( TCG [36])

These definitions essentially view attestation results as the verifier’s assess-
ment of the claims sent by the attesters.

By default, the relying party assumes that the attester, more specifically
the attestee, is untrustworthy. The relying party needs to receive positive
attestation results from the verifier and compare the attestation results to
its own appraisal policy in order to decide the attester’s trustworthiness. In
contrast to attestation evidence, the information in the attestation results
is more abstract, and does not depend so much on device or vendor-specific
details. Therefore, it is easier to standardize. The relying party can have
a simpler and interoperable appraisal policy based on a standardized attes-
tation result format. One other difference between evidence and attestation
results is that the evidence is signed by the attester (device). Whereas the
attestation results are signed by the verifier. Hence, the relying party needs
to establish a trust relationship only with a single verifier rather than a large
set of attester entities.

The standardization efforts for attestation results the relying party to
interact with many types of attesters without having to adapt to vendor-
specific syntax [84]. The information found in the attestation results are
independent of the constraints imposed by the different relying parties as
the structure and type of information is already known.

The minimum amount of information the relying party needs from the
attestation results is non-repudiable identity evidence, trustworthiness claims
and claim freshness [84]. TThe attestation results should contain the identity
of the attester or the identity of the verifier that vouches for the attester’s
identity. These identities should be non-repudiable meaning that the attester
and verifier cannot deny having this identity. Non-repudiable identity is
generally achieved by public-key cryptography where the private key acts
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as the device’s identity. Attestations results should also contain the claims
the verifier has appraised. Those include what the verifier’s verdict is about
the attester evidence. Finally, the attestation results should also include a
measure of freshness where the relying party can know how old the attestation
results are and whether it should request newer results. The following section
provides more details about each of those three concepts.

2.3.1 Non-repudiable Identity

As a minimum requirement to satisfy non-repudiable identity, the relying
party must be able to identify the verifier. The attester identity may then
be verified through signed and encrypted communication with the verifier or
using pre-provisioned attester public keys. In most cases, the relying party
would need to verify the identity of both the verifier and attester to meet
the non-repudiable identity requirement. Since the verifier is assumed to be
trusted, its identity must have been provisioned by a trusted operator. As
for the attester, the evidence is tied to the identity of the attester which is
evaluated by the verifier. Therefore, the verifier includes sufficient identity
evidence of the attester it has appraised before signing the attestation results.
These two pieces of identity evidence are the bare minimum to meet the
non-repudiable identity requirement. Other use cases might require evidence
about how the initial trust with the verifier was established [84].

2.3.2 Trustworthiness Claims

The second piece of information that should be in the attestation result is the
trustworthiness claims. These are conclusions the verifier reaches based on
the evidence the attester produces. In other words, trustworthiness claims
are the verifier’s verdict of the attester evidence. The terminology might
differ from one application to another. For example, in Google’s Play In-
tegrity attestation service, the verifier sends an “integrity verdict” about
the application. The verdict acknowledges whether an application is rec-
ognized by Play Store and whether the device meets the integrity checks
defined by Google, but it does not give much details about the state of the
application or device [33]. There are other similar application-specific imple-
mentations for attestation frameworks. They all provide the relying party
an assessment of the attester being attested. In some situations, a single
value (trusted/not trusted) might be the only requirement needed from the
trustworthiness claims. The more information the verifier provides about its
decision the better, since it allows the relying party to know in which way
an attester has been compromised.
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2.3.3 Claim Freshness

In addition to a non-repudiation identity proof and verifier verdict, the re-
lying party should know when the attestation results were issued by the
verifier. There are two notions of attestation result freshness that need to
be considered. The first relates to when the attestation results were created
and the second relates to whether the relying party has seen the exact attes-
tation result from a previous session. Timestamps are usually added in the
attestation result to satisfy the first notion. The second notion targets situ-
ations where an attacker might replay an unexpired attestation result to the
relying party. Nonces are generally used to mitigate these kinds of attacks
as they are used only once so the relying party knows that the results are
not replayed.

Some attestation implementations require the use of timestamps and have
the nonces as an optional field. One example is Apple’s MDA [7] solution
which allows setting a nonce in the attestation request only once every seven
days to limit the amount of resources required to generate and verify attesta-
tion claims and results. The EAR RFC [26] also has the nonce as an optional
field while the issued at parameter as a mandatory one. The notion of fresh-
ness varies from one application to the other but it is generally recommended
to use nonces for security purposes.

2.4 Attestation Software - Veraison

The verifier performs the complex task of comparing evidence against refer-
ence values and checking cryptographic signatures. The complexity arises,
in part, because the evidence is highly dependent on the attester which can
be any entity in the deployed system. In addition, in order to obtain the
reference values, business relationships with authoritative sources need to be
established [9]. The different deployments and authorities complicate the
process of developing a consistent and standard attestation system. The
open-source project Veraison [9] aims to solve that problem by creating com-
ponents that abstract the verification and provisioning pipelines.

Veraison builds the software components that are used in Attestation Ver-
ification Services. The software implements the core structure for verification
and provisioning. Specific attestation technologies are then incorporated with
the use of plugins.

The Verification architecture in Veraison is presented in figure 2.3. In
Veraison terminology, The verifier receives a token (data from attester) which
is sent to the Veraison Trusted Services (VTS). The VTS then parses the
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token in order to create the Evidence. Then, the Verifier checks the Policies
that have been registered for this particular attestation scheme and appraises
the attestation results. Veraison also has a library that implements the EAR
[26] RFC draft for attestation results. This library will be used as a guide
when implementing and comparing the different attestation results encoding
formats.

Figure 2.3: Veraison verification architecture. Image is taken from Veraison
documentation [9].

2.5 EAR Message Format

The attestation results that are being studied and encoded in this thesis are
based on the Entity attestation token Attestation Result (EAR) RFC draft
[26]. These results are more generic and the claims are designed to allow
a broad range of attesters, verifiers and relying parties to understand each
other. EAR includes a trust tier assigned by the verifier. The trust tier is
the status of an attester claim that a verifier deduces. The possible values
for the trust tier are summarized in table 2.1.The trust tier is encoded in
8-bit integers in order to simplify the processing done by the relying party.
The range of integers for each tier is given in table 2.1.

In addition to the overall status of the attestation, the EAR object also
includes trustworthiness claims. These claims correspond to the trustwor-
thiness claims concept discussed in section 2.3.2. They are designed to en-
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Trust Tier Definition Values

None
The verifier makes
no assertions regarding
this aspect of trustworthiness

0: insufficient evidence
1: Unexpected values in
evidence
-1: verifier malfunction

Affirming
The verifier affirms
that the attester supports
this aspect of trustworthiness

2 to 31: standard reason
for affirming
-2 to -32: nonstandard
reason

Warning
The verifier warns about
this aspect of trustworthiness
in the attester

32 to 95: standard reason
for warning
-33 to -96: nonstandard
reason

Contrain-
dicated

The verifier explicitly asserts
that the attester is untrustwo-
rthy regarding this aspect

96 to 127: standard reason
for contraindication
-97 to -128: nonstandard
reason

Table 2.1: Possible trust tiers in attestation results

compass various systems in the attester from the attester’s identity to the
attester’s file system. Each attestation claim is represented as an integer (the
trust tier) and this integer value represents the verifier’s verdict of the claim.
For example, the number assigned to the claim can mean verifier malfunc-
tion, successful cryptographic validation or failed cryptographic validation.
More details can be found in the EAR RFC [84]. The different claims the
verifier may appraises include:

1. Configuration

2. Executables (runtime files, scripts, or other objects that are loaded into
the Target environment’s memory)

3. File-system

4. Hardware

5. Instance-identity (the attester’s unique identity based on public key
cryptography)

6. Runtime-opaque (the visibility of attester environments from the per-
spectives of outside party. This claim is to ensure that no unauthorized



CHAPTER 2. BACKGROUND 28

party is able to read or manipulate the attester’s trusted execution en-
vironment(s).)

7. Sourced-data (the integrity of objects in external systems that are used
by the attester, these include any metrics the attester has collected
about the target environment or received from other attesters)

8. Storage-opaque (the attester’s ability to encrypt persistent storage)

The minimum information required to adhere to the EAR format include
the EAT profile (version of claims set and encoding used), issued at time,
verifier identification, and at least one attestation verdict found in the ’sub-
mods’ object presented below. The following JSON object shows an example
of an EAR claims-set. It corresponds to an attester “PSA” with the “con-
traindicated” trustworthiness tier.

{

"eat_profile": "tag:github.com,2023:veraison/ear",

"iat": 1666529184,

"ear.verifier-id": {

"developer": "https://veraison-project.org",

"build": "vts 0.0.1"

},

"ear.raw-evidence": "NzQ3MjY5NzM2NTYzNzQK",

"submods": {

"PSA": {

"ear.status": "contraindicated",

"ear.trustworthiness-vector": {

"instance-identity": 2,

"executables": 96,

"hardware": 2

},

"ear.appraisal-policy-id":

"https://veraison.example/policy/1/60a0068d"

}

}

}

The values in the trustworthiness vector help explain why the attester
is contraindicated. The instance identity and hardware both have a value
2 which means they are uncompromised and genuine. The configuration,
file system, runtime opaque, storage opaque, and sourced data fields are not
present which signifies that no claim has been made on those parameters. The
executables parameter has value 96 making the attester contraindicated. The
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reason such a value would get assigned is that the attester has unauthorized
code or configuration loaded in its runtime memory. An explanation for all
possible values in a trustworthiness vector can be found in [84]. If there was
another attester, then an additional object with its own status and trust-
worthiness vector would be added to the submods object. There are various
real-world scenarios where multiple attesters would be present on the same
device. For example, a server with CPU and GPU environments. EAR’s
attestation result schema also includes optional fields like raw evidence and
nonces to allow for miscellaneous relying party requirements. This thesis uses
EAR’s attestation result format for comparing and benchmarking the differ-
ent encoding schemes. It was chosen because it provides a comprehensive
and open-source attestation result format that can be used by any project
using Veraison or Veraison-compatible plugins.

Minimizing the parsing code is important for code footprint and attack
surface reduction. This is even more necessary with constrained relying par-
ties. Therefore, verifiers should send attestation results to relying parties in
a format it already knows and can easily parse. In addition, decoupling the
information sent in the attestation results from the encodings can allow a
verifier to serialize the same attestation result using the format suitable for
each of the relying parties it is communicating with. This decoupling will
allow the standardization of the content of the attestation results, while pro-
viding the relying party with the format it is able to parse and use. Figure
2.4 shows how the verifier can accept evidence in different formats and create
the corresponding attestation results in the format the relying party expects.
An analysis and implementation of some of the most well-known formats is
found in chapters 3 and 4 respectively.

Figure 2.4: The Verifier consuming and producing different data formats
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2.6 Serialization

The encoding formats for attestation results is an important factor to con-
sider especially in constrained relying parties because factors like the size of
the attestation result, the decoding code size and decoding speed are limited
by the device specifications. These factors require certain storage capacity,
transmission buffer capacity and RAM. The study of the effects of the at-
testation result format is still missing in literature. The EAR RFC draft
provides conventions for CBOR and JSON encoding formats [26]. However,
it does not give a reason why those were the chosen formats for representing
attestation results.

Serialization, or marshalling, is the process of converting a data object
or data structure into a sequence of bits for storage and transmission [83].
The inverse operation of converting the sequence of bits back to the original
data structure is called deserialization, or unmarshalling. The term encoding
refers to how data is going to be represented, for example, UTF-8 [86] is a
type of text encoding. While serialization is converting the encoding into
bit-strings based on the format’s encoding rules.

2.6.1 Binary vs. Text-based Serialization

Serialization is generally categorized by how the information is represented.
It can be either text-based or binary. The text-based serialization produces
the bits corresponding to a sequence of characters in a text encoding such as
ASCII or UTF-8. Text-based serializations are more user-friendly and ubiq-
uitous because they can be read by most computer applications. On the other
hand, binary serializations are more application-specific and usually require
special parsers to understand the format. Those kinds of serializations are
usually accompanied with documentation and special tools in order to dese-
rialize them. Generally, binary formats are easier and faster for computers
to serialize and deserialize [61].

One dummy example to illustrate the difference between binary and text-
based serialization is serializing the number 127:

Text-based (UTF-8): 00110001 00110010 00110111

Binary: 1111111

The text-based serialization encodes each digit separately, while the bi-
nary can encode the number as a whole. Binary serializations are generally
more compact, as this small example illustrates. Typically, they have some
additional information related to the size and type of the serialized data. For
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example, in the binary format CBOR, there are 5 bits of additional infor-
mation that state whether the unsigned integer will be represented in 8, 16,
32, or 64 bits [17]. Nevertheless, those 5 bits of additional information are
constant regardless the size of the actual number being serialized.

2.6.2 Schema-less vs Schema-driven Serialization

Serialization can also be categorized into schema-less and schema-driven
based on whether the serialization and deserialization processes require a
formal description [83]. A schema is a definition or description of the data
object being serialized. A serialization is schema-driven if a bit-string can-
not be deserialized without knowledge of its structure. On the other hand,
with schema-less serialization, a bit-string can be deserialized without any
prior knowledge to the structure of the data. The following is an example
of a high-level schema of a simple fictitious TODO application where each
TODO item is split into tasks. The schema is based on the ASN.1 encoding
format. Table 2.2 summarizes the differences between schema-driven and
schema-less serializations.

TODO DEFINITIONS ::= BEGIN

TODOItem ::= SEQUENCE {

trackingNumber INTEGER,

body UTF8String

}

TODOTask ::= SEQUENCE {

itemNumber INTEGER,

taskNumber INTEGER,

taskDescription UTF8String,

isDone BOOLEAN

}

END

2.7 Studied Encoding Formats

The formats being analyzed and compared in this thesis are popular in the
open-source community. In addition, they can easily represent attestation
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Schema-driven Schema-less
Custom schema for each
serialization specification
that cannot be used by
other schema-driven formats

Easier to use because any
bit-string can be deserialized
without prior knowledge
of the data

Avoids encoding structural
information into the bit-string
because it is already specified
by the schema which results
in space efficient bit-strings

Embed information about
structure of data so that
each serialization is
standalone

Requires writing and
maintaining schema
definitions

No overhead with handling
changes of schemas or
considerations to backward
and forward compatibility

Mostly used in
network-efficient systems
or systems with low
bandwidth

Mostly used in loosely
coupled systems where
components don’t have
prior knowledge of
structure of the data

Tend to be binary Tend to be text-based

Table 2.2: Comparison between schema-driven and schema-less serializations

result objects similar to the one illustrated in section 2.5. The considered for-
mats are Protocol Buffers, Flat Buffers, ASN.1 DER, X.509, CBOR, JSON,
XML, Java Object Serialization and Pickle. While this is not a complete list
of formats, it contains representatives of all types of serializations discussed
in section 2.6. For example:

• XML is a schema-driven text-based format.

• JSON is a schema-less (generally) text-based format.

• CBOR, JOS, and Pickle are schema-less binary serialization.

• ASN.1 DER, Protocol Buffers and FlatBuffers are schema-driven bi-
nary serialization.

Abstract Syntax Notation One (ASN.1) is a language-independent
notation for specifying data structures [52]. It is mainly used in computer
networking. ASN.1 allows defining the structure of the data and the kind of
information and data types included in this structure as shown in the ASN.1
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schema in section 2.6.2. There are multiple encoding rules that can be used
to represent the data defined by the schema as a sequence of bytes. Some
of those rules use the Tag, Length, Value (TLV) approach. This approach
specifies the tag defining the data type of the value being encoded, the num-
ber of bytes needed to encode the value, and the actual bytes encoding of the
value. Even though most of the encoding rules use the TLV approach, they
have different methods for encoding the Value part. The Basic Encoding
Rules (BER) provides rules for encoding TLVs of indefinite length. While in
Distinguished Encoding Rules (DER), the structures are always encoded to
definite lengths with the exact bytes [52].

Concise Binary Object Representation (CBOR) is another binary for-
mat designed for small code and message size. It is also designed for extensi-
bility such that any updates or changes to the specification would not render
previous CBOR implementations unusable [17]. Unlike ASN.1, CBOR does
not require a schema or any previous data structure definition. The first byte
of every encoded value contains information about the value that is stored.
More specifically the first byte specifies the data type of encoded value and
how that value should be loaded (in case of unsigned integer data type).

JSON (JavaScript Object Notation) is a text-based format based on
the data objects in the JavaScript programming language. Despite the name,
JSON is a widely popular format that can be parsed by all programming lan-
guages used to create internet-enabled applications. The main reason why
JSON is parse-able by all these programming languages is that it has become
the main format for information exchange over the internet [68].

The Java programming language provides its own binary serialization mecha-
nism called Java Object Serialization (JOS). JOS is able to serialize any
object defined in JAVA as long as the object implements or inherits the Seri-
alizable interface. The serialization is usually independent of the Java Virtual
Machine being used [69], so, serialization and deserialization can happen in
different platforms. Unlike JSON, this form of serialization can only be used
if the intended application is written in Java.

Similar to JOS, Python has its own module called Pickle for serializing
and deserializing Python objects. This form of binary serialization is guar-
anteed to be backwards compatible with all Python versions. In addition,
Pickle is designed to be able to automatically represent a large number of
Python’s built-in types [27]. Both the encoding and decoding code needs to
be written in Python for this serialization scheme to work.
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Protocol Buffers (ProtoBuf) is a binary serialization format created by
Google to handle structured data. ProtoBuf is designed to be faster and
smaller than JSON and can be used for network traffic and persistent storage
[32]. Like ASN.1, ProtoBuf requires the structure of the data to be defined
beforehand and is suitable for data objects that are up to a few megabytes
in size. In addition, ProtoBuf is primarily intended to provide a serialization
mechanism that allows for seamless integration and changes to the defined
schemas without breaking or changing existing implementations.

FlatBuffers is also another serialization scheme created by Google for en-
coding gaming data. It provides efficient cross-platform binary serialization
intended for performance-critical applications as it flattens (hence the name)
out large data structures. In addition, Flatbuffers serialization is able to
access part of the object without unpacking the entire object [31]. However,
FlatBuffers should only be used when extracting a few entities from a data
object, as is typical in gaming. Its code for parsing the entire object is larger
than that of other formats and tends to be slower [49].

Extensible Markup Language (XML) is another text-based format de-
signed to be both human and machine readable. In XML, the information is
enclosed in tags in order to provide structure to the encoded data. In addi-
tion, XML allows the users to define their own tags and add attributes to the
tags that can provide additional information about the data. But this flexi-
bility of creating tags can make parsing XML a complex and slow process [71].

The X.509 standard defines the ASN.1 types for public key certificates.
It is usually used for digital signatures and end-point authentication [75].
X.509 has been a standard since the 1980s and have various parsers that are
already developed and tested extensively. Even though X.509 is technically
not an encoding format, it is still used by almost all devices that connect to
the internet since it defines how certificates are encoded. X.509 is considered
and analyzed in this thesis because it provides extensions that could be used
to represent attestation results.

Table 2.3 shows the formats used in some attestation solutions. EAR is
a generic specification, while the rest are attestation results used in MDM
solutions provided by major companies. While these companies utilize dif-
ferent formats, they don’t give reason for their choices. Cloud-based and
modern solutions mostly use the JSON format since JSON has become the
most widely used in internet-enabled applications.
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Attestation
Framework

Format
Text-based Binary

XML JSON ASN.1 CBOR
EAR [26] ✓ ✓

Google Play Integrity [33] ✓

MS Windows 10 DHA [58] ✓

MS Windows 11 DHA [58] ✓

Samsung Knox [74] ✓

Huawei SysIntegrity [41] ✓

Apple DeviceCheck [6] ✓

Table 2.3: Attestation result formats in attestation solutions and frameworks



Chapter 3

Survey of Potential Attestation
Result Formats

This chapter analyzes which of the following nine data formats (introduced
in section 2.7) are suitable for the serialization of attestation results, i.e.,
encoding them in a serial form suitable for transmission and storage: JSON,
FlatBuffer, JOS, Pickle, ProtoBuf, XML, X.509, ASN.1, CBOR. The pri-
mary analysis is qualitative as it is based on the criteria of (i) canonicality,
(ii) programming language independence, (iii) versatility, and (iv) standard-
ization.

Peeking forward, the most suitable serialization methods are JSON, ASN.1,
and CBOR. In the next chapter a quantitative analysis is provided for these
methods. An encoding and decoding application for attestation result is im-
plemented for each of the serialization methods and the performance of those
applications is measured and benchmarked.

3.1 Selection Criteria

The goal of the presented selection criteria is to highlight some of the fea-
tures necessary for serializing attestation results. Overall, the chosen formats
should be secure, usable, maintainable and efficient.

Efficiency: The attestation result format should be suitable for resource-
constrained devices. Performance criteria such as encoding and decoding
speed, code footprint, and output size are considered. However, there is no
academic literature or online analysis that compares between all the formats
discussed in section 2.7 in terms of the speed, code footprint and message
size. There are some papers and blogs that compare between JSON and
XML [64], JSON and CBOR [55], or JSON and Protocol Buffers [81]. Those

36
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measurements do not provide a foundation where we can directly compare
between CBOR and Protocol Buffers, for example. Those kinds of metrics
that requires comparisons to be done in a similar environment and with the
same input are going to be evaluated in chapter 4. It is not feasible to provide
an implementation for each of the considered formats especially those that are
not suitable for encoding attestation results. The selection criteria presented
in this chapter are used as a kind of filtration that allows the benchmarking
of only the formats suitable for remote attestation in general and specifically
with constrained relying parties.

Security: Security of the encoding of attestation results is important
because the entire goal of attestation is to validate the trustworthiness of
a device. Some formats, like ProtoBuf and FlatBuffer, while implemented
to grant flexibility can also result in attacks on integrity and confidentiality.
Canonicality or determinism of the encoding is an important criterion to
consider when selecting the formats. Canonicality is not the only property
that influences the security of the format, but it was chosen due to some
attacks, discussed in section 3.1.1, that exploited its absence.

Usability: Remote attestation typically involves different platforms. It
is important that the encoding and decoding of the format can be easily
implemented across multiple platforms. The usability feature of the formats
is divided into two criteria: programming language independence and
versatility.

Maintainability: Maintainability of a serialization format means the
ability of the format to be updated and supported over time. The format
used for attestation result should not be deprecated or not widely used since
this affects the likelihood of it being supported on different platforms. Stan-
dardization is a good measure for such a feature since standardized formats
are guaranteed to have a dedicated community that maintain and provide
timely updates that reflect the changes and improvements of the format.

3.1.1 Canonicality

Canonicalization or normalization is the process of converting some data into
a standard or canonical form. OWASP provides an example of the kind of
attacks that can happen because of the non-canonicality of a URL encoding.
For example, the opening and closing tags <,> can be represented as %3c
and %3e respectively. Hence, an attacker can exploit this non-canonical
representation and embed some script in the URL without using the explicit
opening and closing tags [59].

Canonical serialization produces a unique bit-string of a data structure.
Some sources use the term “deterministic serialization” synonymously with
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canonical serialization [17, 20]. Numerous serialization formats are non-
canonical, such that a single data structure can be serialized to different
bit-string values. This section describes real-world attacks that exploited
this feature.

Non-canonicality is sometimes an intended feature in serialization formats
especially with those designed for complex and large amounts of data. It is
able to improve performance by reducing the time and resources required for
the serialization and deserialization code to check and guarantee canonicality
[14].

A non-canonical serialization scheme can lead to difficulty in validating
the authenticity of the data. For example, an attacker may perform an injec-
tion attack by adding some malicious script or code as part of the serialized
bit-string. The user, not knowing the expected size of the data, would dese-
rialize the entire object and unintentionally parse the script. Non-canonical
serializations maybe susceptible to Denial of Service (DoS) and data integrity
attacks. Two real-life examples of attacks on non-canonical formats are:

1. ProtoBuf allows decoding bit-strings with unknown fields. So, two
serialized bit-strings, one with unknown fields and one without, can
map to the same data object. The ProtoBuf Java implementation
suffered a DoS attack where input streams that contain unknown fields
causes frequent pauses during parsing. Therefore, a malicious input
containing unknown fields can occupy a parser for minutes at a time
[22] .

2. The RSA-sign JavaScript Library encountered a vulnerability that ac-
cepted wrong ECDSA digital signatures that were semantically the
same as valid ones. It accepted different representations of the same
number. The reason was that there was no strict ASN.1 DER check-
ing. For example, a signature that contained an ASN.1 INTEGER
with prepended zeroes such as 0x00000123 was accepted if the valid
signature contained the integer 0x0123 [21].

These kinds attacks can be mitigated by implementing appropriate safe-
guards and using secure channels for transmission. This protection is not due
to the nature of the serialization, but to the safeguards implemented which
can differ from one programming language or library to another. Therefore,
formats that are non-canonical are excluded from the present study as they
can increase the risk for exploitation when transmitting attestation results.
ASN.1 and CBOR have a canonical and non-canonical representation [17, 52],
but only the canonical subsets will be considered.
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3.1.2 Programming Language Independence

Programming language independence of the format provides flexibility in
encoding and decoding attestation results. The encoding and decoding can
be written in different programming languages that are the most suitable
for the platforms running the relying party and verifier. For example, in an
attestation application that uses Veraison for verification, the result encoding
is likely implemented using the Go programming language1. However, in case
of a constrained relying party with a simple microcontroller and a C compiler,
a decoder written in C would be a better choice. Therefore, it is essential
that the format is language-agnostic.

Serialization formats like Java Object Serialization (JOS) and Pickle,
while being strong and detailed enough to serialize complex objects like maps,
are dependent on their corresponding languages Java and Python. For ex-
ample, a Pickle object can only be loaded by Python [78]. These formats
are excluded from the present study because they would only limit the im-
plementations to Java and Python-based applications. They might be of
interest when interoperability between other languages and devices is not a
requirement.

3.1.3 Standardization

There is currently no standard format that is developed specifically for attes-
tation artifacts like evidence or attestation results. Standardization guaran-
tees that the format will be maintained and updated to match the changes of
its environment or a new standard would be created to replace the obsolete
ones. In either case, there would be a guarantee that the format is continu-
ously improved and maintained. In addition, with standardized formats, seri-
alization implementations becomes simple, reliable, and vendor-independent
as the rules and description is already specified for the concerned parties to
follow.

3.1.4 Format Versatility

Format versatility refers to how easy it is to use the format in other use cases
than the one it was originally intended for. This property is considered be-
cause some formats are designed to work in a specific context and might not
be easily adapted in other domains. The RATS RFC [12] suggests the pos-
sibility of retrofitting deployed protocols with remote attestation by adding

1The Veraison project (see section 2.4) uses Go because it is an efficient and memory
managed language [9].
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attestation messages as extensions. According to RATS, the motivation be-
hind this suggestion is to minimize the amount of parsing coded needed,
especially in a constrained relying party, by using an already supported for-
mat. However, such a feature needs to be carefully studied and investigated.
Even if a format is already supported by a relying party, it does not mean
that the format is the most secure or efficient to use for attestation.

The RATS RFC gives an example of incorporating attestation capabilities
in a TLS handshake by embedding attestation evidence and results in an
ad hoc X.509 certificate extension. However, this study is concerned with
devices that cannot perform public key cryptography and consequently do
not support certificates. The X.509 extension could still be used to encode
attestation result, but in this case the certificate might not adhere to the
standard specifications which could lead to vulnerabilities [65]. Therefore,
X.509 might not be suitable for encoding attestation results for constrained
relying parties where the object is just added in the extensions, leaving almost
all other parts of the certificate fields empty.

FlatBuffers is another format that might not be suitable for attestation
results. FlatBuffers is designed for performance critical applications. It is
intended for accessing only one or two entities in the serialized object as
opposed to reading entire objects. The code required for deserializing the
entire object is much larger than the one for JSON [49]. Hence, such a
serialization is not suitable for attestation results where the entire object
needs to be read. The chosen format should be able to work without any
assumptions about the environment, so formats like X.509 and FlatBuffers
that are designed for specific use cases are not considered.

3.2 Comparison Results

Table 3.1 compares the formats under investigation and determine which
formats satisfy the canonicality, language independence, standardization and
versatility properties. The formats that are marked in yellow satisfy all those
properties and are chosen for the quantitative analysis done in chapter 4.

Formats like Java Object Serialization and Pickle, while powerful and able
to serialize complex data structures, are language dependent. Consequently,
they are not suitable for encoding attestation results where the encoding can
be done in a language and the decoding in another.

The ProtoBuf and FlatBuffer are language-independent formats that are
designed to handle large amounts of data for efficient storage and transmis-
sion. However, FlatBuffers is designed for scenarios where a small part of the
data needs to be read and not the entire data object. In addition, both Pro-
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Format
Seriali-
zation

Canonical
Language
indepen-
dent

Standar-
dized

Versa-
tility

ASN.1 DER Binary ✓ ✓ ✓ ✓

CBOR Binary
Determ-
inistic
CBOR

✓ ✓ ✓

FlatBuffer Binary ✗ ✓ ✗ ✗

JOS Binary ✗ ✗ N/A ✗

JSON Text-based JCS ✓ ✓ ✓

Pickle Binary ✗ ✗ N/A ✗

ProtoBuf Binary ✗ ✓ ✓ ✓

XML Text-based
Canonical
XML

✓ ✓ ✓

X.509 N/A N/A ✓ ✓ ✗

Table 3.1: Properties of serialization formats. Notation: ✓– the format has
the property; ✗– the format does not have the property; N/A – not applicable.

toBuf and FlatBuffer, and while non-canonicality can provide flexibility and
ease of use, it can lead to various attacks on the availability and integrity of
the data. Therefore, only canonical encoding is considered for the attestation
result encoding format.

The X.509 standard is a well-known and widely implemented scheme that
is used for endpoint authentication. Using X.509 to communicate the attes-
tation result object means that TLS should be used otherwise many fields
in the certificate will be empty creating a parsing overhead. A constrained
relying party in an attestation procedure might not be able to use public
key cryptography and in turn TLS. Hence, the considered formats should
not depend on the environment and limit any assumptions made about the
communication.

The two text-based formats considered in this study are XML and JSON.
One goal is to evaluate how binary serialization performs in comparison to
text-based formats when encoding attestation results. JSON and XML are
non-canonical by nature but there are schemes and rules to make them canon-
ical. For example, the JSON Canonicalization Scheme (JCS) [73] defines rules
to create a canonical representation of JSON. The XML format was excluded
from further consideration because the average time for transmitting and de-
coding the objects can be much slower than that of JSON [64]. Therefore,
the JSON format will be the basis for comparing the different chosen binary
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formats.
CBOR is interoperable between different devices and does not depend on

any specific programming language. Its extensibility allows older decoders
to decode messages even if there are new extensions or features. Due to
these properties, CBOR is suitable for network communication. In general
CBOR can allow non-canonical serializations, but the specification sets some
rules and restrictions for creating Deterministically Encoded CBOR. The
Deterministically Encoded CBOR is the only CBOR format that will be
considered and any further mention of CBOR refers to the serialization that
follows the deterministic set of rules unless explicitly stated otherwise.

The ASN.1 format is language, vendor, and platform independent. Every
device that uses HTTPS is able to decode ASN.1-encoded X.509 certificates
[75]. ASN.1 has several encoding rules, from which here only the Distin-
guished Encoding Rules (DER) are considered, because they provide canoni-
cal serializations. Another advantage of ASN.1 DER is that there are various
libraries that have undergone extensive security checks. This is due to the
fact that ASN.1 has been around for decades and it is used in security criti-
cal applications like encoding certificates. One final point to highlight is that
those three chosen formats (ASN.1 DER, CBOR, JSON) are all standardized
and maintained by an organization or community.

3.3 Related Work

Some of the work done in the literature was investigated to determine whether
any research has compared between ASN.1, CBOR and JSON and whether
those comparisons are in terms of encoding size, encoding speed, decoding
speed, and memory usage. Google Scholar was used to search for relevant
work. The search phrases “survey of encoding formats”, “survey of serializa-
tion formats”, and “formats for IoT devices”.

The papers surveyed provide examples on how the benchmarks were im-
plemented and help motivate the implementations and benchmarks done in
chapter 4. Table 3.2 contains the relevant formats each paper has surveyed,
the comparison metrics used in the survey, and the key discoveries or results
found by each survey. It is important to note that the comparisons and
measurements are based on library implementations of the formats, but the
chosen libraries are designed to be efficient.



CHAPTER 3. SURVEY OF FORMATS 43

Table 3.2: Summary table of literature that compare serialization formats

Title
Relevant

Formats

Used Metrics

or Use cases

Key Results

and Observations

Towards
Lightweight
and
Interoperable
Trust Models:
The Entity
Attestation
Token [65]

CBOR,
JSON,
X.509

Size of encoded
data, ease of
implementation,
size of
implementation

- A CBOR based
implementation
requires
substantially
fewer lines of code
than X.509
- CBOR based
encoding
size is smaller than
JSON based
- X.509 has a poor
record for
exploitable software
vulnerabilities

A Survey of
JSON-compatible
Binary
Serialization
Specifications [83]

ASN.1,
CBOR,
FlatBuffers,
ProtoBuf

Space-efficiency,
runtime-efficient
deserialization,
partial reads,
streaming
deserialization,
streaming
serialization,
in-place
updates,
constrained
devices

- ASN.1 Packed
Encoding
Rules (PER2)
is suitable for
space-efficiency as
serializations tend to
have minimal
metadata
- CBOR is suitable
for constrained
devices due to small
code size

A Comparison
of Data
Serialization
Formats for
Optimal
Efficiency
on a Mobile
Platform [81]

XML,
JSON,
ProtoBuf

Size of
encoded data,
serialization
speed,
ease of use.

- JSON is a superior
alternative to XML
- JSON should be
used when dealing
with existing web
services
- Binary serialization
is more suitable for
storage purposes
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Impacts of
Data
Interchange
Formats
on Energy
Consumption
and Performance
in Smartphones [29]

XML,
JSON,
ProtoBuf

Size of encoded
data,
average time
for querying
and
compressing
data,
average time
of parsing,
energy
expended
in CPU, WiFi,
3G,
Average
time for data
synchronization
between mobile
and server

- JSON with
compression
had the best time
synchronization
(time compressing
in mobile, sending
to server and
decompressing in
server) and
better battery
management.
- ProtoBuf are
not as inefficient
as JSON
when there is data
compression, but
performs the best
when no
compression
is carried out

Web Service
Composition
on Smartphones:
The Challenges
and a Survey
of Solutions [57]

XML,
JSON,
ProtoBuf

Complexity,
performance,
flexibility,
footprint,
reusability,
usability,
scalability

- Binary
serializations
are more complex
as they need tools
to be parsed
- ProtoBuf has the
smallest footprint
and is faster than
the other
surveyed format
- Text-based formats
are more flexible
and usable
than binary



CHAPTER 3. SURVEY OF FORMATS 45

Performance
Comparison
of Messaging
Protocols and
Serialization
Formats for
Digital Twins
in IoV [70]

JSON,
ProtoBuf,
FlatBuffers

Size of
encoded
data,
serialization
speed,
deserialization
speed,
memory usage

- ProtoBuf had the
smallest message
size and
serialization speed
- FlatBuffers had
the fastest
deserialization
speed and lowest
memory
consumption

Smart Grid
Serialization
Comparison [67]

XML,
JSON,
ProtoBuf,
CBOR

Serialization
time,
deserialization
time,
compression
time,
decompression
time, memory
use for
serialization,
memory use for
compression,
serialized
message size,
compressed
message size

- Compressing
text-based
formats defeats
purpose of having
them since they
become unreadable
- Serialization
libraries have a
large impact on the
performance of the
format
- JSON is a better
alternative to XML
- Binary
serializations
like ProtoBuf are
faster and
more compact

The general observation is that binary serializations tend to be more
efficient (less memory consumption, faster, smaller message size) but text-
based serializations are more usable and flexible. None of the found studies
address all the desired formats. Some research was more focused on quanti-
tative measures like serialization speed and output size while others focused
more on qualitative measures like ease of implementation, usability and scal-
ability. Furthermore, most studies did not specifically consider constrained
devices or have all the desired comparison metrics like message size, encoding
speed, decoding speed, memory consumption. The authors in [83] include
constrained device as a use case where they define a suitable format as that
having a simple specification, simple binary layout and small generated code.
One observation the authors in [83] made is that the implementation rather
than the serialization specification tends to be the contributing factor when
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determining whether a binary serialization is suitable for constrained devices.
Table 3.3 shows the difference between the relevant studies found in the

literature and the work done in this thesis. None of the found studies compare
between ASN.1, CBOR, and JSON in terms of message size (MS), encoding
speed (ES), decoding speed (DS), encoding memory consumption (EMC)
and decoding memory consumption (DMC). Almost all studies use JSON in
their comparison. This can be attributed to the fact that it has become the
most widely used format for exchanging data over the Internet. However,
JSON is neither run-time efficient nor space efficient [83].

There were no comprehensive quantitative comparison of different formats
in the context of attestation. The comparison in [65] only used the encoding
size and the lines of code (LOC) for comparing the encodings of attestation
tokens (evidence and results). Chapter 4 fills the gap in the literature by
providing a quantitative comparison between ASN.1, CBOR, and JSON in
the attestation result domain.

Work
Atte-
station

Relevant Format Metrics
ASN.1 CBOR JSON MS ES DS EMC DMC

[65] ✓ X.509 ✓ ✓ ✓

[83] ✓ ✓ ✓ ✓

[81] ✓ ✓ ✓

[29] ✓ ✓ ✓ ✓

[57] ✓

[70] ✓ ✓ ✓ ✓ ✓ ✓

[67] ✓ ✓ ✓ ✓ ✓ ✓

this work ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 3.3: Comparison between the literature and this work.

2ASN.1 PER is a canonical non-TLV-based set of rules that are designed to produce
smaller encoding size [52].



Chapter 4

Implementation and Benchmark-
ing

The constrained environment assumed in the relying party influences the
kind of applications it would be able to run for attestation. The relying
party needs to parse the attestation results it receives in order to issue a
verdict of whether to trust the attester. The attestation results it receives
needs to be minimal in size as the relying party might have small packet
buffers or restricted transmission bandwidth. Hence, an evaluation of the
encodings chosen in section 3.2 in terms of size and performance is needed
to determine which encoding is suitable for constrained relying parties.

This chapter will provide details on the implementation of the encoding
and parsing of attestation results in ASN.1 DER, CBOR and JSON. It will
also provide a comparison between the performance of the different formats
in encoding and decoding attestation results in EAR format (see section 2.5).
Finally, the chapter will provide an analysis of the performance results and
the choice of encoding format.

4.1 Comparison Metrics

The metrics chosen for comparing the encoding formats relate to the per-
formance of the respective applications. The comparisons determine how
efficient the encoding is in terms of message size, encoding speed, decoding
speed, encoding memory consumption and decoding memory consumption.
In the relying party application, encoding speed is not a relevant metric as
the relying party does not perform the encoding. This metric was included
to analyze whether the format with the highest decoding speed will also
have the highest encoding speed or not. The definition of the metrics are as

47
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follows:

• Encoding size: the size of the attestation result object when encoded
to a specific format and written to file.

• Encoding speed: the time it takes to convert an attestation result object
that has been created by the verifier into a serialized object.

• Decoding speed: the time it takes to parse a serialized object into
an attestation result object that can be processed and used in the
application.

• Encoding memory consumption: the size of the code loaded into mem-
ory when encoding the attestation result object and writing it to file.

• Decoding memory consumption: The size of the code loaded into mem-
ory when reading an attestation result object from file and parsing it.

4.2 Benchmarking Inputs

The same attestation results objects are used to benchmark all implementa-
tions in order to accurately measure the performance of the three formats.
The baseline attestation results object (Input 1) shown below in JSON for-
mat includes all details about the attestation procedure based on the EAR
format [8]. The object contains the profile (version) of the attestation result
used, the verifier identity, issued at time, and raw evidence which is what the
attester sends to the verifier for appraisal. In addition, the result includes
the verifier’s verdict for the attester ‘PSA’, the attributes it has appraised,
as well as the policy it used for appraisal. More importantly, this object
contains all the data types that would need encoding like string, integer,
long, and maps. Section 2.5 contains more details about the information and
values present in EAR objects.

{

"eat_profile": "tag:github.com,2023:veraison/ear",

"iat": 1666529300,

"ear.verifier-id": {

"developer": "https://veraison-project.org",

"build": "vts 0.0.1"

},

"ear.raw-evidence": "3q2-7w",

"submods": {

"CCA Platform": {
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"ear.status": "affirming",

"ear.trustworthiness-vector": {

"instance-identity": 2,

"configuration": 2,

"executables": 3,

"file-system": 2,

"hardware": 2,

"runtime-opaque": 2,

"storage-opaque": 2,

"sourced-data": 2

},

"ear.appraisal-policy-id":

"https://veraison.example/policy/1/60a0068d"

}

}

}

The applications are also measured on two other inputs:

• Input 2: Consists of all information found in Input 1 with an additional
attester object, i.e. adding another map with another status, trustworthiness
vector, and policy id.

• Input 3: Consists of all information found in Input 1 with a large raw ev-
idence value that is attached to the baseline input. The raw evidence is a
large base64 encoded string that represents binary data.

The JSON form of Input 2 and Input 3 can be found in appendix A. Those inputs
were chosen in order to study how the behavior of each format changes depending
on the data types it is encoding.

4.3 Implementation of Applications

In order to accommodate for a constrained relying party, the parsing code was
done in the C programming language. During the time of this project, there were
no available applications that encode and decode the attestation result object for
the three formats. The Veraison project (section 2.4) provides a minimalist C
implementation of the decoding in JSON [25]. In the Veraison implementation,
some of the attributes were not decoded and the functionality was specific to the
Veraison verifier. Therefore, applications that parse the attestation results objects
in the three formats where developed in order to provide accurate comparisons
between the formats. The code can be found in appendix B. The remainder of
this section discusses the structure of the applications, the environment these ap-
plications were written in, and the differences encountered when implementing the
encoding and decoding in each format.
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4.3.1 Environment

The tests are run in an environment with the following properties:

• Device: Lenovo ThinkPad T14s Gen 2i laptop

• RAM: 16 GB

• Processor: 11th Gen Intel(R) Core™ I7-1185G7 @ 3.00GHz

• Architecture: x86 64

• Operating system: Ubuntu 20.04.6 LTS (Focal Fossa)

The code was written in C in order to create applications that are similar to
the ones found on small IoT devices. Most IoT operating systems like Zephyr,
Embedded Linux, Contiki and Raspberry Pi allow running C applications. In
addition, the C programming language is low level and small in size [48] which
allows writing programs with small memory footprint and fast run-time. Therefore,
it is the most suitable for small or resource constrained IoT devices.

4.3.2 Application Structure

The three applications for ASN.1 DER, CBOR, and JSON all implement the same
APIs. There are two applications for each format, one for encoding and the other
for decoding. The main reason for this split is that the encoding and decoding
operations do not happen on the same device. All the libraries chosen in the
implementation are designed to have low memory footprint and are developed to
work in constrained embedded devices.

The goal of the decoding applications is to parse the encoded attestation results
object into a C-struct (see appendix B). The struct can then be used to perform
any operation on the attestation results. The C-struct has a similar structure in
all implementations with some minor modifications. The status in the appraisal
is represented as an integer in ASN.1 DER and CBOR implementations and as
a string in JSON. This was done in conformance to the EAR RFC draft’s trust
tier definitions for CBOR and JSON [26]. The ASN.1 implementation also had a
corresponding integer attribute for specifying the length of each string found in
the object. Those attributes were needed to parse the string from the encoded
TLV.

Since subsequent operations are not in the scope of the performance measure-
ments, the decoding applications simply print the values in the struct. All the
decoding applications are structured as follows:

• Input: All applications have a read_file API that reads the contents of a
file into a byte array. The file has extension .der, .cbor, or .json according
to the application. The byte array is simply the contents of the file.
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• Parsing: The API parse_ear is used to decode the byte array that was read
from file. This method differs completely from one application to the other
and thus has the most impact on performance measurements. The method
results in the same parsed attestation result struct in all implementations.

• Output: In an actual attestation application the attestation result struct
would be used to perform checks and appraisals. However, the implemented
applications are only concerned with the performance of the different encod-
ings. Therefore, the print_ear API, as the name suggests, simply prints
the contents of the attestation results struct. The printed format and infor-
mation are exactly the same in all applications.

The encoding applications perform the reverse functionality where the attestation
result C-struct is encoded and then written to a file with the respective extension
.der, .cbor, or .json. The encoding performance is not relevant for a relying party
but it is also measured for the sake of providing a comprehensive performance
report

4.3.3 ASN.1 DER

As mentioned in section 2.6.2, ASN.1 is a schema driven binary serialization for-
mat. Both a schema and a set of encoding rules are required in order to develop
an ASN.1 representation of data. The schema defines the structure of the data,
and the encoding rules translate the schema into bytes. Each element defined in
the schema is represented as a tag-length-value (TLV). Where for each defined
attribute in the schema there is the tag representing the attribute’s data type,
the length specifying the number of bytes used to represent the value, and the
value of the information in bytes. Generally, the value can in itself be another
TLV. The different binary TLV-based encoding rules provided by ASN.1 deter-
mine how those TLVs are created. Due to the reasons provided in section 3.1.1 on
the importance of canonicality, only the Distinguished Encoding Rules (DER) will
be considered. DER eliminates any variations in encoding by specifying a strict
order for elements, using the same rules to encode the tag and length for all data
types, and eliminating any variations in encoding that do not affect the value of
the data. For example, DER enforces a shortest possible form representation of
integers where any leading zeroes are removed.

The encoding and decoding of the attestation result object in ASN.1 was done
using the ASN.1 module offered by Huawei’s embedded TLS library HTLS. HTLS
provides a small, stand-alone, and efficient implementation of TLS 1.3 and related
cryptography and remote attestation. The library performs no memory allocation
and only requires an entropy source to work. Therefore, it can run in constrained
devices such as the relying party considered in this thesis. In addition, only the
ASN.1 parser is used and there is no additional overhead from the other function-
alities provided by the library.
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The ASN.1 schema for an attestation result object is listed below. It is specified
according to the Concise Data Definition Language (CDDL) 1 provided in [8].

World-Schema DEFINITIONS AUTOMATIC TAGS ::=

BEGIN

EAR ::= SEQUENCE {

eat-profile UTF8String ("tag:github.com,2023:veraison/ear"),

iat INTEGER,

ear-verifierID AR4si-verifierID,

ear-rawEvidence UTF8String (PATTERN "[A-Za-z0-9_=-]+") OPTIONAL,

eat-submods SEQUENCE SIZE(1..100) OF SEQUENCE {

attesterID UTF8String,

ear-appraisal EAR-APPRAISAL

},

eat-nonce UTF8String (SIZE (10..74)) OPTIONAL

}

AR4si-verifierID ::= SEQUENCE {

build UTF8String,

developer UTF8String

}

EAR-APPRAISAL ::= SEQUENCE {

ear-status ENUMERATED {none(0),

affirming(2),

warning(32),

contraindicated(96)},

ear-trustworthinessVector AR4si-trustworthinessVector OPTIONAL,

ear-appraisalPolicyID UTF8String OPTIONAL

}

AR4si-trustworthinessVector ::= SEQUENCE {

instance-identity [0] IMPLICIT AR4si-trustworthinessClaim OPTIONAL,

configuration [1] IMPLICIT AR4si-trustworthinessClaim OPTIONAL,

executables [2] IMPLICIT AR4si-trustworthinessClaim OPTIONAL,

file-system [3] IMPLICIT AR4si-trustworthinessClaim OPTIONAL,

hardware [4] IMPLICIT AR4si-trustworthinessClaim OPTIONAL,

runtime-opaque [5] IMPLICIT AR4si-trustworthinessClaim OPTIONAL,

storage-opaque [6] IMPLICIT AR4si-trustworthinessClaim OPTIONAL,

1CDDL is a notation convention used to express data structures encoded in CBOR
and/or JSON [13].
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sourced-data [7] IMPLICIT AR4si-trustworthinessClaim OPTIONAL

}

AR4si-trustworthinessClaim ::= INTEGER (-128..127)

END

The ASN.1 schema definition enables the specification of the various rules and
patterns in an in-depth manner. For example, it specifies that eat-profile
can only be the value tag:github.com,2023:veraison/ear. In addition, it
can set rules on string patterns, size of attributes, and whether the attributes
are optional or not. Since ASN.1 is based on tag-length-value encoding, im-
plicit tags are specified for the AR4si-trustworthinessVector. The reason
behind this is that if it were not for those implicit tags, the decoder might
not be able to know which claim it is parsing since they are all integers, i.e.
have the same tag. Therefore, implicit tagging is used to indicate the claim.
The schema also defines ear-status as an enum that can only be one of the
specified options. These specifications allow the developer of the encoder to
know exactly how to encode the object into a TLV and allow the decoder to
know exactly the structure and possible values to expect.

The schema does not conform entirely to the CDDL definition of attes-
tation results defined in the EAR RFC draft [8]. The specification defines the
eat-submods as an object eat.submods => { + text => EAR-appraisal },
however such a definition of a sequence with an arbitrary key name is not
possible in ASN.1. Therefore, the submods definition was adjusted for ASN.1
by defining submods as a sequence of a pair of attributes attesterID and
ear-appraisal. The +text part of the CDDL definition is substituted by
the attribute attesterID.

HTLS provides the functions for encoding and decoding the basic data
types specified in ASN.1 DER like integer, boolean, string, and sequence.
The code for encoding and decoding the attestation results utilized both
those basic functions and the schema listed above. There were a few extra
operations that needed to be done when parsing integers and strings. A
helper method was created to parse the integers from a byte array to an int
value. As for parsing strings, the TLV object returned by HTLS performs no
memory allocation for the sake of efficiency and returns a pointer to the de-
sired attribute. Therefore, in order to know where the string attributes end,
an additional attribute is added in the C-struct for the length of the string.
Then during printing the string, the length attribute is used to determine
where the string ends.
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4.3.4 CBOR

Since CBOR is schema-less, the information about the encoded value includ-
ing the type and length needs to be added in the serialization. As mentioned
in section 2.7, the initial byte of each data item includes information about
the data type and any additional information required for encoding. This
additional information can either be the integer value (in case of small num-
bers), the length of the data item, or an indication that the data item is of
indefinite length. When encoding indefinite-length items, like arrays, maps,
or strings, a special ‘break’ character is used to signal when the decoder
should stop. By default, CBOR is not canonical, but the standard specifies
rules for creating canonical CBOR encodings. These rules include represent-
ing signed and unsigned integers and floats in the smallest possible number
of bytes, sorting keys in the map from lowest to highest values based on the
byte representation of the key, and converting indefinite-length items into
definite-length items.

Encoding and decoding attestation results in CBOR was done by Intel’s
industrial strength implementation called TinyCBOR. According to the doc-
umentation [43], the library is optimized for very fast operation and small
code footprint. In addition, the main encoder and decoder does not use
memory allocations. TinyCBOR has been compiled and used in many IoT
frameworks like Arduino and RIOT OS.

CBOR is known for the efficient and small encoding of integers. There-
fore, map keys are generally transformed into integers as opposed to strings
like in JSON. For example, in the JSON object provided in section 4.2, the
key eat_profile is mapped to the integer 265 in the equivalent CBOR en-
coding of the same object. Similarly, all other known attributes also have
an integer value. One point to note is that there is development overhead
when an application supports both JSON and CBOR as any changes to the
attestation results object requires a modification to the CBOR serialization
mapping. In addition, applications must adhere to the same integer mapping.
The keys mapping implemented in the CBOR attestation results encoding
and decoding follows the EAR RFC draft [8].

The most notable function used when decoding the CBOR attestation
results byte array is cbor_value_advance which runs in O(n) time when
it is parsing a container like a map or array as it will recurse into itself.
In addition, the function will use O(n) memory for the number of nested
containers. Here n represents the number of elements it needs to parse.
Therefore, this function has a high impact on the performance of the CBOR
encoding. One other note worth mentioning in the implementation is that
the function used to parse the string values performs memory allocation in
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order to copy the value to the corresponding attribute in the EAR C-struct.
In addition, like ASN.1, the status of each submodule is encoded as an integer
instead of a string.

4.3.5 JSON

The Jansson library [53] was used for encoding and decoding the JSON attes-
tation results object. The library is not dependent on other libraries and is
suitable for use on any system including small embedded devices. The library
only supports UTF-8 encoded texts. Furthermore, it contains two definitions
of numbers “real” and “integer”. In C, all numbers in a JSON object with
type “real ” are parsed into a “double” and “integer” numbers are parsed
into “json int t” which is equivalent to “long” or “long long” depending on
the C compiler. Hence, there is no efficient encoding for unsigned types and
smaller numbers like “int” or “short”. Generally, JSON is more concerned
with text encoding and has no optimization when encoding other types.

The implementation of the attestation results JSON parser utilizes the
method json_object_get which given the JSON object and key of type
string, returns a pointer to an object of type json_t corresponding to the
specified key. The type of this object is checked and the value of the at-
testation results attribute is parsed. In order to parse string attributes, the
C function strdup is used to copy the value found in the JSON object to
the corresponding attribute in the attestation results C-struct. In addition,
unlike ASN.1 and CBOR the status in the JSON object is encoded as a
string rather than an int. All other values are parsed as expected. String
attributes like profile and appraisal policy are parsed into ‘char’ arrays and
integer values like issued at time and the attributes in the trustworthiness
vector are parsed into ‘int’.

4.4 Benchmarking

The three implementations were tested on the same inputs discussed in sec-
tion 4.2. The comparison is split into three categories relating to output size,
speed (encoding and decoding), and memory consumption (code, heap, and
stack). The profiling tool Valgrind is used to analyze the implementations
and determine which part of the implementation used the most memory or
was slowest in terms of decoding.
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4.4.1 Object Size

The implemented encoders were used to encode the inputs (input 1, input 2,
input 3) discussed in section A in the corresponding formats. It is important
to measure the object size because this is the message the relying party
receives from the verifier. Hence, it affects the bandwidth, the receiving buffer
in the device, and maybe even the file system if the attestation results are to
be stored. Table 4.1 compares the attestation result encoding size for each of
the three formats. The JSON object has the biggest size in comparison to the

Input
Encoding size [bytes]

ASN.1 DER CBOR JSON
Input 1: baseline 203 209 753
Input 2: two attesters 309 291 1,132
Input 3: raw evidence 443 448 991

Table 4.1: Encoding size for attestation results.

other formats as it is text-based. One interesting observation is that, unlike
the other formats, it performs better when encoding a large raw evidence
value than when encoding an additional attester. The reason behind this is
that it encodes each character in the JSON object hence adding an additional
map in input 2 increased the size of the stored object. ASN.1 and CBOR
have better and more efficient encodings for input 2 as it does not have to
store the additional map as is and can optimize the integer encoding for the
trustworthiness vector. The size difference between ASN.1 and CBOR is not
substantial as they differ in a few number of bytes. CBOR performs better
when encoding an additional trustworthiness vector because it requires 2
bytes (key, value) for each claim while ASN.1 requires 3 bytes (tag, length,
value). It is important to note that CBOR has additional bytes used to
include the key and other attributes like data length as it is an unstructured
binary serialization.

Binary serialization techniques do not perform any modifications to the
encoding of strings. Therefore, adding strings or larger strings leads to in-
creasing the size of the objects by the corresponding string size regardless
of the format in use. In fact, binary serialization might actually need more
bytes to encode the length of the string. Therefore, the difference between
input 1 and input 3 encoding for the JSON object is just the size of the raw
evidence. Whereas in CBOR, there is an additional byte for representing
the length of the raw evidence. Furthermore, the bigger the string, the more
bytes ASN.1 and CBOR would need to encode the string length.
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An additional point to note about Input 3 is that it contains a large
base64-encoded string. Binary data is usually represented in base64 in JSON,
as well as other text-based formats. Base64 encoded data tend to increase
the output size by at least 33% of the size of the original data [54]. This
raw evidence string can, in fact, be represented in ASN.1 DER and CBOR
as an array of bytes, which would lead to smaller encoding size and possibly
faster execution time. The raw evidence field is represented as string in all
formats to measure how the behavior differs when encoding strings in binary
and text-based serializations. Measuring raw evidence as a string led to
the observation that an additional benchmarking input, with a large binary
array, can be insightful when comparing how different serializations handle
different data types.

4.4.2 Processing Speed

In order to guarantee the accuracy of the application measurements, all the
applications are compiled with the same flags designed for optimizing code
speed. The optimization flag “-O3” generally optimizes for code speed at the
expense of code size by, for example, unrolling loop instructions. In addition,
as mentioned in section 4.3.1, all applications are run in the same environ-
ment on the same device. Table 4.2 displays the results of the decoding speed
of the three inputs under investigation. The decoding speed is important be-
cause it is part of the code that will be running in relying parties. The encod-
ing speed results are shown in table 4.3 for the sake of providing a complete
comparison. The tables state the time for 100,000 decoding and encoding op-
erations respectively. The JSON implementation for decoding is the fastest

Input
Decoding time [ms]

ASN.1 DER CBOR JSON
Input 1: baseline 50 203 44
Input 2: two attesters 82 305 67
Input 3: raw evidence 50 213 48

Table 4.2: Decoding time for 100,000 iterations in milliseconds

and ASN.1 is closely behind. ASN.1 decoding time did not get affected by
the large raw evidence input. Valgrind [60] was used to study the large time
difference between CBOR and the other formats. Due to the nested con-
tainer structure of attestation results, the method cbor_value_advance has
to recurse and thus it utilizes half of the time of the decoding. The other
method used in the implementation is cbor_value_dup_string which copies
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the string to the desired attribute using memory allocation. While memory
allocation does take 17% of the entire time, the remaining processing time
is spent to advance the CBOR object pointer. Hence, the bottleneck of the
CBOR implementation comes from the recursive function used to iterate
over the CBOR object and the time it takes to pre-parse the next value.
The function json_object_get utilized the most time in the JSON appli-
cation. In addition, the function htls_buf_read_asn1_der_tlv_check_tag

which parses the TLV encodings of ASN.1 values utilized the most time in
the ASN.1 DER implementation. This behavior is expected of the imple-
mentations.

Input
Encoding time [ms]

ASN.1 DER CBOR JSON
Input 1: baseline 65 67 116
Input 2: two attesters 102 106 195
Input 3: raw evidence 100 70 143

Table 4.3: Encoding time for 100,000 iterations in milliseconds

The encoding time for JSON is the longest of the three formats. ASN.1
performed the best in the baseline input and the one with two attesters. It
was slower in encoding input 3 that contains a large string. Overall, CBOR
has the best performance when encoding attestation result objects as its per-
formance is almost constant regardless of the size of the strings. In addition,
it performs almost as fast as ASN.1 in input 2 with two attesters. However,
as mentioned earlier, constrained relying parties only need to decode the
attestation results.

4.4.3 Memory Consumption

There are several factors to consider when measuring the memory consump-
tion of an application. Each application has its own memory layout that
contains segments like text, heap, and stack [19]. The functionality of each
segment is as follows:

1. Text: stores the application code that is being executed.

2. Heap: The dynamic memory that the application allocates during ex-
ecution.

3. Stack: The local variables being used in the program.
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In order to measure each parameter, the “size” command is used to determine
the text code size of the applications. The optimization flag “-Os” is used
during compiling the applications in order to optimize the applications’ code
size. The heap and stack are measured using the Massif tool in Valgrind.
Massif is a heap profiler that measures how much heap space a program uti-
lizes. In addition, it can also measure the size of a program’s stack. Since
this tool requires the program to execute, the encoding and decoding appli-
cations use the baseline input (input 1) for measurements. Furthermore, the
encoding and decoding functionality for each format is separated to accu-
rately simulate the application size that would be in the relying party. One
important note to mention is that, aside from the encoding and decoding
code, all other methods are implemented in the same manner and perform
the exact functionality. Therefore, while the memory consumption of the
entire applications is measured, the changing factor belongs to the encoding
and decoding of the formats. Table 4.4 shows the code, heap, and stack size
of each of the encoding applications. While table 4.5 shows the same metrics
for the decoding application which is more relevant to the constrained relying
party use case.

Metrics
Encoding memory consumption [bytes]
ASN.1 DER CBOR JSON

Text 10008 4397 4319
Heap 5624 5624 8392
Stack 10032 8440 10264

Table 4.4: Memory allocation of encoding application.

Metrics
Decoding memory consumption [bytes]
ASN.1 DER CBOR JSON

Text 12003 7612 7762
Heap 5840 4824 5368
Stack 9808 7832 8904

Table 4.5: Memory allocation of decoding application.

The recorded heap and stack values are the maximum value each pa-
rameter reached during program execution. CBOR has the lowest memory
footprint when it comes to encoding and decoding, while ASN.1 has the
highest footprint. Overall there is no major difference in memory allocation
between the different implementations as they differ only in a few kilobytes.
In addition, the core functionality of encoding and decoding is implemented



CHAPTER 4. IMPLEMENTATION AND BENCHMARKING 60

in all the formats. After decoding, the actual application in the relying party
would perform additional operations that do not depend on the encoding
format, like verifying the status or trustworthiness claims.

4.5 Analysis

The implementations for the three formats were compared in terms of en-
coding size, encoding speed, decoding speed, and various memory allocation
parameters. Table 4.6 shows the formats’ performance in each of the metrics.
The encoding size and speed measurements are the average over the three
inputs. While the memory consumption measurements are the sum of the
text and heap memory. The reason text and heap are chosen (and not stack)
is that the text is the actual assembly code of the program loaded in memory
and the heap is the memory that was dynamically allocated during program
execution. On the other hand, the stack is usually associated with static
memory allocation because the stack size limit is assigned by the operating
system and if this limit is reached the program terminates. Therefore, code
size and heap are a more accurate representation of the memory needed to
run the encoders and decoders.

It is important to note that the table compares the average performances
and that the behavior of a format differed depending on the type of in-
put being encoded and decoded. Some formats performed better with large
strings (Input 3) while others performed better with additional maps (Input
2). Therefore, the choice of the format should take into consideration the
type of data required for encoding and more specifically decoding.

Metric ASN.1 DER CBOR JSON
Encoding size [bytes] 318 316 959
Encoding speed [ms] 89 81 151
Decoding speed [ms] 61 240 53
Encoding memory
consumption [bytes]

15632 10021 12711

Decoding memory
consumption [bytes]

17843 12436 13130

Table 4.6: Summary of formats’ performance.

According to the results presented in table 4.6, on average, both ASN.1
DER and CBOR have a much smaller encoding size than JSON. Therefore,
if the application is constrained in terms of buffer size or storage size, then
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JSON might not be a suitable option. On the other hand, compared to
ASN.1 and CBOR, JSON has the fastest average decoding speed. Hence,
an application that wants fast decoding should most probably utilize JSON.
These calculations were done over 100,000 decoding iterations. The time it
would take to decode a single object is much smaller. Therefore, the time
difference might not be an important factor if just a single object is being
decoded. One other point to note is that even though JSON has the fastest
decoding time, more time will be spent in transmission and reception due to
its relatively large size.

The format with the fastest decoding speed (JSON) is different than the
format with the fastest encoding speed (CBOR). Therefore, if the perfor-
mance of the encoding speed is important, then CBOR or ASN.1 are a more
suitable choice than JSON. Furthermore, CBOR applications have the lowest
memory consumption on average for both the encoding and decoding appli-
cations. If RAM size is the bottleneck in a device, then CBOR is the most
suitable format. Overall, CBOR is the most suitable format in an attestation
environment where the relying party is a constrained device that needs to
parse the attestation result object. While its decoding speed is slower than
that of ASN.1 and JSON, it has the lowest code footprint and the smallest
message size.

Aside from performance, there are several other points that are worth
analyzing when it comes to choosing a format. These points were faced during
the implementation and affect the application usage and maintainability. As
mentioned in section 4.3.3, the ASN.1 schema for attestation results needed
to be implemented before any encoding or decoding could be done. This
schema needs to be maintained and any changes to the attestation result
objects will render the encoding and/or decoding code useless as the code
expects a specific structure. Therefore, modifications to the object needs
changing to the schema, encoding, and decoding rules. One other difficulty
faced when implementing the ASN.1 decoding is checking for optional fields
because there are no specified tags for each encoded item. In short, ASN.1
DER tends to have additional implementation overhead than other formats
and might not be backwards compatible with older versions of the schema.

The CBOR encoding size significantly improves when the keys in the key-
value pairs are integers, a feature not possible in JSON. The downside of this
improvement is that there should be a mapping between the integer key value
and the actual information it represents. This mapping adds some overhead
when communicating the encoded messages since even though CBOR is an
unstructured binary serialization, the mapping needs to be communicated in
all applications performing encoding and decoding. Unlike ASN.1, JSON and
CBOR are usually backwards compatible where older decoders and encoders
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can still work even when new values are added to the object.
An important consideration is the availability of the library in the target

platform. It is also important to choose a library that has been extensively
tested so that no library-related problems are faced during production.

Finally, based on the benchmarks and kinds of inputs, it is shown that
the text-based serialization is actually comparable to the binary serializations
when it comes to encoding speed, decoding speed, and code footprint. Most
of the work surveyed in section 3.3 showed that binary serialization is faster
than text-based. But the results derived here show that JSON is the fastest,
at least in decoding speed. There are several factors that could contribute to
such an outcome like the libraries used and the kind of data being encoded.
Some online benchmarks [47, 66] have also reported that JSON was faster,
at least in decoding, than several binary serializations. Therefore, the gen-
eralized assumption that binary serializations are faster is not accurate at
least in the case of attestation results. On the other hand, the encoding size
of binary serialization does tend to be smaller.

The number of strings used in the benchmark inputs could be one factor
contributing to the comparable performances of JSON to the binary for-
mats. The more strings used, the more similar the results of the different
serializations are, since strings are encoded in the same manner and binary
serializations use the same encoding (1 byte per character). It is important to
note that while the raw evidence was represented as a base64 string, it could
have been represented as an array of bytes in CBOR and ASN.1 DER which
would lead to different results. It could also be observed that the binary
serializations were more efficient when encoding integers compared to the
text-based serializations because binary serializations have different rules for
integer encoding. This is evident in section 4.4.1 where adding an additional
attester object with more integer measurements led to significantly smaller
sizes in ASN.1 and CBOR than in JSON. In other words, the type of data
being encoded is an important factor to consider when choosing a format.



Chapter 5

Attestation Protocol for Cons-
trained RP

To the best of our knowledge, there are no protocols in the literature that
consider the case where the relying party is constrained. In the era of IoT, we
are surrounded by numerous resource-constrained devices. Even those small
devices need to verify the integrity of the device it is communicating with
in order to reduce the possibility of attacks in IoT applications. Therefore,
there is a need for a lightweight and efficient protocol that allows a cons-
trained relying party to validate and authenticate a device before interacting
with it. This chapter introduces and formally verifies the Attestation Proto-
col for Constrained Relying party–Live Passport Model (APCR-LPM) which
is a lightweight and resource efficient protocol for communicating attestation
evidence and results. One key design choice in this protocol is the use of
only symmetric key-cryptography in the relying party. This ensures that any
kind of device acting as a relying party can deploy the protocol without re-
quiring any special hardware capabilities. This chapter introduces the initial
version of the APCR-LPM protocol, discusses the attack found using formal
verification, and presents the improved version of APCR-LPM.

5.1 System Model

We consider an environment where the entity that wants a proof of authen-
ticity, the relying party, is a constrained device. Therefore, the protocol
describes how other entities in the attestation procedure interact and re-
lay information to the relying party. The protocol consists of the following
entities:

• Relying Party RP : The relying party is a constrained device that wants
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to evaluate the trustworthiness of a device it is communicating with.
This device has a small memory, may be too constrained to establish
more than one connection at the same time, and might not have the
buffer or processing capacity to receive and verify evidence. In addition,
the relying party cannot perform public key cryptography. On the
other hand, it can do symmetric key cryptography and generate 128-
bit pseudorandom numbers.

• Attester A: The attester is a non-constrained device, e.g. a smart-
phone, that wants to prove its trustworthiness to the relying party. It
must at least contain a Trusted Execution Environment (TEE) (see
chapter 2) and be able to perform public key cryptography. We as-
sume that the attester generates evidence or metrics that the verifier
can understand. In addition, the TEE provides key attestation of a key
that is stored in the TEE and cannot be extracted.

• Verifier V : The verifier is also a non-constrained (trustworthy) device.
It can be a cloud server, for example. The purpose of the verifier is
to validate or appraise the evidence sent by the attester. The verifier
has a policy according to which it appraises the received evidence. The
policy is agreed between RP and A. After appraising the evidence, the
verifier sends the attestation results to the relying party.

5.2 Adversary Model

We assume an active attacker model with Dolev-Yao [23] capabilities. The
adversary can read, intercept, insert, and modify the messages exchanged by
the parties in the protocol. However, the attacker is not able to break or guess
the key unless explicitly stated. In other words, cryptography is assumed to
be perfect. In addition, the attacker might perform physical attacks on some
of the participants. More specifically, the attacker can compromise the REE
1 part of the attester. The attacker can also play a role of another relying
party towards the attester. Possible goals of the attacker include:

• Falsifying the attestation evidence and making the verifier accept the
falsified metrics.

• Using some other device to generate evidence that the relying party
would accept as genuine.

1The Rich Execution Environment (REE) refers to the normal mode of operation, i.e,
the normal state of the CPU and the software that runs in that security state. It can be
considered the non-TEE part of the device.
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Assumptions

• The attacker cannot compromise Verifier V .

• The attacker cannot compromise the TEE of the concerned attester.

• The attacker can use genuine parties RP or A as oracles.

• The attacker can pretend to be any of the participating entities.

5.3 Security Requirements

• Freshness: Participants should be able to detect whether the messages
being sent belong to an old or different run of the protocol. Freshness
mechanisms can prevent replay attacks where an attacker repeats an
old message that will lead the verifier or relying party to accept. In
other words, freshness is necessary because it reflects the state of the
attester such that the verifier does not accept old metrics that might
not be representative of the current attester state.

• Data Origin Authentication: Participants should be able to verify that
a message has been generated by a particular entity.

• Message Integrity: Participants should be able to detect if the attacker
has corrupted or modified any of the messages sent in the protocol.

5.4 Protocol Description

APCR-LPM is a low-resource and lightweight protocol proposed by Huawei’s
Helsinki System Security Lab that enables small devices to evaluate the trust-
worthiness of the device it is communicating with. It uses the passport model
discussed in section 2.2.2. In addition, all the cryptographic primitives and
remote attestation terms are highlighted in section 2.2. APCR-LPM as-
sumes that a key distribution protocol has taken place beforehand. This
key distribution protocol can be conducted only once and is independent
of APCR-LPM. Figure 5.1 illustrates the protocol and the interactions be-
tween its participants. In addition, table 5.1 explains the notation used in
the protocol.
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RP

Keys: KA, KV

V

Keys: KV, PKA

A

Keys: KA, (SKA, PKA) 

   
   c ← rand({0, 1}128)
   h ← hash(KA)*

   Cha ← senc((c,h), KV)

a

   
   h ← hash(KA)
   AK(KA) ← attestKey(h)
   MA ← collectAttestationMetrics(A)
   Ev ← sign((MA, AK(KA), Cha), SKA)

b

   
   (MA, AK(KA), Cha) ← checksig(Ev, PKA)
   (c, hCha) ← sdec(Cha, KV)
   h ← validateKeyAttestation(AK(KA))
   if (h = hCha)
        RA ← validateEvidence(Ev)
    Res ← senc((RA, c, hCha), KV)

1. Cha

2. Ev

c

3. Res
4. Res

   
   (RA, cRes, hRes) ← sdec(Res, KV)
   if (c = cRes and h = hRes)
        {0, 1} ← validateAttestationResult(RA)

d

Communication secured by KA

Figure 5.1: The initial protocol.

(*) The hash should be computed once when the RP receives key KA

5.4.1 Initial State

At the start of the protocol, the relying party has symmetric keys KA, KV

shared with the attester and verifier, respectively. The RP also has the hash
of the key KA. In addition, the attester has a private/public key pair which
is used to authenticate the attester to the verifier, i.e., the verifier knows the
attester’s public key.
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5.4.2 Description of Initial Protocol

In order to understand the attack found using formal verification, the initial
version of APCR-LPM must first be explained and the formal modelling dis-
cussed. The explanation and purpose of each of the steps illustrated in figure
5.1 are as follows:

Step a: the relying party prepares the challenge it will send to the attester
by generating the nonce c. The RP then encrypts using KV the nonce and
the hash of the key KA it shares with the attester. The nonce c acts as a
session identifier as well as a freshness value. The value h is the identity of
a specific attester that the RP wants to verify.

Message 1: The RP sends the challenge to the attester. The attester
cannot parse or determine the contents of the message as it is encrypted
with a key that it does not know.

Step b: The attester collects the attestation metrics of the device and per-
forms key attestation on the stored key KA. The key attestation is used as
an indicator of the identity of A. By including the key attestation, the TEE
vouches that KA cannot be extracted from A. The collected attestation met-
rics are in an agreed upon format that the verifier can parse and understand.

Message 2: The attester signs the metrics, the key attestation, and the
challenge it has received from the RP using its private key to produce at-
testation evidence. The signing allows the verifier to know and authenticate
the identity of the attester it has received the evidence from.

Step 3: The verifier first verifies the signature of the evidence coming from
A and decrypts the challenge to extract c and h. Then, it verifies the key at-
testation and ensures the values of h sent by the RP and A are equal. If any
of those steps fail, the verifier does not complete the protocol or respond to
A. Based on the metrics, the verifier generates a verdict or attestation result
for the relying party. The RP can then use the verdict to decide whether the
attester is trustworthy or not.

Message 3: The verifier sends the attester the attestation results together
with the nonce c and hCha. The message is encrypted with KV , hence the
attester is not able to read the contents of the message. The hash hCha is
included in the message as an indicator to the relying party that the verifier
has verified the evidence of the attester with identity hCha. It also includes
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the decrypted challenge c, hCha to maintain freshness of message and to indi-
cate to the relying party that the intended verifier has received the challenge
and decrypted it.

Message 4: The attester forwards Message 3 to the RP unchanged. The
verifier does not send it directly to RP in order to limit the number of end-
points that the relying party needs to know.

Step d: The relying party decrypts the received message and checks that
the values of cRes and hRes are equal to the ones it sent in the challenge. The
relying party can then process the attestation result and determine whether
to trust the attester or not.

Subsequent communication between the relying party and attester can be
secured using KA. This communication depends on the application where
the relying party and attester are deployed. APCR-LPM allows the relying
party to authenticate the attester and verifier using only symmetric cryptog-
raphy. In addition, the protocol only requires the relying party to establish
a single connection making it suitable for small and limited IoT devices.
Furthermore, using this protocol, the relying party is able to verify the au-
thenticity or trustworthiness of a device by sending a single message that is
minimal in the size of bits.
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Term Description

RP
the relying party, a small device
that wants to evaluate A

A

the attester, an unconstrained
device that wants a resource or
data from RP

V
the verifier, an unconstrained
device that evaluates A for RP

KA

shared symmetric key
between A and RP

KV

shared symmetric key
between V and RP

SKA secret key of the attester
PKA public key of the attester
h the hash of KA

c a 128-bit pseudorandom value

MA

the attestation metrics/claims
produced by the attester

RA

the attestation result produced
by the verifier

Procedure Description

r ← rand({0, 1}128)
generating pseudorandom
bitstrings of 128 bits

c← senc(m,K)
symmetric encryption of
message m with key K

m← sdec(c,K)
symmetric decryption of
ciphertext c with key K

sig ← sign(m,SK)
signing the message m with
secret key SK

m← checksig(sig, PK)
verifying the signature with
the public key PK

h← hash(m) computing the hash of value m

AK(K)← attestKey(h)
key attestation of key K that
is protected by device TEE

h← validateKeyAttestation(AK(K))
validates that key K is coming
from device TEE

M ← collectAttestationMetric(E)
compute the attestation metric
of entity E

R← validateEvidence(Ev)
compute attestation results R
based on evidence Ev

{0, 1} ← validateAttestationResult(R)
determine trustworthiness based
on the attestation results R

Table 5.1: Notation used in APCR-LPM
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5.5 Formal Verification of APCR-LPM

Formal verification is the process of modelling a system or component–in our
case a communication protocol–using mathematical structures to prove the
correctness of the system. Formal verification of protocols can help uncover
attacks that might go unnoticed as protocol verification tools can simulate
unbounded number of protocol sessions and different kinds of attacks on the
protocol. Formal verification has been used to evaluate and discover some
vulnerabilities in well-known protocols such as TLS 1.3 [11] and Signal [50].

5.5.1 Modelling with ProVerif

ProVerif [15] was used for modelling APCR-LPM as it provides flexibility in
defining functions and actions. ProVerif is a tool that is used for analyzing
the security of cryptographic protocols. It can test the protocol for different
security properties like confidentiality, authenticity, integrity, privacy, and
traceability. In order to test the desired security properties, a security query
describing the property is specified in the ProVerif model. Then, ProVerif
explores all possible execution paths of the protocol trying to find a path
that will make the query fail. In addition, ProVerif assumes the Dolev-
Yao attacker model and can perform replay, man-in-the-middle and spoofing
(impersonation) attacks [15]. Hence, it aligns with our assumed adversary
model discussion in 5.2.

Formulating the model of APCR-LPM in ProVerif was divided into two
steps; the first step was modeling the behavior of the protocol and the second
was defining the security queries. In the first step the cryptographic primi-
tives and the actions that each of the participants performs throughout a run
of the protocol were specified. The second step, which is a far more difficult
task, was to correctly define the security requirements of the protocol for
ProVerif to test.

5.5.2 Modeling Participants’ Behavior

Modeling the protocol participants and their behavior can further be divided
into 3 steps: defining the data types, defining the functions/constructors,
and finally specifying the interactions.

Types: ProVerif’s input language is strongly typed with a finite set of
pre-defined types. If a user wants to use a type that is not part of this
pre-defined set, like key or nonce, then they must declare them. In addition,
all functions are defined by their input and output types. Types help enforce
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stricter rules on functions as they constrain the kind of input functions can
take. The APCR-LPM ProVerif model has 4 defined types which correspond
to the shared symmetric keys, SKA, PKA, and c described in table 5.1.

type nonce.

type key.

type skey.

type pkey.

(5.1)

In addition, The APCR-LPM ProVerif model also uses the built-in types
bitstring and channel. The bitstring type is used for all inputs that are
generic, like messages. The channel type is used to indicate a communi-
cation channel. Our model specifies only a single public channel ‘network’
free network : channel. which is used for communication. This channel is
globally known and part of the attacker’s knowledge. The attacker can listen
to and intercept the messages sent through the channel.

Functions: Constructors, or function symbols, are used to build crypto-
graphic primitives and relationships between (different) subjects in the pro-
tocol. The constructor is a function that defines a behavior based on input
and output types. For example, to model symmetric encryption, the con-
structor senc, specified in definition 5.2, takes as input a bitstring (message)
and key and returns a bitstring (ciphertext). Destructors, on the other hand,
take as input constructors as well as other types, and return a constructor
input. The sdec function, specified in definition 5.2, is an example of a de-
structor. sdec specifies that for any message m inserted as input in senc, if
the same key is used in both senc and sdec, the same message is returned in
sdec. Destructors are named that way because they break down the input
parameters of constructors to output one of those parameters.

fun senc(bitstring, key) : bitstring.

reduc forall m : bitstring, k : key; sdec(senc(m, k), k) = m.
(5.2)

Equivalently, a similar definition of asymmetric encryption can be formu-
lated. The function pk is used to model the relationship between the private
and public keys where the public key is defined as a function of the private
key. Formulating the cryptographic primitives this way allows to abstract the
inner workings of cryptography and to treat the algorithm as a black box.
APCR-LPM requires symmetric encryption in the RP and signing with pub-
lic key cryptography in the attester. Therefore, definitions 5.2 and 5.3 are
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used in the APCR-LPM ProVerif Model.

fun pk(skey) : pkey.

fun sign(bitstring, skey) : bitstring.

reduc forall m : bitstring, k : skey; checksign(sign(m, k), pk(k)) = m.

(5.3)
Interactions: The final step is to specify the participants’ interaction in
the protocol. ProVerif has specific functions in and out used to receive input
from and send output to the network respectively. In turn, the attacker
knows when a party is expecting an input and when it is sending an output.
Essentially, receiving a message is just waiting on the ′in′ interface where an
attacker maybe the one sending the message. Furthermore, when sending
a message, the party does not specify to which entity it is directed at; the
attacker tries all possible combinations and some of those combinations are
the intended protocol flow. In essence, the attacker is the one transmitting
the messages, as per the Dolev-Yao model.

Modelling the different protocol participants can now be easily done by
using the concepts of types, constructors, destructors and interactions. For
example, the following piece of code in definition 5.4 describes step a and
message 1 in figure 5.1. The relying party generates a new pseudorandom
number (specified with keyword new) c of type nonce. It then computes h

and generates Cha which is the encryption of c and h using key KV . Then,
the relying party sends Cha over the network.

new c : nonce;

let h = hash(KA) in

let Cha = senc((c, h), KV ) in

out(network, Cha);

(5.4)

The full ProVerif code containing all steps and messages of the different
parties can be found in appendix C.1. ProVerif allows running multiple in-
stances of participants in parallel. Therefore, there may in principle be an
unbounded number of sessions running in parallel between the relying party,
attester and verifier. However, there are only multiple sessions, not multiple
relying parties, attesters and verifiers.

Modeling Challenges: There were some challenges in modeling the re-
mote attestation related assumptions in ProVerif. Primarily, the attester’s
TEE is an environment that is trusted but an attacker can still compromise
the REE. This involves modeling part of the attester as trustworthy and part
as untrustworthy. In addition, it is difficult to formulate the key attestation
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AK(KA) which is a guarantee from the attester’s TEE that KA cannot be
extracted.

One solution to this problem is to split the attester into two entities and
create a private channel between them. Another solution would be to accept
some input from the network, essentially from the attacker, and let MA be
a function of that input. The key attestation would then be produced by
the trustworthy entity. We simplified the modeling by assuming that the
attester is a trustworthy participant in the protocol, essentially modeling
only the functionality of the TEE. The motivation behind this is that the
protocol’s security should be independent from the content of the metricsMA.
Therefore, validating the metrics is left to the procedures validateEvidence

and validateAttestationResults.
One other challenge is the way to model the attestation metrics MA.

MA must adhere to the format agreed upon by the attester and verifier.
Therefore, the structure of the data found in the metrics is not changing
or random as it must adhere to a certain format. In addition, if the state
of the attester remains the same, multiple runs of the protocol can result
in the exact same value of MA. Modeling such a behavior, where the data
is not always new and not always constant, in ProVerif is difficult. In this
formulation, MA is modeled as a changing value which is more similar to
attestation metrics in practice than modeling it as a constant value.

5.5.3 Defining Security Queries

Now that the behavior of the participants has been modeled, the remaining
step is defining the security queries that ProVerif uses to test the proto-
col. ProVerif uses symbolic model checking2 to try to reach a state where
a security query is not satisfied. It is important to correctly represent the
protocol’s security requirements in terms of security queries for ProVerif to
prove. The queries used in APCR-LPM use ProVerif events and the Injective
Correspondence property described below:

1. Events: The processes in ProVerif (in this case the relying party, at-
tester, and verifier) are annotated with events that mark important
stages reached by the protocol. These events do not affect the behavior
of the protocol, they are just indicators that the protocol has reached
a particular step. There are four events defined in the APCR-LPM

2Model checking is a technique used to check whether all possible states of a system
satisfy certain conditions. Symbolic model checking is a type of model checking used
to handle state-space explosions by representing the system as sets of states and sets of
transitions instead of listing all possible states and transitions [10].
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model.
event relyingPartyBegins(KV , KA, c);

event attesterBegins(PKA, KA,MA);

event verifierAccepts(PKA, KV ,MA, c);

event relyingPartyAccepts(KV , KA, c, RA);

(5.5)

The first event signals that the relying party has started a run of the
protocol with the parameters KV , KA, and c. The second event in-
dicates that the attester has received a message (Cha) and collected
its attestation metrics. The third event signifies that the verifier has
received the message (Ev) and verified the key attestation. Finally,
the last event represents a state where the relying party has received a
message (Res) and verified that the values of c and h it has received is
equal to the ones it has sent.

2. Injective Correspondence: Correspondence in ProVerif is a way to de-
termine the relationship between the events. ProVerif also introduces
injective correspondence for specifying that a one-to-one relation be-
tween the number of protocol runs performed by each process is desired.
In the APCR-LPM model, injective correspondence is used to specify
that the relying party will not accept attestation results RA unless
there are distinct earlier events where the relying party has issued a
challenge, the attester collected its metrics, and the verifier validated
said metrics.

There are two security queries specified for APCR-LPM model. The first
is used to test the secrecy of the attestation result RA and the second is
used to test the authentication and integrity of the protocol. The first query
5.6 states that the events of the attacker acquiring RA and the relying party
accepting RA cannot happen in the same protocol run. Note that the secrecy
of RA is not a security requirement. This query was added to demonstrate
the effects of the relationship between the metrics MA and attestation results
RA.

query KA : key,KV : key, RA : bitstring, c : nonce;

attacker(RA) && event(relyingPartyAccepts(KV , KA, c, RA)) =⇒ false.

(5.6)
The second query 5.7 specifies the injective correspondence between the event
of the relying party accepting RA and all other events in the protocol. The
relying party will only accept the protocol run if there has been a previous
run where it initiated the protocol by sending Cha, the attester has accepted
this Cha and collected attestation metrics MA, and the verifier has received
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MA and decrypted Cha. There is an added constraint as well on the relation
between the metrics MA and the attestation results RA.

query PKA : pkey,KA : key,KV : key, RA : bitstring, c : nonce,

h : bitstring,MA : bitstring, Cha : bitstring;

inj − event(relyingPartyAccepts(KV , KA, c, RA))

=⇒ inj − event(relyingPartyBegins(KV , KA, c)) &&

inj − event(attesterBegins(PKA, KA,MA, Cha)) &&

inj − event(verifierAccepts(PKA, KV ,MA, c, h)) &&

h = hash(KA) &&

RA = validateEvidence(MA) &&

Cha = senc((c, h), KV ).

(5.7)

This query models the security requirements (section 5.3) by including c in
the events for freshness, the keys for data origin authentication and MA and
RA for integrity. The metrics MA is matched to both the attester and verifier
event and the relying party will not accept the final message unless RA is a
function of MA and it has received back the encrypted c and h it used in the
first message.

5.5.4 Query Results

For the query defined in 5.6 the attacker was able to determine the contents of
RA. The reason is that the attestation evidence is signed but not encrypted.
Therefore, the attacker can easily derive the attestation results RA by ap-
plying the function validateEvidence. The secrecy of the attestation result
is not a security requirement, but the query highlights how the attestation
parameters have an influence on the security of the protocol and whether the
metrics should be confidential or not.

Since APCR-LPM is a simple protocol, ProVerif is able to check all possi-
ble protocol states and terminate. ProVerif did not find an attack against the
query defined in 5.7. Therefore, at least when there is only one relying party,
one attester, and one verifier, the protocol satisfies the security requirements.
Logically, the next step is to introduce more than one attester and evaluate
how the protocol behaves in this situation.

5.5.5 Introducing another Attester

To introduce another attester to the ProVerif model, a new symmetric key
KA2

, a new asymmetric key pair SKA2
, PKA2

, and a new attester process
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with those keys were added to the model. There were no attacks on the
protocol when allowing the relying party and verifier to have sessions with
both attesters. However, a question arises of what will happen if one at-
tester is compromised, i.e. has its TEE broken and its private key leaked.
Naturally, if the relying party wants to verify this corrupted attester, an at-
tacker can generate its own metrics MA2

and use the leaked private key to
sign the evidence. It is important to verify that this compromised attester
will not affect the security of the protocol between the relying party and the
uncompromised attester.

The model needs to be refined to represent the corrupted attester and the
security query 5.7 should be updated to test the security of the uncorrupted
attester. In other words, ProVerif should verify that the security query for
the uncorrupted attester still holds. The following changes in the model are
required in order to introduce a compromised attester and refine the query to
verify the security of the protocol when there is a corrupted attacker present.

1. The main process now initializes a new key KA2
and a public/private

key pair PKA2
, SKA2

that represents the new attester A2.

2. The main process leaks A2’s private key SKA2
to the network. This

action simulates a corrupted attester in the network as its private key
is now known by the attacker.

3. An event ‘attesterCorrupted(KA)’ is defined in order to identify the
corrupted attester by binding the event to the attester’s identity KA.

4. Query 5.7 is updated to enable ProVerif to test for the security of the
protocol for an uncompromised attester. Query 5.8 now states that the
relying party will only accept Res either from a compromised attester,
annotated by the event attesterCorrupted or by the conjunction of
events discussed in section 5.5.3. This formulation allows to test the
security of only the authentic attester since in the case of the com-
promised attester event(attesterCorrupted(KA)) will always be true.
If this event was not present, the query will always be false because
of the trivial reason that the attacker can fake signatures when the
relying party wants to verify the compromised attester. Adding this
event allows testing the non-trivial case where the relying party wants
to verify an uncompromised attester. The ProVerif model for adding a
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new attester and refining the query can be found in the appendix C.2.

query PKA : pkey,KA : key,KV : key, RA : bitstring, c : nonce,

h : bitstring,MA : bitstring, Cha : bitstring;

inj − event(relyingPartyAccepts(KV , KA, c, RA))

=⇒ event(attesterCorrupted(KA)) ||

(inj − event(relyingPartyBegins(KV , KA, c)) &&

inj − event(attesterBegins(PKA, KA,MA, Cha)) &&

inj − event(verifierAccepts(PKA, KV ,MA, c, h)) &&

h = hash(KA) &&

RA = validateEvidence(MA) &&

Cha = senc((c, h), KV )).
(5.8)

5.5.6 Attack Description

ProVerif discovered an attack on the uncompromised attester A. When the
relying party sends a challenge to A, the attacker can generate its own at-
testation metrics and sign the challenge with the compromised private key
of the attester A2. The verifier receives the signed signature and verifies the
signature as it knows the ‘trusted’ public key of the attester. Then it veri-
fies the rest of the message as done in step c in section 5.4.2. The relying
party will then accept the attestation result sent by the verifier assuming
the verifier has validated the correct metrics of attester A, while in fact it
was the attacker that generated the metrics. A visual representation of the
attack is found in figure 5.2. As shown in the figure, the attacker intercepts
message 2 intended for the verifier to acquire AK(KA) and Cha. Then it
forges the attestation metrics, signs evidence Ev’ with the compromised key
and sends it to the verifier. The verifier has no binding between the identity
h and the public key. Therefore, it verifies the signature using the public key
that belongs to a different attester; then it compares the key attestation with
the value sent in Cha. All the checks in the verifier pass, and it generates
attestation results based on those forged metrics. It is important to note
that only the steps that demonstrate a different behavior from the original
protocol were specified in figure 5.2.

The reason that this attack is possible is that there is no connection
between the how the relying party identifies the attester and how the verifier
identifies the attester. The relying party uses h for identification while the
verifier uses the public key PKA where there is no tie between both values.
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V

Keys: KV, PKA, PKA2

2. Ev

Attacker

Keys: (SKA2, PKA2) 

1. Cha

5. Res

3. Ev'

AK(KA), Cha ← read(Ev)
MA' ← forgeAttestationMetrics()
Ev' ← sign((MA', AK(KA), Cha), SKA2)

6. Res

4. Res

RP

Keys: KA, KV

A

Keys: KA, (SKA, PKA) 

 (MA', AK(KA), Cha) ← checksig(Ev', PKA2)
 (c, hCha) ← sdec(Cha, KV)
  h ← validateKeyAttestation(AK(KA))
   if (h = hCha)
        RA ← validateEvidence(Ev')
        Res ← senc((RA, c, hCha), KV)

Figure 5.2: The attack by a compromised attester on APCR-LPM.

In addition, the messages don’t include the parties intended and rely on the
keys for authentication. There are several ways to fix the protocol including
encryption, self-certifying public keys and certificates.

5.6 Improving the Protocol

A correlation between how RP and V identify A is needed in order to prevent
the attack from being carried out. One common solution to this problem
is introducing certificates where the identity h is bound to the public key
PKA. However, this adds another dimension to this protocol by introducing
certificate management. Another solution, illustrated in figure 5.3, is that the
identifier used by the relying party to specify the attester can be a function
of A’s public key. The benefits of this solution include:

1. Minimal changes to the original protocol as instead of having h a func-
tion of KA, RP now has an identifier of A that is a function of both
KA and PKA.

2. No additional assumptions, like a certificate authority, is needed to
implement the solution.
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3. The simplistic nature of the protocol is unchanged as there is no addi-
tional cryptography used. In addition, the messages size and content
remain the same.

4. The relying party does not need to know how the identifier id is gen-
erated, it can just be a value used to identify A.

5. No additional functionality is required from the attester under evalua-
tion.

6. The identification of attester A from the relying party’s perspective can
now be validated by the verifier.

   
   c ← rand({0,1}128)
   Cha ← senc((c, id), KV)

RP
Keys: KA, KV 
id ← hash(hash(KA), PKA)

V

Keys: KV, PKA

a

   
   (MA, AK(KA), Cha) ← checksig(Ev, PKA)
   (c, idCha) ← sdec(Cha, KV)
   h ← validateKeyAttestation(AK(KA))
   id ← hash(h, PKA)
   if (id = idCha)
        RA ← validateEvidence(Ev)
        Res ← senc((RA, c, idCha), KV)

1. Cha

2. Ev
c

3. Res
4. Res

   
   (RA, cRes, idRes) ← sdec(Res, KV)
   if (c = cRes and id = idRes)
        {0,1} ←validateAttestationResult(RA)

d

   
   h ← hash(KA)
   AK(KA) ← attestKey(h)
   MA ← collectAttestationMetrics(A)
   Ev ← sign((MA, AK(KA), Cha), SKA)

A

Keys: KA, (SKA, PKA) 

b

Communication secured by KA

Figure 5.3: The improved protocol.

The changes to the original protocol (see figure 5.1) are highlighted in red
in figure 5.3. The verifier now needs to compute the id value based on the
value of h it has received from the attester and the public key it has used to
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verify the signature. Then, the verifier compares the values of the id it has
computed to the value of the id it has received from RP in Cha. As shown
in the figure, the behavior of the protocol is essentially the same with just
an additional computation of id done in the verifier. The ProVerif model of
the improved protocol can be found in appendix C.3.

5.7 Analysis

APCR-LPM is a small and lightweight protocol created with the goal of al-
lowing even simple devices to attest the integrity of other devices. It involves
no asymmetric cryptography from the relying party’s side making it suitable
for all classes of devices especially those with limited resources. The novelty
of the protocol stems from the fact that no literature has proposed an attes-
tation scheme where the relying party (and not the attester) is a constrained
device. In addition, according to the formal verification done by ProVerif,
the protocol is safe under an active attacker given the assumptions listed
in section 5.2. The improved protocol also takes into consideration compro-
mised devices as a physical attack on one TEE does not affect the rest of the
network.

The utilization of ProVerif enabled exploring all possible execution paths
of the protocol to test that it achieved the security properties specified in
the query. Even though the improved protocol passes the security query
5.7, there are a few technical and conceptual aspects that need to be high-
lighted. The first of which is that the protocol assumes that the attester can
communicate with only one verifier as it has no way of knowing to which
verifier message 1 in the protocol is intended for. Therefore, messages in
the APCR-LPM might need modification if the application involves many
verifiers.

The protocol also assumes a key distribution mechanism has taken place
before the protocol run. One thing to consider is whether this key distribu-
tion, at least from the relying party’s perspective, happens during manufac-
turing or bootstrapping process between the relying party and the attester.
A supply chain viewpoint needs to be taken if it is during manufacturing since
the different devices for the different parties might belong to the same or dif-
ferent vendors. In addition, the key distribution mechanism might also need
to employ some revocation rules in order to handle cases where the private
key is compromised and exploited as explained in section 5.5.6. One other
problem is that the participants, especially the attester, might be susceptible
to Denial of Service (DoS) attacks as it does not perform any checks on the
message it receives. However, the attester can assume that the surrounding
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environment performs DoS protection. Generally, all these problems have
been previously explored and solved in the literature, thus they are out of
this scope. The focus of the protocol is only on the ability to securely commu-
nicate attestation metrics and results to the intended parties in the specific
domain of a constrained relying party.

As the protocol is concerned with the attestation of devices, the relation
between attestation metrics and results influence the security of the protocol.
The metrics are not signed and hence can be read by any passive or active
attacker. Furthermore, because the attestation result is always a function of
the metrics, then the results are also public even if they are encrypted before
being sent. In addition, even encrypting the evidence before sending them to
the verifier might not completely hide the values of MA since in reality MA

can be a predictable value. The main purpose of the protocol is to ensure
the integrity of the results received by the relying party which is achieved.
However, the privacy of the attester is not regarded as the network can know
the collected metrics and hence the state of the attester. This raises the
question of whether MA should be public or not.

According to the assumptions set for the protocol, the attester and verifier
run on devices that can use public key cryptography and TLS. Hence, the
communication between RP and V can be secured by a TLS channel. This
will provide confidentiality of the metrics MA and make the communication
between attester and verifier more secure.

The improved APCR-LPM can still be considered a standalone protocol
that can work with any communication channel between the participants.
The protocol also provides flexiblity as the communication channel between
the RP and A can be different than that of A and V . For example, RP and
A can communicate over Bluetooth and A and V can communicate over the
Internet.

One further aspect to consider is how the differences between the protocol
model and the actual protocol impact the formal verification results. The
protocol abstracted the relation between the REE and TEE in the attester
to simulate only the behavior of the TEE. In addition, the model treated MA

as a new and never before seen value with every run of the protocol. But
the actual metrics might be similar or even the same in multiple protocol
runs. This behavior is difficult to model. The metrics MA was additionally
simulated as a constant non-changing value and tested to ensure that adding
a new value with every run of the protocol does not give the modeled protocol
strength that is not a reflection of its real-world application. This simulation
did not result in any attacks and the security query 5.7 is still achieved.
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5.8 Related Work

There exists a gap in the literature for constrained devices that want to per-
form attestation. Most of the proposed literature handle situations where a
‘powerful’ device attests low-resource devices. The term powerful in this case
refers to devices that have memory at least in the order of megabytes and can
perform public key cryptography. Conversely, the devices that APCR-LPM
is concerned with have memory in the order of kilobytes, cannot perform pub-
lic key cryptography and cannot open multiple connections. It is important
to consider these kinds of devices as sensors and IoT devices are employed
in different environments and might collect sensitive information that should
not be disclosed to compromised devices.

5.8.1 Methodology

Remote attestation is a well-known topic that has been researched for decades.
Search phrases including ‘lightweight attestation protocols for resource cons-
trained devices using symmetric keys’, ‘attestation protocols using symmetric
keys’, ‘attestation protocols for low-resource verifiers’, ‘attestation protocols
for low-resource relying parties’ were used in Google Scholar to narrow down
the attestation literature to investigate. Only literature directly related to
attestation and where constrained devices use symmetric encryption were
studied. The terminology in some of the literature differ slightly from those
in the attestation standard discussion in section 2.2.1. The attester in some
cases is referred to as the ‘prover’ which is the entity trying to ‘prove’ its
integrity.

5.8.2 Related Protocols

SlimIoT [3] is a lightweight attestation protocol that uses symmetric encryp-
tion and can be implemented on constrained devices. It is concerned with
scalability and performs swarm attestation against physical and remote at-
tacks. Swarm attestation is the process of attesting several devices in an IoT
network at the same time. The protocol operates by performing a delayed
disclosure of keys that a prover needs to check before generating its report.
After receiving and verifying the keys, the prover aggregates all received re-
ports from other provers and sends it to the verifier. In SlimIoT, the entities
being attested are the constrained devices which is different from the APCR-
LPM use case. In addition, the protocol operates under the assumption that
all devices are loosely time-synchronized and can only detect a physical at-
tack if the device stops responding. The protocol also involves having the
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constrained devices always listening to messages and receiving messages from
other nodes in the network.

SCAPI [51] is another swarm-based attestation protocol that can detect
software and physical attacks. It is similar to APCR-LPM as they both
assume that the attesters contain a TEE to execute tamper-resistant tasks.
SCAPI allows the verifier to communicate with only one device that collects
reports from the remaining devices in the network and sends it to the verifier.
SCAPI incurs code footprint and power consumption overhead because each
device in the network performs neighbor discovery and exchanges channel
keys with each discovered device. Similar to SlimIoT, both protocols assume
some kind of clock synchronization between devices and that the constrained
devices are those being attested.

One other lightweight attestation protocol is suggested by Jäger et al.
[46]. Similar to APCR-LPM, this protocol is proposed for resource cons-
trained devices and utilizes only symmetric cryptography. One major dif-
ference is that the protocol in Jäger et al. [46] is based on DICE (Device
Identifier Composition Engine). DICE specifies an engine that allows devices
with no special hardware, like TPMs, to perform attestation. One other
difference is that the protocol assumes that the attester is the constrained
device. Theoretically, the roles of attester and server can be switched with
some minimal modification to the protocol so that the resource constrained
device becomes the relying party. But the protocol is designed only for key
attestation. Hence, it does not consider attestation metrics where additional
claims about the device might need to be included.

AAoT [24] is an attestation protocol based on physical unclonable func-
tions (PUFs). The most interesting feature of this protocol is that it provides
mutual authentication for both verifier and prover. The first stage of the pro-
tocol allows the prover, which is a low-end device, to challenge the verifier
to ensure the authenticity of the verifier. Therefore, while the roles here
are reversed, the resource constrained device is still able to attest a device’s
integrity. However, the protocol assumes that the small device contains a
PUF used to generate the symmetric keys between the prover and verifier.
Therefore, the protocol is not adaptable to any small device as it requires
specific hardware.

SIMPLE [1] is another protocol proposed to enable attestation for re-
source constrained devices. It relies only on nonces, counters and shared
symmetric keys. In addition, neither the verifier or the prover needs special
hardware or perform resource-intensive tasks. Therefore, the verifier can be a
low-end device. The protocol assumes that validating attestation claims and
generating attestation results is a task that can be done by the constrained
devices, which might not be the case as more detailed appraisal policies could
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be used. Furthermore, the protocol can only perform software-based attes-
tation as it relies on Security MicroVisor which is a software-based memory
isolation technique. Generally, software-based attestation is the least secure
form of attestation and is not viable for attestation performed over the net-
work [28].

There are numerous other protocols like WISE [2], ERASMUS [18] and
DARPA [42] that present attestation schemes for low-resource devices. Even
though they consider constrained devices and only use symmetric keys, they
are solving different problems than that APCR-LPM tries to solve. These
protocols either deal with swarm attestation or present cases where the at-
tester is the constrained device. In addition, the protocols cannot be ex-
tended to allow for a constrained verifier as they were too dependent on the
assumption that the verifier is powerful and any change to this assumption
will not allow the protocol to work. Table 5.2 summarizes the differences
between the analyzed protocols and APCR-LPM.

The protocols found either abstract the concept of a relying party and
assume that the verifier performs all the functionality, or require certain
hardware in the constrained devices for the protocol to work. In real life, a
relying party might be a network gateway or a sensor that would not be able
to perform all the functionality that is requested of a verifier. In addition, it
is more scalable to have a protocol that does not require special hardware.
Therefore, APCR-LPM provides the first step to allowing even the smallest
and resource constrained devices to perform attestation. The table compares
the protocols against features like whether the protocol considers constrained
relying parties, whether it requires special hardware like TPM or clock in the
IoT device, whether it is hardware or software-based, and whether it allows
for any kind of attestation or specific type of attestation, e.g. key attestation.
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Protocol
Constrained

RP
Any IoT
device

HW-based
RA

Any
attestation
evidence

SlimIoT ✗ ✗ ✓ ✓

SCAPI ✗ ✗ ✓ ✓

Rolling DICE * ✓ ** ✗

AAoT ✗ ✗ ✓ ✗

SIMPLE ✗ ✓ ✗ ✗

APCR-LPM ✓ ✓ ✓ ✓

Table 5.2: Differences between APCR-LPM and other symmetric encryption-
based RA protocols.

(*) No RP but theoretically the roles of attester and verifier can be reversed
so that verifier is a constrained device.
(**) DICE is a software solution based on hardware properties present in IoT
devices like immutable memory.



Chapter 6

Prototype Implementation

In order to prove the feasibility of the attestation result decoder and the
APCR-LPM protocol, a prototype of a constrained relying party is imple-
mented in this chapter. The prototype serves as a proof of concept that
the work done in chapters 4 and 5 can be implemented on a constrained
device. The constrained device used is Nordic Semiconductor’s nRF5340
development kit [79] which has been set up to communicate with a laptop
over Bluetooth. Since this thesis is mainly concerned with the behavior of
the constrained relying party, only the communication between relying party
and attester (messages 1 and 4) and the actions in the relying party (steps a
and d) found in figure 5.3 are implemented.

6.1 Board Specifications

The nRF5340 board has the following specifications:

• Processor: 64 MHz Arm Cortex-M33 CPU

• Memory: 256 KB Flash + 64 KB RAM

• Interfaces: Bluetooth Low Energy, Bluetooth mesh, NFC, Matter,
Thread and Zigbee

The nRF5340 supports Zephyr-RTOS (Real-Time Operating System)
which is an operating system based on a small-footprint kernel designed for
resource constrained devices. This OS supports a wide range of devices from
small embedded environment sensors to IoT gateways. Zephyr can run on
devices with 32KBs of RAM and has built-in support for multiple crypto-
graphic libraries and a light-weight CBOR encoder and decoder called zcbor.
These features make it a suitable choice for implementing the APCR-LPM
protocol and decoding and validating attestation results.

86
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6.2 Connection Setup

The connection between the relying party and attester in this prototype
is IPv6 over BLE (Bluetooth Low Energy). This setup was used because
it provides a simple way to communicate data to a device using common
networking tools, such as telnet and curl, even though the underlying com-
munication is Bluetooth. Zephyr provides a sample application [87] called
IPSP (Internet Protocol Support Profile) which utilizes 6LoWPAN (IPv6
over Low-Power Wireless Personal Area Networks). IPSP allows each node
to have its own IPv6 address and communicate IPv6 packets over Bluetooth.

The Zephyr IPSP sample application is written in C and sets a static
random Bluetooth MAC address for the nRF5340 board. After a Bluetooth
connection is established, the application listens on port 4242 for any incom-
ing UDP and TCP packets. The sample application also contains a simple
echo server that is modified to communicate Cha and Res over the inter-
face as well as decode the received attestation results RA. It is worth noting
that the adaptable and channel-independent nature of the APCR-LPM pro-
tocol allows it to be implemented on any communication channel including
Bluetooth.

6.3 RP Implementation

The prototype setup is shown in figure 6.1. After the Bluetooth connection
is established, the relying party generates a nonce and encrypts both the
nonce c and id using KV . The output of this ecryption, Cha, is sent over
the channel. The application on the other end decrypts Cha to extract the
values c and id. Then it encodes the attestation result object and sends the
encrypted c, id, and RA over the Bluetooth channel. The current prototype
does not implement all the steps in the APCR-LPM protocol, it is mainly
concerned with implementing the relying party application and incorporating
the attestation result decoder. The technical aspects of the relying party
implementation are described in the sections below.

6.3.1 Key Management

In the initial state, the relying party has two shared symmetric keys KA and
KV . Currently, the keys are hardcoded static arrays of 16 bytes of random
values. This was done to facilitate the usage of the keys. For more security,
the small device should acquire the key from an external channel during key
distribution and store it in a secure key storage component.
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IPv6 over Bluetooth

 c || id ← tc_cbc_mode_decrypt(Cha, KV)
 RA ← simulateAttestationResults()
 Res ← tc_cbc_mode_encrypt( c || id || RA, KV)

 entropy ← bt_hci_le_rand()
 c ← tc_hmac_prng_generate(entropy) 
 Cha ← tc_cbc_mode_encrypt( c || id, KV)

Cha

Res

 cRes || idRes || RA ← tc_cbc_mode_decrypt(Res, KV)
 if(cRes != c or idRes != id)

REJECT
 else if(isValid(RA))

ACCEPT
else

REJECT

Figure 6.1: Prototype of relying party application.

6.3.2 Sending an Attestation Request

Zephyr comes with built-in support of several resource-efficient cryptographic
libraries including TinyCrypt. The TinyCrypt library provides a set of cryp-
tographic primitives and has a small code size and minimal dependency
among primitives. This library was used for generating the nonce and per-
forming basic encryption.

Generating a random value is the first step performed when creating
Cha. TinyCrypt provides an implementation for HMAC-PRNG which is
a pseudorandom number generator based on HMAC. The implementation
requires both a personalization string and a source of entropy for the seed.
The personalization string can be any value computed at initialization like
the name of the board. The source of entropy used in this implementation
comes from the BLE controller where the Zephyr Bluetooth module provides
a function called bt_hci_le_rand() that returns a random number from
the Bluetooth controller. There is no special hardware that is required and
the source of entropy stems from the communication channel itself. The
generated output c is concatenated with id to generate the data in Cha.
Both c and id are 16 bytes in length, however that number can be easily
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adjusted depending on the security requirements of the message.
The encryption of c and id is done using the AES-128 CBC mode with

a 128-bit key length provided by TinyCrypt. CBC mode requires a 128-bit
initialization vector which can easily be computed using the HMAC-PRNG
module. The generated output, Cha, is sent through the Bluetooth channel
established with the attester.

6.3.3 Receiving an Attestation Result

The received result Res is decrypted with the same key used for Cha and
the values c and id are extracted and compared to the sent ones. If either
value does not match then the relying party rejects the message. Otherwise,
the remaining bytes from the received packet is considered the attestation
result object.

As discussed in section 4.5, CBOR could be a good fit for encoding at-
testation results in constrained environments. It had the smallest encoding
size and least memory consumption when encoding attestation result objects.
Zephyr provides support for Nordic Semiconductor’s lightweight CBOR li-
brary called zcbor which is tailored for microcontrollers. This library was
chosen instead of TinyCBOR because it is already provided as part of Zephyr
and would not need any extra implementation or additional code to be added.

A simple EAR attestation result encoder and decoder is implemented
using zcbor. The implementation is similar to the one discussed in section
4.3.4, however, only the required fields in the EAR object are considered.
The decoded attestation results are then checked to ensure that the issued
at time is not less than a particular value, that the verifier id is as expected
and that the attester status is affirming. The implementation code for this
prototype, which is based on Zephyr’s IPSP sample, is found in appendix D.
Currently, the application is designed to run the protocol only once. This
behavior can easily be adjusted depending on the application requirements.

6.4 Results and Analysis

The relying party application was compared to the original IPSP application
to determine the effects of the prototype on the size of the RAM and Flash.
The relying party application imports the additional libraries TinyCrypt and
zcbor, so it will definitely consume more resources. Table 6.1 shows a com-
parison between the original sample and the relying party application. The
prototype uses approximately 6KB of extra Flash and few hundred bytes of
additional RAM. Furthermore, to exclude Zephyr from the measurements,
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the applications’ object files (file containing compiled assembly code) were
analyzed and the size of the program was computed. The additional rely-
ing party code in the implementation (PRNG, encryption, decryption, zcbor
decoding) required less than 2KB of extra code size.

Measurement [bytes] IPSP Sample RP Application
Total Flash 241320 247312 (+5992)
Total RAM 60280 60840 (+560)
Application Code Size 1792 3396 (+1604)

Table 6.1: Relying party application size measurements

The demonstrated prototype shows the feasibility of an attestation pro-
cedure on a resource constrained relying party. Using only the embedded
device’s available resources, a communication channel was established with
the device acting as an attester, encrypted data was sent through the channel,
and an EAR attestation result object was received, decoded, and evaluated.
Furthermore, since the channel between relying party and attester is already
established, any subsequent communication can be done over the provided
channel with minimal additions to the current implementation.

It is important to note that this prototype is not a complete solution.
There are several other factors to consider like how keys are stored on the
device and how a solution can work for even more resource constrained de-
vices. Additionally, the functionality of the attester and verifier was not
implemented as the focus is on developing an attestation procedure suitable
for constrained relying parties. Possible next steps include providing a key
management solution and testing the application on various attestation result
values.



Chapter 7

Discussion

The work in this thesis encompassed several fields related to attestation for
constrained relying parties. To rephrase the problem statement 1.2, the
main goal of this thesis is to understand and analyze whether constrained
relying parties can benefit from attestation and whether there are attestation
solutions that can be directly employed in constrained relying parties. The
problem statement was broken down into research questions where each ques-
tion targets a specific attestation area for constrained relying parties. The
remainder of the chapter highlights the main insights and takeaways learned
while answering the questions and provides a discussion of the answer to the
problem statement.

RQ1: What are the important features that should be present
when encoding attestation results and what are the existing for-
mats that have those features?
Attestation results is an underdeveloped area with a large room for research.
It is important to motivate why certain formats would work for attestation
results, especially in a constrained environment, while other formats would
not be suitable. To answer this question, different types of formats were
surveyed and compared against a set of features. Those features were chosen
because they are representatives of the security, usability and maintainability
of a format. The features are:

• canonicality as non-canonical representation can lead to attacks

• maintainability as standardized formats have a community of people
who work on updating and improving the format

• programming language independence as it allows formats to be used
on different platforms and devices
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• versatility as it ensures that the format can easily represent attestation
results

The surveyed formats are popular in the industry and are specifically
chosen to cover all types of serialization: binary vs text-based and schema-
driven vs schema-less. The comparison found that ASN.1 DER, CBOR, and
JSON are suitable formats for attestation results as certain specifications of
those formats satisfy the desired features. However, the selected features are
not enough when deciding on suitable formats for encoding. In a constrained
environment with limited RAM, storage and buffer capacity, quantitative
evaluation of the formats is also necessary. Such evaluations include message
size, encoding speed, decoding speed, and memory consumption. Surveyed
literature shows that these evaluations have not been performed between
ASN.1 DER, JSON and CBOR. This lack of evaluation in the literature mo-
tivated the implementation and benchmarking done in chapter 4 which is
needed to determine the suitable formats for encoding attestation results.

RQ2: What is the most suitable format in a constrained envi-
ronment?
There are several factors that were considered when answering this question.
These include encoding size, encoding speed, decoding speed, encoding mem-
ory consumption and decoding memory consumption. As the thesis focuses
on constrained relying party receiving and decoding attestation results, the
encoding size, decoding speed and decoding memory consumption are the
important measurements to consider. The results of the measurements on
ASN.1 DER, CBOR, and JSON led to several interesting findings, like that
JSON provided the fastest decoding speed and that CBOR’s decoding speed
is an order of magnitude slower than ASN.1 DER and JSON. These findings
refute the widely held assumption that binary serialization tends to be faster
than text-based serialization. The implementation of the encoding and de-
coding play a big role in the performance of the formats as the libraries might
have different optimization techniques. Furthermore, the type of data being
encoded and decoded can impact the measurements. For example, JSON is
more optimized for strings and CBOR is more optimized for integers, there-
fore, the kind and amount of data being encoded should be considered when
choosing a format.

For decoding an attestation result object, while JSON was the fastest, it
had the largest size which might not be suitable for a device with a limited
transmission buffer or bandwidth. ASN.1 had additional overhead in creat-
ing and adapting the EAR schema and it was difficult to parse and check the
optional fields in the decoding application. Overall, CBOR can be a good
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compromise between the three formats as it produces the smallest encoded
messages and has less maintenance and development cost than ASN.1.

RQ3: Are there existing attestation protocols designed for cons-
trained relying parties?
According to our knowledge and based on the research papers found in sec-
tion 5.8.2, most protocols presented in the literature solve the problem of
a powerful verifier and a constrained attester. In addition, no protocol was
discovered that can be adapted to a constrained relying party that does
not perform public-key cryptography. Some of the protocols use symmetric
cryptography in the attestation protocol, but the roles between verifier and
attester cannot be easily reversed as there are certain hardware and soft-
ware requirements, like having a TPM or clock, imposed on the verifier and
attester. Furthermore, most literature do not have the notion of a relying
party and assume that the entity that performs verification is the same as
the entity that needs the verification. This assumption is not always true
as there are some real-world applications where a constrained device like a
sensor, wearable or router might need the attestation result to allow access to
a resource or to ensure that the attester is in an intended state. In this case,
a separation of roles between relying party and verifier would be necessary.

RQ4: How can remote attestation protocol be resource-efficient
while meeting the security requirements needed in an attestation
solution?
Based on the result of RQ3, which found that there is no protocol in the
literature that addresses the use case of a constrained relying party, the
logical next step was to provide such a protocol. The APCR-LPM protocol
is designed with the intention of allowing even the most resource constrained
relying parties that cannot perform public-key cryptography to benefit from
attestation. The protocol is lightweight and resource-efficient as it does not
impose any specific hardware properties on the relying party device. The
goals of the protocol include message integrity, freshness, and data origin
authentication. These goals ensure that the relying party can detect whether
the received attestation result has been modified, whether the attestation
result is the response to the request it sent, and whether the result came
from the intended verifier.

Formal analysis of the protocol using ProVerif has been conducted to
ensure the security of the protocol in an environment where there is an ac-
tive attacker. The analysis concludes that the desired security properties
are achieved and that the attestation results are securely transmitted to the
relying party. However, there are some aspects of the protocol that require
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further consideration. The protocol does not encrypt the attestation metrics
collected by the attester. This leads to possible privacy concerns from the at-
tester. Furthermore, since symmetric keys are used between the relying party
and verifier and between the relying party and attester, non-repudiation can-
not be achieved. The relying party and verifier are assumed to be trusted
participants and the non-trusted participant (the attester) does use public-
key cryptography which provides non-repudiation.

One final point to mention is that the attestation values, like the metrics
and attestation results, influence the security of the protocol. The results
are a function of the metrics, so even if the results are encrypted, they can
still be derived because the metrics are public.

RQ5: Are the proposed solutions ensured to work in a cons-
trained environment?
In order to prove that the solutions can in fact work in a constrained environ-
ment, a prototype of the protocol and the CBOR decoder are implemented
on an embedded board. A Bluetooth connection is established with the at-
tester and encrypted data is transmitted through the channel. There were no
additional libraries required than what is provided by the embedded board’s
platform. Which demonstrates that the attestation solutions provided in this
thesis can work for constrained devices. The board used in the prototype has
around 60KB of RAM and 250KB of flash which makes it a slightly more
powerful device than the intended constrained relying party. Nevertheless,
the measurements show that the relying party application itself (generating
nonce, encrypting challenge, sending challenge, receiving results, decrypting
results, and decoding CBOR attestation result object) requires only about
3KB of RAM.

Problem statement: can small devices benefit from remote at-
testation to assess the security of more powerful devices?
The work done in this thesis showed that, while attestation for constrained
devices is still a relatively unexplored field, there can be attestation solutions
that allow constrained relying parties to securely request and receive attes-
tation results, decode them, and finally evaluate the contents of the results.
Based on the answers to the research questions, it was shown that resource-
constrained devices can benefit from remote attestation.

Future Work
While the thesis provides an attestation solution for constrained relying par-
ties, there is still room for further research. ASN.1 DER was chosen because it
is a canonical representation of data that is widely deployed. There are other
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ASN.1 canonical encoding rules like PER. While PER is not used frequently
in the industry, a comparison between the performance of the two encoding
rules could show whether PER can perform better than the other formats.
Furthermore, as CBOR is substantially slower than the other formats, an im-
plementation with another CBOR library can help in understanding whether
this behavior is a result of the library used or it is format-specific. There
are other metrics, like scalability and power consumption, that can also be
studied when making the decision for an encoding format.

One other possible direction for the future work includes studying key
distribution mechanisms that effectively allow the symmetric keys used in
APCR-LPM to be shared. The protocol model can also be modified by
having different representations of the metrics and analyzing whether the
different representations affect the security of the protocol. Additionally, the
prototype can also be improved by providing a complete implementation of
the attester and verifier and running several scenarios where the attestation
results have different values.



Chapter 8

Conclusion

Remote attestation is the process of evaluating the hardware and software
properties of a remote entity. An attestation procedure has three active
parties: 1) the attester: the entity that collects cryptographically secure
evidence about itself to prove its trustworthiness 2) the verifier: the entity
that receives and attests the evidence to produce attestation results 3) the
relying party: the entity that receives the attestation results and determines
the attester’s trustworthiness.

Not only was there a lack of an unbiased assessment that examines the
strengths and weaknesses of formats capable of encoding attestation results,
but also there was a gap in the research for attestation protocols for cons-
trained relying parties. Furthermore, there were no practical attestation
solutions for constrained relying parties.

This thesis is a starting point for filling this gap in the literature and
providing an attestation solution for constrained relying parties. First, it an-
alyzed formats for encoding attestation results. Then, it proposed an attes-
tation protocol for constrained relying parties. Finally, the thesis presented
a proof-of-concept implementation of the protocol and the attestation result
decoder on an embedded device. The summarized results of the work are as
follows:

• The analysis of different types of encoding formats concluded that
ASN.1 DER, CBOR, and JSON are the most suitable for encoding
attestation results. Those formats were then compared in a quantita-
tive manner by implementing attestation result encoders and decoders.
The comparison showed that JSON had the fastest decoding time but
the largest message size and CBOR had the smallest message size but
the slowest decoding time. ASN.1 DER comes a close second to CBOR
in encoding size and to JSON in decoding speed, but it has an ad-
ditional implementation cost of creating and maintaining the ASN.1
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schema. Based on these results, CBOR was deemed a good compro-
mise between the three.

• The proposed attestation protocol for constrained relying parties was
based on symmetric cryptography and did not impose any hardware
requirements on the relying party device. The protocol was designed
to allow the relying party to make an attestation request and receive an
attestation result in a secure manner. The protocol was formally ana-
lyzed with ProVerif to ensure that the protocol’s security requirements
are fulfilled. The formal analysis led to the discovery of an attack that
happens when an attester in the environment is compromised. Based
on this discovery, the protocol was improved and no other attack was
found by ProVerif.

• To provide a proof of concept of the solutions presented in this the-
sis, a prototype of a relying party application was implemented. A
Bluetooth connection was created between a Linux laptop and Nordic
Semiconductor’s nRF5340 board. All the relying party steps found in
the protocol were implemented with Zephyr RTOS. The application
took around 250KB of Flash and 60KB of RAM with further room for
improvement.

The results validate that a constrained device, acting as a relying party,
can attest a more powerful device, e.g., a smart phone. Due to the popularity
of IoT, the importance of this setting is likely to increase.

Based on the work conducted in this thesis and the obtained results, it is
evident that there is room for further research in this area. There are other
security requirements, such as confidentiality of the attestation results, that
are not targeted by the protocol but could be important in other use cases.
The key distribution mechanism for the shared symmetric keys the relying
party uses is another area to explore. As for the prototype, it can be further
tested by deploying it on IoT devices in a real-world scenario and analyzing
how the protocol influences the behavior of those devices.
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Appendix A

Benchmarking Inputs

A.1 Input 2 (Two Attesters)

{

"eat_profile": "tag:github.com,2023:veraison/ear",

"iat": 1666529300,

"ear.verifier-id": {

"developer": "https://veraison-project.org",

"build": "vts 0.0.1"

},

"ear.raw-evidence": "3q2-7w",

"submods": {

"CCA Platform": {

"ear.status": "affirming",

"ear.trustworthiness-vector": {

"instance-identity": 2,

"configuration": 2,

"executables": 3,

"file-system": 2,

"hardware": 2,

"runtime-opaque": 2,

"storage-opaque": 2,

"sourced-data": 2

},

"ear.appraisal-policy-id":

"https://veraison.example/policy/1/60a0068d"

},

"CCA Realm": {

"ear.status": "affirming",

"ear.trustworthiness-vector": {
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"instance-identity": 2,

"configuration": 2,

"executables": 3,

"file-system": 2,

"hardware": 2,

"runtime-opaque": 3,

"storage-opaque": 2,

"sourced-data": 3

},

"ear.appraisal-policy-id":

"https://veraison.example/policy/1/60b0068d"

}

}

}

A.2 Input 3 (Raw Evidence)

{

"eat_profile": "tag:github.com,2023:veraison/ear",

"iat": 1666529300,

"ear.verifier-id": {

"developer": "https://veraison-project.org",

"build": "vts 0.0.1"

},

"ear.raw-evidence":

"aGV5dGhlcmUsdGhpc2lzbXl0ZXN0Zm9ydGhlZWZmZWN0b2ZyYXdl

dmlkZW5jZW9udGhlZGF0YWFuZHNpemVvZmVuY29kaW5nLHdob2V2Z

XJ0b29rdGhldGltZXRvZGVjb2RldGhpcyx0aGFua3lvdSx5b3VoYX

ZlbXlhZG1pcmF0aW9uYW5kcGxlYXNlY29udGFjdG1lZm9yYWNoYXR

pZnlvdWxpa2Usa3R4YnlleG94b3hveG8=",

"submods": {

"CCA Platform": {

"ear.status": "affirming",

"ear.trustworthiness-vector": {

"instance-identity": 2,

"configuration": 2,

"executables": 3,

"file-system": 2,

"hardware": 2,

"runtime-opaque": 2,

"storage-opaque": 2,

"sourced-data": 2
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},

"ear.appraisal-policy-id":

"https://veraison.example/policy/1/60a0068d"

}

}

}

The line breaks used in the ear.raw-evidence attribute are used for readability.
The actual string is represented as a single long line since JSON does not support
multiline strings without the new line character \n.



Appendix B

Benchmarking Code

The code used for benchmarking can be found in GitHub. Please note that the
ASN.1 encoder and decoder were implemented with HTLS, a closed-source library.
Therefore, the code cannot be published.
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Appendix C

ProVerif Models

All the ProVerif codes can also be found in GitHub.

C.1 Model of APCR-LPM

type nonce.

fun validateEvidence(bitstring): bitstring.

(*Symmetric Encryption*)

type key.

fun senc(bitstring, key): bitstring.

reduc forall m: bitstring, k: key; sdec(senc(m,k),k) = m.

(* Digital Signatures *)

type skey.

type pkey.

fun pk(skey): pkey.

fun sign(bitstring, skey) : bitstring.

reduc forall m: bitstring, k: skey; checksign(sign(m, k), pk(k)) = m.

(* Hashing *)

fun hash(key) : bitstring.

free network: channel.

(* events mark important stages reached by the protocol but

do not otherwise affect behavior *)

event relyingPartyAccepts(key, key, nonce, bitstring).
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event relyingPartyBegins(key, key, nonce).

event attesterBegins(pkey, key, bitstring, bitstring).

event verifierAccepts(pkey, key, bitstring, nonce, bitstring).

(* Injective correspondence assertions capture the one-to-one relationship

and are denoted: query x1 : t1, . . . , xn : tn ; inj-event

(e(M1, . . . , Mj )) ==> inj-event (e’(N1, . . . , Nk)) .

Informally, this correspondence asserts that, for each occurrence of

the event e(M1, . . . , Mj ), there is a distinct earlier occurrence

of the event e’(N1, . . . , Nk). *)

query PK_a: pkey, K_a: key, K_v: key, R_a: bitstring, M_a: bitstring,

c:nonce, h:bitstring, Cha:bitstring;

inj-event(relyingPartyAccepts(K_v, K_a, c, R_a))

==> inj-event(relyingPartyBegins(K_v, K_a, c)) &&

inj-event(attesterBegins(PK_a, K_a, M_a, Cha)) &&

inj-event(verifierAccepts(PK_a, K_v, M_a, c, h)) &&

h = hash(K_a) &&

R_a = validateEvidence(M_a) &&

Cha = senc((c, h), K_v)

.

query K_v: key, K_a: key, R_a: bitstring, c:nonce;

attacker(R_a) && event(relyingPartyAccepts(K_v, K_a, c, R_a))

==> false

.

let relyingPartyRP(K_a: key, K_v: key) =

new c: nonce;

let h = hash(K_a) in

let Cha = senc((c,h), K_v) in

event relyingPartyBegins(K_v, K_a, c);

out(network, Cha);

in(network, Res: bitstring);

let (R_a: bitstring, =c , =h) = sdec(Res, K_v) in

event relyingPartyAccepts(K_v, K_a, c, R_a);

0.

let attesterA(K_a: key, SK_a: skey, PK_a: pkey) =

in(network, Cha: bitstring);
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new M_a: bitstring;

let h = hash(K_a) in

let Ev = sign((M_a, h, Cha) , SK_a) in

event attesterBegins(PK_a, K_a, M_a, Cha);

out(network, Ev);

(* in(network, Res: bitstring);

out(network, Res); *)

0.

let verifierV(K_v: key, PK_a: pkey) =

in(network, Ev: bitstring);

let (M_a: bitstring, h_att: bitstring, Cha: bitstring) = checksign(Ev, PK_a) in

let (c: nonce, h_rp: bitstring) = sdec(Cha, K_v) in

if(h_att = h_rp) then

let R_a = validateEvidence(M_a) in

event verifierAccepts(PK_a, K_v, M_a, c, h_rp);

let Res = senc((R_a, c, h_rp), K_v) in

out(network, Res);

0.

process (* main method *)

new K_a: key;

new K_v: key;

new SK_a: skey;

let PK_a = pk(SK_a) in out(network, PK_a); (* Attacker knows PK_a *)

(

(!relyingPartyRP(K_a, K_v)) |

(!attesterA(K_a, SK_a, PK_a)) |

(!verifierV(K_v, PK_a))

)

C.2 Model of Attack on APCR-LPM

type nonce.

fun validateEvidence(bitstring): bitstring.

(*Symmetric Encryption*)

type key.
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fun senc(bitstring, key): bitstring.

reduc forall m: bitstring, k: key; sdec(senc(m,k),k) = m.

(* Digital Signatures *)

type skey.

type pkey.

fun pk(skey): pkey.

fun sign(bitstring, skey) : bitstring.

reduc forall m: bitstring, k: skey; getmess(sign(m, k)) = m.

reduc forall m: bitstring, k: skey; checksign(sign(m, k), pk(k)) = m.

(* Hashing *)

fun hash(key) : bitstring.

free network: channel.

(* Authentication queries *)

event relyingPartyAccepts(key, key, nonce, bitstring).

event relyingPartyBegins(key, key, nonce).

event attesterBegins(pkey, key, bitstring, bitstring).

event verifierAccepts(pkey, key, bitstring, nonce, bitstring).

event attesterCorrupted(key).

query PK_a: pkey, K_a: key, K_v: key, R_a: bitstring, M_a: bitstring,

c:nonce, h:bitstring, Cha:bitstring;

inj-event(relyingPartyAccepts(K_v, K_a, c, R_a))

==>

event(attesterCorrupted(K_a)) ||

(inj-event(relyingPartyBegins(K_v, K_a, c)) &&

inj-event(attesterBegins(PK_a, K_a, M_a, Cha)) &&

inj-event(verifierAccepts(PK_a, K_v, M_a, c, h)) &&

h = hash(K_a) &&

R_a = validateEvidence(M_a) &&

Cha = senc((c, h), K_v)

)

.

query K_a: key, K_v: key, R_a: bitstring, c:nonce;

attacker(R_a) && event(relyingPartyAccepts(K_v, K_a, c, R_a))
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==> false

.

let relyingPartyRP(K_a: key, K_v: key) =

new c: nonce;

let h = hash(K_a) in

let Cha = senc((c,h), K_v) in

event relyingPartyBegins(K_v, K_a, c);

out(network, Cha);

in(network, Res: bitstring);

let (R_a: bitstring, =c , =h) = sdec(Res, K_v) in

event relyingPartyAccepts(K_v, K_a, c, R_a);

(* out (network, senc(secretR_a, bitstring_to_key(R_a))). *)

0.

let attesterA(K_a: key, SK_a: skey, PK_a: pkey) =

in(network, Cha: bitstring);

new M_a: bitstring;

let h = hash(K_a) in (* TEE is abstracted *)

let Ev = sign((M_a, h, Cha) , SK_a) in

event attesterBegins(PK_a, K_a, M_a, Cha);

out(network, Ev);

(* in(network, Res: bitstring);

out(network, Res); *)

0.

let verifierV(K_v: key, PK_a: pkey) =

in(network, Ev: bitstring);

let (M_a: bitstring, h_att: bitstring, Cha: bitstring) = checksign(Ev, PK_a) in

let (c: nonce, h_rp: bitstring) = sdec(Cha, K_v) in

if (h_att = h_rp) then

let R_a = validateEvidence(M_a) in

event verifierAccepts(PK_a, K_v, M_a, c, h_rp);

let Res = senc((R_a, c, h_rp), K_v) in

out(network, Res);

0.

process (* main method *)

new K_a: key;

(* let h = hash(K_a) in out(network, h); *)
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new K_v: key;

new SK_a: skey;

let PK_a = pk(SK_a) in out(network, PK_a); (* Attacker knows PK_a *)

new K_a2: key;

event attesterCorrupted(K_a2);

new SK_a2: skey;

out(network, SK_a2);

let PK_a2 = pk(SK_a2) in out(network, PK_a2);

(* 1 RP, 2 A and 1 V *)

(

(!relyingPartyRP(K_a, K_v)) |

(!attesterA(K_a, SK_a, PK_a)) |

(!verifierV(K_v, PK_a)) |

(!relyingPartyRP(K_a2, K_v)) |

(!attesterA(K_a2, SK_a2, PK_a2)) |

(!verifierV(K_v, PK_a2))

)

C.3 Model of Improved Protocol

type nonce.

fun validateEvidence(bitstring): bitstring.

(*Symmetric Encryption*)

type key.

fun senc(bitstring, key): bitstring.

reduc forall m: bitstring, k: key; sdec(senc(m,k),k) = m.

(* Digital Signatures *)

type skey.

type pkey.

fun pk(skey): pkey.

fun sign(bitstring, skey) : bitstring.

reduc forall m: bitstring, k: skey; getmess(sign(m, k)) = m.

reduc forall m: bitstring, k: skey; checksign(sign(m, k), pk(k)) = m.

(* Hashing *)

fun hash(bitstring) : bitstring.
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fun key_to_bitstring(key): bitstring [data,typeConverter].

free network: channel.

(* Security queries *)

event relyingPartyAccepts(key, bitstring, nonce, bitstring).

event relyingPartyBegins(key, nonce, bitstring).

event attesterBegins(pkey, bitstring, bitstring, bitstring).

event verifierAccepts(pkey, key, bitstring, bitstring, nonce).

event attesterCorrupted(key).

query PK_a: pkey, K_a, K_v: key, R_a: bitstring, c:nonce,

id: bitstring, h: bitstring, M: bitstring, Cha: bitstring;

inj-event(relyingPartyAccepts(K_v, R_a, c, id))

==>

event(attesterCorrupted(K_a)) ||

(inj-event(relyingPartyBegins(K_v, c, id)) &&

inj-event(attesterBegins(PK_a, h, M, Cha)) &&

inj-event(verifierAccepts(PK_a, K_v, M, id, c)) &&

R_a = validateEvidence(M) &&

id = hash((h, PK_a)) &&

Cha = senc((c,id), K_v))

.

(* query K_v: key, R_a: bitstring, c:nonce, h: bitstring;

event(relyingPartyAccepts(K_v, R_a, c, h))

(* ==> false *)

. *)

(* Secrecy queries *)

query PK_a: pkey, K_v: key, R_a: bitstring, c:nonce,

h: bitstring;

attacker(R_a) && event(relyingPartyAccepts(K_v, R_a, c, h))

==> false

.

let relyingPartyRP(K_a: key, K_v: key, id: bitstring) =

new c: nonce;

(* let h = hash(K_a) in *)

let Cha = senc((c,id), K_v) in
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event relyingPartyBegins(K_v, c, id);

out(network, Cha);

in(network, Res: bitstring);

let (R_a: bitstring, =c , =id) = sdec(Res, K_v) in

event relyingPartyAccepts(K_v, R_a, c, id);

(* out (network, senc(secretR_a, bitstring_to_key(R_a))). *)

0.

let attesterA(K_a: key, SK_a: skey, PK_a: pkey) =

in(network, Cha: bitstring);

new M: bitstring;

let h = hash(key_to_bitstring(K_a)) in (* TEE key attestation is abstracted *)

let Ev = sign((M, h, Cha) , SK_a) in

event attesterBegins(PK_a, h, M, Cha);

out(network, Ev);

(* in(network, Res: bitstring);

out(network, Res); *)

0.

let verifierV(K_v: key, PK_a: pkey) =

in(network, Ev: bitstring);

let (M: bitstring, h: bitstring, Cha: bitstring) = checksign(Ev, PK_a) in

let (c: nonce, id_cha: bitstring) = sdec(Cha, K_v) in

let id = hash((h, PK_a)) in

if (id = id_cha) then

let R_a = validateEvidence(M) in

event verifierAccepts(PK_a, K_v, M, id, c);

let Res = senc((R_a, c, id), K_v) in

out(network, Res);

0.

process (* main method *)

new K_a: key;

new K_v: key;

new SK_a: skey;

let PK_a = pk(SK_a) in out(network, PK_a); (* Attacker knows PK_a *)

let id = hash((hash(key_to_bitstring(K_a)), PK_a)) in out(network, id);

new K_a2: key;

event attesterCorrupted(K_a2);

new SK_a2: skey;

out(network, SK_a2);

let PK_a2 = pk(SK_a2) in out(network, PK_a2);

let id2 = hash((hash(key_to_bitstring(K_a2)), PK_a2)) in out(network, id2);
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(* 1 RP, 2 A and 1 V *)

(

(!relyingPartyRP(K_a, K_v, id)) |

(!attesterA(K_a, SK_a, PK_a)) |

(!verifierV(K_v, PK_a)) |

(!relyingPartyRP(K_a2, K_v, id2)) |

(!attesterA(K_a2, SK_a2, PK_a2)) |

(!verifierV(K_v, PK_a2))

)



Appendix D

Prototype Implementation Code

The code presented in this section is an extension of Zephyr’s IPSP bluetooth
sample [87]. The code can be found in GitHub.
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