
Master’s Programme in Security and Cloud Computing

Formal Analysis and Verification of OAuth
2.0 in SSO
Modelling and Verification using PSPSP in Isabelle/HOL, and OFMC

Anand Vasudevan

Master’s Thesis
2023

Copyright © 2023 Anand Vasudevan

Author Anand Vasudevan
Title Formal Analysis and Verification of OAuth 2.0 in SSO — Modelling and

Verification using PSPSP in Isabelle/HOL, and OFMC
Degree programme Master’s Programme in Security and Cloud Computing
Major Security and Cloud Computing
Supervisor Prof. Tuomas Aura, Assoc. Prof. Sebastian Mödersheim
Advisors Aleksi Peltonen, Tommi Pernilä
Collaborative partner Modirum
Date 5 July 2023 Number of pages 54 Language English

Abstract
This thesis examines the OAuth 2.0 protocol within Single Sign-On (SSO) systems
through modelling and formal analysis. The versatile Performing Security Proofs of
Stateful Protocols (PSPSP), a theory for the Isabelle/HOL proof assistant was used to
carry out the verification. Additionally the Open-Source Fixedpoint Model-Checker
(OFMC), was used in this verification for its accessibility. PSPSP notably supports
the modelling of mutable long-term state, a feature not common in many similar tools.

The challenge lies in crafting a model that accurately mirrors real-world scenarios
while integrating the OAuth 2.0 protocol on top of the TLS 1.2 protocol. The goal is
to produce a model that is both realistic and doesn’t induce false attack vectors in its
abstraction.

The complexity of combining SSO, OAuth, and TLS often necessitates simplifica-
tions for effective verification. This study explores the modelling of OAuth components
without drastic over-simplifications, verifying each in isolation, and then applying
compositional reasoning available in PSPSP/Isabelle to introduce the TLS protocol
as well. This process necessitates a well-defined interface between components and
verification of all components individually and in the composition.

Both tools confirm the lack of detectable vulnerabilities in the OAuth 2.0 protocol,
reinforcing its security and prominence in SSO systems. The research explores the
process of modelling and formally verifying security protocols, and deepens the
understanding of OAuth 2.0’s role in SSO systems.

Keywords Formal Verification, OAuth 2.0, SSO, Isabelle, PSPSP, OFMC, single
sign on

Acknowledgements
This thesis would not have been successful without the invaluable support and guidance
of several people to whom I owe immense gratitude.

I would like to begin by expressing my profound gratitude to Associate Professor Sebas-
tian Mödersheim from DTU. His stimulating classes in the Data Security course not only
captivated my interest but also led me to the path of formal verification, and eventually
guided my choice of a master’s thesis topic. Throughout the journey, he has been a
steadfast supervisor, showing patience and kindness at every turn.

Equally, I am deeply indebted to Doctoral Researcher Aleksi Peltonen at Aalto University,
whose expert guidance throughout this process was critical. His extensive knowledge,
openness, encouragement, and faith in my abilities were instrumental and irreplaceable
in this undertaking.

I sincerely appreciate Professor Tuomas Aura of Aalto University, who, amidst his de-
manding schedule, took on the role of my secondary thesis supervisor.

Special thanks are due to Tommi Pernilä for believing in me and offering me the oppor-
tunity to work at Modirum on this thesis. The exposure to and inspiration from incredibly
knowledgeable and motivated individuals at Modirum have sparked a deeper interest in
the field of security and computer science.

My heartfelt appreciation goes to my SECCLO compatriots. Our shared two-year adven-
ture across two countries was deeply enriched by your friendship. The kindness and
support within our group forged a familial bond, making me never feel alone in a new
country. Special mention to those who shared long hours with me in the library during the
final stages of this work.

Lastly, to my family, who have unwaveringly believed in me and instilled the drive for
ambition and constant self-improvement, I owe an immeasurable debt of gratitude. My
parents, whose nurturing support, tireless work ethic, and deep kindness to everybody
in their life continue to inspire me; Aravind, whose knowledge, curiosity, bravery, and
gregariousness are among many attributes that I wish to emulate in my life; Sahana,
whose humble brilliance and passionate dedication constantly drives me to not only aspire
for greatness but also for goodness.

Each one of you has played an integral part in this academic endeavour. Thank you all.

Contents
Acknowledgements . iv

1 Introduction 1

2 Background 5
2.1 Single Sign On Systems . 5
2.2 OAuth 2.0 . 6
2.3 Transport Layer Security . 12
2.4 Formal Verification . 15
2.5 Dolev Yao Attacker . 17
2.6 Needham-Schroeder Public Key Protocol 17
2.7 Formal Verification Tools . 18
2.8 Related Works . 22

3 Modelling and Verifying OAuth 2.0 25
3.1 The need for both PSPSP and OFMC . 25
3.2 Modelling OAuth 2.0 in OFMC . 25
3.3 Formal verification with OFMC . 31
3.4 Modelling OAuth 2.0 in PSPSP . 32
3.5 Modelling and composing TLS with OAuth 36
3.6 Formal verification with PSPSP . 38

4 Analysis 41
4.1 Detailed Analysis from OFMC . 41
4.2 Detailed Analysis from PSPSP . 43
4.3 Results . 46

5 Discussion 47
5.1 Interpretation of results . 47
5.2 Qualification of Results . 47
5.3 Future Work . 48

6 Conclusion 51

Bibliography 52

A Appendix 55

Formal Analysis and Verification of OAuth 2.0 in SSO v

1 Introduction
In today’s digital age, organizations rely on a multitude of web services and applications
to carry out their operations. These services can be both internal and external tools, each
serving a specific purpose. These include email, instant messaging, project management,
source code management, and human resources systems. Each of these services typ-
ically stores sensitive information and requires users to authenticate themselves before
they can use the service.

In the absence of Single Sign On (SSO) systems, users would typically authenticate them-
selves with a separate set of credentials, such as username and password, for each web
service. Some services allow or enforce the use of multi-factor authentication (MFA) [1],
whereby a user has to enroll another device, such as their smartphone or a hardware se-
curity device, and approve each login request separately. Some services may even ask
the users a security question to verify their identity. Repeating these steps can lead to a
significant amount of time spent on authentication processes.

Moreover, with multiple different credentials to maintain, users soon hit the wall of pass-
word fatigue [2]. This arises when users feel overwhelmed by the task of recalling nu-
merous passwords for various accounts, each with different requirements for password
strength. This often results in the reuse of passwords, using the same one for multiple
accounts. Such password reuse presents a notable security concern since if any of the
websites where the password is employed is compromised, an attacker can engage in
brute force attacks to gain access to the user’s accounts across all platforms. Within an
organization, this vulnerability poses a significant threat to the entire entity.

To counter this, some organizations use password managers to securely store employee
credentials. But these have drawbacks of their own. Firstly, changing credentials once
an account, or the entire password vault, has been compromised is cumbersome. Fur-
thermore, it is not possible to offer customizable role-based access control, and the orga-
nization cannot enforce MFA and risk-based access control.

SSO systems streamline the authentication process by allowing users to authenticate
once and subsequently access multiple applications or systems without the need for re-
peated credential entry. The fundamental concept behind SSO involves establishing a
trusted relationship between an identity provider (IDP) and various relying parties (RPs).
The IDP is a server that is the authoritative source for user authentication, either controlled
or trusted by the organization, while the RPs represent the different web applications the
user needs to access.

OAuth 2.0, also referred to as OAuth in this thesis, is a protocol specifically designed
to enable third-party services to obtain restricted access to a user’s data from another
service. In the traditional authentication model, users would typically need to provide
their credentials to the third-party service to grant it the ability to authenticate on their
behalf and retrieve their data.

This conventional approach results in the third party gaining complete access to the user’s
data and being able to perform any actions as if they were the user, regardless of the user’s
intention to grant only limited access. Additionally, users lack the ability to selectively re-
voke access for individual third-party services; they would need to change their password
entirely. Furthermore, since the third party stores the user’s credentials, any compromise

Formal Analysis and Verification of OAuth 2.0 in SSO 1

of the third-party service could potentially lead to unauthorized access to the user’s data.
These risks are magnified by the common practice of reusing passwords across multiple
services, further exacerbating security concerns [2].

OAuth enables users to authorize and delegate access to their data to third-party applica-
tions without the need to disclose their credentials. With OAuth, users can grant specific
and limited access to a particular scope of data. Additionally, OAuth provides the flexibility
for users to easily revoke access for specific third-party applications when desired. More-
over, by eliminating the need for multiple sets of credentials, OAuth reduces password
fatigue and allows users to remain more vigilant against phishing attempts.

OAuth 2.0 has widespread adoption as a protocol for SSO applications, catering to both
organizational environments and individual user applications on the wider internet. Al-
though it was not initially designed for authentication, it is routinely adapted to fulfill this
role in SSO systems.

Formal verification is a process that uses a methodical approach that employs mathemat-
ical reasoning to confirm the correctness of a system. This thesis aims to utilize formal
verification tools and methodologies to perform an evaluation of the security properties
of the OAuth 2.0 protocol, particularly when implemented in the context of SSO applica-
tions. The tools used for conducting the formal verification in this investigation are the
Open-Source Fixedpoint Model-Checker (OFMC) [3] and the Performing Security Proofs
of Stateful Protocols (PSPSP) [4] theory in Isabelle/HOL.

The study concentrates on the OAuth 2.0 protocol itself rather than any specific real-world
implementations. While there may exist numerous intricacies and potential vulnerabilities
in various implementations, due to the fact that the implementation process often lacks
the robustness found in the standardization of protocols like OAuth 2.0, examining the
protocol itself allows for a more comprehensive coverage. Multiple implementations of
SSO systems adhere to the protocol specification of OAuth and integrate it into their code.
Consequently, a vulnerability within the underlying protocol would compromise all imple-
mentations that rely on it.

This thesis aims to achieve several key objectives that collectively contribute to a compre-
hensive analysis of the security of the OAuth protocol in SSO systems. These objectives
are as follows:

1. Understanding Single Sign-On systems and their requirements: It is essential to
comprehend the nature and functioning of SSO systems in order to analyse their se-
curity. The first objective involves examining the characteristics and prerequisites
of SSO systems to establish the context for subsequent formal verification and un-
derstand their interaction with the OAuth 2.0 protocol.

2. Gaining in-depth knowledge of the OAuth 2.0 protocol and its implementation in
SSO systems: The second objective is to acquire a systematic and comprehensive
understanding of the OAuth 2.0 protocol. This includes studying its theoretical foun-
dations, operational mechanisms, and design philosophy. The focus will be on how
the protocol is implemented within SSO systems, particularly regarding user authen-
tication. The investigation will explore the adaptation, interaction, and fulfillment of
SSO requirements by the OAuth 2.0 protocol.

3. Conducting formal verification of the OAuth 2.0 protocol in the Context of SSO Sys-
tems: The central goal of this thesis is to undertake a formal examination of the
OAuth 2.0 protocol as it is applied in SSO systems. The third objective involves

constructing a mathematical model of the protocol’s operation and employing tech-
niques to systematically prove or disprove its correctness. In the event of identifying
vulnerabilities, the analysis will extend to scrutinizing potential attack vectors, under-
standing their implications, and proposing appropriate remediation strategies.

The structure of this thesis is as follows. Chapter 2 provides an extensive summary of the
background concepts that form the foundation of this study. These concepts are essential
for a comprehensive understanding of the subsequent chapters. Chapter 3 delves into
the methodology employed for the modelling and formal verification process, utilizing the
OFMC and PSPSP tools. It elaborates the steps taken to construct the models and verify
their security properties. Chapter 4 conducts an analysis of the results obtained from the
formal verification. Chapter 5 discusses these results, providing context for the results.
Additionally, it explores potential avenues for further improvement and enhancement of
the study. Finally, Chapter 6 encapsulates the key points and offers a concluding overview
of the thesis.

2 Background
This chapter covers the different concepts being explored in a bit more detail.

2.1 Single Sign On Systems
Single Sign-On systems within organizational settings are the primary focus of this paper,
including this particular section. However, a lot of the same issues apply to individual
users as well.

2.1.1 SSO systems functioning
As previously mentioned, SSO systems are typically comprised of an Identity Provider
(IDP) that deals with authentication, different Relying Parties (RP) that offer a service,
and multiple end users. In this framework, the IDP maintains predefined connections
with each user and the supported RPs. When a user intends to log in to an RP, they are
prompted to authenticate themselves with the IDP, typically by providing their credentials
and using additional authentication methods. The IDP then directly communicates with
the RP to assert the legitimacy of the login attempt originating from the user.

Numerous RPs will be arranged to operate with a common IDP. This implies that a user
can authenticate themselves with just one IDP and subsequently gain access to services
offered by multiple RPs. This concept is the underlying principle of Single Sign-On.

This paper primarily focuses on SSO systems that operate via web browsers, which is a
very common mode of interaction. The core of an SSO system is the IDP, which is es-
tablished by the organization that manages the user accounts. The IDP interacts directly
with users through a web interface.

The IDP is typically responsible for running various protocols that each RP supports.
These protocols could include Security Assertion Markup Language (SAML), OAuth 2.0,
and OpenID Connect (OIDC).

RPs register themselves with the IDP, establishing a trust relationship in the process. Sim-
ilarly, the end user sets up an account with the IDP. Figure 2.1 shows the trust relationship
in an SSO system.

User

RP

email

Cloud
Storage

Calendar
IDP

Trust Trust

Trust

Figure 2.1: Trust relationship between the user, IDP, and RP

Formal Analysis and Verification of OAuth 2.0 in SSO 5

2.1.2 Security concerns
A significant security concern associated with SSO systems, as well as other centralized
authentication systems like password managers, is their inherent nature as a single point
of failure. This means that if the SSO account is compromised, it could lead to the compro-
mise of all connected accounts. Therefore, it’s crucial for users to select robust and unique
passwords to safeguard their SSO account, and for organizations to enforce multi-factor
authentication and other security measures.

Misconfiguration of SSO servers, including both IDPs and RPs, presents another security
issue. If these servers are not configured in strict adherence to the specifications of the
protocol they are implementing, it could lead to vulnerabilities [5, 6, 7, 8, 9, 10]. This
also extends to potential misconfigurations in the communication between the different
supported protocols.

Lastly, potential issues could arise from the protocol specifications themselves. These
could be inherent flaws or vulnerabilities in the design of the protocols that could be ex-
ploited. This paper delves deeper into these potential issues, examining the protocol
specifications and their potential vulnerabilities in the context of SSO systems.

In essence, while SSO systems offer numerous benefits in terms of convenience and
streamlined access, it’s important to be aware of these potential security concerns. Ensur-
ing robust password practices, strict adherence to protocol specifications, and a thorough
understanding of potential protocol vulnerabilities are key to maintaining the security of
SSO systems.

2.2 OAuth 2.0
OAuth 2.0 is a protocol designed for authorization of data access to third party applications.
This section will cover the details about OAuth in more detail.

2.2.1 Roles in OAuth 2.0
Note: the terminology used to describe the roles in the OAuth 2.0 specification [11] differs
from the commonly used terminology in SSO systems. In section 2.2, the terminology
aligns with the OAuth 2.0 specification. However, in all other sections, the roles will be
referred to using the SSO terminology, unless otherwise stated explicitly.

The OAuth 2.0 protocol involves the participation of various distinct parties, each playing
a specific role in the execution of the protocol. The roles in OAuth 2.0 are:

• Resource Owner : The resource owner is the end-user who owns the data that the
third-party application wants to access. It is the user, typically an individual user but
could also be an organization, that controls access to a protected resource, such as
personal data or services. The resource owner grants permission to the client for
accessing their resources.

• Resource Server : The resource server hosts the protected resources that the client
wants to access on behalf of the resource owner. It can be an API, a database, a
file server, or any other system that manages and controls access to the resources.
For example, a cloud storage provider where the user’s personal files are stored.

• Client: The client is the application or service requesting access to the resource
on behalf of the resource owner. It can be a web application, mobile app, or other
software. The client initiates the authorization process and interacts with the autho-
rization server and resource server to obtain access to the protected resources. For
instance, a web application that scans a users cloud storage files for malware.

• Authorization Server : The server responsible for authenticating the resource owner,
validating their authorization, and issuing access tokens to clients. It verifies the
identity of the client and the permissions granted by the resource owner. The au-
thorization server plays a crucial role in facilitating secure and authorized access to
protected resources. Typically, the authorization server is under the control of the
same entity that manages the resource server.

2.2.2 Concepts in OAuth 2.0
This section provides an overview of some key concepts in OAuth 2.0 that are essential
for a comprehensive understanding of the protocol and its flow.
OAuth grants
The OAuth specification covers various authentication and authorization flows designed
to cater to different use cases. These include the implicit grant, resource owner password
credentials, client credentials, and authorization code [11]. The focus of this paper is the
authorization code grant, which is widely used in SSO systems.
Authorization Code
An authorization code is a string of characters that does not carry any inherent meaning
and serves as a bearer of credentials for the resource owner. It is a single-use code
provided by the authorization server and passed through the resource owner to the client.
Using this authorization code, the client can communicate with the authorization server
and demonstrate that the resource owner has granted them access to data, and receive
an access token to access the data.

Due to the authorization code’s opaque nature for the client, the specific format of the au-
thorization code is not defined in the OAuth specifications. Implementers of the protocol
have the freedom to determine the format that best suits their requirements. The crucial
aspect is that the authorization server can consistently issue and authenticate authoriza-
tion codes. Generally, the authorization code is securely stored within the authorization
server and associated with additional transaction details for reference and verification.

The authorization code can be linked to details about the parties involved in the transac-
tion, such as the end user, resource server, authorization server, and client. Additionally,
it can be associated with details regarding the allowed scope of data access and the va-
lidity period of the code. The OAuth spec recommends that the code validity period is not
longer than 10 minutes [11].
Access Token
The access token is a credential issued by the authorization server directly to the client.
Just like the authorization code, the client usually perceives this token as a meaningless
string, but it holds significance in the authentication process. The client can exchange
this token with the resource server to obtain access to the data owned by the resource
owner.

The access token can take several forms, but the most common types are bearer to-
kens [12] and message authentication code (MAC) tokens. Generally, possession of the
access token enables data retrieval to whoever possesses it, without further authentica-
tion requirements. The presence of an authorization code as an intermediate step in the
OAuth flow is designed to address the security concern of exposing the access token to
potential attackers by transmitting it through the resource owner’s web browser (or other
user agent).

Although the OAuth specification offers guidelines for implementing OAuth Bearer Tokens
[12], implementers have the flexibility to choose any format they prefer. The primary re-
quirement is that the client, resource server, and authentication server mutually agree on

the token format. However, it is essential for the authorization server and resource server
to establish a secure mechanism for validating the legitimacy and integrity of authorization
codes submitted by clients to the resource server. This critical aspect is covered by the
introspection endpoint [13], which ensures the verification of authorization codes.
Token Introspection
Token introspection [13] is a vital mechanism that allows the resource server to gather
detailed information about a token. In OAuth, tokens are often represented as opaque
strings, lacking inherent meaning or visibility to the client as well as the resource server.
As a result, token introspection plays a crucial role in enabling the resource server to
validate the token and ascertain that it is providing the appropriate resources to the client
under the correct conditions.

Through token introspection, the resource server can query the authorization server to
obtain relevant details about the token. This allows the resource server to verify the au-
thenticity and validity of the token, ensuring that it has not been tampered with or expired.
Additionally, token introspection provides insights into the scope and permissions associ-
ated with the token, enabling the resource server to make informed decisions regarding
the resources it grants access to.
Refresh Token
Typically, access tokens have a short expiration period. In these cases, to address the
inconvenience of frequent re-authentication by the resource owner when using the client
application, refresh tokens are allowed, but not mandated. These tokens enable the client
to obtain new access tokens from the authorization server without requiring any involve-
ment from the resource owner.

When an access token expires, the client can submit the refresh token to the authorization
server, along with client authentication using the client ID and secret. In response, the
authorization server grants a new access token and a fresh refresh token to the client.
The client can then utilize the new access token and retain the new refresh token for
subsequent renewals when the access token expires again.
Client ID and secret
Every client that is registered with the authorization server receives a client ID. This client
ID is unique for each authorization server and client, ie: the same client id cannot be
used by the client with another authorization server. The client ID alone is not enough to
authenticate the client with the authorization server.

The client authenticates itself with the authorization server using a a client password, also
referred to as a client secret. This secret is typically provided by the authorization server
during client registration. The combination of this client secret and the client ID forms the
basis for client authentication.

Note: the OAuth specification allows for alternative methods for client authentication, but
this paper focuses on client ID and secret-based authentication.
Client state
The state is a unique, non-guessable string, generated by the client and sent to the re-
source owner during the initiation of the authorization request. This state value is main-
tained throughout the process until the client receives the authorization code. It serves
multiple purposes:

Primarily, it is used to safeguard against cross-site request forgery attacks (CSRF). It does
this by ensuring that the callback received from the resource owner corresponds to the
original request initiated by the client.

Moreover, the state parameter can be used by the client to maintain uniqueness and
distinguish between various OAuth threads for individual end-users. This guarantees that
each OAuth process is unique and identifiable. The ’state’ parameter can also serve as a
container for additional information, such as specifying the precise section of a web page
to which the resource owner should be directed upon authentication.

Redirect URI
The redirect URI is the Uniform Resource Identifier (URI) on the client application where
the resource owner is redirected after being granted an authorization code. It serves both
as a user-friendly way to direct the resource owner to the appropriate web page, especially
when used with the state parameter, and as a security measure against phishing attacks.

During the client registration process, the client is required to register the redirect URI with
the authorization server. When making an authorization request, the client must include
the same redirect URI. The authorization server verifies that the redirect URI in the request
matches the registered one, ensuring that the resource owner is redirected to the correct
location. This mechanism adds an additional layer of protection, preventing attackers
from successfully redirecting the resource owner to a malicious URI and obtaining their
authorization code even if the resource owner falls for a phishing attempt.

Scope
The scope is used to specify the precise access permissions that the client is seeking
from the resource owner. It outlines the boundaries and limitations of the resources that
the client will be granted access to.

Each individual scope option is represented by a distinct string denoting a specific type
of resource within the resource server. The exact strings and the permissions associated
with these strings are defined by the authorization server and vary across implementa-
tions.

During the authorization process, the resource owner is typically presented with the re-
quested scopes on a consent screen. This allows the user to selectively modify the ap-
proved scopes, or accept or decline the access request in its entirety.

2.2.3 Data Flow in OAuth
As per the OAuth 2.0 specifications, certain transactions in the OAuth framework mandate
the use of the latest widely adopted version of Transport Layer Security (TLS) [14], which is
presently version 1.3 and version 1.2. In other transactions, TLS is recommended but not
explicitly required. Nevertheless, in practical implementations of OAuth, TLS is employed
across the board, just as it is in the majority of web services. This ensures that every
message exchanged between the involved parties is encrypted, blocking eavesdropping
by attackers.

In this thesis, it is assumed that TLS is employed for all transactions within the OAuth
framework.

Authorization Request
As we can see in Figure 2.2, the data flow in OAuth begins with the resource owner (end
user) initiating a data access request at the client. The client then redirects the resource
owner to the ’authorization endpoint’ of the authorization server with all the details needed
for the request. This includes the client ID, the redirect URI, and optionally, the scope. The
authorization server validates all the details provided and then proceedes to authenticate
the resource owner.

Resource
Owner

Authorization
Server

Cloud
Storage

Resource
Server

Owned by organization

Anti-virus

Client

3rd party
application

1. Initiate authorization

"I want you to scan my files"

2. Authorization Request

"Ok, sign into the auth server to prove who you are"

client_id, redirect_uri, state

"Enter your credentials +
Do you want to approve this application to access your files?"

3. User Authentication
username,password,mfa

"Give this to the client to prove that you have approved it"

4. Authorization Response
state, scope, authorization_code

"I have this code from a user. Here are
my credentials. Give me an access token"

5. Access Token Request
client_secret, redirect_uri,

 client_id, authorization_code

"Here is the access token and a
refresh token for later"

6. Access Token Response
access_token, validity, refresh_token

"Here's my access token. Give me the data"

7. Access the Resource
access_token

"Somebody sent me this token,
is it valid? What's the scope?"

8. Token Introspection
access_token

"Yes it's valid.
This is the scope"

validity, scope

"Here is the data you requested"

9. Resource
data

10. Provide Service

"Your files are virus free! Hurray!"

Figure 2.2: The data flow in the OAuth 2.0 authorization code grant [15]

Authenticating the Resource Owner
The authentication of the resource owner is not covered in the OAuth specification and
can be done in any way the authorization server sees fit. This could include password au-
thentication, biometric authentication, or multi factor authentication (MFA). If the resource
owner has an active valid session cookie with the authorization server, they will not have
to re-authenticate themselves. However, to prevent CSRF attacks on the authorization
endpoint of the authorization server, the authorization server is required to get some ex-
plicit approval from the resource owner for the OAuth request to this specific client. This
way an attacker will not be able to get an authorization code without explicit approval from
the user.
Authorization Response
After successfully authenticating the resource owner, the authorization server provides the
client with an authorization code. This code is transmitted to the client via the resource
owner’s user agent as part of the authorization response. The authorization response, is a
redirection response to the client’s designated redirect URI. This response encompasses
both the scope of access, the state parameter, and the authorization code, providing the
necessary information to proceed with the subsequent steps of the OAuth flow.
Access Token Request
Upon receiving the authorization code from the resource owner, the client performs a val-
idation check to ensure that the state parameter matches the one it generated during the
initial authorization request. Once validated, the client proceeds to exchange the autho-
rization code for an access token. This exchange is done through direct communication
between the client and the authorization server’s token endpoint.

To authenticate itself, the client includes its client secret in the authorization header of a
POST request sent to the token endpoint. This request includes the client ID, redirect
URI, and authorization code it received.

During the token exchange process, the authorization server performs a series of checks.
It verifies that the client secret is correct, ensuring its legitimacy. It checks the authorization
code to confirm its validity and expiration status. Additionally, the authorization server
confirms that the authorization code was issued to the client making the request and
matches the correct client ID and redirect URI.
Access Token Response
Upon successful validation of the access token request, the authorization server provides
the client with the actual access token. The response from the authorization server also
includes the expiration time of the access token. Additionally, the response may optionally
contain a refresh token.
Accessing the Resource
In possession of the access token, the client proceeds to approach the resource server
to request access to the desired resource. The access token is included in the client’s
request to the resource server. Since the client has already been authenticated during
the authorization process, there is no need for further client authentication, and therefore
the client ID is not required. Instead, the resource server verifies the access token with
the authorization server.

During this verification process, the resource server confirms the authenticity of the access
token, checks its scope and expiration to ensure it is still valid. The specifics of how the
resource server validates the token with the authorization server are not covered by the
OAuth specification, as it varies depending on the implementation and configuration.

Overall, this process ensures secure and authorized access to the requested resource

without exposing sensitive information. The limited validity period of access tokens re-
duces the risk of extended misuse from issuing a bearer token.

2.2.4 The Role of OAuth 2.0 in SSO Systems
As discussed above, the OAuth 2.0 protocol primarily focuses on granting access to pro-
tected resources rather than serving as a dedicated user authentication protocol for SSO
systems. It does not provide a direct mechanism for explicitly verifying the user’s identity.

In contrast, the OpenID Connect (OIDC) protocol was specifically designed as an exten-
sion of OAuth 2.0 with the explicit purpose of user authentication [16]. It introduces an ID
token, which is an access token type dedicated to asserting the authentication claim of
the user.

However, while OAuth 2.0 was not initially designed for user authentication, it is clear
that it can still be employed for authentication purposes. For instance, by limiting the
scope of access to a specific piece of data that serves as proof of the user’s claimed
identity. There are several alternative methods available to achieve the common objective
of authentication using OAuth.
Token Introspection
To enable OAuth for authentication purposes, a common approach is to expose the intro-
spection endpoint of the authorization server to allow client querying [17]. By doing so, the
client can be provided with a token without any specific scope, while still utilizing the au-
thorization server to validate the token’s association with the correct user. This validation
process can yield essential information, including a unique username and other relevant
supporting data.

In such scenarios, clients may solely interact with the authentication server without directly
communicating with the resource server. This configuration allows for a streamlined au-
thentication flow where the client primarily communicates with the authentication server
for the verification and validation of tokens, ensuring the accurate identification of the
associated user.

When the resource server is not present, the roles in the OAuth protocol bear a striking
resemblance to the roles found in SSO systems. In this context the resource owner cor-
responds to the end user, the client takes on the role of a relying party (RP), and the
authorization server assumes the role of an identity provider (IDP).

For the remainder of the paper, this perspective of OAuth as an SSO solution through the
use of token introspection will be adopted. The terminology used to refer to the roles in
OAuth will align with this approach, taking the same naming convention as SSO systems.

2.3 Transport Layer Security
TLS is a protocol used to facilitate secure communications between two parties over a
network [14]. Although TLS can be used over any communication protocol, this paper will
focus on the use of TLS within the client-server paradigm in the context of the internet
services using the TCP/IP protocol stack. Moreover, TLS consists of two layers, the TLS
Handshake Protocol, responsible for initiating the secure communications, and the TLS
Record Protocol, responsible for ensuring a continued secure and reliable connection [14].
This paper will focus on the TLS Handshake Protocol and abstract away the functioning
of the TLS Record Protocol, assuming that it works as expected.

Although the latest TLS version is 1.3, this paper will primarily delve into TLS version 1.2.
The choice of TLS 1.2 is driven by the limitations of the tools utilized for implementing this

O
A

u
th

S
S

O

IDP

Authorization
Server

Cloud
Storage

Resource
Server

RP

email

Cloud
Storage

Calendar

Anti-virus

Client

3rd party
application

user

Resource
Owner

Figure 2.3: The OAuth roles in an SSO context

paper. Therefore, throughout the paper, the term TLS will specifically refer to TLS version
1.2, unless explicitly specified otherwise. The TLS 1.2 handshake consists of four round
trip messages. Here is a high level overview of the messages in each round trip:

1. Client Hello: The TLS handshake begins with the client initiating the process. The
client sends a message to the server, specifying the list of supported ciphers and
the TLS version it can handle. Additionally, the client generates a random number
called the client random and includes it in the message.

2. Server Hello: In response, the server selects the appropriate TLS version and ci-
phers for the session. It sends a message back to the client, indicating the chosen
TLS version and ciphers. The server also generates a random number called the
server random and includes it in the message. The server provides its signed certifi-
cate in another message. If the server doesn’t support the TLS version requested
by the client, it sends a failure message and terminates the session.

3. Client Response: Upon receiving the server’smessage, the client verifies the server’s
certificate by checking if it was signed by a trusted certificate authority (CA). The
client then selects a randomly generated value, the premaster secret (PMS), and
encrypts it using the server’s public key obtained from the server’s certificate. This
encrypted PMS is sent to the server as part of the ClientKeyExchange message.
The client also derives the session key using the client random, server random, and
PMS. Next, using the ChangeCipherSpec message, the client informs the server
that all future messages within this session will be encrypted using the agreed-upon

Client Hello
supported ciphers,
supported TLS versions,
client_random

Client

Server Hello
selected cipher,
selected TLS version,
server_random

Server Certificate

Client Key Exchange {PMS} enc(PK(Bob))

Secure Channel

Change Cipher Spec

Finished

Server

Change Cipher Spec

Finished

Figure 2.4: Data flow in version TLS 1.2

ciphers and session key (which the server will be able to derive, given the PMS). Fi-
nally, the client sends a Finished message to indicate that it’s part of the handshake
is done.

4. Server Response: The server receives the encrypted PMS from the client and de-
crypts it using its private key. Using the client random, server random, and decrypted
PMS, the server computes the session key. It then sends a message to the client,
confirming that all subsequent messages will be encrypted using the newly estab-
lished session key and cipher. It sends the client a Finished message and now the
two parties have a secure channel to communicate over.

After completing this exchange, both the client and the server can generate a session
key using a key derivation function. This session key enables them to employ symmet-
ric cryptography with the agreed-upon ciphers, ensuring the encryption of all exchanged
messages. As a result, despite relying on an inherently insecure TCP connection, TLS

facilitates secure communication between two parties within an insecure environment.

2.4 Formal Verification
As software systems grow increasingly complex, ensuring that they operate as intended
becomes more challenging. Additionally, guaranteeing their functionality without any se-
curity vulnerabilities adds extra complexity.

The testing of such systems can be performed using various methods. One approach
involves manual testing, where the software designer and/or their peers meticulously re-
view the design and implementation to identify any errors or issues. Another method is
unit testing [18], where the system authors create specific test cases to ensure the ex-
pected functionality.

However, users may interact with the system in unanticipated ways, and it becomes chal-
lenging for manual testers to anticipate all possible user interactions, hampering their abil-
ity to fully validate the system’s behavior. Automated testing tools can simulate pseudo-
random user inputs and behaviors to analyse system outputs [19], but they also have
their limitations. Conventional testing approaches may struggle to adequately capture
complex scenarios such as network communications involving multiple messages and
potential attackers.

Formal verification is a process that allows one to establish proof of a system’s correct
behavior. This can be extended to both software and hardware systems, as well as combi-
nations of the two. While formal verification can be applied to software products in general,
this paper will specifically explore it in the context of network communication protocols.

2.4.1 Model Checking
Model checking is a powerful technique used to algorithmically verify the correctness of
systems that have a finite number of states [20]. This process involves employing a dedi-
cated program or tool called a model checker. These tools use various methods to verify
the model, one frequent method being systematically exploring all possible states that the
system can reach and examining each state to determine if it complies with the specified
correctness criteria.

It is crucial to note that model checking does not directly validate the actual system but
rather verifies a model of the system. This model is a simplified representation of the
system, that focuses on the logical aspects rather than the specific code, syntax, or im-
plementation details. Therefore, one of the most critical aspects of model checking is
ensuring that the model accurately reflects the actual system. If the model is inaccurate
or flawed, the results obtained from the model checker cannot be reliably interpreted or
trusted.

The other important aspect of model checking is to provide an accurate representation of
the expected behavior of the system, the property specification. This includes defining the
system requirements and specifying the conditions that constitute errors. It is essential to
have well-defined and comprehensive error definitions to ensure that the model checker
can effectively identify and flag potential issues. Without clear and precise error defini-
tions, the model checker may raise false positive errors or miss out on true positive errors.
Therefore, careful and thorough consideration of error conditions is vital to maximize the
effectiveness of model checking and obtain reliable results.

A model checker can systematically explore numerous states in the model to identify er-
rors. The discovery of an error can indicate one of the following:

1. An error in the model, which is linked to an issue in the system design

2. An error in the model that cannot be replicated in the actual system, either due to
limitations in the model or its inability to fully represent the real-world system

3. Inaccurate property specifications in the model that raise an error that is not of con-
cern in the actual system.

Similarly, if a model checker fails to detect any errors in the model, it could be due to the
following reasons:

1. There are no errors in the system.

2. The model checker is unable to capture certain errors in the system due to inaccu-
racies in the model’s design or limitations in the model’s capability to represent the
complexities of the real-world system.

3. The property specifications used in the model were not sufficiently precise to identify
a potential error.

By using an accurate model and specifications, model checking enables the identification
of potential errors, flaws, or unexpected behavior in the system being analysed.

2.4.2 Proof Assistants
A limitation of model checkers, as mentioned in Section 2.4.1, is their constraint to verify
models with a limited number of states [21]. As the complexity of a model increases, re-
sulting in a larger number of states, the computational resources required to exhaustively
cover all states also significantly escalate. Consequently, to ensure reasonable verifica-
tion times, it may be necessary to impose restrictions on the number of states when em-
ploying a model checker. For example, reducing the number of participants, messages,
and functions allowed in a networking protocol. However, this restriction may not be feasi-
ble or practical in certain systems, and could compromise the utility of the model checker
in other cases.

This is where proof assistants come in. They are built upon the foundation of formal
logic [22], which has long been used to prove theorems in academic disciplines such as
mathematics and physics. Similar to hand-written proofs, proof assistants define their own
language to express theories and algorithms. By defining the system within the rules of
the proof assistant’s language in a precise logical form, complex mathematical reasoning
can be applied to analyse properties and relationships within the system.

Proof assistants usually operate on higher-order logic, allowing for intricate analysis of
logical consistency within the system. Rather than iterating over every possible state
of a system, like model checkers do, they logically try to disprove the input, looking for
improper assertions, leaps in logic, and other logical issues. This offers a robust means
of verifying complex systems, algorithms, or theories with a high degree of certainty in it’s
output.

Note that the specific implementation details of proof assistants extend beyond the scope
of this paper.

2.4.3 Composition of Protocols
Communication protocols in the modern age are complex, operating over the Internet
Protocol suite, Transmission Control Protocol (TCP)/Internet Protocol (IP), and often in-
teracting with additional protocols like TLS and the Hypertext Transfer Protocol (HTTP).

Individually, these protocols are quite complex, which further intensify when combined,
presenting significant challenges for verification [23].

To tackle this complexity, various approaches can be employed. One option is to analyse
the entire stack of protocols together, considering the extensive interdependencies and
modelling the message flow across each layer. However, this approach carries the risk of
errors due to the system’s vast size and complexity, along with the performance overhead
of verifying such a comprehensive protocol.

Alternatively, simulating the impact of underlying protocols on the final protocol can be
employed. This involves making assumptions about how the underlying protocols influ-
ence the overall system’s behavior and incorporating these assumptions into the model.
Nevertheless, these assumptions are not always valid and they may introduce verification
issues [24].

Another approach involves conducting independent analyses of each protocol, either for
all or a selected subset, before composing the results together. This allows for a focused
examination of each protocol’s properties before integrating them into the larger system.
However, it is crucial to acknowledge that one protocol’s behavior can impact another,
necessitating consideration of their interplay. This is where compositionality becomes
important. By defining each protocol separately and establishing their relationships, it
becomes possible to verify them both individually and collectively.

2.5 Dolev Yao Attacker
The Dolev-Yao attacker model, originally proposed by D. Dolev and A. Yao, is a model
for a type of adversary encountered in networked communications [25]. This attacker
possesses complete control over the network, enabling them to eavesdrop on, intercept,
modify, delete, or fabricate any messages transmitted on the network. Their capabilities
extend to cryptographic operations and they possess unbounded computational power.
However, the attacker is unable to break sound cryptographic algorithms. Essentially,
the attacker has unrestricted authority over the network, rendering it untrustworthy for the
participants. Hence, it is crucial to employ cryptographic primitives to safeguard mes-
sages from being read by the attacker and to verify the integrity of messages against
unauthorized modifications.

To achieve message confidentiality, preventing the attacker from reading the messages,
encryption can be utilized by the parties. To ensure that they can detect any modifications
in the messages, to maintain integrity, the parties can employ methods such as MACs or
digital signatures.

Enacting such an attack on the modern internet is not feasible due to the significant re-
quirement of gaining control over numerous internet service providers (ISPs), routers, and
domain name servers (DNS). However, control over a few key points in the network gives
an attacker a significant amount of power.

This paper assumes a Dolev Yao attacker exists on the network.

2.6 Needham-Schroeder Public Key Protocol
The Needham-Schroeder Public Key (NSPK) protocol was developed by R. Needham and
M. Schroeder to ensure that two parties can authenticate each other on a network [26].
This protocol is used to serve as a demonstration of the modelling languages selected for
the formal verification in this thesis. The protocol follows the following message flow:

1. Alice initiates the protocol by sending Bob a new random nonce, NA, along with her
identity, A. The entire message is encrypted using Bob’s public key.

2. Bob decrypts the received message and responds to Alice by sending back the
nonce NA and a new nonce NB. The entire response message is encrypted using
Alice’s public key. This exchange serves as proof to Alice that the sender is indeed
Bob, as only Bob can decrypt the previous message and retrieve the value of NA.

3. Alice decrypts the response message from Bob and sends Bob the nonce NB, en-
crypted with Bob’s public key. Following the logic above, this step serves as proof
to Bob that the sender is genuinely Alice.

At the end of this exchange, Alice and Bob can know that the other party is indeed who
they think, ie they have authenticated each other. This holds true as long as the public
keys that they posses is the correct public key.

2.7 Formal Verification Tools
This section provides an overview of the tools utilized for the formal verification of OAuth
and TLS in this thesis, namely the OFMC and PSPSP tools.

2.7.1 OFMC
The Open-Source Fixedpoint Model-Checker, OFMC, is a model checker designed specif-
ically for analysing security protocols [3]. Its primary objective is to offer a comprehensive,
user-friendly, and efficient approach to protocol analysis. OFMC achieves this by utilizing
a simplified, almost graphical notation to depict the protocol steps, while incorporating sev-
eral enhancements to enable comprehensive and swift analysis of protocols, even those
with vast or potentially infinite state spaces.

OFMC employs an ”Alice and Bob notation”, representing commonly used names for two
parties involved in a protocol. This notation encourages the author to document the proto-
col steps in a manner similar to creating a sequence diagram, allowing for easy analysis
of the protocol and identification of errors in entry. Additionally, this notation enables
bystanders or learners to quickly grasp the protocol’s details.

Furthermore, OFMC offers a straightforward means to define the pre-existing knowledge
within the system, including secrets, functions, and participants. Furthermore, it allows
for the specification of the security requirements that the protocol needs to fulfill.
Example: NSPK algorithm
The following is an example of the NSPK protocol, as seen in section 2.6, in OFMC.

1 Protocol: NSPK
2

3 Types:
4 Agent A,B;
5 Number NA,NB;
6 Function pk
7

8 Knowledge:
9 A: A, pk, inv(pk(A)), B;

10 B: B, pk, inv(pk(B))
11

12 Actions:
13 A -> B: {NA,A}(pk(B))
14 B -> A: {NA,NB}(pk(A))
15 A -> B: {NB}(pk(B))
16

17 Goals:

18 B authenticates A on NA
19 A authenticates B on NB
20 NA secret between A,B
21 NB secret between A,B

The types section serves to define the various agents involved in the protocols, the num-
bers representing variables, and the functions utilized.

In the knowledge section, the accessible types of information for each agent are specified.
The inv() function denotes that the agent possesses knowledge of the inverse of the
specified value. The numbers are not explicitly enumerated here, as they are variables
that can take on any value.

The actions section is responsible for describing the protocol. It is presented in a straight-
forward, easy to understand, manner. The { and } braces here indicate that the message
is being encrypted using the key specified in the brackets that immediately follow it.

The goals section outlines clearly defined objectives for the protocol that are easily com-
prehensible.

2.7.2 Isabelle HOL
Isabelle is a geneic proof assistant that supports the use of different types of logic to
prove mathematical theorems [27][28]. Specifically, Isabelle/HOL (Higher Order Logic)
is the specification for working with Isabelle in conjunction with HOL. HOL, is a formal
logic system extensively used for mathematical reasoning [29]. It is used to represent
and reason about systems or theorems by using objects, properties, relationships, and
functions to describe the system.

In Isabelle/HOL, HOL serves as a functional programming language that enables the ex-
pression of simple proofs. Additionally, Isabelle introduces Isar, a language that is specif-
ically designed for writing more extensive, complex, and structured proofs. While Isabelle
and Isar are powerful tools on their own, a significant advantage of Isabelle is its ability
to create and incorporate other logic systems and plugins. This flexibility allows users to
harness the underlying strength of Isabelle and extend its capabilities according to their
specific needs.

2.7.3 PSPSP
The Performing Security Proofs of Stateful Protocols (PSPSP) theory is specifically de-
signed for performing formal verification of communication protocols in Isabelle/HOL [4].
In contrast to model checkers that exhaustively explore every possible state of a model
to determine the precise set of states where the attacker possesses information, PSPSP
adopts a few approaches to more efficiently verify the model [30][31]. This results in ab-
stracting all the states into sets and to obtain an ”over-approximation” of the sets with
information accessible to the attacker, called the fixed point.

Equipped with the sets containing all the information available to the attacker throughout
the protocol flow, PSPSP can verify whether the conditions for an attack, as defined in the
model specifications, can be satisfied at any given point. By using this approach, PSPSP
can be far more efficient compared to exhaustively exploring the entire state space, all the
possible states the model can be in, of the model, as some traditional model checkers do.
This approach allows for the analysis of protocols in which the state space of the model
has the potential to grow quickly, reaching an exceedingly large or even infinite size.

Additionally, PSPSP offers the capability to maintain long-term mutable state and auto-
mate the verification of the modeled protocol. With long-term mutable state, sets within
the model can be used to store different values among participants, enabling the simula-
tion of long-term cookies, databases, or similar functionalities. The automated verification
feature of PSPSP eliminates the need for manual proofs, such as induction, and ensures
accuracy in assessing various aspects of the protocol and the composition of multiple pro-
tocols. This mitigates the risk of introducing errors during the verification process. These
features significantly contribute to the power, robustness, and reliability of PSPSP in pro-
tocol analysis.

If PSPSP/Isabelle does not detect any attacks, it can be concluded with a high level of
confidence that there is no attack present within the model. However, the absence of an
attack in the model does not guarantee the absence of an attack in the protocol itself, as it
relies on the accuracy of the model and specifications in representing the actual protocol.

PSPSP offers a high-level language called trac, which allows for the description of the
protocol using a more abstract representation. While trac differs from the simplicity of the
Alice and Bob notation style used in OFMC, it still provides an easy to understand way of
describing the protocol.
Example: NSPK algorithm
Unlike OFMC, the NSPK proof in PSPSP is much more verbose to define. The protocol
setup state looks like this:

1 Enumerations:
2 honest = {a,b}
3 dishon = {i}
4 agent = honest ++ dishon
5

6 Sets:
7 a_challenge/2
8 b_response/2
9 nspk_used/2

10

11 Functions:
12 Public crypt/2 aInit/2 bResp/2 aResp/1 pk/1
13 Private inv/1
14

15 Analysis:
16 aInit(X, Y) -> X, Y
17 bResp(X, Y) -> X, Y
18 aResp(X) -> X
19 crypt(X, Y) ? inv(X) -> Y

The protocol definition begins with the enumerations part, which includes the different
kinds of participants involved in the protocol. Honest and dishonest participants can be
defined independently, and participants can be labeled using arbitrary labels. This section
also allows for the creation of ”meta” groupings, such as the agent group demonstrated
here.

Following that, the sets part describes the different sets used to store data in the protocol.
These sets serve as containers for short-term values like nonces or long-term secrets
like private keys. Values can be added or removed from these sets as needed. The /2
accompanying some set definitions indicates the number of agents associated with each
set. Multiple instances of each set can exist, associated with different combinations of
agents.

The functions part defines the various functions utilized in the protocol and specifies the
number of parameters each function takes. Functions are categorized as public or private.
Public functions can be invoked by the attacker with any desired parameters, while private
functions cannot be invoked by the attacker. In the provided example, the inv() function
retrieves the inverse public key, the private key, of an agent, and it is a private function
that the attacker cannot invoke for any agent.

Although the attacker cannot directly invoke these private functions, they can still use the
resulting values of these functions if they gain access to them.

The analysis part defines how the attacker can interpret a function whose value they have
access to. It explains what the attacker can deduce from intercepting a message contain-
ing that function. For instance, crypt(X, Y) ? inv(X) -> Y indicates that if the attacker
has a message with the crypt function and possesses inv(X), they can obtain the value
Y.

The actual protocol part of the PSPSP proof looks like this:

1 Transactions:
2

3 initialKnowledgeDis(A: dishon)
4 send inv(pk(A)).
5

6 aInit(A: honest, B: agent)
7 new NA
8 insert NA a_challenge(A,B)
9 send crypt(pk(B),aInit(NA,A)).

10

11 bResp(A: agent, B: honest, NA: value)
12 receive crypt(pk(B),aInit(NA,A))
13 new NB
14 insert NB b_response(B,A)
15 send crypt(pk(A),bResp(NA,NB)).
16

17 aResp(A: honest, B: agent, NA: value, NB: value)
18 receive crypt(pk(A),bResp(NA,NB))
19 NA in a_challenge(A,B)
20 insert NA nspk_used(A,B)
21 delete NA a_challenge(A,B)
22 send crypt(pk(B),aResp(NB)).
23

24 bFinal(A: agent, B: honest, NB: value)
25 receive crypt(pk(B),aResp(NB))
26 NB in b_response(B,A)
27 delete NB b_response(B,A)
28 insert NB nspk_used(B,A).
29

30 attack_naSecrecy1(A: honest, B: honest, NA: value)
31 receive NA
32 NA in a_challenge(A,B)
33 attack.
34

35 attack_naSecrecy2(A: honest, B: honest, NA: value)
36 receive NA
37 NA in nspk_used(A,B)
38 attack.

In this representation, the transactions are described not in the Alice and Bob notation but

as distinct actions within the system. The specification does not explicitly indicate whether
A or B is the sender of the message, as PSPSP does not consider such specifics. How-
ever, the implied roles of the participants can be inferred based on how each transaction
is defined.

Each transaction defines the relevant agents and values involved in the operation. The
transactions encompass various operations such as receive to receive messages from
the network, insert, in, notin, and delete to interact with sets, new to create new values,
and send to transmit messages onto the network.

Messages sent over the network can be analysed by the attacker, and the attacker can
invoke transactions in any order. The model should specify the information accessible
to the attacker, for example, by using a dishonest participant to reveal their private key.
By doing so, the attacker gains the ability to decrypt messages sent to the dishonest
participant, hence emulating a Dolev-Yao attacker who is also a participant in the protocol.

Finally, the attack definitions are represented as their own transactions. If the attacker can
trigger these transactions and successfully reach the attack keyword, the protocol proof
is halted, and an attack is considered to be executed.

Note that the above code only consists of the trac language file that focuses on the trans-
action definition. There are additional components in the Isabelle/HOL proof process,
including invoking PSPSP with the appropriate logic, specifying the protocol name, trig-
gering fixed point computations, and other related tasks. It is possible to define this trac
segment in a separate file and integrate it into the .thy file of Isabelle/HOL for a compre-
hensive protocol analysis.

2.8 Related Works
The field of formal security verification plays a crucial role in ensuring the reliability of com-
munication protocols that are widely used by individuals and organization. As a result, it
remains an active and important area of research. The OAuth 2.0 protocol, being a widely
adopted standard for internet authentication and authorization, has garnered significant
attention and has been the subject of numerous studies.

One notable study conducted by Fett et al. [15] aimed to comprehensively analyse the
OAuth 2.0 protocol. The research identified several security issues within the protocol
and proposed remedies for these vulnerabilities. This analysis encompassed a more
realistic and comprehenive environment that modelled aspects such as the HTTP and
HTTPS standards, web browsers, and other relevant concepts like web storage, iFrames,
and JavaScript. By employing this model and simultaneously analysing all OAuth grant
types, the study successfully identified four attacks in the protocol. This study served as
a valuable foundation for initiating this thesis, primarily due to its employment of a much
more comprehensive model that covers a broader range of OAuth components and real-
world internet mechanisms. One of the attacks identified in this study, the 307 redirect
attack, was intentionally incorporated into the model created in this thesis as well.

Other studies have utilized various formal verification tools to analyse the OAuth protocol
[32, 33], uncovering potential issues within its design. However, it is worth noting that
these studies often rely on certain assumptions. One is that attackers have the capability
to modify messages on the network, even when protected by TLS. Another is the presence
of scenarios where attackers can compromise the security of devices used by honest RPs
or users during the protocol execution. While these studies contribute valuable insights,
such assumptions are not made in this thesis.

Furthermore, many studies have delved into the analysis of different OAuth 2.0 implemen-
tations, highlighting existing flaws and vulnerabilities within them. Some of these studies
employ formal analysis methods to scrutinize the security of various OAuth implementa-
tions[10], and other use more traditional methods to test the security of implementations
[6, 8, 7, 9]. While these investigations often uncover issues within specific implementa-
tions, it is important to note that these findings are typically a result of inadequacies in
the implementation process itself, rather than inherent shortcomings in the OAuth proto-
col. These shortcomings can be attributed to implementers who may have overlooked or
inadequately addressed important security considerations in their code.

3 Modelling and Verifying OAuth 2.0
This chapter delves into the practical execution of the formal verification process for the
OAuth 2.0 protocol using Isabelle/HOL and PSPSP. It provides a detailed description of
the modelling process, with the inclusion of OFMC as a means to enhance understanding
prior to the utilization of PSPSP.

3.1 The need for both PSPSP and OFMC
The choice of using both tools for formal verification may raise questions regarding the
necessity of using PSPSP when OFMC appears to be more approachable. Both tools are
indeed powerful and reliable, providing output that can be trusted with a high degree of
confidence. Additionally, OFMC offers the advantage of using the intuitive AnB language
for protocol modelling and provides an easy-to-understand attack trace, which helps to
diagnose the exact mechanism that the attacker uses to exploit the protocol. With these
features, it might seem unnecessary to utilize PSPSP for analysis when OFMC appears
to fulfill the requirements.

PSPSP offers a significant advantage in this particular use case: the ability to perform
stateful composition. This feature proves invaluable when incorporating the creation and
deletion of data, such as long-term secrets. This ability to model mutable long-term state
proves valuable in modelling various aspects of protocols like OAuth and TLS. In the
OAuth protocol, it can be employed to model the client state, authorization codes, and
access tokens. Similarly, in the TLS protocol, PSPSP enables the modelling of crucial
components such as the client random, server random, and session keys shared between
clients and servers. By accommodating these elements, PSPSP enhances the depth and
accuracy of the analysis, enabling a more comprehensive assessment of the protocol’s
security properties.

However, the complementary use of OFMC alongside PSPSP remains valuable. OFMC’s
simplicity and ease of implementation allow for a focused approach to the modelling pro-
cess, unburdened by the intricacies of the modelling language and tool features. This
minimizes the risk of errors during modelling. Furthermore, the straightforward nature of
OFMC serves as a sanity check, reinforcing the results obtained from PSPSP. This ad-
ditional layer of protection mitigates the potential for undetected attacks in the PSPSP
analysis.

3.2 Modelling OAuth 2.0 in OFMC
Since OFMC is arguable easier to set up and begin modelling with, the first step taken in
this formal verification process was to model OAuth 2.0 in the context of SSO by using
OFMC.

Given that the main objective of the project was to model OAuth, the simplicity of the
OFMC tool proved beneficial in mitigating potential challenges associated with the mod-
elling process. The complexity primarily resided in accurately representing OAuth within
the formal verification framework, hence, the ease-of-use of OFMC assisted in navigating
and addressing these challenges effectively. This step served as a preliminary assess-
ment and a solid foundation from which to develop the PSPSP model and verification.

The steps to execute the modelling process were as follows:

Formal Analysis and Verification of OAuth 2.0 in SSO 25

1. Understanding the context:

(a) Identifying the requirements and functioning of a typical SSO system.

(b) Gaining a comprehensive understanding of the OAuth 2.0 protocol within its
intended context: resource sharing authorization.

2. Adapting OAuth to SSO: Grasping the necessary modifications needed in the OAuth
2.0 protocol to enable its usage as an authentication protocol in the SSO system
context.

3. Identifying essential protocol messages: Determining the crucial messages in the
protocol that necessitated modelling, while identifying any messages that could be
omitted without compromising the analysis.

4. Identifying protocol types and knowledge: Identifying the involved participants in
the protocol, along with their pre-existing knowledge and the functions necessary
for simulating the protocol.

5. Identifying security verification goals: Identifying the specific goals required to thor-
oughly verify the security aspects of the protocol.

6. Translating messages to the AnB language: Translating the identified messages
into the AnB language, in doing so, simplifying and simulating various components
within each message.

Each of these steps will be explained in more detail in the following sections.

3.2.1 Understanding SSO and OAuth
Section 2.1 of this thesis provides an explanation of the functioning of SSO systems. It
delves into the mechanisms and principles behind SSO systems, offering an understand-
ing of how they usually operate.

Section 2.2 focuses on the workings of OAuth 2.0. It outlines the core concepts and proto-
cols involved in OAuth 2.0, exploring its functionality. In Section 2.2.4, particular attention
is given to the typical modifications required to adapt OAuth 2.0 for use in authentication
systems.

3.2.2 Adapting OAuth to SSO
The adapted data flow of OAuth within an SSO system is depicted in Figure 3.1. Notably,
the authorization server and resource server are consolidated into a unified IDP, while
the client is substituted with a RP. The identified critical messages within this flow are
illustrated.

3.2.3 Identifying Essential Protocol Messages
In Figure 3.1, one message is intentionally greyed out, and omitted from the modelling:
the authentication of the user by the IDP, message 4. This is because the authentication
techniques may vary across different implementations, and the authentication step itself is
not essential to the security of the protocol. A flawed authentication process would signify
an untrustworthy IDP, which undermines one of the fundamental premises of the entire
protocol: the IDP as a trusted participant in the protocol. The authentication step can
be simulated within the authorization request initiated by the user to the IDP, capturing
its purpose without explicitly depicting it as a separate message. The other messages
shown in Figure 3.1 were identified as crucial to the modelling of the protocol.

1. Initiate authorization

"I want to login to this service"

2. Authorization Request

"Ok, sign into the IDP
to prove who you are"

client_id, redirect_uri, state

"Enter your credentials +
Do you want to login to this service?"

4. User Authentication
username,password,mfa

"Give this to the RP to prove your identity"

5. Authorization Response
state, scope, authorization_code

"I have this code from a user. Here are
my credentials. Give me an access token"

7. Access Token Request
client_secret, redirect_uri,

 client_id, authorization_code

"Here is the access token and a
refresh token for later"

8. Access Token Response
access_token, validity, refresh_token

"Here's my access token. Is it valid?
Give me the user details"

9. Token Introspection
access_token

"Yes it's valid.
This is the user related to this token"

validity, user_data

10. Provide Service

"You are logged in to your
cloud photos account"

IDP

RP

email

Cloud
Storage

Calendaruser

3. Authorization Request

"The RP sent me here to authenticate"

client_id, redirect_uri, state

"Here's proof from the IDP
about who I am"

6. Authorization Response
state, scope, authorization_code

Figure 3.1: The OAuth in SSO flow being modelled

3.2.4 Identifying Protocol Types and Knowledge
This stage of the modelling process involves establishing the essential background infor-
mation in the protocol. The subsequent sections will address various types of background
information covered in detail.
Agent
The agents in the protocol are the active participants who engage in the protocol. They
can be classified as either honest or dishonest, depending on their behavior within the
protocol. In this model, there are three distinct participants: the User, the RP, and the
IDP. OFMC automatically incorporates the presence of attackers, eliminating the need
for explicitly mentioning them. Agents with names beginning with lowercase characters
are considered trusted third parties. All other agents can be instantiated as required by
OFMC, and the placeholder i, denoting the intruder/attacker, can be used with any of
these agents. However, the attacker cannot assume the role of a trusted third party.
Number
This encompasses the different values used within the protocol, such as nonces, shared
secrets, and other values passed among the participants. Numbers can be either con-
stants or variables. Variables are denoted with names beginning with an uppercase char-
acter, serving as placeholders and set by OFMC during protocol execution. Constant
numbers, on the other hand, begin with a lowercase character and retain a fixed value.
Function
This part of the model encompasses the different functions required throughout the proto-
col. Functions can be used to represent long-term secrets, such as passwords or shared
secrets. For example, pw(A) can denote the password utilized by agent A within the pro-
tocol.

The protocol model incorporates the following functions:

1. h: A hash function to provide the Identity Provider (IDP) with the user’s password or
client secret.

2. pw: The password function that end user needs to authenticate itself at the IDP.

3. cpw: The client password function represents the client secret in the context of
OAuth. It is worth noting that the normal password function can be used interchange-
ably without impacting the overall outcome.

4. info: This function serves as an assertion from the IDP, confirming the authenticity
of the user’s identity.

It is important to note that the descriptions provided for these functions do not necessar-
ily reflect their actual operations. They are only represented as distinct functions within
the model. Behind the scenes, OFMC treats them as opaque values, generating results
based on the parameters passed to them, without any understanding of their underlying
functionality.
Knowledge
The knowledge part of the model specifies the type of knowledge possessed by each
agent. This includes constant numbers and functions. Variable numbers do not require
explicit inclusion in this part. Agents may also possess awareness of other agents and
trusted third parties within their knowledge scope.

This part can also be home to constraints regarding the roles played by agents. For
example, that the Server and the Client roles cannot be assigned to the same agent
simultaneously throughout the protocol execution.

The finished types and knowledge part looks like this:

1 Types: Agent U, RP, idp;
2 Number STATE;
3 Function h, pw, cpw, info;
4

5 Knowledge: U : U, idp, RP, pw(U);
6 idp : U, idp, RP, info(U), h(pw(U)), h(cpw(RP));
7 RP : idp, RP, cpw(RP);
8

9 where RP!=U, RP!=idp, U!=idp

3.2.5 Identifying Security Verification Goals
The primary objective of any SSO system is to ensure that only the authorized user can
access their data stored within a RP. It is crucial to prevent any unauthorized individuals,
posing as the user, from exploiting the SSO system to gain access to sensitive information.
Several key factors contribute to achieving this goal, such as:

1. Weak authentication method: If a user utilizes an extremely vulnerable authentica-
tion method, such as a password that is identical to their username, it creates an
opportunity for exploitation.

2. Compromised IDP: The IDP could be compromised through collusion with an at-
tacker or by being infected with malware, compromising the security of the SSO
system.

3. Stolen credentials: If the attacker gains access to the user’s password, either through
intentional sharing by the user or by using a keylogger installed on the user com-
puter, they can impersonate the user and access their account.

It is important to note that these types of attacks are outside the scope of the formal
analysis conducted in this study. The analysis assumes a Dolev-Yao attacker, who lacks
control over the participants’ computers in the network. While the attacker can manipulate
network packets and masquerade as other computers, they are unable to exert direct
control over another computer. The analysis focuses on threats within this framework,
considering the attacker’s capabilities and constraints.

In this particular context, the security goals of the protocol revolve around safeguarding
against the various means through which an attacker can gain unauthorized access to
user data from a RP. Specifically, these goals aim to prevent scenarios where the at-
tacker successfully convinces the RP of their legitimacy as the IDP or manipulates the
RP’s perception regarding the origin of critical elements such as the authorization code
or access token. This can also include deceiving the RP into believing that the token in-
trospection and assertions regarding user authentication were provided by the legitimate
IDP. Any of these situations could result in the RP mistakenly placing trust in the attacker
rather than relying on the genuine IDP, thereby compromising the security of the system.

Furthermore, it is essential for the RP to be capable of verifying that the user assertion
received from the IDP corresponds to the same user who initiated the authentication pro-
cess. One potential attack scenario arises when an attacker, Eve, observes that a user,
Alice, intends to log in to her social media account (the RP) and simultaneously proceeds
to log in to her own account. With control over the network, Eve manipulates this situation
by convincing the social media site (RP) that she is Alice. This is achieved by substituting

Alice’s authorization code, access token, or token introspection with her own, thus grant-
ing Eve access to Alice’s social media account. Conversely, a similar attack can occur
where Eve deceives the RP into making Alice log in to Eve’s account instead of her own.

Given the capabilities of modelling offered by OFMC, the following security goals were
established:

• Authenticity of messages: The RP can verify the origin of crucial messages to en-
sure they indeed originate from the correct IDP. This includes verifying the authen-
ticity of the authorization code, the access token, and the User introspection

• Protection of user’s secret data: The RP ensures that the user’s sensitive data re-
mains confidential and is not shared with any unauthorized entities. This emulates
a secure system where only the intended user can login to the RP, preventing unau-
thorized access by other parties.

• Session integrity: Tomaintain session integrity, it is ensured that one session cannot
be confused with another. In real-world scenarios, this aspect is handled by the
Record Protocol component of TLS, which ensures reliable, secure communication
and prevents session confusion [14].

• Confidentiality of messages: Certain messages are shared confidentially between
the involved parties. The OAuth specification only urges that the access token be
kept secret, the secrecy of the other messages was added as an extra factor to
ensure added security. This includes the authorization code being known only to
the RP, user, and IDP, and the access token and user introspection being known
only to the RP and the IDP.

By incorporating these security goals into the modelling process, OFMC enables a com-
prehensive analysis of the protocol’s ability to achieve the desired security objectives.

This is what the security requirements look like in the AnB language:
1 RP authenticates idp on U, info(U), Code, Token
2 NU2 secret between U, RP
3 Token, info(U) secret between RP, idp
4 Code secret between U, RP, idp

3.2.6 Translating messages to the AnB language
Once all the preceding steps have been completed, the translation of messages into the
AnB language becomes a straightforward task. It is necessary to have a comprehensive
understanding of the various notations used by AnB to represent different actions.

[A] *->* B: This notation signifies the establishment of an encrypted communication
channel between A and B. The presence of [] around A indicates that A remains unau-
thenticated within the channel, while B has provided its certificate and successfully au-
thenticated itself.

This is what the messages look like when translated to the AnB language:
1 # the user initiates a login with the RP
2 [U] *->* RP : U, RP, idp
3 # the RP gives the user a the session state
4 RP *->* [U] : STATE, RP
5

6 # the user is redirected to the IDP and authenticates

7 [U] *->* idp : U, RP, idp, STATE, pw(U)
8 # the IDP gives the user the auth code
9 idp *->* [U] : STATE, Code

10

11 # the user gives the RP the auth code from the IDP
12 [U] *->* RP : STATE, Code
13

14 # RP exchanges the code for an access token by authenticating itself
15 [RP]*->* idp : cpw(RP), Code
16 idp *->* [RP]: Token
17

18 # RP exchanges the access token code and gets the user information
19 [RP]*->* idp : Token
20 idp *->* [RP]: U, info(U), RP, idp

3.3 Formal verification with OFMC
The completed .AnB file can be provided to OFMC to check. The numSess parameter in
OFMC specifies the desired number of concurrent sessions that OFMC will initiate. The
numSess parameter was set to 2 for all checks. This fixed number of sessions guarantees
the termination of the model checking process, but is robust enough to check the protocol.

Several iterations of the model were analysed utilizing OFMC, each with different vari-
ations. The most significant versions are outlined below. The base model is the one
described in Section 3.2.

3.3.1 The base model with nonces for each TLS section
This amendment was prompted by a limitation in OFMC channels where the TLS Record
Protocol is not fully reproduced. Consequently, a party could potentially mix up messages
from various TLS sessions in which it was involved. By introducing nonces, this issue was
circumvented.

The modifications required adding distinct nonce variables within the Number section and
incorporating these nonces within the Actions section. The updated Actions section is
presented below. Notice that a separate nonce is assigned for each TLS session that
would be established between the parties in a real-world scenario.

1 [RP]*->* idp : cpw(RP), Code, NRP2
2 idp *->* [RP]: Token, NRP2
3

4 [RP]*->* idp : Token, NRP3
5 idp *->* [RP]: U, info(U), RP, idp, NRP3

3.3.2 The base model with nonces, coupled with SecretData
In the final step of the protocol, the SecretData variable was introduced to emulate a
genuine logging in scenario where the RP transmits the user’s personal data. Various
approaches were explored, some of which revealed vulnerabilities within the system.

SecretData was appended to the final steps of the model, following the token exchange.
OFMC has a limitation that prevents the resumption of an ongoing TLS session. This
limitation hinders the direct utilization of SecretData as a response to the message where
the user provides the authorization code. As a result, alternative techniqueswere explored
to overcome this limitation:

1. Initiating a new connection with the user unauthenticated: This approach involves
establishing a connection with the user while the RP authenticates itself.

2. Initiating a new connection with the user unauthenticated, and using a nonce for
verification: In this method, the RP sends a nonce to the user and expects the user
to respond with the nonce while appending the previous nonce utilized during the
transmission of the authorization code code.

3. Initiating a new connection with both parties being authenticated: This approach
involves initiating a fresh connection where both the RP and the user authenticate
themselves with their public keys.

An analysis of the results obtained from this modelling and verification process using
OFMC is presented in Chapter 4.

3.4 Modelling OAuth 2.0 in PSPSP
The process of modelling OAuth for PSPSP follows a similar approach to modelling OAuth
for OFMC, with some notable differences. The first three modelling steps outlined in
Section 3.2 are identical to the initial three steps of the PSPSP modelling process.

The main distinction between the two tools lies in the translation of modelling ideas into
the respective languages. In the case of PSPSP, the language being used is trac, which
differs significantly from the AnB language used in OFMC. These variations necessitate
a different approach to address the following steps in the modelling process:

4. Identifying protocol types and knowledge: Identifying the enumeration, sets, func-
tions, and analysis necessary for simulating the protocol.

5. Translating messages to the trac language: Converting the identified transactions
into the trac language, specifying the logic of each transaction in a simplified manner.

6. Identifying security verification goals: Identifying the specific scenarios that lead to
attacks in the protocol.

The specific steps that differed between the two modelling processes are discussed in
greater detail in the following subsections.

3.4.1 Identifying protocol types and knowledge
The setup of the model in PSPSP introduces different parts of the model compared to
OFMC. Instead of the types and knowledge parts, PSPSP includes Enumerations, Sets,
Functions, and Analysis. An explanation of the contents and purpose of each of these
parts is provided in Section 2.7.3.

The Enumeration part, displayed below, outlines the different types of participants in the
model. There are three primary types: hon for honest participants, dis for dishonest
participants, and idp representing the IDP. Additionally, there is an agent type that en-
compasses both honest and dishonest participants, while the IDP remains a distinct entity.
The user and rp types serve as placeholders, allowing for easy modification of their mean-
ing throughout the model. Similar to variables in a program, their values can be changed
globally by adjusting the values specified here to hon, dis, or agent.

Adding multiple types of participants significantly impacts the verification time required by
PSPSP. While various versions of these participant types were used throughout different
modelling iterations, the ones shown here were the most frequently used.

1 Enumerations:

2 hon = {a} # honest users
3 dis = {i} # dishonest users
4 idp = {p} # the independent IDP
5 agent = hon ++ dis # honest and dishonest users combined
6 user = agent # refers to agents
7 rp = agent # honest and dishonest users

Below are the sets used in the model, along with a brief explanation of their purpose.
These sets are straightforward to determine and implement, and easily comprehensible.

1 Sets:
2 secretData/2 # secret data between the RP and user
3 rp_state/2 # the RP state that corresponds to a user
4 auth_codes/3 # authorization codes corresponding to a
5 # user, RP, and IDP
6 access_tokens/3 # access tokens corresponding to a user,
7 # RP, and IDP

The functions included in the model along with their descriptions are shown below. As
mentioned in the previous 2.7.3, the public functions are accessible for the attacker to
invoke, while the private functions cannot be invoked by the attacker.

1 Functions:
2 Public
3 scrypt/2 # Symmetric encryption. Key and value
4 tuple/2 # A generic set of 2 items
5 cid/1 # Derive client id of an RP
6

7 initiateSSO/2 # Format for the user initiating the sso
8 # authentication
9 authReq/4 # Format for the authentication request.

10 # User, client_id of RP, state, user password
11 authResp/3 # Format for the authentication response.
12 # User, code, state
13 tokenReq/3 # Format for the access token request.
14 # Code, client_id of RP, RP password
15 tok/1 # Format for the access token response. Token
16 cred/1 # Format for the user credential/assertion
17 # from IDP
18 sec/1 # Format to send the secret data of the user
19

20 pk/1 # used for TLS
21 serverK/1 # Derive the server TLS key of a server
22 clientK/1 # Derive the client TLS key of a client
23

24 Private
25 inv/1 # Derive the inverse public key
26 pw/1 # Password of user or RP
27 session/4 # Used to store the relation between the user,
28 # RP, IDP, and auth code

The concluding phase of this step is to define the analysis corresponding to each public
function.

1 Analysis:

2 # the attacker can read these functions with no extra information
3 tuple(X,Y) -> X,Y
4 initiateSSO(X,Y) -> X,Y
5 authReq(W,X,Y,Z) -> W,X,Y,Z
6 authResp(X,Y,Z) -> X,Y,Z
7 tokenReq(X,Y,Z) -> X,Y,Z
8 tok(X) -> X
9 cred(X) -> X

10 sec(X) -> X
11 # the attacker needs to know "X" in order to find "Y" in this function
12 scrypt(X,Y) ? X -> Y

3.4.2 Translating messages to the trac language
The process of translating messages into the trac language presents certain complexi-
ties compared to the corresponding step involving AnB. Below is an excerpt showcasing
a sample of the exchanged messages. Notably, lines beginning with * denote their as-
sociation with the TLS protocol, which has been composed into this verification process.
Section 3.5 delves into the modelling of the TLS protocol, elucidating its composition in
greater detail. However, for this stage, it is sufficient to know that the * symbol signifies
the sharing of a specific component within that particular line with the TLS protocol. In
this given example, the shared component is the session key, which is generated as an
outcome of the TLS protocol.

1 # the user initiates the sso process
2 userRquest(A:user,B:rp,K:value)
3 * K in clientSessionKeys(A,B)
4 send scrypt(clientK(K),initiateSSO(A,B)).
5

6 # the RP recieves the user request and
7 # responds with its state and client id
8 rpRedirectUser(A:user,B:rp,K:value)
9 receive scrypt(clientK(K),initiateSSO(A,B))

10 * K in serverSessionKeysUnauth(B)
11 new RP_STATE
12 insert RP_STATE rp_state(A,B)
13 send scrypt(serverK(K),tuple(RP_STATE,cid(B))).

These are the initial stages of the OAuth protocol in PSPSP. It is worth noting that each
transaction in trac concludes with a period, denoting its completion. Within the transac-
tion, multiple steps can be added from its definition until its culmination. Certain transac-
tions can encompass greater complexity compared to others.

The transaction definition specifies the permissible types of participants in each trans-
action. In this scenario, the participant types of user and rp dynamically change, yet
predominantly assume the roles of agent i.e., honest or dishonest entities. Occasionally,
different variations of the same transaction may exist, designed separately for honest and
dishonest participants.

The distinction between honest and dishonest participants is determined by the author.
This distinction is established in the early stages of the transactions section. The ap-
proach adopted in this model involves intentionally disclosing additional data from the
dishonest participant to the attacker. The following code depicts this aspect of the model.

1 initialKnowledge(A:hon)

2 send A.
3

4 initialKnowledge2(B:dis)
5 * send inv(pk(B))
6 send cid(B)
7 send pw(B).

Equipped with the private key, client_id, and password corresponding to all dishonest
participants, the attacker possesses the capability to decrypt all transmitted messages
and assume the identity of each dishonest user. Furthermore, within the TLS component
of the model, the dishonest participants reveal their PMS to the attacker, enabling the
attacker to obtain the TLS session key used for encrypting all exchanged messages.

3.4.3 Identifying security verification goals
The key security goals addressed in themodelling section usingOFMC remain unchanged.
The aim is to provide utmost protection for the authorization code, access token, the user
and client passwords, and the secret data of the user. The impact of our security goals
aligns precisely with those defined in the goals section of OFMC.

However, there are notable differences in the definition of security goals between PSPSP
and OFMC. In PSPSP, we define various transactions that the attacker can initiate to
fulfill the attack condition. These transactions include the keyword attack during their
execution. If the attacker successfully triggers these transactions, it compromises our
security goal. Thus, instead of specifying the security goals as in OFMC, we focus on
defining the attack conditions in PSPSP.

The security goals employed across various iterations of the model followed the same
vein as this example.

1 # ensure that the attacker doesn't have the auth code
2 codeSecrecy(A:hon, B:hon, C:idp, CODE:value)
3 receive CODE
4 CODE in auth_codes(A,B,C)
5 attack.
6

7 # ensure that the attacker doesn't have the user password or client secret
8 passwordSecrecy(A:hon)
9 receive pw(A)

10 attack.
11

12 # ensure that the attacker doesn't have the access token
13 tokenSecrecy(A:hon, B:hon, C:idp, TOKEN:value)
14 receive TOKEN
15 TOKEN in access_tokens(A,C)
16 attack.
17

18 # ensure that the attacker doesn't have the secret data of the user
19 resourceSecrecy(A:hon, B:hon, SECRET: value)
20 receive SECRET
21 SECRET in secretData(A,B)
22 attack.

3.5 Modelling and composing TLS with OAuth
As stated previously, it is assumed within the scope of this study that TLS is employed
throughout every stage of the OAuth protocol. Therefore, it is imperative to incorporate
TLS in the model used for the formal verification of the OAuth protocol. Although it is
technically feasible to compose multiple protocols within OFMC, the primary objective of
this study was to conduct a comprehensive analysis utilizing the PSPSP tool. Therefore,
the inclusion of TLS composed with OAuth was exclusively pursued using PSPSP.

3.5.1 Modelling TLS
This project utilized a TLS model based on the example model provided in the additional
materials to the journal publication by Hess, Mödersheim, and Brucker [34]. However, the
stages of modelling were carefully adhered to in order to meet the specific requirements of
TLS for OAuth within the given context. Some modifications were made to accommodate
these requirements.

The messages essential to the protocol were considered identical to the messages out-
lined in Section 2.3. In other words, all the messages were essential, albeit in a simplified
manner, and each set of messages exchanged between the client and server were con-
solidated into a single PSPSP transaction.

Presented below is an excerpt of transactions from the PSPSP TLS model, showcasing
some concepts previously discussed. Specifically, note the inclusion of both honest and
dishonest versions of the client key exchange transaction. The dishonest version includes
the transmission of the PMS, allowing the attacker to decrypt all TLS messages from
dishonest users.

The * label reappears in this context. As previously mentioned, this label serves to in-
dicate all transaction steps associated with the other protocol incorporated in the model.
Specifically, it signifies an operation performed on a shared set or value within the com-
position of the two protocols. This includes the actions of declassifying data to make it
visible to and usable by the attacker. For example, in this case, the PMS is employed
in the OAuth protocol, while the nonces are declassified to enhance transparency in the
TLS protocol.

1 serverHello(B:TLShon,NA:value)
2 receive NA
3 new NB
4 insert NB tls_step2(B)
5 * send NB
6 send sign(inv(pk(s)),tuple(B,pk(B))).
7

8 client_key_ex(A:TLShon,B:TLShon,NA:value,NB:value)
9 receive NB

10 NA in tls_step1(A,B)
11 delete NA tls_step1(A,B)
12 new PMS
13 * insert PMS tls_step3(A,B)
14 * send ox(PMS)
15 send crypt(pk(B),PMS)
16 send scrypt(clientK(PMS),hash(PMS,NA,NB)).
17

18 client_key_exD(A:TLShon,B:dis,NA:value,NB:value)
19 receive NB
20 NA in tls_step1(A,B)
21 delete NA tls_step1(A,B)
22 new PMS
23 * insert PMS tls_step3(A,B)

24 * send ox(PMS), PMS
25 send crypt(pk(B),PMS)
26 send scrypt(clientK(PMS),hash(PMS,NA,NB)).

Although the sets and functions utilized in this TLS model are relatively straightforward,
which is why they are not elaborated upon here, the ox function appears to serve no
apparent purpose. However, its presence in PSPSP is necessary due to the behavior
that if a value is not transmitted over the network, it is considered lost. The ox function
remains opaque to the attacker (it is not included in the analysis section), allowing it to
be used for transmitting any value, whether confidential or not, that should not be lost.
The PMS value is transmitted using the ox function to ensure its inclusion in the * step,
as required for the composition with the OAuth protocol.

3.5.2 Modifications to TLS
In the initial stages of verification, the TLS example provided with the PSPSP installation
was utilized with minimal modifications. However, it was subsequently observed that an
oversight was made in this adaptation.

The issue was that only only honest and dishonest participants were permitted to engage
in the TLS exchange. With the IDP modelled as a trusted third party, this effectively
excluded the IDP from participating in the protocol. As a result, the analysis conducted
before this was fixed became irrelevant since the IDP was unable to participate in the
OAuth verification process, given that establishing a TLS connection is a prerequisite for
involvement in the OAuth protocol.

This issue was not a result of any inherent errors within the TLS model itself, but rather
due to the TLS model being initially designed for a different scenario than its use in com-
position with the OAuth protocol. This oversight underscores the possibility of introducing
bugs when composing multiple protocols, highlighting the crucial importance of conduct-
ing meticulous analyses for each individual protocol, both independently and in conjunc-
tion with other protocols, to ensure seamless compatibility in composition.

3.5.3 Composing TLS and OAuth in PSPSP
Once the two protocol models have been developed independently with all the sets and
functions that are required, composing them together in PSPSP is straightforward.

To begin with, the enumerations, sets, functions, and analysis sections should be com-
bined. It is essential to ensure that the enumerations of the two protocols exhibit some
degree commonality; otherwise, the process of composing the protocol becomes mean-
ingless as the participants from each protocol would never interact. Additionally, it is ad-
visable to maximize the reuse of sets and functions to reduce the verification time required
by Isabelle in confirming the validity of the protocol. However, there will still be certain sets
and functions that remain independent to each protocol, while others are shared between
both protocols.

The transactions section will now be divided into two separate sections: Transactions of
tls and Transactions of oauth. The name for each of the protocols is arbitrary but constant
throughout the protocol. Moreover, the attack definitions for each protocol will be included
within their respective transactions, independent of each other.

After completing these adjustments within the trac language, the remaining PSPSP com-
mands in Isabelle must also be modified to accommodate the composition of both pro-

tocols. These steps can be flexibly adapted to accommodate any number of protocols
being composed.

3.6 Formal verification with PSPSP
This section focuses on the execution process of formal verification using PSPSP, in-
cluding the necessary commands within the Isabelle file required for any model. It also
provides a more detailed explanation of iterations on the model with OAuth composed
with TLS.

3.6.1 Setting up Isabelle
Once the protocol has been modeled in the trac language and saved in a separate file,
the next step is to prepare the Isabelle proof around that protocol. This section will outline
some of the commands offered by PSPSP that are used in the proof.

Firstly, the name of the Isabelle theory being proven is specified. Next, the Automated_
Stateful_Protocol_Verification.PSPSP logic is imported to enable the use of PSPSP.
Then, the trac_import command is employed to import the .trac file containing the
model.

Moving on to the proof itself, the sub-message patterns (SMP)[34] are computed for each
individual protocol using the symbolic SMP. Additionally, the ground sub-message pat-
terns (GSMP) are computed for the composition of the two protocols, incorporating the *
messages by utilizing the with_star_projs command along with the protocol name.

Subsequently, the fixpoint of the protocol is calculated for each composed protocol. This
fixpoint serves as an over-approximation of all the information accessible to the attacker
at any given point. It is worth noting that this step is typically the most computationally
heavy in the Isabelle verification process.

Following that, the protocol_security_proof command from PSPSP is utilized to ver-
ify multiple properties within each composed protocol. This includes checking for the
absence of attack signals in the fixpoint, ensuring the entire protocol is covered by the fix-
point, verifying that the fixpoint has been fully analysed, and validating thewell-formedness
of both the protocol and the fixpoint. PSPSP automates these steps.

At this stage, the protocols have been computed and proven independently. The next step
involves computing the shared secrets between the composed protocols using PSPSP.
This computation specifically focuses on the messages within the GSMP that are se-
cret between both protocols, such as the ox messages with * in them. Subsequently,
a protocol_composition_proof and a lemma are employed to establish the security of
the composed protocols.

Throughout the development process, several versions of the trac file were employed,
each incorporating different properties. The following sections describe the most notable
versions used.

3.6.2 The base model
This is the unmodified OAuth model, as described in Section 3.4. The initial versions of
this model had shortcomings, as outlined in Section 3.5.2. Although these early versions
did not reveal any possible attacks, it is important to note that the results are unreliable due
to the aforementioned flaws. After adapting the TLS model to align with the requirements
of OAuth, the analysis of this model was rerun and verified by Isabelle to be free of flaws.

3.6.3 Terminating TLS sessions
One limitation of the base model is the reuse of TLS session keys between any two partic-
ipants. This scenario does not accurately reflect real-world practices, and it is important
to consider the termination of TLS sessions as they occur in actual environments.

Two approaches can be utilized to ensure the termination of TLS sessions. The first ap-
proach involves directly deleting the session key once the session is completed. This is a
straightforward solution that would necessitate the participants to establish a new session
key if they intend to communicate again. The second approach involves using another
set to store the used keys of each participant. Prior to using a key and communicating,
participants would check if it has been previously used, proceeding only if it hasn’t. Upon
concluding the TLS session, the key is added to the used_keys set specific to the partici-
pant. For the purpose of optimizing performance, the second approach was adopted.

Below is an example illustrating the termination of TLS in the trac language. The scenario
shows the RP receiving the access token from the IDP and subsequently proceeding to
request token introspection from the IDP. Both these steps are performed using different
keys, K1 and K2 respectively.

1 # rp gets access token from idp
2 # rp asks idp for user details
3 rpTokenExchange(A:user, B:rp, C:idp, K1:value, K2:value, ACC_TOKEN:value)
4 receive scrypt(serverK(K1), tok(ACC_TOKEN))
5 * K1 in clientSessionKeys(B,C)
6 K1 notin used_keys(B)
7 * K2 in clientSessionKeys(B,C)
8 K2 notin used_keys(B)
9 #terminate tls rp-idp

10 insert K1 used_keys(B)
11 send scrypt(clientK(K2), tok(ACC_TOKEN)).

3.6.4 Modelling an attack
It is important to ensure that the model can detect attacks in cases where they exist.
So to test that, attacks were introduced into the model. Various methods were used for
this, ranging from disclosing the TLS session key of honest users, to revealing the user’s
secret data in the final step. However, in an effort to simulate real-world issues known in
OAuth 2.0, the HTTP 307 redirect attack as described in Fett et al. [15] was specifically
replicated.

This attack arises due to flawed implementations of the IDP, which employ the HTTP 307
redirect code [35] to redirect the user to the RP’s designated redirect URI. The vulnerability
arises from the forwarding of request parameters from the initial request to the new HTTP
server, whereby the HTTP client sends new data to the new server in addition to the
previous request sent to the old server. In the case of OAuth, this flaw becomes critical
when the IDP redirects the user back to the RP with the authorization code, while also
including parameters from the user’s previous request to the IDP. Frequently, the user’s
previous request to the IDP involves entering their username and password.

In such a scenario, the RP, alongside the authorization code, gains access to the user’s
username and password for the IDP. If the user is authenticating themselves at a malicious
RP, it could harvest these credentials and exploit them to impersonate the user at the IDP.

This attack was induced into the model by including the user’s password in the authoriza-
tion response function sent from the IDP. The user directly forwards this function to the

RP without any modifications.
1 # idp gets user credentials
2 # idp gives user auth code to give to rp along with user pw
3 idpAuthResponse(A:user,B:rp,C:idp,K:value,RP_STATE:value)
4 receive scrypt(clientK(K),authReq(A,cid(B),RP_STATE,pw(A)))
5 * K in serverSessionKeysUnauth(C)
6 new AUTH_CODE
7 insert AUTH_CODE auth_codes(A,B,C)
8 send session(A,B,C,AUTH_CODE)
9 # send the password of A in the auth response. To simulate a 307 redir

10 send scrypt(serverK(K),authRespAttack(B,AUTH_CODE,RP_STATE,pw(A))).

An analysis of the results obtained from this modelling and verification process using
PSPSP is presented in Chapter 4.

4 Analysis
This chapter presents and analyses the outcome of the formal verification process.

4.1 Detailed Analysis from OFMC
The overall observation reveals certain constraints in OFMC’s ability to effectively verify
protocols of this nature. The main limitation is in OFMC’s ability to faithfully carry out the
TLS handshake and setup the TLS connection between parties. The other limitation lies in
the RP’s inability to resume the TLS session and transmit the user’s secret data. However,
disregarding this specific scenario and assuming that, in practical a implementation, the
RP can successfully deliver the secret data to the intended user, the verification process
proves to be fruitful. A summary of the analysis conducted on the various attempted
models is presented.

4.1.1 Iterations with no nonce
All the iterations of models that lacked the use of a nonce were found to be vulnerable
to attacks in OFMC with the --numSess parameter set to 2. These vulnerabilities arose
due to the limitation of OFMC’s channels mechanism in adequately replicating all the
properties of a TLS session.

The OFMC channel, represented by *->* in bullet notation, ensures that the sender can
trust that the message will only be readable by the intended receiver, while the receiver
can verify its origin. However, this channel does not maintain any session context, allow-
ing messages from the same set of participants at different times to be interchanged.

The vulnerabilities in models without a nonce stemmed from Alice initiating two sessions
with the same RP. The attacker, Eve, intercepted all the messages interchanged, trans-
mitting messages from one session of Alice to the other session of the RP. Consequently,
the RP authenticated Alice’s Session 1 with the authorization code and access token in-
tended for Alice’s Session 2.

While this may not appear to be a significant attack, as Alice still needs to authenticate
herself with the RP and no data is being stolen by Eve, it undermines the principles es-
tablished in the verification process. Any form of bypassing the strong authentication
between Alice and the RP constitutes an attack. Depending on the configuration of the
IDP and the RP, this kind of compromise could potentially lead to more severe issues.

However, it is important to recognize that this type of attack would not be feasible in a
real-world scenario where an actual TLS channel is employed. This is due to the inherent
security measures provided by TLS sessions, where a unique session key is generated
for each session. In the context of the same set of participants, such as Alice and Bob,
every session they initiate will have a distinct session key. Consequently, if a message
from one session is erroneously or intentionally sent to another session, the intended
receiver will reject the message as it cannot be decrypted using the incorrect session key.
The robust security guarantees offered by the TLS protocol prevent the attacks observed
in the model without a nonce from occurring in real-world implementations. Hence, it is
crucial to modify the model to eliminate the detection of such infeasible attacks, allowing
for a more accurate assessment of the actual security risks present in the model.

Formal Analysis and Verification of OAuth 2.0 in SSO 41

4.1.2 Adding a nonce
To mitigate the impossible attack described in Section 4.1.1, one effective approach is to
introduce a nonce into each message within a session. This nonce is generated randomly
at the initiation of the session, and it must be included at the end of every message ex-
changed within the session. The receiving participant verifies that the nonce matches the
expected session nonce, thereby ensuring the integrity and authenticity of the message
within the correct session.

By introducing a nonce, we introduce amechanism that emulates the functionality of a TLS
session key to a certain extent. While it does not provide protection against an attacker
who already possesses the long-term encryption key, it effectively safeguards against
attacks involving the reuse of messages across different sessions.

By configuring OFMC to allow for two simultaneous sessions, the revised model incorpo-
rating nonces in each session successfully avoided any detected attacks. The inclusion
of nonces served as a key modification, differentiating this model from the previous one.

Furthermore, the security requirements, in the ”Goals” part of the model, were strength-
ened to specify the condition that the nonce, NU2, must remain confidential between the
user (U) and the RP. Additionally, it mandated that the RP authenticate the validity of NU2,
verifying that it was indeed sent by the user. These stringent requirements were imple-
mented to fortify the secrecy and authenticity of the authorization code transmitted within
the same message.

With the incorporation of these modifications, OFMC detected no attacks, confirming the
effectiveness of the nonce-based approach and even with the strengthened security re-
quirements. Additional iterations and variations on this method consistently demonstrated
the desired security properties, further solidifying the robustness of the protocol.

4.1.3 Adding SecretData
Up to this point, there has been no simulation of an actual user login in the protocol.
The protocol concludes once the RP receives the assertion from the IDP, either directly
after providing the authorization code or through access token introspection. While it is
acceptable to end the protocol at this stage in theory, it is still valuable to assess whether
this additional step can be successfully modeled using OFMC. It is also valuable to check
if there are any vulnerabilities associated with the modelling of the user login step.

However, accurately modelling real-world behavior in this case is not possible due to the
limitation in OFMC channels, which prevents session resumption. Different approaches
were explored to address this issue, each yielding varying results.

One approach that proved to be successful and straightforward involved using the secure
OFMC channel with mutual authentication between the client and server. However, it
should be acknowledged that this approach does not align with typical real-world scenar-
ios. In practice, clients do not usually authenticate themselves with certificates during the
TLS handshake, and servers primarily respond to client-initiated messages rather than
initiating their own.

Nevertheless, this approach can be seen as representative of the ultimate goal of estab-
lishing a secure channel after the IDP provides the user assertion. The user assertion
indirectly authenticates the user to the RP, serving the purpose of user authentication in
the SSO system.

While the formal verification using OFMC with ”numSess” set to 2 did not uncover any
attacks, it can be argued that employing this two-sided client-server authentication does

not provide insights into the security of the preceding steps. In fact, by utilizing this mutual
authentication, the RP could potentially skip all the previous steps altogether and directly
send the SecretData to the user without compromising security.

A more reasonable approach is to introduce a nonce to verify that the user who receives
the SecretData is the same as the one who sent the RP the authorization code. Another
nonce is added to ensure that the RP sending the SecretData is indeed the same one that
received the authorization code from the user. Although this does not fully replicate real-
world scenarios, it guarantees that the user sending the authorization code is the same as
the user receiving the SecretData, providing some level of security while still leaving room
for potential attacker exploitation without introducing new vulnerabilities to the protocol.

The primary objective of this type of modelling is to accurately represent real-world sys-
tems within the limitations of the selected tool. While this may be straightforward in some
cases, it often necessitates various approaches and adjustments to achieve the desired
simulation. Furthermore, it is relatively easy to identify false positives, where the model
erroneously introduces an infeasible attack. Whereas, detecting false negatives, where
the model obscures an existing attack in the system, is considerably more challenging.
Additionally, there may be cases where the specific tool is unable to faithfully replicate the
system, regardless of modelling efforts.

4.2 Detailed Analysis from PSPSP
In the initial stages of the verification process, the TLS model used in the PSPSP model
exhibited some shortcomings. However, through subsequent modifications to the TLS
model these were overcome. The next shortcoming is in the inability of the model to faith-
fully carry out the handing over of the secret data from the RP to the user, by resuming
a TLS connection based on a session cookie. However, with some workarounds imple-
mented and rigorous testing with different iterations of the OAuth model, the verification
process yields fruitful results. This section provides a summary of the analysis conducted
on the different iterations of the OAuth and TLS model composed.

4.2.1 Base model
The term ”base model” in this context is defined as the model without the terminating TLS
sessions, induced attacks, or modifications made to the TLS model to align it with the
requirements of this model.

One variation often implemented in this model involved changing the participant labeled
as ”idp” to have the value ”hon”. Thereby making the IDP the same as any honest user
in the system. This modification aimed to expedite the verification process in Isabelle by
reducing the time required for assessing the impact of smaller changes. The rationale be-
hind this adjustment was that if allowing the IDP to act as a normal participant did not lead
to any attacks within the system, then assuming the IDP as a trusted third party would
only enhance the overall security. Consequently, if any attacks were detected following
this alteration –which was not the case–, the change could be reverted and retested ac-
cordingly.

In the scenario where the IDP is assumed to be a regular honest user, the formal veri-
fication process revealed no potential attack vectors, and these results can be deemed
reliable. Conversely, when considering the IDP as an independent third party, the out-
comes cannot be relied upon due to the TLS model’s inadequacy in accommodating the
IDP as an independent entity in OAuth, as explicated in Section 3.5.2. The appropriate
changes were made to the TLS protocol and, similar to the base model, no potential attack
vectors were triggered in this adjusted model by PSPSP.

4.2.2 Terminating TLS
In real-world scenarios, when the user is redirected by the RP to the IDP for authentication,
the TLS connection between the user’s web browser and the RP is terminated. Conse-
quently, when the user is redirected back from the IDP to the RP, a new TLS connection is
established between the user and RP. Similarly, the RP and the IDP establish two distinct
connections: one for the authorization code - access token exchange and another for the
access token - user assertion exchange.

However, this behavior is not accounted for in the base model. Here, the TLS connection
between the user and RP remains the same from the initialization of the authentication
until the user receives its secret data. The same is true for the RP performing the autho-
rization code exchange and the token introspection with the IDP. Furthermore, the same
connection can be reused in multiple runs of the protocol in PSPSP.

This shortcoming hinders the effectiveness of an attacker acting as a PITM attacker. If the
attacker compromises the single session key being used, it can compromise the entire
protocol. Conversely, if the attacker cannot compromise that specific session key, its
capabilities are greatly limited.

In order to address this issue, a model was developed that incorporates the termination of
TLS sessions. Figure 4.1 illustrates the stages within the OAuth SSO data flow where the
TLS connection between two entities is reset. In this new model, each termination point
triggers the initiation of a fresh TLS session, resulting in a more accurate representation
of real-world scenarios.

Similar to the base model, this adjusted version of the model also did not uncover any
potential attack vectors within the protocol.

4.2.3 Inducing an attack
While it is indeed encouraging to witness positive results from Isabelle, it is crucial to
ensure that the model does not inadvertently suppress attacks through any means. To
verify the integrity of this model, deliberate attempts weremade to introduce vulnerabilities
into the protocol, with the intention of checking if PSPSP could detect the attacks. Multiple
methods were used to achieve this objective.

The most straightforward attack that could be executed involved the revelation of the
user’s secret data without encryption, thereby directly exposing it to the attacker. Another
attack possibility is to expose the TLS session key of the user with the RP and the user
with the IDP, allowing the attacker to observe the user’s password transmitted to the IDP
or the secret data from the RP. As expected, these actions triggered an attack in PSPSP.

The implementation of the HTTP 307 attack, as identified by Fett et al. and outlined in
Section 3.6.4, was also executed. This attack triggered the password secrecy attack in
PSPSP. However, depending on the iteration of model that was used, it was unable to
trigger the resource secrecy attack, which tests for leaked data. This limitation arises
from the inability of the model to properly simulate the final step of the user logging into
the RP.

The base model ensures that the user to whom the RP is sending the secretData is defi-
nitely the user whose secret data it is. This means that unless the attacker possesses an
honest user’s TLS session key, it cannot masquerade as an honest user. In the real-world,
a session cookie would be used in the user browser and the RP to remember which client
the particular authorization code belongs to.

Terminate TLS

1. Initiate authorization

Terminate TLS

"I want to login to this service"

2. Authorization Request

"Ok, sign into the IDP
to prove who you are"

client_id, redirect_uri, state

"Enter your credentials +
Do you want to login to this service?"

4. User Authentication
username,password,mfa

"Give this to the RP to prove your identity"

5. Authorization Response
state, scope, authorization_code

"I have this code from a user. Here are
my credentials. Give me an access token"

7. Access Token Request
client_secret, redirect_uri,

 client_id, authorization_code

"Here is the access token and a
refresh token for later"

8. Access Token Response
access_token, validity, refresh_token

"Here's my access token. Is it valid?
Give me the user details"

9. Token Introspection
access_token

"Yes it's valid.
This is the user related to this token"

validity, user_data

10. Provide Service

"You are logged in to your
cloud photos account"

IDP

RP

email

Cloud
Storage

Calendaruser

3. Authorization Request

"The RP sent me here to authenticate"

client_id, redirect_uri, state

"Here's proof from the IDP
about who I am"

6. Authorization Response
state, scope, authorization_code

Terminate TLS

Terminate TLS

Figure 4.1: The areas where the TLS sessions are terminated in the OAuth data flow

There were attempts to simulate this in the model by sending out a separate session
function that records these values, and then receiving this session function but it is not
the same as the session cookie being stored.

Nevertheless, the attack scenarios within the model effectively capture all sensitive data in
the OAuth protocol, including the user password, client secret, authorization code, and ac-
cess token. Furthermore, the attack scenarios in the TLS protocol ensure the successful
establishment of the TLS connection without any breaches of the session key.

4.3 Results
In summary, the adaptation of the OAuth protocol for SSO, employing token introspection,
revealed no identifiable attacks.

4.3.1 Results from OFMC
The multiple iterations of the OFMC formal verification yielded no identifiable attacks. The
model encountered some attacks that were subsequently identified as being protocol
model inaccuracies. These attacks resulted from other shortcomings in the modelling
process and the OFMC tool itself.

4.3.2 Results from PSPSP
During multiple iterations of the model, the PSPSP tool did not identify any attacks. These
iterations included varying numbers of honest users, the use of the IDP as an independent
third party, and the incorporation of varying security goals.

Furthermore, when deliberate attacks were introduced to the model to assess its effec-
tiveness, the attacks were successfully detected. This further affirms the robustness of
the system.

5 Discussion
This chapter provides an analysis of the study results within a broader context. It includes
the interpretation of the results in relation to existing research, a discussion of the limita-
tions of the study, and potential areas for future work.

5.1 Interpretation of results
The findings from this analysis align with prior research conducted in this domain, affirming
the security of the OAuth protocol across a multitude of contexts. Assuming that the
protocol is accurately implemented, avoiding the mistakes highlighted in studies such as
those by Fett et al. [15] and Li and Mitchell [9], it can be concluded that the OAuth 2.0
protocol is a secure choice for SSO applications.

Comparable studies have been undertaken, utilizing formal verification tools to analyse
the OAuth protocol and specific implementation details, as discussed in Section 2.8. How-
ever, the distinctive feature of this study lies in the use of the OFMC and the PSPSP tools,
which have not been used in this specific circumstance before. The incorporation of these
tools presents unique advantages and benefits of their own.

The incorporation of the OFMC tool in this investigation offers an advantage in terms of
simplicity and ease of understanding, benefiting both the researcher and any individuals
aiming to review or learn from this study. In contrast, the PSPSP tool presents significant
technical advantages, including:

1. The capability to maintain a mutable long-term state, implying that long-term states
can be modified over time. For instance, a previously used TLS session key can be
invalidated and discarded.

2. The provision for the verifier to employ ”non-monotonic” reasoning, meaning that
alterations in the state of the system may lead to changes in assertions about the
system. As a result, a statement that was initially accurate may subsequently be-
come false, and the converse is also possible.

5.2 Qualification of Results
While the formal verification results obtained from both tools demonstrate the absence
of attacks, it is crucial to acknowledge certain qualifications regarding these findings. As
discussed in Section 2.4, the outputs of formal verification can occasionally be unreliable
due to various factors, including:

1. Model errors: Errors within the model can either mask existing attacks or introduce
new ones. While it is relatively straightforward to identify infeasible attacks, uncov-
ering hidden attacks can be more challenging.

2. Tool limitations: The tools used might not accurately capture all aspects of the real-
world system or could have bugs or shortcomings that hide or introduce attacks.

3. Inaccurate security properties: The specified security properties in the model may
not encompass every possible scenario that could lead to an attack in real-world
circumstances, allowing certain attacks to go undetected. Conversely, the security
properties may overly restrict normal scenarios and flag them as attacks.

Formal Analysis and Verification of OAuth 2.0 in SSO 47

Despite the diligent efforts made to ensure the integrity of the model and property spec-
ifications, as well as the reliability of the tools selected for the analysis, it is important to
acknowledge that the results obtained in this study are still susceptible to these potential
errors.

5.2.1 Shortcomings in the model
This study definitely posses limitations, particularly regarding the TLS issues present in
OFMC as discussed in Section 4.1.1. Moreover, the inability of both OFMC and PSPSP to
adequately simulate the final login step of the user into the RP, as described in Sections
4.1.3 and 4.2.3, hinders the model’s performance as an accurate representation of the
real-world.

5.3 Future Work
While this study serves as a promising foundation for utilizing the PSPSP tool in Isabelle
to conduct an in-depth analysis of the OAuth protocol, there are still opportunities for
enhancing the model. These improvements, although not essential to address the initial
research goals set out in this thesis, augment the study by addressing additional research
questions regarding the security of the OAuth protocol.

One avenue for future research involves incorporating multiple IDPs into the authentica-
tion process. This would introduce complexities concerning potential misuse of autho-
rization codes or access tokens from one IDP to gain unauthorized access at another
IDP. Furthermore, within this scope, one IDP could be designated as a dishonest entity,
enabling the identification of potential vulnerabilities when a service provider trusts a com-
promised IDP. Both of these scenarios closely resemble real-world use cases of SSO
systems.

Another area for exploration is the integration of two-factor authentication (2FA) or multi-
factor authentication (MFA) capabilities into the system. One possible approach for im-
plementing 2FA is by establishing a separate trusted channel, distinct from TLS, between
the IDP and the user. In this scenario, the IDP would transmit a one-time challenge to the
user, who would then enter this value into the primary TLS channel between the user and
IDP after entering their password. This setup could be combined with intentional leakage
of the user’s password to evaluate whether the 2FA method effectively prevents the at-
tacker from exploiting the compromised password. Jacomme and Kremer [36] extensively
investigates and details the formal verification of a couple of other MFA mechanisms that
could be incorporated into future SSO studies.

Additionally, an opportunity for further investigation lies in upgrading the TLS version used
in this study from version 1.2 to the latest available version, namely version 1.3. Version
1.3 introduces added complexity to the handshake process. While the PSPSP tool cur-
rently lacks the ability to model this upgrade, it can be pursued using alternative tools or
future iterations of PSPSP.

Although there are numerous other features within SSO systems that could be incorpo-
rated into this analysis, this thesis proposes one additional recommendation: the inclusion
of a user onboarding and password reset mechanism. This would involve implementing a
distinct endpoint at the IDP where users can register and set their passwords. In this case,
the password would be represented as a mutable long-term value in PSPSP, diverging
from its current function-based representation in PSPSP and OFMC. The IDP would also
provide an endpoint for users to change their passwords, requiring the entry of their old
password and potentially even incorporating MFA.

The advantage of using an automated tool like PSPSP, which supports composition, is that
all these additions can be seamlessly composed into the existing model. This significantly
reduces the effort and complexity involved compared to directly modifying the existing
OAuth section of the model, thereby mitigating the likelihood of introducing errors into the
system.

6 Conclusion
Themotivation behind this study was to investigate potential vulnerabilities in the structure
and usage of the OAuth 2.0 protocol, particularly when applied in the realm of Single Sign-
On (SSO) systems. SSO systems are widely implemented in organizations for employees
and on the wider internet for end-users, and OAuth is a popular choice to be used in these
protocols. Although OAuth was not originally designed for authentication, it has been
adapted for use in this context.

This study successfully addressed all the research questions established at the outset:

1. Understanding SSO systems and their requirements.

2. Understanding the OAuth 2.0 protocol and its application in SSO systems.

3. Undertake a formal examination of the OAuth protocol, as tailored for SSO systems,
either to validate its correctness or to scrutinize and suggest remedies for any dis-
covered attack vectors.

The context of SSO systems was thoroughly explored and delineated, while the OAuth
protocol was subjected to meticulous analysis. One mechanism for adapting the OAuth
protocol to suit the SSO use case, namely token introspection, was presented and ex-
plained.

A comprehensive analysis was performed using two distinct formal verification tools: OFMC
and PSPSP. Neither of these analyses unveiled new attack vectors in the OAuth proto-
col, thus further affirming the protocol’s security. This reinforces the continued adoption
of OAuth, not only for its original resource sharing purpose but also as an authentication
protocol within SSO systems. This thesis contributes to the existing body of formal analy-
sis conducted in this field, that have arrived at similar conclusions regarding the absence
of errors in the protocol itself. However, some of them identify attacks that arise due to
intricacies in implementations and different capabilities of the modelling tools used.

By focusing on the protocol itself rather than specific implementations and their intricacies,
this study offers broader applicability. Although numerous implementations exist, a flaw in
the protocol would imply a flaw in every single implementation that adheres to the protocol.

While this study did not unveil any groundbreaking discoveries, it is essential to validate
the protocol’s security using new tools and techniques that enhance the analysis capa-
bilities. Notably, the utilization of mutable long-term state introduces capabilities that are
not commonly used in formal protocol verification. Furthermore, this study serves as a
solid foundation for future research endeavors, allowing for the incorporation of additional
features specific to SSO systems.

In conclusion, the rigorous formal verification undertaken in this thesis underscores the
robustness of the OAuth 2.0 protocol, validating its versatility, and security. This finding
strengthens the protocol’s prominent standing as a widely adopted solution for authenti-
cation in Single Sign-On systems.

Formal Analysis and Verification of OAuth 2.0 in SSO 51

Bibliography
[1] Aleksandr Ometov et al. “Multi-factor authentication: A survey”. In: Cryptography

2.1 (2018).
[2] Anupam Das et al. “The tangled web of password reuse.” In: NDSS. Vol. 14. 2014.
[3] David Basin, Sebastian Mödersheim, and Luca Vigano. “OFMC: A symbolic model

checker for security protocols”. In: International Journal of Information Security 4
(2005), pp. 181–208.

[4] Andreas V Hess et al. “Performing security proofs of stateful protocols”. In: 2021
IEEE 34th Computer Security Foundations Symposium (CSF). IEEE. 2021, pp. 1–
16.

[5] Alessandro Armando et al. “Formal analysis of SAML 2.0 web browser single sign-
on: breaking the SAML-based single sign-on for google apps”. In: Proceedings of
the 6th ACM workshop on Formal methods in security engineering. 2008, pp. 1–10.

[6] Wanpeng Li and Chris J Mitchell. “Security issues in OAuth 2.0 SSO implemen-
tations”. In: Information Security: 17th International Conference, ISC 2014, Hong
Kong, China, October 12-14, 2014. Proceedings 17. Springer. 2014, pp. 529–541.

[7] Hui Wang et al. “The achilles heel of OAuth: a multi-platform study of OAuth-based
authentication”. In: Proceedings of the 32nd Annual Conference on Computer Se-
curity Applications. 2016, pp. 167–176.

[8] San-Tsai Sun and Konstantin Beznosov. “The devil is in the (implementation) details:
an empirical analysis of OAuth SSO systems”. In: Proceedings of the 2012 ACM
conference on Computer and communications security. 2012, pp. 378–390.

[9] Wanpeng Li and Chris J Mitchell. “Security issues in OAuth 2.0 SSO implemen-
tations”. In: Information Security: 17th International Conference, ISC 2014, Hong
Kong, China, October 12-14, 2014. Proceedings 17. Springer. 2014, pp. 529–541.

[10] Chetan Bansal et al. “Discovering concrete attacks on website authorization by for-
mal analysis”. In: Journal of Computer Security 22.4 (2014), pp. 601–657.

[11] Dick Hardt. The OAuth 2.0 Authorization Framework. RFC RFC 6749. RFC Editor,
Oct. 2012. DOI: 10.17487/RFC6749. URL: https://datatracker.ietf.org/doc/rfc6749.

[12] Michael B. Jones and Dick Hardt. The OAuth 2.0 Authorization Framework: Bearer
Token Usage. RFC RFC 6750. RFC Editor, Oct. 2012. DOI: 10 .17487/RFC6750.
URL: https://datatracker.ietf.org/doc/rfc6750.

[13] Justin Richer. OAuth 2.0 Token Introspection. RFC RFC 7662. RFC Editor, Oct.
2015. DOI: 10.17487/RFC7662. URL: https://datatracker.ietf.org/doc/rfc7662.

[14] Eric Rescorla and Tim Dierks. The Transport Layer Security (TLS) Protocol Version
1.2. RFC RFC 5246. RFC Editor, Aug. 2008. DOI: 10.17487/RFC5246. URL: https:
//datatracker.ietf.org/doc/rfc5246 (visited on 05/27/2023).

[15] Daniel Fett, Ralf Küsters, and Guido Schmitz. “A comprehensive formal security
analysis of OAuth 2.0”. In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. 2016, pp. 1204–1215.

[16] Yvonne Wilson and Abhishek Hingnikar. 6. OpenID Connect. Springer, 2019. ISBN:
978-1-4842-8261-8. URL: https://learning.oreilly.com/library/view/solving-identity-
management/9781484282618/html/475485_2_En_6_Chapter.xhtml.

[17] YvonneWilson and Abhishek Hingnikar. 5. OAuth 2 and API Authorization. Springer,
2019. ISBN: 978-1-4842-8261-8. URL: https://learning.oreilly .com/library/view/
solving-identity-management/9781484282618/html/475485_2_En_6_Chapter.xhtml.

[18] Per Runeson. “A survey of unit testing practices”. In: IEEE software 23.4 (2006).

52 Formal Analysis and Verification of OAuth 2.0 in SSO

https://doi.org/10.17487/RFC6749
https://datatracker.ietf.org/doc/rfc6749
https://doi.org/10.17487/RFC6750
https://datatracker.ietf.org/doc/rfc6750
https://doi.org/10.17487/RFC7662
https://datatracker.ietf.org/doc/rfc7662
https://doi.org/10.17487/RFC5246
https://datatracker.ietf.org/doc/rfc5246
https://datatracker.ietf.org/doc/rfc5246
https://learning.oreilly.com/library/view/solving-identity-management/9781484282618/html/475485_2_En_6_Chapter.xhtml
https://learning.oreilly.com/library/view/solving-identity-management/9781484282618/html/475485_2_En_6_Chapter.xhtml
https://learning.oreilly.com/library/view/solving-identity-management/9781484282618/html/475485_2_En_6_Chapter.xhtml
https://learning.oreilly.com/library/view/solving-identity-management/9781484282618/html/475485_2_En_6_Chapter.xhtml

[19] George Klees et al. “Evaluating fuzz testing”. In: Proceedings of the 2018 ACM
SIGSAC conference on computer and communications security. 2018, pp. 2123–
2138.

[20] EdmundM. Clarke, E Allen Emerson, and A Prasad Sistla. “Automatic verification of
finite-state concurrent systems using temporal logic specifications”. In: ACM Trans-
actions on Programming Languages and Systems (TOPLAS) 8.2 (1986).

[21] Edmund Clarke et al. “Progress on the state explosion problem in model checking”.
In: Informatics. Vol. 10. 2001, pp. 176–194.

[22] Herman Geuvers. “Proof assistants: History, ideas and future”. In: Sadhana 34
(2009), pp. 3–25.

[23] Cas Cremers. “Compositionality of security protocols: A research agenda”. In: Elec-
tronic Notes in Theoretical Computer Science 142 (2006).

[24] F.J. Thayer Fabrega, J.C. Herzog, and J.D. Guttman. “Mixed strand spaces”. In:
Proceedings of the 12th IEEE Computer Security Foundations Workshop. Proceed-
ings of the 12th IEEE Computer Security Foundations Workshop. June 1999. DOI:
10.1109/CSFW.1999.779763.

[25] Danny Dolev and Andrew Yao. “On the security of public key protocols”. In: IEEE
Transactions on information theory 29.2 (1983).

[26] Roger M Needham and Michael D Schroeder. “Using encryption for authentication
in large networks of computers”. In: Communications of the ACM 21.12 (1978),
pp. 993–999.

[27] Makarius Wenzel et al. The isabelle/isar reference manual. 2004.
[28] Tobias Nipkow. “Programming and proving in Isabelle/HOL”. In: Technical report,

University of Cambridge. 2013.
[29] “Chapter 5 Higher order predicate logic”. In: Categorical logic and type theory. Ed.

by Bart Jacobs. Vol. 141. Studies in Logic and the Foundations of Mathematics.
ISSN: 0049-237X. Elsevier, 1998, pp. 311–372. DOI: https : //doi . org/10 . 1016/
S0049-237X(98)80035-9. URL: https://www.sciencedirect.com/science/article/pii/
S0049237X98800359.

[30] Sebastian Mödersheim and Alessandro Bruni. “AIF-ω ω: Set-Based Protocol Ab-
straction with Countable Families”. In: Principles of Security and Trust: 5th Interna-
tional Conference, POST 2016, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April
2–8, 2016, Proceedings 5. Springer. 2016, pp. 233–253.

[31] Alessandro Bruni et al. “Set-pi: Set membership p-calculus”. In: 2015 IEEE 28th
Computer Security Foundations Symposium. IEEE. 2015, pp. 185–198.

[32] Suhas Pai et al. “Formal Verification of OAuth 2.0 Using Alloy Framework”. In: 2011
International Conference on Communication Systems and Network Technologies.
2011, pp. 655–659. DOI: 10.1109/CSNT.2011.141.

[33] Haixing Yan et al. “Verification for OAuth Using ASLan++”. In: 2015 IEEE 16th In-
ternational Symposium on High Assurance Systems Engineering. 2015, pp. 76–84.
DOI: 10.1109/HASE.2015.20.

[34] Andreas V Hess, Sebastian AMödersheim, and Achim D Brucker. “Stateful Protocol
Composition in Isabelle/HOL”. In: ACM Transactions on Privacy and Security 26.3
(2023).

[35] Roy T. Fielding, Mark Nottingham, and Julian Reschke.HTTP Semantics. RFCRFC
9110. NumPages: 194. Internet Engineering Task Force, June 2022. DOI: 10.17487/
RFC9110. URL: https://datatracker.ietf.org/doc/rfc9110.

https://doi.org/10.1109/CSFW.1999.779763
https://doi.org/https://doi.org/10.1016/S0049-237X(98)80035-9
https://doi.org/https://doi.org/10.1016/S0049-237X(98)80035-9
https://www.sciencedirect.com/science/article/pii/S0049237X98800359
https://www.sciencedirect.com/science/article/pii/S0049237X98800359
https://doi.org/10.1109/CSNT.2011.141
https://doi.org/10.1109/HASE.2015.20
https://doi.org/10.17487/RFC9110
https://doi.org/10.17487/RFC9110
https://datatracker.ietf.org/doc/rfc9110

[36] Charlie Jacomme and Steve Kremer. “An extensive formal analysis of multi-factor
authentication protocols”. In: ACM Transactions on Privacy and Security (TOPS)
24.2 (2021).

A Appendix
Files: https://github.com/anandv96/thesis-sso

Formal Analysis and Verification of OAuth 2.0 in SSO 55

https://github.com/anandv96/thesis-sso

	Acknowledgements
	1 Introduction
	2 Background
	2.1 Single Sign On Systems
	2.2 OAuth 2.0
	2.3 Transport Layer Security
	2.4 Formal Verification
	2.5 Dolev Yao Attacker
	2.6 Needham-Schroeder Public Key Protocol
	2.7 Formal Verification Tools
	2.8 Related Works

	3 Modelling and Verifying OAuth 2.0
	3.1 The need for both PSPSP and OFMC
	3.2 Modelling OAuth 2.0 in OFMC
	3.3 Formal verification with OFMC
	3.4 Modelling OAuth 2.0 in PSPSP
	3.5 Modelling and composing TLS with OAuth
	3.6 Formal verification with PSPSP

	4 Analysis
	4.1 Detailed Analysis from OFMC
	4.2 Detailed Analysis from PSPSP
	4.3 Results

	5 Discussion
	5.1 Interpretation of results
	5.2 Qualification of Results
	5.3 Future Work

	6 Conclusion
	Bibliography
	A Appendix

