Aalto University
School of Science
Master’s Programme in Security and Cloud Computing

Sinan Sakaoglu

KARTAL: Web Application Vulnera-
bility Hunting Using Large Language
Models

Novel method for detecting logical vulnerabil-
ities in web applications with finetuned Large
Language Models

Master’s Thesis
Espoo, June 28, 2023

Supervisors: Professor Antti Yla-Jaaski, Aalto University
Docent Ben Slimane, KTH Royal Institute of Technology
Advisor: Docent Ki Won Sung, KTH Royal Institute of Technology

Marika Morsky M.Sc. (Tech.), Netlight Consulting Oy

A' Aalto University
|

Aalto University

School of Science ABSTRACT OF
Master’s Programme in Security and Cloud Computing MASTER’S THESIS
Author: Sinan Sakaoglu
Title:

KARTAL: Web Application Vulnerability Hunting Using Large Language Mod-
els Novel method for detecting logical vulnerabilities in web applications with
finetuned Large Language Models

Date: June 28, 2023 Pages: 93
Major: Computer Science Code: SCI3113
Supervisors: Professor Antti Yla-Jaaski

Docent Ben Slimane
Advisor: Docent Ki Won Sung, KTH Royal Institute of Technology

Marika Morsky M.Sc. (Tech.), Netlight Consulting Oy

Broken Access Control is the most serious web application security risk as pub-
lished by Open Worldwide Application Security Project (OWASP). This category
has highly complex vulnerabilities such as Broken Object Level Authorization
(BOLA) and Exposure of Sensitive Information. Finding such critical vulnera-
bilities in large software systems requires intelligent and automated tools. State-
of-the-art (SOTA) research including hybrid application security testing tools,
algorithmic bruteforcers, and artificial intelligence has shown great promise in
detection. Nevertheless, there exists a gap in research for reliably identifying log-
ical and context-dependant Broken Access Control vulnerabilities. We propose
KARTAL, a novel method for web application vulnerability detection using a
Large Language Model (LLM). It consists of 3 components: Fuzzer, Prompter,
and Detector. The Fuzzer is responsible for methodically collecting application
behaviour. The Prompter processes the data from the Fuzzer and formulates
a prompt. The Detector uses an LLM which we have finetuned for detecting
vulnerabilities. In the study, we investigate the performance, key factors, and
limitations of the proposed method. We experiment with finetuning three types
of decoder-only pre-trained transformers for detecting two sophisticated vulnera-
bilities. Our best model attained an accuracy of 87.19%, with an F1 score of 0.82.
By using hardware acceleration on a consumer-grade laptop, our fastest model
can make up to 539 predictions per second. The experiments on varying the train-
ing sample size demonstrated the great learning capabilities of our model. Every
400 samples added to training resulted in an average MCC score improvement of
19.58%. Furthermore, the dynamic properties of KARTAL enable inference-time
adaption to the application domain, resulting in reduced false positives.

Keywords: Broken Access Control, Vulnerability, Large Language Mod-
els, Web Application, API, Detection, Scanner, DAST, Ap-
plication Security

Language: English

This work is licensed under a Creative Commons @ ®

“Attribution 4.0 International” license.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

Acknowledgements

I wish to thank both of my advisors and supervisors for their contributions
to this thesis. I also express my gratitude to my mentor Lasse 1., delivery
coach Tuomas Y., and thesis coordinator Anna R. at Netlight Consulting for
their guidance.

I would also like to thank my friends and my girlfriend for their support
throughout the thesis. Finally, I'd like to express my heartfelt gratitude and
appreciation to my mother, father and sisters, to whom I dedicate this thesis
work.

To my father, thank you for your wisdom, support, and belief in me. You
are my role model who has given me a strong sense of integrity, perseverance,
and the courage to chase my dreams. Your track record of excellence in
academia, work and fatherhood provided me with the confidence to take on
any obstacle that comes my way. You inspire me to be my best self and have
a meaningful life.

To my mother, thank you for your boundless love, continuous sacrifices,
and nurturing spirit. You are the strongest woman in the world who never
gives up against anything life throws in her way. To me, home is wherever
you are. You have taught me the value of kindness, compassion, and the
importance of always staying true to myself. Your unconditional love has
been and will continue to be a constant source of comfort and encouragement
in my life.

Espoo, June 28, 2023

Sinan Sakaoglu

Abbreviations and Acronyms

Al
AMA
API
APR

BART
BERT

BiLSTM
BLEU
BOLA

CD

CI
CNN
CORS
CoT
CPU
CSV
CWE

DAST
DNN

EMPT

GLUE
GPT
GPU
GRU

Artificial Intelligence

Ask Me Anything Prompting
Application Programming Interface
Automatic Program Repair

Bidirectional and Auto-Regressive Transformers
Bidirectional Encoder Representations from Trans-
formers

Bidirectional Long Short-Term Memory

Bilingual Evaluation Understudy

Broken Object Level Authentication

Continuous Development
Continuous Integration
Convolutional Neural Network
Cross-Origin Resource Sharing
Chain of Thought

Central Processing Unit

Comma Separated Values
Common Weaknesses Enumeration

Dynamic Application Security Testing
Deep Neural Network

Exploratory Manual Penetration Testing

General Language Understanding Evaluation
Generative Pre-trained Transformer
Graphical Processing Unit

Gated Recurrent Unit

HTML
HTTP

[AST
ICL
IDE
IDOR

LLM
LMP

LMQL
LSTM

MAST
MCC
ML

NLP
NN

OWASP

PEFT
PET
PII

RCE
RNN

SaaS
SAST
SDG
SDLC
SMPT
SOTA
SPA
SQL

TPU

HyperText Markup Language
HyperText Transfer Protocol

Interactive Application Security Testing
In-Context Learning

Integrated Development Environment
Insecure Direct Object Reference

Large Language Model

Language Model Programming
Language Model Query Language
Long Short-Term Memory

Manual Application Security Testing
Matthews Correlation Coefficient
Machine Learning

Natural Language Processing
Neural Network

Open Web Application Security Project

Parameter-Efficient Fine-Tuning
Pattern Exploiting Training
Personally Identifiable Information

Remote Code Execution
Recurrent Neural Network

Software-as-a-Service

Static Application Security Testing
Sustainable Development Goal
Software Development LifeCycle
Systematic Manual Penetration Testing
State-of-the-art

Single Page Application

Structured Query Language

Tensor Processing Unit

URL Uniform Resource Locator

VpH Vulnerabilities per Hour

Contents

Abbreviations and Acronyms

1

Introduction

1.1 Background

1.2 Problem
1.2.1 Original Problem and Definition

1.3 Purpose

1.4 Goals.

1.5 Research Methodology

1.6
1.7

Delimitations
Structure of the Thesis

Background
2.1 Large Language Models

2.2

2.1.1

2.1.2

2.1.3
214

2.1.5

Deep Neural Networks
2.1.1.1 Recurrent Neural Networks
2.1.1.2 Long Short-Term Memory Networks
2.1.1.3 Attention Mechanisms
Transformers L.
2.1.2.1 Encoder-only Transformers
2.1.2.2 Decoder-only Transformers
2.1.2.3 Encoder-Decoder Transformers
Pre-training L
Finetuning oL
2.1.4.1 Efficient Finetuning Techniques
Prompting o L
2.1.5.1 In-context Learning
2.1.5.2 Zero-shot Learning
2.1.5.3 Few-shot Learning

Web Application Vulnerabilities

2.2.1

Broken Access Control

11
11
12
13
13
13
14
14
14

2.2.1.1 CWE-639: Authorization Bypass Through User-

Controlled Key
2.2.1.2 CWE-209: Generation of Error Message Con-

taining Sensitive Information

2.3 Vulnerability Detection
2.3.1 Manual Application Security Testing (MAST)
2.3.2 Static Application Security Testing (SAST)
2.3.3 Dynamic Application Security Testing (DAST)
2.3.4 Interactive Application Security Testing (IAST)

2.4 Related workso
2.4.1 Web Vulnerability Detection Tools Comparison
2.4.2 State-of-the-art Vulnerability Detection Tools

Methodology
3.1 Research Process
3.2 Data Collection
3.2.1 Sampling
3.2.2 Target Population.
3.3 Experimental Design
3.3.1 Test Environment Setup
3.3.2 Hardware and Software to beused
3.4 Assessing Reliability and Validity of the Data Collected
3.4.1 Reliability of Method
3.4.2 Reliability of Data
3.4.3 Data Validity
3.5 Planned Experiments & Data Analysis
3.5.1 Hyperparameters
3.5.2 Pre-trained Models
3.5.3 Training Dataset Size
3.5.4 Inference Performance
3.6 Evaluation Framework
3.6.1 Ewvaluation Metrics

Implementation

4.1 Fuzzer

4.2 Prompter
4.2.1 HTTP Request and Response Compression

4.3 Model Finetuning oL

4.4 Inference

31

5 Results and Analysis

5.1 Pre-trained Model o
5.2 Training Dataset Size

5.2.1 Examples of Incorrect Classifications
5.3 Inference Performance

6 Discussion

6.1 Overall Performance

6.2 Key Factors in Performance
6.3 Challenges and Limitations

6.4 Auxiliary Advantages

7 Conclusions

7.1 Conclusions
7.2 Future Work
7.3 Reflections

Bibliography
A Environment Setup

B Data Generation Prompt

10

60
60
61
65
67

69
69
70
71
72

73
73
74
74

85

86

89

Chapter 1

Introduction

Web applications have become essential services in our daily lives. As Software-
as-a-Service (SaaS) market reached $167 billion in 2022 [1], web applications
have become a lucrative target for hackers. By utilizing unpatched vulnera-
bilities and zero-day exploits, adversaries can get into systems and steal infor-
mation such as payment details, passwords, and personal data. As a result,
the significance of finding vulnerabilities before the code reaches the pro-
duction environment and is exposed to the Internet has become increasingly
crucial. There are a variety of tools available to detect flaws in applications.
These tools mainly use a pre-written list of rules, vulnerability databases,
or a custom-trained Artificial Intelligence (AI) model to scan the target ap-
plication. However, they are not able to detect higher-level weaknesses that
require logic and reasoning. Thus, there is a need for a new method for
identifying difficult-to-detect vulnerabilities in the web application domain.
Multi-tasking and few-shot learning capabilities of Large Language Models
(LLMs) make them great candidates for solving this problem.

1.1 Background

Current application security testing methods are competent at finding vul-
nerabilities, however, each has unique drawbacks. Static Application Security
Testing (SAST) tools are known for a high false positive rate and lack end-
to-end testing, Dynamic Application Security Testing (DAST) tools tend to
have low true positive rate and limited coverage, and Interactive Application
Security Testing (IAST) tools are language-specific and require interaction
[2-4]. Building on top of existing methods, novel solutions such as hybrid
[5] and combined [4] were suggested to mitigate the drawbacks, which have

11

CHAPTER 1. INTRODUCTION 12

shown improvements over using either method. Nevertheless, all of the meth-
ods lack the ability to detect vulnerabilities that require an understanding of
context and reasoning. Broken access control is an example of such a group
of vulnerabilities, which was the most frequently occurring set of flaws in
web applications [6].

LLMs are AI models that have gained immense popularity over recent
years. With the emergence of commercial and open source pre-trained LLMs
with multi-billion parameters available to the general public, applying state-
of-the-art AI models to under-investigated domains such as vulnerability de-
tection is now cheaper, easier, and faster than ever before. In essence, these
models are built to predict the next word in the given sequence of text, also
called a prompt. The ingenuity of their design allows them to be agile, suc-
ceeding in a variety of Natural Language Processing (NLP) tasks they were
not specifically trained for [7]. State-of-the-art research has explored vari-
ous areas of cybersecurity applications such as Automatic Program Repair
(APR). However, scanning web applications for potential vulnerabilities has
not been scientifically explored yet.

1.2 Problem

Ever-increasing scale of modern web applications requires automated tools
to detect flaws. Existing automated vulnerability scanning methods cannot
reliably detect the Broken Access Control category of web application vulner-
abilities as they do not possess the ability to logic or adapt. We specifically
target complex and context-dependant Broken Object Level Authorization
(BOLA) [8] and Exposure of Sensitive Information [9] vulnerabilities. BOLA
is a security flaw that allows an attacker to alter object references and gain
access to or conduct operations on unauthorized resources. When an appli-
cation fails to enforce adequate permission checks depending on the user’s
privileges, a vulnerability occurs. The second security flaw occurs when mes-
sages created by an application mistakenly reveal sensitive information such
as personal data, accounts, database queries, or application component de-
tails that an attacker can utilize. Exploiting these vulnerabilities can result
in unauthorized data access, and privilege escalation, posing a severe danger
to the security of the application.

CHAPTER 1. INTRODUCTION 13

1.2.1 Original Problem and Definition

This research presents a novel LLM-based web application vulnerability de-
tection method, which we term KARTAL (“Eagle” in Turkish), and plans to
answer the following research questions:

1. What is the performance of the proposed method in identifying se-
lected class of web application vulnerabilities?

2. What factors contribute to the performance of the proposed method?

3. What are the challenges and limitations of the proposed method?

1.3 Purpose

The results of the finished work have the potential to reduce the cybersecurity
incident risk of any organization that develops web applications. This can
save the organization a large amount of money depending on its size and
provide a competitive advantage. The people that will most likely benefit
from reading the thesis are chief technology officers, chief information security
officers, security engineers and analysts, tech leads, and software developers.
Additionally, research in LLMs will extend to another domain where they
can be applied.

The project aims to make contributions to the United Nations’ Sustain-
able Development Goals 8 (Sustainable economic growth), 9 (Resilient in-
frastructure), and 10 (Reduced inequality) [10] and will address potential
unethical uses of the research. From a resource efficiency point of view,
LLMs requires large amounts of resources to train from scratch. However,
the project focuses on utilizing pre-trained LLMs, that are commercial or
open source.

The host organization of the research is Netlight Consulting Oy [11]. Net-
light is an innovative consulting company that provides genuine consulting
services for leaders in the digital industry. They implement effective informa-
tion technology solutions covering cybersecurity, e-commerce, finance, games,
and the industrial Internet of Things.

1.4 Goals

The goal of this project is to automatically detect vulnerabilities that other-
wise require manual expert review. This has been divided into the following
three sub-goals:

CHAPTER 1. INTRODUCTION 14

1. Evaluate the performance and feasibility of the proposed method.

2. Identify the key factors that affect the performance of the proposed
method.

3. Determine the challenges and limitations of the proposed method from
technical, practical, and usability perspectives.

1.5 Research Methodology

In this study, we conduct experimental quantitative research. The research
process consists of exploration, experimentation, and evaluation. We un-
dertake a thorough literature review followed by data collection and dataset
creation. Next, we define three different experiments. Firstly, a pretrained
model selection experiment where we compare and contrast different base
models for finetuning. Another experiment focuses on the inference per-
formance, testing the latency of different base models running on various
hardware settings. The last experiment tests the effects of training dataset
size on the model performance. Using a selection of sequence classification
metrics, we assess each experiment, analyze, and discuss them.

1.6 Delimitations

Building and training a LLM from scratch is out-of-scope as it would require a
large set of resources and time which are not within the limits of this master’s
thesis. The research uses the commercially available GPT-3 by OpenAl for
dataset generation and pre-trained MPNet, DistillRoBerTa, and MiniLM
models for finetuning. A detailed comparison of algorithms behind the LLMs
used in the paper will not be included. Implementation for components other
than the Detector has been left out of scope as they do not contribute to
answering the research questions.

1.7 Structure of the Thesis

Chapter 2 introduces relevant background information about vulnerability
detection methods and large language models. Chapter 3 discusses the re-
search methodology used in the paper. Chapter 4 presents our proposed
novel method. Chapter 5 provides test results and analysis of the proposed
method. Chapter 6 reflects on the analysis, evaluating results in terms of

CHAPTER 1. INTRODUCTION 15

research questions and objectives. Chapter 7 concludes the paper with re-
marks and reflections of the author, in addition to offering recommendations

for future work.

Chapter 2

Background

This chapter provides background information about Large Language Models
and the foundational AI concepts on which it is built on. Additionally,
this chapter describes web application vulnerabilities and their detection.
The chapter also describes related work in LLM applications in advanced
techniques in vulnerability detection.

2.1 Large Language Models

LLMs are pre-trained transformers that are trained on a large corpus of text
[12]. They are the state-of-the-art Al models that are built on neural net-
work architecture, namely deep learning [13, 14]. Although they are most
successful at NLP tasks, they can solve tasks in a variety of domains such as
Machine Translation [15], Dialog Systems [16], Medical Diagnosis [17], Com-
putational Chemistry [18], and Data Augmentation [19]. Based on the text
they are trained on, they can be monolingual or multilingual [14], under-
stand programming languages [20], or even chess notation [21]. To achieve
higher accuracy, the model can also be finetuned for a specific task. Fur-
thermore, using In-Context Learning (ICL) the model adapts to new tasks
on the fly, lowering the barrier to entry for organizations and businesses of
smaller sizes to utilize LLMs. Understanding the importance of LLMs re-
quires background knowledge of its predecessors and their shortfalls. In this
section, we will examine the building blocks of LLMs and the reasons for
their supremacy in Al.

16

CHAPTER 2. BACKGROUND 17

Input Layer N-Hidden Layers Output Layer

Figure 2.1: Deep Neural network architecture with input, hidden, and output
layers. The prediction is a quantitative answer that can be a classification of
an object, the probability of an event, or the next token in a sequence.

2.1.1 Deep Neural Networks

The first revolutionary Al models are Deep Neural Networks (DNNs). The
main difference compared to the classical machine learning models is the
depth and complexity of the networks [22]. DNNs use multiple interconnected
hidden layers as can be seen in Figure 2.1. Deep learning techniques leverage
the additional layers to allow the network to learn to solve an increasingly
complicated set of problems, performing better on a wide range of tasks.
Increasing the number of hidden layers allows the network to learn more
abstract features, thus, improving the accuracy of the model. However, as
the count of hidden layers grows, the computational complexity of the model
will scale, putting greater pressure on the hardware.

Another side effect is vanishing or exploding gradients. This occurs during
the backpropagation stage which updates the parameters of the network using
the computed gradients of the loss function. When the gradients become
too small (vanishing) or too large (exploding), the total learning rate of the
network decreases. Finally, due to the diminishing rate of returns, at a certain
point adding new layers will only provide negligible performance. However,
there are various deep learning models that mitigate some of the mentioned
issues and outperform a plain implementation of DNNs.

CHAPTER 2. BACKGROUND 18

2.1.1.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a class of DNNs built to handle
sequential data. They outperform plain Neural Network (NN) implementa-
tions in tasks such as NLP, time series prediction, and speech recognition
[23]. The recurrent neurons in the hidden layers have cyclic connections to
maintain a hidden state which acts as a memory of past states. The recur-
rent neurons produce output and update the hidden state at each time step.
During the training phase of the network, this state is used as a secondary
input to the neurons along the features vector. As a result, RNNs are able to
model deeper relationships and dependencies within the input data, resulting
in higher accuracy predictions. However, they suffer from the vanishing gra-
dients problem. As the gradients are backpropagated from the output layer
to the input, they become too small to effectively update the weights. This
is caused by the weight of the hidden state which is shared across all time
steps, creating a challenging problem for RNNs to efficiently learn long-term
dependencies in the input [24].

2.1.1.2 Long Short-Term Memory Networks

As a response to the vanishing gradient problem, Long Short-Term Memory
(LSTM) networks were developed. These networks use LSTM neurons which
can selectively keep or discard information in the hidden state of the neurons
over time steps [25]. These neurons contain three types of gates that work in
order: input, output, and forget gate. The forget gate decides whether a piece
of information from the last hidden state should be discarded/forgotten. In
contrast, the input gate is responsible for choosing which information from
the input should be retained and updated in the state. Finally, the neuron
decides on what to output, using the output gate to filter the state. LSTM
networks outperform RNNs in modeling long-term relationships within se-
quential data. In the domain of NLP, they have higher accuracy in tasks
such as next-word prediction and translation. The main disadvantage of
LSTM networks is the higher computational cost due to the additional logic
introduced into the neurons.

An alternative approach to LSTM networks is Gated Recurrent Unit
(GRU) networks. These networks also utilize multiple gates to read and
update the hidden state, however, they are simplified. GRU networks essen-
tially reorganize the functionality of the input, output, and forget gates from
LSTM into a new set of gates: update and reset [26]. These gates are respon-
sible for controlling the information flow in and out of the hidden state and
to the output. With fewer gates and complexity, GRU networks are faster

CHAPTER 2. BACKGROUND 19

to train, have similar performance, and are less prone to overfitting com-
pared to LSTM networks. However, they are inferior at modeling long-term
dependencies.

2.1.1.3 Attention Mechanisms

A newer and revolutionary approach to the deep learning field is the atten-
tion mechanism, which has become an indispensable technique in solving
difficult tasks including NLP and computer vision tasks [27]. It was origi-
nally developed within the neural machine translation domain to overcome
the fixed-length vector problem in encoder-decoder based DNN models [28].
Inspired by human eyesight and cognitive psychology, they selectively ig-
nore or focus on important parts of the input features. DNNs that utilizes
the attention mechanism is substantially more efficient and accurate. Their
superb understanding of long-term dependencies within the input sequence
makes them great candidates for solving tasks that require deeper context
and logical reasoning.

There are a few common types of attention mechanisms. Soft attention
uses a softmax function to compute the distribution of attention scores of the
input features. Meanwhile, the scoring function of the hard attention makes
discrete binary selections. Self-attention scores the attention of the input
features by comparing with themselves, enabling learning of context-aware
representations. They are also a foundational component of transformers.
Lastly, multi-head attention deploys multiple attention mechanisms in paral-
lel, allowing the model to simultaneously focus on various parts of the input
[12].

The disadvantage of employing attention mechanisms in DNNs is the
increased computational complexity. Particularly with self-attention, the
amount of required processing power scales quadratically with the input se-
quences, causing significantly longer training times and higher costs. Ad-
dressing computational and memory constraints early on is crucial for appli-
cations with large data sets.

2.1.2 Transformers

The most powerful LLMs today are based on the Transformer architecture,
which was developed and published in 2017 [12]. Transformer-based LLMs
such as PaLM and GPT-3 have been named foundational models as they
are trained on a broad range of data and demonstrate great ability to adapt
to many different downstream tasks [13]. This neural network architecture
learns the context, importance, and relationship between words from natural

CHAPTER 2. BACKGROUND 20

The dog IS the smartest animal

y

The dog is the smartest -

Figure 2.2: An example of self-attention scoring. Each token of the input is
scored compared to other tokens. In this example, the token “animal” has
the highest score relative to the token “the”. However, “animal” has a lower
score relative to the token “the” at the beginning of the sentence.

language training data using the self and multi-head attention mechanisms.
Their main innovation is, by design, they are highly parallelizable and per-
form well with unsupervised learning, and can be finetuned for a specific task
with a relatively small amount of labeled data. The general architecture of
transformers is demonstrated in Figure 2.3.

Transformers use a method called Positional Encoding to empower their
rapid and parallel token processing capability. It is a crucial component of
transformers, since without it, training the model with billions of points of
data would take multiple magnitudes more computing power and time. Un-
like RNN techniques such as LSTM or GRU, transformers do not inherently
have information about the order of tokens in the input sequence. Positional
encoding bridges this gap by generating a unique vector for each token and
adding it to their embeddings. This method allows the network to learn
and utilize patterns of token order while processing the tokens in parallel,
maximizing speed without sacrificing accuracy.

Interpretability in DNN applications has been a great topic of discussion.
Due to the vast number of hidden layers and their interconnectivity, mapping
the decision-making process of DNN models is challenging. Transformer-
based models also struggle with the same problem. As the models get larger
and more complex, understanding their inner workings of it becomes increas-
ingly difficult. This is an unfortunate disadvantage of DNNs as governance
of the models from the safety and ethics point of view is low. Based on the

CHAPTER 2. BACKGROUND 21

Output

i

Encoder Decoder

Encoder Decoder

Input

Figure 2.3: Simplified diagram of a Transformer architecture. It is made up
of an Encoder-Decoder stack. The input is fed into the stack of n-encoders as
token embeddings and encoded positions. Once the processing is done, the
results are passed into each decoder, which feed-forward their results. Once
the last decoder is done, predictions are ranked based on probability, and the
highest-ranked token is served as the output.

training data, the models may develop a bias against certain ethnic groups,
genders, or political leaning [29]. Fundamentally, the creator of any Al model
should be able to confidently know and be able to demonstrate its safety
measures for human usage. Additionally, making sure the model follows the
ethical guidelines of its domain is of the utmost importance since abusing
powerful Al models can lead to unfortunate consequences for its consumers.

Apart from NLP, transformers have been successfully applied in various
fields. In computer vision research, DALL-F is an Al model that can gener-
ate images from natural language text descriptions [30]. Another application
in computer vision uses transformer architecture to perform image recogni-
tion [31]. In the speech analysis domain, Conformer is a model based on
transformers that are trained to recognize speech [32]. Medical applications
such as drug research have also utilized transformers to predict molecule in-
teractions and discover new therapeutic drugs [33]. Although all of these

CHAPTER 2. BACKGROUND 22

applications use the transformer architecture, the overall model structure
varies in implementation. Depending on the application, transformer archi-
tectures can be used within encoder-only, decoder-only, or encoder-decoder
networks.

2.1.2.1 Encoder-only Transformers

Encoding refers to mapping input data to a lower-dimensional representa-
tion. Encoder-only transformers do not have a decoder layer. They are
known to perform well in unsupervised and transfer learning. Bidirectional
Encoder Representations from Transformers (BERT) is an LLM that uses
encoder-only transformer architecture [14]. It is trained using masked lan-
guage modeling, which randomly hides certain tokens from the input. The
goal of the pre-training is to predict the masked token. As a result, BERT
can utilize right and left contexts to understand complex relationships of to-
kens. The success of BERT inspired many LLMs based on itself. RoBERTa
uses dynamic masking of the input and trains with larger batches for better
accuracy [34]. ALBERT is another LLM that aims to reduce the memory
consumption of the model [35]. Another set of LLMs from the BERT family,
DistilBERT and MiniLM uses knowledge distillation technique to compress
the model run on lower-end hardware while performing similarly [36, 37]. A
different approach that combines masked and permutated language model-
ing, MPNet, achieved better benchmark results compared to the BERT-like
models [38].

Built on top of encoder transformers, Sentence Transformers are used to
convert sentences into high-dimensional vector representations [39]. Sentence
transformers are capable of capturing semantic linkages and contextual in-
formation inside sentences by utilizing cutting-edge models of transformers
and pre-training on big corpora. These models are excellent at tasks such
as semantic similarity, paraphrase identification, and information retrieval.
Furthermore, the properties of sentence transformers make them great at
classification applications where the class label of the input depends on the
input itself.

2.1.2.2 Decoder-only Transformers

In contrast, decoder-only transformers ingest lower-dimensional representa-
tion and generate an output of the same dimension as the unencoded data.
They are generally used in generative DNNs for objectives such as generat-
ing text, images, or audio. Generative Pre-trained Transformer (GPT)-2 and
GPT-3 both utilize decoder-only transformer architecture [7, 40]. They have

CHAPTER 2. BACKGROUND 23

1.5 and 175 billion parameters, respectively. These models are pre-trained
by feeding in a large corpus of text while the tokens to the right end of the
input window are masked. A downside of this approach is that, unlike BERT,
GPT-2 is not bidirectional. The training objective is to predict the next word
which makes GPT-2 great at generating coherent and contextually relevant

text. However, when scaled, these models perform excellently in a variety of
NLP tasks.

2.1.2.3 Encoder-Decoder Transformers

A combination of both models is encoder-decoder transformers. This ar-
chitecture demonstrates great performance in mapping deep and complex
relations in the input sequence and solving challenging NLP tasks such as ma-
chine translation. Bidirectional and Auto-Regressive Transformers (BART)
is an example of an LLM that employs this architecture [41]. Instead of mask-
ing tokens or predicting the next token, BART uses text infilling corruption
which replaces some text spans with a single mask token. The pre-training
objective is to predict the original uncorrupted text. T takes a whole other
approach, it uses supervised and self-supervised training [42]. The model
is trained on data sets such as General Language Understanding Evalua-
tion (GLUE), a multi-task benchmark containing 9 diverse natural language
understanding and processing tasks [43]. By casting all NLP tasks as a text-
to-text problem with special prefixes in the training examples, it achieves
state-of-the-art performance.

2.1.3 Pre-training

After preprocessing the training data and setting up the model, pre-training
is the next step. Although the prefix “pre” hints at a later and heavier
training stage, this is not the case. Pre-training is the process of training an
LLM on a large and general dataset before finetuning it for a specific set of
tasks. This allows the model to understand the fundamentals and patterns of
the language(s). The pre-trained model can later be adapted to a variety of
downstream tasks with ease. The process starts by collecting a large dataset
that consists of diverse text from sources such as websites, wikis, books, and
magazines. This dataset should cover all patterns of the target domain. For
example, if the target domain is NLP, the dataset should contain a large
corpus of writing, possibly in multiple languages. In contrast, if the domain
is music then the LLM be trained with numerous compositions in musical
notation format.

Next, the architecture of the LLM should be modeled according to the

CHAPTER 2. BACKGROUND 24

chosen transformer variant and model. The final step before training is
to define the pre-training objective. This should be chosen based on the
target domain. The most common objectives are guessing the masked to-
kens (Masked Language Modeling), guessing the next token (Autoregressive
Language Modeling), and uncorrupting the input (Denoising Autoencoder).
Then, the model is ready to start pre-training, which is the most resource
and time-consuming phase of building an LLM. To prevent data loss and en-
able easy sharing of the model, checkpoints in time can be saved and backed
up. These checkpoints store the entire weight matrix of the network and can
be used to continue pre-training or move to the finetuning phase. Table 2.1

compares different ways of training LLMs.

Stage Pre-training Finetuning In-context
Learning
Goal General Adapt to Learn from user
language specific tasks input
understanding
Data Unlabeled, Labeled, Labeled, 5-10 data
Millions-Billions Hundreds- points,
data points, Thousands data task-specific
general points,
task-specific
Phase Initial After During inference
pre-training
Advantages Broad Great accuracy Good accuracy on
knowledge, on specific a specific task,
transfer learning tasks, reduced cheap, no training
training time required
Limitations Limited Overfitting, Limited context,
domain-specific ~ medium cost, temporary learning
knowledge, slow to train

Highest cost,
slowest to train

Table 2.1: Comparison of pre-training, finetuning, and in-context learning

for LLMs

CHAPTER 2. BACKGROUND 25

2.1.4 Finetuning

Finetuning is the process of further training a pre-trained AI model to re-
ceive the best performance at a specialized task [44]. The pre-trained model
is adapted to downstream tasks by using a labeled dataset. Finetuning uti-
lizes the general language capabilities of the existing model, allowing to use of
a fraction of the original dataset to achieve superior performance. First, the
data should be prepared by a process of curation and labeling. Depending on
the task, this can be a set of sentence pairs for machine translation or ques-
tion & answer samples. Next, the model is initialized using the pre-trained
weights. An earlier checkpoint might be a better option to start with if the
data is overfitted at the end of pre-training. Finally, the model is evaluated
against the test set of data. In the context of pre-trained LLMs, finetuned
models can effortlessly outperform the base model in zero-shot settings with
only a training dataset few hundred prompt and response examples [13].

With finetuning, the learning from the training samples is preserved. This
requires the entire model to be loaded and initialized as weights of each layer
in the neural network may be affected. The computational requirements for
finetuning are less than the pre-training phase and can be further reduced
with efficient finetuning techniques. Since finetuning is a stateful process,
the resulting model no longer has the same properties as the foundational
model. When trained to fit a specific task the finetuned model may lose its
multitasking capabilities, achieving subpar results for general tasks [45]. Fur-
thermore, finetuning a model can reduce its generalizing ability, preventing
the use of ICL techniques such as few-shot [46].

2.1.4.1 Efficient Finetuning Techniques

Recently, efficient finetuning strategies have evolved to further reduce the
computational and time requirements of finetuning. One such technique
is Parameter-Efficient Fine-Tuning (PEFT). These methods aim to lower
the number of trainable parameters in order to improve the model training
speed. One of the approaches uses Adapter Modules that are inserted in-
between layers. By freezing the rest of the pretrained model, finetuning can
be accelerated by multiple magnitudes with comparable performance to fully
finetuned models [47]. More advanced techniques of PEFT such as (IA)?
have been shown to finetune models that outperform the human baseline on
certain benchmarks [48].

In contrast, Pattern Exploiting Training (PET) is a semi-supervised train-
ing method that improves model performance when the labeled training
dataset size is small [49]. PET rephrases the training samples into a cloze

CHAPTER 2. BACKGROUND 26

test format by modifying them into one of the premade patterns. A verbal-
izer mapping is made between possible classes and words in vocabulary to
describe each of them. For each pattern, an LLM is finetuned using a small
dataset. Next, the set of finetuned LLMs are combined to soft label a larger
dataset. Finally, a classifier is trained on the new augmented dataset.

SetFit is another efficient finetuning method that shares the goal of in-
creasing performance under low-resource settings [50]. Similar to PET, it
first finetunes a pretrained transformer on a small set of text pairs in a
contrastive Siamese form. Next, a classifier is trained using the rich text em-
beddings from the finetuned model. SetFit is an order of magnitudes faster
to finetune while achieving comparable results to PET and PEFT. As an
additional advantage, SetFit does not use prompts or verbalizers, resulting
in a simpler and swifter finetuning process.

2.1.5 Prompting

Beginning as a means to interact with a LLM, prompting has turned into a
science. A prompt is the query of input text passed to the model as token
embeddings. Since most LLMs are trained on massive amounts of literature,
they demonstrate a great understanding of natural human language. The
prompt can directly query the model and does not require a specific format.
For example, the “Is an apple a fruit?” prompt gives a task to the model.
First, the model must interpret this question as a classification task. To
answer this question the model should be able to understand what constitutes
a fruit and how an apple relates to it. Once the model “decides” on the
answer, it responds to the user with the answer in natural language, i.e.
“Yes, an apple is a fruit.”.

Prompts can go beyond simple questions. A variety of NLP tasks can be
done out of the box after the pre-training phase such as summarization, senti-
ment analysis, paraphrasing, open-ended questions, and similarity detection.
These tasks constitute the core capabilities of human understanding and are
commonly used in testing the performance of the LLMs. The “thought” pro-
cess of the LLM can also be queried, resulting in a detailed Chain of Thought
(CoT) which can be used for determining knowledge gaps in the model. De-
pending on the prompt, the model may require additional knowledge and
context to reply. For example, a model that was trained using data from
2021 cannot give accurate answers about an event that happens in 2022.
In such cases, information unknown to the model can be prepended in the
prompt to be used as an oracle for the model. This method can be further
developed to teach new tasks to the model with the concept named ICL,
examples of which can be seen in Figure 2.4.

CHAPTER 2. BACKGROUND 27

A major limitation with prompting is the length of the input. As men-
tioned in 2.1.1.3, the amount of computation required when using the self-
attention mechanism scales quadratically with the token count. Thus, the
amount of external knowledge insertable into the model during inference
is limited. Furthermore, the token count restrictions apply to the reply of
the LLM as well, effectively doubling token/compute costs. There are some
approaches to optimize for accuracy per token. BatchPrompting merges
multiple questions with the same context into a combined prompt, while
achieving comparable or even better results [51]. MultiStagePrompt disman-
tles a prompt into a consecutive set of smaller prompts results of which are
fed into each in a chain [52]. Assessed in language translation tasks using
Bilingual Evaluation Understudy (BLEU) [53], this method performs better
than single-stage prompts. A different method involves using a novel method
named Language Model Query Language (LMQL) [54]. Tt uses the Language
Model Programming (LMP) concept to optimize prompts with scripting, in-
creasing the accuracy of responses while minimizing token counts.

2.1.5.1 In-context Learning

As a result of their general understanding capabilities, LLMs can learn new
tasks from the prompt during inference. In essence, the model can temporar-
ily learn how to solve a problem or generate similar examples based on the
context of the input with ICL [40]. At first, the user provides a description
of the target task and possibly some examples of how to accomplish it. Next,
the user appends the task in question to the prompt. Once enough contex-
tual information is in the prompt, the model can be queried. Depending
on the response, the user can use an iterative refinement process to provide
better context and send a new query to the model, repeating until the de-
sired outcome is reached. The greatest advantage of ICL is flexibility. Users
can achieve performances comparable to finetuning without spending a large
amount of computing power or time. Additionally, the need for labeled data
is further reduced, all the model needs is the task description and optionally
some examples. The downsides of ICL are its inconsistency and limited con-
text. Due to the token limitations, it is not possible to fit an entire subject
in a prompt, reducing the number of applications being able to utilize it.

2.1.5.2 Zero-shot Learning

A subgenra of ICL is zero-shot learning. Depending on the task and the
model, it can easily outperform pre-trained transformers [55]. The term
“zero-shot” refers to the lack of examples in the training data and the prompt

CHAPTER 2. BACKGROUND 28

Zero-shot
Context Context +
Question Available Options
Question .
Question
Few-shot
- Question + CoT + Context +
Question + Answer Answer Question + CoT +
Answer
Question Question Context +
Question

Figure 2.4: Example formats for Zero-shot and Few-shot prompts. Zero-shot
prompts consist of questions, which may require context or data. Addition-
ally, a prompt can give a list of available options to answer from. In few-shot
prompts, the question is supported by a set of examples and answers. Ad-
vanced techniques can also include CoT and the context for increased per-
formance.

CHAPTER 2. BACKGROUND 29

context. With zero-shot learning, the model relies solely on their reasoning,
CoT, and the context of the prompt, raising the importance of writing clear
and in-depth queries. The main advantage of this approach is that it does not
require any labeled data. As demonstrated in Figure 2.4, the prompt only
includes the problem and context. Zero-shot prompts also remove input bias
and sensitivity, improving output quality and originality. The disadvantage
is lower performance relative to finetuned models. Without any pre-existing
knowledge of a completely new task, the LLM suffers in the accuracy of
its predictions. Furthermore, the answers can be rather inconsistent due to
the low confidence the model has in its predictions, outputting increasingly
random and non-relevant information.

Techniques such as NPPrompt can improve the zero-shot performance of
models by engineering a clear prompt and augmenting the results of the LLM
[56]. However, the greatest factor in the performance of zero-shot prompts
remains to be the data fed into the pre-training phase [57]. Another method
for better zero-shot accuracy is finetuning. When finetuned using multiple
NLP datasets in natural language instruction format, the resulting model
outperformed its base model in zero-shot prompts [44]. Thus, combining
multiple techniques to optimize for the learning capabilities of the model is
a recommended way to create a LLM model that is great at multitasking.

2.1.5.3 Few-shot Learning

Few-shot learning is a technique used in the post-training stage where the
prompt has prepended a set of examples for the task in question. During in-
ference, the model learns how to accomplish the task from the prompt itself
and responds with an appropriate answer. Few-shot prompting demonstrates
enhanced learning capabilities compared to zero-shot, improving the perfor-
mance of the model in new tasks. This technique can increase the accuracy
of the model by orders of magnitude and the performance scales with the
number of examples provided in the prompt [40]. Figure 2.4 presents mul-
tiple examples for few-shot prompting. The simplest method is to provide
a few sets of question-answer pairs, followed by the question the LLM will
answer. Increasing the number of examples and their similarity to the final
question will improve the correctness of the output. Additionally, the con-
text required to answer the question can be prepended to the prompt as well.
The context can help to steer the model in the right direction. For example,
if the question is asking “How many shoes are there in the world?” providing
the count at an earlier year or the up-to-date human population will improve
the quality of the reply.

Another technique is to add the CoT process to the example pairs. In

CHAPTER 2. BACKGROUND 30

cases where the LLM cannot map the relationship between the question-
answer examples, the accuracy of the model can suffer. Providing the CoT to
acquire the answer allows the model to walk through the path to the solution,
achieving superb performance and surpassing even finetuned models [58]. A
different approach uses the generational capabilities of the LLM to augment
the prompt. Ask Me Anything Prompting (AMA) method generates a series
of answers and questions about a given context [59]. Next, the generated few-
shot prompt is queried multiple times to get a distribution of replies from
the model. Finally, using weak supervision, the answers are combined into
a single final prediction. With AMA, a small model can outperform models
30x their size, without finetuning or specialized pretraining.

The downside of few-shot prompting is that learning is not retained as
the weights in the model are frozen. Essentially, every prompt has to include
the necessary knowledge and examples to solve the next problem. As a result
of the token count restrictions mentioned in 2.1.5, the few-shot prompt has
fewer tokens reserved for the target question and output. This limits the
complexity of the questions the LLM can solve. Moreover, few-shot prompts
are affected by the input sensitivity of LLMs. Depending on their training,
the model can respond completely differently due to a slight change in the
phrasing or choice of examples in the prompt [60]. Thus, when engineering
few-shot prompts, wording, amount of examples, order of the prompt, and
the question format should be first experimented with, then selected carefully.

2.2 Web Application Vulnerabilities

Web applications are substantially more vulnerable to hacking than other
forms of software. Due to their accessibility over the Internet and depen-
dency on several technologies, frameworks, and protocols, web applications
are by their very nature more vulnerable to cyberattacks. The number and
type of vulnerabilities used to perform these attacks is large, which can make
it difficult to understand and defend against them. In addition, some vulner-
abilities are more common and pose a higher risk than others. Application
developers must navigate the vast landscape of vulnerabilities and build their
applications with safety precautions while battling project deadlines. Hence,
picking their battles and focusing on the top vulnerabilities is the most effec-
tive strategy. The Open Web Application Security Project (OWASP) rou-
tinely produces a list of the top ten security risks, known as the OWASP Top
Ten, to help businesses become more aware of and help secure their online
applications [6]. The list includes a description, examples, mitigations, and
a list of mapped Common Weaknesses Enumeration (CWE) [61] identifiers

CHAPTER 2. BACKGROUND 31

for each category.

2.2.1 Broken Access Control

The most frequently occurring and complex vulnerability category in web
applications is Broken Access Control, which poses a serious danger to web
applications. Access control policies aim to keep users operating within the
confines of their assigned permissions in order to prevent failures. When ac-
cess is provided to anybody rather than being limited to certain skills, roles,
or users, it violates the principle of least privilege, which is a frequent weak-
ness in access control. This can potentially result in unauthorized access to
sensitive data and system features. Attackers can also get through access
control checks by altering the Uniform Resource Locator (URL), internal
application state, HyperText Markup Language (HTML) page, or by em-
ploying an attack tool to change Application Programming Interface (API)
requests, leading to illegal activities and data modification. Moreover, by
permitting API access from untrusted sources and allowing users to visit au-
thenticated or privileged pages without sufficient authorization, respectively,
Cross-Origin Resource Sharing (CORS) misconfiguration and force browsing
can also assist in creating a variety of vulnerabilities.

2.2.1.1 CWE-639: Authorization Bypass Through User-Controlled
Key

Commonly, web applications retrieve a user record using a key value that
the user controls, such as a sequence of numbers. This key would be used
to search for an object that the user is authorized to provide that record
to the user. If the application has the Authorization Bypass Through User-
Controlled Key weakness, the authorization procedure would not correctly
check the data access operation to confirm that the authenticated user con-
ducting the action has adequate permissions to complete the request. Thereby,
evading any further permission checks in the system. This can cause sensitive
data leaks, unauthorized data manipulation, and privilege escalation. Also
named Insecure Direct Object Reference (IDOR) or Broken Object Level
Authentication (BOLA), are difficult to detect. Modern web applications
have dozens of different entities with various access control rules, which may
also be nested within each other. This creates a great challenge for ex-
isting tools as the search space and complexity for BOLA weakness grows
exponentially with the number of entities and endpoints. Additionally, the
access control rules can differ from one application to another, requiring con-
siderable custom configuration for each automated tool. The mitigation of

CHAPTER 2. BACKGROUND 32

such weaknesses includes adopting secure and random key generation tech-
niques, establishing robust authorization procedures with strict checks, and
implementing strong input validation to guarantee the correct formatting
and validation of user-controlled keys.

2.2.1.2 CWE-209: Generation of Error Message Containing Sen-
sitive Information

A subset of the Exposure of Sensitive Information to an Unauthorized Actor
(CWE-200) weakness is the Generation of Error Message Containing Sensi-
tive Information. By giving detailed information about faults that happened
inside an application, error messages are often created to help users and de-
velopers address problems. However, these messages could unintentionally
reveal sensetive information that can compromise the security of the applica-
tion such as debug logs, database queries, system configurations, and business
logic. Usernames, passwords, and other Personally Identifiable Information
(PII) may also fall under this category. Sensitive information may be leaked
in error messages for a number of reasons, such as bad coding techniques, bro-
ken error handling, or inadequate input and output validation. For instance,
a password reset form can include the full name and email of the user without
authentication. Detection of this weakness consists of an end-to-end manual
and automated analysis. By comparing the application response against a
database of patterns and samples, automated tools can detect common vari-
ations of CWE-209 such as SQL server messages or program stack traces.
Nevertheless, in more complex cases such as the reset password example, an
understanding of the language, business logic, and application domain is re-
quired. Implementing effective error handling, verifying and sanitizing user
input, and anonymizing or sanitizing sensitive data inside error messages are
the fundamental mitigations in reducing the likeliness of CWE-209.

2.3 Vulnerability Detection

Finding vulnerabilities in software is a difficult task. Understanding the re-
lationships between different components and the potential attack vectors
becomes more and more challenging as software applications continue to ex-
pand in size and complexity. The effects of undiscovered vulnerabilities can
be severe given the growing reliance on software systems in many facets of
our life, from company operations to essential infrastructure. A web of de-
pendencies is created by the reliance on third-party libraries, services, and
APIs by modern systems. Vulnerability detection is made more difficult by

CHAPTER 2. BACKGROUND 33

the fact that these dependencies may introduce new vulnerabilities or exacer-
bate already existing ones. Furthermore, Agile and DevOps approaches have
become more popular, which has sped up development cycles and increased
the frequency of releasing new features and upgrades. This could lead to a
situation where security flaws are unintentionally introduced or missed in the
quest for quicker releases.

The strategies used by cyber attackers have evolved, as they nowadays
use cutting-edge approaches to exploit weaknesses and avoid detection. In
order to keep ahead of new threats, vulnerability detection systems must con-
tinually adapt and grow. To maintain the security of applications, challenges
in detection have a number of crucial elements that must be addressed. As
the applications scale, the time and computing requirements increase with
it, underscoring the need to quickly and precisely identify flaws in complex
systems. Additionally, when optimizing for coverage it can be difficult to
strike a balance between true positives and false positives. Turning up the
sensitivity of scanning tools will result in increasing both metrics and over-
whelming security teams with warnings. Lowering the sensitivity and power
will create the opposite effect, granting a false sense of security to the appli-
cation. Lastly, the attacks adversaries use have started to exploit multiple
weaknesses in a system, either in parallel or in a chain. These are much
harder to detect, and a few low-risk weaknesses by themselves might not
trigger alarms in any system. However, when combined, these weaknesses
could be exploited to create a high-risk vulnerability such as a Remote Code
Execution (RCE).

2.3.1 Manual Application Security Testing (MAST)

Security experts use manual application security testing as a technique to
manually examine and evaluate the security of software applications. The
tester manually finds possible security flaws, assesses their severity, and
makes mitigation suggestions. From the beginning of computer program-
ming, manual application security testing has been an essential step in the
software development process. As systems got more sophisticated and the
Internet evolved, attackers had more opportunities to take advantage of se-
curity flaws in software applications. In order to keep up with the constantly
shifting threat landscape, manual application security testing has developed
throughout time, encompassing diverse approaches and procedures.

The amount of skill and knowledge involved in manual application secu-
rity testing is one of its main benefits. Particularly in the context of busi-
ness logic errors, access control problems, and other sophisticated security
threats. Security experts may spot complex vulnerabilities and attack routes

CHAPTER 2. BACKGROUND 34

that automated technologies can overlook [62]. Testers are able to investigate
numerous user interactions and examine the software’s response under vari-
ous circumstances. As a result, manual testing offers a more extensive and
nuanced knowledge of the behavior of the program. Manual testing consists
of penetration testing, threat modeling, code review, and security-focused
design reviews. With the simulation of actual attacks on the application,
penetration testing allows testers to identify vulnerabilities and gauge the
application’s resistance to such attacks. Early detection of possible threats
and vulnerabilities using threat modeling enables developers to address these
risks before they show up in the finished product. Next, security profession-
als study the application’s source code in a process called code review to
find vulnerable spots and potential attack vectors. Lastly, security-focused
design reviews assess the software’s entire design and architecture to make
sure security issues are properly addressed at all levels.

Effective manual testing might be difficult to carry out due to the growing
complexity of modern web applications and the rapid speed of software devel-
opment. Testers must also possess a broad and constantly rising skill set due
to the use of a growing variety of programming languages, frameworks, and
technologies. When multiple testers are involved, the human component of
the manual testing method might result in variations in the process’ quality
and completeness.

2.3.2 Static Application Security Testing (SAST)

SAST is a white box approach where the source code is parsed and ana-
lyzed to automatically detect vulnerabilities. Figure 2.5 demonstrates the
relationship between different security testing methodologies. By identifying
problems early in the Software Development LifeCycle (SDLC), SAST at-
tempts to provide developers the opportunity to fix them before they affect
the production environment. By examining the code without executing it,
SAST can provide insights into the application’s behavior and possible se-
curity risks. The need for more secure applications became obvious as the
Internet’s expansion exposed software to a wider range of dangers, and en-
terprises began to notice the costs associated with security breaches. Early
SAST techniques were primarily concerned with spotting frequent code faults
like input validation problems and buffer overflows.

The key advantage of SAST is the capacity to uncover vulnerabilities
early in the SDLC, decreasing the cost and time necessary to address them
[2]. Moreover, SAST can precisely pinpoint the position and characteristics
of the vulnerability by analyzing the code directly, making it simpler for de-
velopers to fix the problem. They consistently achieve better code coverage,

CHAPTER 2. BACKGROUND 35

finding vulnerabilities other methods miss. State-of-the-art SAST tools use
cutting-edge analysis methods like data flow analysis, control flow analysis,
and taint analysis to find numerous code vulnerabilities. Data flow analy-
sis follows the path taken by data as it moves through the program to spot
problems such as improper data processing or storage. In order to identify
potential security risks associated with the application’s logic, control flow
analysis examines the application’s execution paths. To find potential in-
jection vulnerabilities, such as Structured Query Language (SQL) injection
or cross-site scripting, taint analysis monitors the flow of unauthorized user
input through the application.

One of the main drawbacks of the SAST tools is the potential to produce
false positives when the tool alerts users to a problem that is not actually a
vulnerability [63]. Developers may squander time and money looking into and
trying to fix problems that do not exist. Moreover, SAST might not be able to
detect all vulnerabilities, especially those that depend on the behavior of the
program during runtime, like some access control or business logic problems
[62]. SAST is becoming increasingly difficult and time-consuming due to the
complexity of modern applications, especially the growing usage of third-
party libraries and frameworks. Additionally, SAST tools are unable to fully
comprehend the environment in which the application operates, which could
leave gaps in the analysis. Finally, SAST tools use parsers, de-obfuscators,
and syntax tree builders which are language and platform dependant. Thus,
the types of projects they can be used on are limited.

2.3.3 Dynamic Application Security Testing (DAST)

As a black-box method, DAST, tests the apps without having access to the
source code. It examines an active application to find potential security
holes and vulnerabilities. DAST simulates attacks on the application by
interacting with its exposed interfaces, such as web pages or APIs, to assess
the program’s replies and behavior under various scenarios. This type of
testing aids in identifying vulnerabilities brought on by the configuration
or runtime environment of the program. FEarly DAST technologies mostly
targeted online applications, namely SQL injection, cross-site scripting, and
weak authentication. DAST tools now handle a variety of application types,
including APIs and mobile apps, and have widened their coverage to detect
a larger range of vulnerabilities.

The advantage of a DAST is its ability to find vulnerabilities that static
analysis might miss, like configuration errors, access control problems, or
vulnerabilities resulting from the interaction of application components [3].
Additionally, it can aid in locating weaknesses connected to third-party com-

CHAPTER 2. BACKGROUND 36

SAST IAST DAST

No runtime Whitebox Blackbox
Running

Total Coverage | Language App Language Agnostic
Specific

Figure 2.5: Methodology diagram of SAST, DAST, and [AST

ponents or services which may only surface during runtime. The effectiveness
of runtime security measures such as web application firewalls or intrusion de-
tection systems can also be verified by DAST. Most recent solutions employ a
variety of sophisticated techniques. Sending erroneous or unexpected input to
an application is known as “fuzzing,” and it is used to find flaws and strange
behavior. In combination, by utilizing automated crawling, DAST tools eas-
ily find and communicate with application components like web pages or API
endpoints, that may otherwise be hidden. Moreover, DAST tools assisted by
machine learning algorithms reduce false positives and negatives of anomalies
suggestive of vulnerabilities or attacks.

However, DAST may become more difficult to utilize and less successful
in some circumstances due to the growing usage of complex client-side tech-
nologies [63]. The fact that DAST requires the application to be running
and frequently includes interacting with it in real-time means that it can
occasionally be slower and more resource-intensive than SAST. Moreover,
DAST might not be able to spot vulnerabilities that only appear under par-
ticular circumstances, including concurrency problems or race conditions. In
addition, because DAST examines the behavior of the program rather than
its code, it often offers less specific information than static analysis on the
location and kind of vulnerabilities [62]. Finally, DAST may need substantial
configuration and modification to test an application properly, particularly
for those with complicated and non-standard communication protocols.

CHAPTER 2. BACKGROUND 37

2.3.4 Interactive Application Security Testing (IAST)

IAST is a hybrid method where the testing tool connects to the applica-
tion via an agent and analyzes the application during runtime. As a result,
IAST is able to identify vulnerabilities by watching how the application’s
parts communicate with one another, how its data flows, and how it in-
teracts with its runtime environment. By combining approaches from both
methods, it inherits the advantages of both SAST and DAST. The main
advantage of TAST is its ability to provide precise and actionable informa-
tion about vulnerabilities, as it can pinpoint the exact location in the code
and the conditions under which the vulnerability can be exploited [4]. This
level of detail helps developers remediate vulnerabilities more efficiently than
with DAST alone. Additionally, TAST minimizes the rate of false positives
and false negatives compared to SAST and DAST by integrating static code
analysis with dynamic runtime analysis.

[AST also enables real-time vulnerability identification, enabling devel-
opers to identify and address security vulnerabilities as they emerge through-
out the development process. With the use of these Al technologies, IAST
tools are better able to comprehend the organization of the program, spot
patterns that point to vulnerabilities, and further minimize false positives
and negatives. Integrated Development Environment (IDE), build systems,
and continuous integration and continuous delivery (Continuous Integration
(CI)/Continuous Development (CD)) pipelines are a few examples of popular
development and DevOps tools that modern TAST tools integrate with. This
makes it simple to incorporate security testing into the software development
lifecycle.

Nonetheless, there are areas that this technique may perform poorly.
IAST tools might not discover vulnerabilities that emerge from certain hard-
ware or operating system settings. Additionally, IAST’s dependency on in-
strumentation might present issues when testing applications created using
languages that do not have mature or suitable instrumentation support. De-
pending on the application framework, IAST tools might cause compatibility
or performance concerns. They may also not be appropriate for some appli-
cations, including those that primarily rely on client-side technology such as
Single Page Application (SPA). When working with third-party components,
notably, IAST additionally needs access to the application’s source code or
binaries, which is not always possible.

CHAPTER 2. BACKGROUND 38

2.4 Related works

In this section, we will provide an overview of state-of-the-art web application
vulnerability detection tools and methods.

2.4.1 Web Vulnerability Detection Tools Comparison

Amankwah et al. [64] compared eight commercial and open-source DAST
tools. The study used the OWASP DWVA and WebGoat applications to
benchmark the tools. These applications are purposefully vulnerable for
testing and training reasons. They have documented list of vulnerabilities
from each OWASP Top Ten category, which is great for researching new tools
and techniques. The result of the testing showed that none of the tools were
able to detect authentication flaws. Furthermore, only three of the tools were
able to find access control flaws. These flaws are ranked seventh and first on
the OWASP Top Ten list, respectively. This result greatly highlights the need
for an open-source tool that can detect such vulnerabilities. Additionally,
open-source tools failed to detect high-severity vulnerabilities while reporting
a high number of false positives. Commercial closed-source performed better,
however, the highest precision among them was 68%, which is less than some
of the open-source counterparts.

Mateo Tudela et al. [4] analyzed the effectiveness of combining multiple
vulnerability detection tools. SAST, DAST, and TAST use different tech-
niques and are each better at detecting certain types of vulnerabilities that
the other tools might not be strong at. The study compares all permutations
of combining two SAST, two DAST, and two TAST tools. Half of the tools
are open-source. The tests showed IAST tools consistently outperforming
SAST and DAST in almost all metrics. One TAST tool had 100% accuracy
and recall. The best-performing permutation was the IAST4+IAST+DAST
tool combination. Combinations including SAST tools had the highest recall,
however, they also received high false positive rates. Similar to Amankwah
et al. [64], open-source tools had a lower rate of finding high-severity vul-
nerabilities. The dataset for the study was the OWASP Benchmark project,
which consists of a number of documented vulnerabilities across all categories
of the OWASP Top Ten. However, the study did not identify any flaws in
access control or authentication categories during the testing. Albahar et al.
[65] also tested multiple open and closed source scanners on the OWASP
Benchmark project. The results showed a maximum of 70% OWASP Top
Ten coverage by a commercial DAST tool.

A grand study from Elder et al. [62] scanned a real-world production

CHAPTER 2. BACKGROUND 39

application using SAST, DAST, and two different methods. A systematic
approach where the analyst designs and documents the security objectives
before the testing starts is Systematic Manual Penetration Testing (SMPT).
The unstructured version of SMPT is Exploratory Manual Penetration Test-
ing (EMPT). The system under testing was OpenMRS, a large open-source
medical record management system. In total, two DAST and three SAST
tools were tested. Out of all methods, EMPT was the most effective in terms
of Vulnerabilities per Hour (VpH), the most severe vulnerabilities found and
the count of OWASP Top Ten categories covered, followed by SMPT, SAST,
and DAST. Manual methods outperformed the automatic testing tools in
Identification and Authentication Failures, and Security Logging and Moni-
toring Failures. Additionally, in all categories, manual methods had higher
high-severity vulnerability rates. Overall, SAST found the most weaknesses,
of which more than half were low severity. Although manual techniques
demonstrate the best results, their success and required effort depend on the
analyst. Additionally, manual testing does not scale with larger projects.

2.4.2 State-of-the-art Vulnerability Detection Tools

Our research in the literature showed a lack of vulnerability detection meth-
ods for authentication and authorization categories. We believe this is mainly
due to the difficulty in detecting such weaknesses in web applications as their
logic is complex and dynamic. Until the rise of LLMs, training an AI model
powerful and capable enough to solve this task was out of reach for most re-
searchers including ourselves. SOTA tools appear every day in the research
scene. However, not many of them document and open-source their source
code. As a result, it is not straightforward to find vulnerability detection
tools that can be run and compared. Although we prefer such tools, we will
be reviewing tools that do not have publicly accessible code as well.

Guo et al. [5] proposed HyVulnDetect, a hybrid method that uses a code
property graph together with a Bidirectional Long Short-Term Memory (BiL-
STM) model, the results of which are used by the classifier to determine if the
code snippet is vulnerable. The major downside of this approach is that it
requires multiple steps of preprocessing to get data to the algorithm. Specif-
ically, creating the code property graph uses the Joern tool which works
with various programming languages. Meanwhile, the Bidirectional LSTM
model, utilizes a pre-trained word2vec model. Even though it is a white-
box detection method, it cannot pinpoint where the vulnerability is in the
given code snippet. Nonetheless, it achieves great accuracy in detection and
provides better performance compared to existing rule-based vulnerability
mining tools including Flawfinder and Cppcheck.

CHAPTER 2. BACKGROUND 40

DEKANT, an AI model that treats code as natural language, was in-
troduced by Medeiros et al. [66]. Traditional static analysis tools generally
use the approach of parsing the code or extracting it to an abstract data
structure. In contrast, DEKANT processes the code using the NLP method
hidden Markov model. Using this model, the annotated large code corpus
is used for training it, in the case of this paper, it is in PHP programming
language. To improve the detection capabilities of the model, the authors
first converted the large code segments into slices similar to code snippets
in HyVulnDetect [5]. Next, the snippets are translated into an intermediate
language which removes irrelevant lines of code and simplifies the rest using
taint analysis vocabulary. As a result, the model has fewer tokens to clas-
sify and can be used cross-platform, as long as there are converters for its
custom intermediate language. In the study, DEKANT found 4143 zero-day
vulnerabilities across several open-source PHP plugins with great accuracy.

Thapa et al. [67] created a novel method for detecting vulnerabilities
in C/C++ codebases using pre-trained transformers. Initially, they generate
Code Gadgets from the target application. This process involves removing all
comments and non-ASCII characters, normalizing the codebase, and destruc-
turing functions with classes into a single serial execution. Library functions
are unrolled in a similar way. The task of the model is a simple classifica-
tion of whether the code gadget is vulnerable or not. The authors test the
network using different transformers such as GPT, BERT, and RoBERTa.
Additionally, they test using RNN based models including BiLSTM. The
models pre-trained on natural language and source code are then finetuned.
During finetuning, the models receive code gadgets and a classification head
which allows for improved supervised learning. The study used two sets of
vulnerabilities: buffer overflow and resource management. The paper reports
the transformer-based models to outperform Convolutional Neural Network
(CNN) models in false positive and false negative rates as well as the F1-
score. Moreover, the results show that the Fl-score was positively correlated
with the size of the models.

Chapter 3

Methodology

The purpose of this chapter is to provide an overview of the research method
used in this thesis. Section 3.1 describes the research process. Section 3.2
focuses on the data collection techniques used for this research. Section 3.3
depicts the experimental design. Section 3.4 explains the techniques used
to evaluate the reliability and validity of the data collected. Section 3.5
demonstrates the method used for the data analysis. Finally, Section 3.6
defines the framework selected to evaluate the performance of the proposed
method.

3.1 Research Process

This study follows the common research process that consists of exploration,
experimentation, and evaluation. To begin, a thorough literature review was
undertaken at the start of the project and was kept up to date throughout.
During the process, cutting-edge transformer models and training datasets
were evaluated for the proposed technique. Next, the experiment scope and
methodology were designed based on the gaps found in the literature re-
view. This process includes selecting the pre-trained model, setting up the
training environment, and creating the experiment pipeline. Finally, the
best-performing models are analyzed and compared using the assessment
approach mentioned in Section 3.6. Post-analysis, we discuss the results of
the experiment, and share our research learnings in the study, followed by
future research directions. The overall process can be viewed in Figure 3.1

41

CHAPTER 3. METHODOLOGY

Exploration

Literature
Review

-

v

Model &
Dataset
Research

-

Assesment

v

Y

Experiment
Design

Experiment

Experimentation

Evaluation

v

r

Analysis

|

v

r

Discussion

Figure 3.1: Research Process

42

CHAPTER 3. METHODOLOGY 43

3.2 Data Collection

Our research found a few public datasets of HyperText Transfer Protocol
(HTTP) requests that were labeled with vulnerability identifiers, such as
TORPEDA [68] and ECML/PKDD 2007 Discovery Challenge [69] datasets.
However, after careful consideration, we concluded that our research would
not benefit from them. These datasets consist of request data from net-
work and application firewalls which are labeled as malicious/non-malicious
or in some cases with CWE identifiers. Nevertheless, they do not include
the HTTP responses to the request. With only request data, classification
methods can only identify payload-based attacks. Vulnerabilities, such as
CWE-684, require information from the response for identification. Lastly,
none of them have labeled samples on our target vulnerabilities, making them
candidates only for negative examples.

To rapidly create a new labeled dataset, we used a few different tech-
niques. At first, we gathered vulnerability samples from OWASP and MITRE
resources. These included demonstrative examples as well as documented
real-world application vulnerabilities. We converted the request and response
pairs to our minimized text format and prepended contextual information to
fit our template. We also created negative samples based on the vulnerable
examples with small changes to make the examples non-vulnerable. Next,
we crafted a few-shot prompt that includes a task description, a template
for the response, and a list of labeled examples for ICL. Using this text,
we prompted the gpt3.5-turbo model by OpenAl. The underlying model is
a GPT3-based LLM, finetuned for conversational prompting and optimized
for latency. Trained with over multi-hundred billions of tokens of text, it
received an 85 F1 score in a few-shot setting in CoQA benchmark [40]. In
our data generation method, we used few-shot prompting combined with ad-
vanced prompt engineering techniques that contribute to ICL. The maximum
sequence length allowed for input and output combined is 4096 tokens. This
enables us to leverage longer prompts with increased context.

The quality of the prompt has a direct effect on the performance of
the generative models. Thus, we followed an evolutionary approach in our
prompting process. At each iteration of the instruction prompt, we evalu-
ated the quality of the results and augmented the prompt until the desired
quality was achieved. For the purpose of accelerating the process, we in-
structed the model to generate 10 samples. At first, our prompt included
both negative and positive samples. After examining 500 generated sam-
ples, we could only identify 10 positive labels. In an attempt to increase the
number, we separated the positive sample generation prompt, removing the

CHAPTER 3. METHODOLOGY 44

negative label description and samples. With this prompt, the true positive
sample generation rate doubled.

The next prompt included a short task description, a template for the
response, and few-shot samples. It had 10% accuracy in generating vulner-
able samples as it was instructed. Additionally, the generated samples often
did not comply with the provided sample template. In the next iteration
of the prompt, we extended the description of the task, highlighting the re-
strictions and improving the vulnerability definition. These changes yielded
great improvement in accuracy and reduced the likeliness of malformatted
samples.

A few more iterations of the instruct prompt were experimented with,
altering variables including few-shot example count and grammatical changes
to the task description. Evaluation of the quality of the output demonstrated
minimal improvements. In the final version of the prompt, we included CoT
for each few-shot sample, further increasing the accuracy of the output. This
prompt can be examined in detail in Appendix B. The maximum achieved
accuracy was 30% for the correctly generated samples. Unfortunately, the
low rate of accuracy nullified the original plan of using the generated samples
as is in the dataset. Consequently, we decided to manually review and re-
label each sample that was generated to ensure the validity of our dataset
and experiment.

The process of manually labeling was a slow task due to its complexity. It
took on average 30 seconds to label one sample. To improve the efficiency of
labeling, each sample was formatted with a script for easy-to-read multi-line
paragraphs with keywords such as "Request” highlighted. Since most of the
examples the model provided were false positives, we decided to only review
samples generated to be positive by the model. This approach lowered the
class imbalance in the labeled dataset. We ended the labeling process once
we had at least 200 labeled samples from each class. In total, 1780 samples
were manually labeled.

The abnormal examples the model generated were missing context, re-
quest, or response, were malformatted, and in rare cases, it replied back with
the prompt without changes. At this stage, we cleaned the data by removing
the abnormal examples, concatenating data into a single file, and reformat-
ting it to Comma Separated Values (CSV) format. We also fix examples
that are out of order, spread across multiple lines, or have more tokens than
the model can handle without truncation. The latter was difficult to correct
since the token count would change based on the tokenizer. Thus, we set a
sensible maximum length and filter unfitting samples. Finally, we split the
dataset into smaller chunks for observing the effect of sample size on model
performance.

CHAPTER 3. METHODOLOGY 45

3.2.1 Sampling

The dataset is sampled into multiple smaller sub-datasets using stratified
sampling, except for the “XLarge” dataset as can be seen in Table 3.1.
The datasets were designed for cross-validation, each fold will have an equal
amount of classes if split into 10 folds. The “XLarge” dataset was created
using the entire labeled dataset which had mostly negative samples. This
dataset is also designed for 10-fold splits and each fold has an equal amount
of labels.

Name Total Not Vul- | CWE-639 | CWE-209
nerable

Small 150 50 50 50

Base 300 100 100 100

Large 600 200 200 200

XLarge 1780 1340 200 200

Table 3.1: Datasets and their properties

3.2.2 Target Population

The target population is a pair of vulnerabilities in the Broken Access Control
category from the OWASP Top Ten list. CWE-639 Authorization Bypass
Through User-Controlled Key is labeled as “17. CWE-209: Generation of
Error Message Containing Sensitive Information is labeled as “2”7. Samples
containing no vulnerability are labeled as “0”. No other vulnerability is
sampled or classified.

3.3 Experimental Design

The experimental design is separated into two phases: data preparation, and
model testing. The purpose of the first phase is to create the training dataset
which includes all steps regarding data, including data gathering, cleaning,
generation, and preparation. The second phase utilizes the datasets created
from the previous stage and trains a transformer model for classification,
which will be used for evaluation.

1. Collect vulnerability samples

2. Create few-shot prompts from samples

CHAPTER 3. METHODOLOGY 46

3. Use the prompts with GPT3 for dataset generation
4. Clean, label and prepare the training dataset
5. Testing and Experimenting finetuning LLMs using SetFit

6. Analysis

3.3.1 Test Environment Setup

The project repository includes the datasets, code for finetuning, and ex-
periment scripts . We provide a Dockerfile in Appendix A to set up the
environment for the experiment and the finetuning of the LLM. Experiments
can be run with the respective Python scripts. We also include scripts for
generating the graphs used in the analysis.

3.3.2 Hardware and Software to be used

The study will use two separate environments for the experiments. A training
environment running on the Google Colab [70] service is used for finetuning
the models. This environment has 3 Graphical Processing Unit (GPU) op-
tions: NVIDIA T4, V100, and A100 which have 15GB, 15GB, and 40GB
VRAM respectively. The second environment is used for inference experi-
ments, which runs on a consumer-grade laptop with an RTX 3060 GPU with
6GB of VRAM, and an AMD Ryzen R7 5800H 8-core Central Processing
Unit (CPU) with 16GB of RAM. As software, Python is used as the script-
ing language, and HuggingFace SetFit [50] library for finetuning and running
the LLM model. SetFit library requires PyTorch deep learning library under-
neath, which should be installed before it [71]. The project uses open-source
pre-trained transformer models hosted on the HuggingFace Hub [72]. At the
beginning of finetuning scripts, this model will be downloaded to the local
device. Thus, an Internet connection is required to begin the experiments.

3.4 Assessing Reliability and Validity of the
Data Collected

3.4.1 Reliability of Method

The entire experiment can be launched within a containerized environment
using Docker [73]. Thus, any researcher with an interest in repeating the

'https://github.com/e1337us3r/KARTAL

 https://github.com/e1337us3r/KARTAL

CHAPTER 3. METHODOLOGY 47

study can simply run the Dockerfile on supported platforms. Running the
experiment in a container creates an identical environment to the one used
in the paper, down to the OS level. Moreover, using the Dockerfile image
will automatically install the required software within the container using the
same version numbers as the experiments, resulting in a greatly consistent
testing environment.

3.4.2 Reliability of Data

Although the finetuning process has a certain amount of inherent random-
ness, the results of the experiments we share in the paper are consistent and
can be reliably recreated. At first, in order to have reliable and consistent
results with each experiment trial, we remove all possible sources of random-
ness and noise. Our datasets are prepared for folds and shuffled in advance
for finetuning. This ensures future experiments will use the same training
and validation splits with an equal amount of classes. Another precaution we
took was to preselect a seed value for when randomness is needed. Most pre-
trained models come without a classification head which has to be initialized
with random weights. Initializing model head weights in each experiment.
We use the preselected seed value each time a new head has to be initialized
for increased reliability in results.

3.4.3 Data Validity

Measurements of metrics for evaluation are done using the open-source “eval-
uate” library from HuggingFace. It is a well-established Python library that
can take highly accurate measurements during the model evaluation step.
The measurements are returned with high-precision floating point numbers,
which we then round up for presentation. Furthermore, we use k-fold cross-
validation and take the mean of k-folds for each individual metric which
conveys a holistic view of performance, improving the validity of results.

3.5 Planned Experiments & Data Analysis

In order to assist further research, we aim to demonstrate the performance
of the proposed technique with various parameter configurations. Demon-
strating the effect of each variable will allow future experiments to focus only
on the ones that matter for the overall performance of the technique. The
variables we test variations of are the pre-trained model and dataset size.
We also experiment with hyperparameters of the training model, however,

CHAPTER 3. METHODOLOGY 48

analysis of them is out of scope for this study. Nevertheless, we share the
settings we used for the training process for the repeatability and validity of
our results.

3.5.1 Hyperparameters

Hyperparameters are the high-level variables that configure the model train-
ing process. They control the performance and behavior of the model. Select-
ing the best parameters is crucial for the research as suboptimal parameters
can mislead the end results. Hyperparameters cannot be calculated and re-
quire experimentation to find the optimal configuration. Iterating over a
large pool of parameter configurations and testing them for the best perfor-
mance can be referred to in the literature as “hyperparameter tuning” or
“hyperparameter optimization” [74]. In our study, we optimize for both the
convergence speed and performance of the model. Due to limited resources,
we had to limit the search space of the optimal hyperparameters. Addition-
ally, we set the total experiment to count to 20 which saves time for other
parts of the study. The final parameters that were used in the study can be
seen in Table 3.2.

Parameter ‘ Value ‘ Description

Learning Rate | 2e-6 Step size at which the model adjusts its pa-
rameters

Epoch 3 Number of times the entire dataset is passed
through the model

Iteration 20 Number of text pairs to generate

Count

Seed 25 Randomizer seed value to ensure repro-
ducibility of the results

Warmup pro- | 0.1 Proportion of training steps dedicated to

portion gradually increasing the learning rate

Batch Size 32 Number of training examples processed in a
single iteration

Table 3.2: Hyperparameter configuration used for training

3.5.2 Pre-trained Models

The performance of the finetuned model has a direct relationship with the
performance of the pre-trained model. Model authors generally publish the

CHAPTER 3. METHODOLOGY 49

performance of the model on various benchmarks making choosing the pre-
trained model with the best performance relatively simple. Hardware require-
ments of finetuning and running inference changes with each model. The
model properties that affect the VRAM requirements are sequence length,
number of layers, and vocabulary size. The overall scale of the model also
affects the inference latency. In order to find the optimum model with max-
imum performance and minimum latency, we experiment with the top 3
best-performing sentence transformers that are available on the HuggingFace
platform.

Model Name Performance | Encoding Seq.
Speed Length
all-mpnet-base-v2 63.30 2800 384
all-distilroberta-v1 59.84 4000 512
all-MiniLM-L12-v2 59.76 7500 256

Table 3.3: Pre-trained model properties

We highlight three important features of pre-trained models in Table 3.3.
Performance is the average score of 14 distinct tasks from various disciplines
in encoding sentences, and semantic search [75]. The encoding speed is the
number of sentences an NVIDIA V100 GPU can encode per second. Lastly,
the sequence length is the maximum number of tokens the model can process,
including the number of tokens in the output. The all-mpnet-base-v2 model
has the best overall score, however, it is also the slowest-to-run model. In
contrast, all-MiniLM-L12-v2 is the fastest model at the cost of performance
and 1/3 shorter sequence length. Meanwhile, all-distilroberta-vl has the
all-round performer, positioning itself in the middle of both LLMs.

3.5.3 Training Dataset Size

The size of the dataset used in the training can have an impact on the per-
formance of the model. The potential effect is amplified when the dataset is
smaller in size. In order to demonstrate the effect of data size on the per-
formance metrics of the trained model, we created 4 distinct datasets listed
in Table 3.1. The first three datasets have an equal amount of data in each
label category with only varying in overall size. The final and largest dataset
is unbalanced, with most of the labels in the non-vulnerable data category.
The purpose of creating this dataset was to test whether increasing labeled
data in the non-vulnerable category would result in lower false positives in

CHAPTER 3. METHODOLOGY 20

the classification phase. We conduct this experiment exclusively using the
all-MiniLM-L12-v2 model as it the fastest model to finetune.

3.5.4 Inference Performance

The average time to make a prediction is an important metric for evaluating
the performance of an LLM. In cases where the inference latency is excessive,
synchronous applications of the model are severely reduced. A fast model
could enable real-time detection of vulnerabilities during development which
can greatly increase the security of the web application. We measure the
latency of our finetuned LLM by running the prediction pipeline with 1000
randomized samples. The experiment is conducted on a laptop to test the
feasibility of the real-time detection use case, the hardware specifications of
which were detailed in Section 3.3.2. Additionally, we run the experiment
with and without GPU acceleration to get a comprehensive benchmark of
the performance of the model. The test is run 10 times and the average,
minimum, and maximum inference latency is recorded.

3.6 Evaluation Framework

Since we formulate the problem as a classification, we construct a confusion
matrix and evaluate the key metrics using it. In a classification issue, a
confusion matrix is a table that indicates the number of true positives (TP),
false positives (FP), false negatives (FN), and true negatives (TN) for each
class. The columns of the matrix indicate the expected class labels, whereas
the rows represent the actual class labels. The confusion matrix is an effective
tool for assessing classification model performance. It enables us to examine
not only how well the model performs overall, but also how well it performs
for each class and where mistakes occur. We calculate numerous metrics by
studying the values in the confusion matrix, which will help us understand
the model’s strengths and flaws and compare them to other models.
To evaluate the performance of the proposed method we use cross-validation.

A popular method in ML for assessing the effectiveness of prediction mod-
els is the k-fold cross-validation. The data is divided into K folds of equal
size using a random number generator before k-fold cross-validation is per-
formed. The remaining K-1 folds are then utilized for training the model,
with one of the K folds serving as the validation set in each iteration. On
the training set, the model is developed, and the validation set is used to
assess its performance. Each of the K folds is utilized precisely once as the
validation set, and the procedure is repeated K times. Ultimately, an overall

CHAPTER 3. METHODOLOGY 51

estimate of the model’s performance is generated by averaging the outcomes
of each iteration. The dataset size and required degree of precision for the
performance estimate influence the choice of K, which in our study is 10.

Compared to conventional hold-out approaches, k-fold cross-validation
has the main benefit of enabling a more thorough examination of the model’s
performance. It can give a more reliable assessment of the model’s perfor-
mance by training and testing it on various subsets of the data, lessening the
influence of any peculiarities or random fluctuations in the data. By assess-
ing the model’s performance on the validation set in each iteration, k-fold
cross-validation may also be used to finetune model hyperparameters such
as the number of hidden layers in a neural network.

One of the key benefits of this validation method is the full utilization of
the dataset when training and testing, which is crucial when using a smaller
dataset. This method provides for a more complete assessment of the model’s
capacity to generalize to new data. Nevertheless, training and testing the
model K times is a time and resource-intensive operation. Moreover, datasets
with unbalanced classes or skewed distributions may not be acceptable for
k-fold cross-validation, necessitating alternate assessment.

To overcome this issue we use stratified sampling. It is a sampling tech-
nique used in statistics and ML to ensure that the distribution of a target
variable is well-represented in the sample data. The technique involves divid-
ing the population into subgroups or strata based on the target variable, and
then randomly sampling from each stratum in proportion to its size. This
ensures that each stratum is represented in the sample and that the sample
distribution is similar to the population distribution.

3.6.1 Evaluation Metrics

The evaluation metrics we utilize are frequently employed in binary classifi-
cation issues and offer a thorough assessment of ML models. We use macro
averaging strategy to jointly assess all label classes. In situations where in-
correct positive predictions have a significant cost, precision estimates the
fraction of accurate positive forecasts among all positive predictions. The
fraction of true positives that are accurately detected is measured by recall,
which is a crucial metric when false negative predictions are costly. Both of
these metrics are intermediate values and do not represent well the overall
performance of the model. While accuracy and recall are simple to perceive
and comprehend, they might be deceptive if the dataset is unbalanced or
the cost of false positives and false negatives is not equal. The Fl-score is
an excellent statistic to utilize in this case since it is the harmonic mean of
accuracy and recall.

CHAPTER 3. METHODOLOGY 52

Precision = Tijk—PFP (3.2)

Recall = TP,_Z—L—PF]V (3.3)

Fu = 25 Prein e o0

MOC = (TP*xTN)— (FPx FN) (3.5)

V(TP + FP)« (I'P+ FN)«(I'N+ FP)* (TN + FN)

It is crucial to have a metric representing the overall performance of the
model including the negative statistics, especially in situations when erro-
neous optimistic forecasts might have serious repercussions. Thus, we chose
the Matthews Correlation Coefficient (MCC) as the metric to optimize for.
MCC considers both true and false positives and negatives and calculates the
correlation between predicted and real labels [76]. Unlike other assessment
measures such as accuracy, which can be deceptive in unbalanced datasets,
MCC considers the distribution of positive and negative cases in the dataset.
Another advantage of utilizing MCC is that it produces a single scalar num-
ber that summarizes the model’s performance, which makes comparing the
performance of multiple models easier. Moreover, changes in the decision
threshold have no effect on MCC, which might be a concern for assessment
metrics like accuracy and recall.

Chapter 4

Implementation

In this chapter, we present the implementation details of each stage of the
experiment.

Our novel approach KARTAL consists of multiple components that have
different functions. The main components are the Fuzzer, Prompter, and
LLM, which are employed in the respective order. The classification flow
continually processes information from the target API until a prediction is
made. The Fuzzer component sends various HTTP requests to the API
with different levels of user privileges. The requests and response pairs are
then compressed and stored. Next, the Prompter component chains the
saved pairs into a single prompt together with the API context and prompts
the finetuned LLM. Finally, the LLM makes a classification based on the
information in the prompt and prints the predicted label.

Figure 4.1 illustrates the architecture of the proposed method. The com-
ponents of KARTAL are yellow color coded. The dotted lines represent
optional data flows. As can be seen from the diagram, the approach is sim-
ple and flexible. Additional components can be added to the system without
requiring re-finetuning the model. Similarly, the model can be replaced with
minimal changes to the system.

4.1 Fuzzer

The first component in the flow of data is the Fuzzer. In general, fuzzers
are automated testing tools designed to analyze the security and resilience of
software applications. Their function is to systematically produce and insert
erroneous, unexpected, or malformed data into applications such as APIs.
When done at scale, they can discover otherwise difficult-to-spot weaknesses
in code. There are many types of fuzzers such as basic, intelligent, and

33

CHAPTER 4. IMPLEMENTATION o4

Request &
Response
Pairs

Classification Prompter

Figure 4.1: Proposed method architecture

protocol based. Figure 4.2 presents the process of the Fuzzer component in

KARTAL.

API

Route A

User-A
Route B User-B

Database Prompter

000

Figure 4.2: Fuzzer component

The ideal Fuzzer implementation for KARTAL combines generation and

CHAPTER 4. IMPLEMENTATION 95

mutation-based approaches. Mutation-based fuzzers alter existing valid in-
puts using mutations such as bit flips, random insertions, deletions, or re-
arrangements. Meanwhile, generation-based fuzzers generate inputs from
scratch while conforming to the API’s structure and limitations. They can
produce legitimate and semantically relevant inputs using grammar-based
or model-based methodologies, which can be useful for testing complicated
APIs. Broken access control flaws often require testing various levels of au-
thorization. As such, the Fuzzer component must methodologically craft and
mutate inputs with different user groups and privileges.

The responses from the requests that the Fuzzer sends are paired together.
Next, the results from the Fuzzer are transferred. The dotted lines in Figure
4.2 represent alternative ways this transfer can be done. The first method
is to directly send the resulting fuzz pairs in batches to the Prompter. The
advantage of this approach is low complexity. However, this method suffers
from lower chances of identifying vulnerabilities since the random sampling
of batches may couple irrelevant data together. A more effective approach
is to store the request and response pairs from which they can be intelli-
gently grouped for the Prompter. For instance, the grouping can simply
be done based on the URI path or resource. KARTAL does not include a
Fuzzer, users are free to choose open-source source fuzzers or create a custom
implementation.

4.2 Prompter

The purpose of the Prompter component is to combine the list of HTTP
request and response pairs and application context into a single coherent
text to prompt the LLM for classification. Figure 4.3 displays an example
of a prompt created by the Prompter component. The structure of the
prompt is comprised of 2 parts. The Context describes the target application,
lists the names of all entities, and defines the roles of each of them. This
information provides the LLM with the constraints of the application as well
as insights into the domain. For instance, in a social media application, the
users are expected to have read-only access to posts by other users. Unless
specified otherwise, the model will not mark such interactions as vulnerable.
This approach benefits from the ICL capabilities of the model. The Context
provides dynamic properties to KARTAL, allowing it to adapt to different
environments and restrictions during inference.

The second part of the prompt consists of a list of HT'TP request and
response pairs. The pairs can either directly be fed in from the Fuzzer or
queried from storage, as can be viewed in Figure 4.1. Depending on the type

CHAPTER 4. IMPLEMENTATION 26

Context: An ecommerce app with 3 types of users Customer, Merchant and
Admin. Customers and Merchants can only view and edit their own data. Admins
can view and edit all data.

Requests:

Request-1: Customer-A POST /workshop/api/auth/login with parameters
username='micheal’,password="123'";

Response-1: Unauthorized with parameters success=false,message='123 is
incorrect password’;

Request-2: Customer-B POST /workshop/api/auth/login with parameters
username='beatrice',password='123123';

Response-2: OK with parameters token='uYda27...'

Figure 4.3: An example Prompt ready for classification

of vulnerability, the selection of the request and response pairs can be im-
portant. In such cases, querying the pairs based on the URI path, object or
entity can improve the vulnerability detection rate of the model. Neverthe-
less, users who implement a custom query mechanism should pay attention
not to over-constrain the search space of pairs, leading to impairment of the
accuracy of the model.

4.2.1 HTTP Request and Response Compression

A major limitation of transformer models is the sequence length. As men-
tioned in Section 2.1.1.3, the hardware requirements for running the model
scale quadratically with the number of tokens in input and output. Table 3.3
displays the maximum sequence length allowed by each pre-trained model.
Given this limitation, using the full HTTP request/response would reduce
the amount of context that can fit in a single prompt. To address this issue,
we use compression. Our method of compression has 4 stages. First, we omit
fields that are not relevant to the classification such as the “Content-Length”
header and the HTTP protocol version. Next, we deserialize the query and
body parameters into a single stream of text, removing markup and addi-
tional syntax of formats, such as XML and JSON. The third stage trims long
blocks of text such as the contents of a blog post. Additionally, we assign
short identifiers to the randomly generated identifiers that objects may use
in formats including UUIDvA4.

CHAPTER 4. IMPLEMENTATION o7

Finally, we extract and convert the credentials in the HT'TP request into
the authorized entity. These credentials are commonly stored in the “Cookie”
or “Authorization” header and sent with each request by the browser or
the HTTP client. Mapping credentials to an entity can simply be done by
assigning a random letter to each one. This approach will treat all users
to have the same level of privilege. However, entity-privilege information is
required to detect broken access control vulnerabilities that involve privilege
escalation.

POST /content/new?id=1 HTTP/1.1 Request-1: User-A POST /content/new
Host: foo.example with parameters id=1,field1=valuel,
Content-Type: field2=value2;
application/x-www-form-urlencoded

Content-Length: 27 Response-1: OK with parameters
Cookie: Sessionld=uY0023...ABC message="Thanks", user="UserA";

X-Forwarded-For: 10.2.3.1

field1=valuel&field2=value2 -

HTTP/1.1 200 OK

Content-Type: application/json
Content-Length: 137

Cookie: Sessionld=uY0023...ABC

{"message": "Thanks","user":"UserA"}

Figure 4.4: HTTP compression example

Utilizing compression significantly reduces the token count for each HTTP
request and response. In the example shown in Figure 4.4, the token count
drops from 130 to 48, a 63.1% reduction. The savings can reach 90% de-
pending on the request/response headers or content, further increasing the
amount of context that can be fit in a single prompt. It should be noted that
our implementation of the HT'TP compressor is customized for the specific
vulnerabilities we aim to classify. Other types of vulnerabilities may require
some of the fields we omit or truncate. Users should implement a compressor
that is customized to their requirements based on the techniques we provide.

4.3 Model Finetuning

NLP and ML studies have become much more accessible in light of user-
friendly ML libraries, such as SetFit by HuggingFace [50]. These libraries of-

CHAPTER 4. IMPLEMENTATION o8

fer algorithms, tooling, and case-specific recipes that may be quickly applied
to a variety of NLP applications by researchers, developers, and even non-
technical users. In particular, HuggingFace’s ecosystem of libraries stands
out as a thorough and easy-to-use package that lower the barrier to cre-
ating cutting-edge AI models. HuggingFace hosts a variety of pre-trained
models and offers an easy interface for optimizing these models for certain
tasks. The open-source library and tooling together with hosted models save
time, funds, and human resources, fundamentally enabling the research to
be completed.

The SetFit library provides a consistent user interface for many models,
users can transition between models without having to make significant code
alterations. This feature allowed us to test our method on different LLM ar-
chitectures within the time constraints of the study. The library is integrated
with deep learning frameworks including PyTorch and TensorFlow [71, 77],
enabling users to choose the ML backend and benefit from GPU or Tensor
Processing Unit (TPU) acceleration for effective training and inference. Set-
Fit provides simple interfaces for tokenization, model setup, hyperparameter
optimization, and training.

The overall process of finetuning can be described in 3 sections: dataset
preparation, initializing evaluation, and creating the training loop. First, we
select and load the dataset from the CSV file. We use the Datasets [72] library
for this purpose which comes with a few key benefits. It can load datasets
locally or from the Internet, in multiple text formats, and simultaneously
split the dataset into different parts. Using this feature, we create 10 folds
and split the dataset into training and validation sets. The first fold of the
validation set is the first 10% of the dataset, while the rest is part of the
training set. Then the second 10% becomes the validation set with the rest
becoming the training set. The process repeats until all 10 folds are created.

Next, we use Evaluate and Sklearn libraries to create our evaluation func-
tion. Evaluate offers out-of-the-box capabilities for calculating common met-
rics such as accuracy and recall. In order to generate the confusion matrix,
we use the metrics module of the Sklearn library. Combining all together, we
create a single function that takes model predictions and the ground truths
and returns a dictionary object with the metrics we presented in Section 3.6.
This function runs after the target number of epochs has been completed for
each fold. We also create a separate function that calculates the mean of
each metric for all folds.

In the last phase, we create the training and evaluation loop. For each
fold, we load a new copy of the pre-trained model. The model is only down-
loaded for the first fold and will be retrieved from the cache for subsequent
iterations. Next, we create our model trainer with the dataset of the fold,

CHAPTER 4. IMPLEMENTATION 29

and the hyperparameters listed in Section 3.2. Finally, we start the train-
ing process. Initially, the library generates the contrastive training pairs and
then begins to iterate over each. Batching assists in accelerating the iteration
by processing multiple pairs together.

For maximum performance, we use end-to-end training. End-to-end train-
ing requires updating the weights of the model and classification head simul-
taneously while it is being trained. With this method, the model as a whole
may incorporate both low-level and high-level properties to adapt to the
particular job. Head-only training, on the other hand, freezes the model
weights and updates only the classification head. This approach accelerates
the training process significantly. However, the performance of head-only
training depends heavily on the dataset of the pre-trained model. In some
cases, this will lead to subpar performance if the trained task does not appear
in the pre-trained model’s dataset. While computationally more expensive,
end-to-end training gives the model the chance to fine-tune all of its pa-
rameters, improving the learning performance of both previously seen and
unexplored tasks.

Once the training is completed for a fold, we evaluate against the valida-
tion dataset and save the fine-tuned model to disk for future usage.

4.4 Inference

The main output of the fine-tuning stage is the trained model. The saving
functionality provided by the library creates a folder on disk that includes
updated model weights, configuration, and classification head. For inference,
we load the fine-tuned model by providing the path to this folder, which
can also be located on the Internet. Once loaded, we can prompt the model
for classification. This can be done in two ways, either by providing a list of
strings, each of which represents a prompt, directly to the model. The output
will be a list containing predicted labels for each prompt in the same order
as the input list. The second method uses the prediction probe of the model
which outputs a list of probabilities for each class label instead of predicting
a single label. The inference can be run on GPU or CPU, which can be
switched at runtime. It should be noted, that the hardware requirements of
inference are considerably lower than the training process.

Chapter 5

Results and Analysis

This chapter provides a comprehensive analysis of the experimental results
obtained from our study. In Section 5.1, we present the evaluation of fine-
tuning different pre-trained base models along with a comparative analysis
of their performance. Next, in Section 5.2, we delve into the results ob-
tained by varying the size of the training dataset and assess its impact on
the performance of the model. In Section 5.2.1, where we analyze misclassifi-
cations made by the models. Lastly, in Section 5.3, we evaluate and present
the efficiency of the model in terms of their inference time and resource re-
quirements. Throughout this analysis, we refer to the dataset introduced in
Section 3.2 and utilize the evaluation metrics discussed in Section 3.6.1 to
report our findings.

5.1 Pre-trained Model

As described in Section 3.5.2, we experiment with finetuning different classes
of pre-trained transformers to identify the most optimal base model. After
successfully training all 3 models, we compile all of the evaluation metrics
into a single table in Figure 5.1. The values in the table are the mean of the
results of the 10-fold cross-validation. We sort the table based on descending
MCC value.

At first glance, we can see that finetuned all-mpnet-base-v2 model out-
performs other finetuned models in all metrics except for accuracy. The
finetuned all-distilroberta-v1 achieves an accuracy of 87.53%. Its accuracy
slightly surpasses the accuracy of finetuned all-mpnet-base-v2 by 0.39%, and
all-MiniLM-L12-v2 by 1.77%. In recall evaluation, the finetuned all-mpnet-
base-v2 model is again the best performer with 83.36% recall. Although the
finetuned all-distilroberta-v1 had the best accuracy, it ranks second in recall

60

CHAPTER 5. RESULTS AND ANALYSIS 61

with 80.86%, a 3.09% difference. By contrast, recall is the worst-performing
metric for all-MiniLM-L12-v2. It only manages to achieve 75.98% recall,
6.42% less than the second best, and 9.71% than the best score.

In precision measurements, the finetuned all-mpnet-base-v2 once again
exceeds the scores of other finetuned models. It scores 82.20% precision, a
modest improvement of 0.72% compared to all-distilroberta-v1 which scored
81.61%. The precision of the finetuned all-MiniLM-L12-v2 model ranks last
with 77%, a clear difference of 6.75% compared to all-mpnet-base-v2, and
5.99% compared to all-distilroberta-v1.

Table 5.1: Evaluation of the fine-tuned model with different base models

Base model Accuracy Recall Precision F1 MCC
all-mpnet-base-v2 ~ 87.19% 83.36% 82.20% 0.82 0.70

all-distilroberta-vl ~ 87.53% 80.86% 81.61% 0.80 0.69

all-MiniLM-L12-v2 86.01% 75.98% 77.00% 0.76 0.63

For well-rounded metrics including F1 and MCC, the rankings from other
metrics do not change. Nevertheless, the differences between each score dwin-
dle. The finetuned all-mpnet-base-v2 model scored 0.7 MCC, followed by
0.69 MCC of all-distilroberta-v1, and finally all-MiniLM-L12-v2 model with
0.63 MCC score. Finetuned all-mpnet-base-v2 demonstrates 1.45% improve-
ment compared to the finetuned all-distilroberta-v1, and, 11.11% compared
to all-MiniLM-L12-v2. The F1 scores are similarly close. The finetuned
all-mpnet-base-v2 model scores 0.82 which is 2.5% higher than finetuned
all-distilroberta-v1, and 7.29% higher than finetuned all-MiniLM-L12-v2.

5.2 Training Dataset Size

Generating and manually labeling data was one of the most time-consuming
tasks in the study. In this Section, we examine the relationship between
training sample size and evaluation metrics. Figure 5.1 illustrates the change
in each metric at training sample sizes of 400, 800, 1200, and 1600. We
perform k-fold cross-validation and take the mean of 10 folds. The samples
are taken from the “XLarge” dataset and represent the first 25, 50, 75, and
100 percent of the samples in each fold. We selected all-MiniLM-L12-v2
as the pre-trained model to finetune for this experiment due to its smaller
footprint and training speed.

CHAPTER 5. RESULTS AND ANALYSIS

Accuracy vs Training sample count

62

Recall vs Training sample count

—8— Accuracy 754 —&— Recall
85.0
825
704
80.0
2775 8
> = 65
g g
5750 &
8
<
72,5
60 1
70.0
67.5 55
65.0 T T T T T T T T T T T T T T
400 600 800 1000 1200 1400 1600 400 600 800 1000 1200 1400 1600
Training sample count Training sample count
(a) (b)
Precision vs Training sample count F1 vs Training sample count
—@— Precision
754 075 * FL
701 0.704
F 654 0.65 4
<
o -
7}
G 604 " 0.60
I
551 055
507 0.501
451 T T T T T y 0451 T T v r T y
400 600 800 1000 1200 1400 1600 400 600 800 1000 1200 1400 1600
Training sample count Training sample count
(¢) (d)
MCC vs Training sample count
—e— MCC
0.60 1
0.551
8 0501
S
0.45
0.40 1
400 600 800 1000 1200 1400 1600

Training sample count

(e)

Figure 5.1: Evaluation Metrics vs Training Sample Count. (a) Accuracy,
(b) Recall, (c) Precision, (d) F1, and (e) Matthews Correlation Coefficient
(MCC) plotted against the training sample count. The evaluation metric
for each graph shows how it changes as the quantity of training samples
increases.

CHAPTER 5. RESULTS AND ANALYSIS 63

The accuracy of the model has a positive relation with training sample
count as demonstrated in Figure 5.1a. However, the effect of sample size on
accuracy is not evident at first. By doubling the training sample size from
400 to 800 samples, the accuracy increases by only 0.69%. Next, we increase
the count by 50% from 800 to 1200 samples. During this training round,
we see a 4.51% improvement in accuracy. Finally, we increase the training
sample count by another 1/3 from 1200 to 1600. The boost in accuracy is a
remarkable 24.64%, far surpassing previous gains from previous steps.

The recall values of the model exhibit intriguing tendencies in relation to
the training sample count. As seen in Figure 5.1b, there is a significant rise
in recall as the sample size grows. When the sample size is increased from
400 to 800, the recall improves by 3.81 points, which is a 7.13% improvement.
Continuing the pattern, increasing the sample count by 50% to 1200 yields
a recall value of 66.77, showing a significant 16.63% improvement over the
previous step. Finally, a 1/3 increase to a sample size of 1600 causes the
trend to lose steam, only improving recall by 13.79%.

The precision of the model has a varied pattern with increasing sample
size, as shown in Figure 5.1c. With a sample size of 400, the precision value
is initially a modest 46.29%. When the sample count is increased to 800, the
precision increases by 24.32%, culminating in a precision value of 57.55%.
This increase reflects the favorable influence of a bigger training sample on
model precision. Increasing the sample count by 50% to 1200 results in a
precision value of 72.94%., a substantial improvement of 26.74%. However,
when the sample size is further expanded by 1/3 to 1600, the precision growth
slows, with an incremental gain of 5.57%, ending with a precision value of
77%.

As seen in Figure 5.1d, increasing sample sizes result in a significant rise
in F1 score similar to the recall curve in Figure 5.1b. The initial F'1 value
is 0.46 for a sample size of 400. However, when the sample size is increased
to 800, the F1 score improves by 6.52%, resulting in an F1 value of 0.49.
Continuing the pattern, increasing the sample count by 50% to 1200 results
in a significant 28.57% rise in the F1 score, providing an F1 score of 0.63.
This huge improvement emphasizes the need of having a large enough sample
size to get better F1 scores. Finally, with a 1/3 increase in sample size to
1600, the F1 score rises at a slightly slower rate. The incremental increase
in F1 value is 20.63%, yielding a final F1 score of 0.76.

The MCC curve in Figure 5.1e is a more rounded version of the F1 curve
in Figure 5.1d. This similarity is the result of both equations sharing the pur-
pose of providing well-balanced evaluation metrics for classification. Upon
doubling the initial sample count, the MCC score improves by 10.81%, re-
sulting in an MCC value of 0.41. In a resembling trend, when the sample

CHAPTER 5. RESULTS AND ANALYSIS 64

count is raised to 1200, the MCC score boosts by 24.39%, resulting in an
MCC value of 0.51. This significant rise emphasizes the need for a sufficient
sample size in generating better MCC scores, analogous to the results of
other metrics. The upward trend begins to decelerate in the largest sample
size, improvement rate descending to 23.53% and resulting in an end MCC
score of 0.63.

Normalized Confusion Matrix (N=400) Normalized Confusion Matrix (N=800)
0.8
(=] (=}
g 0.736567 0.002985 0.260448 0.7 g 0.721642 0.009701 0.268657 0.8
v} . s}
0.6
0.6
w «
E - 0.5 E -
o g 0.856522 0.000000 0.143478 o g 0.747826 0.043478 0.208696
£ S04 $0
= [-0.4
-0.3
~ -0.2 ~ L o2
é - 0.133333 0.000000 0.866667 ﬁ - 0.038095 0.009524 0.952381 ’
s} -0.1 s}
' ' -0.0 ' '
Class 0 Class 1 Class 2 Class 0 Class 1 Class 2
Predicted labels Predicted labels
(a) (b)
Normalized Confusion Matrix (N=1200) 08 Normalized Confusion Matrix (N=1600)
o o
@ 0.7 @ 0.8
@ 0.707463 0.033582 0.258955 @ 0.929104 0.047015 0.023881
s} s}
0.6
0.6
" 0.5 "
E — E —
] é 0.473913 0.495652 0.030435 L 0.4 o ﬁ, 0.378261 0.613043 0.008696
U = - U —
2° 2° ~0.4
-0.3
~ -0.2 ~ S02
ﬁ - 0.147619 0.052381 0.800000 ﬁ E 0.242857 0.052381 0.704762
() S0l ()
! !] !
Class 0 Class 1 Class 2 Class 0 Class 1 Class 2
Predicted labels Predicted labels

() (d)

Figure 5.2: Normalized confusion matrices for four different sample sizes:
(a) 400 samples, (b) 800 samples, (c) 1200 samples, and (d) 1600 samples.
Each matrix shows how well a model performs classification, with the re-
sults adjusted to show the proportions of true positives, false positives, false
negatives, and true negatives.

Examining the confusion matrix for each sample size provides a better un-
derstanding of differences in evaluation metrics. Figure 5.2 uses heatmaps to

CHAPTER 5. RESULTS AND ANALYSIS 65

visualize the confusion matrices. Since we have 3 distinct classes, the result-
ing matrices are 3 by 3. Per the legend on the right-hand side of each matrix,
darker shades of blue implicate higher density. For better interpretability,
the matrices are normalized. Inspecting the matrices in ascending order of
training sample size we can observe a clear trend. As the sample size in-
creases together with TP and TN while FP and FN predictions decrease.
This trend was visible from F1 and MCC scores in Figure 5.1, however, they
did not show which classes were specifically under or overperforming. Figure
5.2a is the confusion matrix of the model that was finetuned with only 400
samples. From the values of the matrix, it is clear that classes 0 and 2 are
classified with moderate accuracy.

In contrast, the model has failed to identify a single TP in class 1. As the
sample size increases, the accuracy of identifying this class increases together.
The major leap in accuracy occurs in Figure 5.2¢ from 800 to 1200 training
samples, where the ratio of TP for class 1 improves by greater than 10 times.
The classification performance for class 2 reaches its highest in Figure 5.2b
with 800 training samples, then begins to diminish. Meanwhile, the rate of
incorrectly classifying samples as class 2 steadily decreases. Throughout the
experiment, class 0 sustains a slight decline in accuracy until Figure 5.2d
with 1600 samples, where it outperforms all of the other classes.

5.2.1 Examples of Incorrect Classifications

In order to improve the accuracy of the model, the cases where it fails must be
examined. On certain occasions, these can be edge cases that are unlikely to
appear in real data. Furthermore, samples that are equidistant to two differ-
ent classes can considerably increase regression loss and reduce convergence
speed during training.

To exhibit incorrectly classified samples, we used the same finetuned
model from Figure 5.2d and gathered examples. In Listings 5.1 and 5.2,
we have samples from two different classes that have been falsely classified as
negative. In the first case, the sample shows CWE-639 vulnerability because
in Request-3 Driver-A successfully accepts a ride that does not belong to him
which is against the rules defined in the context.

CHAPTER 5. RESULTS AND ANALYSIS 66

Listing 5.1: A false negative example for CWE-639 class, true label =
predicted label = 0

Context: A ride—sharing app where drivers can only
accept their own ride requests.
Requests: |

Request —1: Driver—A GET /api/home with parameters

userld= ;
Response —1: OK with parameters userld= ,
rideRequests=| l;

Request —2: Driver—A POST /api/rides/accept with
parameters rideld= ;

Response —2: OK with parameters status= ,
driverld=

Request —3: Driver—A POST /api/rides/accept with
parameters rideld= ;

Response —3: OK with parameters status= ,
driverld=]

Listing 5.2: A false negative example for CWE-209 class, true label = 2,
predicted label = 0

Context: A secure messaging app for financial companies
, where senders can securely send sensitive data to
verified receivers.

Requests: |

Request —1: Sender—A POST /secure—message with
parameters receiver= ,message=

I

Response —1: Unauthorized with parameters msg=

]

The second false negative case is harder to identify. In response to
Request-1 which tries to send a message to an unknown receiver, the app
acknowledges the existence of the account with the email sent by the user as
well as leaks the verification status of the account. This flaw can be abused
by a malicious user to enumerate accounts of high-value customers which
can be combined with another flaw to potentially lead to getting full account
access. Meanwhile, Listing 5.3 is an example from our dataset that was
incorrectly identified as a positive example from class 1. The app accepts

CHAPTER 5. RESULTS AND ANALYSIS 67

all requests for objects by their respective owners while rejecting those who
request resources that they are not authorized to access.

Listing 5.3: A false positive example for non-vulnerable class, true label =
0, predicted label = 1

Context: An online shopping app, where each customer
can only access and modify their own cart.
Requests: |

Request —1: Customer—A GET /api/cart with parameters
cartID=
Response —1: OK with parameters cartID= ,
items=[{ ;) 10} .4
, 20}
Request —2: Customer—B GET /api/cart with parameters
cartID= ;
Response —2: Unauthorized with parameters errorCode=401,
errorMessage=
,errorDetails=

Request —3: Customer—A PUT /api/cart with parameters

cartID= Jitems=[{ : :
10} ,{ : , 20} ,{
, :30}];
Response —3: OK with parameters cartID= ,
items=[{ ; , 10} {

; 120}t A : ;
:30}]

5.3 Inference Performance

The size, and complexity of the finetuned pre-trained model determine the
inference performance. Per simple logic, the larger the model is, the slower
it will run. We load the finetuned models from Section 5.1 and measure
the latency for predicting 1000 labels. To simulate the environment of a
researcher or developer, we run our experiments on a consumer-grade laptop
with specifications listed in 3.3.2. We test both GPU and CPU inference
performance which can be used to estimate the cloud computing costs of
running the model. In order to improve the validity of our measurements,

CHAPTER 5. RESULTS AND ANALYSIS 68

we repeat the test 10 times and calculate the mean, min, max, and std
values for each model. The models in Table 5.2 are sorted on the avg column
descendingly.

Table 5.2: System latency for predicting 1000 labels in seconds
GPU

Base model avg min max std
all-mpnet-base-v2 8.699 8.436 10.171 0.524

all-distilroberta-vl 3.968 3.766 5.615 0.579

all-MiniLM-L12-v2 1.854 1.556 4.399 0.894
CPU

Base model avg min max std
all-mpnet-base-v2 314.550 312.722 317.463 1.651

all-distilroberta-vl 144.266 143.530 144.790 0.394

all-MiniLM-L12-v2 60.624 59.001 64.686 1.829

In direct relationship with the sizes of the pre-trained models, the slowest-
to-run model is all-mpnet-base-v2 followed by all-distilroberta-vl and all-
MiniLM-L12-v2. When GPU inference latencies are compared, the finetuned
all-MiniLM-L12-v2 is 2.14 and 4.69 times faster than all-distilroberta-v1 and
all-mpnet-base-v2 respectively. In CPU inference, the order of slowest to
fastest pre-trained models does not change. However, all of the models are
substantially slower than GPU inference. For instance, the finetuned all-
mpnet-base-v2 model is 36.16 times, while all-MiniLM-L12-v2 is 32.7 times
slower to classify 1000 samples. In contrast to GPU inference, all-MiniLM-
L12-v2 is 2.38 and 5.19 times faster than all-distilroberta-v1l and all-mpnet-
base-v2 respectively.

Chapter 6

Discussion

In this Section, we analyze the results from our study and discuss the research
questions from Section 1.2.1. We also higlight secondary benefits of the
proposed method in Section 6.4.

6.1 Overall Performance

One of the primary considerations when integrating an automated vulnera-
bility scanner into a software project is performance. Thus, the first research
question we examine is What is the performance of the proposed method in
identifying selected class of web application vulnerabilities? In our study, we
evaluated the performance of our proposed method from multiple perspec-
tives. First, we measured the detection performance using the evaluation
metrics from Section 3.6.1. In our experiments, the model with the best
results had an accuracy of 87.19%, with F1 and MCC scores of 0.82 and
0.7 respectively. This is a great achievement when the difficulty of the task
is considered. Detecting CWE-639 and CWE-209 vulnerabilities is time-
consuming and complex. Additionally, it requires cybersecurity expertise.
KARTAL automates this process, saving time and resources.

Another performance indicator is inference latency. Agile software devel-
opment practices have normalized continuous deployments that substantially
reduced the code to production duration. As a result, the latency expecta-
tions for vulnerability scanning tools have also been impacted. Unlike most
detection tools, KARTAL is able to utilize hardware acceleration with GPUs.
Depending on the base model, Figure 5.2 demonstrates that it can classify
114 to 539 samples per second running on a laptop GPU. At this inference
speed, we can scan large-scale projects within minutes compared to up to a
few days by manual review. The resource-efficient architecture of KARTAL

69

CHAPTER 6. DISCUSSION 70

enables it to be used on lower-end hardware, which democratizes the usage
of cutting-edge technology for the masses.

Nevertheless, without hardware acceleration, the inference latency suf-
fers greatly. On CPU, our method can predict 3 to 17 labels per second
depending on the finetuned model. Although this is slower, it is still above
the human baseline for labeling speed. The automated scanner can run 7,/24
without pauses and work in parallel with other scanners to improve the over-
all efficiency of vulnerability detection. We will dive deeper into possible
improvements in the next section.

6.2 Key Factors in Performance

In this section, we aim to answer the research question What factors con-
tribute to the performance of the proposed method? Increasing the size of the
training dataset is the most effective way to improve the performance of our
method. We can see a clear trend in Figure 5.1a and Figure 5.1le, adding
just 400 more samples can result in a significant boost in performance. This,
on average, has been demonstrated to enhance the MCC score by 19.58%.
Furthermore, from 1400 to 1600 samples, the rate of improvement in accu-
racy increases 5.5-fold. Figure 5.2 validates this by visualizing changes in
predictions per class. From 800 to 1200 training samples, the false positive
rate is reduced significantly across the confusion matrix. As a result of this
experiment, we conclude that the model develops a better knowledge of lan-
guage subtleties by including more varied and representative data, resulting
in improved performance.

Another key factor in performance is the selection of the pre-trained trans-
former. Larger models, in general, outperform smaller models due to their
enhanced ability to capture complicated language patterns. This is evident
from the order of performance in Figure 5.1. The all-mpnet-base-v2 model
is a pre-trained model based on the massive mpnet-base that is finetuned
on over a billion sentences across 32 datasets. These datasets include tasks
that improve different parts of language understanding of the model. It is
worth mentioning that distilled versions of bigger models that have been
compressed can also provide excellent outcomes. These distilled versions are
smaller in size yet retain a considerable chunk of their bigger counterparts’
performance characteristics [36, 37].

Both the all-distilroberta-vl and all-MiniLM-L12-v2 models share the
same datasets with all-mpnet-base-v2, with the key difference of being fine-
tuned versions of distilled models. The former model is based on a dis-
tilled version of the RoBERTa-base model. The latter model finetunes a

CHAPTER 6. DISCUSSION 71

distilled bert-base model. The difference in MCC score between finetuned all-
mpnet-base-v2 and all-MiniLM-L12-v2 models is 7.7 times higher compared
to the difference between finetuned all-mpnet-base-v2 and all-distilroberta-
vl model. If speed is the only selection criterion for your business case,
all-MiniLM-L12-v2 is a decent choice for finetuning. However, when the
duration of the training, hardware requirement, inference latency, and eval-
uation performance is considered, the all-distilroberta-vl model is the best
all-around performer.

It is critical to consider the interaction between the pre-trained model se-
lection and the inference hardware selection. Due to their increasing model
size and complexity, larger pre-trained models, often demand more comput-
ing resources during inference. In such instances, it is beneficial to use strong
GPUs or specialized accelerators such as TPUs to achieve efficient and real-
time LLM predictions. Furthermore, distilled versions of bigger models offer
a balance between performance and resource needs. When compared to their
bigger counterparts, distilled models have a reduced memory footprint and
lower computing needs. As a result, executing inference on CPUs or using
less capable GPUs can still produce excellent results for distilled models.

Another method of improving the speed of the proposed method is to run
on distributed cloud architecture. Large companies build software of grand
sizes and quantities, and any change in vulnerability detection speed can
have exponential results in secure software production. All components of
KARTAL can function in parallel within their responsibility zones. Multiple
instances of the Detector can run on different parts of the Fuzzer data. By
parallelizing the detection unit, KARTAL can scale horizontally and sub-
stantially reduce the time to detect at a fraction of the cost.

6.3 Challenges and Limitations

Our third and final research question was What are the challenges and limita-
tions of the proposed method? The most important limitation of our method
is the limited sequence length. This limit is inherited from the pre-trained
transformer of our choice. In this study, our best performer was a finetuned
all-mpnet-base-v2 model. As viewed on Table 3.3, it can accept at most 384
tokens while all-distilroberta-vl and all-MiniLM-L12-v2 can utilize 512 and
256 tokens respectively. This limit directly affects the number of requests
that can be added to each prompt. As a result, deeply nested vulnerabilities
that require the inspection of dozens of HTTP requests at the same time
cannot be detected by our method.

Another limitation is pre-trained model availability. In this study, we

CHAPTER 6. DISCUSSION 72

finetuned free and open-source models. Our performance analysis showed a
direct relationship between the size of the pre-trained model and the per-
formance of the finetuned model. These models are released to the public
as a by-product of academic research. Training a large language model can
take multiple weeks and millions of dollars. Consequently, the size of open-
source language models is restricted by the cost of training them. In contrast,
commercially available models do not have such restrictions and can achieve
SOTA performance. For this study, we preferred to utilize open-source mod-
els in order to keep our method transparent and results reproducible.

A great challenge in the study was the manual labeling process of the
generated data. At a rate of 45 seconds per sample, it took a cybersecurity
specialist 23 hours to label the entire dataset. As mentioned in 6.2, the fine-
tuned model demonstrates great performance improvement at every training
sample size experiment. In Figure 5.1e, we observe a 23.53% increase in
MCC by adding 400 more samples to training data, implying that the model
can perform significantly better if slightly more data was available. However,
this could not be achieved within the timeframe of this thesis.

6.4 Auxiliary Advantages

There are a couple of secondary advantages of KARTAL that should be men-
tioned. The first is the dynamic properties of Context in the prompt. Both
types of vulnerabilities we aim to detect break the logical rules defined by the
application, hence we provide the boundaries of the application within each
prompt. The benefit of this approach is the ability to customize the detection
during inference. For instance, an enterprise application specialized access
rules for each of its tenants. A non-intelligent vulnerability scanner would
simply struggle while others may require retraining or finetuning process. In
contrast, users of KARTAL can dynamically change the definitions of broken
access to adapt to each situation.

Another benefit of KARTAL is its ability to detect vulnerabilities in mul-
tiple languages with transfer learning [78]. The technique leverages the ex-
isting knowledge of one topic or task to improve the performance of different
tasks. LLMs are great Transfer Learners due to their architecture and size.
If a pre-trained model has multilanguage data in its training set, finetuning
it enables the multilingual capabilities of KARTAL. Our small set of experi-
ments showed similar results to Figure 5.1 for detecting vulnerabilities in web
applications that display languages other than English. Nonetheless, we do
not highlight these results due to the limited size of multilingual samples.

Chapter 7

Conclusions

In this chapter, we complete our thesis study. Section 7.1 draws final con-
clusions. In Section 7.2 we discuss possible paths for future work. Finally,
in Section 7.3 we reflect on the ethical and environmental impacts of our
research.

7.1 Conclusions

Web applications have become lucrative targets for innovative hackers due
to the multi-billion SaaS market. Finding critical logical vulnerabilities be-
fore bad actors requires intelligent and automated tools. The objective of
this thesis was to automate the detection of complex and logical vulnera-
bilities in web applications. We modeled the problem as text classification
and proposed KARTAL, a novel method for achieving this task. Our study
questioned the performance, key factors, and limitations of the proposed
method.

Due to a lack of existing training data, we custom-generated our own
dataset. For this purpose, we used an auto-regressive LLM with SOTA few-
shot prompting techniques. Next, we finetuned 3 types of decoder-only pre-
trained transformers for detecting 2 sophisticated vulnerabilities using SetFit.
Our best model attained an accuracy of 87.19%, with F1 and MCC scores
of 0.82 and 0.7 respectively. By using hardware acceleration on a consumer-
grade laptop, our fastest model can make up to 539 predictions per second.
The experiments on varying the training sample size demonstrated the great
learning capabilities of our model. Every 400 samples added to training
resulted in an average MCC score improvement of 19.58%.

The study successfully achieved all of its objectives by creating a high-
accuracy web application vulnerability detection method using LLMs. The

73

CHAPTER 7. CONCLUSIONS 74

usage of LLMs in cybersecurity is a novel but fastly evolving field, and our
method proves its great potential. The availability of open-source pre-trained
transformers has been steadily increasing. Consequently, cybercriminals have
already started to utilize such models for their malicious activities. As cy-
bersecurity researchers, we must proactively adopt cutting-edge technologies,
such as LLMs, to create intelligent and adaptive defense systems. We pre-
dict that in the next couple of years, we will see bursts of innovation in the
cybersecurity field using this technology that change the way we build secure
software.

7.2 Future Work

As we analyzed in Section 5.2, the model is highly appreciative of increments
in training data size. Manual labeling of data at scale is not viable. A possi-
ble research direction would be to use Active Learning, which is a technique
to improve the training performance of a model by selectively marking un-
labeled samples for labeling [79]. It then uses the new samples to improve
its prediction performance. By employing this method, we can rapidly scale
our dataset which will notably improve the performance of the LLM.

Another following research focus could be to add detection capabilities for
a greater number of vulnerabilities. In this study, we finetuned our model
to only identify two types of vulnerabilities. Extending the model in this
way will increase its multitasking capabilities and enable direct comparison
with existing tools. The model can be also trained for multi-label classifica-
tion which will further improve the performance of KARTAL by identifying
multiple vulnerabilities at once.

A final future direction can be to connect the output of the Detector com-
ponent to Fuzzer. When the Detector senses a vulnerability without great
certainty, it can communicate this with the Fuzzer. Using this knowledge,
the Fuzzer will then probe the web application for more request samples that
are likely to increase the prediction confidence of the model. This process
extends the automation capabilities of the model far beyond any other ex-
isting tool, essentially turning the model into a self-supervised penetration
tester.

7.3 Reflections

Most often, the malicious usage of technology is an accepted risk. This also
applies to our research. Bad actors can utilize our proposed method to find

CHAPTER 7. CONCLUSIONS 75

vulnerabilities in systems they plan to breach. However, this is the case
with all vulnerability detection tools. As the intellectual property owner
of the model, we would like to issue the following disclaimer: KARTAL is
published for ethical use cases only. We do not condone unethical usage, and
do not grant permission for KARTAL to be used against systems without
legal authorization.

Our research contributes to Sustainable Development Goals (SDGs) [10]
8,9 and 10. SDGs 8 and 9 promote sustainable economic growth and resilient
infrastructure. Cyberattacks have the power to disrupt critical infrastruc-
ture. At scale, a targeted attack on a city by threat actors with extensive
resources could create a chain reaction of events that lead to a massive loss
in productivity, economic growth, and unemployment. KARTAL enables
the preemptive detection of vulnerabilities that the attackers could utilize,
completely preventing them from happening. SDG 10 is related to reducing
inequalities among countries. KARTAL is built for high performance and
can effortlessly run on lower-end hardware. As a result, commercial and
non-profit organizations in countries with insufficient computing resources
can also benefit from the security features KARTAL offers.

Bibliography

1]

[7]

Gartner, “Gartner Forecasts Worldwide Public Cloud End-User
Spending to Reach Nearly $600 Billion in 2023 — gartner.com,”
https://www.gartner.com/en/newsroom/press-releases/2022-10-31-

gartner-forecasts-worldwide-public-cloud-end-user-spending-to-reach-
nearly-600-billion-in-2023, 2022, [Accessed 06-Jan-2023].

A. Nguyen-Duc, M. V. Do, Q. Luong Hong, K. Nguyen Khac,
and A. Nguyen Quang, “On the adoption of static analysis for
software security assessment—a case study of an open-source e-
government project,” Computers € Security, vol. 111, p. 102470, 2021.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167404821002947

F. O. Sonmez and B. G. Kilic, “Holistic web application security visual-
ization for multi-project and multi-phase dynamic application security
test results,” IEEFE access, vol. 9, pp. 25 85825 884, 2021.

F. Mateo Tudela, J.-R. Bermejo Higuera, J. Bermejo Higuera, J.-A.
Sicilia Montalvo, and M. I. Argyros, “On combining static, dynamic
and interactive analysis security testing tools to improve owasp top ten
security vulnerability detection in web applications,” Applied sciences,
vol. 10, no. 24, pp. 9119-, 2020.

W. Guo, Y. Fang, C. Huang, H. Ou, C. Lin, and Y. Guo, “Hyvuldect:
A hybrid semantic vulnerability mining system based on graph neural
network,” Computers € security, vol. 121, pp. 102 823—, 2022.

A. Van Der Stock, B. Glas, N. Smithline, and T. Gigler, “OWASP Top
10:2021 — owasp.org,” https://owasp.org/Topl10/, 2021, [Accessed 01-
Jan-2023].

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and
I. Sutskever, “Language models are unsupervised multitask learn-

76

https://www.sciencedirect.com/science/article/pii/S0167404821002947
https://www.sciencedirect.com/science/article/pii/S0167404821002947
https://owasp.org/Top10/

BIBLIOGRAPHY 77

[11]

[12]

[13]

ers,” 2019. [Online|. Available: https://d4mucfpksywv.cloudfront.net/
better-language-models/language-models.pdf

MITRE, “CWE-639: Authorization Bypass Through User-Controlled
Key,” https://cwe.mitre.org/data/definitions/639.html, 2008, [Accessed
09-Jan-2023].

——, “CWE-209: Generation of Error Message Containing Sensitive
Information,” https://cwe.mitre.org/data/definitions/209.html, 2006,
[Accessed 09-Jan-2023].

U. N. Press, “Transforming our world: the 2030 agenda for sustainable
development,” https://sdgs.un.org/2030agenda, 2015.

N. C. Oy, “Netlight webpage,” https://www.netlight.com/, 201623, [Ac-
cessed 09-Jan-2023].

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L.. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” arXiv.org,
2017.

R. Bommasani, D. A. Hudson, R. Altman, S. Arora, S. von Arx, M. S.
Bernstein, J. Bohg, A. Bosselut, E. Brunskill, E. Brynjolfsson, S. Buch,
D. Card, R. Castellon, N. Chatterji, A. Chen, K. Creel, J. Q. Davis,
D. Demszky, C. Donahue, M. Doumbouya, E. Durmus, S. Ermon,
J. Etchemendy, K. Ethayarajh, F.-F. Li, C. Finn, T. Gale, L. Gillespie,
Goel, N. Goodman, S. Grossman, N. Guha, T. Hashimoto,
Henderson, D. E. Ho, J. Hong, K. Hsu, T. Icard, D. Jurafsky,
Kalluri, S. Karamcheti, G. Keeling, F. Khani, O. Khattab,
W. Koh, M. Krass, R. Krishna, R. Kuditipudi, A. Kumar,
Ladhak, M. Lee, T. Lee, J. Leskovec, X. L. Li, X. Li, A. Malik,
Mirchandani, E. Mitchell, Z. Munyikwa, S. Nair, A. Narayan,
Narayanan, A. Nie, J. C. Niebles, H. Nilforoshan, J. Nyarko,
Ogut, I. Papadimitriou, J. S. Park, C. Piech, E. Portelance,
Potts, A. Raghunathan, R. Reich, H. Ren, F. Rong, Y. Roohani,
Ruiz, J. Ryan, C. Ré, D. Sadigh, S. Sagawa, K. Santhanam,
. Shih, A. Tamkin, R. Taori, A. W. Thomas, R. E. Wang, W. Wang,
. Wu, J. Wu, Y. Wu, M. Yasunaga, J. You, M. Zaharia, M. Zhang,
. Zhang, L. Zheng, K. Zhou, and P. Liang, “On the opportunities
and risks of foundation models,” arXiv.org, 2021. [Online]. Available:
https://crfm.stanford.edu/assets/report.pdf

<EEFQQAQT L™ T YT R

https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://cwe.mitre.org/data/definitions/639.html
https://cwe.mitre.org/data/definitions/209.html
https://sdgs.un.org/2030agenda
https://www.netlight.com/
https://crfm.stanford.edu/assets/report.pdf

BIBLIOGRAPHY 78

[14]

[15]

J. Devlin, C. Ming-Wei, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language understanding,”
arXiv.org, 2019.

J. Oh and Y.-S. Choi, “Reusing monolingual pre-trained models by
cross-connecting seq2seq models for machine translation,” Applied sci-
ences, vol. 11, no. 18, pp. 8737—, 2021.

V. Pandelea, E. Ragusa, T. Young, P. Gastaldo, and E. Cambria,
“Toward hardware-aware deep-learning-based dialogue systems,” Neural
computing & applications, vol. 34, no. 13, pp. 10397-10408, 2022.

C. Xu, F. Yuan, and S. Chen, “Bjbn: Bert-join-bilstm networks for
medical auxiliary diagnostic,” Journal of healthcare engineering, vol.
2022, pp. 3496 8107, 2022.

R. Irwin, S. Dimitriadis, J. He, and E. J. Bjerrum, “Chemformer: a pre-
trained transformer for computational chemistry,” Machine learning:
science and technology, vol. 3, no. 1, pp. 15022, 2022.

R. Sawai, I. Paik, and A. Kuwana, “Sentence augmentation for language
translation using gpt-2,” FElectronics (Basel), vol. 10, no. 24, pp. 3082—,
2021.

Y. Wang, W. Wang, S. Joty, and S. C. H. Hoi, “Codetb: Identifier-aware
unified pre-trained encoder-decoder models for code understanding and
generation,” arXiv.org, 2021.

M. DeLeo and E. Guven, “Learning chess with language models and
transformers,” in Data Science and Machine Learning. Academy and
Industry Research Collaboration Center (AIRCC), 9 2022. [Online].
Available: https://doi.org/10.5121%2Fcsit.2022.121515

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436-444, 5 2015.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, no. 6088, pp.
533-536, 10 1986.

Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependen-
cies with gradient descent is difficult,” IFEE Transactions on Neural
Networks, vol. 5, no. 2, pp. 157-166, 1994.

https://doi.org/10.5121%2Fcsit.2022.121515

BIBLIOGRAPHY 79

[25]

[26]

[27]

[31]

32]

[33]

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

K. Cho, B. van Merriénboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations
using RNN encoder-decoder for statistical machine translation,” in
Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP). Doha, Qatar: Association for
Computational Linguistics, 10 2014, pp. 1724-1734. [Online]. Available:
https://aclanthology.org/D14-1179

V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu, “Recurrent models
of visual attention,” in Proceedings of the 27th International Conference

on Neural Information Processing Systems - Volume 2, ser. NIPS’14.
Cambridge, MA, USA: MIT Press, 2014, p. 2204-2212.

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” 2016.

P. Feldman, A. Dant, and D. Rosenbluth, “Ethics, rules of engagement,
and ai: Neural narrative mapping using large transformer language mod-
els,” 2022.

A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford,
M. Chen, and I. Sutskever, “Zero-shot text-to-image generation,” in
Proceedings of the 38th International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, M. Meila and T. Zhang,
Eds., vol. 139. PMLR, 7 2021, pp. 8821-8831. [Online|. Available:
https://proceedings.mlr.press/v139/ramesh21la.html

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words: Trans-
formers for image recognition at scale,” 2021.

A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han,
S. Wang, Z. Zhang, Y. Wu, and R. Pang, “Conformer: Convolution-

augmented Transformer for Speech Recognition,” in Proc. Interspeech
2020, 2020, pp. 5036-5040.

B. Shin, S. Park, K. Kang, and J. C. Ho, “Self-attention based
molecule representation for predicting drug-target interaction,” in
Proceedings of the 4th Machine Learning for Healthcare Conference, ser.

https://aclanthology.org/D14-1179
https://proceedings.mlr.press/v139/ramesh21a.html

BIBLIOGRAPHY 80

[34]

[38]

[39]

[40]

Proceedings of Machine Learning Research, F. Doshi-Velez, J. Fackler,
K. Jung, D. Kale, R. Ranganath, B. Wallace, and J. Wiens, Eds.,
vol. 106. PMLR, 09-10 Aug 2019, pp. 230-248. [Online]. Available:
https://proceedings.mlr.press/v106 /shin19a.html

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” in Proceedings of the 2019 Conference on Empir-
1cal Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
2019, pp. 3287-3293.

Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Sori-
cut, “Albert: A lite bert for self-supervised learning of language rep-
resentations,” in International Conference on Learning Representations

(ICLR), 2020.
V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled

version of bert: smaller, faster, cheaper and lighter,” in Proceedings of
the 5th Workshop on Energy Efficient Machine Learning and Cognitive
Computing, 2020.

W. Wang, F. Wei, L. Dong, H. Bao, N. Yang, and M. Zhou, “Minilm:
Deep self-attention distillation for task-agnostic compression of pre-
trained transformers,” in Proceedings of the 34th International Confer-

ence on Neural Information Processing Systems, ser. NIPS'20. Red
Hook, NY, USA: Curran Associates Inc., 2020.

K. Song, X. Tan, T. Qin, J. Lu, and T.-Y. Liu, “Mpnet: Masked and per-
muted pre-training for language understanding,” in Proceedings of the
34th International Conference on Neural Information Processing Sys-
tems, ser. NIPS’20. Red Hook, NY, USA: Curran Associates Inc.,
2020.

N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings
using siamese bert-networks,” in Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing. Association
for Computational Linguistics, 11 2019. [Online]. Available: https:
//arxiv.org/abs/1908.10084

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M.

https://proceedings.mlr.press/v106/shin19a.html
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084

BIBLIOGRAPHY 81

[41]

[42]

[43]

[45]

[46]

[47]

Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,

I. Sutskever, and D. Amodei, “Language models are few-shot learners,”
arXiv.org, 2020. [Online]. Available: https://arxiv.org/abs/2005.14165

M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, and L. Zettlemoyer, “Bart: Denoising sequence-to-
sequence pre-training for natural language generation, translation, and
comprehension,” 2019.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning
with a unified text-to-text transformer,” J. Mach. Learn. Res., vol. 21,
no. 1, 6 2020.

A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. Bowman,
“GLUE: A multi-task benchmark and analysis platform for natural
language understanding,” in Proceedings of the 2018 EMNLP Workshop
BlackborNLP: Analyzing and Interpreting Neural Networks for NLP.
Brussels, Belgium: Association for Computational Linguistics, 11 2018,
pp. 353-355. [Online]. Available: https://aclanthology.org/W18-5446

J. Wei, M. Bosma, V. Y. Zhao, K. Guu, W. Y. Adams, B. Lester, N. Du,
A. M. Dai, and Q. V. Le, “Finetuned language models are zero-shot
learners,” 2 2022. [Online]. Available: https://www.proquest.com/
working-papers/finetuned-language-models-are-zero-shot-learners/
docview /2569483346 /se-2

M. E. Peters, S. Ruder, and N. A. Smith, “To tune or not to tune?
adapting pretrained representations to diverse tasks,” in Proceedings of
the Jth Workshop on Representation Learning for NLP (RepL/NLP-
2019). Florence, Italy: Association for Computational Linguistics, 8
2019, pp. 7-14. [Online]. Available: https://aclanthology.org/W19-4302

Y. Wang, S. Si, D. Li, M. Lukasik, F. Yu, C.-J. Hsieh, I. S. Dhillon,
and S. Kumar, “Preserving in-context learning ability in large language
model fine-tuning,” 2022.

N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe,
A. Gesmundo, M. Attariyan, and S. Gelly, “Parameter-efficient transfer
learning for nlp,” in International Conference on Machine Learning.
PMLR, 2019, pp. 2790-2799.

https://arxiv.org/abs/2005.14165
https://aclanthology.org/W18-5446
https://www.proquest.com/working-papers/finetuned-language-models-are-zero-shot-learners/docview/2569483346/se-2
https://www.proquest.com/working-papers/finetuned-language-models-are-zero-shot-learners/docview/2569483346/se-2
https://www.proquest.com/working-papers/finetuned-language-models-are-zero-shot-learners/docview/2569483346/se-2
https://aclanthology.org/W19-4302

BIBLIOGRAPHY 82

[48]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

H. Liu, D. Tam, M. Muqeeth, J. Mohta, T. Huang, M. Bansal, and C. A.
Raffel, “Few-shot parameter-efficient fine-tuning is better and cheaper

than in-context learning,” Advances in Neural Information Processing
Systems, vol. 35, pp. 1950-1965, 2022.

T. Schick and H. Schiitze, “Exploiting cloze-questions for few-shot
text classification and natural language inference,” in Proceedings of
the 16th Conference of the European Chapter of the Association for
Computational Linguistics: Main Volume. Online: Association for
Computational Linguistics, 4 2021, pp. 255-269. [Online]. Available:
https://aclanthology.org/2021.eacl-main.20

L. Tunstall, N. Reimers, U. E. S. Jo, L. Bates, D. Korat, M. Wasserblat,
and O. Pereg, “Efficient few-shot learning without prompts,” 2022.

Z. Cheng, J. Kasai, and T. Yu, “Batch prompting: FEfficient
inference with large language model apis,” 2023. [Online]. Available:
https://arxiv.org/abs/2301.08721

Z. Tan, X. Zhang, S. Wang, and Y. Liu, “MSP: Multi-stage
prompting for making pre-trained language models better translators,”
in Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Dublin, Ireland:
Association for Computational Linguistics, May 2022, pp. 6131-6142.
[Online]. Available: https://aclanthology.org/2022.acl-long.424

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: A method
for automatic evaluation of machine translation,” in Proceedings of the
40th Annual Meeting on Association for Computational Linguistics, ser.
ACL ’02. USA: Association for Computational Linguistics, 2002, p.
311-318. [Online]. Available: https://doi.org/10.3115/1073083.1073135

L. Beurer-Kellner, M. Fischer, and M. Vechev, “Prompting is
programming: A query language for large language models,” 2022.
[Online]. Available: https://arxiv.org/abs/2212.06094

H. Pearce, B. Tan, B. Ahmad, R. Karri, and B. Dolan-Gavitt, “Ex-
amining zero-shot vulnerability repair with large language models,”
arXiv.org, 2022.

X. Zhao, S. Ouyang, Z. Yu, M. Wu, and L. Li, “Pre-trained language
models can be fully zero-shot learners,” 2022. [Online]. Available:
https://arxiv.org/abs/2212.06950

https://aclanthology.org/2021.eacl-main.20
https://arxiv.org/abs/2301.08721
https://aclanthology.org/2022.acl-long.424
https://doi.org/10.3115/1073083.1073135
https://arxiv.org/abs/2212.06094
https://arxiv.org/abs/2212.06950

BIBLIOGRAPHY 83

[57]

[58]

[59]

[60]

[63]

[64]

S. Shin, S.-W. Lee, H. Ahn, S. Kim, H. Kim, B. Kim, K. Cho,
G. Lee, W. Park, J-W. Ha, and N. Sung, “On the effect of
pretraining corpora on in-context learning by a large-scale language
model,” in Proceedings of the 2022 Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies. Seattle, United States: Association for
Computational Linguistics, 7 2022, pp. 5168-5186. [Online]. Available:
https://aclanthology.org/2022.naacl-main.380

J. Wei, X. Wang, D. Schuurmans, M. Bosma, brian ichter, F. Xia, E. H.
Chi, Q. V. Le, and D. Zhou, “Chain of thought prompting elicits rea-
soning in large language models,” in Advances in Neural Information
Processing Systems, A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho,
Eds., 2022.

S. Arora, A. Narayan, M. F. Chen, L. Orr, N. Guha, K. Bhatia, I. Chami,
and C. Re, “Ask me anything: A simple strategy for prompting language
models,” in The Eleventh International Conference on Learning Repre-
sentations, 2023.

P. Michel, X. Li, G. Neubig, and J. Pino, “On evaluation of adversarial
perturbations for sequence-to-sequence models,” in Proceedings of the
2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers). Minneapolis, Minnesota: Association for
Computational Linguistics, 6 2019, pp. 3103-3114. [Online]. Available:
https://aclanthology.org/N19-1314

7

MITRE, “Common weaknesses enumaration,
about /index.html, 2006, [Accessed 09-Jan-2023].

https://cwe.mitre.org/

S. Elder, N. Zahan, R. Shu, M. Metro, V. Kozarev, T. Menzies, and
L. Williams, “Do i really need all this work to find vulnerabilities?: An
empirical case study comparing vulnerability detection techniques on
a java application,” Empirical software engineering : an international
journal, vol. 27, no. 6, 2022.

M. Liu, B. Zhang, W. Chen, and X. Zhang, “A survey of exploitation
and detection methods of xss vulnerabilities,” IEEE Access, vol. 7, pp.
182004-182 016, 2019.

R. Amankwah, J. Chen, P. K. Kudjo, and D. Towey, “An empirical
comparison of commercial and open-source web vulnerability scanners,”
Software, practice & experience, vol. 50, no. 9, pp. 1842-1857, 2020.

https://aclanthology.org/2022.naacl-main.380
https://aclanthology.org/N19-1314
https://cwe.mitre.org/about/index.html
https://cwe.mitre.org/about/index.html

BIBLIOGRAPHY 84

[65]

[68]

[69]

[70]

[71]

[72]

M. Albahar, D. Alansari, and A. Jurcut, “An empirical comparison of
pen-testing tools for detecting web app vulnerabilities,” FElectronics,
vol. 11, no. 19, 2022. [Online]. Available: https://www.mdpi.com/
2079-9292/11/19/2991

I. Medeiros, N. Neves, and M. Correia, “Dekant: A static
analysis tool that learns to detect web application vulnerabilities,”
in Proceedings of the 25th International Symposium on Software
Testing and Analysis, ser. ISSTA 2016. New York, NY, USA:
Association for Computing Machinery, 2016, p. 1-11. [Online].
Available: https://doi.org/10.1145/2931037.2931041

C. Thapa, S. I. Jang, M. E. Ahmed, S. Camtepe,
J. Pieprzyk, and S. Nepal, “Transformer-based language
models for software vulnerability detection,” arXiv.org, 9 2022.
[Online]. Available: https://www.proquest.com/working-papers/
transformer-based-language-models-software /docview 2648330330/
se-2

C. Torrano-Gimenez, A. Perez-Villegas, and G. Alvarez, “TORPEDA:
Un conjunto de datos ampliable para la evaluacion de cortafuegos de
aplicaciones web,” in Proceedings of the XII Reunion Espanola sobre
Criptologia y Sequridad de la Informacion, San Sebastian, 2012.

LIRMM, “Analyzing web traffic ecml/pkdd 2007 discovery challenge
september 17-21, 2007, warsaw, poland,” 2007. [Online]. Available:
https://www.lirmm.fr/pkdd2007-challenge /index.html

G. Ltd, “Google colab,” https://colab.research.google.com, 2015, [Ac-
cessed 09-Jan-2023].

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style,
high-performance deep learning library,” in Advances in Neural
Information Processing Systems 32. Curran Associates, Inc., 2019,
pp. 8024-8035. [Online]. Available: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue,
A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison,

https://www.mdpi.com/2079-9292/11/19/2991
https://www.mdpi.com/2079-9292/11/19/2991
https://doi.org/10.1145/2931037.2931041
https://www.proquest.com/working-papers/transformer-based-language-models-software/docview/2648330330/se-2
https://www.proquest.com/working-papers/transformer-based-language-models-software/docview/2648330330/se-2
https://www.proquest.com/working-papers/transformer-based-language-models-software/docview/2648330330/se-2
https://www.lirmm.fr/pkdd2007-challenge/index.html
https://colab.research.google.com
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

BIBLIOGRAPHY 85

78]

[79]

S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu,
T. Le Scao, S. Gugger, M. Drame, . Lhoest, and A. Rush,
“Transformers: State-of-the-art natural language processing,” in
Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations. Online: Association
for Computational Linguistics, 10 2020, pp. 38-45. [Online|. Available:
https://aclanthology.org/2020.emnlp-demos.6

D. Inc, “Docker,” https://www.docker.com/, 2013, [Accessed 09-Jan-
2023].

M. Feurer and F. Hutter, “Hyperparameter optimization,” Automated
machine learning: Methods, systems, challenges, pp. 3—33, 2019.

N. Reimers, “Sbert pretrained model comparison,” https://www.sbert.
net /docs/pretrained_models.html#model-overview, 2020, [Accessed 09-
Jan-2023].

D. Chicco and G. Jurman, “The advantages of the matthews correlation
coefficient (MCC) over F1 score and accuracy in binary classification
evaluation,” BMC' Genomics, vol. 21, no. 1, p. 6, 1 2020.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

A. Hosna, E. Merry, J. Gyalmo, Z. Alom, Z. Aung, and
M. A. Azim, “Transfer learning: a friendly introduction,” J.
Big Data, vol. 9, no. 1, p. 102, 10 2022. [Online]. Available:
https://doi.org/10.1186/s40537-022-00652-w

M. Gao, Z. Zhang, G. Yu, S. O. Arik, L. S. Davis, and T. Pfister,
“Consistency-based semi-supervised active learning: Towards minimiz-
ing labeling cost,” 2020.

https://aclanthology.org/2020.emnlp-demos.6
https://www.docker.com/
https://www.sbert.net/docs/pretrained_models.html#model-overview
https://www.sbert.net/docs/pretrained_models.html#model-overview
https://www.tensorflow.org/
https://doi.org/10.1186/s40537-022-00652-w

Appendix A

Environment Setup

Listing A.1: Dockerfile contents for experiment environment

Use the huggingface/transformers—pytorch—gpu base
image
FROM huggingface/transformers—pytorch—gpu:latest

Set the working directory
WORKDIR /app

Copy the requirements.txt file to the container
COPY requirements. txt

Install the Python dependencies
RUN pip install —mno—cache—dir —r requirements.txt

Copy the entire folder to the container
COPY .

Listing A.2: Instructions for installing and running experiments

Directory Structure

— data/ (contains datasets in CSV format)
— prompt—templates/ (contains prompt template files)
— requirements.txt (contains the list of Python
dependencies)
— Dockerfile
— src/ (contains source code)
— benchmark/ (contains benchmark-related code)

86

APPENDIX A. ENVIRONMENT SETUP 87

— data—generation/ (contains data generation code)
— plotting/ (contains plotting code)

Requirements
To run the KARTAL project , you need the following:

— Python 3.10+
— PyTorch 2

or
— Docker 20+
How to Run

For data generation using the ‘prompter.py‘ script you
will need to create a ‘.env‘ file. Use the ‘.env—
example ‘ file as the template and fill in the
required values. You can get them from the
respective LLM API dashboard.

#H#+ Native

1. Install Python 3.10+ on your system.
2. Install the required Python packages by running the
following command:

“““shell
pip install —r requirements.txt

(SN

3. Run experiments or data generation scripts located
in the ‘src/‘ directory.

Docker
1. Build the Docker image by running

‘“t“shell
docker build —t kartal

APPENDIX A. ENVIRONMENT SETUP 38

(SN

2. Run the Docker container using the built image and
specify the Python file to run:

““fshell
docker run —gpus all —it kartal python src/benchmark/{
file_name }.py

(SN

Replace ‘{file_ name}‘ with the path to your desired
Python file within the ‘src/¢ directory.

Appendix B

Data Generation Prompt

Listing B.1: Prompt example used for generating samples

Task: Generate 10 examples based on the template, do
not give explanations, label titles , or example
count , only provide the examples.

Task description: Examples SHOULD demonstrate CWE-209:
Generation of Error Message Containing Sensitive
Information security flaw. The sensitive information
may be valuable information on its own (such as a
password), or it may be useful for launching other,
more serious attacks. The error message may be
created in different ways:

self —generated: the source code explicitly constructs
the error message and delivers it.

externally —generated: the external environment, such as
a language interpreter , handles the error and
constructs its own message, whose contents are not
under direct control by the programmer.

An attacker may use the contents of error messages to
help launch another, more focused attack. For
example, an attempt to exploit a path traversal
weakness (CWE-22) might yield the full pathname of
the installed application. In turn, this could be
used to select the proper number of ”7..” sequences
to navigate to the targeted file. An attack using
SQL injection (CWE-89) might not initially succeed,
but an error message could reveal the malformed
query , which would expose query logic and possibly

89

APPENDIX B. DATA GENERATION PROMPT 90

even passwords or other sensitive information used
within the query.

Template:
Context: [Details on the app, Roles of people using,
What each role can and cannot do]. Requests: [An

array of Request&Response pairs. Min. 1 Max. 5 pairs
. A Request must be followed by corresponding
Response .|

List of Examples, each line represents a unique example

#Comment : The following app fails to sanitize its error
response , leaking information about account
existance

Context: An ecommerce app with 3 types of users
Customer, Merchant and Admin. Customers and
Merchants can only view and edit their own data.
Admins can view and edit all data. Requests: |
Request —1: Customer—A POST /workshop/api/auth/login
with parameters username=’micheal ', password="123";
Response —1: Unauthorized with parameters success=
false ,message=’123 is incorrect password ’;Request —2:
Customer—B POST /workshop/api/auth/login with
parameters username=’beatrice ', password="123123";
Response —2: OK with parameters token="uYda27...’]

#Comment: The following app leaks sensitive system info
to end users after a crash

Context: Travel booking website with 1 type of users
Customer, where customers book their own flights.
Requests: [Request—1: Customer—A PUT /flights /europe
/suomi/book with parameters name='Mikkall2’ date
="20.10.2022"; Response —1: Bad Request with
parameters message='Ineffective mark—compacts near
heap limit Allocation failed — JavaScript heap out
of memory, total=15394 available=13, core dumped’]

#Comment: The following app leaks information about
accounts in response error message

Context: A school management system where teachers can
only view and modify their own grades and attendance
records. Requests: [Request—1: Customer—A POST /
school/records/security /check with parameters
credential="micheal@gmail .com’ , password="A2B1C’;

APPENDIX B. DATA GENERATION PROMPT 91

Response —1: Forbidden with parameters details=’
account not found, did you mean micheal@school.com
7]

#Comment: The following app leaks email of user in
response message without verification

Context: A healthcare platform with 2 type of users
Patient and Doctor, where patients can view and
manage their own healthcare records. Requests: |
Request —1: Patient—A GET /account/password/reset
with parameters name=’jordanl2 ’; Response —1: OK with
parameters response=’sent reset instructions to
jordanP1990@hotmail .com. If this is not your email
please check the name you provided.’]

#Comment: The following app leaks the contents of user
s private file in the response message

Context: A cloud—based storage app with 2 type of users
User and Admin, where each user can only view and
download their own files. Admins cannot view user
files. Requests: [Request—1: User—A GET /api/files
with parameters filelID="User—A/email.docx ’; Response
—1: OK with parameters fileID="User—A/email.docx’,
content="Hello World!’ , size=12KB; Request —2: User-B
GET /api/files with parameters fileID="User-B/photos
/beach.jpg ’; Response —2: OK with parameters filelD=’
User—B/photos/beach.jpg’, content [’...7], size=2MB;
Request —3: User—A POST /api/files with parameters
fileContent="New Content ’; Response —3: OK with
parameters filelD="User—A/email.docx’,content="New
Content ' | size=10KB; Request —4: User-—B POST /api/files
with parameters fileContent='New Content '; Response
—4: OK with parameters filelID="User—B/photos/beach.
jpg ' ,content="New Content’ size=1.5MB; Request —5:
Admin GET /api/files with parameters fileID="User—A/
email .docx ’; Response —5: OK with parameters message=’
Cannot parse email.docx: ’from=User—AQ@gmail.com to=
lover@gmail .com title=Secret body=6s76sad/&TA29° is
missing quotes ']

#Comment: The following app leaks customer’s order
history to another customer in error message

Context: A food ordering app with 2 type of users
Customer and Restaurant where each customer can only

Y

APPENDIX B. DATA GENERATION PROMPT 92

access and modify their own orders. Restaurant can
view all orders. Requests: [Request—1: Customer—A
GET /api/orders with parameters orderID="Order—A’;
Response —1: OK with parameters orderID="Order—A’,
menu=|["pizza ', coke '] ,status="Delivered ’; Request —2:
Customer-B GET /api/orders with parameters orderID=’
Order—A’; Response —2: Forbidden with parameters
results="you are not allowed to view orderID=\’Order
—A\ " menu=[\’"pizza\’,\ coke\’],status=\"Completed
\ 75

#Comment: The following app leaks name and function of
internal library in use

Context: Travel booking website with 1 type of users
Customer, where customers book their own flights.
Requests: [Request —1: Customer—A PUT /store/login
with parameters email="micheal@gmail.com’ password=’
ABC’; Response —1: Bad Request with parameters code
="400",error="php—hash—lib: cannot hash, digest size
surpassed]

#Comment: The following app leaks confidential internal
network communication information

Context: An online marketplace with 2 type of users
Seller and Buyer for advertisements where each
seller can only see their own listings. Admins can
view and delete all listings. Requests: [Request—1:
Seller —A Patch /market/seller /[Seller —A—id|/items /]|
Seller —~A—itemId] with parameters name=’Item—A’;
Response —1: OK with parameters itemlId=’Seller —A—
itemld ’ ,name="Item—A’ , price=10.5,quantity=103;
Request —2: Seller B Get /market/seller /[Seller —A—id
]/items /[Seller -B—itemId] with parameters;Response
—2: Forbidden with parameters status=’unsuccessful ’,
reason='request to http://internal-—service:4568
returned gateway timeout ’]

#Comment: The following app leaks database sql query
details

Context: A messaging app with 2 types of users User and
Admin where Users can chat with each other. Chats
are encrypted end—to—end. Requests: [Request—1: User
—1 /messages/august/search with parameters terms=’
who should win eurovison?’;Response—1: Error with

APPENDIX B. DATA GENERATION PROMPT 93

parameters msg='cannot serialize response {command:
'SELECT’ ,rowCount: 3,0id: null ,rows:[{ id:

"John’ | age: 25 } . { id: 2, name: ’Jane’, age: 30 } {
id: 3, name: ’Sam’, age: 35 }|,fields: [{ name: ’id
*, tableID: 123, columnID: 1, dataTypelD: 23 } {
name: ’'name’ , tableID: 123, columnID: 2, dataTypelD:
25 },{ name: ’age’, tablelD: 123, columnID: 3,
dataTypelD: 23 } commandComplete:

"slet x fr tb lim
3 1]

1, name:

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Background
	1.2 Problem
	1.2.1 Original Problem and Definition

	1.3 Purpose
	1.4 Goals
	1.5 Research Methodology
	1.6 Delimitations
	1.7 Structure of the Thesis

	2 Background
	2.1 Large Language Models
	2.1.1 Deep Neural Networks
	2.1.1.1 Recurrent Neural Networks
	2.1.1.2 Long Short-Term Memory Networks
	2.1.1.3 Attention Mechanisms

	2.1.2 Transformers
	2.1.2.1 Encoder-only Transformers
	2.1.2.2 Decoder-only Transformers
	2.1.2.3 Encoder-Decoder Transformers

	2.1.3 Pre-training
	2.1.4 Finetuning
	2.1.4.1 Efficient Finetuning Techniques

	2.1.5 Prompting
	2.1.5.1 In-context Learning
	2.1.5.2 Zero-shot Learning
	2.1.5.3 Few-shot Learning

	2.2 Web Application Vulnerabilities
	2.2.1 Broken Access Control
	2.2.1.1 CWE-639: Authorization Bypass Through User-Controlled Key
	2.2.1.2 CWE-209: Generation of Error Message Containing Sensitive Information

	2.3 Vulnerability Detection
	2.3.1 Manual Application Security Testing (MAST)
	2.3.2 Static Application Security Testing (SAST)
	2.3.3 Dynamic Application Security Testing (DAST)
	2.3.4 Interactive Application Security Testing (IAST)

	2.4 Related works
	2.4.1 Web Vulnerability Detection Tools Comparison
	2.4.2 State-of-the-art Vulnerability Detection Tools

	3 Methodology
	3.1 Research Process
	3.2 Data Collection
	3.2.1 Sampling
	3.2.2 Target Population

	3.3 Experimental Design
	3.3.1 Test Environment Setup
	3.3.2 Hardware and Software to be used

	3.4 Assessing Reliability and Validity of the Data Collected
	3.4.1 Reliability of Method
	3.4.2 Reliability of Data
	3.4.3 Data Validity

	3.5 Planned Experiments & Data Analysis
	3.5.1 Hyperparameters
	3.5.2 Pre-trained Models
	3.5.3 Training Dataset Size
	3.5.4 Inference Performance

	3.6 Evaluation Framework
	3.6.1 Evaluation Metrics

	4 Implementation
	4.1 Fuzzer
	4.2 Prompter
	4.2.1 HTTP Request and Response Compression

	4.3 Model Finetuning
	4.4 Inference

	5 Results and Analysis
	5.1 Pre-trained Model
	5.2 Training Dataset Size
	5.2.1 Examples of Incorrect Classifications

	5.3 Inference Performance

	6 Discussion
	6.1 Overall Performance
	6.2 Key Factors in Performance
	6.3 Challenges and Limitations
	6.4 Auxiliary Advantages

	7 Conclusions
	7.1 Conclusions
	7.2 Future Work
	7.3 Reflections

	Bibliography
	A Environment Setup
	B Data Generation Prompt

