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Abstract

Advancements in UAV technology have offered promising avenues for wildlife
management, specifically in the herding of wild animals. However, existing algorithms
frequently simulate two-dimensional scenarios with the unrealistic assumption of
continuous knowledge of animal positions or involve the use of a scouting UAV in
addition to the herding UAV to localize the position of the animals. Addressing this
shortcoming, our research introduces a novel herding strategy using a single UAV,
integrating a computer vision algorithm in a three-dimensional simulation through
the Gazebo platform with Robot Operating System 2 (ROS2) middleware. The UAV,
simulated with a PX4 flight controller, detects animals using ArUco markers and uses
their real-time positions to update their last known positions.

The performance of our computer-vision-assisted herding algorithm was evaluated
in comparison with conventional, position-aware/dualUAV herding strategies. Findings
suggest that one of our vision-based strategies exhibits comparable performance to the
baseline for smaller populations and loosely packed scenarios, albeit with sporadic
herding failures and performance decrement in very tightly packed flocking scenarios
and very sparsely distributed flocking scenarios. The proposed algorithm demonstrates
potential for future real-world applications, marking a significant stride towards
realistic, autonomous wildlife management using UAVs in three-dimensional spaces.

Keywords UAVs, PX4, Simulation, Computer Vision , Aruco Markers, Furthest
agent targetting controller, Collect and drive algorithm, Herding, Gazebo,
ROS2
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Symbols and abbreviations

Symbols
𝑚c cohesion multiplier co-efficient 1
𝑚cp cohesion multiplier co-efficient 2
𝑚a alignment multiplier co-efficient 1
𝑚ap alignment multiplier co-efficient 2
𝑚s separation multiplier co-efficient 1
𝑚sp separation multiplier co-efficient 2

Abbreviations
CD Collect and Drive
COM Center of Mass
FAT Furthest Agent Targetting
GCM Global Center of Mass
ROS Robot Operating System
RTF Real-Time Factor
SDF Simulation Description Format
SITL Software-In-The-Loop
SONAR Sound Navigation and Ranging
UAV Unmanned Aerial Vehicle
UGV Unmanned Ground Vehicle
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1 Introduction
This thesis aims to develop a UAV-based herding algorithm that leverages computer
vision to deter wild animals from agricultural lands. The goal is to provide a cost-
effective, efficient, and environmentally-friendly solution to the significant issue of
wildlife-induced damage in agriculture.

1.1 The Herding Problem
The issue of wildlife interference in agricultural activities has been a longstanding
problem, posing significant challenges to farmers worldwide. The severity of this
problem is particularly evident in the field of agriculture, where wildlife, notably wild
boars, moose, red deer, and fallow deer, geese, and whooper swans, have been causing
substantial damage to crops. According to a report by Statistics Sweden, wildlife
destroyed a staggering 165,000 tonnes of grain in 2020 [1]. This figure is nearly
double the 88,000 tonnes reported in 2014 [1], highlighting the escalating nature of
this problem.

The impact of wildlife on agriculture extends beyond mere crop destruction. It
also influences the choice of crops grown by farmers. More than one in three farmers
stated that the presence of wildlife affects their choice of crop [1]. This suggests that
the wildlife problem is not only causing direct damage to crops but also indirectly
influencing agricultural practices and decisions.

Given these alarming statistics, it is evident that wildlife encroachment is a pressing
issue that requires immediate attention and effective solutions. The task of herding or
repelling wildlife away from agricultural fields, known as the "herding problem," is a
complex challenge that involves various factors, including the behavior of wildlife,
their interaction with a predator, and more. Addressing this problem is crucial to
safeguard agricultural productivity, protect wildlife, and ensure the sustainability of
farming practices.

1.2 Evolution of Strategies in Tackling Herding
Using unmanned aerial vehicles (UAVs) or unmanned ground vehicles (UGVs) to
herd animals proves to be a more benign approach compared to hunting invasive
species, as it circumvents any harm inflicted on wildlife. Moreover, there exists the
potential for complete automation, thereby eradicating the need for manual labor.
Over the years, many solutions have been proposed to tackle the herding problem.
The trajectory of herding methodologies has witnessed significant advancements,
commencing with Vaughan et al’s seminal work in 1998 [12]. This innovative study
employed a terrestrial robot to shepherd ducks, utilizing potential fields where virtual
forces dictated the robot’s movement.

Subsequent research predominantly utilized 2D simulations, with points symbol-
izing the predator and animal agents. A notable deviation was Paranjape et al’s work,
which actually deployed the algorithm in the real world by employing UAVs to deter
birds from airspace using a mathematical model of avian behavior [13].



Strömbom et al introduced a ’collect and drive’ algorithm, guiding the predator to
aggregate animals and direct them towards a goal [6]. Despite real-world attempts,
this strategy did not incorporate Unmanned Ground Vehicles (UGVs) or UAVs [11].

Gade et al proposed a graph-based strategy to regulate flock size and guide them
to a goal [7]. These methodologies predominantly involved a single herding agent,
presupposing knowledge of all animal positions, an unrealistic assumption in practical
scenarios. Li et al proposed a swarm of predator UAVs for herding [9], but this too
required prior knowledge of animal positions.

Addressing this, King et al suggested a second ’Surveillance’ UAV to monitor
animal and predator positions [10]. This necessitated two UAVs for herding, increasing
costs.

These promising strategies, however, are economically unfeasible due to the
requirement of multiple UAVs. Hence, a single UAV-based solution utilizing a camera
for animal localization is needed.

The most viable solution thus far was proposed by Tsunoda et al [22], where a
terrestrial robot herds animals within its field of view. However, this strategy does not
track past-seen animals and is limited by its terrestrial perspective, underscoring the
need for an aerial UAV-based solution.

1.3 The Research Question
In light of the limitations identified in previous herding strategies, there is an urgent
need for a solution that is not only more feasible for real-world deployment but also
more effective in managing the herding problem. A promising approach to address
these challenges is the implementation of a single-UAV herding strategy, which
capitalizes on an aerial perspective and an enhanced field of view. This strategy is also
applicable to situations in which the animals may move out of the UAV’s field of view.

The proposed solution in this thesis employs a single UAV equipped with a camera
and gimbal to perform herding without the need for a surveillance UAV. It utilizes the
"Collect and Drive" algorithm proposed by Strömbom et al [6] and the "Furthest Agent
Targeting" controller introduced by Tsunoda et al [22]. Initially, herding is performed
under the assumption that the position of all animals is known beforehand, as per the
original 2D papers, and the performance of these algorithms serves as the baseline for
comparison.

The primary research question and the sub-questions that this thesis seeks to
answer are as follows:

• "How does the performance of the proposed single-UAV herding strategy
compare to the baseline performance of the existing two-UAV herding
strategies?"

– "How does the success rate of the proposed single-UAV herding strategy
compare to the baseline strategies?"

– "How does the time efficiency of the proposed single-UAV herding strategy
compare to the baseline strategies?"
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– "How does the travel distance of the UAV when using the proposed
single-UAV herding strategy compare to the baseline strategies?"

– "What is the herding capacity of the proposed single-UAV herding strat-
egy?"

The answers to these questions will provide a thorough evaluation of the proposed
single-UAV herding strategy, offering valuable insights into its time efficiency, success
rate, herding capacity, and travel distance. This comprehensive analysis will contribute
to our understanding of the strategy’s potential for real-world application and its
effectiveness in addressing the herding problem.

1.4 Scope and Constraints
The boundaries of this thesis are defined by specific parameters and are subject to certain
limitations, which are essential to acknowledge for a comprehensive understanding of
the research.

One major limitation is the computer vision algorithm used to determine the
animals’ positions on the ground. This thesis does not go into the details of this
algorithm. Instead, it adopts a simpler approach that combines an object detection
algorithm with the actual animal positions. This method serves as a substitute for
computer vision-based triangulation, potentially paving the way for future research to
explore its implementation further.

Another significant limitation is the testing environment for the proposed algorithm.
Due to constraints related to development costs, time, and the inherent risks associated
with deploying this algorithm in the real world without comprehensive safety measures,
the algorithm has been tested exclusively in a simulation environment. While the
results derived from these tests are promising, they have not been validated in a
real-world setting. This limitation underscores the need for future research to bridge
this gap, thereby enhancing the practical applicability and robustness of the proposed
single-UAV herding strategy.

These constraints do not undermine the value of the research but rather delineate
its scope, providing a clear direction for future work to build upon the foundation laid
by this thesis.

1.5 Thesis Structure
This thesis is organized into distinct sections, each serving a specific purpose and
collectively contributing to the overarching narrative of the research.

• The Introduction sets the stage for the study, outlining the background, identi-
fying the problem statement, articulating the research question, and delineating
the scope and constraints of the research. It provides the necessary context and
frames the research objectives.
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• The Literature Review offers a comprehensive overview of the existing body
of knowledge on the topic. It highlights key findings from previous studies,
identifies gaps in the current understanding, and underscores the need for the
present research.

• The Research Material and Methods section provides a detailed account of the
methodology employed in the study. It describes the simulation environment,
elaborates on the algorithms used, and outlines the testing procedures, ensuring
transparency and reproducibility of the research.

• The Results section presents the empirical findings of the study. It provides a
comparative analysis of the performance of the proposed single-UAV herding
strategy and the baseline two-UAV strategies, offering quantitative evidence to
address the research question.

• Finally, the Discussion section offers a thoughtful interpretation of the results. It
contextualizes the findings within the broader research landscape, discusses the
implications of the results, and suggests potential avenues for future research.
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2 Related Work

2.1 Robotics Herding
The herding problem, as described by Lien et al. [3], is a specific type of flocking
behavior where a guiding agent (or agents) is used to control the movement and
direction of a group of flock agents. The guiding agent is represented by a robot,
and it exerts an external force that influences the flock agents, causing them to move
away from the guiding agent. In real-world scenarios, this influence can be achieved
through various means such as loud noises, blinding lights, or frightening maneuvers
to scare the animals away. The guiding agent employs strategies and movements to
steer the flock agents from their starting position to a goal position, including the
use of planned routes and tactics to regroup separated flock agents. The guiding
agent can be any autonomous robot capable of navigating aerial, aquatic, or terrestrial
environments. In this thesis study, the guiding agent is the UAV, and the flock agents
are the representations of animals that need to be guided to the goal position using the
UAV.

The domain of robotic animal herding brings together biological sciences, robotics,
and computer science. The ability to direct and regulate the movement of animal
groups through autonomous systems has significant implications for sectors such as
agriculture, wildlife management, and environmental preservation. Over the years,
research in this field has evolved, with each study building upon the insights of its
predecessors.

Initial explorations in this field involved the use of a terrestrial robot to shepherd
small assemblies of ducks within a confined arena [12]. This seminal study employed
simulation to evaluate the effectiveness of the herding algorithm before its application
to actual ducks, highlighting the important role of simulation testing in this domain.
The results obtained from the real-world experiment aligned with those from the
simulation, confirming the value of simulations in this context.

Simulations are particularly advantageous when UAVs are deployed for herding
purposes, given the significant costs and potential risks associated with these devices.
Therefore, it is prudent to first validate the herding algorithm within a secure and
controlled simulation environment before its real-world deployment.

However, before delving into the specifics of the simulations used in the aforemen-
tioned experiment, it is crucial to understand the fundamental components required
for a herding simulation. This literature review will sequentially navigate through the
contributions that have facilitated the development of a vision-based UAV herding
simulation. A comprehensive summary of the research trajectory in the field of herding
is provided by Long et al. [8].

2.2 Simulating Flock Behaviour
The pivotal work by Craig W. Reynolds [2] has been instrumental in the field of
simulating flocking behavior. Reynolds introduced the term ’boids’ to refer to bird-oid
or bird-like objects. These boids adhere to simple movement behaviors based on their
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local perceived environment, leading to the emergence of complex group behaviors.
The model is based on three fundamental rules: collision avoidance, velocity matching,
and flock centering.

Collision avoidance ensures that each boid maneuvers to maintain a minimum
distance from other boids in its vicinity. Velocity matching involves each boid aligning
its direction and speed with those of the boids in its vicinity. Flock centering drives
each boid towards the perceived center of mass of the boids in its vicinity.

Each ’boid’ is implemented as an autonomous actor that navigates based on its
local perception of the dynamic environment. The significance of this paper lies in its
introduction of the ’boids’ concept and the provision of a simple yet effective model for
simulating flocking behavior. This model has found extensive application in computer
graphics and animation and has also been utilized in the study of animal behavior.

While the three parameters of Reynolds’ model effectively simulate flock behavior,
they cannot be directly applied to herding simulations. This is primarily due to the
need to simulate animal behavior in the presence of a predatory entity. Thus, the
Reynolds Flocking model by itself cannot be used for the simulation of a herding
environment containing animals and a predator.

In real-world scenarios, animals use pheromones to communicate emotions
throughout the flock [4]. This concept was integrated into simulation by Barksten et
al., who introduced the ’Escape rule’ [5]. In the foundational flocking behavior model,
the rules for cohesion, separation, and alignment generate vector outputs. These output
vectors are multiplied by a set of scalar coefficients and subsequently summed together
to produce the resultant motion vectors of the animals. The Escape rule introduces an
additional multiplier that amplifies the original three rules in the presence of a predator.
Further modifications include the introduction of a human-controlled predator, the
adaptation of the modeled animals to move in two dimensions instead of three, and
the alteration of their behavior to mimic sheep rather than birds.

A simulator was developed using the modified version of Reynolds’ flocking
model to compare the behavior of simulated sheep with real sheep, primarily using
quantitative data from the simulator. The comparison revealed several similarities
between the simulated and real sheep, suggesting that the extended Reynolds model
can serve as a foundation for this scenario.

The amalgamation of the behavior of animals reacting to others within their flock
and their behavior in the presence of a predator establishes the basic environment
required to perform herding using a UAV. However, this experiment was carried out in
a simulation where the herding agent had access to the positions of all the animals
present in the simulation, which makes it unrealistic and challenging to deploy in the
real world.

2.3 Simulating Animal Herding
The groundbreaking Robot Sheepdog project by Vaughan et al. [12] employed a
ground-based robot to shepherd a flock of ducks. The methodology involved creating
a minimal simulation model of the ducks’ flocking behavior, which subsequently
informed the design of a flock-control algorithm. This algorithm was based on the
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Figure 1: Robot Sheepdog system overview.

concept of forces acting on particles, with the robot being attracted to the center of the
flock and repelled from both the flock center and the goal position.

This approach was initially tested in a simulation before being implemented on
a physical robot within a real-world environment. The robot’s position, orientation,
and movement were determined by processing a video image stream, with real-time
adjustments made via a radio modem, as shown in Figure 1. This experiment proved
that it was indeed possible to conduct experiments in simulation and deploy them in
the real world with minimal changes, provided the simulation was modeled closer to
reality.

The work conducted by Kachroo et al. [17] is significant within the domain
of dynamic programming solutions for herding problems. Their research focused
on developing three dynamic programming algorithms: Admissible Policy Search
Technique, Value Iteration Technique, andPolicy Iteration Technique. These algorithms
aim to guide a single "evader" agent, using a pursuing agent, toward a target location.
In this study, the herding problem is formulated as a cost optimization problem, with
the objective of herding the evader agent in the shortest possible time. The study
discovered that one algorithm was time-consuming, while the other two strategies
converged to the same optimal cost value functions. However, a major drawback of
this approach is its limited discussion on using these techniques solely for solving
the cost value function while searching for the optimum control policy in a single
pursuer-evader problem. Parallel to this, the study conducted by Miki and Nakamura
[18] presented a straightforward yet effective algorithm for simulating a herding task.
The behavior of the swarm was governed by a set of four rules, which included
cohesion, separation, and escape rules similar to the study conducted by Barksten et
al. [5] to simulate prey behavior. However, instead of using the alignment rule, the
fourth rule involved a random action that induced stochastic behavior. An individual
within a group responds solely to the other individuals in its immediate vicinity.

The practice of shepherding relies on a set of rules: Guidance, Flock Making,
Keeping, and Cooperation. These rules dictate how shepherds guide a flock, bring
stray individuals back to the group, maintain distance from flock members to preserve
order, and coordinate with other shepherds to avoid overlap. Shepherds react to other
shepherds within a limited area to prevent overlap and search for flock members
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within their nearby surroundings. This paper introduces the terms "handling zone"
and "watching zone" to refer to these respective areas. The shepherd’s movement is
determined by the angle (\) between the desired direction and the object’s current
direction. However, controlling UAVs using this approach is not ideal as it relies on
controlling only the yaw angle of the drone, while having a constant velocity. UAVs
can easily maneuver in multiple directions. Additionally, the use of position sensors
such as ultrasonic sensors and IR sensors can be susceptible to false positives, causing
the predator to mistake other objects for sheep.

The research conducted by Strömbom et al. [6] devised a simple heuristic for
replicating sheep behaviors, employing a single shepherd. Their paper introduces the
Collect and Drive (CD) algorithm for herding. The algorithm, grounded in simple
heuristics, illustrates how a shepherd can guide autonomous, interacting agents towards
a designated target. Figure 2 illustrates the algorithm.

The shepherd adaptively switches between collecting agents when they are ex-
cessively dispersed and driving them once they have been aggregated. This strategy
minimizes the likelihood of the group splitting, enabling the shepherd to maintain
the group’s movement towards the target location. However, the CD algorithm is not
guaranteed to succeed when agents interact with less than half of the total group size.
Under such circumstances, the group of agents is prone to splitting into two or more
stable subgroups.

To circumvent this issue, the shepherd is programmed to sequentially herd subgroups
of a size it can manage. This is achieved by applying the same shepherding algorithm
to the local center of mass of nearby agents, as opposed to the global center of mass.
This nuanced approach allows for more effective control of the group, even under
challenging conditions. One drawback observed in this approach is that while the
shepherd switches from the collect phase to the drive phase, it often moves through the
flock instead of moving around it, thereby breaking the flock again. This inefficiency
results in the shepherd wasting a lot of time trying to gather the agents together.

Figure 2: Overview of the collect and drive algorithm: The Shepherd switches
between the collect and drive positions if the radius of the flock with center GCM
exceeds a particular value, 𝑓 (𝑁), which is a function of 𝑁 , the number of sheep
present.

Expanding on Strömbom et al.’s work [6], Hoshi et al. [19] explored the effects
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of altering the step size and introducing three-dimensional motion in herding tasks
[20]. Concurrently, Lee and Kim [21] developed an alternative set of behaviors for the
shepherd and swarm, demonstrating the adaptability of herding algorithms. Tsunoda,
Sueoka, and Osuka [23] added an angle of error to the shepherd-swarm interaction,
introducing unpredictability into the dynamics.

The study by Fujioka and Hayashi [24] introduces a fresh perspective to the
shepherding problem. The problem, which involves guiding a herd of sheep from
their initial position to a target position, has wide-ranging applications, including
robotics and crowd control. The authors propose new shepherding behaviors, namely
V-formation control and GCM+V control, and compare these with a previously
proposed method, GCM-targeting.

Gade et al. [7] present the n-wavefront algorithm, a boundary control strategy
that enables a single Unmanned Aerial Vehicle (UAV) to herd a flock without causing
fragmentation. The algorithm selects "n" boids on the flock’s boundary to be influenced
by the UAV, thereby preventing panic within the flock. The selection of these boundary
boids is based on user-defined priorities, such as boundary keeping (influencing boids
closest to the Protection Zone), herding (influencing boids farthest from the desired
location), or a hybrid approach. The authors introduce a parameter _ to represent
the ratio of importance given to boundary keeping and herding, suggesting that other
metrics, such as centrality, could be used to select influential nodes. The effectiveness
of the n-wavefront algorithm is demonstrated through numerical simulations. However,
similar to other papers, this algorithm also requires prior knowledge of the positions
of the animals.

Paranjape et al. [13] advanced the n-wavefront algorithm by proposing the m-
wavefront algorithm. This herding strategy was developed to address the challenge of
herding a flock of birds. The algorithm involves the selection of m waypoints, which
are points in the environment that the UAV aims to reach. The UAV moves towards
these waypoints in a sequence, thereby influencing the movement of the flock. The
selection of these waypoints is based on the current state of the flock and the desired
goal state. The algorithm assumes that the pursuer has access to real-time data about
the flock, such as that provided by avian radars. While this makes it possible to use a
single drone to herd the animals, this concept cannot be translated to herd terrestrial
and aquatic animals. This algorithm also focuses on deflecting a flock of birds from
its current direction to avoid flying over a restricted airspace rather than herding the
birds to a desired location. This approach is not useful for guiding animals from a
farmland to a location in a nearby forest, which is what our algorithm focuses on.

Li et al. [9] proposed a novel approach to herding animals using drones that emit
barking sounds. The drones are designed to move in a way that mimics the behavior
of a herding dog. The spread range of the barking from the drone is fan-shaped, and
only animals within this range will be affected by the repulsion of the barking drone.
The paper introduces two guidance laws, namely Fly-to-edge and Fly-on-edge, for
navigating a barking drone from one point to another in the shortest time. The paper
also presents the optimal positions (steering points) for the barking drones to efficiently
gather animals, as well as the collision-free allocation of the steering points. The
proposed method is shown to be quite robust and not sensitive to parameter variations
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Figure 3: Overview of the furthest agent targeting algorithm: The Shepherd experi-
ences forces of attraction (𝑢1) and repulsion (𝑢2) from the target animal 𝑇𝑖 to approach
it while maintaining a safe distance from it. It also experiences a repulsive force (𝑢3)
from the Goal position 𝐺. The net force results in the shepherd approaching the target
𝑇𝑖 from its behind to push it towards the goal zone.

and uncertainties of the control channel. This algorithm introduces the concept of
using directional cones within which the animals are scared, which is similar to what
we would expect in the real world, as animals are more afraid of sounds emitted from
a speaker attached to a UAV as opposed to simply running away due to the mere
presence of a predator UAV. However, this approach relies heavily on the use of
multiple drones, which is not desirable for our application.

Tsunoda et al. [22] introduced a unique approach to shepherding navigation that
relies on a local camera-based system. This method stands out from most of the
previous techniques as it doesn’t necessitate the knowledge of the positions of all
animals in the herd. Instead, it requires the shepherd to perceive the positions of the
animals within its field of view. This is illustrated in Figure 3.

The authors propose a shepherd-like navigation system where the shepherd attempts
to herd a group of animals from the side. The shepherd targets the farthest animal in
its field of view and attempts to move it towards the desired direction, an approach
inspired by the real movement of a sheepdog when herding real sheep.

The paper presents statistical analysis results, demonstrating that the farthest-agent
targeting control is effective if the animal group is loosely gathered. It also shows that
shepherd navigation succeeds even if the shepherd cannot perceive the positions of all
animals. The authors further explore navigation scenarios where the target animal is
selected from the farthest group and where positional errors for animal positions are
included. They conclude that navigation based on the proposed method succeeds even
though the shepherd is placed across the goal from the flock or is placed inside the
flock. This algorithm shows the most promise and is suitable for our research. Thus,
our proposed algorithm seeks to augment this algorithm for the case of aerial herding
UAVs.
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3 Research Material and Methods
This section provides an overview of the methods used and outlines the practical steps
taken in our research to address the challenges identified in the domain of wildlife
herding and repellence. We detail our simulation environment, UAV and camera
specifications, and the characteristics of our simulated animals. We also explain our
position update algorithm, the conditions for switching from patrolling to herding,
and the baseline algorithms used for comparison. Finally, we present our proposed
herding algorithm and the conditions for the termination of the herding process.
This methodology provides the details necessary to ensure the reproducibility of this
framework for future research in this field.

3.1 The Simulation Environment Setup
3.1.1 The Gazebo simulator and the PX4 autopilot

Gazebo is a powerful open-source 3D robotics simulator that provides a realistic
environment for testing and development. It integrates robust physics engines, high-
quality graphics, and convenient programmatic and graphical interfaces, making it a
valuable tool for simulating robots. It allows developers to rapidly test algorithms,
design robots, perform regression testing, and train AI systems using realistic scenarios.
Gazebo does provide a variety of pre-built environments, or "worlds", that can be
used for simulations. These environments, combined with Gazebo’s enhanced physics
and realistic rendering of lighting and materials, contribute to a more realistic user
experience and simulation realism. Gazebo’s latest version, called Gazebo Garden,
is the version that we are using for our implementation. Figure 4 shows an example
scene simulated using Gazebo garden.

Figure 4: Example of simulation environment in Gazebo Garden.

PX4 is an open-source flight control software for UAVs and other unmanned
vehicles. It provides a high-level interface to control vehicle navigation and flight,
and it supports a wide range of vehicle designs. The project is backed by a strong
community of developers and industry partners, and it is used in a variety of applications,
from hobbyist flying to commercial UAV operations. Software In The Loop (SITL)
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Figure 5: A PX4 SITL simulation in Gazebo garden

simulation is a method for testing software in a realistic environment without the risk
or expense of a real vehicle. PX4 SITL allows developers to run the entire flight stack,
including the state estimator, control loops, and higher-level modules, on a standard
desktop computer. This makes it possible to test the software in a wide range of
scenarios without ever leaving the lab. Figure 5 shows an example of a PX4 SITL
simulation.

Gazebo’s realistic simulation environments, combined with PX4’s robust flight
control software, provides an excellent platform for running UAV simulations. This
setup can simulate a wide range of scenarios, from basic flight control to complex
navigation tasks, in a safe and controlled environment. It also allows for rapid testing
and iteration in a safe and controlled environment, reducing the risk and cost associated
with testing on physical UAVs. This framework is particularly useful for testing
object-avoidance, computer vision, and multi-vehicle coordination algorithms. It also
supports continuous integration tests, making it an essential tool for modern UAV
software development workflows. The use of open-source tools like Gazebo and
PX4 ensures that our research is reproducible and can be easily built upon by other
researchers in the field.

3.1.2 ROS2 middle-ware and the gz-transport module

The Robot Operating System (ROS) is a set of software libraries and tools for building
robot applications. ROS2 is the second version of this system and offers several
improvements over its predecessor. It provides the means to control a wide range of
vehicle and robot designs and is used in a variety of applications. At its core, ROS2
provides the necessary services for hardware abstraction, low-level device control,
implementation of commonly-used functionality, message-passing between processes,
and package management. It also provides tools and libraries for obtaining, building,
writing, and running code across multiple computers. ROS2 uses a graph architecture
to manage the complexity of robotic systems. In this architecture, processing takes
place in nodes that may receive and post sensor, control, state, planning, actuator
and other messages. These nodes are loosely coupled using the ROS communication
infrastructure and can be distributed over a network.
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The gz-transport module is a part of the Gazebo simulator. It is a transport
library that allows for the efficient exchange of data between different parts of a
Gazebo simulation. This exchange includes sensor data, control commands, and other
information that is crucial for the operation of a simulated robot. The gz-transport
module is designed to be fast and efficient, enabling real-time communication between
different parts of a simulation. This feature makes it an essential tool for complex
simulations involving multiple interacting robots or other elements. The combination
of ROS2 and the gz-transport module provides a powerful toolset for developing
and testing UAV software. ROS2 offers high-level control capabilities, while the
gz-transport module ensures efficient data exchange within the simulation.

The integration of the ROS2 framework for high-level control of the PX4 UAV has
yielded commendable results. However, the ROS2 Gazebo bridge is not optimal, as it
was observed to reduce the Real-Time Factor (RTF) in our simulations. The Real-Time
Factor (RTF) is a metric indicating the simulation’s execution speed relative to real
time. It measures the time passed in the simulation compared to the real world. The
gz-transport module, on the other hand, allows for efficient data exchange within the
simulation, improving speed by eliminating an additional middleware layer.

In our experiment, we utilized the gz-transport module for low-level control tasks
such as subscribing to the animals’ positions, publishing velocity commands to the
animals, subscribing to the UAV’s IMU data, and publishing the joint angles of the
gimbal mounted on the UAV. On the other hand, we employed ROS2 for high-level
UAV commands, which include setting position and velocity setpoints for different
herding algorithms, publishing commands to arm, take off, and land the UAV, among
others. However, for retrieving images from the UAV’s camera, we used ROS2 instead
of the gz-transport module due to its relative ease of use in this context.

3.1.3 Quadcopter and the gimbal cam setup

The quadrotor utilized in the Software In The Loop (SITL) simulation is the x500
UAV. This UAV is a popular choice among UAV developers due to its robust design
and compatibility with the PX4 development kit. The SDF (Simulation Description
Format) model of the x500 UAV is employed in the simulation, making the solution
easily deployable in real-world hardware. With minor modifications, this can include
the Holybro x500 v2 PX4 development kit, as shown in Figure 6.

However, the SITL version of the x500 UAV does not include a default camera
mount with a gimbal. To overcome this, we manually added a camera to the UAV
along with a gimbal mount. This addition was achieved by modifying the SDF file and
controlling the gimbal axes positions using the Joint Position Controller Plugin. The
Joint Position Controller Plugin in Gazebo is a tool that allows for the precise control
of joints in a simulated robot. We used this plugin to send target joint positions to a
robot in simulation through a simple joint position command ROS topic publisher or a
gz-transport publisher. It can be employed in an SDF model spawned in a Gazebo
simulation. Figure 7 illustrates the gimbal we implemented.

In the context of the x500 UAV, the Joint Position Controller Plugin is used to
control the gimbal axes positions. This allows for precise control of the camera’s
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Figure 6: The X500 UAV setup with the PX4 flight controller

(a) Camera in default position (b) Rotating about the x-axis

(c) Rotating about the y-axis (d) Rotating about the z-axis

Figure 7: Implementation of a gimbal in Gazebo garden

orientation, enabling it to maintain a steady view of the ground below, irrespective of
the UAV’s movements. The gimbal is set to point at a 45-degree angle downwards.
It maintains this orientation with respect to the local/global frame by counteracting
the effect of the UAV’s orientation. This setup enables efficient tracking and herding
of the animals in the simulation, demonstrating the potential of this technology for
real-world applications.

The following formula is used to calculate the pitch angle of a camera gimbal
mounted on a UAV, ensuring that the camera maintains a 45-degree downward tilt
relative to the local frame, regardless of the UAV’s pitch.

\𝑔 =
𝜋

4
− \𝑑

In this context, \𝑔 denotes the pitch angle of the camera gimbal, \𝑑 represents the
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pitch angle of the UAV, and 𝜋/4 signifies the desired downward tilt of the camera in
radians. The aim of this formula is to maintain a consistent 45-degree downward tilt
for the camera with respect to the local frame, irrespective of the UAV’s pitch. When
the UAV pitches its nose upward (indicated by a negative \𝑑), the gimbal’s pitch angle
(\𝑔) increases to a higher positive value, inducing a nose-down pitch. This action
effectively counteracts the UAV’s pitch, enabling the camera to maintain its 45-degree
downward tilt relative to the local frame, rather than the UAV’s body frame.

3.1.4 Simulating the animals

In the given experiment, the animals are represented by boxes with ArUco markers on
each side. ArUco markers are synthetic square markers composed of a wide black
border and an internal binary matrix, which determines their identifier (id). The
black border facilitates their fast detection in an image, and the binary codification,
consisting of black and white colors, allows for identification and the application of
error detection and correction techniques. These markers are often enclosed within
an additional white outer border to improve detection accuracy. They are commonly
used in pose estimation, camera calibration, robot navigation, and augmented reality
applications. The simulation setup can be seen in Figure 8.

Figure 8: The experimental setup

The contrast between the black floor and the white outer borders of the ArUco
markers on the boxes facilitates the camera’s detection and identification of the markers.
The boxes, representing the animals, can move in a 2D plane, simulating the movement
of animals on a flat surface. This movement can be controlled to simulate various
behaviors and scenarios. The boxes can be spawned in random positions, adding an
element of unpredictability to the simulation and increasing the challenge for the UAV
to herd the animals.

The use of ArUco markers in this simulation offers a simple and effective way
to track the position and movement of the animals. Although animals in the real
world need to be detected using sophisticated computer vision algorithms for object
detection, such as YOLO Object Detection [32], this setup acts as a commendable
substitute for the real world. The markers can be easily detected and identified by
the UAV’s camera, enabling the UAV to accurately track each animal’s position and
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adjust its herding strategy accordingly. This setup eliminates the need to implement
sophisticated trajectory estimation and tracking algorithms to keep track of all the
unique animals detected by the UAV’s camera. Instead, each animal having a unique
marker makes it easier for the herding algorithm to detect the prolonged absence of
certain animals when their ArUco marker is not detected by the UAV’s camera.

3.2 Implementing the herding algorithm
3.2.1 Simulating the Flocking Behaviour

The behaviour of the animals, which are represented as markers, is governed by a set
of rules simulating flocking behavior. These rules are implemented as mathematical
equations determining the animals’ movements based on their positions relative to
each other and the predator (the UAV). This experiment uses the same rules used
by Barksten et al. [5] in their experiment to simulate the behaviour of sheep in
the presence of a human-controlled predator, with minor modifications to suit our
experiment. The rationale behind using these rules is that the objects with ArUco
markers exhibit flocking behaviour akin to the behaviour of actual animals present in
the real world, as demonstrated by the work of Barksten et al. [5].

• Cohesion - The cohesion rule is used to simulate the tendency of animals in
a flock to stay close to each other while moving. This rule calculates a vector
directed towards the Center of Mass (COM) of all the animals. Mathematically,
this is represented as:

coh(𝑠) =
𝑆𝑝 − 𝑠𝑝
|𝑆𝑝 − 𝑠𝑝 |

(1)

where 𝑆𝑝 is the average position of all the animals and 𝑠𝑝 is the position of the
current animal.

• Separation - The separation rule prevents animals from colliding with each
other by directing them away from nearby animals. The rule calculates a vector
directed away from each nearby animal, with the contribution of each animal
determined by an inverse square function of the distance between the animals.
This is represented as:

sep(𝑠) =
𝑛∑︁
𝑖=1

(︃
𝑠𝑝 − 𝑠𝑖𝑝
|𝑠𝑝 − 𝑠𝑖𝑝 |

· inv( |𝑠𝑝 − 𝑠𝑖𝑝 |, 2)
)︃

(2)

where 𝑠𝑖𝑝 is the position of the 𝑖-th nearby animal. For simplicity, our experiment
considers all the animals present in the simulation as nearby animals. In this
equation, inv( |𝑠𝑝 − 𝑠𝑖𝑝 |, 2) is a function of the form inv(𝑥, 𝑠). This function
is used to prioritize nearby objects in the separation and escape rules. It is an
inverse square function of the distance 𝑥 between the objects, with a softness
factor 𝑠 to slow down the rapid decrease of the function value. We found that
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the softness factor of 2 works better than the original softness factor of 1 used in
[5]. The inverse square function is given by the equation:

inv(𝑥, 𝑠) =
(︂𝑥
𝑠
+ Y

)︂−2
(3)

in this equation, 𝜖 is a small numerical value that prevents a division by zero
error, when x assumes the value of 0.

• Alignment - The alignment rule makes animals move in the same direction as
their nearby flockmates. The rule calculates a vector directed in the average
direction of all nearby animals. This is represented as:

ali(𝑠) = 1
𝑁

∑︁
𝑠𝑖∈𝑁

𝑠𝑖𝑣 (4)

where 𝑠𝑖𝑣 is the normalized velocity of the 𝑖-th nearby animal and 𝑁 is the
total number of nearby animals. This means that 𝑠𝑖𝑣 is a unit vector pointing in
the direction where the 𝑖-th nearby animal is headed. For the alignment rule,
animals that are within 10 meters of the current animal in the simulation are
considered nearby animals. The alignment equation shown above varies slightly
from the alignment equation used in [5], as it was observed that the magnitude
of the velocities exploded when the sum of the velocities was used instead of
the average of all the velocities.

• Escape - The escape rule makes animals flee from the predator. The rule
calculates a vector directed away from the predator, with the size of the vector
determined by an inverse square function of the distance between the animal
and the predator. This is represented as:

esc(𝑠) =
𝑠𝑝 − 𝑝𝑝
|𝑠𝑝 − 𝑝𝑝 |

· inv( |𝑠𝑝 − 𝑝𝑝 |, 20) (5)

where 𝑝𝑝 is the position of the predator. We found that a softness factor of 20 in
the inverse function is more suitable than the softness factor of 10 used in [5].

It is required to combine all these rules to mimick the behaviour of animals in the
presence of a predator agent. The final velocity vector v of the animal is the weighted
sum of all the rule vectors, with each rule weighted by a combined multiplier. The
combined multiplier is a function used to combine the two multipliers for each rule. It
is of the form:

𝑚(1 + 𝑝(𝑥)𝑚𝑝) (6)

Where 𝑚 is the first multiplier and 𝑝(𝑥) is the second multiplier scaled by a value
mp. The first multiplier 𝑚 and the scaling factor 𝑚𝑝 are constants, while the second
multiplier 𝑝(𝑥) is a function of the distance 𝑥 from the animal to the predator given by:

𝑝(𝑥) = 1
𝜋

arctan
(︁
3(𝑟 𝑓 𝑙𝑖𝑔ℎ𝑡 − 𝑥)

)︁
+ 0.5 (7)
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Figure 9: Mathematical visualisation of the second multiplier function.

Where 𝑟 𝑓 𝑙𝑖𝑔ℎ𝑡 is the flight zone radius of the animal or the distance at which the
animals start noticing the presence of an approaching predator. Figure 9 provides an
illustration of the second multiplier function for 𝑟 𝑓 𝑙𝑖𝑔ℎ𝑡 = 10. When the predator is
beyond a distance of 10 meters from the animals, the effect of the multiplier 𝑝(𝑥) is
close to zero. While the effect of 𝑝(𝑥) is close to 1 when the predator is within a
distance of 10 meters from the flock. This results in a behaviour that mimics the effect
where the animals would sense the presence of a predator and alter their behaviour
when it approaches them by amplifying their cohesion, separation and alignment
properties.

Each animal’s final velocity vector is the weighted The resultant direction of each
animal’s movement is determined by the sum of all the rule vectors, with each rule
weighted by a combined multiplier. The vector is capped at a maximum velocity 𝑣𝑚𝑎𝑥
and a minimum velocity 𝑣𝑚𝑖𝑛, which, in our case, is the negative of 𝑣𝑚𝑎𝑥 . Clipping is
performed to ensure that the animals’ velocity doesn’t explode to infinity when the
UAV flies over the flock to get to the other side. This is represented as:

𝑣 =𝑚𝑐 (1 + 𝑝(𝑥)𝑚𝑐𝑝)coh(𝑠)
+ 𝑚𝑠 (1 + 𝑝(𝑥)𝑚𝑠𝑝)sep(𝑠)
+ 𝑚𝑎 (1 + 𝑝(𝑥)𝑚𝑎𝑝)ali(𝑠)
+ 𝑚𝑒esc(𝑠) (8)

𝑣 = (0.8 ∗ 𝑣) + (0.2 ∗ 𝑣𝑝𝑟𝑒𝑣) (9)

𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑚𝑎𝑥(𝑚𝑖𝑛(𝑣, 𝑣𝑚𝑎𝑥), 𝑣𝑚𝑖𝑛) (10)

𝑣𝑝𝑟𝑒𝑣 = 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (11)

where 𝑚𝑐, 𝑚𝑠, 𝑚𝑎, and 𝑚𝑒 are the weights for the cohesion, separation, alignment,
and escape rules respectively, and 𝑚𝑐𝑝, 𝑚𝑠𝑝 and 𝑚𝑎𝑝 are the weights for the second
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multipliers for the first three rules respectively. The sum v is weighted and added
to a weighted value of the previous velocity value 𝑣𝑝𝑟𝑒𝑣 to simulate inertia. Finally,
this value is clipped by 𝑣𝑚𝑖𝑛 and 𝑣𝑚𝑎𝑥 . The resultant effect is the behavior of boxes
flocking together in the absence of a predator and moving away from the predator,
spreading outwards when a predator approaches the animals.

Implementation of this flocking behavior in the presence of a UAV with a gimballed
camera sets up the environment required to employ different herding algorithms and
compare their performances.

3.2.2 Baseline Algorithm 1: The Collect and Drive Algorithm

For our comparative analysis, we employ the Collect and Drive (CD) algorithm, a
heuristic-based strategy proposed by Strömbom et al. [6], that simulates a shepherd’s
herding behavior. One of the reasons for implementing this algorithm is the ease
of implementing a computer vision stack on top of this algorithm, as it uses the
position of the UAV and the animals to predict the target setpoint for the UAV.
Despite its simplicity, this algorithm achieves excellent performance as observed in
the experiments conducted by Strömbom et al. [6]. The CD algorithm operates in two
primary modes: Collect and Drive. In the Collect mode, the shepherd (UAV) gathers
the dispersed flock, and in the Drive mode, it guides the aggregated group towards
the target location. The detailed pseudo code for the Collect and Drive algorithm is
presented in Algorithm 1.

In this pseudo code, the shepherd (UAV) dynamically switches between the Collect
and Drive modes based on the dispersion of the flock. Note that the UAV always
starts in the Collect mode. The shepherd focuses on the local centre of mass of nearby
agents, allowing for more effective control of the group. Here, 𝐶 is the mean position
of the flock, 𝐺 is the goal position, 𝐹 is the position of the furthest animal, and 𝐷 is
the UAV’s target position setpoint. 𝑑min is the minimum distance required between the
UAV and its target entity, either the center of the flock or the furthest agent, and \ is
the UAV’s yaw angle. The function arctan calculates the angle at which the UAV must
rotate to point towards the mean position of the flock. The UAV’s position and yaw
angle are updated at each step based on the current mode and the state of the flock.

3.2.3 Baseline Algorithm 2: The Farthest Agent Targeting Algorithm

The second baseline algorithm we will be comparing our proposed algorithm against
is the Farthest Agent Targeting algorithm proposed by Tsunoda et al. [22]. This
algorithm operates on the principle of the shepherd UAV targeting the sheep that is
farthest from the goal, thereby ensuring that the most ’problematic’ agent is guided
towards the goal. This strategy allows the shepherd to gradually gather all the sheep
into the goal zone. The main rationale for choosing this algorithm is its proven ability
to herd loosely gathered flocks of animals using the local information obtained from a
camera sensor mounted on the UAV, as observed in the study proposed by Tsunoda et
al. [22]. The pseudo code for the Farthest Agent Targeting algorithm is presented in
Algorithm 2.
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Algorithm 1 Collect and Drive Algorithm
Initialise: 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 = 𝑇𝑟𝑢𝑒, 𝑟 = flock radius, 𝑁 = number of sheep, 𝑟𝑎 = agent to
agent interaction distance, 𝑑𝑚𝑖𝑛 = minimum required distance between the UAV and
the target.
while not at the goal do

if 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 = 𝐹𝑎𝑙𝑠𝑒 then
if 𝑟 ≤ 𝑟𝑎𝑁3/4 then

𝑣drive = (𝐶 − 𝐺)/|𝐶 − 𝐺 |.
𝐷 = 𝑣drive · 𝑑min + 𝐶.

else
𝑐𝑜𝑙𝑙𝑒𝑐𝑡 = 𝑇𝑟𝑢𝑒.

end if
else

if 𝑟 ≥ 𝑟𝑎𝑁1/3 then
𝑣collect = (𝐹 − 𝐶)/|𝐹 − 𝐶 |.
𝐷 = 𝑣collect · 𝑑min + 𝐹.

else
𝑐𝑜𝑙𝑙𝑒𝑐𝑡 = 𝐹𝑎𝑙𝑠𝑒.

end if
end if
\ = arctan(𝐶𝑦 − 𝐷𝑦, 𝐶𝑥 − 𝐷𝑥).

end while

Algorithm 2 Farthest Agent Targeting Algorithm
Initialise: 𝐾1, 𝐾2, 𝐾3, 𝑑𝑚𝑖𝑛 = minimum required distance between the UAV and the
target.
while not at the goal do

𝑢1 =
(𝑇𝑖−𝐷)
|𝑇𝑖−𝐷 | .

𝑢2 = − (𝐷−𝑇𝑖)
|𝐷−𝑇𝑖 |3

.
𝑢3 = − (𝐷−𝐺)

|𝐷−𝐺 | .
𝑢 = 𝐾1 · 𝑢1 + 𝐾2 · 𝑢2 + 𝐾3 · 𝑢3.
Set UAV’s velocity setpoint as 𝑢 with some random noise.
\ = arctan(𝐶𝑦 − 𝐷𝑦, 𝐶𝑥 − 𝐷𝑥).
Set UAV’s yaw as \.

end while

In this algorithm, three vectors are calculated: 𝑢1, 𝑢2, and 𝑢3. The vector 𝑢1
points from the UAV towards the farthest agent, attracting the UAV to this agent. The
vector 𝑢2 points from the farthest agent towards the UAV, repelling the UAV from
getting too close to the agent. The vector 𝑢3 points from the goal position to the UAV,
repelling the UAV away from the goal. 𝑇𝑖 is the position of the farthest agent, 𝐷 is the
UAV’s position, 𝐺 is the goal position, and 𝐶 is the position of the flock’s center. The
UAV’s velocity is then set as the sum of these three vectors, each multiplied by their
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respective coefficients 𝐾1, 𝐾2, and 𝐾3 along with some noise to avoid getting trapped
in an equilibrium achieved by the vectors 𝑢1, 𝑢2, and 𝑢3 cancelling each other out.
The UAV’s yaw is set to point towards the center of the flock. This approach ensures
that the UAV effectively guides the farthest agent towards the goal, thereby managing
the flock efficiently.

In the subsequent sections, we will elaborate on the different components of our
proposed algorithm.

3.3 Our Proposed Modifications
3.3.1 Patrolling and Transition to Herding

In the realm of autonomous UAV herding, the initial phase of operation is of paramount
importance. This phase, known as ’patrolling’, involves the UAV navigating through a
series of predefined waypoints scattered across the environment. The primary objective
of this patrolling phase is to scout for animals and assess the need for herding.

Unlike the baseline algorithms, which operate under the assumption of prior
knowledge about the animals’ positions, our approach embraces a more realistic
scenario. In real-world applications, especially when a single UAV is deployed for
herding, the initial positions of the animals are typically unknown. This necessitates
the patrolling phase, where the UAV embarks on an exploratory journey to locate the
animals. The patrolling algorithm is explained in Algorithm 3

Algorithm 3 Patrolling Algorithm
Initialise a set of predefined waypoints𝑊 .
Initialise a counter 𝑖 = 0.
while not in herding mode do

Move the UAV to the waypoint𝑊 [𝑖].
if at least two unique animals are detected then

Switch to herding mode.
else

𝑖 := (𝑖 + 1) mod |𝑊 |.
end if

end while

Where mod |𝑊 | is the modulus operator which returns the reminder when
dividing (𝑖 + 1) by the length of the set W. This algorithm represents a simple
patrolling strategy where the UAV cyclically moves between a set of predefined
waypoints until it detects at least two unique animals, at which point it switches to
herding mode. This is to ensure the reliability of detection and to confirm the existence
of a group of animals. The waypoints are scattered all over the environment in such a
way that the UAV can scout the entire farm during the patrolling process. The counter
"i" is used to cycle through the waypoints in order.

In summary, the patrolling phase is a crucial preparatory step in our algorithm.
It enables the UAV to gather essential information about the environment and the
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animals, setting the stage for the subsequent herding phase.

3.3.2 The Position Update Algorithm

The Position Update Algorithm is a key component of our herding strategy, designed
to keep track of the animals’ positions in real-time. The algorithm operates by
maintaining a dynamic list, which is updated as the UAV detects more unique animals.
The position update algorithm is described in Algorithm 4.

Algorithm 4 Position Update Algorithm
Initialise an empty set 𝐷 for the detected animals and empty function 𝐿 that maps
each detected animal to its last known position.
𝐷 := ∅
𝐿 := ∅
for each detected animal 𝑎 do

if 𝑎 ∉ 𝐷 then
𝐷 := 𝐷 ∪ {𝑎}
𝐿 (𝑎) := position(𝑎) + 𝑁 (0, 𝜎)

else
𝐿 (𝑎) := position(𝑎) + 𝑁 (0, 𝜎)

end if
end for

Here, position(𝑎) represents the real-time position of the animal 𝑎, which can
be subscribed to using the corresponding topic at any point during the simulation.
However, the algorithm accesses the real-time position only when the animal is
detected in the current frame. The function 𝑁 (0, 𝜎) represents a Gaussian noise
with mean 0 and standard deviation 𝜎, which is added to the original position of
the detected animals to simulate the operation of real-world position triangulation
algorithms such as the algorithm proposed by Zhao et al. [16] for performing camera
based position triangulation.

In essence, the Position Update Algorithm provides a systematic approach to track
the animals’ positions, enabling the UAV to effectively manage the herding process.
In the event of a sheep not being detected for a long time it becomes the farthest agent
from the target or the sheep which is farthest away from the center of the flock, so the
UAV takes the appropriate action based on whether the herding algorithm involved is
FAT or CD. One drawback of this algorithm is that it depends on the reliability of the
object detection algorithm, which detects the unique marker. Failure of the detection
algorithm to be robust would cause the herding algorithm to fail.

3.3.3 Proposed Vision-Based Algorithms

In our study, we present vision-based extensions applicable to both the Collect and
Drive (CD) and Farthest Agent Targeting (FAT) algorithms. These extensions build
upon the baseline concept, introducing two enhanced approaches. The proposed
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algorithms incorporate the use of a computer vision pipeline to estimate the positions
of the animals, thereby making the herding process more realistic and applicable to
real-world scenarios.

The first proposed algorithm, referred to as the CD Vision algorithm, is an extension
of the baseline CD algorithm. The key difference lies in the source of the animal
positions used in the algorithm. Instead of using real-time positions of the animals,
the CD Vision algorithm utilizes the noisy position estimates of the animals, which
are computed using the position update algorithm. This approach allows the algorithm
to operate under the realistic assumption that the exact positions of the animals are not
always known.

Similarly, the second proposed algorithm, known as the FAT Vision algorithm,
extends the baseline FAT algorithm. Like the CD Vision algorithm, the FAT Vision
algorithm uses the noisy position estimates of the animals, computed using the position
update algorithm. This allows the FAT Vision algorithm to target the "problematic"
agent that is farthest from the goal, even when the exact positions of the animals are
not known.

By incorporating the use of a computer vision pipeline, these proposed algorithms
offer a more realistic approach to herding. They do not rely on the assumption that the
exact positions of the animals are known, making them more applicable to real-world
herding scenarios where such information may not always be available.

3.3.4 Establishing the Termination Condition

To ensure the UAV’s operation is finite and purposeful, it is crucial to define a precise
termination condition. This condition signifies the completion of the herding task
and prompts the UAV to return to its original launch point, also known as the home
position.

In the context of our algorithm, the termination condition is met when the geometric
center of the flock is within a specified proximity threshold of the designated goal
position. Once this condition is satisfied, the herding task is deemed successful, and
the UAV is instructed to return to its home position.

If the UAV is not able to herd the animals within 5 minutes (300 seconds) or if the
UAV doesn’t spot the animals continuously for 30 seconds, the herding is deemed a
failure, and the UAV is instructed to return to its home position.

It is worth noting that the selection of the goal position plays a significant role
in the effectiveness of the herding operation. The goal position should be chosen
strategically to prevent the animals from immediately reverting to their initial location
post-herding. This careful selection ensures that the herding algorithm fulfills its
purpose and achieves the desired outcome.

3.3.5 The UAV Herding Pipeline

The proposed herding pipeline is depicted in Figure 10. The herding process begins
with the UAV taking off and cycling between different waypoints during the patrolling
mode. Once the UAV detects two distinct animals, it transitions to the herding mode

30



Figure 10: The herding pipeline

described in Algorithm 3. Two herding algorithms, namely the CD algorithm and the
FAT algorithm, can be utilized.

During the herding phase, at each time step, the camera captures a live image and
performs ArUco marker detection. If any ArUco markers are detected, the positions of
the animals are updated based on Algorithm 4. The updated positions of the detected
animals are then used as input for the herding algorithm, instead of using the actual
positions of the animals.

The herding algorithm calculates and publishes the position setpoint (for the CD
algorithm) or velocity setpoint (for the FAT algorithm) to the UAV’s control node
using ROS2. The termination condition is checked to determine if the herding process
has succeeded or failed. If the termination condition is met, indicating a successful or
unsuccessful herding, the UAV returns to the home position and lands.

Otherwise, the UAV repeats the position update step with the latest image captured
by the camera and continues the subsequent steps in a loop until the herding process
terminates. Hence, the proposed algorithm enhances the existing CD and FAT-based
algorithms by incorporating a patrolling algorithm and a position update algorithm
into the pipeline. This approach enables the testing of herding algorithms on a UAV
in a three-dimensional environment using computer vision as the primary sensing
modality. It incorporates features such as patrolling and automatic return to home
once the herding process concludes, regardless of its success or failure.
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4 Results
Building upon the methodology outlined in the previous sections, we will now delve
into the results of our study. We evaluated the performance of two categories of
herding algorithms: the baseline algorithms and the vision-based algorithms, each
having two variants: the Collect and Drive (CD) algorithm and the Furthest Agent
Targeting (FAT) algorithm. The baseline algorithms assume perfect knowledge of the
positions of all animals, whereas the vision-based algorithms utilize computer vision
to determine the animal positions.

4.1 Experimental Setup
The experimental setup is designed to simulate a realistic environment in which a
UAV is employed for animal herding. The setup outlines the metrics that will be tested
and the parameters that will be utilized for the experiments.

4.1.1 Metrics to be analysed

The following metrics will be utilized to assess the performance of our proposed
herding algorithm. A comparison will be made between the metrics of the proposed
algorithm and those of the baseline algorithms to evaluate the effectiveness of the
proposed vision algorithm.

• Flock Radius: This refers to the distance between the center of a flock and the
farthest animal from the center. A robust algorithm aims to minimize this value
during the herding process.

• Herding Time: This is the duration taken by the herding algorithm to guide
the animals towards the target location. An effective algorithm accomplishes
herding in a shorter time.

• Success Rate: This indicates the percentage of times a herding algorithm
successfully herds a group of animals within a specified time frame without
losing track of the animals, based on a total of n test runs. An ideal algorithm
achieves a 100 percent success rate.

• Number of Animals Successfully Herded: This represents the count of animals
that the UAV is able to herd with a high success rate before a decline in
performance occurs. A larger number signifies a more robust algorithm.

• Distance Travelled: This denotes the total distance covered by the UAV to
complete the herding task. A shorter distance traveled implies reduced UAV
movement, lower battery consumption, and a more efficient algorithm.
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4.1.2 UAV and Herding Algorithm Parameters

• In the CD algorithm, the UAV maintains a minimum distance of 13 meters
from its target entity, regardless of the number of animals and their behavior
parameters.

• In the CD algorithm, the UAV switches between collect and drive modes based
on the flock radius (𝑟), agent-to-agent interaction distance (𝑟𝑎), and the number
of sheep (𝑁):

– It switches to collect mode when 𝑟 > 𝑟𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑁 , where 𝑟𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑁 = 𝑟𝑎𝑁
3/4.

– It switches to drive mode when 𝑟 < 𝑟𝑑𝑟𝑖𝑣𝑒𝑁 , where 𝑟𝑑𝑟𝑖𝑣𝑒𝑁 = 𝑟𝑎𝑁
1/3.

• In the FAT algorithm, the coefficients for 𝑢1, 𝑢2, and 𝑢3 are set as 𝐾1 = 9.0, 𝐾2
= 0.15, and 𝐾3 = 3.0, respectively.

• The flight radius, which represents the distance at which the animals feel
threatened by an approaching UAV, is set at 15 meters for all the following
experiments.

• Similarly, the UAV always strives to maintain an altitude of 14 meters from the
ground.

4.1.3 Flocking Parameters

The agent-to-agent interaction distance (𝑟𝑎) is calculated using the separation coeffi-
cients (𝑚𝑠 and𝑚𝑠𝑝), cohesion coefficients (𝑚𝑐 and𝑚𝑐𝑝), and the escape rule coefficient
(𝑚𝑒). The formula is as follows:

𝑟𝑎 = (𝑚𝑠 + 𝑚𝑒 − 𝑚𝑐) +
(𝑚𝑠𝑝 − 𝑚𝑐𝑝)

30
(12)

The interaction distance increases when the escape force and separation forces are
high, and decreases when the cohesive forces are high. The coefficients 𝑚𝑠𝑝 and 𝑚𝑐𝑝
come into play only when the predator (UAV) is in close proximity, which is why they
are divided by 30.

4.1.4 Simulation Conditions

The following information is necessary to replicate our simulation experiment:

• Animals are randomly spawned with x and y coordinates ranging from +10m to
+50m, as depicted in Figure 12.

• The UAV herds these animals to the bottom-left quadrant (-40,-40).

• The initial patrolling waypoint is positioned closer to the animals’ spawn location
to expedite the simulation, although this can be modified.
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• Herding is considered successful when the center of mass of the animals is
within a 5-meter radius of the goal position.

• Herding is deemed a failure if it exceeds 5 minutes on the simulation clock or if
no animals are detected for a continuous period of 30 seconds.

• We have assumed a position update algorithm with zero noise, thus conducting
the herding study in a near-ideal environment.

To assess the algorithms’ robustness, we will conduct herding tests in three distinct
scenarios, each with different flocking parameters. Specifically, we will evaluate each
scenario with 5, 10, and 15 animals. For each combination of herding algorithm,
number of animals, and flocking parameters, we will perform 10 simulations to ensure
reliable and accurate results. By analyzing the average performance across the 10
attempts, we can gain a comprehensive understanding of the algorithms’ robustness
under various scenarios and animal population sizes. To test the true capabilities of
these algorithms, more testing in a wide variety of scenario with the UAV and animals
being spawned at more random location is required. However, given that ever run of
the herding simulation can take up to 5 minutes, simulating all the possibilities would
take a long time. Thus, the study is limited to a small subset of the possible scenarios.

4.2 Herding Performance Analysis
In this section, we analyze the results of our experiments conducted under three distinct
scenarios, each representing a different animal behavior profile characterized by
specific flocking parameters. The performance of the herding algorithms is evaluated
in each scenario.

4.2.1 Scenario 1: Closely Packed, Fast Animals

This scenario features animals that are relatively easier to herd due to their tendency to
remain closely packed and their ability to move quickly when required. The flocking
parameters for this scenario are as follows:

𝑚𝑐 = 2.0, 𝑚𝑠 = 4.5, 𝑚𝑎 = 0.0, 𝑚𝑒 = 3.0, 𝑚𝑐𝑝 = 4.5, 𝑚𝑠𝑝 = 14.5,
𝑚𝑎𝑝 = 10.0, 𝑣𝑚𝑎𝑥 = 50.0, 𝑣𝑚𝑖𝑛 = −50, 𝑟𝑎 = 5.833, 𝑟𝑐𝑜𝑙𝑙𝑒𝑐𝑡5 = 19.50,
𝑟𝑐𝑜𝑙𝑙𝑒𝑐𝑡10 = 32.80, 𝑟𝑐𝑜𝑙𝑙𝑒𝑐𝑡15 = 44.46, 𝑟𝑑𝑟𝑖𝑣𝑒5 = 9.97, 𝑟𝑑𝑟𝑖𝑣𝑒10 = 12.57,
𝑟𝑑𝑟𝑖𝑣𝑒15 = 14.39

The above parameters result in a flock that behaves in a way illustrated by Figure
11. The reason for this is that the cohesive force is higher due to higher coefficient 𝑚𝑐
while the separation force is only slightly greater since 𝑚𝑠 is slightly higher compared
to the other scenarios. The escape coefficient (𝑚𝑒) of 3 has a significant impact on
the repellence of the animals. The multiplier rule coefficients 𝑚𝑐𝑝, 𝑚𝑠𝑝 and 𝑚𝑎𝑝 have
a more pronounced effect on herding when the predator approaches the flock due to
equation 8. The animals are thus repelled from each other with a higher magnitude
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when the predator approaches the flock which is observed later in Figure 13, when the
experiments are conducted. The wide margin between 𝑣𝑚𝑎𝑥 and 𝑣𝑚𝑖𝑛 make it possible
for the animals to run as fast as possible from the predator if required. The value of 𝑟𝑎
for this scenario is the result of these flocking rule coefficients which is lesser than
the 𝑟𝑎 value of the other scenarios. 𝑟𝑎 is calculated using equation 12. The values of
𝑟𝑐𝑜𝑙𝑙𝑒𝑐𝑡5 , 𝑟𝑐𝑜𝑙𝑙𝑒𝑐𝑡10 , 𝑟𝑐𝑜𝑙𝑙𝑒𝑐𝑡15 , 𝑟𝑑𝑟𝑖𝑣𝑒5 , 𝑟𝑑𝑟𝑖𝑣𝑒10 , 𝑟𝑑𝑟𝑖𝑣𝑒15 determine the radius
at which the collect and drive algorithm switches between collect and drive mode for
scenario 1 for the three possible animal population sizes selected. They are determined
as shown in Section 4.1.2. The gap between the thresholds for a particular population
size is smaller compared to the other scenarios which will be discussed later.

Figure 11: Scenario 1: Closely Packed Animals

The observations made during the simulation with the aforementioned parameters
are as follows:

1. Herding Success Rate: The success rate of herding for Scenario 1 was recorded
over 10 repetitions for each herding algorithm across different animal population
sizes. The results are presented in Table 1.

Animal Population
5 Animals 10 Animals 15 Animals

CD Baseline 100% 100% 100%
FAT Baseline 100% 100% 100%

CD Vision 90% 0% 0%
FAT Vision 90% 20% 0%

Table 1: Herding Performance for scenario 1.

Based on the data, we can observe that the CD Baseline and FAT Baseline
algorithms consistently achieved a 100% herding success rate across all animal
population sizes. However, the CD Vision and FAT Vision algorithms exhibited a
decrease in effectiveness as the animal population increased. These vision-based
algorithms faced challenges in maintaining successful herding, particularly with
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larger animal populations. Furthermore, the FAT Vision algorithm demonstrated
slightly better performance compared to the CD Vision algorithm for larger
population sizes.

2. Average herding Time: The average herding time for each algorithm is presented
in Table 2. Empty entries in the table indicate that a particular algorithm failed
to achieve successful herding in any of the 10 attempts for that specific situation.
It is important to note that the time measured here corresponds to the simulation
clock time rather than real-time. The real-time taken to complete the simulation
may vary based on the computer’s processing capability. Therefore, measuring
the simulation time provides a consistent metric across different devices.

Animal Population
5 Animals 10 Animals 15 Animals

CD Baseline 61.38 101.79 157.42
FAT Baseline 43.06 78.24 100.50

CD Vision 62.43 - -
FAT Vision 49.828 83.78 -

Table 2: Average herding time in seconds for scenario 1

Based on the data in the table, we can observe that the CD Baseline algorithm
generally has longer average herding times compared to the FAT Baseline
algorithm across all animal population sizes. The CD Vision algorithm,
although successful only for 5 animals, exhibits a similar average herding time
compared to the CD Baseline algorithm for that population size. Similarly, the
FAT Vision algorithm, successful for 5 animals and 10 animals, demonstrates
average herding times comparable to the FAT Baseline algorithm for those
respective population sizes. These findings suggest that the FAT Vision algorithm
outperforms both the CD Vision algorithm and the CD Baseline algorithm in
terms of average herding time for successful scenarios.

3. Average Distance Traveled: The table 3 displays the average distance traveled
by the UAV during the herding process.

Animal Population
5 Animals 10 Animals 15 Animals

CD Baseline 336.74 485.94 215.11
FAT Baseline 342.69 594.19 768.81

CD Vision 366.90 - -
FAT Vision 365.57 527.83 -

Table 3: Average distance travelled in meters for scenario 1

Based on the available data, it is evident that both the CD Baseline and FAT
Baseline algorithms exhibit an increase in the average distance traveled as the
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animal population size increases. The FAT Baseline algorithm consistently
covers a greater distance compared to the CD Baseline algorithm across all
population sizes. In the successful scenario, the CD Vision algorithm covers a
slightly greater distance than the CD Baseline algorithm. Similarly, the FAT
Vision algorithm covers a similar distance to the FAT Baseline algorithm.
However, due to the lower success percentage and limited data, it is challenging
to draw a definitive conclusion regarding the performance of the FAT Vision
algorithm compared to the Baseline algorithm.

4. Herding Trajectory: The herding trajectories of the baseline algorithms and
the vision-based algorithms, tested on scenario 1 with different numbers of
animals, are depicted in Figure 12. Each trajectory is unique for each attempt,
but the presented graphs illustrate the most common observed pattern for the
tested situations.
In scenario 1, the baseline algorithms demonstrate effective herding performance
across different animal population sizes. However, the performance of the vision-
based algorithms is most pronounced when there are five animals present, as their
effectiveness decreases with an increase in the number of animals. Notably, the
FAT Vision algorithm exhibits a similar smooth trajectory as the FAT Baseline
algorithm in the case of five animals, indicating its ability to consistently track
all the animals without losing sight of them for an extended period.

5. Flock Radius: The change in the actual radius of the flock over time when the
baseline and the vision based algorithms are deployed in scenario 1 for different
animal population sizes are shown in Figure 13. These graphs correspond to the
herding attempts in the herding trajectory graphs shown above.
In this analysis, the behavior of the CD baseline algorithm is characterized
by frequent switches between collect and drive modes in response to changes
in the flock radius, except for the scenario with a population size of 15. This
exceptional behavior is attributed to the requirement of a flock radius less than
𝑟𝑑𝑟𝑖𝑣𝑒15 = 14.39 meters for the algorithm to transition into drive mode in a loosely
packed scenario. Given that the algorithm always starts in collect mode, the UAV
never transitioned into drive mode and instead attempted to bring the animals
together while staying in collect mode. Therefore, the CD baseline algorithm
achieving success in herding a population of 15 was a fortunate event. This
demonstrates the need for further testing of the CD Baseline algorithm under a
variety of conditions. Conversely, the FAT baseline algorithm demonstrates a
consistent trajectory across different population sizes, with an initial spike in
radius followed by a reduction and relatively stable behavior over time. This
pattern is a result of the UAV initially flying over the flock to approach the
furthest animal, effectively dividing the flock into smaller groups. Subsequently,
the algorithm gradually reunites the flock over time.
Regarding the vision-based algorithms, the CD Vision algorithm exhibits varying
radius patterns as it switches between modes for a population size of 5. However,
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(a) CD Baseline on 5 animals (b) CD Baseline on 10 animals (c) CD Baseline on 15 animals

(d) FAT Baseline on 5 animals (e) FAT Baseline on 10 animals (f) FAT Baseline on 15 animals

(g) CD Vision on 5 animals (h) CD Vision on 10 animals (i) CD Vision on 15 animals

(j) FAT Vision on 5 animals (k) FAT Vision on 10 animals (l) FAT Vision on 15 animals

Figure 12: Herding Trajectory of the algorithms in scenario 1

this pattern deviates when herding fails for higher population sizes. Similarly,
the FAT Vision algorithm follows a comparable trend. Notably, even when
herding is successful, the CD Vision algorithm does not conform to the same
flock radius pattern observed in its baseline algorithm. On the other hand, the
FAT Vision algorithm demonstrates a slightly similar pattern.

6. Number of Detection per frame: The number of animals detected by the
camera in each frame over the duration of herding by the vision algorithm is
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(a) CD Baseline with 5 animals (b) CD Baseline with 10 animals (c) CD Baseline with 15 animals

(d) FAT Baseline with 5 animals (e) FAT Baseline with 10 ani-
mals

(f) FAT Baseline with 15 ani-
mals

(g) CD Vision with 5 animals (h) CD Vision with 10 animals (i) CD Vision with 15 animals

(j) FAT Vision with 5 animals (k) FAT Vision with 10 animals (l) FAT Vision with 15 animals

Figure 13: Flocking radius plots for the algorithms in scenario 1

shown in Figure 14. These graphs correspond to the simulation attempts of
the vision algorithms for which the herding trajectories and the flocking radius
graphs are illustrated above.
By establishing a correlation between the provided data, herding trajectories,
and flock radii, it becomes evident that the vision algorithms struggle to achieve
successful herding outcomes in scenarios involving higher animal population
sizes. This difficulty arises due to the algorithms encountering challenges in
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(a) CD Vision with 5 animals (b) CD Vision with 10 animals (c) CD Vision with 15 animals

(d) FAT Vision with 5 animals (e) FAT Vision with 10 animals (f) FAT Vision with 15 animals

Figure 14: Number of detections per frame for the vision algorithms in scenario 1

tracking and detecting animals within the simulation. Specifically, the UAV can
become stuck in a position where the animals are not currently present primarily
because the last known position significantly deviates from the actual animal
locations.
Several factors contribute to this discrepancy. Firstly, the detection algorithm
may fail to successfully identify certain animals, leading to gaps in tracking.
Additionally, if the animals remain outside the camera’s field of view for an
extended period, their positions may become misaligned with the last known
information. Consequently, the UAV relies on outdated data and returns to the
previous known position in an attempt to herd animals that are no longer present
in that location. As a result, the UAV gradually moves away from the herd,
eventually losing track of them entirely.
This unfortunate outcome manifests in two potential scenarios. In one scenario,
when other animals besides the target animal remain within the camera’s field
of view, the UAV may hover indefinitely, unable to discern the precise location
of the target animal. In the other scenario, if no animals are detected for a
continuous duration of 30 seconds, the simulation terminates.
These challenges highlight the impact of inaccurate animal tracking and detection
on the effectiveness of the vision algorithms, especially in scenarios with higher
animal population sizes.

In conclusion, for scenario 1, the FAT Baseline and FAT Vision algorithms
exhibit faster performance but cover longer distances, indicating excessive movements
compared to the CD algorithms. The herding trajectories also validate this observation.
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Moreover, the FAT Vision algorithm outperforms the CD Vision algorithm in general
and even the CD Baseline algorithm in terms of herding time. However, further
data from other scenarios is needed to fully evaluate the potential of the FAT Vision
algorithm.

4.2.2 Scenario 2: Loosely Packed, Slow Animals

This scenario represents stubborn animals that are harder to herd and repel due to their
low velocity and weak escape rule strength. The flocking parameters for this scenario
are as follows:

𝑚𝑐 = 1.25, 𝑚𝑠 = 5.5, 𝑚𝑎 = 0.0, 𝑚𝑒 = 1.5, 𝑚𝑐𝑝 = 3.5, 𝑚𝑠𝑝 = 16.5,
𝑚𝑎𝑝 = 0.125, 𝑣𝑚𝑎𝑥 = 2.5, 𝑣𝑚𝑖𝑛 = −2.5, 𝑟𝑎 = 6.1833, 𝑟𝑐𝑜𝑙𝑙𝑒𝑐𝑡5 = 20.68,
𝑟𝑐𝑜𝑙𝑙𝑒𝑐𝑡10 = 34.77, 𝑟𝑐𝑜𝑙𝑙𝑒𝑐𝑡15 = 47.13, 𝑟𝑑𝑟𝑖𝑣𝑒5 = 10.57, 𝑟𝑑𝑟𝑖𝑣𝑒10 = 13.32,
𝑟𝑑𝑟𝑖𝑣𝑒15 = 15.25

The above parameters result in a flock that behaves in a way illustrated by Figure 15.
The reason is that the separation forces are higher than the cohesive forces compared
to scenario 1. The escape rule coefficient is also lower, which results in the animals
not being repelled effectively by the predator. The multiplier rule coefficients further
increase the separation amongst the animals in the presence of a predator and alignment
rule coefficient is much weaker here. Clipping the velocity between 𝑣𝑚𝑎𝑥 = 2.5 and
𝑣𝑚𝑖𝑛 = −2.5 prevents the animals from running faster. This results in an increased
difficulty in herding the animals. We can also notice that the agent-to-agent interaction
distance 𝑟𝑎 is higher in this scenario. The gap between the collect and drive radius
thresholds is slightly higher than scenario 1. Thus, the animals are loosely packed,
harder to herd and slightly harder to keep together compared to scenario 1.

Figure 15: Scenario 2: Loosely Packed Animals

The following are the observations made while conducting the simulation with the
above parameters. :

1. Herding Success Rate: The herding success rate for scenario 2, observed
over 10 repetitions for each herding algorithm on different population sizes, is
presented in Table 4.
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Animal Population
5 Animals 10 Animals 15 Animals

CD Baseline 100% 0% 0%
FAT Baseline 100% 100% 70%

CD Vision 10% 0% 0%
FAT Vision 100% 90% 20%

Table 4: Herding Performance for scenario 2

From this data, it is evident that the CD Baseline algorithm demonstrated limited
success in herding, achieving 100% herding success only for the scenario with
5 animals. It faced challenges in achieving successful herding as the animal
population increased. The FAT Baseline algorithm has showcased higher
herding success rates. However, the success rate decreased to 70% for 15
animals, indicating increased difficulty in herding a larger population. The
CD Vision algorithm exhibits lower herding success rates when compared to
its baseline equivalent algorithm. One of the most surprising observations is
how the FAT vision algorithm is able to achieve a high success rate even in
the scenario involving 10 animals, which is better than its performance in the
previous scenario. This suggests that although the animals are more stubborn in
this scenario, the FAT Vision algorithm is able to herd them more effectively.
However, the performance drops once the population increases to 15. This data
alone is not enough to conclude the reason for the failure.

2. Average Herding time: The average time taken by the herding algorithms to
complete a successful simulation is shown in Table 5. The tests are conducted
in the same way tests were conducted in scenario 1 by collecting the average of
10 herding attempts per situation.

Animal Population
5 Animals 10 Animals 15 Animals

CD Baseline 125.0 - -
FAT Baseline 107.77 230.21 279.75

CD Vision 146.90 - -
FAT Vision 119.95 247.74 299.32

Table 5: Average herding time in seconds for scenario 2

From this table, we can infer that the CD Baseline algorithm demonstrates a
relatively shorter average herding time for the scenario with 5 animals compared
to the CD Vision Algorithm, but it is slower than the FAT Algorithm variants.
The FAT Vision algorithm is slower than the FAT baseline algorithm. Both
the FAT algorithms showcase increasing herding times with an increase in the
population sizes. The CD Vision algorithm is the slowest algorithm out of all
and manages to herd only a small group of 5 animals.
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Overall, we can observe that the time taken by the algorithms to herd the flock
in this scenario is at least twice the time taken by the algorithms to herd the
animals in scenario 1 and can be as much as thrice the time taken by the same
algorithm in a similar situation in scenario 1. This is indicative of the stubborn
behavior of the animals, requiring more effort to herd them towards the goal
position.
Yet another observation is that the herding time for the FAT algorithms in the
case of 15 animals is very close to the 300-second mark at which the herding
is considered to be a failure. Thus, the herding success percentage could have
been higher for the FAT algorithms if they were given more time to complete
the herding process.

3. Average Distance Travelled: The average distance travelled by the UAV while
performing the herding process for the 2𝑛𝑑 scenario is presented in Table 6.

Animal Population
5 Animals 10 Animals 15 Animals

CD Baseline 499.11 - -
FAT Baseline 685.62 1469.71 1770.46

CD Vision 517.78 - -
FAT Vision 636.45 1171.84 1352.66

Table 6: Average distance travelled in meters for scenario 2

Similar to the previous scenario, the CD Baseline algorithm travels a shorter
distance than the FAT Baseline algorithm when it succeeds in herding the
animals despite taking a longer time as seen above. This is indicative of slower
movement in the CD baseline algorithm. It is interesting to observe that the FAT
vision algorithm travels a shorter distance than the FAT Baseline algorithm.
However, the explanation for this observation is not clear.

4. Herding Trajectory: The herding trajectories of the baseline algorithms and
the vision based algorithms when tested on scenario 2 for different number of
animals are shown in Figure 16.
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(a) CD Baseline on 5 animals (b) CD Baseline on 10 animals (c) CD Baseline on 15 animals

(d) FAT Baseline on 5 animals (e) FAT Baseline on 10 animals (f) FAT Baseline on 15 animals

(g) CD Vision on 5 animals (h) CD Vision on 10 animals (i) CD Vision on 15 animals

(j) FAT Vision on 5 animals (k) FAT Vision on 10 animals (l) FAT Vision on 15 animals

Figure 16: Herding Trajectory of the algorithms in scenario 2

From these trajectories we can understand that the herding process is less
straightforward than herding the animals in scenario 1. Both the FAT algorithms
manage to herd the flock very close to the goal position irrespective of the herd
size. The FAT vision algorithm does not lose track of the animals even when
the flock size increases. This gives more evidence to the hypothesis that the
success rates for these algorithms would be higher if they were given more time
to herd the animals. However, due to the wide discrepancy that occurs between
the actual position of the animals and their last known position, the motion of
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the UAV is very violent which can be seen through the erratic trajectories at the
turns in the trajectory of the FAT vision algorithm. The CD algorithms however
have difficulty in herding the flocks. The CD baseline algorithm struggles to
herd the animals in the direction of the goal position for higher population sizes.
This indicated that the UAV never reached the drive position as all the time
is spent on trying to collect the animals and bring the flock radius below the
threshold 𝑟𝑑𝑟𝑖𝑣𝑒𝑁 . The CD vision algorithm loses track of the animals even for
lower population sizes.

5. Flock Radius: The change in the actual radius of the flock over time when the
baseline and the vision based algorithms are deployed in scenario 2 for different
animal population sizes are shown in Figure 17. These graphs correspond to the
herding attempts in the herding trajectory graphs shown above.
In this analysis, the CD baseline algorithm exhibits the collect and drive motion
observed in scenario 1 for a population size of 5, as indicated by the increasing
and decreasing radius of the flock in different modes. However, this behavior is
not reflected in higher population sizes. This is exactly similar to the observation
made in scenario 1. This is because of the effect of the second multiplier 𝑝(𝑥),
which amplifies 𝑚𝑠𝑝 when the UAV approaches them. Thus, the animals tend
to run away from each other in the presence of a UAV, making it much harder
to collect them. The UAV starts in collect mode, but it is not able to collect
the animals together such that the flock radii drop below 𝑟𝑑𝑟𝑖𝑣𝑒𝑁 in order to
switch to the drive mode. This confirms the hypothesis made above from the
herding trajectories and also proves that the successful herding in scenario 1 for
a population size of 15 was a fortunate event.
Thus, it is harder to collect loosely packed animals, which have stronger separative
forces and weaker cohesive forces acting between them. Higher population sizes
can further aggravate this problem, even for tightly packed animals, as observed
in scenario 1.
The CD vision algorithm exhibits the collect and drive behavior initially for
the situation with 5 animals in scenario 2, but it eventually loses track of the
animals, and the flock radius decreases. Similarly, in higher population sizes,
once the UAV loses track of the animals, they start to collect together again
since the predator is absent and the effect of 𝑝(𝑥) is minimal for 𝑚𝑠𝑝 to have any
pronounced effect. This can also be observed in the herding trajectory curves
for the CD vision simulations. This proves that the collect and drive strategy is
ineffective for loosely packed animals, which spread out further in the presence
of a predator.
In comparison, the FAT baseline algorithm shows a similar trend across all
population sizes, where the radii of the flocks increase initially but decrease
towards the end of the simulation as all the animals approach the goal position.
This effect is also loosely observed in the FAT vision algorithm.

6. Number of Detection per frame: The number of animals detected by the
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(a) CD Baseline with 5 animals (b) CD Baseline with 10 animals (c) CD Baseline with 15 animals

(d) FAT Baseline with 5 animals (e) FAT Baseline with 10 ani-
mals

(f) FAT Baseline with 15 ani-
mals

(g) CD Vision with 5 animals (h) CD Vision with 10 animals (i) CD Vision with 15 animals

(j) FAT Vision with 5 animals (k) FAT Vision with 10 animals (l) FAT Vision with 15 animals

Figure 17: Flocking radius plots for the algorithms in scenario 2

camera in each frame over the duration of herding by the vision algorithm is
shown in Figure 18. These graphs correspond to the simulation attempts of
the vision algorithms for which the herding trajectories and the flocking radius
graphs are illustrated in this scenario.
Correlating the detection data with the herding trajectories and the flock radii
curves illustrate that the CD vision algorithm loses track of animals for loosely
packed animals much easily when compared to tightly packed animals. However,
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(a) CD Vision with 5 animals (b) CD Vision with 10 animals (c) CD Vision with 15 animals

(d) FAT Vision with 5 animals (e) FAT Vision with 10 animals (f) FAT Vision with 15 animals

Figure 18: Number of detections per frame for the vision algorithms in scenario 2

it is surprising to note that the FAT Vision algorithm manages to successfully
herd the loosely packed animals more successfully than the closely packed
animals. While Intuitively it seems easier to keep track of closely packed
animals, it was observed during the simulation that closely packed animals
increased the occlusion of some animals, causing the failure of the object
detection algorithm. This resulted in misalignment between the last known
position of the animals and the actual position of the animals. However, a loosely
packed flock makes has lesser occlusion, resulting in successful detection of the
animals as shown in the plot of detections per frame. Despite the considerably
better performance shown by the FAT vision algorithm in scenario 2, we can
still see some dips in the number of animals detected by the camera in certain
points in the simulation which correspond to increasing deviation between the
real positions and the last known positions of the animals. It is also important to
note that at any point in time, the detected animals are usually lower than the
actual animals present in the simulation, indicating misalignment between the
actual and perceived positions even further.

We can conclude from these scenarios we have studied so far, that while the
FAT algorithms may traverse a longer distance due to excessive movements, they are
capable of successful herding in a wide variety of scenarios as opposed to the CD
algorithms which are less effective in scenarios involving loosely packed animals. We
can also conclude that the FAT algorithms could have achieved a higher success rates
when allowed to perform herding for a longer duration. An alternative approach would
involve speeding up herding time by increasing the value of the escape rule coefficient
𝑚𝑒 which would result in the animals running away faster. In the real world, this
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would translate to employing various strategies such as playing the audio of predatory
animals to induce the animals to be more scared.

4.2.3 Scenario 3: Widely spread, Fast Animals

This scenario represents animals that are much loosely packed compared to the other
scenarios, making it very hard to keep track of all the animals within the field of view
of the camera as they are spread out very far from each other. The flocking parameters
for this scenario are as follows:

𝑚𝑐 = 0.5, 𝑚𝑠 = 6.0, 𝑚𝑎 = 0.0, 𝑚𝑒 = 3.0, 𝑚𝑐𝑝 = 2.5, 𝑚𝑠𝑝 = 14.5,
𝑚𝑎𝑝 = 2.0, 𝑣𝑚𝑎𝑥 = 50.0, 𝑣𝑚𝑖𝑛 = −50.0, 𝑟𝑎 = 8.9, 𝑟𝑐𝑜𝑙𝑙𝑒𝑐𝑡5 = 29.76,
𝑟𝑐𝑜𝑙𝑙𝑒𝑐𝑡10 = 50.05, 𝑟𝑐𝑜𝑙𝑙𝑒𝑐𝑡15 = 67.84, 𝑟𝑑𝑟𝑖𝑣𝑒5 = 15.22, 𝑟𝑑𝑟𝑖𝑣𝑒10 = 19.17,
𝑟𝑑𝑟𝑖𝑣𝑒15 = 21.95

The above parameters result in a flock that behaves in a way illustrated by Figure
19. In this scenario the cohesive force between the animals is extremely weak when
compared to the forces of separation due to the values of 𝑚𝑐 and 𝑚𝑠. This is further
exacerbated in the presence of a predator due to the huge gap between 𝑚𝑐𝑝 and 𝑚𝑠𝑝.
The value of 𝑟𝑎 is higher than its values observed in the previous scenarios. The gap
between the collect and drive threshold determined by the 𝑟𝑑𝑟𝑖𝑣𝑒 and 𝑟𝑐𝑜𝑙𝑙𝑒𝑐𝑡 values
makes it more harder for the UAV to switch from collect mode to drive mode as the
UAV has to spend a lot more time to decrease the radius of the flock which is harder
when the forces of separation are high.

Figure 19: Scenario 3: Widely spread Animals

The following are the observations made while conducting the simulation with the
above parameters:

1. Herding Success Rate: The herding success rate for scenario 3, observed
over 10 repetitions for each herding algorithm on different population sizes, is
presented in Table 7.
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Animal Population
5 Animals 10 Animals 15 Animals

CD Baseline 100% 0% 0%
FAT Baseline 90% 90% 60%

CD Vision 0% 0% 0%
FAT Vision 0% 0% 0%

Table 7: Herding Performance for scenario 3

From this data, we can observe that while the CD Baseline algorithm demon-
strated successful herding outcomes for the scenario with 5 animals, it en-
countered challenges in herding larger animal populations. The FAT Baseline
algorithm achieved relatively high herding success rates for 5 and 10 animals,
but faced greater difficulty in herding 15 animals. However, the CD Vision
algorithm and the FAT Vision algorithm were unable to achieve herding success
for any of the population sizes. This suggests that herding a widely spread flock
in general is a much harder problem in general as even having the formation of
the exact position of the animals doesn’t guarantee successful herding.

2. Average Herding time: The average time taken by the herding algorithms to
complete a successful simulation is shown in Table 8. The tests are conducted in
the same way tests were conducted in scenario 1 and 2 by collecting the average
of 10 herding attempts per situation.

Animal Population
5 Animals 10 Animals 15 Animals

CD Baseline 200.91 - -
FAT Baseline 130.31 209.01 264.90

CD Vision - - -
FAT Vision - - -

Table 8: Average herding time in seconds for scenario 3

From this table, we can infer that the CD baseline algorithm and the FAT
baseline algorithms follow a similar trend noticed in scenario 2. However, the
CD algorithms takes a much longer duration in this scenario. The herding time
of the FAT algorithm is comparable to those of scenario 2. No data is available
to analyse the vision algorithms as they fail to perform herding in this scenario.

3. Average Distance Travelled: The average distance travelled by the UAV while
performing the herding process for the 3𝑟𝑑 scenario is presented in Table 9.
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Animal Population
5 Animals 10 Animals 15 Animals

CD Baseline 1672.26 - -
FAT Baseline 1043.69 1666.44 2133.97

CD Vision - - -
FAT Vision - - -

Table 9: Average distance travelled in meters for scenario 3

Unlike to the previous scenario, the CD Baseline algorithm travels a longer
distance than the FAT Baseline algorithm when it succeeds in herding the
animals. For the FAT baseline algorithm, we can see that the herding time
increases with the population size of the animals which is consistent with our
findings from the previous scenarios.

4. Herding Trajectory: The herding trajectories of the baseline algorithms and
the vision based algorithms when tested on scenario 3 for different number of
animals are shown in Figure 20.
These trajectories illustrate the difficulty experienced by the CD algorithm to
keep the flock together. A lot of time is spent trying to bring the animals together
instead of herding them. The shortcomings of the CD baseline algorithm are
overcome by the FAT baseline algorithm. The FAT baseline algorithm tries to
herd the animals towards the goal instead of bringing them together. This makes
the FAT baseline algorithm more effective. In the case of the Vision based
algorithms, we can note that the animals are widely spread out that it becomes
impossible for the camera to keep track of all the animals. While the FAT vision
algorithm performed well in a less tightly packed scenario, it struggles to keep
track of the animals when they are widely spread as they move beyond the field
of view of the UAV’s camera. The CD vision algorithm is ineffective in this
scenario which is consistent with our hypothesis that they are no effective for
herding loosely packed ground of animals. This is also consistent with the
findings of Tsunoda et al. [22].

5. Flock Radius: The change in the actual radius of the flock over time when the
baseline and the vision based algorithms are deployed in scenario 3 for different
animal population sizes are shown in Figure 21. These graphs correspond to the
herding attempts in the herding trajectory graphs shown above.
In the above graphs, we can see the flock radii of the flocks being herded by
the CD baseline algorithm for different population sizes. For the population
size of 5, it switches between collect and drive modes regularly and eventually
completes the herding successfully. For the higher population sizes, while it
might look like the UAV is rapidly switching between collect and drive modes,
the UAV switches to drive mode only once during the herding of 10 animals
in the beginning when the flock radius dips below 20 meters. It immediately
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(a) CD Baseline on 5 animals (b) CD Baseline on 10 animals (c) CD Baseline on 15 animals

(d) FAT Baseline on 5 animals (e) FAT Baseline on 10 animals (f) FAT Baseline on 15 animals

(g) CD Vision on 5 animals (h) CD Vision on 10 animals (i) CD Vision on 15 animals

(j) FAT Vision on 5 animals (k) FAT Vision on 10 animals (l) FAT Vision on 15 animals

Figure 20: Herding Trajectory of the algorithms in scenario 3

switches to collect mode in a few seconds when the radius increases beyond 50
meters and it never switches back to drive mode after that. The UAV simply
spends its time keeping the animals together as shown in the herding trajectory.
For the 15 animal scenario, it doesn’t switch to drive mode even once as the
flock radius needs to dip below 22 meters, which isn’t the case. Thus, the CD
algorithm doesn’t work for loosely packed scenarios and this is worsened by
higher population sizes. The findings are consistent with the previous scenarios.
The CD vision algorithm gets stuck in the center of the mass of the flock,
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(a) CD Baseline with 5 animals (b) CD Baseline with 10 animals (c) CD Baseline with 15 animals

(d) FAT Baseline with 5 animals (e) FAT Baseline with 10 ani-
mals

(f) FAT Baseline with 15 ani-
mals

(g) CD Vision with 5 animals (h) CD Vision with 10 animals (i) CD Vision with 15 animals

(j) FAT Vision with 5 animals (k) FAT Vision with 10 animals (l) FAT Vision with 15 animals

Figure 21: Flocking radius plots for the algorithms in scenario 3

preventing the animals from grouping together and reaches and equilibrium.
Animals are completely repelled from its field of view and the herding terminates
due to losing track of all the animals. The FAT baseline algorithm was the
only algorithm capable of achieving successful herding across all population
sizes, making it the most effective and reliable herding solution out of all the
algorithms being studied. It can be seen that the movement of the UAV is more
erratic for higher population sizes due to the difficulty of herding a widely spread
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flock. The FAT vision algorithm simply loses track of the animals like the CD
vision algorithm as the animals are not within the field of view of the UAV’s
camera.

6. Number of Detection per frame: The number of animals detected by the
camera in each frame over the duration of herding by the vision algorithm is
shown in Figure 22. These graphs correspond to the simulation attempts of
the vision algorithms for which the herding trajectories and the flocking radius
graphs are illustrated above.

(a) CD Vision with 5 animals (b) CD Vision with 10 animals (c) CD Vision with 15 animals

(d) FAT Vision with 5 animals (e) FAT Vision with 10 animals (f) FAT Vision with 15 animals

Figure 22: Number of detections per frame for the vision algorithms in scenario 3

From the detections data, we can infer that the CD vision algorithm immediately
loses track of the animals, while the FAT vision algorithm keeps track of a few
animals before it loses track of all the animals as well.
From this scenario, we can conclude that CD algorithms are not effective in
herding widely spread animals and the FAT algorithm is effective only when the
actual positions of the animals are already known. Since this is impossible to
replicate in the real world with a single UAV, we need to find a better approach
to herding a large number of loosely packed animals using a single UAV using
camera based localisation.
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5 Discussion and Future Work

5.1 Inferences
The performance metrics observed upon deploying the proposed algorithms, as well
as the answers to the research questions set forth at the beginning of this study, are
discussed below.

• Success Rate: From the herding success rates provided for the three scenarios
and varying animal populations, it is observed that the performance of the
single-UAV herding strategies (CD Vision and FAT Vision) generally decreases
as the animal population increases, in contrast to the more consistent success
rates of the baseline two-UAV strategies (CD Baseline and FAT Baseline).
For instance, in Scenario 1, both CD Vision and FAT Vision exhibit declines
in success rate with an increasing animal population, dropping to 0% for 15
animals, while the two-UAV strategies maintain a 100% success rate across
all population sizes. This pattern is similar in Scenarios 2 and 3, with the
single-UAV strategies struggling particularly in Scenario 3, where they achieved
0% success for all population sizes. Hence, in terms of herding success rate,
the baseline two-UAV strategies generally outperform the proposed single-UAV
strategies, especially as the animal population increases. However, the FAT
Vision algorithm shows promise for loosely packed flocks, where it achieved a
higher success rate than both the baseline and vision-based CD algorithms on
average.

• Herding Time: In Scenario 1, CD Vision took approximately 1.71% longer than
CD Baseline to herd 5 animals, while FAT Vision took approximately 15.72%
and 7.08% longer than FAT Baseline to herd 5 and 10 animals, respectively. In
Scenario 2, CD Vision took approximately 17.52% longer than CD Baseline for
5 animals. FAT Vision took about 11.30%, 7.61%, and 6.99% longer than FAT
Baseline to herd 5, 10, and 15 animals, respectively. Based on these percentage
differences, we can conclude that the proposed single-UAV herding strategies
take slightly longer to herd the animals compared to the baseline strategies
in most cases. However, the extent of this difference varies. Therefore, we
can say that the time efficiency of the proposed single-UAV herding strategies
is generally lower than that of the baseline strategies, as they take longer to
successfully herd the animals across different scenarios and population sizes.

• Distance Travelled: In Scenario 1, CD Vision travelled approximately 8.96%
more than CD Baseline for 5 animals, while FAT Vision travelled approximately
6.68% more for 5 animals and 11.17% less for 10 animals compared to FAT
Baseline. In Scenario 2, CD Vision travelled approximately 3.74% more than
CD Baseline for 5 animals. FAT Vision travelled approximately 7.17%, 20.27%,
and 23.60% less than FAT Baseline for 5, 10, and 15 animals, respectively. In
Scenario 3, both CD Vision and FAT Vision failed to herd any of the animals,
hence no comparison can be made with the baseline strategies. Therefore, we

54



can conclude that the proposed single-UAV herding strategies generally travel
either a comparable or a greater distance than the baseline strategies when
successful. However, the FAT Vision strategy shows a pattern of travelling
shorter distances than the FAT Baseline strategy across different scenarios and
population sizes. More data is required to strengthen this claim.

• Herding Capacity: In Scenario 1, the CD Vision strategy successfully herded 5
animals but failed with larger populations, indicating its herding capacity in this
scenario is limited to 5 animals. The FAT Vision strategy successfully herded
5 and 10 animals but failed with 15 animals, suggesting its herding capacity
in this scenario is 10 animals. In Scenario 2, the CD Vision strategy was only
successful with 5 animals, showing its herding capacity to be 5 animals. The
FAT Vision strategy successfully herded 5, 10, and 15 animals, indicating that
its herding capacity in this scenario is 15 animals. In Scenario 3, both CD Vision
and FAT Vision strategies failed to herd any of the animals, suggesting a herding
capacity of 0 animals for this scenario. In conclusion, the herding capacity of
the proposed single-UAV herding strategies, CD Vision and FAT Vision, varies
depending on the scenario and the specific behaviors of the animals. The FAT
Vision strategy generally exhibits a higher herding capacity compared to the
CD Vision strategy. However, in more challenging scenarios, both strategies
struggle to herd the animals effectively. In Scenario 3, both CD Vision and FAT
Vision failed to herd any of the animals, hence no comparison can be made with
the baseline strategies.

In conclusion, while the proposed single-UAV strategies show some promise, the
baseline two-UAV strategies generally outperform them across all considered metrics,
especially as the animal population increases. However, the FAT Vision strategy
does display some advantages, such as a higher herding capacity and shorter travel
distances under certain conditions, suggesting potential areas for further exploration
and improvement. This answers our primary research question.

5.2 Observations and Limitations
In this study, we observed that the Furthest Agent Targeting (FAT) algorithms generally
perform better than their Collect and Drive algorithm counterparts. This is also
consistent with the observations made by Tsunoda et al. [22] in their study. One of
the main reasons why the FAT algorithm performs better in general is that, unlike
the Collect and Drive algorithm, the UAV experiences a repulsive force from the
furthest animal if it gets close. This prevents the flock from breaking frequently,
and the FAT algorithm doesn’t waste its effort trying to constantly bring the animals
together before proceeding to move them towards the goal. Instead, it directly steers
all the animals towards the goal position. The Collect and Drive algorithm, however,
switches between positions when it changes from the collect to drive mode. During
this switch, the UAV often flies over the flock to get behind it, breaking the flock in the
process. Additionally, the FAT algorithm accepts velocity setpoint commands instead
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of position setpoint commands. The velocity setpoint commands change gradually at
every instant of the herding process instead of jumping abruptly. However, the Collect
and Drive algorithm switches between two modes abruptly, and its position setpoints
are spaced far from each other, resulting in an unstable flight path.

While the vision algorithms offer promise, there are some serious limitations that
need to be addressed before deploying these methods into the real world. The first issue
is that in order to keep track of the animals, we associate each animal with a unique
ArUco marker to store their last known positions. Translating this into the real world
can prove to be a challenging task since real-world object detection algorithms with
object tracking are not capable of recognizing an animal, which was not spotted for an
extended period of time, as the same animal which they detected a while ago before
the animal went outside its field of view. Thus, we need to overcome this problem.

Another limitation of the proposed vision algorithm is the erratic trajectory of
the UAV caused by a sudden change in the last known position of some animals
once they are detected after extended periods of time. This abrupt change causes the
velocity/position setpoint of the herding algorithm to change abruptly, translating to
an erratic flight trajectory. Techniques to achieve smoother trajectories need to be
pursued.

5.3 Future Work
Future work to improve this algorithm could involve incorporating reinforcement
learning strategies into the herding algorithm, such as the proposed works of Nguyen
et al. [14], [15]. An actor neural network, which accepts the last known position
of the animals as input to predict the position and velocity setpoints for the UAV,
could be used to train the reinforcement learning algorithm. A critic neural network
could be used to evaluate the actor’s actions. Another area of research could involve
studying the active control of the UAV camera’s gimbal mount to search for and keep
the animals within its field of view, instead of relying on the UAV’s movement to match
that of the animals. While this study aspired to herd all the animals in a single attempt
by keeping track of their positions, there is value in trying to herd the animals by
herding multiple subgroups instead of the entire flock. This approach would allow us
to perform herding without the position update algorithm, enabling us to overcome the
shortcoming of misalignment between the last known position and the actual position
observed in these algorithms for larger and denser groups.

To overcome the need to use unique ArUco markers, which is difficult to replicate
in the real world, we could use predictive modeling to estimate the likely position
of an animal when it is not visible. This could be based on the animal’s previous
movements, the movements of the rest of the flock, or environmental factors. When the
animal reappears, the algorithm could use this predicted position to help re-identify
the animal. The predictive modeling could also avoid abrupt changes in the last known
position of the animals once they are detected after a long time, as the last known
position estimate would be somewhat closer to the actual position than the last known
position that has not been updated for extended periods of time. We could also use a
ramp for the velocity or position setpoints to gradually change the setpoints instead of
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changing them abruptly in an instant to offer a smoother trajectory for the UAV. We
could also implement path planning to calculate a path from the collect position to the
drive position around the flock instead of over the flock to improve the performance of
the collect and drive algorithm.

6 Conclusion
This study introduces a vision-based position tracking algorithm that can be integrated
with herding algorithms and camera-based localization techniques. Two baseline
algorithms, the Collect and Drive (CD) algorithm and the Furthest Agent Targeting
(FAT) algorithm, were modified to incorporate the proposed vision-based approach.
These algorithms were evaluated in three herding scenarios with varying animal
population sizes.

The comparison between the proposed single-UAV herding strategies (CD Vision
and FAT Vision) and the baseline two-UAV strategies (CD Baseline and FAT Baseline)
reveals interesting insights. While the CD Vision algorithm consistently performs
worse, the FAT Vision algorithm occasionally outperforms even the CD Baseline
algorithm. However, the FAT Baseline algorithm consistently demonstrates superior
performance. The success rates of the single-UAV strategies decline as the animal
population increases, while the baseline strategies maintain more consistent success
rates. The single-UAV strategies also tend to take a slightly longer time to complete the
herding process compared to the baseline strategies. Additionally, the distance traveled
by the single-UAV strategies is generally comparable to or greater than the baseline
strategies, except for the FAT Vision algorithm, which travels shorter distances in
some scenarios. The herding capacity varies depending on the scenario, with the FAT
Vision algorithm displaying a higher capacity in certain cases.

The vision-based FAT algorithm outperformed the vision-based CD algorithm,
particularly in loosely packed herds. It exhibited improved object detection accuracy
and position tracking efficiency due to fewer occlusions among neighboring animals.
However, the vision-based FAT algorithm faced challenges with widely dispersed
animal populations, as many animals fell outside the UAV’s camera field of view.

Despite these limitations, the vision-based FAT algorithm showed comparable
performance to the FAT baseline algorithm, which has access to real-time position
data for all animals, in terms of herding completion time and the distance traveled by
the UAV. Hence, the vision-based FAT algorithm holds great potential for effectively
herding animal flocks in real-world scenarios using a single UAV equipped with an
integrated camera sensor.

Overall, this study provides valuable insights into integrating vision-based algo-
rithms with herding strategies and highlights the advantages and limitations of the
proposed approach. Further research and improvements are necessary to address the
identified limitations and enhance the overall performance of vision-based herding
algorithms in practical applications.
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