
Master’s programme in ICT Innovation

Robotics Approach in Mobile Laser Scanning
Generation of Georeferenced Point-based Forest Models

Tamas Faitli

Master’s Thesis
2023

Author Tamas Faitli
Title Robotics Approach in Mobile Laser Scanning — Generation of Georeferenced

Point-based Forest Models
Degree programme ICT Innovation
Major Autonomous Systems
Supervisor Prof. Mihhail Matskin, Prof. Quan Zhou
Advisor Shirin Tahmasebi, Prof. Antero Kukko
Collaborative partner Finnish Geospatial Research Institute
Date 14/06/2023 Number of pages 65 Language English

Abstract
A mobile laser scanning (MLS) system equipped with a lidar, inertial navigation system
and satellite positioning can be used to reconstruct georeferenced point-based models
of the surveyed environments. Ideal reconstruction requires accurate trajectories that
are challenging to obtain in forests. Satellite signals are heavily degraded under the
forest canopy, while lidar-based positioning is often inefficient due to the forest’s
unstructured and complex nature. Most forestry-related solutions compute or improve
the trajectory in post-processing, focusing on accuracy rather than the possibility of
real-time operation. On the other hand, real-time solutions exist, but they are primarily
tested and evaluated in urban environments, and the forest’s effect on them is less
known.

In this study, high-quality, real-time point-based forest model generation was
considered by applying techniques from the field of robotics. Forest data were
collected with an MLS system mounted 1) on a stick carried by a person and 2)
mounted on a forest harvester while performing thinning operations. The system’s
trajectory was computed using lidar-inertial-based smoothing and mapping algorithms
with real-time limitations. In addition, satellite measurements were either fused into
the smoothing algorithm contributing to the trajectory estimation or were used to
georeference the trajectory in a post-processing manner.

Collecting reliable reference trajectories is difficult in forests. Therefore, this
study mainly contains qualitative and relative evaluation. The results indicate that
real-time and onboard processing is feasible for forest data with adequate accuracy.
State-of-the-art edge and planar feature-based lidar odometry was the most accurate
but could not fully maintain real-time operation. On the other hand, the normal
distributions transform-based odometry can maintain fast and constant computation
with slightly lower accuracy. Fusing the satellite positioning for the mapping reduced
the internal integrity of the reconstructed point cloud models, and it is suggested to
use it for post-processed georeferencing instead.

Keywords mobile laser scanning , rotating lidar , slam , real-time positioning ,
georeferencing , state estimation , lidar odometry , point-based forest
model , forest harvester , forestry

iii

Contents
Abstract ii

List of figures v

List of tables vii

List of acronyms and abbreviations viii

Acknowledgements ix

1 Introduction 1
1.1 Background . 1
1.2 Problem and Research Gap . 2

1.2.1 Research Gap . 2
1.3 Purpose . 3
1.4 Goals . 3
1.5 Research Methodology . 3
1.6 Delimitations . 4
1.7 Sustainability and Ethics . 4
1.8 Outline . 4

2 Theoretical Background and Related Work 6
2.1 Related Work . 6

2.1.1 SLAM in Mobile Laser Scanning 6
2.1.2 Lidar-based Positioning and Mapping 7
2.1.3 GNSS Usage in SLAM . 7

2.2 Lie Theory for State Representation and Estimation 8
2.2.1 Basics of Lie Groups . 8
2.2.2 Operations on Manifolds 10

2.3 Simultaneous Localization and Mapping 11
2.3.1 SLAM Formulations . 11
2.3.2 Factor Graphs for SLAM 13

2.4 Odometry . 14
2.4.1 Inertial Odometry . 14
2.4.2 Lidar Odometry and Scan Registration 15

3 Methods and Experiments 17
3.1 Applied Algorithms . 17

3.1.1 Smoothing and Mapping Framework 18
3.1.2 Scan Matching Algorithms 23
3.1.3 Georeferencing . 25

3.2 Measurements . 28
3.2.1 Measurement systems . 28
3.2.2 Datasets . 30

iv

3.3 Experiments . 30
3.4 Evaluation . 31

3.4.1 Metrics . 31

4 Results and Analysis 33
4.1 SAM framework . 33

4.1.1 Generated digital forest models 34
4.1.2 Example tree segments . 36
4.1.3 Tree positions . 39
4.1.4 Trajectories . 40
4.1.5 Distance distribution . 43
4.1.6 Drift . 43
4.1.7 Execution time . 45

4.2 Fusing GNSS and Georeferencing 46
4.2.1 GNSS fusion . 46
4.2.2 Georeferencing methods 48

5 Discussion 51
5.1 A real-time MLS SLAM system 51
5.2 LiDAR-based positioning in forest 52
5.3 GNSS usage for MLS SLAM . 53

6 Conclusions and Future Work 55
6.1 Future Work . 55

References 57

v

List of Figures
1 The overall research process. 17
2 The schematic diagram of the implemented Smoothing and Mapping

(SAM) framework. 18
3 The measurement system mounted on: (a) a stick for handheld

surveying, and (b) a forest harvester that performed a thinning
operation. On the harvester the system under consideration was
attached on the front link of the machine behind the arm. 29

4 Generated digital forest model from evo1 dataset using NDT-LC method. 33
5 Generated digital forest model from evo2 dataset using NDT-LC method. 34
6 Generated digital forest model from evo3 dataset using NDT-LC method. 35
7 Generated digital forest model from tuusniemi1 dataset using NDT-LC

method. 35
8 Generated digital forest model from tuusniemi3 dataset using NDT-LC

method. 36
9 Randomly selected trees from evo datasets processed with NDT-LC

method. Front view (top) and top view of the crosssection (bottom).
The cross section contains the region from 0.9-1.9 meters on the z-axis. 37

10 Cross sections of randomly selected trees from evo datasets processed
with NDT-LC method. The cross sections contain the region of 0.9-1.9
meters above ground level. 37

11 Randomly selected trees from tuusniemi datasets processed with
NDT-LC method. Front view (top) and top view of the crosssection
(bottom). The cross section contains the region from 0.9-1.9 meters
on the z-axis. 38

12 Cross sections of randomly selected trees from tuusniemi datasets
processed with NDT-LC method. The cross sections contain the
region of 0.9-1.9 meters above ground level. 38

13 Reference trees for evo2 dataset plotted on top of the digital forest
model generated with NDT-LC method. 39

14 Computed trajectories for evo1 dataset. 40
15 Computed trajectories for evo2 dataset. 41
16 Computed trajectories for evo3 dataset. 41
17 Computed trajectories for tuusniemi1 dataset. 42
18 Computed trajectories for tuusniemi3 dataset. 42
19 Distance distribution for (a) - tuusniemi1 and (b) - tuusniemi3 datasets. 43
20 Illustration of the drift. An example segment of the evo2 forest model

that has been visited at the beginning and the end of the measurement.
(a) - visible drift as inherited from the estimated NDT trajectory; (b) -
aligning the scans from the beginning and the end of the trajectory
removes the drift, and the resulting transformation estimates the size
of the drift. 44

vi

21 Average processing time of a single scan frame during evo2, evo3 and
tuusniemi1 datasets. (a) - computed throughout the experiment by
averaging blocks of 300 or 1000 scans; (b) - averaged for the whole
experiment. 45

22 GNSS related trajectories for evo1 dataset. 46
23 GNSS related trajectories for evo2 dataset. 47
24 Illustration of the removal of motion distortion from a scan. 52

vii

List of Tables
1 Mathematical symbols used in the SAM framework. 18
2 Dataset details . 30
3 Translational drifts in meters. Presented for configurations without

loop closure strategy. 44
4 Translational drifts normalized by the length of the trajectory.

Presented for configurations without loop closure strategy. 44
5 Translational errors for the different georeferencing methods. Errors

Δ𝑥, Δ𝑦, Δ𝑧 are listed for each axes east (x), north (y) and up (z) while
also a combined error computed as:

√︁
Δ𝑥2 + Δ𝑦2 + Δ𝑧2. 48

6 Georeferencing rotational errors of the different methods. Errors Δ𝑟 ,
Δ𝑝, Δ𝑦 are listed for each axes east (x), north (y) and up (z) while also
a combined error computed as:

√︁
Δ𝑟2 + Δ𝑝2 + Δ𝑦2. 49

viii

List of acronyms and abbreviations
ALS Airborne Laser Scanning

CSF Cloth Simulation Filter

DoF degrees of freedom

EKF Extended Kalman Filter

ENU east, north, up

GICP Generalized Iterative Closest Point

GNSS Global Navigation Satellite System

GTSAM Georgia Tech Smoothing and Mapping Library

ICP Iterative Closest Point

IMU Inertial Measurement Unit

LiDAR Light Detection and Ranging

LIO-SAM Lidar-inertial Odomentry via Smoothing and Mapping

LOAM Lidar Odometry and Mapping

MAP maximum a posteriori

MLS Mobile Laser Scanning

NDT Normal Distributions Transform

NED north, east, down

PCL The Point Cloud Library

ROS Robotic Operating System

RTK Real-time Kinematics

SAM Smoothing and Mapping

SE3 Special Euclidean Group

SLAM Simultaneous Localization and Mapping

SO3 Special Orthogonal Group

TLS Terrestrial Laser Scanning

UAV Unmanned Aerial Vehicle

ix

Acknowledgments
I want to thank the Finnish Geospatial Research Institute for providing such an
exciting topic, support, equipment, and flexibility to carry out this work, especially my
supervisor, Antero Kukko, and department lead, Juha Hyyppä. Furthermore, Teemu
Hakala, who helped me build the measurement setups and contributed during our
field trips to collect essential data for this study, Harri Kaartanen, who took part in
organizing the Tuusniemi field trip and collected reference data, and Heikki Hyyti for
insightful discussions during this work and his help in reviewing the final draft.

From KTH Royal Institute of Technology, I thank my supervisor Shirin Thamasebi
for all the valuable comments and support, and my examiner Mihhail Matskin for the
helpful feedback.

I am grateful to my friends from KTH and Aalto University for making my master’s
studies an unforgettable international experience. Finally, I thank my family for
supporting me in doing a degree program in two different countries. Especially my
mother, who unfortunately could not see me finish it, but gave me the initial boost to
start this journey.

Furthermore, this work was supported by the funds and infrastructure granted
by Academy of Finland through UNITE Flagship (337656) and projects ‘Feasibility
of Inside-Canopy UAV Laser Scanning for Automated Tree Quality Surveying’
(334002), ’Understanding Wood Density Variation Within and Between Trees Using
Multispectral Point Cloud Technologies and X-ray Microdensitometry’ (331708),
’Estimating Forest Resources and Quality-related Attributes Using Automated Methods
and Technologies’ (334829), and the Ministry of Agriculture and Forestry project
‘Future forest information system at individual tree level’ (VN/3482/2021). Academy
of Finland Research infrastructure (346382) was applied for the study.

Helsinki, June 2023
Tamas Faitli

1

1 Introduction
Forest inventory is essential for better forest management and human interaction
with natural resources. Laser scanning is an efficient way to collect inventory
data by generating digital forest models followed by extracting vital parameters
computationally, such as diameter at breast height [1, 2, 3], stem curve and tree
height [2, 4] and a few others [5, 6]. However, automating the model generation is
still challenging, as it requires autonomous mobile mapping systems operating in
challenging forest environments.

1.1 Background
Several approaches co-exist in forest laser scanning in different phases concerning
their technological advancement and adaptation level in the industry. Terrestrial Laser
Scanning (TLS) produces digital models with high accuracy and great details [7], but
it is the least automated solution taking expensive human labour and time. Airborne
Laser Scanning (ALS) can cover immense areas efficiently [8, 9], but often lacks
valuable information on the level of individual trees. The latest addition, Mobile Laser
Scanning (MLS) has excellent potential to complete or even overtake the previous
approaches [10, 11, 12, 13]. An MLS system can become fully autonomous in the
future, relaxing the mentioned disadvantages of TLS systems. By attaching to different
robotic platforms, it can fly above or move within the canopy level to collect enough
details compared to the ALS techniques. Nevertheless, it will likely to be less accurate
due to the motion of the laser scanner and the other inherited measurement errors
accumulated from additional sensors used to localize the scanner.

A typical MLS system is equipped with a Global Navigation Satellite System
(GNSS), Inertial Measurement Unit (IMU), and Light Detection and Ranging (LiDAR)
sensors. GNSS provides absolute positioning information in a georeferenced coordinate
frame, whereas an IMU sensor samples data about the instantaneous rate of motion
in the robot’s body frame, often extended with absolute orientation measurements in
modern models. Finally, LiDAR is the laser scanner itself, providing accurate and fast
range measurements commonly transformed to a form of a set of 3-dimensional points
referred to as a point cloud. By knowing the location and orientation of the scanner
during its time of surveying, a digital point-based model can be reconstructed.

Describing the state and especially the kinematics of a moving scanner from sensor
data is a heavily studied problem in robotics, opening up to many existing techniques
and solutions. Laser scans can also be used to position or estimate the movement of
the robot. It is often achieved by scan registration, a technique estimating the relative
transformation between the incoming scan and some historical data. Popular solutions
are derivations of the Iterative Closest Point (ICP) algorithm [14, 15], feature-based
approaches [16], or based on other mathematical descriptions such as the Normal
Distributions Transform (NDT) [17, 18]. Simultaneous Localization and Mapping
(SLAM) is a well-known problem within robotic perception, where mapping and
localization concerning the map happen concurrently [19, 20]. While solving the
SLAM problem, the sensors are fused by taking into account the uncertainty of their

2

measurements following probabilistic approaches [21], and essentially filtering out
the unwanted noises and errors for more accurate trajectory estimations.

1.2 Problem and Research Gap
The overall problem addressed in this thesis is the generation of georeferenced point-
based digital forest models using an MLS system with the limitations of an autonomous
mapping system of the future. Positioning and mapping must be done in real-time
with the computational capacity of onboard devices. Furthermore, the algorithms
must rely only on historical data and incoming sensor measurements.

Navigation in the forest is difficult since GNSS solutions are often unreliable due to
the canopy shadowing the signal. On the other hand, the environment is unstructured
and noisy for standard laser-based positioning algorithms, which commonly exploit
rectangular, edge and other simpler geometrical shapes. Additionally, real-time
computation is exceptionally challenging when millions of measurement points arrive
every second from the laser scanner, and 3D reconstruction and processing are only
feasible by sacrificing the detail and accuracy of the resulting forest model that goes
against the original purpose of laser scanning.

1.2.1 Research Gap

In addition to the problem formulation, the thesis addresses the following identified
research gaps.

No real-time MLS-SLAM; The application of SLAM within forest laser scanning
is relatively new, and it was always executed in post-processing, prioritizing map
accuracy over automating the surveying process. Post-processing provides more
computation time and enables the robot to access future data when the trajectory is
optimized. These are strict limitations in a real-time system whose effects have not yet
been studied in case of MLS-SLAM systems in the literature.

State-of-the-art LiDAR-SLAM is focused on urban environments; Due to the
high interest in autonomous driving, state-of-the-art solutions of LiDAR-based SLAM
are heavily focused on urban environments. The concepts are similar in forest settings;
however, excessive evaluation is missing in the literature, and we do not know their
capabilities in forest environments.

Limited GNSS usage in LiDAR-SLAM; Positioning in laser scanning primarily
relies on GNSS. In contrast, state-of-the-art LiDAR-based systems often ignore and
consider it only as an option as one of the main goals is to provide an alternative
to GNSS for periods it is unreliable. There is a gap in the usage of GNSS for laser
scanning, as integrating unreliable measurements will undoubtedly ruin the accuracy
of the generated forest model. However, georeferencing the models is essential, and
solutions shall exploit GNSS measurements in conjunction with other geospatial data.

3

1.3 Purpose
This work contributes to the automation of the forest industry. Reliable and accurate
positioning and mapping in forests could enable various applications. For example,
autonomous forest surveying can collect inventory data, identify risk areas during
fire season, and provide search and rescue services. Furthermore, in the short run,
this technology could assist forest machine operators during harvesting, thinning, and
timber collection till these can be fully automatized in the longer span [22]. Most of
these applications contribute to better forest management, which has positive societal,
economic and environmental implications [23]. Accessible forests benefit both our
physical and mental health [24], while private forest owners can better plan their
harvesting and replantation without damaging the biodiversity of their land.

1.4 Goals
This work has the following goals, answering the original problem description and
reflecting on the identified research gaps.

• Evaluate state-of-the-art LiDAR positioning in forest laser scanning;

• Propose efficient usage of GNSS data for consistent and accurate georeferenced
forest models;

• Propose a functioning framework for real-time MLS-SLAM;

1.5 Research Methodology
The ideal research methodology for this study would follow a quantitative approach,
where the statistics would be derived from various error metrics between a reference
trajectory and the estimated trajectory of the MLS system computed by the investigated
algorithms. However, while it is feasible in urban environments using a post-processed
GNSS-IMU trajectory as the reference, GNSS is not accurate enough in the forest for
reliable evaluation. On the other hand, forest inventory-related studies usually perform
quantitative studies deriving error metrics between manually measured reference and
algorithmically detected tree parameters from the reconstructed forest models. Since
this study focuses on point cloud reconstruction, introducing additional algorithms to
extract tree parameters is not desired nor optimal for evaluation.

Given the mentioned limitations, this study contains a qualitative evaluation at
its core. The quality and consistency of the generated forest models are visually
examined, yielding observations regarding the estimated trajectory’s accuracy. An
incorrect trajectory leaves apparent marks in the reconstructed model, such as
multiple appearances of the same object or contradicting ground levels in a revisited
area. Specific parameters, however, can be quantitatively evaluated. For example,
computational time was measured during the experiments where the examined variable
is the different algorithm configurations. Furthermore, after selecting the most
consistent algorithm configuration as a reference, the other algorithms can be compared

4

to derive relative numerical metrics for the drift error. Finally, the included study on
georeferencing also follows a quantitative approach, where manual generation of the
ground truth was feasible to compute numerical errors for further evaluation.

1.6 Delimitations
State-of-the-art real-time online LiDAR-based SLAM algorithms in forest environment
are evaluated in this study. However, it is impractical to investigate all of them.
Unfortunately, some of the recent propositions in literature do not come with an
open-source implementation, which would make their benchmarking infeasible to
conduct in the current scope. Therefore, the choice of algorithms is very selective
based on their popularity, impact, and public code availability.

One of the aims of the study is to provide digital forest models for extracting
forest inventory computationally; however, these calculations require separate
implementation and evaluation and are not within the scope of this study. Therefore,
instead of evaluating how great they are for automatic inventory extraction, the forest
models are evaluated based on the amount of drift in the trajectory, comparing
semi-manually extracted features to reference and additional qualitative methods.

1.7 Sustainability and Ethics
Real-time reconstructed forest models enable various future applications and
automation to improve the sustainability of the forestry industry. For example,
given these models as input data, tools can be developed to help onboard the harvester
operator prioritize removing already damaged trees or avoid protected ones. In addition,
it could ensure that the forest maintains an ideal basal area to sustain biodiversity
after harvesting. Furthermore, accurate positioning in the forest can reduce the risk
that harvesting missions disturb neighbouring forests that other people own. Finally,
positioning the removed trunks can improve logistics when they are later collected,
possibly reducing necessary resources and wasted trees.

During this study, the thinning in the forest was performed by a professional
operator without endangering people. Furthermore, to minimize the effects on the
environment while doing forest harvester research, these measurements were done in
cooperation with other research institutes. Their devices were also installed on the
machine, and the collected data will contribute to many other studies. The precise
locations for the measurements are not communicated in this report, preserving the
privacy of the forest owners. The plots do not contain georeferenced coordinates but
were converted to a zero-offset frame.

1.8 Outline
The rest of the thesis is organized as the following. In Chapter 2 first necessary
theoretical background is presented, followed by related work reflecting on the
identified research gaps. In Chapter 3 the applied LiDAR-based positioning and
the georeferencing algorithms are detailed with descriptions of the datasets and

5

experiments performed. Chapter 4 presents the results and initial analysis, whereas
Chapter 5 provides discussion. Finally, Chapter 6 contains conclusions from the study
and possible future work.

6

2 Theoretical Background and Related Work
This chapter presents an overview of related literature and relevant theoretical
background knowledge. First, an organized collection of related work is listed
in Section 2.1. Then, Lie Theory is introduced in Section 2.2 to understand the proper
and simultaneous manipulation of translations and rotations. It is followed by an
overview of different formulations and approaches in SLAM in Section 2.3, which is
the core concept of this study. Finally, Section 2.4 discusses odometry, the central
building block inside a LiDAR-based SLAM system.

2.1 Related Work
Related work is presented in three main areas following the identified research gaps
in Section 1.2.1. First, previous approaches in applying state estimation, especially
SLAM solutions for MLS are presented. It is followed by state-of-the-art LiDAR
based positioning and mapping methods that have been primarily evaluated in urban
environments. Finally, the incorporation of GNSS sensor in challenging environments
is considered.

2.1.1 SLAM in Mobile Laser Scanning

Related work where SLAM methods have been applied in MLS is presented in
chronological order. Wallace et al. [25] improved the trajectory by fusing measurements
obtained by GNSS, IMU, and an additional high-definition camera while keeping the
LiDAR measurements only to construct the point-based models. Tang et al. [26] utilize
the surveying laser scanner to improve its positioning by projecting the measured 3D
points onto 2D stem features and integrating it into an occupancy grid-map based
SLAM solution. Chen et al. [27] extracted tree stem information from individual scans
and matched them to an existing reference map to enhance the positioning accuracy.
Qian et al. [28] improved their SLAM solution [26] by integrating the heading angle
and velocity estimates from the GNSS-inertial system, which was assumed to remain
accurate even when GNSS signal is disturbed.

Holmgren et al. [29] applied a modified Lidar Odometry and Mapping (LOAM)
algorithm to utilize laser data and correct an initial trajectory obtained by inertial
and stereo-camera sensor fusion. Kukko et al. [30] applied graph-based SLAM to
improve the post-processed trajectory obtained by the traditional GNSS-IMU system.
Pierzchała et al. [31] built a standard online solution by matching consecutive scans
using the ICP algorithm and fed the results into a graph for back-end optimization;
however, taking map quality as their main priority computations were not performed
with real-time limitations. Finally, Hyyppä et al. [32] tested a commercially available
LiDAR-based SLAM solution mounted on a Unmanned Aerial Vehicle (UAV) flying
inside the forest canopy, while similarly, Chudá et al. [33] compared the positioning
accuracy of a commercial inertial navigation system and LiDAR-SLAM solution in
managed forests.

7

The listed works show that SLAM in MLS is primarily applied to improve the
accuracy of the field survey rather than to achieve automation. These solutions are not
fast enough to perform in real-time, or they assume to have future data to improve the
trajectory via post-processing.

2.1.2 Lidar-based Positioning and Mapping

Related work compatible with spinning laser scanners is listed below, organized by
different approaches to reduce computational complexity and time.

Extracting feature points is one way to reduce the number of points to be matched
during the registration process: A popular approach is based on the handcrafted edge
and planar features first introduced in 2014 [16], which has been further improved and
evaluated [34, 35, 36, 37]. Another set of handcrafted geometric features was extracted
via ground-filtering and principal component analysis [38]. Finally, learning-based
methods were proposed to extract unique features for matching [39, 40], or even to
directly estimate odometry from consecutive scans [41, 42].

Besides compressing the incoming laser scans, more compact map representations
can also reduce computational requirements: Surfels have been used to approximate
the explored space in various work [43, 44, 45, 46], while others applied similar normal
distribution-based mathematical approximations [47, 48]. A combined approximation-
based initial matching with feature-based adjustment has also been proposed [49].
Recently, triangular mesh models were explored for a more accurate geometrical
representation of the 3D space [50, 51].

Spinning laser scanners often provide the data in a fixed-size image with different
attributes (range, intensity, etc. . .), which is converted later to a 3D point cloud. Some
computation can be saved by eliminating this conversion step and directly performing
registration on the images. Promising approaches were built by building and matching
such images to depth panoramas [52, 53].

The listed studies show that compressing the laser scans is the state-of-the-art
towards real-time processing. Unfortunately, these solutions are primarily developed
and evaluated for urban environments, rarely including a short forest case study without
deeper analysis.

2.1.3 GNSS Usage in SLAM

In earlier research, GNSS-denied environment usually meant indoor operation, and
solutions did not involve GNSS sensors (e.g. [54, 55, 56]). For example, Tang et al.
[57] integrated scan registration with inertial measurements for positioning without
relying on GNSS measurements in a GNSS-denied indoor operation. On the other
hand, recent SLAM frameworks often support the integration of GNSS measurements,
however, it is not the main focus when methods are evaluated in urban environments
(e.g. [36]).

Natural areas have a complementary behaviour when it comes to LiDAR and
GNSS-based positioning. They include forests with rich and complex features for
LiDAR-based positioning where the GNSS-based one is limited [58]. On the other

8

hand, more open fields have great GNSS coverage but no features to support the
LiDAR-based techniques. In order to overcome this, Gao et al. [59] proposed an
Extended Kalman Filter (EKF) correcting the inertial navigation system using either
GNSS or LiDAR measurements based on their availability. While Chang et al.
[60] follows a very similar approach but implements a graph-based SLAM back-end
instead of the EKF. Finally, He et al. [61] monitored the availability of Real-time
Kinematics (RTK) signal and decided based on that whether to incorporate new GNSS
measurements or only laser-based positioning.

Conclusions drawn from the presented work in Section 2.1.1 show the additional
need to improve the commonly used GNSS-IMU trajectory within MLS and their
trend to use the already onboard LiDAR sensor instead of installing additional sensors
are considered in this study. Additionally, the work presented in Section 2.1.2 shows
that it is possible to process this relatively large amount of input data in real-time by
efficiently compressing and extracting vital information, inspiring this study to adapt
them to forest data. Finally, previous work in Section 2.1.3 indicates that GNSS data
cannot be straightforwardly used in degraded environments. While they disgard or
select based on certain variables whether to utilize a given GNSS sample, this work
tries multiple approaches with the principle of incorporating as many measurements
but weighting their effects on the desired estimates based on their reliability.

2.2 Lie Theory for State Representation and Estimation
When dealing with robotics problems in 3D, the robot’s pose involves 6 degrees of
freedom (DoF) including translation and rotation components. Unfortunately, rotations
are not living in a linear vector space, and they do not commute with translations either.
That is, the order of operations matters when we both rotate and translate the body,
which happens concurrently in reality. Lie Theory provides a convenient and compact
way to transform operations on these geometric objects back to linear vector spaces
without losing precision or exactness. Consequently, it helps to solve underlying
nonlinear optimization problems with familiar mathematical frameworks. Below, a
brief background on Lie Theory for robotic state representation and estimation is
presented, which was compiled based on the following sources [62, 63, 64].

2.2.1 Basics of Lie Groups

A group (G, ◦) consist of a set G and an action ◦, where

• the action over any two elements part of the group results in another group
element: 𝑔1, 𝑔2 ∈ G; (𝑔1 ◦ 𝑔2) ∈ G;

• a unique identity element 𝑔I ∈ G exists, that does not modify any other element
when the action is performed on them: 𝑔1 ◦ 𝑔I = 𝑔1;

• for each element, an inverse 𝑔−1
1 ∈ G exists such that the action results on them

in the identity element: 𝑔1 ◦ 𝑔−1
1 = 𝑔−1

1 ◦ 𝑔1 = 𝑔I;

9

• and the action is associative: (𝑔1 ◦ 𝑔2) ◦ 𝑔3 = 𝑔1 ◦ (𝑔2 ◦ 𝑔3).

Lie groups are special groups whose elements are living on differentiable smooth
manifolds. It combines structural properties from group theory ensuring closure and
the existence of unique elements, while the smooth manifolds enables exploitation of
locally linear vector spaces where mathematical operations are easy to perform.

Special Orthogonal- and Euclidean Groups

The Special Orthogonal Group (SO3) and the Special Euclidean Group (SE3) are Lie
Groups. The first contains rotations, while the latter embeds 3D poses, a combination
of translation and rotation in a single mathematical object. Elements of SO3 are
commonly represented with R ∈ R3𝑥3 matrices, while SE3 objects with T ∈ R4𝑥4

matrices commonly referred to as homogeneous transformation matrices. R is
constrained by {R𝑇R = I; det(R) = 1}, where I is the identity matrix, leaving it 3
DoF. T has a fixed bottom row; it contains R on its top left block with the same
constraints, and a translation vector p ∈ R3 on the right side of R resulting in a total
of 6 DoF matching the robot’s free body.

The group action for SO3 and SE3 is a traditional matrix multiplication, and the
identity element is the identity matrix itself. It is worth noting that due to the constraint
on R, the inverse rotation of R is its own transpose R𝑇 .

In practice, homogeneous transformation matrices can be used for multiple
purposes. They can express the robot’s pose in a defined coordinate frame, it can
express the coordinate frame itself relative to another coordinate frame, or it can
transform objects from one coordinate frame to another. Throughout this report, letter
T is mainly used for expressing transformations that is used to convert values from
one frame to another, while robot poses have their own letters such as X.

Tangent Space; Lie Algebra; Exp and Log Maps

Due to the nature of the smooth surface of the manifold, a tangent space exists at any
point on it. The tangent space at the identity element is special, and it is called as the
Lie algebra of the manifold. Elements can be mapped from the tangent space to the
manifold using the exponential map, while its inverse operation, the logarithmic map
projects elements from the manifold to the corresponding tangent space.

In Lie algebra, elements are skew symmetric matrices and they can be converted
to vectors and back using the vee (·)∨ and hat (·)∧ operators. By converting them to
vectors, we obtain objects living in linear spaces and typical operations from linear
algebra can be easily applied on them. For example, velocity values living on this
tangent space can be integrated there with simple vector addition, which then can be
mapped back to the manifold to obtain the new current pose.

Global Frame; Local Frame; Adjoint Task

In robotics, we often have global and local coordinate frames in which we interpret
the data. We can think of the identity element of the Lie Group as the global frame

10

in which we express the robot’s trajectory. Meanwhile, each trajectory element is
described with a transformation T ∈ SE3 that transforms the global frame into a local
frame overlapping the current pose.

Sensor measurements are expressed in local frames mounted on the robot’s body.
Specific values, such as angular velocities and linear accelerations coming from an
IMU even live on the tangent space of the local frames. The adjoint task provides a
convenient way to transform these values from the tangent space of the local frame to
the tangent space of the global frame.

2.2.2 Operations on Manifolds

Useful operations on manifolds involve the manipulation of elements on the manifold
with elements on the tangent space. For example, addition can increment a group
element with a tangent vector, whereas subtraction is evaluated on two group elements
but results in a quantity on the tangent space. These operations enable small
incrementation of poses, the calculation of error terms, and the introduction of
derivatives and uncertainties.

Addition and Subtraction

Addition and subtraction are defined using the group action. Since the group action is
not commutative, the order matters when we add or subtract group elements. Both
order has different underlying interpretations, and we differentiate them as left and
right operators.

Let E be the identity and X and Y be elements on the same smooth 𝑑-dimensional
manifold M, and 𝜏 ∈ R𝑑 a vector on the tangent space. Then, the operations are
defined as follows:

right-⊕ : Y = X ⊕ X𝜏
def= X ◦ Exp(X𝜏) ∈ M (1)

left-⊕ : Y = E𝜏 ⊕ X def= Exp(E𝜏) ◦ X ∈ M (2)

right-⊖ : X𝜏 = Y ⊖ X def= Log(X−1 ◦ Y) ∈ 𝑇XM (3)

left-⊖ : E𝜏 = Y ⊖ X def= Log(Y ◦ X−1) ∈ 𝑇EM (4)

Right operators define 𝜏 in the tangent space of the local frame 𝑇XM, while left
operators interpret it in the tangent space of the global frame 𝑇EM. Therefore, the
superscript on 𝜏. Exp(·) is the exponential map, Log(·) is the logarithmic map, and
operator ◦ is the group action also called composition in case of Lie groups.

Derivatives

Derivatives within Lie groups can be given using Jacobian matrices. Having a function
𝑓 : M1 → M2 that maps elements from a 𝑑1 dimensional manifold to another 𝑑2
dimensional one, its Jacobian can be interpreted as a map that transforms corresponding
tangent spaces from one manifold to another. For example, the tangent space on

11

manifold M1 around element X will be mapped onto the manifold M2 around the
element 𝑓 (X).

The derivatives can be defined using the addition and subtraction operators defined
before and following the classical definition of derivatives. Since there are left and
right interpretations, the derivatives have two forms, mapping between local frames or
global frames.

right:
XD 𝑓 (X)

DX
def= lim

𝜏→0

𝑓 (X ⊕ 𝜏) ⊖ 𝑓 (X)
𝜏

∈ R𝑑2×𝑑1 (5)

left:
ED 𝑓 (X)

DX
def= lim

𝜏→0

𝑓 (𝜏 ⊕ X) ⊖ 𝑓 (X)
𝜏

∈ R𝑑2×𝑑1 (6)

Uncertainties

Proper handling of uncertainties is the essence of SLAM solutions. Covariance
matrices on manifolds can be defined on the local tangent space around the mean
element X̄, using the right or left ⊖ operation.

𝚺X
def=E

[︁
(X ⊖ X̄)(X ⊖ X̄)𝑇

]︁
∈ R𝑑×𝑑 (7)

When right-⊖ is used, the covariance matrix is expressed in the local tangent frame,
whereas left-⊖ results in the global frame.

Finally, propagating the covariance matrix through a nonlinear function 𝑓 : M1 →
M2;X ↦→ Y = 𝑓 (X) is done using the Jacobian matrix analogous to its non-manifold
equivalent:

𝚺Y ≈ D 𝑓 (X)
DX 𝚺X

D 𝑓 (X)
DX

𝑇

∈ R𝑑2×𝑑2 . (8)

2.3 Simultaneous Localization and Mapping
In SLAM we infer knowledge about the state of a moving robot and its environment.
A robot is equipped with sensors providing noisy measurements, its exact motion is
unknown, and often there is no model of the environment given beforehand. Therefore,
a map is constructed on the go and is used to aid the robot’s localization. In principle,
the better map the robot has, the better it can localize itself, and the better it can
localize itself, the better map it can build.

There are many approaches toward SLAM in the literature based on the
characteristics of the available sensors, computational constraints, and problem
formulations. This section provides the bare basics, followed by the characteristics of
the specific problem dealt with in this thesis. This summary is primarily based on the
following resources [65, 21, 19].

2.3.1 SLAM Formulations

Elements of a generic SLAM problem are states 𝑥𝑡 , the map 𝑚, controls 𝑢𝑡 and
measurements 𝑧𝑡 , where 𝑡 ∈ {0, 1, 2, . . . } represents consecutive time instances. The

12

robot is started at time 𝑡 = 0 at an initial state 𝑥0. From this point, it acts on control
inputs resulting in uncertain motion and records noisy measurements about its state
or the environment. While time goes on, in an online-SLAM setting, our aim is to
estimate the posterior distribution 𝑝(𝑥𝑡 , 𝑚 |𝑢1:𝑡 , 𝑧1:𝑡).

Classical Formulation

Assuming the above is a Markov-process, that is, the state 𝑥𝑡 only depends on the state
𝑥𝑡−1 but not on older elements, recursive Bayes filters provide an excellent framework
to infer the posterior. Moreover, it is an iterative process, where at each time instant, a
prediction and then a correction step is performed using the upcoming control and
measurement values, given as:

prediction: 𝑝(𝑥𝑡 , 𝑚 |𝑢1:𝑡 , 𝑧1:𝑡−1) =∫
𝑝(𝑥𝑡 |𝑢𝑡 , 𝑥𝑡−1) 𝑝(𝑥𝑡−1, 𝑚 |𝑢1:𝑡−1, 𝑧1:𝑡−1) 𝑑𝑥𝑡−1 (9)

correction: 𝑝(𝑥𝑡 , 𝑚 |𝑢1:𝑡 , 𝑧1:𝑡) =
[𝑝(𝑧𝑡 |𝑥𝑡 , 𝑚) 𝑝(𝑥𝑡 , 𝑚 |𝑢1:𝑡 , 𝑧1:𝑡−1) . (10)

In Eq. (9), 𝑝(𝑥𝑡 |𝑢𝑡 , 𝑥𝑡−1) is called the process model, whereas 𝑝(𝑧𝑡 |𝑥𝑡 , 𝑚) in Eq.
(10) is known as the measurement model, and [is a normalizing term. In most cases,
these models are Gaussian, where the means are computed by a motion function
𝑥𝑡 = 𝑔(𝑥𝑡−1, 𝑢𝑡) and measurement function 𝑧𝑡 = ℎ(𝑥𝑡 , 𝑚).

A More Suitable Formulation

In many applications, such as in MLS in its current form, the robotic platform is
controlled by an external unit or moved by a human operator, rendering the 𝑢 control
terms irrelevant in the process model. In other words, the robot only observes, making
the SLAM problem passive. Instead of controls, the robot’s relative motion is estimated
using sensor measurements. Both IMU and LiDAR can be used to provide such
estimates, referred to as odometry.

In the classical formulation, features in 𝑚 are estimated alongside the robot’s
state. New features are added when necessary, and old features are updated in case
more information is available. Unfortunately, this is challenging in multiple aspects;
demanding computation, memory, and complex data association. Instead, the SLAM
problem can be formulated in an unstructured manner, where individual map features
are not tracked or updated in time but only used to infer the robot’s state.

Finally, extending the estimation to the whole trajectory 𝑥0:𝑡 instead of keeping
track of only the latest element, the final posterior can be rewritten as shown in (11).
Note that measurements about the initial state might be available, including 𝑧0 on the
conditional side, and 𝑧𝑡 , in general, might include different measurement modalities
with unique functions and models.

𝑝(𝑥𝑡 , 𝑚 |𝑢1:𝑡 , 𝑧1:𝑡) → 𝑝(𝑥0:𝑡 |𝑧0:𝑡) (11)

13

2.3.2 Factor Graphs for SLAM

Factor graphs are probabilistic models that help factorizing the posterior distribution
in (11). Furthermore, they support efficient algorithms to solve optimization problems
modelled by them. It comes from the nature of the underlying SLAM problem, as
variable 𝑥 at a single instant 𝑡 is only constrained by a few measurements resulting in a
sparse graph structure. The presented description is based on the book it was initially
introduced for robotic applications [66].

Objective

We aim to reduce the uncertainty around our estimates, often done by applying the
maximum a posteriori (MAP) estimator. The solution 𝑥∗0:𝑡 then can be written as
follows:

𝑥∗0:𝑡 = argmax
𝑥0:𝑡

𝑝(𝑥0:𝑡 |𝑧0:𝑡) (12)

= argmax
𝑥0:𝑡

𝑝(𝑧0:𝑡 |𝑥0:𝑡)𝑝(𝑥0:𝑡)
𝑝(𝑧0:𝑡)

(13)

= argmax
𝑥0:𝑡

𝑝(𝑧0:𝑡 |𝑥0:𝑡)𝑝(𝑥0:𝑡) (14)

Equation (13) is obtained by applying the Bayes law on the posterior. Furthermore,
the denominator is just a scaling factor as it is not dependent on 𝑥0:𝑡 and therefore can
be neglected during the optimization yielding to Eq. (14).

The objective can be further simplified as the sensormeasurements 𝑧0:𝑡 are given and
are not changing. Instead of solving the problem for 𝑝(𝑧0:𝑡 |𝑥0:𝑡), it can be approximated
with the likelihood function 𝑙 (𝑥0:𝑡 ; 𝑧0:𝑡), where 𝑧0:𝑡 are solely parameters.

𝑥∗0:𝑡 = argmax
𝑥0:𝑡

𝑙 (𝑥0:𝑡 ; 𝑧0:𝑡)𝑝(𝑥0:𝑡) (15)

Since the likelihood function is proportional to the original conditional density, it does
not influence the optimization results; however, it simplifies the formulation of the
problem and how it can be approached.

Factor Graph Structure

A factor graph has two types of nodes connected by non-directional edges, where a
node either represents variables or a factor. A variable node encodes the state vector 𝑥
at a particular time, whereas a factor connects to one or more variable nodes depending
on its underlying measurement function. For example, an absolute GNSS measurement
constraints the robot’s location at a certain instant and therefore connects only to one
variable node. On the other hand, an odometry factor constraints the relative motion
between two consecutive robot poses, therefore connecting to two variable nodes.

This graph structure encodes the independence relationships within the problem
and yields to a factorization of the expression in Eq. (15):

𝑙 (𝑥0:𝑡 ; 𝑧0:𝑡)𝑝(𝑥0:𝑡) =
∏︂
\∈Θ

\ (𝑥\; 𝑧\) , (16)

14

where Θ is the set of factors, 𝑥\ are the variables the factor \ is connected, and 𝑧\
is the corresponding measurement to the factor. Note that the prior estimate in this
context acts very similar to measurements, and it can also be encoded in a factor with
its trivial measurement function.

Assuming zero-mean white Gaussian noise models on the priors and measurements,
a factor has the following form:

\ (𝑥\; 𝑧\) ∝ exp
{︃
−1

2
| |ℎ\ (𝑥\) − 𝑧\ | |2Σ\

}︃
, (17)

where | | · | |2
Σ

is the squared Mahalanobis distance, ℎ\ is the measurement function
for factor \, and Σ\ is the covariance matrix of the corresponding Gaussian noise.
Finally, plugging everything into the original objective function, the problem yields to
a nonlinear least-squares formulation.

𝑥∗0:𝑡 = argmax
𝑥0:𝑡

𝑙 (𝑥0:𝑡 ; 𝑧0:𝑡)𝑝(𝑥0:𝑡) (18)

= argmax
𝑥0:𝑡

∏︂
\∈Θ

\ (𝑥\; 𝑧\) (19)

= argmax
𝑥0:𝑡

∏︂
\∈Θ

exp
{︃
−1

2
| |ℎ\ (𝑥\) − 𝑧\ | |2Σ\

}︃
(20)

= argmin
𝑥0:𝑡

∑︁
\∈Θ

| |ℎ\ (𝑥\) − 𝑧\ | |2Σ\
. (21)

Note that in Eq. (21) we minimize the negative-log of the expression in (20), as it is
an equivalent problem but easier to handle.

2.4 Odometry
Odometry is a crucial element in an MLS LiDAR-SLAM system, since both IMU and
LiDAR measurements can be used to estimate the robot’s relative motion, that can
be fed into a factor graph. A trivial measurement function can be formulated as the
difference between two consecutive robot poses X𝑡 ,X𝑡+1 ∈ SE3, as:

ℎ(X𝑡 ,X𝑡+1) = X𝑡+1 ⊖ X𝑡 . (22)

The challenging part is to convert the raw data into such motion estimates and
evaluate the confidence within those measurements. For example, in the case of IMU
data, a couple of hundred measurements are obtained till it is beneficial to insert a
new node into the factor graph. At the same time, the LiDAR provides thousands
of sample points of the surroundings from different poses that must be compared to
estimate the motion difference in Eq. (22).

2.4.1 Inertial Odometry

Inertial measurements suit well odometry estimates relying on basic kinematics. The
state that primarily includes the pose and velocity of the robot can be estimated through

15

Euler’s integration method. The state update can be given as the following system of
difference equations:

X𝑡+1 = X𝑡 ⊕ (
[︁X𝑣𝑡 X𝜔𝑡

]︁
Δ𝑡) (23)

E𝑣𝑡+1 = E𝑣𝑡 + E𝑎𝑡Δ𝑡 , (24)

where 𝑣 ∈ R3 is the velocity, 𝜔 ∈ R3 is the angular velocity, and 𝑎 ∈ R3 is the linear
acceleration vector of the body. Additionally, the letters X and E in left superscript
indicate whether the object is interpreted in the local (body) frame or global (world)
frame. The velocity propagated in Eq. (24) can be converted into body frame in order
to evaluate Eq. (23) by applying the current robot pose X𝑡 as a rigid transformation.

A common IMU model as presented by Forster et al. [63] is written as:

X�̃�𝑡 =
X𝜔𝑡 + X𝑏𝛾𝑡 + X[𝛾𝑡 (25)

X �̃�𝑡 = R𝑇
𝑡 (E𝑎𝑡 − E𝑔) + X𝑏𝛼𝑡 + X[𝛼𝑡 . (26)

The observations are biased hence the 𝑏 ∈ R3 terms, and they are subjected to
measurement noise [∈ R3. The vector 𝑔 ∈ R3 represents the gravitational acceleration.
The right superscripts 𝛼 and 𝛾 indicate whether the term corresponds to the internal
accelerometer or gyroscope providing the measurements. Finally, R𝑡 represents the
orientation component of the pose X𝑡 .

The IMU model after rearrangement becomes

X𝜔𝑡 =
X�̃�𝑡 − X𝑏𝛾𝑡 − X[𝛾𝑡 (27)

E𝑎𝑡 = R𝑡 [X �̃�𝑡 − X𝑏𝛼𝑡 − X[𝛼𝑡] + E𝑔 , (28)

that can be plugged into the state update in Eq. (23-24). The bias terms are considered
constants and are part of the calibration parameters, or they can be variables and
estimated inside the SLAM.

2.4.2 Lidar Odometry and Scan Registration

Odometry from LiDAR observations is a much more sophisticated procedure. As
of now, solutions mainly rely on iterative algorithms to estimate the relative rigid
transformation T∗ ∈ SE3 between an input set of points X1P1 recorded from pose X1
to another somewhat overlapping target set of points X2P2 recorded from another pose
X2. The solution can then be applied to transform the input points to the target pose
(frame):

X2P1 =
∗
T X1P1 . (29)

Eventually, the solution T∗ is the pose X2X1, that is, the input pose expressed in
the target pose interpreted as a coordinate frame. In case the poses X1 and X2 are
consecutive robot poses, then the solution is equivalent to an odometry estimate, since
it represents the relative movement from pose X2 to X1. In other cases, the target can
be an already registered point set in the world frame, while the input is the incoming
measurement in body frame, resulting in an absolute pose estimate for the robot.

16

Iterative Closest Point

ICP is an important milestone and algorithm for LiDAR odometry [67]. Many other
solutions inherit the key steps or extend this algorithm. The two key steps in ICP are:

1. Identifying corresponding elements from the two point sets;

2. Minimizing error between the identified set of correspondences;

In the classical formulation, the correspondences are identified by finding the closest
point in the target set for each element from the input set. The error is then calculated
based on the distance between the points. In a real-world scenario, the samples are
from the same surfaces but are not identical, resulting in impaired correspondences.
Hence, a closed solution would not exist, and therefore the iterating approach. In each
iteration, the input point set is transformed using the current solution pose, generating
new and better correspondences to refine the solution.

17

3 Methods and Experiments
The overall research process can be seen in Figure 1. A measurement implies surveying
a bounded forest area with a given MLS system and configuration resulting in a single
dataset. A dataset is then processed by a SLAM process pipeline with a given parameter
set, concluding a single experiment. The result is a digital forest model of the initially
measured forest area that can be evaluated based on reference data, or models produced
by different pipelines can be compared to each other if reference data is unavailable.

The following sections detail the implemented SLAM framework and algorithms,
briefly describe the MLS system and recorded datasets, list the conducted experiments,
and present the designed evaluation criteria applied in this study.

3.1 Applied Algorithms
The main SAM framework implemented in this study to solve the SLAM problem
was primarily inspired by Lidar-inertial Odomentry via Smoothing and Mapping
(LIO-SAM) [36]. It relies on factor graphs using appropriate state representations
with their benefits presented in Chapter 2. Additionally, its modular design enables the
evaluation of different scan registration methods with relatively low implementation
effort, and it works both with or without GNSS measurements.

Forest plot
Measurement trajectory

Measurement

LiDAR
IMU
GNSS

Dataset

Algorithm Parameter set

Experiment
Digital Forest

Model

Figure 1: The overall research process.

18

LiDAR

IMU

GNSS

scan

preprocessing

map graph
optimization

local map
update

loop closure
check

graph

optimization

scan

registration

imu
preintegration

new
keyframe?

data
process
condition

data + trigger
data only
trigger only

optional

yes

local map

local map

online
trajectory

global
map

imu factor

loop closure
factor

current
pose

lidar
factor

Figure 2: The schematic diagram of the implemented SAM framework.

3.1.1 Smoothing and Mapping Framework

Overview

The schematic diagram of the processing SAM pipeline can be seen in Figure 2. In
the pipeline, two separate graphs are being built in parallel. The first one evaluates
the online positioning on a higher frequency, while the second one is responsible for
reconstructing the map of the environment at a lower frequency.

The processing is triggered by receiving LiDAR data LS𝑘 , that contains
measurements through one revolution of the scanner referred to as scan in the
following. In preprocessing, the scan is motion corrected using the IMU data and
transformed into the body frame using calibration. The preprocessed scan XS̄𝑘 is then
registered to the local map V providing the lidar factor for the first graph optimization.

Table 1: Mathematical symbols used in the SAM framework.

Symbol Definition
LS𝑘 k-th input scan in LiDAR frame
XS̄𝑘 k-th preprocessed scan in body frame
XI𝑘 k-th input inertial measurements in body frame

V local map in world frame

S set of keyframed laser scans in body frame

K set of keyframed poses in world frame

19

Meanwhile, the IMU measurements are pre-integrated to form a single imu factor
contributing to the graph optimization. The result at this step is the online state
estimate x of the robot calculated at the frequency LiDAR scans arrive in the pipeline:

x𝑘 =
[︁
X𝑘 , Ev𝑘 , Xb𝑘

]︁
, (30)

where X ∈ SE3 is the pose and Ev ∈ R3 is the velocity of the robot in world frame,
while Xb ∈ R6 is the IMU bias interpreted in the body frame. Note that for even
higher frequency estimates, the incoming individual IMU measurements can be used
to propagate the latest estimate from the graph optimization, which is corrected once a
new laser scan arrives in the system.

The mapping branch gets triggered if the condition for saving a new keyframe
returns true. The condition is evaluated based on the latest pose estimate from the
first graph optimization and the last saved keyframed pose. Optionally, a loop closure
check provides an additional factor to the graph optimization if a loop is identified.
The mapping graph is built primarily based on the LiDAR-based odometry estimation,
where the constraints are relative poses between consecutive graph nodes. The lack of
absolute constraints results in a more flexible structure, leaving room for correction in
case of loop closures. The outcome at this point are a set of poses for each keyframe
X = {X𝑙 |X𝑙 ∈ SE3}𝑙=0,...,𝐿 and the collection of corresponding preprocessed laser
scans S = {XS̄𝑙}𝑙=0,...,𝐿 , where 𝐿 ∈ Z is the number of saved keyframes in the system.
Finally, the local map is rebuilt each time the map graph is extended with a new
keyframe, which is valuable to save computational effort within the scan registration
to maintain real-time computation speed.

The GNSS data appears optional in Figure 2 since it might be used only after
processing the whole dataset to georeference the resulted keyframed poses. The
different cases are explained in Section 3.1.3 in details.

Input Data

The input data to the pipeline are the LiDAR, IMU, andoptionally GNSS measurements.
The k-th incoming laser scan is denoted by LS𝑘 , and it contains a large number of
measurement points:

LS𝑘 = {(p𝑖, 𝑡𝑖) |p𝑖 ∈ R3, 𝑡𝑖 ∈ R+}𝑖=1,...,𝑁 , (31)

where 𝑁 ∈ Z+ is the number of points derived from the horizontal and vertical
resolution of the scanner, p𝑖 represents 3-dimensional spatial coordinates, and 𝑡𝑖 is the
time of the sampling of the point. Note that additional fields are available from the
scanner, for example, intensity and reflectivity values; however, those are not used
within this study.

The IMU data contains multiple measurements acquired in the time period between
the latest and the previous laser scan. The amount of samples 𝐾 ∈ Z+ depends on the
sampling frequency configured during the measurement. It is denoted as XI𝑘 and has

20

the following structure:

XI𝑘 ={(Xa𝑚, X𝜔𝑚, NEDR𝑚, 𝑡𝑚) |Xa𝑚 ∈ R3, (32)
X𝜔𝑚 ∈ R3, NEDR𝑚 ∈ SO3, 𝑡𝑚 ∈ R+}𝑚=1,...,𝑀 , (33)

where 𝑀 ∈ Z+ is the number of IMU samples since the previous laser scan, Xa𝑚, X𝜔𝑚
are the linear acceleration and the angular velocity vectors in the body frame, NEDR𝑚

is the measured orientation of the body in north, east, down (NED) reference frame,
and 𝑡𝑚 is the time of sampling.

The GNSS data is sampled on a lower rate and it contains only one measurement
corresponding to the 𝑘 − 𝑡ℎ update. It contains the robot position geopGNSS

𝑘
∈ R3 in

geodetic coordinates, a covariance matrix ΣGNSS
𝑘

∈ R3×3 describing the uncertainty of
the sample, and its actual sampling time 𝑡GNSS

𝑘
∈ R+.

Scan Preprocessing

The raw incoming laser scan is distorted due to the motion while the rotating mechanism
inside the LiDAR performs a complete rotation, that usually takes 0.05 to 0.2 seconds.
This distortion is removed in two steps. First, the motion within this short period is
estimated using the IMU data. Then, the scan is reconstructed into a single LiDAR
coordinate frame by projecting each point along this motion.

First, intermediate poses X𝑚 ∈ SE3 were estimated by applying the inertial
odometry strategy from Subsection 2.4.1. The strategy was initialized using the
current state estimate x𝑘 , and results in 𝑀 poses after feeding the samples from XI𝑘
one by one. The bias terms were assumed to be constant for this short time.

The laser points within one scan are sampled at a much higher frequency than the
IMU measurements; therefore, additional poses were calculated for each point via
interpolation based on their timestamps. Given consecutive pose estimates X𝑚−1, X𝑚
with their corresponding sampling time 𝑡𝑚−1, 𝑡𝑚, the correction transformation T𝑝𝑖 ∈
SE3 for each point with sampling time 𝑡𝑖 : 𝑡𝑚−1 ≤ 𝑡𝑖 < 𝑡𝑚 were calculated as follows:

T𝑝𝑖 = X𝑚−1 ⊕
[︃
𝑡𝑖 − 𝑡𝑚−1
𝑡𝑚 − 𝑡𝑚−1

(X𝑚 ⊖ X𝑚−1)
]︃
, (34)

where ⊖ and ⊕ are right operations. In practice, one column of points corresponds to
the same sampling time, and it is enough to calculate a pose for each column instead
of each point, reducing computational complexity.

Finally, given the transformation at the beginning of the scan T𝑝0 ∈ SE3, the
(column-wise) transformations T𝑝𝑖 throughout the scan, and the calibration between
the body frame and the LiDAR sensor frame XTL ∈ SE3, the individual points can be
properly placed into body frame such as:

Xp𝑖 = XTL T−1
𝑝0 T𝑝𝑖 𝑝𝑖 , (35)

resulting in the preprocessed scan reconstructed in the body frame XS̄𝑘 = {Xp𝑖 |Xp𝑖 ∈
R3}𝑖=0,...,𝑁 .

21

When the preprocessed scan got registered, it was downsampled first using a voxel
filter to reduce computational complexity. The voxel filter first divided the object space
into uniform cubic segments with edge length set to 0.4 meters during the experiments,
and then computed for each voxel the mean of the containing points creating new
but fewer points. However, when a scan was saved as a keyframe, it was added to S
without downsampling.

Imu Factor via Preintegration

The implemented IMU preintegration block follows the original proposal by Forster et
al. [63]. It extends on the basic IMU odometry strategy described in Subsection 2.4.1.
It combines all the measurements in XI𝑘 into a single relative odometry estimate that
can be efficiently re-linearized when needed.

Lidar Factor

The lidar factor fed into the first graph is eventually a constraint on the current robot
pose. It was modelled as a Gaussian on a manifold N(X̄𝑘 ,𝚺X

𝑘
), where the mean

X̄𝑘 ∈ SE3 was computed using the scan matching algorithm implemented inside
the scan registration block, described in Subsection 3.1.2 in details. The covariance
𝚺X
𝑘
∈ R6×6 was set to a diagonal matrix, where the diagonal elements 𝜎X

𝑘
∈ R6 were

computed as follows:

𝜎X
𝑘
=

{︄
𝜎sm, if 𝑓𝑘 ≤ 𝜏fs

(1 + \smsc(𝑓𝑘 − 𝜏fs)2)𝜎sm, otherwise .
(36)

In Eq. (36), 𝜎sm ∈ R6 was set as parameter providing an initial noise value around
each rotation and translation axis, 𝑓𝑘 is the fitness score of the registration, 𝜏fs ∈ R+
is a threshold parameter, and \smsc ∈ R+ is a scaling parameter. The fitness score was
computed as the mean squared distance between points from the registered input scan
XS̄𝑘 and their closest matches from the local map V. Overall, Eq. (36) was designed
to keep the noise model at the parameter set values up to a certain fitness threshold and
penalize quadratically after surpassing it. Throughout the experiments, each element
of 𝜎sm was set to 0.01, 𝜏fs to 0.3, and \smsc to 2.0.

Keyframe Selection

A keyframe selection strategy was applied to save memory and computation based on
the travelled distance since the last keyframe. This means that input scans were saved
and mapped only when the below condition was fulfilled.

Given the last keyframed pose estimate X𝐿 from X, and the latest robot pose X𝑘
from the state estimate x𝑘 , the traveled distance since the last keyframe was calculated
as follows:

𝑑𝑘 (X𝑘 ,X𝐿) = ∥\trc ⊙ (X𝑘 ⊖ X𝐿)∥ , (37)

22

where left-⊖ was applied, ∥·∥ is the Euclidean-norm, ⊙ is the Hadamard (element-
wise) product, and \trc ∈ R6 is a coefficient vector that can be used to tune the amount
of displacement contribution around each axis. After evaluating Eq. 37, the computed
distance was compared to a threshold parameter 𝜏kfd, such that 𝑑𝑘 (X𝑘 ,X𝐿) ≥ 𝜏kfd

activates the mapping. Note that decreasing parameter 𝜏kfd increases the number of
keyframes until it reaches zero resulting in the mapping of all incoming scan.

During the experiments, \trc was set to make 20 degrees rotation equivalent to 1
meter translation around all axis, while 𝜏kfd was set to 0.2.

Loop Closure Strategy

Loop closure can provide additional constraints to the map graph optimization when
the robot revisits an area previously explored. The implemented strategy prioritizes
computational speed over precision to keep real-time performance. It is triggered
once a new scan is selected for mapping, but its evaluation is limited. During the
experiments, it was evaluated at most once per each 1.5 seconds.

The mechanism itself is based on the same scan registration unit used in the
pipeline, and the result is an additional relative pose estimate between two nodes that
are far from each other in the graph. The evaluation has three steps:

1. Identify the best keyframe candidate (see Eq. 38);

2. The corresponding scan of the candidate keyframe is registered again to the
current local map providing a new pose estimate in the world frame;

3. The relative pose between the result in step 2. and the scan about to be mapped
is computed and added to the map graph.

This approach has multiple benefits. First, both scans are matched to the same local
map providing a reasonable approximation of the pose between their corresponding
nodes. Furthermore, it saves computation since the local map as target cloud is already
loaded in the scan registration unit, which otherwise would be a computationally
expensive task.

In step 1. the best candidate was selected by searching the closest graph node in
space from the most recent keyframe node, that is:

∗
𝑙 = argmin

𝑙∈{1,...,(𝐿−\lc)}
∥p𝐿 − p𝑙 ∥ , (38)

where
∗
𝑙 is the index of the best candidate, \lc ∈ (Z+\{1}) is a parameter used to

exclude the most recent keyframes from this search, p𝐿 is the translational component
of the last keyframe pose X𝐿 , and p𝑙 is the translational component of keyframed pose
X𝑙 .

During the experiments \lc was set to 40, that was large enough to let larger loops
develop, but small enough not to miss them. Finally, candidates with low fitness
scores within the scan registration were not added to the graph, in which case other
candidates were not tested in the same cycle. To avoid wasting computational effort,

23

best candidate nodes that were further away than 5 meters from the last keyframe’s
position were dropped without even computing the registration.

Local Map

The local map V is built by sampling recent keyframes and assemble a single point
cloud from their corresponding scans and poses. It is needed to limit the computational
time of the scan registration by keeping the size of the target point cloud manageable.

The local map is reconstructed each time a new keyframe is introduced to the map
graph the following way:

1. Take the translational component as 3D points of the most recent \lm ∈ Z+
number of keyframes;

2. Voxelize the space along these points;

3. Select keyframes by taking the indices of the closest point to the center of each
non-empty voxel;

4. Build a point cloud from the selected keyframes by transforming each scan using
their corresponding pose and merge them.

The voxelization of space were done by dividing the space into uniform cubic segments
with edges set to 2.0 meters during the experiments. The center of the voxels were
computed by taking the mean of the containing keyframe positions.

Parameter \lm was set to 15, that was found large enough to maintain a good
estimate of the surrounding environment, but small enough for real-time computation.
In the beginning of the experiments while there are less than \lm keyframes in the map
graph, the first step of building the local map is skipped.

3.1.2 Scan Matching Algorithms

The following three registration techniques were examined during the study:

• Lidar Odometry and Mapping (LOAM) (inside LIO-SAM);

• Normal Distributions Transform (NDT);

• Generalized Iterative Closest Point (GICP).

The initial guess for each technique was provided by IMU odometry. In general, each
method is computing the solution

∗
T ∈ SE3 that is fed into the lidar factor as explained

before.

24

LOAM

The scan matching inside the original LIO-SAM is based on LOAM, introduced and
explained in more details by Zhang and Singh [16, 34]. A short extract is presented
here.

LOAM extracts edge and planar feature points, which are then matched with
a generalized variant of the ICP algorithm. The feature extraction is based on a
computed smoothness approximation of the local surface at each scan point, and it
works as follows. For each point p𝑖 ∈ XS̄𝑘 and surrounding consecutive scan points
C𝑖 = {p 𝑗 ∈ R3} 𝑗=𝑖−\loam,...,𝑖+\loam in XS̄𝑘 , the local smoothness 𝑐𝑖 ∈ R is computed:

𝑐𝑖 =
1

|C𝑖 | · ∥p𝑖∥

∥︁∥︁∥︁∥︁∥︁∥︁ ∑︁
p 𝑗∈C𝑖 ,p 𝑗≠p𝑖

(p𝑖 − p 𝑗)

∥︁∥︁∥︁∥︁∥︁∥︁ (39)

Parameter \loam ∈ Z+ defines the number of points over 𝑐𝑖 is estimated. Next, the
smoothness estimates are sorted, and the points associated with the highest values are
selected as edge, while the ones with the lowest values as planar features.

Given the extracted edge and planar features, the relative pose is between
consecutive scans is computed through a two-step Levenberg–Marquardt optimization.
Point-to-edge matching fits current edge points to lines constructed from edge points
of the previous scan estimating p𝑥 , p𝑦 and R𝑦𝑎𝑤 components of the relative pose
estimate. Meanwhile, point-to-plane matching fits current planar features to patches
constructed from planar features of the previous scan estimating p𝑧, R𝑟𝑜𝑙𝑙 and R𝑝𝑖𝑡𝑐ℎ

components of the solution.

NDT

The NDT technique was first introduced by Biber and Strasser [17] for two-dimensional
data that later was extended by Magnusson [18]. NDT is an operation that transforms
a point cloud into another representation that suits laser scan data better. It achieves
a piecewise smooth representation of surfaces instead of individual points sampled
in space. Additionally, applying this representation in the registration excludes the
search for correspondences, reducing complexity and computational effort.

NDT first splits the space into grids, then computes the mean and covariance of
the points inside each grid cell. As a result, the environment can be described at each
grid cell with a normal distribution:

𝑝(p𝑖) ∼ N (`𝑔,𝚺𝑔) , (40)

where `𝑔 ∈ R3 and 𝚺𝑔 ∈ R3×3 are the mean and covariance corresponding to cell 𝑔.
Equation (40) eventually describes the probability of a point p𝑖 being sampled from
that piece of surface.

Matching the incoming scan to an NDT target is achieved by minimizing the
negative log-likelihood of the joint probability of each point. Assuming that the

25

sampling is independent for each point, the task can be written as follows:

∗
T = argmin

T

𝑁∑︁
𝑖=1

− log(𝑝(T · p𝑖)) , (41)

which was solved using Newton’s method. The solution
∗
T is then used to feed the

lidar factor. In practice, the function 𝑝(p𝑖) was modified to a mixture of the original
normal and an additional uniform distribution to counter the severe effect of outliers.
Further details with additional practical considerations can be seen in the work of
Magnusson [18].

Generalized Iterative Closest Point (GICP)

GICP was introduced by Segal et al. [14]. Similarly to NDT, this method was built
on the fact that laser scan data is sampled from surfaces, having a special underlying
structure and not independent random points. GICP essentially modifies the original
ICP algorithm by matching planes to planes instead of points to points.

The main difference between the two algorithms shows in the cost function. In
GICP, the following objective is considered:

∗
T = argmin

T

∑︁
pI
𝑖
,pT

𝑖
∈Cgicp

((pT𝑖 − TpI𝑖)𝑇 ·

· (𝚺T𝑖 + T𝚺I𝑖 T
𝑇)−1(pT𝑖 − TpI𝑖)) ,

(42)

where Cgicp = {(pI
𝑖
, pT
𝑖
)} is the set of corresponding input and target points from the

input and target clouds accordingly. Furthermore, the matrices 𝚺I
𝑖
,𝚺T

𝑖
∈ R3×3 contain

information about the surfaces on which pI
𝑖

and pT
𝑖

lie, computed using approximated
surface normal vectors at those points.

In Eq. (42), the term (pT
𝑖
− TpI

𝑖
) represents the distance between the target point

and the transformed input point using the current solution T. In the original ICP, the
square of this distance is minimized, while here it is further weighted based on the
geometric information carried in 𝚺I

𝑖
,𝚺T

𝑖
. In principle, the more the corresponding

planes are aligned, the more they contribute to the objective function. In fact, the cost
would be identical to the original ICP one in an ideal scenario where each pair of these
planes align perfectly.

3.1.3 Georeferencing

Georeferencing the digital forest model means that its coordinate frame is related to a
global coordinate system, which allows the features within the model to be globally
placed as well. Three different approaches were considered to perform this operation,
whose accuracy and effects are studied in the quality of the final digital forest model.
These three approaches are:

1. Fusing GNSS data directly into the SAM framework

26

2. Post-fitting trajectory using GNSS data

3. Post-fitting trajectory using GNSS and IMU orientation data

Approach 1. is the most common in MLS-SLAM solutions, and it influences the
internal structure of the final forest model as well. While approaches 2. and 3. do not
influence the model itself, they only compute a transformation between the origin of
the global coordinate system and the model’s local frame. Approach 3. is completely
new to the literature, and it is derived here for the first time.

GNSS fused into the SAM framework

When a new keyframe is added to the map graph, the most recent GNSS measurement
sample is used to generate an additional factor for the graph. A Gaussian model
was selected, describing the robot’s position in the world frame, which in this case
is equivalent to the ETRS-TM35FIN coordinate system, that has an east, north, up
(ENU) orientation. The factor can be written as follows:

𝑔(geopGNSS𝑙) ∼ N (pX
𝑙
,𝚺GNSS𝑙) (43)

where geopGNSS
𝑙

is the GNSS sample and pX
𝑙

is the translation component of X𝑙 at the
𝑙-th keyframe, while the function 𝑔 : R3 → R3; geopGNSS ↦→ GpGNSS is a conversion
from geodetic to ETRS-TM35FIN coordinate frame that is used as the georeference
frame in this study. In practice, an additional offset was applied to push the origin
of the ETRS-TM35FIN system to the starting location, not to calculate with huge
numbers and therefore reduce the chance of numerical errors. This offset was removed
from the results after the experiments. Finally, the converted measurement sample is
directly approximated with a normal distribution, where the mean is the position at
the given keyframe without applying any measurement function.

Post-fitting trajectory using GNSS data

This post-fitting method can be considered as a custom variant of the ICP algorithm.
The algorithm takes the GNSS samples and the optimized trajectory from the map
graph and computes the solution transformation G

∗
T ∈ SE3 that can be applied to the

optimized trajectory to transform it into georeferenced coordinates.
The orientation of the optimized trajectory elements was emitted, leaving

only the position and corresponding covariance 𝚺Xp ∈ R3×3 and timestamp data
representing the 3 dimensional input SAM trajectory for the fitting, such as
TSAM3 = {(pX

𝑙
,𝚺

X𝑝

𝑙
, 𝑡𝑙)}. Meanwhile, the target GNSS trajectory was defined as

TGNSS3 = {(GpGNSS
𝑘

,𝚺GNSS
𝑘

, 𝑡GNSS
𝑘

)}. The solution G
∗
T is computed following the main

steps of the ICP algorithm as described in Subsection 2.4.2.
The correspondences were identified by resampling the GNSS trajectory by linearly

interpolating within elements according to the timestamps of the SAM trajectory. This
resulted in the updated GNSS trajectory T̃GNSS3 = {(GpGNSS

𝑙
,𝚺GNSS

𝑙
, 𝑡𝑙)}.

27

In the second step of the ICP-like algorithm, the following objective function was
considered:

G ∗
T = argmin

GT

∑︁
𝑙

d𝑇𝑙 (𝚺
GNSS
𝑙 + GT𝚺

X𝑝

𝑙
GT𝑇)−1d𝑙 (44)

where d𝑙 ∈ R3; d𝑙 = pGNSS
𝑙

−GTpX
𝑙

. It has the same cost function as the GICP, although
it does not express a plane-to-plane registration here. Both the GNSS measurement and
the position estimation from the SAM framework have their uncertainties expressed
in the covariance matrices, that is used to weight the effect of the correspondence.
It emphasizes the costs computed from points with higher reliability rather than
having an equal contribution to those computed from highly unreliable estimates or
measurements.

Post-fitting trajectory using GNSS and orientation data

This method extends the previous 3-dimensional trajectory fitting to 6-dimensional
data. The main idea is to combine the GNSS measurements with the orientation
measurements from the IMU sensor in order to create a 6-dimensional reference
trajectory that is in a global frame and match the otherwise 6-dimensional optimized
trajectory from the SAM framework. In case the IMU and GNSS measurements were
not sampled together, the GNSS measurements were resampled to match each IMU
sample. The IMU samples and their covariances furthermore were converted from
NED IMU frame into ENU body frame.

The problem is formulated as: given the input and target set of 6-dimensional
trajectories TSAM6 = {(X𝑙 ,𝚺X

𝑙
, 𝑡𝑙)} and TGNSS6 = {(GXGNSS6

𝑘
,𝚺GNSS6

𝑘
, 𝑡GNSS
𝑘

)} the goal is
to compute the transformation G

∗
T that matches the trajectory TSAM6 onto TGNSS6. That

is, when applying the solution on TSAM6, it transforms it into the ETRS-TM35FIN
reference frame.

The solution follows the same approach as in the 3-dimensional case. First,
correspondences are computed by resampling the trajectory TGNSS6 by interpolating
between two SE3 objects as described in Eq. (34). This results in the updated
target trajectory T̃GNSS6 = {(GXGNSS6

𝑙
,𝚺GNSS6

𝑙
, 𝑡𝑙)}. Then, the distance between a target

trajectory element in the global frame and a transformed input trajectory element can
be written as:

D𝑙 =
GXGNSS6𝑙 ⊖ GTX𝑙 . (45)

The objective is to minimize the sum of Mahalanobis distances ∥𝑒∥2
Σ = 𝑒𝑇Σ−1𝑒

evaluated between the correspondences using Eq. (45):

G ∗
T = argmin

GT

∑︁
𝑙

∥D𝑙 ∥2
ΣD
𝑙

(46)

where 𝚺D
𝑙

∈ R6×6 is computed as:

𝚺D
𝑙

= 𝚺GNSS6𝑙 + AdGT𝚺X
𝑙

Ad𝑇GT . (47)

28

The matrix AdGT ∈ R6×6 is the adjoint operator corresponding to the SE3 object GT. It
transforms the local covariance matrix to the same base as the reference one in order
to sum them together according to Eq. (8) from Subsection 2.2.2.

Since the expression in Eq. (46) is nonlinear, the task can be rewritten such that
we are solving it for a small increment b that is approximated and behaves linearly
around the current solution GT, formulated as:

∗
b = argmin

b

∑︁
𝑙

∥︁∥︁D𝑙 + JD
𝑙
b
∥︁∥︁2
ΣD
𝑙

, (48)

where JD
𝑙

∈ R6×6 is the Jacobian matrix of D𝑙 at the current solution GT. After solving
Eq. (48), the solution is updated using the right-⊕ operator, such as:

GT → GT ⊕
∗
b , (49)

and this procedure is repeated until convergence or for a certain iteration.
Solving Eq. (48) for

∗
b was done by taking the first derivative and make it equal to

zero, yielding to the following:

∗
b = −

(︄∑︁
𝑙

(𝚺D
l
−1JD

𝑙
)𝑇 JD

𝑙

)︄−1 (︄∑︁
𝑙

(𝚺D
l
−1JD

𝑙
)𝑇D𝑙

)︄
(50)

Finally, we only need the Jacobian matrix JD
𝑙

, which can be computed based on
the chain rule as follows:

𝜕D𝑙

𝜕GT
=
𝜕 (GXGNSS6𝑙 ⊖ GTX𝑙)

𝜕GT
= (51)

=
𝜕 (GXGNSS6𝑙 ⊖ GTX𝑙)

𝜕 (GTX𝑙)
𝜕 (GTX𝑙)
𝜕GT

. (52)

Closed forms for both product terms on the right side in Eq. (51) exist. For detailed
formulas, please consult Appendix D 2-3. in the article [62].

3.2 Measurements
The measurements were done in different situations to provide sufficient ground for
this study. The produced datasets include scenarios with both static and dynamic
environment, autumn and winter conditions, including spruce and pine forest segments.

3.2.1 Measurement systems

The MLS systems used for the measurements can be seen in Figure 3. The main
component was the Ouster OS0-128 LiDAR sensor. It has 90 degrees vertical field-of-
view while maintaining a range of 15-45 meters depending on the light and surface

29

(a) Handheld (b) Forest harvester

Figure 3: The measurement system mounted on: (a) a stick for handheld surveying,
and (b) a forest harvester that performed a thinning operation. On the harvester the
system under consideration was attached on the front link of the machine behind the
arm.

conditions. It was configured to rotate on 10 Hz with 1024 × 128 resolution. The
handheld system had a Advanced Navigation Certus Evo GNSS/INS unit attached
providing the IMU and GNSS measurements sampled at 200 Hz, while the harvester
setup had a Lord Microstrain 3DM-GQ7 GNSS/INS unit sampled at 500 Hz. The
sensors were time synchronized, and connected to a Jetson AGX Xavier computer
unit to save the incoming data stream. Additionally, the harvester was equiped with a
Leica total station to measure accurate reference position of the cabin in global frame
throughout the measurements, which however was a different link of the machine and
therefore yields to a slightly different trajectory compared to where the MLS system
in consideration was mounted.

In order to reduce some complexity during the experiments, the scan preprocessing
step in case of the harvester datasets had an additional step. Points sampled from the
harvester were removed as much as possible, by fitting surrounding boxes around the
two main body elements and the arm of the harvester. These boxes were limited to a
single degree of freedom, and their position were semi-manually extracted from the
LiDAR data itself beforehand. In a real application, the required information would
be available from other sort of sensors, for example encoders that were not available
for these measurements. Since it does not change the fact that it can be computed
real-time onboard the machine, and the results are otherwise compared relative to

30

Table 2: Dataset details

Name Platform Duration
(𝑚𝑖𝑛 : 𝑠𝑒𝑐) No. scans Area

(𝑚2)
Trajectory
length (𝑚)

evo1 handheld 15:10 8996 38 916 921
evo2 handheld 4:48 2776 9686 258
evo3 handheld 18:41 11 073 41 082 1140

tuusniemi1 harvester 40:02 23 915 11 640 373
tuusniemi3 harvester 22:04 13 176 18 501 364

each other from the same dataset, this simplification does not affect the main study of
this thesis.

3.2.2 Datasets

The different datasets with their details can be seen in Table 2. They were recorded
in Finland, the evo ones in November 2021 in Evo, while the tuusniemi ones were
recorded in March 2022 in Tuusniemi.

During the evo measurements the system was held about 1.5 meters above the head
using an extension stick. It removed the person carrying the system from the point
cloud data, and helped to see more of the trees along the vertical axis. Furthermore,
these datasets contain more continuous movement, with larger rotations especially
around the vertical axis matching the scanners internal rotation yielding to larger
motion distortions within the scans. Datasets evo1 and evo3 were longer, containing
larger terrain elevation differences as well, meanwhile evo2 contains the survey of a
single forest plot area.

The tuusniemi datasets were recorded while the system was attached on a forest
harvester that was performing a forest thinning mission. The trajectory of the harvester
followed one main direction as it was cutting trees along that line. This motion was
very different, as it often stopped in order to grab the tree, cut it and then slightly
move such that the tree can fall while it still holds onto it. The falling trees physically
attached to the harvester caused large vibrations in the inertial measurements and
possibly inserts noise into the laser scan data as well. Dataset tuusniemi1 was recorded
fully inside the forest, while tuusniemi3 was recorded on a small road directly next to
the forest.

3.3 Experiments
The experiments were performed on a Dell workstation laptop running Ubuntu 20.04
LTS. It has 62GB of RAM memory and an Intel Core i7-10750H processor unit. The
SAM framework and its elements were implemented in C++, relying on Georgia Tech
Smoothing and Mapping Library (GTSAM) [68], The Point Cloud Library (PCL) [69],
and Robotic Operating System (ROS) [70]. The post-fitting georeferencing approaches
were implemented in Matlab. Finally, the following experiments were performed:

31

1. Each 5 dataset processed with the SAM framework, with NDT; GICP; and
LIO-SAM configuration without fusing the GNSS data -> 15 experiments;

2. Each 5 dataset processed with the SAM framework, with NDT and LIO-SAM
configurations with activated loop closure -> 10 experiments

3. Each 5 dataset processed with the SAM framework using the NDT registration
and fused GNSS georeferencing -> 5 experiments;

4. Georeferencing the NDT with loop closure trajectory for 2 evo and 2 tuusniemi
datasets using the post-processed georeferencing approaches;

3.4 Evaluation
The SAM framework with the different registration blocks is evaluated to understand
their computational complexities and whether it is feasible to run them in real-time.
Furthermore, the accuracy of the generated digital forest models was of high interest.
In the case of georeferencing, the primary purpose was to evaluate its accuracy and
effect on the generated forest models.

3.4.1 Metrics

Average processing time: Itwas monitoredwith additional software implementation
measuring the elapsed time of processing one incoming LiDAR scan with the SAM
pipeline. These elapsed times were averaged producing this metric. The less time it
takes, the better it is.

Overlapping tree ratio: By aligning reference tree data onto the generated forest
model, the number of overlapping trees compared to all trees in the reference data
provides this metric. The higher the ratio is, the more accurate the SAM framework is.

Trajectory error in time: In case of the tuusniemi datasets, accurate 3-dimensional
reference trajectories were available for another joint of the harvester. The distance
between the two joints shall not be zero and it changes in time, but it must remain
bounded during the operation. By assumption, the more bounded these distances are,
the better the trajectory is.

Drift: Drifts were measured for configurations without loop closure and between the
reference trajectory for what the LIO-SAM with loop closure was selected. Position
difference between the last trajectory elements were computed providing errors along
the translational axes.

Tree segments: Segments of randomly selected trees were visualized providing
further insights about the internal consistency of the digital forest model.

32

Georeferencing error: Reference transformation for datasets evo1 and evo2 were
determined by overlaying the NDT with loop closure generated point cloud model
onto available reference tree map. In case of the tuusniemi datasets, reference
transformations were computed by overlaying the NDT with loop closure trajectory
onto the reference trajectory recorded with the TotalStation. Errors were computed
between the solution and reference transformations by taking the right-⊖ operation,
giving an error along each six DoF.

33

4 Results and Analysis
This chapter presents the results obtained throughout the experiments. It illustrates the
capabilities of the implemented SAM framework for forest mapping while it further
showcases the performance of the different methods relative to each other.

4.1 SAM framework
The results related to the SAM framework contain the quality of the generated forest
models and the positioning accuracy. The framework with different configurations is
evaluated alongside the original LIO-SAM algorithm. These results reflect on the first
two research gaps in Section 1.2.1, as it demonstrates the capabilities of a real-time
MLS-SLAM system, while it also evaluates state-of-the-art LiDAR-based positioning
algorithms in forest.

The different SAM framework configurations were evaluated and compared based
on their computed trajectories and computational time. Since the only varying
contributor to the quality of the generated forest models are the computed trajectories,
the generated models are only presented for the ideal framework configuration.

Figure 4: Generated digital forest model from evo1 dataset using NDT-LC method.

34

Figure 5: Generated digital forest model from evo2 dataset using NDT-LC method.

The ideal configuration includes the NDT registration unit and the loop closure
strategy activated. Throughout the results, the configurations are denoted such that it
includes the name of the applied registration method and the tag "LC" in case the loop
closure strategy was activated. Following this convention, the ideal configuration is
denoted as NDT-LC. The effects of using the GNSS data are discussed in the next
section, and they are ignored in these configurations.

4.1.1 Generated digital forest models

The top view of the generated digital forest models for the five datasets can be seen in
Figures 4-8. For better visual interpretation, points on the ground level were segmented
out using Cloth Simulation Filter (CSF) filter [71] and coloured grey, and objects
above that in shades of green.

All the models look sharp and consistent, except for the evo3 dataset in Figure 6,
where the bottom-left segment is blurry. It is the region where the surveying began
and ended, meaning that the same area has been revisited after a long time period,
that was enough to build up a large amount of drift that sabotages the loop closure
detection strategy. For the other datasets this was not a problem, as the measurements
were shorter and loop closures happen more frequently.

35

Figure 6: Generated digital forest model from evo3 dataset using NDT-LC method.

Figure 7: Generated digital forest model from tuusniemi1 dataset using NDT-LC
method.

36

Figure 8: Generated digital forest model from tuusniemi3 dataset using NDT-LC
method.

4.1.2 Example tree segments

Examining individual trees and their cross-sections can further showcase the quality
of the resulting digital forest models. For this purpose, several trees were randomly
selected and cropped out from the forest models. Trees from the evo models can be
seen in Figure 9; similarly, Figure 11 illustrates trees from the tuusniemi models.
The figures include a front view of the trees and a cross-section view to illustrate the
reconstruction accuracy of the stems. For additional visibility, an enlarged version of
the cross-sections can be seen in Figure 10 and Figure 12, for the evo and tuusniemi
trees, respectively.

The trees from the evo models contain different breeds and different sizes of trees.
The larger the trunk and the less complex the shape, the better the models are. The trees
generally look sharp and accurate, especially when the cross-sections are considered,
as they follow a strong arc and a whole closed circular shape, which is the desired
outcome. Some noise can be visible around the trunk of a few trees. These are most
likely caused by motion distortion that the framework failed to remove, as the evo
measurements contain large and quick movements around the vertical axis.

The area of the tuusniemi measurements was relatively homogeneous, therefore,
these models have less variety in breeds and sizes but with more complex shapes on
average. The models are rather noisy, however, the main attributes are recognizable.
Since the measurements were done from a single-line trajectory, these trees were
not observed from enough angles to see the whole circular shape of the trunks on
the cross-section views. Furthermore, these arcs are very rough and noisy, which is
partially the effect of the small branches present at the bottom of these trees.

37

Figure 9: Randomly selected trees from evo datasets processed with NDT-LC method.
Front view (top) and top view of the crosssection (bottom). The cross section contains
the region from 0.9-1.9 meters on the z-axis.

Figure 10: Cross sections of randomly selected trees from evo datasets processed
with NDT-LC method. The cross sections contain the region of 0.9-1.9 meters above
ground level.

38

Figure 11: Randomly selected trees from tuusniemi datasets processed with NDT-LC
method. Front view (top) and top view of the crosssection (bottom). The cross section
contains the region from 0.9-1.9 meters on the z-axis.

Figure 12: Cross sections of randomly selected trees from tuusniemi datasets processed
with NDT-LC method. The cross sections contain the region of 0.9-1.9 meters above
ground level.

39

The noisiness on the tuusniemi trees is different than the evo ones, and they are
unlikely to occur due to motion distortion. The tuusniemi measurement did not contain
heavy rotations around the z-axis, that are the main reason for such errors. It is more
likely to originate from small amounts of drifts in the trajectory estimates, as the
harvester moves back and forth many times while it is manoeuvring among the trees,
and the same tree gets observed many times from the same angles.

4.1.3 Tree positions

Reference tree position measurements are available for the evo2 dataset. They were
manually aligned to the same coordinate frame and were plotted on top of the evo2
forest model in Figure 13, where the top of the trees are cropped for better visibility.
Additionally, young trees were filtered out from the reference data, and are not plotted
on the image. Finally, it is worth noting that the reference data was updated two years
before the MLS measurement.

Figure 13: Reference trees for evo2 dataset plotted on top of the digital forest model
generated with NDT-LC method.

40

The black circles representing the reference trees are overlapping the trees in the
forest model every case except one, which tree has no sign in the model. Overall,
this level of consistency shows that the internal structure of the digital forest model is
excellent, and the drift is minimized in the trajectory to a great extent.

4.1.4 Trajectories

The computed trajectories with the different configurations of the proposed SAM
framework and the original LIO-SAM algorithm for each dataset can be seen in Figures
14-18. The different trajectories were aligned to each other by fitting each trajectory
on the NDT-LC trajectory. This fitting was computed by applying the same approach
as in the georeferencing method "post-fitting trajectory using GNSS data" detailed in
Section 3.1.3, but using the NDT-LC trajectory instead of the GNSS one.

In general, the evo measurements have longer routes and larger loops, as the focus
was to survey the forest. On the other hand, the tuusniemi trajectories look simpler as
they go back and forth along a single direction as it was primarily a forest thinning
mission. Although they seems less complicated, it can be more challenging since
fewer constraints are identified alongside the axis perpendicular to the trajectory, and
drift can add up in that direction.

Figure 14: Computed trajectories for evo1 dataset.

41

Figure 15: Computed trajectories for evo2 dataset.

Figure 16: Computed trajectories for evo3 dataset.

42

Figure 17: Computed trajectories for tuusniemi1 dataset.

Figure 18: Computed trajectories for tuusniemi3 dataset.

Most configurations managed to keep the positioning alive for each dataset, except
for the GICP method for the evo1 dataset. Unfortunately, the filtering exploded;
therefore, that experiment failed, and the corresponding trajectory is not included
in the plot. The GICP method performed the worse for the other datasets as well,
as its computed trajectory alters the most compared to the others. It also builds up
a significant amount of drift that is visible since each trajectory should return to its
starting position, and it finishes far from the starting point for each dataset except the
tuusniemi1. Furthermore, the loop closure strategy was ineffective due to the large
drifts as it did not identify possible matches with its limited range-search approach.
As the loop closure was barely activated and the results were similar, the configuration
GICP-LC is not included on the plots either.

The second worse configuration was the NDT without loop closure, as a larger
drift can be observed at the evo1 and evo3 measurements. However, using the NDT
matching inside the framework still maintains enough accuracy to activate and correct
the trajectory when the loop closure strategy is activated.

The rest, that is the state-of-the-art LIO-SAM regardless using loop closure
performs similarly alongside the NDT-LC configuration. Unfortunately, due to the
lack of proper reference trajectory it is not possible to tell which one is more precise
out of the NDT-LC and LIOSAM-LC solutions.

43

2 3 4 5

D - Distance from TotalStation - [m]

0

0.05

0.1

0.15

E
m

p
ir

ic
al

 f
re

q
u
en

cy
 -

 [
1
/m

] NDT

NDT-LC

GICP

LIOSAM

LIOSAM-LC

(a) tuusniemi1

2 3 4 5

D - Distance from TotalStation - [m]

0

0.05

0.1

0.15

0.2

E
m

p
ir

ic
al

 f
re

q
u
en

cy
 -

 [
1
/m

] NDT

NDT-LC

GICP

LIOSAM

LIOSAM-LC

(b) tuusniemi3

Figure 19: Distance distribution for (a) - tuusniemi1 and (b) - tuusniemi3 datasets.

4.1.5 Distance distribution

For the tuusniemi measurements, an accurate reference trajectory is available for
another link of the harvester that moves attached but slightly differently throughout
the measurements. Comparing the computed trajectories directly to this reference
can be misleading; however, it is possible to compute the distance 𝐷 between
time-corresponding positions and plot their distribution. These distributions for the
tuusniemi datasets can be seen in Figure 19, where the distance observations were
divided into 0.1 meters sized bins, and the number of occurences in each bin were
divided by the total number of samples.

Due to the mechanical structure of the harvester and the position of the sensors, the
motion of the LiDAR sensor in the frame of the reference trajectory can be assumed
to happen on a sphere. Therefore, the identified distances should remain constant or at
least heavily bounded.

The distributions are bounded in almost every case, except for the GICP
configuration for the tuusniemi3 dataset. Further analyzing, GICP also performed the
worse for the tuusniemi1 dataset, spreading the distances about 1.7 meters, while the
NDT is 1.2 meters and the rest are 0.9 meters. For the tuusniemi3 dataset, NDT-LC is
the best, keeping the distances within a 0.5 meters interval, then the two LIOSAM
configurations within about 0.6 meters, and the NDT without loop closure within 0.7
meters. These values seem large at first, but these include the error in the idealistic
assumption of a constant distance between the two sensors, the error in the alignment
of the trajectories, and the error in the estimated trajectory that is of the primary
interest.

4.1.6 Drift

The positioning error that accumulates over time is called drift. The effect of this error
in the point cloud is illustrated in Figure 20. As the scanner returns to the starting
position of the measurement, points are registered from the same objects with an offset
inherited from the drifting.

44

Table 3: Translational drifts in meters. Presented for configurations without loop
closure strategy.

Configuration evo1 evo2 evo3 tuusniemi1 tuusniemi3
NDT 17.242 0.579 20.320 0.713 2.333
GICP 5906.576 8.537 144.153 1.204 39.680

LIOSAM 6.895 0.039 1.917 0.008 0.252

Table 4: Translational drifts normalized by the length of the trajectory. Presented for
configurations without loop closure strategy.

Configuration evo1 evo2 evo3 tuusniemi1 tuusniemi.3
NDT 0.01870 0.00224 0.01781 0.00191 0.00640
GICP 6.40896 0.03309 0.12640 0.00323 0.10893

LIOSAM 0.00748 0.00015 0.00168 0.00002 0.00069

The amounts of drift were evaluated for the configurations without a loop closure
mechanism in order to analyze the accuracy of the different registration methods
without the effect of additional corrections. The drift was measured by computing the
distance between the end positions of the given method and the LIOSAM-LC results.
The LIOSAM-LC was selected as a reference as it arrives back to the vicinity of the
start position for every dataset, which is the expected behaviour, yielding the most
accurate measurement with the given limitations.

(a) (b)

Figure 20: Illustration of the drift. An example segment of the evo2 forest model
that has been visited at the beginning and the end of the measurement. (a) - visible
drift as inherited from the estimated NDT trajectory; (b) - aligning the scans from
the beginning and the end of the trajectory removes the drift, and the resulting
transformation estimates the size of the drift.

45

Table 3 contains the amounts of drift in meters. Additionally, Table 4 presents it in
a ratio of the total trajectory length to normalize these results. LIOSAM was the most
accurate for every dataset, followed closely by NDT, and the GICP was significantly
worse. Looking at the normalized values, LIOSAM kept the drift at 0.2% on average,
NDT at around 0.9%, and the GICP at 6.7% in the case the evo1 measurement was
excluded as it failed to maintain the filtering.

4.1.7 Execution time

The average time to process an incoming LiDAR scan for the case of NDT and
LIOSAM configurations is presented in Figure 21. On the left side, the average is taken
for a smaller set of scans (batches of 300 or 1000), while on the right, a histogram
shows the averages throughout the whole experiment. Results for the GICP are not
shown as its implementation did not contain any parallelization, and the results are
thus not comparable.

The custom framework with the NDT registration is faster than the original
LIOSAM. Furthermore, NDT remains relatively constant throughout the experiments,
while the LIOSAM processing time significantly increases as the map gets larger. It is
important to note that a new scan arrives each 100 milliseconds; therefore, keeping

2 4 6 8

x-th 300 scan

0

200

400

ti
m

e
 [

m
s]

evo2

LIOSAM

NDT

5 10 15 20 25 30 35

x-th 300 scan

0

500

ti
m

e
 [

m
s]

evo3

LIOSAM

NDT

5 10 15 20

x-th 1000 scan

0

100

ti
m

e
 [

m
s]

tuusniemi1

LIOSAM

NDT

(a)

evo2
evo3

tu
usnie

m
i1

0

50

100

150

200

250

ti
m

e
 [

m
s]

LIOSAM

NDT

(b)

Figure 21: Average processing time of a single scan frame during evo2, evo3 and
tuusniemi1 datasets. (a) - computed throughout the experiment by averaging blocks of
300 or 1000 scans; (b) - averaged for the whole experiment.

46

the processing time within that range is essential for real-time operation.
A considerable difference can also be observed between the evo and tuusniemi

datasets. The evo ones take twice as much for the LIOSAM, while the NDT remains
at around 60 milliseconds, unrelated to the measurement. This difference appears
because the forest harvester stays in the same position for extended periods while
cutting the trees. Therefore, fewer keyframes were introduced less frequently to the
mapping graph within the execution of the algorithms.

4.2 Fusing GNSS and Georeferencing
This section contains the results of using the recorded GNSS data throughout the
experiments. It shows how the GNSS data incorporated in the SAM framework
influences the trajectory estimates. Finally, the georeferencing performance of the
described methods in Section 3.1.3 are presented.

4.2.1 GNSS fusion

Figure 22: GNSS related trajectories for evo1 dataset.

Fusing the GNSS data into the SAM was only successful for the evo1 and evo2
datasets, and it failed for the others. The evo3 measurement is long and challenging,
with relatively high altitude changes that caused problems during the trajectory tracking
even without introducing additional uncertainties inherited from the GNSS data. On
the other hand, the quality of the GNSS and IMU orientation measurements for the
tuusniemi datasets were poor, including large drifting.

47

Figure 23: GNSS related trajectories for evo2 dataset.

The trajectories for evo1 and evo2 datasets can be seen in Figures 22-23. It
includes the NDT-LC trajectory used here as a reference, hand-fitted into the global
coordinate frame by matching the trees from the generated point cloud model to
available global tree positions. These tree positions and the raw GNSS measurements
are also included in the figures for illustration. Finally, trajectories computed by the
NDT and NDT-GNSS configurations are added, where the difference is the additional
GNSS fusion inside the SAM pipeline for the latter one. None of these configurations
has loop closure activated.

The main differences in the GNSS-fused trajectory occur at the beginning of the
measurement, while the rest of the trajectories are relatively similar but appear with
a few meters offset. It is due to the large measurement noise models used for the
GNSS factors within the mapping graph. Meaning, that the GNSS contributes much
less towards the localization than the LiDAR measurements. Nonetheless, it is well
visible that the scanner has an incorrect heading direction in the beginning, which
gets corrected within approximately the first 20 meters of the trajectory thanks to the
GNSS fusion. This kind of trajectory however results in many doubling trees in the
final forest model.

These plots also illustrate how inaccurate the GNSS trajectory really is inside
the forest, that is expected due to the blocked signals inside the canopy level. They
have large errors especially in height. For example, the height information for the
evo1 reference tree measurements span within 10 meters, while the GNSS height
measurements within 73 meters. Incorporating this information makes it especially

48

Table 5: Translational errors for the different georeferencing methods. Errors Δ𝑥, Δ𝑦,
Δ𝑧 are listed for each axes east (x), north (y) and up (z) while also a combined error
computed as:

√︁
Δ𝑥2 + Δ𝑦2 + Δ𝑧2.

translational error along east axis [m]
evo1 evo2 tuusniemi1 tuusniemi.3

closed 3.0414 8.0208 2.8787 22.6288
fused 10.6423 1.2605 N/A N/A

pf3 1.2464 6.3125 3.4443 3.4219
pf6 28.5115 4.7092 146.0718 71.9503

translational error along north axis [m]
evo1 evo2 tuusniemi1 tuusniemi.3

closed 2.8585 6.8509 5.5988 10.0052
fused 4.1885 3.3856 N/A N/A

pf3 3.9478 7.5307 5.9065 2.9732
pf6 28.7242 12.1596 242.4834 129.0462

translational error along up axis [m]
evo1 evo2 tuusniemi1 tuusniemi.3

closed 4.0797 1.4158 8.2922 0.3935
fused 14.4935 14.5197 N/A N/A

pf3 2.8171 5.2930 0.2020 78.2012
pf6 5.6118 0.8263 42.7514 123.0702

combined translational error [m]
evo1 evo2 tuusniemi1 tuusniemi.3

closed 5.8365 10.6429 10.4112 24.7451
fused 18.4625 14.9624 N/A N/A

pf3 5.0075 11.1613 6.8404 78.3325
pf6 40.8592 13.0658 286.2916 192.2916

hard to track the orientation in 3 dimensions, with the high possibility of losing the
sense of ground level.

4.2.2 Georeferencing methods

The georeferencing error around each degrees of freedom of the SE3 transformation
is given in Tables 5 and 6. The georeferencing methods detailed in Section 3.1.3 are
referred to as "fused", "pf3" and "pf6" in the order they are introduced. The latter
two refers to post-fitting using three and six DoF cost functions. Additionally, results
are also added for a trivial solution referred to as "closed" in the tables for further
comparison. It was computed by the closed form solution of the vanilla ICP algorithm
with known data association, inputting the two trajectories as sets of 3-dimensional
spatial points.

49

Table 6: Georeferencing rotational errors of the different methods. Errors Δ𝑟, Δ𝑝,
Δ𝑦 are listed for each axes east (x), north (y) and up (z) while also a combined error
computed as:

√︁
Δ𝑟2 + Δ𝑝2 + Δ𝑦2.

rotational error along east axis [rad]
evo1 evo2 tuusniemi1 tuusniemi.3

closed 0.3492 0.3380 0.0004 0.4672
fused 0.0031 0.0865 N/A N/A

pf3 0.2738 0.1895 1.7122 1.5998
pf6 0.0563 0.0415 1.3991 0.2279

rotational error along north axis [rad]
evo1 evo2 tuusniemi1 tuusniemi.3

closed 0.1873 0.3639 0.0141 1.0674
fused 0.2578 0.0129 N/A N/A

pf3 0.1921 0.3644 0.1853 1.4468
pf6 0.1218 0.0650 0.2513 2.2230

rotational error along up axis [rad]
evo1 evo2 tuusniemi1 tuusniemi.3

closed 0.0543 0.0079 0.0279 0.3446
fused 0.0205 0.0005 N/A N/A

pf3 0.0824 0.0619 0.0416 0.0146
pf6 0.0031 0.4672 2.3537 2.0298

combined rotational error [rad]
evo1 evo2 tuusniemi1 tuusniemi.3

closed 0.4000 0.4967 0.0313 1.2151
fused 0.2586 0.0875 N/A N/A

pf3 0.3445 0.4154 1.7227 2.1570
pf6 0.1342 0.4735 2.7497 3.0189

The results do not yield to one single great method as the performance varies a
lot between the different datasets. In general georeferencing were more accurate for
the evo datasets, however, they are always inaccurate at least around one degree of
freedom. For example, pf6 has low rotational error for evo1 dataset, but it has a large
translational offset along both east and north axis. The results tend to compromise
between great heading (rotation around up axis) angle and otherwise keeping the
ground level perpendicular to the direction of gravity. In case the heading is well
estimated, translational error tends to be less along the east and north axes, except for
pf6 that works in six dimension and they are not necessarily correlating.

The best results were both expected and experienced for dataset evo2 that was the
shortest measurement and have the most accurate raw GNSS and IMU orientation data
in general. The tuusniemi datasets had overly confident measurement uncertainties

50

reported from both the GNSS and IMU sensors, while it contained extremely large
and varying drifts. Unfortunately, the compact pf6 failed heavily on that data, most
likely due to the highly incorrect noise model estimates and not enough accurate target
trajectory points.

51

5 Discussion
This chapter discusses the results to deduct information related to the research gaps
presented in Section 1.2.1. It is divided into three sections accordingly, discussing first
the capabilities of a real-time MLS SLAM system based on the quality of the generated
digital forest models. It is followed by how state-of-the-art LiDAR-based positioning
methods are affected by the forest environment and how well they perform. Finally,
the usage of unreliable GNSS data for an MLS SLAM application is discussed.

5.1 A real-time MLS SLAM system
The results show that accurate digital forest models can be generated using SLAM
techniques even with real-time operation restrictions. Compared to the usual approaches
in the field of laser scanning, the proposed solution builds an accurate forest model
during the surveying procedure, and it does not require a separation between data
collection and processing. Furthermore, unlike other approaches, the optimization is
not performed with the assumption that the whole dataset is known beforehand, and it
only relies on historical and currently incoming data. These are all important elements
of autonomous surveying in the future.

The proposed system shows great robustness. The same algorithm was capable of
handling continuous and quick movements presented in the handheld surveying within
the evo datasets, but also the more discrete and slow movements with large vibrations
occurring by falling trees in the case of the tuusniemi forest harvester measurements.
Furthermore, it maintained accurate and similar positioning estimates in different
forest structures, in both wet autumn and snowy winter conditions.

The generated forest models look accurate enough for further processing to extract
forest inventory, especially when loop closures were activated for additional corrections.
The extracted tree segments highly resemble their actual shapes, and their cross sections
are sharp lines, especially for the evo datasets. The differences in accuracy between
the evo and tuusniemi models can be reasoned by various factors. First, the trajectory
driven by the harvester machine was more or less a straight line, providing little
opportunity to relax uncertainties along the perpendicular axes. Additionally, the
quick and significant vibrations occurring at falling trees can build errors in estimating
the IMU biases affecting the motion correction within the scan preprocessing. Finally,
these vibrations also affect the individual scans, which will become noisier even when
it is precisely registered onto the map.

The evo datasets are challenged by more significant rotations around the 𝑧 axis
as the system was able to move freely, and that can heavily mislocate points as the
scanner already have an internal rotation around that axis. However, these motions
were well predicted using the IMU data and therefore do not appear in the outcome
point cloud. An illustration is provided in Figure 24 where the points are more and
more mislocated in the raw scan the further the points are from the origin of the sensor
and as the revolution of the scanner evolves. While the applied solution performs great
reconstruction, other approaches could be tested in the future. Instead of considering
one scan as measurements along a complete LiDAR revolution, a scan entity would

52

Figure 24: Illustration of the removal of motion distortion from a scan.

be a fraction of the revolution. While that approach might fail in environments with
fewer surrounding features, it has benefits. The LiDAR data is already streamed in
fractions; for example, in the case of the sensor used in this study, 64 data packages are
used to build up a complete revolution. Therefore, the frequency of lidar measurement
updates could be increased. It would eliminate the need to reconstruct a scan and
reduce the latency of the update, as there is no need to wait until the scanner completes
the rotation.

5.2 LiDAR-based positioning in forest
In theory, the unique structure of the forest does not straightforwardly support
the state-of-the-art LiDAR-based positioning methods; however, they still perform
exceptionally well. Even though most of them were designed with the mindset of an
urban environment containing large planar surfaces and sharp edges, it luckily transfers
well to forests. Good positioning and low drift were achieved with both LOAM and
NDT based registration, while the GICP failed these experiments.

The surrounding trees provided adequate constraints for the large field of view
scanner that worked well with the internal motion corrections utilizing the IMU data.
LIO-SAM that relies purely on planar and edge features managed to keep the drift
on a minimum amount even for longer trajectories, while the proposed NDT based
solution only matches its accuracy with additional loop closure corrections. However,
there is no significant difference when both algorithms apply loop closure corrections,
which is often required in surveying applications.

53

The effects of the forest were mainly visible at the LIO-SAM algorithm as it did
not manage to reduce the number of points needed to be matched, yielding higher
computational times than it would have in an urban environment. This benefits the
NDT-based approach as it did not suffer similar effects, and it has plenty of room
to reduce computational complexity further when more effective cost functions are
considered, such as its distribution to distribution version.

Additional quantitative evaluation is still necessary to understand the absolute
positioning performance of the investigated systems, which was not feasible in this
study due to the lack of proper reference data. The obtained results, however, are
promising, and they could assert the automation of the forestry industry. This level
of the positioning of the harvester machine could improve reports of their executed
missions, estimating how much damage has been done to the forest and where precisely
the harvested tree stems are located for later collection. While during operation,
the local map maintained in the proposed algorithm could be processed onboard
to generate tree maps and assist the operator in identifying denser areas requiring
additional tree removals or indicating protected trees.

5.3 GNSS usage for MLS SLAM
As was expected, the GNSS measurements were quite inaccurate inside the forest, and
it is difficult to know precisely how bad they are. When fused to the proposed SAM
algorithm, it failed more often than it worked, making it highly unreliable. Even when
the filter managed to maintain an estimate, it caused duplicating trees in the resulting
forest model, making it extremely difficult to extract inventory based on point cloud
processing techniques.

It is better to use the GNSS data for georeferencing purposes only, especially
since surveying usually does not cover immense areas all at once, such that external
corrections would be reasonable. It can also be included in the online positioning by
implementing a parallel optimization only to estimate the georeferencing transformation
that can be applied to the current position in case global values are required for the
application.

The proposed georeferencing approaches did not work well since most had the
underlying assumption of Gaussian measurement models. Especially the compact
SE3 based fitting failed the expectation due to the nature of the errors and lack of
structure in the target trajectory built up by separate sensor units. Instead of a compact
solution, separate fittings could help when each degree of freedom is estimated using
the most relevant data. Orientation information from the internal filter of the IMU
could be used to fine-tune roll and pitch angles, while the height information might not
be necessary on the spot and could be adjusted later on using an available large-scale
digital terrain model.

Further investigations could include utilizing a dual-antenna GNSS system to
improve the heading measurements. Such a system might not be applicable when the
target platform has weight and spatial limitations, for example, mounting the sensors
on a drone. However, it can be easily mounted on the forest harvester, and it is in
future interest to perform the experiments with the proposed georeferencing methods

54

utilizing such GNSS measurements. Furthermore, as commonly performed, correcting
the GNSS measurements using the IMU data first and then applying the georeferencing
methods could lead to additional improvements. The latter approach could reduce the
significant variation within the global trajectory obtained by the GNSS system in this
study, maintaining a closer approximation of the considered Gaussian models within
the proposed georeferencing algorithms.

55

6 Conclusions and Future Work
The main contributions of this study includes showcasing that real-time LiDAR-based
SLAM solutions can be adapted to forest data, and processing is possible online.
It indicates that the NDT-based registration method can compress the information
the best out of the studied methods remaining robust enough when the accuracy
versus computation time is considered. Finally, it provides additional insights on the
challenges of utilizing GNSS measurements in real-time forestry applications.

The proposed and otherwise available LiDAR-based SAM state-of-the-art
algorithms worked well in the challenging forest environment for surveying
applications. The positioning is accurate enough and has low drift over time, especially
with loop closure corrections. The resulting digital forest models resemble reality to a
high degree and enable further processing tasks to extract forest inventory. Since these
models are built online with real-time limitations, it opens up many other forestry-
related applications other than mapping and surveying, such as decision support for
forest thinning or harvesting.

There are no significant accuracy differences when the optimal configuration is
considered for the proposed NDT-based SAM framework and the LIO-SAM algorithm;
however, the forest makes it difficult for the LIO-SAM to maintain efficient computation
as it cannot reduce the number of feature points as intended. In case of loop closure is
not an option, LIO-SAM has better accuracy, and it can be a more suitable solution for
shorter surveying sessions until it can maintain real-time computation, as it tends to
increase over time in this environment.

Finally, as expected, it is challenging to utilize the inaccurate GNSS data, and it is
better to avoid fusing it to achieve the high-accuracy positioning required to maintain
a great quality of the forest models. However, they can still be used to georeference the
point clouds in post-processing, but the proposed compact solutions did not perform
well enough to consider it in real applications other than providing an initial idea.

6.1 Future Work
As future work, the SAM framework can be tested with other recent registration
algorithms to see how they perform inside the forest. For example, integrating the
distribution to distribution matching version of the NDT registration could further
reduce computational time; however, it is yet unknown how it would affect the accuracy
of the outcome forest model. Further improvements related to the SAM framework
include integrating and evaluating more advanced loop closure detection methods
inside forests.

Related to georeferencing, instead of fusing the GNSS data directly into the
mapping graph, it is worth exploring how to run a parallel optimization online to
estimate the georeferencing transformation separately without having a direct effect on
the internal accuracy of the forest model. Additionally, separate estimations could be
developed for the different degrees of freedom of the georeferencing transformation,
utilizing only the data that carries the best information about it. For example, estimate

56

the heading angle only from latitude and longitude coordinates without the sabotaging
effects of the noisy height and offset IMU orientation values.

Finally, better and more measurements could further help this study, focusing
mainly on how to get good reference data, such that the absolute performance of the
NDT-LC and LIOSAM-LC methods could be better understood.

57

References
[1] S. Bauwens, H. Bartholomeus, K. Calders, and P. Lejeune, “Forest inventory with

terrestrial LiDAR: A comparison of static and hand-held mobile laser scanning,”
Forests, vol. 7, no. 6, 6 2016. doi: 10.3390/f7060127

[2] S. Zhou, G. He, F. Kang, W. Li, J. Kan, and Y. Zheng, “Extracting diameter at
breast height with a handheld mobile liDAR system in an outdoor environment,”
Sensors (Switzerland), vol. 19, no. 14, 7 2019. doi: 10.3390/s19143212

[3] S. Chen, H. Liu, Z. Feng, C. Shen, and P. Chen, “Applicability of personal
laser scanning in forestry inventory,” PLoS ONE, vol. 14, no. 2, 2 2019. doi:
10.1371/journal.pone.0211392

[4] E. Hyyppä, X. Yu, H. Kaartinen, T. Hakala, A. Kukko, M. Vastaranta, and
J. Hyyppä, “Comparison of backpack, handheld, under-canopy UAV, and above-
canopy UAV laser scanning for field reference data collection in boreal forests,”
Remote Sensing, vol. 12, no. 20, pp. 1–31, 10 2020. doi: 10.3390/rs12203327

[5] X. Liang, V. Kankare, J. Hyyppä, Y. Wang, A. Kukko, H. Haggrén,
X. Yu, H. Kaartinen, A. Jaakkola, F. Guan, M. Holopainen, and
M. Vastaranta, “Terrestrial laser scanning in forest inventories,” ISPRS
Journal of Photogrammetry and Remote Sensing, vol. 115, pp. 63–
77, 2016. doi: 10.1016/j.isprsjprs.2016.01.006. [Online]. Available:
http://dx.doi.org/10.1016/j.isprsjprs.2016.01.006

[6] A. Jaakkola, J. Hyyppä, X. Yu, A. Kukko, H. Kaartinen, X. Liang, H. Hyyppä,
and Y. Wang, “Autonomous collection of forest field reference—The outlook
and a first step with UAV laser scanning,” Remote Sensing, vol. 9, no. 8, pp.
1–12, 2017. doi: 10.3390/rs9080785

[7] X. Liang, J. Hyyppä, H. Kaartinen, M. Lehtomäki, J. Pyörälä, N. Pfeifer,
M. Holopainen, G. Brolly, P. Francesco, J. Hackenberg, H. Huang, H.-W.
Jo, M. Katoh, L. Liu, M. Mokroš, J. Morel, K. Olofsson, J. Poveda-Lopez,
J. Trochta, D. Wang, J. Wang, Z. Xi, B. Yang, G. Zheng, V. Kankare, V. Luoma,
X. Yu, L. Chen, M. Vastaranta, N. Saarinen, and Y. Wang, “International
benchmarking of terrestrial laser scanning approaches for forest inventories,”
ISPRS Journal of Photogrammetry and Remote Sensing, vol. 144, pp. 137–179,
2018. doi: https://doi.org/10.1016/j.isprsjprs.2018.06.021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0924271618301849

[8] J. Hyyppä, X. Yu, H. Hyyppä, M. Vastaranta, M. Holopainen, A. Kukko,
H. Kaartinen, A. Jaakkola, M. Vaaja, J. Koskinen, and P. Alho, “Advances in
Forest Inventory Using Airborne Laser Scanning,” Remote Sensing, vol. 4,
no. 5, pp. 1190–1207, 5 2012. doi: 10.3390/rs4051190. [Online]. Available:
http://www.mdpi.com/2072-4292/4/5/1190

http://dx.doi.org/10.1016/j.isprsjprs.2016.01.006
https://www.sciencedirect.com/science/article/pii/S0924271618301849
http://www.mdpi.com/2072-4292/4/5/1190

58

[9] Q. Guo, Y. Su, T. Hu, X. Zhao, F. Wu, Y. Li, J. Liu, L. Chen, G. Xu,
G. Lin, Y. Zheng, Y. Lin, X. Mi, L. Fei, and X. Wang, “An integrated
UAV-borne lidar system for 3D habitat mapping in three forest ecosystems
across China,” International Journal of Remote Sensing, vol. 38, no. 8-10, pp.
2954–2972, 5 2017. doi: 10.1080/01431161.2017.1285083. [Online]. Available:
https://www.tandfonline.com/doi/full/10.1080/01431161.2017.1285083

[10] A. Kukko, “Mobile Laser Scanning – System development, performance and
applications,” Ph.D. dissertation, Aalto University. School of Engineering.
ISBN 978-951-711-307-6 (electronic), 978-951-711-306-9 (printed) 2013.
[Online]. Available: http://urn.fi/URN:ISBN:978-951-711-307-6

[11] X. Liang, J. Hyyppa, A. Kukko, H. Kaartinen, A. Jaakkola, and X. Yu, “The
use of a mobile laser scanning system for mapping large forest plots,” IEEE
Geoscience and Remote Sensing Letters, vol. 11, no. 9, pp. 1504–1508, 2014.
doi: 10.1109/LGRS.2013.2297418

[12] J. Čerňava, M. Mokroš, J. Tuček, M. Antal, and Z. Slatkovská, “Processing chain
for estimation of tree diameter from gnss-imu-based mobile laser scanning data,”
Remote Sensing, vol. 11, no. 6, 3 2019. doi: 10.3390/RS11060615

[13] M. Mokroš, T. Mikita, A. Singh, J. Tomaštík, J. Chudá, P. Wȩżyk, K. Kuželka,
P. Surový, M. Klimánek, K. Ziȩba-Kulawik, R. Bobrowski, and X. Liang,
“Novel low-cost mobile mapping systems for forest inventories as terrestrial laser
scanning alternatives,” International Journal of Applied Earth Observation and
Geoinformation, vol. 104, p. 102512, 12 2021. doi: 10.1016/j.jag.2021.102512

[14] A. V. Segal, D. Haehnel, and S. Thrun, “Generalized-ICP,” in Robotics: Science
and Systems, vol. 5, 2010. doi: 10.15607/rss.2009.v.021. ISSN 2330765X

[15] F. Pomerleau, F. Colas, R. Siegwart, and S. Magnenat, “Comparing ICP variants
on real-world data sets,” Autonomous Robots, vol. 34, no. 3, 2013. doi:
10.1007/s10514-013-9327-2

[16] J. Zhang and S. Singh, “LOAM: Lidar Odometry and Mapping in Real-time,” in
Robotics: Science and Systems X. Robotics: Science and Systems Foundation,
7 2014. doi: 10.15607/RSS.2014.X.007. ISBN 9780992374709. [Online].
Available: http://www.roboticsproceedings.org/rss10/p07.pdf

[17] P. Biber and W. Strasser, “The normal distributions transform: a new approach to
laser scan matching,” in Proceedings 2003 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), vol. 3.
IEEE, 2003. doi: 10.1109/IROS.2003.1249285. ISBN 0-7803-7860-1 pp.
2743–2748. [Online]. Available: http://ieeexplore.ieee.org/document/1249285/

[18] M. Magnusson, The Three-Dimensional Normal-Distributions Transform,
H. Merten, Ed. Örebro University, 2009, vol. 10. ISBN 9789176686966.

https://www.tandfonline.com/doi/full/10.1080/01431161.2017.1285083
http://urn.fi/URN:ISBN:978-951-711-307-6
http://www.roboticsproceedings.org/rss10/p07.pdf
http://ieeexplore.ieee.org/document/1249285/

59

[Online]. Available: http://www.aass.oru.se/Research/Learning/publications/2
009/Magnusson_2009-Doctoral_Thesis-3D_NDT.pdf

[19] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping: Part
I,” IEEE Robotics and Automation Magazine, vol. 13, no. 2, pp. 99–108, 2006.
doi: 10.1109/MRA.2006.1638022

[20] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and mapping
(SLAM): Part II,” IEEE Robotics and Automation Magazine, vol. 13, no. 3, pp.
108–117, 2006. doi: 10.1109/MRA.2006.1678144

[21] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent Robotics
and Autonomous Agents). The MIT Press, 2005. ISBN 0262201623

[22] R. Visser and O. F. Obi, “Automation and robotics in forest harvesting operations:
Identifying near-term opportunities,” Croatian Journal of Forest Engineering,
vol. 42, no. 1, pp. 13–24, 2021. doi: 10.5552/CROJFE.2021.739

[23] J. H. Dau, Mati A, and Dawaki S A, “Role of Forest Inventory in Sustainable
Forest Management: A Review,” International Journal of Forestry and
Horticulture (ĲFH), vol. 1, no. 2, pp. 33–40, 2015. [Online]. Available:
www.arcjournals.org

[24] G. Piva, L. Caruso, A. C. Gómez, M. Calzolari, E. P. Visintin, P. Davoli,
F. Manfredini, A. Storari, P. Spinozzi, and N. Lamberti, “Effects of forest walking
on physical and mental health in elderly populations: a systematic review,”
Reviews on Environmental Health, 2022.

[25] L. Wallace, A. Lucieer, C. Watson, and D. Turner, “Development of a UAV-
LiDAR system with application to forest inventory,” Remote Sensing, vol. 4,
no. 6, pp. 1519–1543, 2012. doi: 10.3390/rs4061519

[26] J. Tang, Y. Chen, A. Kukko, H. Kaartinen, A. Jaakkola, E. Khoramshahi,
T. Hakala, J. Hyyppä, M. Holopainen, and H. Hyyppä, “SLAM-aided stem
mapping for forest inventory with small-footprint mobile LiDAR,” Forests, vol. 6,
no. 12, pp. 4588–4606, 2015. doi: 10.3390/f6124390

[27] Y. Chen, J. Tang, E. Khoramshahi, T. Hakala, H. Kaartinen, A. Jaakkola,
J. Hyyppa, Z. Zhu, and R. Chen, “Scan matching technology for forest
navigation with map information,” Proceedings of the IEEE/ION Position,
Location and Navigation Symposium, PLANS 2016, pp. 198–203, 5 2016. doi:
10.1109/PLANS.2016.7479702

[28] C. Qian, H. Liu, J. Tang, Y. Chen, H. Kaartinen, A. Kukko, L. Zhu,
X. Liang, L. Chen, and J. Hyyppä, “An Integrated GNSS/INS/LiDAR-SLAM
Positioning Method for Highly Accurate Forest Stem Mapping,” Remote Sensing,
vol. 9, no. 1, p. 3, 12 2016. doi: 10.3390/rs9010003. [Online]. Available:
http://www.mdpi.com/2072-4292/9/1/3

http://www.aass.oru.se/Research/Learning/publications/2009/Magnusson_2009-Doctoral_Thesis-3D_NDT.pdf
http://www.aass.oru.se/Research/Learning/publications/2009/Magnusson_2009-Doctoral_Thesis-3D_NDT.pdf
www.arcjournals.org
http://www.mdpi.com/2072-4292/9/1/3

60

[29] J. Holmgren, H. M. Tulldahl, J. Nordlöf, M. Nyström, K. Olofsson, J. Rydell,
and E. Willen, “ESTIMATION OF TREE POSITION AND STEM DIAMETER
USING SIMULTANEOUS LOCALIZATION AND MAPPING WITH DATA
FROM A BACKPACK-MOUNTED LASER SCANNER,” The International
Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, vol. XLII-3-W3, no. 3W3, pp. 59–63, 10 2017. doi: 10.5194/ISPRS-
ARCHIVES-XLII-3-W3-59-2017

[30] A. Kukko, R. Kaĳaluoto, H. Kaartinen, V. V. Lehtola, A. Jaakkola, and J. Hyyppä,
“Graph SLAM correction for single scanner MLS forest data under boreal forest
canopy,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 132, pp.
199–209, 10 2017. doi: 10.1016/j.isprsjprs.2017.09.006

[31] M. Pierzchała, P. Giguère, and R. Astrup, “Mapping forests using an unmanned
ground vehicle with 3D LiDAR and graph-SLAM,” Computers and Electronics
in Agriculture, vol. 145, no. December 2017, pp. 217–225, 2018. doi:
10.1016/j.compag.2017.12.034

[32] E. Hyyppä, J. Hyyppä, T. Hakala, A. Kukko, M. A. Wulder, J. C.
White, J. Pyörälä, X. Yu, Y. Wang, J. P. Virtanen, O. Pohjavirta,
X. Liang, M. Holopainen, and H. Kaartinen, “Under-canopy UAV laser
scanning for accurate forest field measurements,” ISPRS Journal of
Photogrammetry and Remote Sensing, vol. 164, no. December 2019, pp.
41–60, 2020. doi: 10.1016/j.isprsjprs.2020.03.021. [Online]. Available:
https://doi.org/10.1016/j.isprsjprs.2020.03.021

[33] J. Chudá, R. Kadlecík, M. Mokroš, T. Mikita, J. Tucek, and F. Chudý,
“SLAM AND INS BASED POSITIONAL ACCURACY ASSESSMENT OF
NATURAL AND ARTIFICIAL OBJECTS UNDER THE FOREST CANOPY,”
The International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, vol. 43, no. B1-2022, pp. 197–205, 5 2022. doi:
10.5194/ISPRS-ARCHIVES-XLIII-B1-2022-197-2022

[34] J. Zhang and S. Singh, “Low-drift and real-time lidar odometry and mapping,”
Autonomous Robots, vol. 41, no. 2, pp. 401–416, 2017. doi: 10.1007/s10514-
016-9548-2

[35] T. Shan and B. Englot, “LeGO-LOAM: Lightweight and Ground-Optimized
Lidar Odometry and Mapping on Variable Terrain,” IEEE International
Conference on Intelligent Robots and Systems, pp. 4758–4765, 2018. doi:
10.1109/IROS.2018.8594299

[36] T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus, “LIO-SAM:
Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping,” arXiv, 7
2020. [Online]. Available: http://arxiv.org/abs/2007.00258

[37] H. Wang, C. Wang, C.-L. Chen, and L. Xie, “F-LOAM: Fast LiDAR Odometry
And Mapping,” IEEE International Conference on Intelligent Robots and

https://doi.org/10.1016/j.isprsjprs.2020.03.021
http://arxiv.org/abs/2007.00258

61

Systems, pp. 4390–4396, 7 2021. doi: 10.1109/IROS51168.2021.9636655.
[Online]. Available: http://arxiv.org/abs/2107.00822http://dx.doi.org/10.1109
/IROS51168.2021.9636655

[38] Y. Pan, P. Xiao, Y. He, Z. Shao, and Z. Li, “Mulls: Versatile LiDAR SLAM via
Multi-metric Linear Least Square,” Proceedings - IEEE International Conference
on Robotics and Automation, vol. 2021-May, pp. 11 633–11 640, 2021. doi:
10.1109/ICRA48506.2021.9561364

[39] Q. Li, S. Chen, C. Wang, X. Li, C. Wen, M. Cheng, and J. Li, “Lo-net: Deep
real-time lidar odometry,” Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, vol. 2019-June, pp. 8465–8474,
2019. doi: 10.1109/CVPR.2019.00867

[40] W. Li, Y. Hu, Y. Han, and X. Li, “KFS-LIO: Key-Feature Selection for
Lightweight Lidar Inertial Odometry,” Proceedings - IEEE International
Conference on Robotics and Automation, vol. 2021-May, pp. 5042–5048,
2021. doi: 10.1109/ICRA48506.2021.9561324

[41] Y. Zhang, L. Wang, C. Fu, Y. Dai, and J. M. Dolan, “ENCODE: A Deep
Point Cloud Odometry Network,” Proceedings - IEEE International Conference
on Robotics and Automation, vol. 2021-May, pp. 14 375–14 381, 2021. doi:
10.1109/ICRA48506.2021.9562024

[42] J. Nubert, S. Khattak, and M. Hutter, “Self-supervised Learning of LiDAR
Odometry for Robotic Applications,” Proceedings - IEEE International
Conference on Robotics and Automation, vol. 2021-May, pp. 9601–9607,
2021. doi: 10.1109/ICRA48506.2021.9561063

[43] C. Park, P. Moghadam, S. Kim, A. Elfes, C. Fookes, and S. Sridharan,
“Elastic LiDAR Fusion: Dense Map-Centric Continuous-Time SLAM,” 11
2017. [Online]. Available: http://arxiv.org/abs/1711.01691

[44] C. Park, P. Moghadam, J. Williams, S. Kim, S. Sridharan, and C. Fookes,
“Elasticity Meets Continuous-Time: Map-Centric Dense 3D LiDAR SLAM,” 8
2020. [Online]. Available: http://arxiv.org/abs/2008.02274

[45] J. Behley and C. Stachniss, “Efficient Surfel-Based SLAM using 3D Laser Range
Data in Urban Environments,” in Robotics: Science and Systems. MIT Press
Journals, 2018. doi: 10.15607/RSS.2018.XIV.016. ISBN 9780992374747.
ISSN 2330765X

[46] J. Quenzel and S. Behnke, “Real-time Multi-Adaptive-Resolution-Surfel 6D
LiDAR Odometry using Continuous-time Trajectory Optimization,” 5 2021.
[Online]. Available: http://arxiv.org/abs/2105.02010

[47] M. Yokozuka, K. Koide, S. Oishi, and A. Banno, “LiTAMIN: LiDAR-based
tracking and mapping by stabilized icp for geometry approximation with normal

http://arxiv.org/abs/2107.00822 http://dx.doi.org/10.1109/IROS51168.2021.9636655
http://arxiv.org/abs/2107.00822 http://dx.doi.org/10.1109/IROS51168.2021.9636655
http://arxiv.org/abs/1711.01691
http://arxiv.org/abs/2008.02274
http://arxiv.org/abs/2105.02010

62

distributions,” IEEE International Conference on Intelligent Robots and Systems,
pp. 5143–5150, 10 2020. doi: 10.1109/IROS45743.2020.9341341

[48] ——, “LiTAMIN2: Ultra Light LiDAR-based SLAM using Geometric
Approximation applied with KL-Divergence,” 3 2021. [Online]. Available:
http://arxiv.org/abs/2103.00784

[49] S. Chen, H. Ma, C. Jiang, B. Zhou, W. Xue, Z. Xiao, and Q. Li, “NDT-
LOAM: A Real-Time Lidar Odometry and Mapping With Weighted NDT and
LFA,” IEEE Sensors Journal, vol. 22, no. 4, pp. 3660–3671, 2 2022. doi:
10.1109/JSEN.2021.3135055

[50] I. Vizzo, X. Chen, N. Chebrolu, J. Behley, and C. Stachniss, “Poisson
Surface Reconstruction for Lidar Odometry and Mapping,” Proceedings - IEEE
International Conference on Robotics and Automation, vol. 2021-May, pp.
5624–5630, 2021. doi: 10.1109/ICRA48506.2021.9562069

[51] X. Chen, I. Vizzo, T. Läbe, J. Behley, and C. Stachniss, “Range Image-
based LiDAR Localization for Autonomous Vehicles,” Proceedings - IEEE
International Conference on Robotics and Automation, vol. 2021-May, pp.
5802–5808, 2021. doi: 10.1109/ICRA48506.2021.9561335

[52] C. Qu, S. S. Shivakumar, W. Liu, and C. J. Taylor, “LLOL:
Low-Latency Odometry for Spinning Lidars,” 10 2021. [Online]. Available:
http://arxiv.org/abs/2110.01725

[53] A. Cowley, I. D. Miller, and C. J. Taylor, “UPSLAM: Union of Panoramas
SLAM,” 1 2021. [Online]. Available: http://arxiv.org/abs/2101.00585

[54] K. Krishnaswamy, S. Susca, R. McCroskey, P. Seiler, J. Lukas, O. Kotaba,
V. Bageshwar, and S. Ganguli, “Sensor fusion for gnss denied navigation,”
Record - IEEE PLANS, Position Location and Navigation Symposium, pp.
541–551, 2008. doi: 10.1109/PLANS.2008.4570062

[55] R. Li, J. Liu, L. Zhang, and Y. Hang, “LIDAR/MEMS IMU integrated
navigation (SLAM) method for a small UAV in indoor environments,” 2014
DGON Inertial Sensors and Systems, ISS 2014 - Proceedings, 2 2014. doi:
10.1109/INERTIALSENSORS.2014.7049479

[56] J. Einsiedler, I. Radusch, and K. Wolter, “Vehicle indoor positioning: A survey,”
2017 14th Workshop on Positioning, Navigation and Communications, WPNC
2017, vol. 2018-January, pp. 1–6, 1 2018. doi: 10.1109/WPNC.2017.8250068

[57] J. Tang, Y. Chen, X. Niu, L. Wang, L. Chen, J. Liu, C. Shi, and J. Hyyppä,
“LiDAR scan matching aided inertial navigation system in GNSS-denied
environments,” Sensors (Switzerland), vol. 15, no. 7, pp. 16 710–16 728,
2015. doi: 10.3390/s150716710

http://arxiv.org/abs/2103.00784
http://arxiv.org/abs/2110.01725
http://arxiv.org/abs/2101.00585

63

[58] H. Kaartinen, J. Hyyppä, M. Vastaranta, A. Kukko, A. Jaakkola, X. Yu,
J. Pyörälä, X. Liang, J. Liu, Y. Wang, R. Kaĳaluoto, T. Melkas, M. Holopainen,
and H. Hyyppä, “Accuracy of Kinematic Positioning Using Global Satellite
Navigation Systems under Forest Canopies,” Forests 2015, Vol. 6, Pages
3218-3236, vol. 6, no. 9, pp. 3218–3236, 9 2015. doi: 10.3390/F6093218.
[Online]. Available: https://www.mdpi.com/1999-4907/6/9/3218/htmhttps:
//www.mdpi.com/1999-4907/6/9/3218

[59] Y. Gao, S. Liu, M. M. Atia, and A. Noureldin, “INS/GPS/LiDAR integrated
navigation system for urban and indoor environments using hybrid scan matching
algorithm,” Sensors (Switzerland), vol. 15, no. 9, pp. 23 286–23 302, 2015. doi:
10.3390/s150923286

[60] L. Chang, X. Niu, T. Liu, J. Tang, and C. Qian, “GNSS/INS/LiDAR-SLAM
Integrated Navigation System Based on Graph Optimization,” Remote Sensing,
vol. 11, no. 9, p. 1009, 4 2019. doi: 10.3390/rs11091009. [Online]. Available:
https://www.mdpi.com/2072-4292/11/9/1009

[61] G. He, X. Yuan, Y. Zhuang, and H. Hu, “An Integrated GNSS/LiDAR-SLAM
Pose Estimation Framework for Large-Scale Map Building in Partially GNSS-
Denied Environments,” IEEE Transactions on Instrumentation and Measurement,
vol. 70, 2021. doi: 10.1109/TIM.2020.3024405

[62] J. Solà, J. Deray, and D. Atchuthan, “A micro Lie theory for state estimation in
robotics,” 12 2018. [Online]. Available: http://arxiv.org/abs/1812.01537

[63] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-Manifold
Preintegration for Real-Time Visual-Inertial Odometry,” IEEE Transactions
on Robotics, vol. 33, no. 1, pp. 1–21, 2017. doi: 10.1109/TRO.2016.2597321

[64] K. M. Lynch and F. C. Park, Modern Robotics: Mechanics, Planning, and
Control, 1st ed. USA: Cambridge University Press, 2017. ISBN 1107156300

[65] C. Stachniss, J. J. Leonard, and S. Thrun, “Simultaneous Localization
and Mapping,” in Springer Handbook of Robotics. Cham: Springer
International Publishing, 2016, pp. 1153–1176. [Online]. Available:
http://link.springer.com/10.1007/978-3-540-75388-9_3http://link.springer.co
m/10.1007/978-3-319-32552-1_46

[66] F. Dellaert and M. Kaess, “Factor Graphs for Robot Perception,” Foundations and
Trends in Robotics, vol. 6, no. 1-2, pp. 1–139, 2017. doi: 10.1561/2300000043.
[Online]. Available: http://www.nowpublishers.com/article/Details/ROB-043

[67] P. J. Besl and N. D. McKay, “A Method for Registration of 3-D Shapes,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 2, pp.
239–256, 1992. doi: 10.1109/34.121791

https://www.mdpi.com/1999-4907/6/9/3218/htm https://www.mdpi.com/1999-4907/6/9/3218
https://www.mdpi.com/1999-4907/6/9/3218/htm https://www.mdpi.com/1999-4907/6/9/3218
https://www.mdpi.com/2072-4292/11/9/1009
http://arxiv.org/abs/1812.01537
http://link.springer.com/10.1007/978-3-540-75388-9_3 http://link.springer.com/10.1007/978-3-319-32552-1_46
http://link.springer.com/10.1007/978-3-540-75388-9_3 http://link.springer.com/10.1007/978-3-319-32552-1_46
http://www.nowpublishers.com/article/Details/ROB-043

64

[68] F. Dellaert, R. Roberts, V. Agrawal, A. Cunningham, C. Beall, D.-N. Ta, F. Jiang,
lucacarlone, nikai, J. L. Blanco-Claraco, S. Williams, ydjian, J. Lambert,
A. Melim, Z. Lv, A. Krishnan, J. Dong, G. Chen, K. Chande, balderdash-devil,
DiffDecisionTrees, S. An, mpaluri, E. P. Mendes, M. Bosse, A. Patel, A. Baid,
P. Furgale, matthewbroadwaynavenio, and roderick-koehle, “borglab/gtsam,” 5
2022. [Online]. Available: https://doi.org/10.5281/zenodo.5794541

[69] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in IEEE
International Conference on Robotics and Automation (ICRA), Shanghai, China,
5 2011.

[70] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng, “ROS: an open-source Robot Operating System,” in
Proc. Open-Source Software workshop of the International Conference on
Robotics and Automation (ICRA), 2009.

[71] W. Zhang, J. Qi, P. Wan, H. Wang, D. Xie, X. Wang, and G. Yan, “An Easy-to-Use
Airborne LiDAR Data Filtering Method Based on Cloth Simulation,” Remote
Sensing, vol. 8, no. 6, p. 501, 6 2016. doi: 10.3390/rs8060501. [Online].
Available: http://www.mdpi.com/2072-4292/8/6/501

https://doi.org/10.5281/zenodo.5794541
http://www.mdpi.com/2072-4292/8/6/501

	Abstract
	List of figures
	List of tables
	List of acronyms and abbreviations
	Acknowledgements
	1 Introduction
	1.1 Background
	1.2 Problem and Research Gap
	1.2.1 Research Gap

	1.3 Purpose
	1.4 Goals
	1.5 Research Methodology
	1.6 Delimitations
	1.7 Sustainability and Ethics
	1.8 Outline

	2 Theoretical Background and Related Work
	2.1 Related Work
	2.1.1 SLAM in Mobile Laser Scanning
	2.1.2 Lidar-based Positioning and Mapping
	2.1.3 GNSS Usage in SLAM

	2.2 Lie Theory for State Representation and Estimation
	2.2.1 Basics of Lie Groups
	2.2.2 Operations on Manifolds

	2.3 Simultaneous Localization and Mapping
	2.3.1 SLAM Formulations
	2.3.2 Factor Graphs for SLAM

	2.4 Odometry
	2.4.1 Inertial Odometry
	2.4.2 Lidar Odometry and Scan Registration

	3 Methods and Experiments
	3.1 Applied Algorithms
	3.1.1 Smoothing and Mapping Framework
	3.1.2 Scan Matching Algorithms
	3.1.3 Georeferencing

	3.2 Measurements
	3.2.1 Measurement systems
	3.2.2 Datasets

	3.3 Experiments
	3.4 Evaluation
	3.4.1 Metrics

	4 Results and Analysis
	4.1 SAM framework
	4.1.1 Generated digital forest models
	4.1.2 Example tree segments
	4.1.3 Tree positions
	4.1.4 Trajectories
	4.1.5 Distance distribution
	4.1.6 Drift
	4.1.7 Execution time

	4.2 Fusing GNSS and Georeferencing
	4.2.1 GNSS fusion
	4.2.2 Georeferencing methods

	5 Discussion
	5.1 A real-time MLS SLAM system
	5.2 LiDAR-based positioning in forest
	5.3 GNSS usage for MLS SLAM

	6 Conclusions and Future Work
	6.1 Future Work

	References

