
Master’s programme in Automation and Electrical Engineering

High Speed Ethernet to USB Interface for
Embedded System Communication

Thales Mendes Sampaio

Master’s Thesis
2023

© 2023

This work is licensed under a Creative Commons
“Attribution-NonCommercial-ShareAlike 4.0 Interna-
tional” license.

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Author Thales Mendes Sampaio
Title High Speed Ethernet to USB Interface for Embedded System Communication
Degree programme Automation and Electrical Engineering
Major Control, Robotics and Autonomous Systems
Supervisor Prof. Jukka Manner
Advisor David Muñoz Martinez (MSc)
Collaborative partner GE HealthCare
Date 8 May 2023 Number of pages 58+24 Language English

Abstract
The producer of patient monitoring systems GE HealthCare has had the need to provide
a wired IP communication interface for one of its monitoring USB devices. This was
done by using the embedded micro-controller on the charging station of the monitoring
device as a data interface between USB and Ethernet. The software solution was
designed to have support for Communication Device Classes ACM, ECM, and EEM,
for both USB full-speed and high-speed settings.

The software developed was tested using a variety of tools to measure the network
performance of the data path, including throughput, latency and packet loss measure-
ments for different packet pattern configurations. The functional and non-functional
requirements for the charging device were met, as it was able to provide the USB
monitoring device speeds of 94 Mbps through the 10/100 Mbps Ethernet interface,
with minimal packet losses, as well as sustaining a stable connection under high load
scenarios.
Keywords USB, Ethernet models, real-time systems, embedded systems

Preface
This thesis was written during my employment in GE HealthCare, working with
the ambulatory monitoring system Portrait Mobile. Throughout this project I had
the opportunity to explore various aspects of embedded systems, communication
protocols, and software engineering. I would like to express my sincere gratitude
to my advisor David Muñoz for the chance to have this part of the Portrait Mobile
development as my master’s thesis topic. A special thank you to my colleagues who
have provided guidance and support. I also thank Professor Jukka Manner for his
assistance on the writing process and thesis structure. Lastly, I extend my appreciation
to my family and friends for their support, understanding and encouragement. Their
belief in my abilities has been a constant source of motivation.

Helsinki, 5 May 2023

Thales M. S. Engineer

4

Contents
Abstract 3

Preface 4

Contents 5

Abbreviations and Acronyms 8

1 Introduction 9

2 Introduction to USB 11
2.1 Overview . 11
2.2 Design and Architecture of the USB 12
2.3 Connector Types . 12
2.4 Physical Interface Wiring . 13
2.5 Data Flow . 14
2.6 Device control . 16

2.6.1 Device Descriptor . 16
2.6.2 Configuration Descriptor 17
2.6.3 Interface Descriptor . 18
2.6.4 Endpoint Descriptor . 18

2.7 USB Emulation Models . 19

3 Case Study 21
3.1 Current Platform . 21

3.1.1 Sensor Data . 22
3.1.2 Back-filling Offline Data 22

3.2 Development Plan . 23
3.2.1 Objectives . 23
3.2.2 Requirements . 24
3.2.3 Hardware . 24
3.2.4 Software . 25

3.3 Thesis Methodology . 25

4 Solution Development 28
4.1 USB Task . 29

4.1.1 USB Host Stack . 30
4.2 Ethernet Task . 34
4.3 Data Flow Management . 35

4.3.1 Charger Application Data Buffers 36
4.3.2 Buffer Sizes . 37
4.3.3 Rate of Data Flow . 37

4.4 End-to-end Design . 38

5

5 Testing Process 40
5.1 iPerf . 41

5.1.1 Setup . 41
5.1.2 TCP . 41
5.1.3 UDP . 43

5.2 Ping . 44
5.3 Network Stream Service . 45

5.3.1 Patient Monitoring Simulation 45
5.3.2 Stress Testing . 47

5.4 Hub MCU Utility . 49
5.4.1 UART Downlink Using CDC-ACM 50
5.4.2 UART Uplink Using CDC-ACM 50

5.5 End-to-End Monitoring Test . 51
5.6 Results Analysis . 52

6 Conclusion 54

References 56

A iPerf Results 59
A.1 TCP . 59

A.1.1 TCP - 500 MB - Uplink 59
A.1.2 TCP - 100 MB - Uplink 60
A.1.3 TCP - 500 MB - Downlink 60
A.1.4 TCP - 100 MB - Downlink 61
A.1.5 TCP - 500 MB - Bidirectional 62
A.1.6 TCP - 100 MB - Bidirectional 65
A.1.7 TCP - 64 KB - Uplink . 66
A.1.8 TCP - 100 KB - Uplink . 67
A.1.9 TCP - 500 KB - Uplink . 67
A.1.10 TCP - 1448 KB - Uplink 68
A.1.11 TCP - 64 KB - Downlink 68
A.1.12 TCP - 100 KB - Downlink 69
A.1.13 TCP - 500 KB - Downlink 69
A.1.14 TCP - 1448 KB - Downlink 70
A.1.15 TCP - 64 KB - Bidirectional 70
A.1.16 TCP - 100 KB - Bidirectional 71
A.1.17 TCP - 500 KB - Bidirectional 72
A.1.18 TCP - 1448 KB - Bidirectional 72

A.2 UDP . 73
A.2.1 UDP - 64 KB - 4.1 Mbps - Uplink 73
A.2.2 UDP - 100 KB - 6.4 Mbps - Uplink 74
A.2.3 UDP - 500 KB - 32 Mbps - Uplink 74
A.2.4 UDP - 1448 KB - 90 Mbps - Uplink 74
A.2.5 UDP - 64 KB - 4.1 Mbps - Downlink 75

6

A.2.6 UDP - 100 KB - 6.4 Mbps - Downlink 75
A.2.7 UDP - 500 KB - 32 Mbps - Downlink 76
A.2.8 UDP - 1448 KB - 90 Mbps - Downlink 76
A.2.9 UDP - 64 KB - 4.1 Mbps - Bidirectional 77
A.2.10 UDP - 100 KB - 6.4 Mbps - Bidirectional 78
A.2.11 UDP - 500 KB - 32 Mbps - Bidirectional 78
A.2.12 UDP - 1448 KB - 90 Mbps - Bidirectional 79

B Ping Results 81
B.1 Latency Uplink 10 s . 81
B.2 Latency Downlink 10 s . 81
B.3 Flooding - 64 B - Downlink . 81
B.4 Flooding - 100 B - Downlink . 81
B.5 Flooding - 500 B - Downlink . 82
B.6 Flooding - 1448 B - Downlink . 82
B.7 Flooding - 64 B - Uplink . 82
B.8 Flooding - 100 B - Uplink . 82
B.9 Flooding - 500 B - Uplink . 82
B.10 Flooding - 1448 B - Uplink . 82

7

Abbreviations and Acronyms
ACM Abstract Control Model
API Application Programming Interface
CDC Communication Device Class
CRC Cyclic Redundancy Check
DMA Direct Memory Access
DPRAM Dual-port Random Access Memory
ECM Ethernet Control Model
EEM Ethernet Emulation Model
EMA European Medicines Agency
FDA Food and Drug Administration
FIFO First In First Out
FTDI Future Technology Devices International
HAL Hardware Abstraction Layer
IC Integrated Circuit
ICMP Internet Control Message Protocol
IP Internet Protocol
JTAG Joint Test Action Group
LAN Local Area Network
LPDDR3 Low-Power Double Data Rate version 3
MAC Media Access Control
MCU Micro-controller Unit
PCB Printed Circuit Board
SOF Start of Frame
SpO2 Oxygen Saturation
SDRAM Synchronous Dynamic Random Access Memory
SRAM Static Random Access Memory
SSH Secure Shell Protocol
TCP Transmission Control Protocol
UART Universal Asynchronous Receiver Transmitter
UDP User Datagram Protocol
UHI Universal Serial Bus Host Interface
UHC Universal Serial Bus Host Controller
USB Universal Serial Bus
USB-IF Universal Serial Bus - Implementers Forum
WLAN Wireless Local Area Network

8

1 Introduction
A common practice in hospitals is to have devices monitoring the vitals signs of the
patients admitted. This is important to increase the safety of the patients before, during
and after treatment. Inadequate patient monitoring, inability to respond promptly, and
poor patient tracking are examples of medical errors that can cause serious damage
to the person being treated [1]. In order to avoid such adverse events, a well trained
staff, as well as the use of reliable monitoring equipment can help to give warnings of
early deterioration on the patient’s health and provide real-time data to help doctors
prioritize their attention. Hospitalized patients might experiences complications while
recovering from medical procedures or while being observed from a disease process.
A delay or failure in recognizing such complications can lead to fatal outcomes [2].
This event, called failure to rescue (FTR), can be mitigated by continuous patient
monitoring systems, and it is a key indicator for healthcare quality in hospitals and
care units [3].

The client commissioning this thesis, GE HealthCare, is a lead producer of patient
monitoring solutions. Their recent innovation on wearable technology includes a series
of lightweight wireless sensors the patient wears to have their vital signs monitored.
This would provide the patients more physical freedom to move in the hospital’s
premises while still being monitored. The wearable monitoring devices, would not
only provide the patients a feeling of well-being for allowing them to move freely, but
also increase their safety by continuously monitoring and giving indications in case of
early deterioration, thus reducing the chances of an FTR event [4].

The product proposed by GE HealthCare consists of a set including parameters
sensors that acquire data such as blood oxygenation, heart rate, and respiration rate; a
visualization device, to manage patients and display data from the monitoring sensors;
removable batteries, for powering the sensors; and a docking station, to provide
charging and communication capabilities. Throughout this thesis the visualization
device will be referred as Hub, and the docking station as Charger. A network service
would be available on the hospitals for connecting the Hubs, providing a larger scale
monitoring solution and software updates. The Hub functions as the system integrator,
connecting to the various sensors attached to the patient and displaying the data to
nurses and doctors. Currently, the Hub communicates with the network service via
Wireless Local Area Network (WLAN), which is an important feature for when the
patient is relocating or moving outside the ward. However, in regular use cases, the
Hub will be docked to the Charger for the majority of time, hence a fast and stable
wired network connection would be highly desirable, leading to the research question
of this thesis: How to provide the Charger a fast USB to Ethernet interface the Hub
could use as an alternative communication interface?

A common approach to provide Ethernet connectivity on Universal Serial Bus
(USB) devices is to use Communication Device Class (CDC) protocols, which
encapsulate data into specific formats, allowing a device and host to communicate
[5]. An example usage of these protocols are Ethernet to USB adapters. Although
devices like these can easily be found as off-the-shelf products, due to the proprietary
USB connector on the Hub and the required functionality of the Charger, this is

not an approach that can be taken. To address the demand for wired connectivity,
the Charger’s software will be redesigned to implement Ethernet emulation CDC
protocols and a feasibility study on the performance will be conducted to determine if
the solution is appropriate.

This product belongs to the Class II medical device category, thus it must go
through a series of approvals from regulatory agencies such as the Food and Drug
Administration (FDA) and the European Medicines Agency (EMA) [6]. Having a
Local Area Network (LAN) connection on the Charger is an important feature for
assisting in the approval for market usage, as it provides the Hub an alternative way to
connect to the service network, mitigating the chances of network problems, ultimately
increasing the patient’s safety. Moreover, the LAN connectivity will provide more
bandwidth for future developments on the sensors. With the addition of other sensor
types as well as improvements on accuracy and resolution, more data would need to be
sent by the Hub. The wired connection would be able to support these future updates.

Although the wearable monitoring system purpose is to enable patients to ambulate,
help with comfort and accelerate recovery, for the vast majority of the time, the patient
will be in their room and the Hub will be stationary. Using LAN for the Hub
connectivity can help to reduce possible wireless interference between other Hubs
that are being carried by patients on the move.

The aim of this thesis is to document the software design process for implementing
LAN connectivity on the Charger, in order to expand its capabilities to offer "over-the-
cable" software updates, as well as provide the Hub a stable and fast way of connecting
to a network. To achieve this objective, a technical background study was conducted
on Ethernet-style networking over USB. The hardware and micro-controller units
involved were analyzed to provide an understanding of their capabilities. Finally, a
series of tests and measurements were performed in order to verify the functionality
and performance of the LAN connectivity.

In summary, the implementation of the USB to Ethernet interface on the Charger
was successful, allowing the Hub to access local area networks using the wired
connection. The tests on stability and performance measurements concluded the
Charger was able to provide the necessary data bandwidth for future iterations of GE
HealthCare’s mobile monitoring products.

The remainder of this work is organized as follows. Chapter 2 reviews the literature
on USB standards, describing the technology and how Ethernet emulation over USB
works. In Chapter 3, the case study is presented and a solution to the LAN connectivity
problem is proposed, including the methods used to achieve that. Chapter 4 presents
the software design development and describes how the research question was solved.
Chapter 5 outlines how the solution was tested and analyses the results. Chapter 6
summarizes the thesis by discussing practical implications and limitations of the study
as well as by suggesting further research on the topic.

10

2 Introduction to USB
This chapter introduces the USB standards and describes the various components
related to Ethernet emulation over a USB connection. An overview of how the USB
hierarchy works is presented, including details on the physical layer and protocol
definitions. Finally, the enumeration steps of a generic USB device will be explained,
and the USB Communication Device Class models relevant to this thesis will be
introduced.

2.1 Overview
USB, which stands for Universal Serial Bus, is a standard connection type for computer
peripherals. It was originally developed in the mid-1990s by a consortium of seven
companies, the USB Implementers Forum (USB-IF), with the goal to standardize
the connection of peripherals to computers, simplify the configuration of connected
devices, permitting faster data transfer rates [13]. USB has since become the standard
connector for most computer peripherals, and it is also used in a variety of other devices,
including computer peripherals and smartphones. Since the year of its introduction, in
1996, the USB standard has been evolving to support faster transmission speeds and
different connector types.

The USB specification is a collection of documents containing all the information
about the USB protocol. This includes electrical signaling, physical dimensions
of the connectors, protocol layer, and other design aspects. The first iteration of
the USB protocol supports two configurations, low-speed mode, which is able to
achieve a maximum theoretical speed of 1.5 Mbps, and full-speed mode, increasing
the throughput to 12 Mbps. The following iteration, USB 2.0, increases the speeds
by a factor of 40, introducing a third configuration, namely high-speed mode [7].
The USB standard continues to be developed to this day, progressively increasing
throughput speeds. Table 1 presents the current USB versions and their respective
maximum theoretical speeds.

Table 1: USB versions and their maximum theoretical speeds.

USB Version Mode Abbreviation Maximum Speed
USB 1.0 Low Speed LS 1.5 Mbps
USB 1.0 Full Speed FS 12 Mbps
USB 2.0 High Speed HS 480 Mbps
USB 3.0 SuperSpeed SS 5 Gbps
USB 3.1 SuperSpeed+ SS+ 10 Gbps
USB 3.2 SuperSpeed+ SS+ 20 Gbps
USB 4.0 - USB4 40 Gbps

11

2.2 Design and Architecture of the USB
USB uses a tiered-star topology. Similarly to a master-slave design, only one USB
device is is responsible for initiating communication on the bus, and it is called USB
host. The topology structure starts from the host and continues in a reverse-tree
manner, as Figure 1 depicts. All other peripherals connected to the host, for example
mouse, printer or flash drive, are simply referred to, in USB terms, as devices [15].
Upstream traffic means data going from the devices to the host, and downstream traffic
is data moving from the host to the devices.

Figure 1: USB tiered-star topology.

A connection between the host and a device is established through a hub or a series
of hubs. The host has a root hub attached to it, often integrated to the computer or
micro-controller, permitting a direct communication with other devices [8]. Each
hub has attachment points called ports, one specifically for upstream connection to
another hub, and up to seven downstream ports for connecting other hubs or devices.
A maximum of 127 units (hubs and devices) can be part of a single USB topology
[15].

2.3 Connector Types
The USB 2.0 specification defines two types of keyed connectors, with the purpose
to minimize end user termination problems. Connector type "A" consists of a
plug oriented upstream, towards the host, and a receptacle with downstream output
from the host or hub. Figures 2 and 3 illustrate a type "A" plug and receptacle,
respectively. Connector type "B" is designed to allow devices to have a replaceable
cable, consequently "B" plugs are oriented downstream, towards the device, and the

12

receptacles are upstream input to the device or hub. Figures 4 and 5 depict a USB
type "B" plug and receptacle, respectively.

With the introduction of USB 3.0, connectors type "A" and "B" received a revision
including 5 extra pins to provide higher transfer speeds. A new connector type "C", with
24 pins, was also introduced with the intention of supporting future implementations
of the USB protocol. A series of other connectors were created as variations of types
"A" and "B" as the USB specification evolved, including "Mini" and "Micro" variants.
For the standard versions USB 3.2 and newer, only USB type "C" is available.

Figure 2: USB type "A" plug. Figure 3: USB type "A" receptacle.

Figure 4: USB type "B" plug. Figure 5: USB type "B" receptacle.

2.4 Physical Interface Wiring
USB 2.0 cables consist of two wires for providing power to the attached device, 𝑉𝐵𝑈𝑆

at 5 Volts, and GND for ground, as well as two differential wires to provide data [7],
as Figure 6 illustrates.

Figure 6: USB 2.0 cable wiring and signals.

The Charger being studied on this thesis interfaces with the monitoring Hub using
a proprietary connector that includes the USB differential lines. The connector consists
of five pins: a 12 Volts 𝑉𝐵𝑈𝑆, 𝐷+ and 𝐷− USB differential lines, a boot mode selection
signal, and ground. Figure 7 depicts the Charger connections of the USB interface
with the Hub.

13

Figure 7: USB interface between Charger and Hub.

2.5 Data Flow
In a USB bus, when the host transmits to a device, every other device on the the bus
will receive that data, but only the destination device is able to accept the packets.
On the contrary, when the host initiates a request for reading data, only the device
which is being requested is allowed reply to the host. There can be no device-to-device
communication or multiple devices sending data concurrently to the host [16].

Aside from being responsible for transmitting data, the lines D+ and D- are used
for indicating several bus states and device conditions. Signalled conditions include
detached, attached, and idle. Indications for reset, end-of-packet, suspend, resume and
keep-alive signal are also possible by using specific combinations of D+ and D- states
and how long they are held for.

All USB communication events are accomplished from transactions initiated by
the host. These transactions occur during a frame, which have a well defined periodic
value based on the USB speed of the bus. For example, on full-speed mode the frame
is one millisecond, but on high-speed mode the frame is 125 microseconds. Each
frame is initiated by a signal indicating the start of frame, or SOF. In order obtain
a USB certification of compliance, the host must precisely issue SOFs. Figure 8
illustrates an example of a USB frame and its transactions.

The process of transferring data happens when the host reads or writes data to
predefined memory locations on each device called endpoints. A device can have
multiple endpoints, and each one has a device-determined direction of data flow. For
example, input endpoint one, output endpoint one, input endpoint two, and output
endpoint two. Input as endpoint direction always refers to data going into the host,
and output, out of the host. For the USB host, endpoints are called pipes.

During a frame, multiple transactions can occur, including three types of packets:
token, data, and handshake. Each transaction starts with a token packet indicating

14

Figure 8: USB frame and transactions.

the type of transaction. There are four kinds of token packets: SOF, which is the
Start-of-Frame packet and it is always the first packet of the frame; SETUP, signalling
the beginning of a control command towards a device; OUT, for sending payload data
to a device; and IN, for receiving payload data from a device. Payload is transferred
via data packet, and at the end of each transaction, there can be a handshake packet
indicating acknowledged, not-acknowledged or stalled transaction [17].

The USB standard defines three different transfer modes in which the host can
communicate with the devices on the bus. Interrupt transfer is a highly reliable mode,
scheduled on fixed intervals but with limited bandwidth. This transfer is typically used
on mice, keyboards and medical devices. Isochronous transfers are optimal for high
bandwidth applications, where reliability is not a key factor, for example for audio or
video streaming. Bulk transfers can offer high reliability and bandwidth, given there is
enough available capacity on the frame [17], and can be found on mass storage devices
and printers.

Bulk and interrupt transactions follow a similar control flow. Figure 9 shows the
control flow and error cases for the bulk and interrupt transfers. The host initiates an
IN transaction by sending the token to the device and waiting for a reply. If able to, the
device replies with data and the host acknowledges it, otherwise it will send a NAK
(not-acknowledged) handshake packet indicating it cannot send data, or a STALL
handshake packet to inform the endpoint is halted. The OUT transaction is initiated by
the host after the OUT token is sent to the device. As the host contains the data to be
transfer ed, it can send the data packet immediately followed by the OUT token, and
wait for the device’s handshake to complete the transaction. In addition to the three
handshake packets ACK, NAK, and STALL, the device can reply with a NYET (not
yet) packet during bulk output transfers to indicate the transaction is not yet completed
[10].

15

Figure 9: Flow control for bulk and interrupt transactions.

2.6 Device control
Based on the USB protocol, devices are required to provide information about their
characteristics and capabilities when they are connected to the bus. This information
is exchanged with the USB host during the device’s enumeration process. Device
information is conveyed by the use of descriptors, containing the device class, subclass,
and protocol; vendor and product IDs; the device’s power requirements; and the
required endpoint configuration. They may also include human-readable strings
providing information such as the device’s name and manufacturer [18]. During
enumeration, the host uses the descriptors information to load the appropriate device
drivers and initiate communication. The USB descriptors are defined by USB-IF,
providing standard descriptor types and formats that all USB devices must support, as
well as some optional descriptors for specific device classes [19].

2.6.1 Device Descriptor

The device descriptor is the first to be accessed by the host and provides basic
information about the USB device, such as supported USB versions, device class,
vendor and product IDs, as well as the number of configurations the device can assume.
The elements of the descriptor can be seen in Table 2.

16

Table 2: USB device descriptor elements of a C struct, their data types and description.

Data type Name Description
uint8_t bLength Size of this descriptor in bytes.
uint8_t bDescriptorType Descriptor type.
uint16_t bcdUSB USB specification release number in BCD for-

mat.
uint8_t bDeviceClass Device class code.
uint8_t bDeviceSubClass Device subclass code.
uint8_t bDeviceProtocol Device protocol code.
uint8_t bMaxPacketSize0 Maximum packet size of endpoint 0 (in bytes).
uint16_t idVendor Vendor ID.
uint16_t idProduct Product ID.
uint16_t bcdDevice Device release number in BCD format.
uint8_t iManufacturer Index of the manufacturer string descriptor.
uint8_t iProduct Index of the product string descriptor.
uint8_t iSerialNumber Index of the serial number string descriptor.
uint8_t bNumConfigurations Number of possible configurations for the device.

2.6.2 Configuration Descriptor

The configuration descriptor provides the number of interfaces used and how much
power the configuration would required from the host. One single device might have
more than one possible configuration, for example, a USB audio interface that supports
multiple audio formats may use a different descriptor for each format. The elements
of a configuration descriptor are detailed in Table 3.

Table 3: USB configuration descriptor elements of a C struct, their data types and
description.

Data Type Name Description
uint8_t bLength Size of the descriptor in bytes.
uint8_t bDescriptorType Descriptor type.
uint16_t wTotalLength Length of all descriptors returned along with this

configuration descriptor.
uint8_t bNumInterfaces Number of interfaces in this configuration.
uint8_t bConfigurationValue Value for selecting this configuration.
uint8_t iConfiguration Index of the configuration string descriptor.
uint8_t bmAttributes Configuration characteristics.
uint8_t bMaxPower Maximum power consumption of the device

when in this configuration.

17

2.6.3 Interface Descriptor

The interface descriptor details the interface as a collection of endpoints that define a
feature or function of the device. The key elements of this descriptor are the number
of endpoints and the USB device class they implement. For example, a USB mouse
requires a minimum of one endpoint (IN) for the Human Interface Device (HID) class,
whereas a USB flash drive needs two endpoints (IN and OUT) for its Mass Storage
device class operation. All elements of the interface descriptor are described in Table
4. The elements bInterfaceClass and bInterfaceSubClass are codes defined by the
USB-IF for each specific device and their intended usage, for example, communication
devices (CDC) have the value 0x02 for bInterfaceClass and human interface devices
(HID) have the value 0x03.

Table 4: USB interface descriptor elements of a C struct, their data types and
description.

Data Type Name Description
uint8_t bLength Size of the descriptor in bytes.
uint8_t bDescriptorType Descriptor type.
uint8_t bInterfaceNumber Number of the interface in its configuration.
uint8_t bAlternateSetting Value to select this alternate interface setting.
uint8_t bNumEndpoints Number of endpoints used by the interface (ex-

cluding endpoint 0).
uint8_t bInterfaceClass Interface class code.
uint8_t bInterfaceSubClass Interface subclass code.
uint8_t bInterfaceProtocol Interface protocol code.
uint8_t iInterface Index of the interface string descriptor.

2.6.4 Endpoint Descriptor

Each endpoint is described by its endpoint address, transfer type (bulk, interrupt,
isochronous), and maximum packet size that can be transferred through it. The
elements of an endpoint descriptor are shown on Table 5. The most significant bit of
bEndpointAddress indicates the direction of the endpoint (0: OUT, 1: IN), and the
first four least significant bits contain the endpoint number. The element bmAttributes
contain information about the transfer type of that endpoint on the first two least
significant bits (00: control, 01: isochronous, 10: bulk, and 11: interrupt) [9].

18

Table 5: USB Endpoint Descriptor elements of a C struct, their data types and
description.

Data Type Name Description
uint8_t bLength Size of the descriptor in bytes.
uint8_t bDescriptorType Descriptor type.
uint8_t bEndpointAddress Address and direction of the endpoint.
uint8_t bmAttributes Endpoint type and additional characteristics (for

isochronous endpoints).
uint16_t wMaxPacketSize Maximum packet size (in bytes) of the endpoint.
uint8_t bInterval Polling rate of the endpoint.

The USB enumeration is the process in which a USB device is identified, configured
and initialized by the USB host controller. This process allows the host to load the
correct drivers for each specific USB device. The enumeration involves a series of steps
that uses the electric signals on the USB cables as well as the information obtained by
the device descriptors exchange [11]. Figure 10 shows the typical enumeration steps
after a USB device is connected.

Figure 10: Enumeration steps of a USB device performed by the USB host.

2.7 USB Emulation Models
The USB standard characterizes three classes to define communication devices:
Communication Device Class (CDC), Communication Interface Class and Data
Interface Class. This architectural definition was created to support any communication
device to use the USB protocol as a mean of data transfer [5]. For telecommunication
devices and networking services it is possible to implement the CDC models to use
conventional TCP/IP networking over USB.

When a device is connected to the USB bus, the host will initiate the enumeration
process in order to configure the device and enable application data exchange. During
this negotiation, the device provides the host the type of communication it requires
via the interface descriptors. The CDC interface allows the emulation of typical
communication and networking protocols via the USB bus. For example, a device can

19

request a UART link to the host via a virtual COM-port using the Abstract Control
Model (CDC-ACM), or an Ethernet adapter can exchange IEEE 802.3 packets with
the host using the Network Control Model (CDC-NCM). Other CDC models are
Ethernet Emulation Model (CDC-EEM) and Ethernet Control Model (CDC-ECM).
Microsoft has its own protocol for Ethernet communication over USB called Remote
Network Driver Interface Specification (RNDIS). Each model uses different methods
to encapsulate the communication packets on USB transactions.

A Communication Interface Class of type Abstract Control Model, or CDC-ACM,
consists of a minimum of two endpoints; one for managing the elements of serial
communication and the other to implement notifications. Two extra endpoints can
be used to implement the data transfer capabilities, functioning as input and output
channels [20]. An application can implement a UART driver using the CDC-ACM
model to emulate this type of communication over the USB bus.

In contrast to a telecommunication or UART device, a networking device will
always have at least one Data Class Interface associated to it, assigning one input and
one output endpoint for exchanging network traffic. One extra alternative endpoint
must be configured to initiate any transactions. The Communication Class Interface
may be utilized for providing device configuration and statistics collection for the
device, but it is not mandatory to be active. The CDC-ECM subclass enables the host
to send or receive one Ethernet packet per USB packet. A USB packet in high-speed
mode can have maximum size of 512 bytes, but a typical Ethernet frame can be as
larger as 1514 bytes. The CDC-ECM protocol enables the negotiation of the maximum
segment size, allowing one large Ethernet frame to be transfer over multiple USB
transactions, with a following zero-length packet to delimit the end of the frame [21].

The Ethernet Emulation Model is a simpler subclass compared to the CDC-ECM,
as it only requires a pair of endpoint for sending and receiving frames. This model has
the capability of encapsulating multiple Ethernet packets into a single USB transaction,
potentially improving the throughput over ECM implementations [22]. CDC-EEM
packets contain a header to determine the length of the included Ethernet frames and a
checksum. This extra overhead should be taken into consideration when using this
model as it could increase the necessary processing of the frames.

In summary, Chapter 2 introduced the USB standard, providing an overview of its
design, architecture, and data flow. It discussed connector types, physical interface
wiring, as well as how the device descriptors can be used to detect and enumerate a
USB device. The chapter also described the Ethernet over USB emulation models that
are relevant to this thesis.

20

3 Case Study
This chapter describes the current platform under study and how the system as a whole
is designed to operate, as well as introduces the motivations for the implementation of
the USB to Ethernet interface. The development plan and thesis methodology are also
discussed in the following sections.

3.1 Current Platform
In 2022, GE HealthCare introduced to the market a new patient monitoring product
called Portrait Mobile. The initial release consists of two wearable mobile sensors
for acquiring respiration rate, pulse rate, and oxygen saturation levels. The sensors
are powered by removable batteries that can be attached to a charging station. The
batteries also act as a radio to transmit and receive control and monitoring data. The
Hub is a mobile monitoring viewer that connects to the sensors and manages the
patient’s vitals. The Hub may also be docked to the Charger to refill its battery. Figure
11 presents the complete Portrait Mobile system.

Figure 11: GE HealthCare Portrait Mobile monitoring system, including the Viewer,
alarm box, SpO2 and respiration sensors, Charger, Sensor Batteries, and Hub.

As a patient is admitted, their monitoring is initiated by creating a profile on
the Hub and pairing the sensors to it. From this point, the Hub will communicate
through Wi-Fi with the core service Axone, which can run locally on a server at
the hospital, or as a cloud service. There are two ways to visualise and monitor the
patient’s sensors. From the Hub, typically located on the bedside or close to the

21

patient, medical staff can have quick access to vitals values, trends and alarm settings.
Alternatively, multiple patients can be monitored simultaneously from a centralized
Viewer, receiving data from the Axone service to provide different views of the data,
trends and alarm configurations.

The use of wireless technology to transmit monitoring data can bring multiple
benefits to patients and medical staff, such as increased mobility when moving in or out
of the bedside, and allowing clinicians to remotely follow the patient health. Although
the communication between the sensors and the Hub uses a robust proprietary protocol,
the Hub shares the airway with all other Wi-Fi enabled devices on the premises when
communicating with the Axone service. Given the nature of the Wi-Fi protocol, it is
possible to experience data loss or disruption depending on the infrastructure and how
busy the area may be.

A wired LAN connection from the Hub to the network would mitigate problems
related to poor wireless connectivity, giving clinicians and patients more confidence
that the monitoring data will be reliably transmitted. This thesis proposes the solution
of LAN connectivity and proves it can be a reliable way to convey clinical data.

3.1.1 Sensor Data

The initial version of Portrait Mobile can be used to monitor three types of clinical
data: blood oxygenation, pulse and respiration rates. The sensors are capable of
collecting, processing and filtering the data before sending to the Hub. This is an
efficient data collection process that optimizes the total size of clinical data to be
transmitted. In a standard operating condition, the SpO2 Sensor is expected to transmit
4 KB of data per second, and the Respiration Sensor to transmit 2 KB of data per
second. In addition to the sensors data, the Hub calculates trends which are sent to the
network at longer intervals, averaging 4 KB per second.

3.1.2 Back-filling Offline Data

If the Hub disconnects from the wireless network, it is able to store up to two hours of
sensor data and trends information. When connection is restored, all the data stored
is back-filled to the Axone service, to avoid having gaps on monitoring data. Given
the nominal data rates, there can be a maximum of 72 MB of data to be transferred
in a retrospective way. Under optimal wireless network conditions, the back-filling
transfer would take only a few seconds, but in cases of poor wireless signal or heavy
interference, the transfer could take minutes to complete, potentially causing even
further disruption on the monitoring service.

Although the service disruption while back-filling data would be undesirable, a
more significant issue is relying entirely on a wireless communication for transmitting
vital signals from patients. As new sensor types are added to the Portrait Mobile
system, more data would need to be transmitted, for example, some of the future
iterations of the product may include sensors producing considerably more data than
the current ones. Increasing wireless data connectivity may result in more data
interruptions and failures to trigger alarms during critical conditions.

22

The current design of the product is able to provide sufficient connectivity capability
via Wireless Local Area Network for the initial applications and sensor types. As the
product develops and more sensors and extra features are introduced, a redundant
wired Local Area Network connection would contribute to a more stable and reliable
connection.

3.2 Development Plan
The Portrait Mobile Charger uses the microcontroller ATSAME70Q20, originally
developed by semiconductor manufacturing company Atmel Corporation, which now
belongs to Microchip Technology Inc. The microcontroller is based on the 32-bit
ARM Cortex-M7 processor and includes multiple peripherals such as 10/100Mbps
Ethernet MAC, high-speed USB host and device, and UART [24].

The Charger software is written in C programming language (ISO/IEC 9899:2018)
and it is composed of multiple independent tasks, controlling different functionalities.
The software execution is managed by the real-time operating system FreeRTOS,
a kernel specifically designed for embedded devices and micro-controllers, freely
distributed under the MIT License and currently maintained by Amazon Web Services
(AWS) [25]. Because the software is expected to run for long periods of time, to
prevent memory leaks during runtime, most of the resources are allocated during build
time or at system start-up.

The current version of the Charger software includes support for USB emulation
of UART traffic by using the CDC-ACM protocol. This is how the Hub is able to
communicate with the Charger to perform tasks including charging monitoring and
software updates. The addition of an Ethernet to USB bridge will allow the Hub to
use the Ethernet port of the charger as an alternative network interface to the Wi-Fi
connectivity.

This section will propose a development plan to outline the objectives, requirements,
and methodology for the implementation of the USB to Ethernet bridge on the Charger.

3.2.1 Objectives

The objective of this thesis is to design and implement a software feature for the
Charger to enable a communication link between the USB and Ethernet ports of
the micro-controller, ultimately allowing the Hub to use the Charger’s Ethernet port
as its own network interface. Furthermore, an evaluation will be provided on the
performance of the implemented solution in terms of data transfer rates, latency, and
stability under different circumstances.

By meeting these objectives, this thesis will contribute to the development of a
solution for providing the Hub a more robust connection to the monitoring services
and allowing the expansion of the Portrait Mobile capabilities. Moreover, this will
contribute with insights into the use of micro-controllers for similar applications.

23

3.2.2 Requirements

As a medical device class II, the Portrait Mobile Charger must comply with regulatory
specifications suggested by the FDA and EMA, in order to make the product available
to the market. For example, in the United States, some of the regulatory requirements
are the premarket notification 510(k), labeling requirements, and quality system
(QS) regulations [6]. The software work done in this thesis affects primarily QS
requirements, as any design changes must be documented and their impact re-analyzed.
This is typically done with thorough testing supported by a Failure Mode and Effect
Analysis (FMEA), leading to defects prevention and enhancements on safety [26].
Due to the high complexity and large scale of the aforementioned topics, the scope of
the requirements for this thesis will be limited to achieving the desired functionality
and performance, which will be evaluated by a set of test scenarios.

The functional requirements for this project are: to provide the Charger the
capability of being a USB host, enabling the Hub to be enumerated as a USB device; to
convert USB packets from the Hub into Ethernet frames (and vice-versa); to implement
the Ethernet protocols TCP/IP and UDP; and to support USB high-speed standard.

Performance and stability metrics are part of the the non-functional requirements,
which expect the Charger to operate with low latency data transfers, high stability and
reliability. Appropriate documentation on the test procedures and results is needed to
validate the non-functional requirements.

3.2.3 Hardware

In order to implement a bridge between USB and Ethernet using the ATSAME70Q20
microcontroller, a deep understanding on its components and how a software is able to
interact with such peripherals is needed. The USB functionality is provided by the USB
High-Speed Interface (USBHS), and the Ethernet Media Access Controller (GMAC)
peripheral allows the implementation of IEEE 802.3 networking. The software to be
designed on this thesis must be able to provide capability of interacting with these two
peripherals so data could be moved from the USB device to the GMAC peripheral in
form of Ethernet packets, and vice-versa.

3.2.3.1 USBHS - USB High-Speed Interface: USBHS is the USB peripheral on
the ATSAME70Q20 microchip, complying with the Universal Serial Bus 2.0 specifica-
tion. The peripheral supports high-speed, full-speed and Low-Speed communication.
It has 9 pipes/endpoints with 4096 bytes of embedded dual-port RAM (DPRAM)
available for managing traffic data. Additionally, the device includes dedicated Direct
Memory Access (DMA) channels for fast and efficient data transfer [24].

Enabling Ethernet emulation using the USB peripheral requires the USB stack
running on the MCU to be configured for supporting either the CDC-ECM or CDC-
EEM protocols. In this application, the Charger will be configured as a USB host.
When a device is connected to the USB port of the ATSAME70Q20, the enumeration
process will initiate and a series of descriptors will be exchanged so the USB host
can correctly configure the connected device. After enumeration, the necessary pipes

24

on the USBHS peripheral are allocated and any subsequent USB data sent from the
device is available to be captured by the USB driver, or data can be queued into the
output pipe to be sent to the device.

3.2.3.2 GMAC - Ethernet Media Access Controller: The GMAC peripheral
allows the microcontroller to implement a 10/100 Mbps Ethernet MAC connection,
compatible with the IEEE 802.3 standard. Other key characteristics of the GMAC
include full and half duplex operation, DMA interface to external memory, interrupt
generation on receive and transmit completion, as well as 8 KB transmit and 4 KB
receive RAM.

The driver controlling the GMAC allocates two buffer lists, one for receiving and
one for transmitting. The lists are tied to the DMA configuration registers for fast
data transmission between the FIFO and internal buffers. When the GMAC driver is
initialized, a task controlling Ethernet data traffic can be implemented to read queued
data from the Ethernet port, or queue data to be sent by the peripheral.

3.2.4 Software

The practical work on the software consists of two parts: integrate the software
stack for the GMAC and USBHS peripherals, making the necessary adjustments to
fit the application of the Ethernet-USB data link; and implement a software task to
support data exchange between the peripherals at the rated transfer speeds. The current
functionality of the Charger, including the UART emulation via USB, must remain
as is. The software must have a clear design and concise architecture, which will be
presented on the following chapter.

The methodology of this thesis consists of developing a software solution for
the problem in question: how to provide an alternative network interface for the
Portrait Mobile Hub via the Charger? The solution will be analyzed by performing a
selection of stability and performance tests, to conclude if the final product meets the
requirements. More details on how the problem will be solved and testing methodology
is presented on the following section.

3.3 Thesis Methodology
Fundamentally, the purpose of this thesis is to use the MCU ATSAME70Q20 on the
Charger as a USB to Ethernet converter. Devices with this functionality have been
widely available for the consumer market, and even as integrated circuit packets, like
Microchip’s LAN9500A, for direct use on PCB assemblies. The use of off-the-shelf
components to enable Ethernet communication when the Hub is docked to the Charger
is a relatively easy solution to implement, requiring a PCB redesign and minor software
changes. However, the introduction of a new IC could greatly increase the production
costs on the long term. At the time this was written, the cost of a LAN9500A IC was
approximately $5,11 [27], which could lead to millions of dollars of extra cost during
the expected lifetime of the product. Another incentive for implementing the Ethernet

25

bridge on the Charger MCU is that older hardware designs could still be used, only
requiring a software update to enable the new feature.

Atmel provides a software package to be used for programming its micro-
controllers. This package contains a common USB stack which is taken into use for
the implementation of the USB host functionality on the Charger. The USB host stack
consists of a Hardware Abstraction Layer (HAL), a device driver and an Application
Programming Interface (API). The HAL interacts directly with the USBHS peripheral,
for example providing functions to configure, start, suspend, and access register data.
The device driver provides high level commands for specific devices, and utilizes the
HAL to provide hardware instructions to be used by the USBHS peripheral [28]. The
API is a collection of functions used to interface with the USB host at a higher layer
of abstraction.

The Charger should be able to switch between USB host and USB device depending
on the use case. The Charger has a USB port on its back used for servicing and
debugging, as Figure 12 shows. When the USB port of the Charger is connected to a
PC, the MCU should behave as a USB device. In this case, it is possible to perform
software updates on the Charger or on the devices connected to it (Sensor Batteries
and Hub). When there is no PC connection, the Charger should behave as a USB host,
enumerating the Hub as a device on the bus, and providing the LAN connectivity via
CDC-ECM/CDC-EEM protocol.

Figure 12: Connectors at the back of the Portrait Mobile Charger. Left to right:
Ethernet, USB service port, and DC input.

The Hub uses the CDC-ACM protocol to communicate with the Charger through
the 5-pin slot interface. The current software identifies when the Hub is placed on
the charging slot and enumerates it as a UART-capable communication device. One
of the modifications needed for the Atmel USB software stack is to add support for
CDC-ECM and CDC-EEM enumeration. In addition, further optimization is needed to
be able to support the concurrent operation of CDC-ACM and CDC-ECM/CDC-EEM.

26

The USB endpoint and pipe configuration should be carefully implemented in order
to avoid slow downs due to traffic congestion or excessive interrupts.

It is good practice for a software development project to have a clear idea of what
the architecture and general software design. The areas of the software concerning
USB and Ethernet connectivity must be clearly identified, providing information about
their purpose and how they interact with each other as well as with other tasks. The
way data flows from one peripheral, into the internal buffers, then continue toward
the other peripherals will be described in the software design section of the following
chapter.

Achieving transfer speeds close to the rated bit-rate of the peripherals will require
effective data handling and optimizations at driver and application level. The software
design should include methods for managing data traffic between CDC-ACM and CDC-
ECM/CDC-EEM protocols, avoid excessive memory copying and taking advantage of
DMA transfers to reduce latency.

Once the software is implemented and the data bridge between USB and Ethernet
is enabled for the Hub, a selection of tests will be executed to determine how well the
performance of the Ethernet link is. The most valuable metrics for this application
are the bandwidth, latency and link stability. Transfers speeds should be close to
100 Mbps, which is the bottleneck on the data path caused by the GMAC peripheral,
rated for 10/100 Mbps. The bandwidth will be measured with iPerf3, which is an
open-source tool used for determining the maximum achievable bandwidth on IP
networks. iPerf3 supports configurable data packets as well as internet protocols
TCP and UDP, providing a diversity of test scenarios. For latency, a simple tool
called Ping can be used to measure how long it takes for a message to travel from
the Hub to the local network and back. Although simple to use, Ping offers several
options for customizing the tests, for example performing flooding operations. Other
tools developed by GE Healthcare will be used to test system stability, how the
Charger performs under network stress, and UART communication with the Hub via
CDC-ACM.

The solution for the Ethernet bridge will be evaluated by the aforementioned tests
to indicate if the new feature performs adequately enough to be part of the Portrait
Mobile Charger device. The tests are designed to cover all the required functionality
of the LAN connectivity for the Charger, including real use cases and stress testing.

This concludes the description of the case study of this thesis. The Charger device
was introduced, including how it interacts with the other components of the Portrait
Mobile system. The development plan to solve the research question was presented,
where the objectives and requirements were proposed, in order to implement and test
the USB to Ethernet software bridge using the Charger’s microcontroller.

27

4 Solution Development
The implementation of the data bridge can be divided into three areas of development:
the USB task, which controls the USB-related operations and the drivers for the
communication class devices; the Ethernet task, responsible for interfacing with
the GMAC peripheral and providing the translation layer between USB packets and
Ethernet frames; and the data flow management, to ensure the data transfer between
peripherals is done in orderly and efficient way. These areas will be further discussed
in this chapter, showing how the data bridge was designed and implemented.

With the MCU acting as a bridge between USB and Ethernet, the data packets
going through it undergo a transformation in order to be recognized and accepted by
their respective peripherals. When a packet is received by the USBHS peripheral on its
USB interface, it gets stored on static random access memory (SRAM) until is ready
to be used by the Ethernet driver. Depending on the Ethernet emulation type, the USB
packet contains different types of header, so it must be parsed before sending to the
GMAC peripheral. Moreover, when an Ethernet packet arrives at the GMAC interface,
it gets encapsulated by an appropriate CDC header and stored in SRAM until the USB
driver is ready to transmit it. The transmission interface between USB and Ethernet
and the transformations the packets undergo are described on the architectural diagram
in Figure 13.

Figure 13: Architecture diagram of the Ethernet to USB data path bridge.

The Charger software is operated by the real-time scheduler FreeRTOS. This is
kernel of the system and it allows the application to have multiple independent tasks
running as separate threads. Examples of different tasks are charging management, LED
indications, temperature monitoring, and USB communication. It is a responsibility of
the scheduler to prioritize and execute these tasks based on their priority. On a single-
core MCU, such as the ATSAME70Q20, only one thread can be executed at a time. The
scheduler will maintain a list of active threads ordered by their priority and give them
CPU time accordingly. This ensures time-critical hard real-time operations are always
executed before soft real-time tasks, being one of the fundamental functionalities of a
real-time embedded system [30]. During system startup, the hardware components
are initialized and each task is configured with a main function to run as well as its
priority. There are over 30 tasks on the Charger software, but in this thesis the main
focus will be on the tasks that govern Ethernet and USB operations.

28

4.1 USB Task
The USB task starts by initializing the Atmel USB stack, then continues to run in a
loop performing monitoring of USB-related events. To follow the requirements of
USB hierarchy, where only one host is allowed per bus, a USB multiplexer controls the
connections of the devices. When the Charger is powered on and a Hub is docked to it,
the multiplexer will enable the connection between the Hub and the MCU, starting the
USB host on the Charger. This scenario is illustrated by Figure 15. If a PC is connected
to the USB service port, the Charger can no longer be a host, so the multiplexer selects
the Hub line and reconnects the MCU via the FTDI chip, as shown in Figure 14.
This stops the USB host on the Charger, which becomes a USB device under the PC
connection tree. On the last case, when the Charger is connected to the PC but there is
no Hub docked, the MCU will be routed to the PC, but acting as a USB device for
FTDI UART communication. This configuration is presented in Figure 16.

Figure 14: Multiplexer configuration when Hub is docked and Charger is connected
to PC via USB cable. PC is the USB host.

The Hub should only have access to the LAN when there is no PC connected to
the Charger. The event of connecting the Charger to the PC can be detected by the
voltage on the USB line 𝑉𝐵𝑈𝑆, triggering an interrupt whenever the voltage goes past
the threshold for logic level "high". The Hub detection is not done by reading the
𝑉𝐵𝑈𝑆 voltage on the Hub connector, as the Hub is a USB device and can only use the
𝑉𝐵𝑈𝑆 line as a sink [12]. The detection is done by a inductive sensor located under the
Hub slot, which can be queried by software to indicate the presence of the Hub. With
these two detection mechanisms the USB task is capable of selecting the multiplexer
channels accordingly and operating the USB host stack on the MCU.

29

Figure 15: Multiplexer configuration when Hub is docked and Charger is disconnected
from PC. MCU is the USB host.

Figure 16: Multiplexer configuration when Hub is not docked and Charger is connected
to PC via USB cable. PC is the USB host.

4.1.1 USB Host Stack

The Atmel USB stack for the ATSAME70Q20 micro-controller provides a simple
API for the USB task with the functions USBH_start() and USBH_stop(). Whenever
the Hub is connected to the MCU via USB multiplexer, the function USBH_start() is
called to configure the MCU as a USB host. If a device is detected on the USB bus,
the MCU will initiate a series of descriptor exchanges and attempt to configure the
new device. If the USB multiplexer disconnects the MCU and the Hub, USBH_stop()
is executed, terminating the MCU as USB host and cleaning all device descriptors
information.

30

4.1.1.1 CDC-ACM on the Base Charger Design: The Charger application uses
the UART communication interface to exchange messages with the devices connected
to it, i.e. PC, Sensor Batteries and Hub. The messages follow a common protocol
used across all Portrait Mobile devices. When the Hub is docked to the Charger
and the MCU is in USB host mode, the Hub gets enumerated as a CDC-ACM USB
device, allowing the Charger’s application to communicate with it via UART messages.
During the enumeration process, the USBHS allocates three pipes for the Hub: a bulk
IN and a bulk OUT pipes for exchanging data with the host, as well as an interrupt
IN pipe the host uses to receive notifications from the device. The Atmel USB stack
allocates pipes to the corresponding device’s endpoints in ascending order as Endpoint
Descriptors are processed. There is no specific order for setting the priority of the
pipes, and it is the device’s responsibility to provide the Endpoint Descriptors in the
correct order. The following logs are from the moment the Hub is docked to the
Charger and the enumeration process begins.

>USB EVENT
>USB enum: reset USB line
>USB enum: idle 20ms
>USB enum: reset USB line
>USB enum: idle 100ms
>USB enum: get device descriptor
>USB enum: setting address
>USB enum: get configuration descriptor
>USB enum: getting full configuration descriptor
>USB enum: setting configuration
>USB enum: get device descriptor
>USB enum: setting address
>USB enum: get configuration descriptor
>USB enum: getting full configuration descriptor
>USB enum: setting configuration
>ACM Found
>ItfDesc. Class: 2, SubClass: 2, Protocol: 1, Num endpoints: 1
>EpDesc. Ep Address: 130, Attributes: 3, Interval: 9
>ep 2 -> pipe 1
>ItfDesc. Class: 10, SubClass: 0, Protocol: 0, Num endpoints: 2
>EpDesc. Ep Address: 129, Attributes: 2, Interval: 0
>ep 1 -> pipe 2
>EpDesc. Ep Address: 1, Attributes: 2, Interval: 0
>ep 1 -> pipe 3
>Device Driver installed
>USB enum: enabling UHIs
>ACM PLUG
>APP LOG 52: USB TASK: USB device was enumerated in hub slot, VID 0x1901, PID 0x1b

When placed on the Charger slot, the Hub gets routed to the MCU by the USB
multiplexer, triggering an event that initiates the enumeration process. As the host
enumerates the newly added device, the Interface and Endpoint Descriptors are
identified and the peripheral’s pipes are configured. Class number two indicates a
communication interface for a CDC device. Subclass two is the USB-IF definition for an
Abstraction Control Model interface and it contains one input interrupt endpoint. The
communication interface is followed by a data interface (Class 10), and it contains the
description of the endpoints used for transferring data between the host and device [5].
From the example, the first endpoint to be assign has the address 130 = 0𝑏10000010,
meaning it is an input endpoint (bit7 = 0b1) with assigned number two (bits3:0 =

31

0b0010). The attribute value 3 = 0𝑏00000011 indicates it is an interrupt endpoint.
The Hub’s IN interrupt endpoint two then gets assigned to pipe number one of the
USBHS. Similarly, the two following data bulk endpoints IN (bit7 = 0b1) and OUT
(bit7 = 0b0), with address one, get assigned to pipes two and three, respectively.
The enumeration is concluded once all endpoints are assigned to their corresponding
USBHS pipes and the CDC-ACM driver is loaded.

The USBHS has a total of 10 pipes, with the first one being reserved for USB host
control operations. During runtime, on every USB frame (125𝜇s in HS, 1𝑚s in FS)
a handler is called to perform any pending read/write operations on the pipes. The
transfer operations are executed following the pipe number order, i.e. the control pipe
zero is handled first and pipe nine, last. This default priority is not an issue if the only
communication needed by the device is UART, which has relatively low transfer speeds
compared to USB 2.0. However, the addition of a second Communication Device
Class to handle IP network exchanges on the same device could cause traffic issues
on the USBHS peripheral, requiring careful prioritization to avoid either protocol
blocking the other.

4.1.1.2 Integrating the CDC-ECM/CDC-EEM Models: The Hub runs its ap-
plication on top of a Linux operating system. When part of a USB bus, the Linux
kernel on the Hub (Yocto Project [31]) provides the host all the supported functions
as Descriptors. The Hub is configured to have two USB functions: CDC-ACM, the
Communication Class for using UART, and CDC-ECM (or CDC-EEM, depending on
the configuration), a second Communication Class for Ethernet emulation. To enable
the full communication functionality of the Hub, both CDCs must be enumerated by
the MCU, and a driver for handling the Ethernet emulation must be programmed.

The Atmel USB stack includes a USB Host Controller (UHC), that provides a
high-level abstraction of the host. This module can be used to control the state of the
host, for example, starting, suspending, or resuming operations. The UHC receives
from the application a list of USB interfaces the host is expected to support. This list
is part of the USB Host Interface (UHI) and it can include multiple interfaces from
different classes, such as CDC-ACM, CDC-ECM, Mass-storage Class (MSC), and
Human Interface Device (HID). Each interface on the list must provide their core
functionality with callback functions the USBHS will run during the device operation.

The driver to handle Ethernet emulation models was implemented to provide the
necessary UHI functions to the controller. The core elements of the driver consists of
four functions: install, enable, uninstall, and sof_notify.

• install: Instantiates the device being installed, keeping information regarding
data interface (bulk transfers), communication interface (interrupt transfers),
and endpoint addresses. The USBHS pipe configuration is done during device
installation.

• enable: Prepares the device to run, notifies other components about the start of
operation, and calls the function sof_notify to initialize data transfers.

32

• uninstall: Deletes the device instance by freeing the memory and resetting
counters associated to it. This also frees the USBHS pipes that are no longer in
use.

• sof_notify: This function is first called during UHI enable, and periodically
after every Start of Frame (SOF) synchronization marker. The SOF is a special
packet sent by the USB host to all connected devices once every tick (125𝜇s in
HS mode). Read and write operations are done in this context by requesting the
USBHS to perform an endpoint-pipe transaction.

The integration of CDC-ECM to the Charger communication design, requires
adding the newly implemented driver to the list of interfaces supported by the
application. The UHI would now have two items: CDC-ACM and CDC-ECM, and the
application can select the appropriate driver to install when enumerating the Hub. In
this scenario, the challenge of managing data traffic on the peripheral’s pipes emerges,
because the USB task would need to process requests for both UART and Ethernet
communication while sharing the resources of the USBHS. It was observed that
enabling both UHIs and letting the USB stack handle the pipe allocation prioritization,
leading to the configuration shown in Figure 17, results in the CDC-ACM input pipes
completely blocking the Ethernet communication. In the case where the device does
not have data to send, as the host initiates IN transactions on the first CDC-ACM pipe,
the device replies with a NAK packet to indicate it does not have any data, and this
creates a cycle of the host attempting to read until there is data available. This scenario
blocks all the pipes that have priority lower than the first input.

Figure 17: USBHS pipe allocation when the USB stack configures endpoints with
default prioritization.

To address this issue, the Atmel USB stack function USBH_HAL_ConfigurePipe()
was modified to prioritize the execution of OUT pipes. The new USBHS pipe
configuration presented in Figure 18, allows the high priority write operations to run
in every micro-frame, and lower priority input pipes to attempt to read data if the
device is ready.

Figure 18: USBHS pipe allocation with modified USB stack, prioritizing OUT pipes
execution.

33

The following logs show the Hub enumeration process after the CDC-ECM driver
was added to the UHI list and pipe prioritization applied to the Hardware Abstraction
Layer. The Subclass for Ethernet Control Model is defined by the USB-IF as the value
six. Note that even though that interface includes one interrupt input endpoint, it is not
configured, as it has no use in this application. Only data interface endpoints (Class
10) are configured.

>USB EVENT
>USB enum: reset USB line
...
>USB enum: setting configuration
>ACM Found
>ItfDesc. Class: 2, SubClass: 2, Protocol: 1, Num endpoints: 1
>EpDesc. bEndpointAddress: 130, bmAttributes: 3, bInterval: 9
>ep 2 -> pipe 5
>ItfDesc. Class: 10, SubClass: 0, Protocol: 0, Num endpoints: 2
>EpDesc. bEndpointAddress: 129, bmAttributes: 2, bInterval: 0
>ep 1 -> pipe 4
>EpDesc. bEndpointAddress: 1, bmAttributes: 2, bInterval: 0
>ep 1 -> pipe 1
>Device Driver installed
>ECM Found
>ItfDesc. Class: 2, SubClass: 6, Protocol: 0, Num endpoints: 1
>EpDesc. bEndpointAddress: 132, bmAttributes: 3, bInterval: 9
>ItfDesc. Class: 10, SubClass: 0, Protocol: 0, Num endpoints: 2
>EpDesc. bEndpointAddress: 131, bmAttributes: 2, bInterval: 0
>ep 3 -> pipe 3
>EpDesc. bEndpointAddress: 2, bmAttributes: 2, bInterval: 0
>ep 2 -> pipe 2
>Device Driver installed
>USB enum: enabling UHIs
>ACM PLUG
>ECM PLUG
>APP LOG 52: USB TASK: USB device was enumerated in hub slot, VID 0x1901, PID 0x1b
>APP LOG 52: USB TASK: USB device was enumerated in hub slot, VID 0x1901, PID 0x1b

4.2 Ethernet Task
The Ethernet task provides an interface between the GMAC peripheral and the charger
application. Ethernet access is done by utilizing functions of the GMAC driver,
provided by the Atmel ATSAME70Q20 Ethernet software stack, to initialize and
perform read/write operations on the GMAC peripheral. During runtime, as packets
arrive through the physical layer interface, they are read, parsed according the the
Ethernet emulation configuration, and stored in SRAM for later use by the USB task.
On the contrary, if a packet is being sent from the USB device, the Ethernet task parses
and queues it to the GMAC for transmission.

As discussed in section 2.7 about USB Emulation Models, depending on the
Ethernet emulation type the Charger is configured to handle, the header that encapsulates
the IEEE 802.3 frames can have different contents. The only packet manipulation
done by the Ethernet task is the parsing of the USB CDC-ECM/CDC-EEM headers
when reading from, or writing to the internal SRAM buffers.

Ethernet Emulation Model packets have the capability of encapsulating multiple
Ethernet frames. That is achieved by prepending each encapsulated Ethernet frame
with an EEM header containing a message type bit, a CRC usage bit, and the length

34

of the frame [22], as depicted in Figure 19. The bit bType indicates if the packet
contains an EEM command message or an Ethernet frame, the bit bCRC specifies
whether the CRC on the Ethernet frame has been calculated or set to a sentinel value
(0𝑥𝑑𝑒𝑎𝑑𝑏𝑒𝑒 𝑓), and the remaining 14 bits are the length of the carried frame.

Figure 19: CDC-EEM packet layout and header contents.

When handling Ethernet Control Model packets, the task does not need to modify
the header contents as ECM does not allow encapsulation, and the USB packet payload
only contains the Ethernet frame.

4.3 Data Flow Management
When the Hub is attached to the Charger, the USB CDC-ECM enumeration process is
done, making the Hub available to the network, with its own MAC and IP addresses.
Henceforth, a data path is established between the Charger’s Ethernet port and the
Hub, via its USB interface.

There are three main components involved in the process of moving data across
this path: the MCU’s Ethernet peripheral (GMAC), the ARM CPU core (running
application), and the MCU’s USB module (USBHS), as Figure 20 illustrates. The
USB and Ethernet tasks run independently within the Charger application. The GMAC
is controlled by the Ethernet task and it is responsible for transfer operations on the
Ethernet port. The USBHS is controlled by the USB task, governing the data transfers
at the USB port. The Charger MCU software provides a bridge for Ethernet and USB
peripherals, where data is moved between internal buffers as communication occurs
between the LAN and the Hub.

This subsection will describe the data buffering mechanisms on the Charger MCU
application and how the peripherals interact with the buffers.

35

Figure 20: Data path for Ethernet communication between the Hub and Local Area
Network via the Charger.

4.3.1 Charger Application Data Buffers

Barr and Massa suggest on [32] that, for extending the functionality of a serial
communication and making the communication more robust, a FIFO buffering
mechanism is recommended. Additionally, they mention that for embedded systems
with more than one device driver, CDC-ACM and CDC-ECM in the Charger’s case,
it is important to consider how the limited MCU resources are used and shared
between tasks. Taking this into consideration, two ring buffers were introduced to
the software, one responsible for data moving from the USB peripheral (Hub) to the
GMAC (network), named gUsbRead, and other for network data going into the Hub
via the USBHS, gUsbSend. Both buffers are shared between the USB and Ethernet
control tasks, which are running the device drivers to interface with their respective
peripherals.

The buffers use a standard ring queue mechanism where data is written to a buffer on
one end and read from the other. Figure 21 illustrates the two data ring buffers and the
index trackers gUsbSendEnqueuePos, gUsbSendDispatchPos, gUsbReadEnqueuePos,
and gUsbReadDispatchPos. The length of the ring buffers are static values configurable
during software compilation, 𝑚 for gUsbRead and 𝑛 for gUsbSend. The index trackers
are used to inform the drivers which position of the buffers data is being written or
read. For instance, when a packet arrives from the network, the GMAC peripheral will
process it and copy it to index gUsbSendEnqueuePos of gUsbSend, and increment
the en-queue position by one. On the USB counterpart, the driver will check if
index gUsbSendDispatchPos of gUsbSend contains data to be sent. If yes, the USB
peripheral forwards the packet to the physical layer and the gUsbSendDispatchPos is
incremented to the next position.

The Hub hardware is based on the i.MX7 platform with a multi-core processing
unit and one gigabyte of LPDDR3 SDRAM, making it a much more capable hardware
than the Charger’s ATSAME70Q20, which has a single processing core and 384
kilobytes of SRAM. Subsequently, in a situation where the Hub pushes more USB
packets than the Charger is able to read, this data will be temporarily stored on the
Hub’s internal RAM, backpressuring the flow and allowing the Charger to stall reading
data until it has free memory on gUsbRead.

When packets arrive from the network, the Charger is entirely responsible for
buffering until the Hub is able to consume it. If the GMAC finishes processing an
incoming Ethernet packet and gUsbSend is full, that packet will simply be dropped.

36

Figure 21: Ring buffers used for the Ethernet to USB data bridge and their index
trackers.

The backpressure interaction with the Hub allows a larger memory allocation for the
gUsbSend while still maintaining a balanced throughput on both directions. Through
experimentation and based on memory availability on the Charger’s software, it was
found that a reasonable length for gUsbSend and gUsbRead is 𝑛 = 20 and 𝑚 = 4
buffers, respectively.

4.3.2 Buffer Sizes

Each buffer in the ring queue needs to be large enough to accommodate at least
one maximum size IEEE 802.3 Ethernet frame (1536 bytes for the GMAC PHY
configuration). The software supports both CDC-ECM and CDC-EEM protocols,
therefore the extra overhead needed for packet encapsulation must be taken into
consideration. The value chosen for buffer size is 1624 bytes, resulting in a total
cache size of 1624 × 20 = 32480 bytes for downlink traffic (network to Hub), and
1624 × 4 = 6496 bytes for uplink (Hub to network).

4.3.3 Rate of Data Flow

As the GMAC fills the gUsbSend buffers, the USB peripheral is able to immediately
consume the data, since, the bit rate of USB 2.0 is 480 Mbps, compared to the 100
Mbps link on the Ethernet port. However, the Ethernet peripheral can only consume
data from the buffers at its own link speed, so the Ethernet device is the bottleneck
when attempting to achieve the maximum transfer speeds.

Although data rates close to the maximum theoretical speeds were achieved, it can
vary depending on the packet payload size. The design of the drivers allows only one
Ethernet packet to be sent per USB frame (every 125 𝜇s in HS mode), resulting in
8000 packets per seconds. With a packet size of 100 bytes, the maximum throughput
becomes limited to 6.4 Mbps, but increasing the packet length to 1000 bytes, results in
a proportional speed improvement to 64 Mbps. Maximum bit rates are obtained when
packet size is set to the Ethernet frame limit of 1500 bytes, achieving approximately
94 Mbps.

The USB task design does not take advantage of the packet encapsulation feature

37

of the EEM protocol, thus the throughput performance of CDC-ECM and CDC-EEM
are equivalent. However, the extra overhead of header manipulation causes the CPU
load on the ATSAME70Q20 to be slightly higher when the EEM configuration is
selected. Consequently, it was decided to use the ECM configuration as the final
solution for the Ethernet-USB bridge.

4.4 End-to-end Design
Figure 22 summarizes the complete end-to-end design of the USB to Ethernet data
bridge. The Ethernet task has direct control over the GMAC driver and it is able to
queue packets for transmission as soon as they become available on gUsbRead by
receiving an interrupt notification from the CDC-ECM driver. When an incoming
network packet becomes available on the GMAC FIFO, the Ethernet task is able to
copy it to the next available gUsbSend buffer. There is no need for sending the USB
driver a notification when a packet becomes available, as the driver checks for buffered
packets on every SOF.

Figure 22: Ethernet to USB interface and its internal components.

Unlike the Ethernet task, the USB task does not have direct control over the USB
transactions, but it is only able to start, suspend, and stop the driver operation. Once
started, the driver operates autonomously via interrupts from the USBHS peripheral.
This functionality allows passing the internal ring buffers addresses directly to the
driver, which uses DMA to copy the data to/from the pipes. After every SOF, the
USBHS triggers an interrupt to initiate receive and transmit operations at the configured
pipes. Following the pipe priority, the transmission handler checks if there is a packet

38

to be sent from gUsbSend and requests the peripheral to run this endpoint transaction.
The reception handler is called in succession, requesting a read operation for the next
available USB packet. Once the transfers are completed, a callback-function updates
the ring buffers positional indexes. If all transactions were completed and there is still
time within the USB frame before the next SOF, the driver will attempt to run another
endpoint operation to maximize transfer speeds.

39

5 Testing Process
After the implementation of the software was completed, a series of tests were
conducted to analyze the performance of the data bridge and evaluate the solution
based on the defined requirements. This chapter describes the testing setup as well as
the methods used to determine the performance and stability of the system. The data
collected was used to analyze how well the Charger is able to transfer packets and in
which situations losses start to occur.

Figure 23: Setup for testing the communication between Hub and PC via Ethernet.

The test setup, depicted on Figure 23, includes the Charger, flashed with the
software including the LAN functionality, a Hub and a Sensor Battery. The Charger
and the test PC are connected to the LAN via a network switch. For debugging purposes
and real time logging, a Segger J-Link probe is attached to the ATSAME70Q20’s
JTAG interface. Figure 24 shows a diagram including the devices used for the testing
process and their connections.

Figure 24: Diagram with the devices and connections used for the testing process.

The test PC runs a Linux operating system and it includes the open-source tools
iPerf and Ping, used to measure network bandwidth and latency, respectively. In

40

addition to these tools, two other internally-developed software are used for testing
realistic use cases and the UART connectivity, namely Network Stream Service and
Hub MCU Utility.

5.1 iPerf
iPerf is a widely used open-source network performance testing tool that provides
capabilities for measuring network throughput, jitter, and packet loss. It works by using
a client-server model, generating traffic in form of data streams between two nodes. It
can be used to evaluate network bandwidth capacity and to identify network issues
that may impact application performance [34]. iPerf supports a variety of protocols,
including TCP/IP and UDP, as well as provides the option to run as either client or
server, allowing measurements of bidirectional traffic. It also provides options for
controlling test parameters, such as packet size, data to be transferred, and test duration
[33].

5.1.1 Setup

iPerf is installed on both the PC and Hub. The LAN is established by a switch
connecting the devices, and a WLAN connects the Hub wireless interface with the
computer via a router. The test computer accesses the Hub via wireless SSH connection
to avoid disturbances on the Ethernet communication.

– iPerf version 3.7

– Charger SW version lan_charger_poc_7fbfe1a

– Linux PC as iPerf3 client (192.168.8.3)

– Hub as iPerf3 server (192.168.8.20)

– SSH connection to the Hub via wireless interface (192.168.175.159)

5.1.2 TCP

In TCP, there is a flow control in place to determine how fast data can be sent without
acknowledgement, the sliding window algorithm [35]. If a packet is lost, the sender
will try to re-transmit it, facilitating a reliable and ordered data delivery. For this
test, the bandwidth was measured under two scenarios: transfers based on total data
size, and transfers with packet length set to a specific value. Table 6 describes the
commands used on this test.

41

Table 6: iPerf3 commands used for testing the bandwidth between Hub and PC with
Charger acting as the data bridge using the TCP protocol.

Command Description
iperf3 -s 192.168.8.20 -V Start iPerf3 server on the Hub on verbose mode.
iperf3 -c 192.168.8.20 -V -n <size> Start client on the PC, flag n sets the amount of

data to be transferred in bytes.
iperf3 -c 192.168.8.20 -V -l <length> Start client on the PC, flag l sets the packet size

in bytes of each transfer.

The tests were done in each direction, from PC to the Hub (downlink) and from Hub
to PC (uplink). A third scenario where uplink and downlink are running simultaneously
(bidirectional) is analyzed as well. The flag -R is used to perform the test on reverse
mode (uplink), and the flag -bidir will run the test in bidirectional mode. For the
first scenario, data size values of 100 MB and 500 MB were chosen. In the second
scenario, packets sizes of 64 KB, 100 KB, 500 KB, and 1448 KB were used. Tables 7
and 8 summarize the results and the complete test logs can be found in Appendix A.1.

Table 7: iPerf average transfer speeds when setting fixed data sizes to be transmitted
using TCP protocol.

Direction Data to Transfer Average Speed
Uplink 100 MB 93.6 Mbps
Uplink 500 MB 93.7 Mbps
Downlink 100 MB 91.4 Mbps
Downlink 500 MB 91.4 Mbps
Bidirectional 100 MB Down 42.4 Mbps / Up 76.8 Mbps
Bidirectional 500 MB Down 45.2 Mbps / Up 75.8 Mbps

Table 8: iPerf average transfer speeds when setting fixed packet lengths using the
TCP protocol.

Direction Packet Length Average Speed
Uplink 64 bytes 18 Mbps
Uplink 100 bytes 27.7 Mbps
Uplink 500 bytes 90.3 Mbps
Uplink 1448 bytes 93.7 Mbps
Downlink 64 bytes 32.1 Mbps
Downlink 100 bytes 52.7 Mbps
Downlink 500 bytes 90.8 Mbps
Downlink 1448 bytes 90.9 Mbps
Bidirectional 64 bytes Down 3.36 Mbps / Up 33.6 Mbps
Bidirectional 100 bytes Down 3.81 Mbps / Up 38.1 Mbps
Bidirectional 500 bytes Down 42.9 Mbps / Up 75.4 Mbps
Bidirectional 1448 bytes Down 46.9 / Up 74.0 Mbps

42

5.1.3 UDP

Similarly to the TCP tests, iPerf was set to run in each direction, as well as in
bidirectional mode. For each direction different packet lengths were selected, with
values set for 64, 100, 500, and 1448 bytes. Since UDP does not have a flow control
algorithm, packets are sent as fast as the sender desires, and any packet lost in the
process is not re-transmitted. The quality of the network link can be determined by
the amount of dropped packets for a given bandwidth. In this test, the bandwidth was
set to the maximum value at which there is no longer packet loss. The maximum
bandwidth so that packet loss would be minimal was found to be 4.1 Mbps, 6.4 Mbps,
32 Mbps, and 90 Mbps for packet sizes of 64 bytes, 100 bytes, 500 bytes, and 1448
bytes, respectively. Table 9 describes the commands used on this test.

Table 9: iPerf3 commands used for testing the bandwidth between Hub and PC with
Charger acting as the data bridge using the UDP protocol.

Command Description
iperf3 -s 192.168.8.20 -V Start iPerf3 server on the Hub on verbose mode.
iperf3 -c 192.168.8.20 -u -b <band-
width> -l <length> -V

Start client on the PC, flag b sets the target
bandwidth, flag u sets the network protocol to
UDP, and flag l sets the packet size.

Tests are done in each direction individually, as well as in bidirectional mode. The
flags -R and -bidir are used for setting the traffic directions. Table 10 summarizes
the test results with the packet loss for each bandwidth and packet length setting. The
complete test logs can be found in Appendix A.2.

Table 10: Maximum achievable bandwidth while maintaining minimum packet loss
using UDP protocol to transfer Ethernet frames through the Charger MCU.

Direction Packet Length Bandwidth Packet Loss
Uplink 64 bytes 4.1 Mbps 0.12%
Uplink 100 bytes 6.4 Mbps 0.15%
Uplink 500 bytes 32 Mbps 0.033%
Uplink 1448 bytes 90 Mbps 0.084%
Downlink 64 bytes 4.1 Mbps 0%
Downlink 100 bytes 6.4 Mbps 0%
Downlink 500 bytes 32 Mbps 0%
Downlink 1448 bytes 90 Mbps 0%
Bidirectional 64 bytes 4.1 Mbps Down 0.024% / Up 0%
Bidirectional 100 bytes 6.4 Mbps Down 0.02% / Up 0%
Bidirectional 500 bytes 32 Mbps Down 0.33% / Up 0%
Bidirectional 1448 bytes 90 Mbps Down 1.4% / Up 0%

Given the design of the data flow allows a fixed 8000 packets per second to be
transferred, the results are consistent with the expectations, since for packet lengths of

43

64, 100, 500, and 1448 bytes the bit rate would be 4.096 Mbps, 6.4 Mbps, 32 Mbps,
and 92.672 Mbps, respectively. The exact values for packet loss varied for different
runs, so should not be taken as an indication of performance, but rather to show the
bandwidth is set to a value close to its maximum.

When the packet size is set to the Maximum Transfer Unit (MTU) of 1448 bytes
while UDP traffic runs bidirectionally at full bandwidth, the limitations of the MCU
and the data flow design can be seen. This scenario has a significantly higher packet
loss in the downlink direction, as the Charger is not able to offload the gUsbSend
buffers quickly enough, but the Hub is making use of its backpressuring capability to
avoid dropping packets in the uplink direction.

5.2 Ping
Ping is an open-source utility tool used to test the reachability of network devices. It
works by sending Internet Control Message Protocol (ICMP) echo request messages
to the target device and waiting for a reply. If the device responds, the tool reports
information about the transaction, such as response time, number of packets transmitted,
and the amount of lost packets [36]. This is useful to determine network latency
between two devices. A simple ping test using the default settings will send ICMP
packets 64 bytes of length, and report the statistics of the round trip times of these
packets. The version of ping used on the tests is from the collection of networking
utilities iputils version s20190709 for Linux.

Uplink and downlink latency where tested independently. For measuring uplink
latency, ping was ran from the Hub, and for downlink, the ping was executed from
the test PC. The tool can be started with the flag w to set how long, in seconds, the
test should run for. Table 11 contains the commands used for testing network latency
between the Hub and the PC.

Table 11: Ping commands used for measuring the latency between the Hub and the
test PC in each direction.

Command Description
ping 192.168.8.20 -w 10 Send ICMP ping request packets from the PC to

the Hub
ping 192.168.8.3 -w 10 Send ICMP ping request packets from the Hub

to the PC

The tests recorded an average of 0.892 ms latency for uplink, and 0.944 ms latency
for downlink. The full results can be seen in Appendix B.

The ping tool offers the option for flooding a network port with packets and
recording statistics on packet loss and round trip times. This can be done by using the
flag -f and giving the application "superuser" rights with the sudo command. This
feature was used to test the behaviour of the data link under flooding circumstances
for different ICMP packet sizes, by setting the additional flag -s. Note that the ICMP
header size is 8 bytes, so when setting the total packet size, the value for -s must be

44

the desired size subtracted by eight. For example, for flooding the Hub interface with
packets of size 500 bytes for 60 seconds, the command "sudo ping 192.168.8.20 -s
492 -f -w 60" can be used.

Flooding tests were performed during 60 seconds on both directions for packet
sizes of 64, 100, 500 as well as 1448 bytes, and the results were recorded on Table 12.

Table 12: Ping results of a 60 second flooding test for different packet lengths and
direction.

Direction Packet Length Packets Transmitted Latency Packet Loss
Uplink 64 bytes 66223 0.748 ms 0.002%
Uplink 100 bytes 63990 0.774 ms 0.002%
Uplink 500 bytes 56451 0.888 ms 0.002%
Uplink 1448 bytes 44269 1.158 ms 0%
Downlink 64 bytes 79582 0.707 ms 0.001%
Downlink 100 bytes 79292 0.710 ms 0.003%
Downlink 500 bytes 77670 0.720 ms 0.001%
Downlink 1448 bytes 47034 1.159 ms 0%

Larger packets take more time to be processed and transferred through the MCU.
This can be verified by the higher average latency as the packet length increases.
These tests generate a data rate well bellow the maximum achievable bandwidth of
the data bridge, ranging between 0.5 Mbps and 9 Mbps, depending on packet size
and direction. The small packet loss seen in these results are likely caused by signal
interference on the data lines.

5.3 Network Stream Service
Network Stream Service (NSS) is a software tool developed by GE HealthCare to
simulate realistic use cases and communication profiles between the Hub and Axone.
The NSS supports the configuration of multiple data streams to simulate concurrent
data traffic, for example, measurements from different sensors, trend information, and
software updates. Each stream opens a UDP socket connection between the sender
and receiver, with the option to configure transmissions with a burst pattern.

5.3.1 Patient Monitoring Simulation

The NSS test consists of a pair of sender-receiver, which can run independently on
either the PC or Hub, depending on the desired direction of data flow. In a typical use
case, the Hub would send periodic data to the Core Services including sensor data,
and diagnostic trends. To simulate this behaviour, a data stream sender was placed
on the Hub, with a corresponding data stream receiver running on the PC. Table
13 shows how the three streams were configured in this scenario, simulating SpO2
and respiration sensors sending measurements, as well as a trend update to indicate

45

how the data changes over longer periods of time. When each stream sends data, the
packets are sent in a burst at once.

Table 13: Network Stream Service configuration for a realistic use case of patient
monitoring.

Stream Packet Size Burst Size Period Delay Threshold
1 100 bytes 4 packets 200 ms 250 ms
2 400 bytes 2 packets 200 ms 250 ms
3 800 bytes 25 packets 5000 ms 5050 ms

The test is active for 300 seconds and outputs diagnostic data about the streams,
including how many packets were lost, and if there were any significantly delayed
or out-of-order packets. The delay threshold value designates the maximum time
difference allowed between when the packet was sent and received. Figures 25a, 25b
and 25c show the plot of the amount of packet loss for equal subdivisions of time on
stream one, two and three, respectively. There were no losses, delays or out-of-order
packets on this simulation.

(a) Stream 1

(b) Stream 2 (c) Stream 3

Figure 25: Hub as sender: NSS packet loss on patient monitoring simulation for
Streams 1, 2, and 3.

46

5.3.2 Stress Testing

A stress test was conducted to analyse how the Charger performs under heavy traffic
load. For this scenario, the burst size of each stream was doubled compared to the
nominal monitoring values, and incoming data was added to the Hub resulting in the
stream configuration described in Tables 14 and 15.

Table 14: Hub Network Stream Service configuration for outgoing data in a stress
test scenario.

Stream Packet Size Burst Size Period Delay Threshold
1 100 bytes 8 packets 200 ms 250 ms
2 400 bytes 4 packets 200 ms 250 ms
3 800 bytes 50 packets 5000 ms 5050 ms

Table 15: PC Network Stream Service configuration for outgoing data in a stress test
scenario.

Stream Packet Size Burst Size Period Delay Threshold
4 100 bytes 8 packets 200 ms 250 ms
5 400 bytes 4 packets 200 ms 250 ms
6 800 bytes 50 packets 5000 ms 5050 ms
7 1400 bytes 30 packets 1000 ms 1500 ms

Analyzing the frames using the network capture tool Wireshark, the interval of
packets sent in a burst can be determined. When packets are sent from the Hub, the
inter-packet burst interval is 1 ms. When packets are sent from the PC, the interval is
significantly shorter, being on average 100 𝜇s.

During the 300 seconds duration of the stress test, only 35 packets out of 51000
where lost, representing a 0.069% packet loss, all of which were sent from the PC.
Each data point on the graphs shown in Figures 26 and 27 represent the amount of
lost packets in one data burst. Stream 6 was the one with the most packet loss of 23,
as Figure 27c shows. Figure 27a presents the loss statistics of Stream 4, with six lost
packets. Six packet losses also occurred on Stream 7, as Figure 27d illustrates. Stream
1, Stream 2, Stream 3, and Stream 5 had no packet losses, and their statistic graphs
can be seen on Figures 26a, 26b, 26c, and 27b, respectively. There were no delayed or
out-of-order packets.

47

(a) Stream 1

(b) Stream 2 (c) Stream 3

Figure 26: Hub as sender: NSS packet loss on stress test for Streams 1, 2, and 3.

The data streams with uplink direction did not experience any loss of data, as the
Hub is able to backpressure the flow in case the gUsbRead buffers get full. However,
packet loss was detected on the downlink data streams, as the Ethernet task does not
have backpressure capability, dropping incoming packets if the gUsbSend buffers are
full. The MCU was able to handle Stream 5 with no loss, as it was the stream with
least amount of packets per burst. Stream 6 was the one with most losses, because of
its large burst size. Stream 4 and Stream 7 had experienced occasional losses due to
synchronization with other streams, which increases the resulting burst the MCU must
handle.

48

(a) Stream 4 (b) Stream 5

(c) Stream 6 (d) Stream 7

Figure 27: PC as sender: NSS packet loss on stress test for Streams 4, 5, 6, and 7.

5.4 Hub MCU Utility
All components of the Portrait Mobile system share a common communication protocol
based on UART. This is how sensors, batteries, Hub, Charger and service PC are able to
transfer data between each other, that being monitoring measurements, diagnostics or
software updates. The Hub MCU Utility tool was developed for testing and debugging
purposes and it works by transmitting proprietary protocol messages by either the
service PC (connected via USB to the Charger) or the Hub.

To test the performance of the UART emulation over USB, based on the CDC-ACM,
the Hub MCU Utility tool is used from the Hub to exchange data with the Charger. It
is possible to measure the UART communication speed and stability by transferring
a file of fixed size between the devices. For downlink traffic, the file is copied from
the Charger to the Hub, and for uplink, the same file is copied from the Hub to the
Charger.

49

5.4.1 UART Downlink Using CDC-ACM

Hub MCU Utility was used on the Hub to transmit a file simulating a software update
for the Charger. The file size is 160292 bytes of raw binary data, and it is kept constant
for all test cases. The tool provides the option to set the block size of each packet for
any value between 8 and 256 bytes. Measurements for the file transfer using different
block sizes were done and recorded in Table 16.

Table 16: UART transfer speeds from Hub to Charger when using CDC-ACM
emulation via USB.

Block Size (Bytes) File Size (KB) Time (s) Throughput (Kbps)
8 160,292 220 5,8
16 160,292 111 11.6
32 160,292 56 22,9
64 160,292 28 45,8
96 160,292 20 64,1
128 160,292 23 55,8
160 160,292 18 71,2
256 160,292 11 116,6

It was observed that throughput scales linearly with block size until around 96
bytes, then it begins to increase at a slower rate. Note that, with block size 128 bytes,
there is a drop in throughput due to a timing interference caused by the CDC-ECM
pipes. For data going out of the Charger MCU, the higher priority CDC-ACM output
pipe is able to serve the packet transfer requests without having to wait for any other
pipe to execute or timeout.

5.4.2 UART Uplink Using CDC-ACM

In this test case, Hub MCU Utility runs from the PC, sending commands to the Charger
to initiate a file transfer from its flash memory to the Hub. The file is the same as used
for UART downlink test, and block sizes also ranging from 8 to 256 bytes. Table 17
includes the results of the test.

Table 17: UART transfer speeds from Charger to Hub when using CDC-ACM
emulation via USB.

Block Size (Bytes) File Size (KB) Time (s) Throughput (Kbps)
8 160,292 598 2,1

128 160,292 38 33,7
256 160,292 19 67,5

50

While uplink UART traffic is active (data flowing into the Charger), the CDC-ACM
pipe is blocked completely by the CDC-ECM pipes, since it is the pipe with lowest
priority on the USBHS peripheral. If there is no active Ethernet traffic, the USBHS
will wait for the CDC-ECM input pipe to timeout, before giving priority to the next
pipe. Thus every UART block transfer must wait for the timeout of the CDC-ECM
input pipe of 30 ms. Since each block transfer takes a constant amount of time,
the uplink throughput scales linearly with the data block size. If during the UART
transfer a simultaneous Ethernet transfer begins, the ECM pipe will not stall ACM
communication, and the 30 ms wait for each block transfer would be considerably
reduced.

5.5 End-to-End Monitoring Test
The purpose of the end-to-end test is to use the Charger’s LAN functionality on a
complete Portrait Mobile monitoring environment, from sensor data acquisition to
displaying the measurements on the Axone Viewer. Figure 28 shows the complete test
setup: an SpO2 sensor paired to the Hub is measuring pulse and blood oxygenation;
the Hub is docked to the Charger and it had its wireless interface shut down (so that
only way to communicate to Axone is via Ethernet); the Charger is connected to the
Axone network via Ethernet; and the monitor displays the patient data the Hub is
sending to the network.

Figure 28: End-to-end test of Charger’s LAN functionality.

51

The network topology of the system is presented in Figure 29. The sensors and the
Hub communicate via a proprietary wireless network. The Hub wireless interface is
disabled during the tests, so the access to the Axone server has to be made through
the Charger’s Ethernet interface. A laptop is connected to the Axone service via the
WLAN router, gaining access to the data being monitored by the Hub.

Figure 29: Network topology of the system for LAN functionality testing.

When undocked from the Charger, the Hub continues to display the sensor
measurements, but the Viewer indicates a loss of connection from the patient, since
the Ethernet connection was interrupted. As soon as the Hub is docked once again, the
Viewer resumes displaying the SpO2 data. The re-connection process is seamless from
the perspective of the user, as the Charger is able to reconfigure the USB multiplexer
and do the enumeration effectively with no errors.

5.6 Results Analysis
The new implemented software was able to provide the Charger with USB host
capabilities, enumerating the Hub as a CDC-ACM and CDC-ECM device, effectively
enabling concurrent Ethernet and UART communication. This allows the Hub to use
the Charger as a USB to Ethernet interface to transmit monitoring data to the network
when docked. The performance evaluation using the tools iPerf and ping indicates the
Charger is capable of providing a bandwidth over 90 Mbps, close to the rated value of
the hardware (100 Mbps for GMAC), while maintaining sub-millisecond latency and
minimal packet loss.

The Network Stream Service and end-to-end testing provided indications the
Charger is capable of being used for the current and future monitoring needs, handling
bursts of packets in multi-stream configurations with minimum data loss. The UART
communication, mainly used for device diagnostics and software updates, was retained
and verified by the Hub MCU Utility tests. New features and functionality were added
to the Charger, including a data bridge for TCP/IP and UDP communication protocols,

52

USB full-speed and high-speed mode support, as well as configurable Ethernet over
USB models CDC-ECM and CDC-EEM.

One of the main challenges of the software implementation was to understand the
interoperability of the USBHS peripheral. Because of the interrupt-driven functionality
of the device, there is a lack of direct control over the USB functions, as all the data
access and device enumeration process is done by interrupt handlers. The management
of concurrent CDC-ACM and CDC-ECM traffic was done by careful selection of pipe
allocation priority and timeout values. For this reason, and given the implemented
buffering mechanism, there was a slight imbalance between uplink and downlink
throughput.

53

6 Conclusion
The objective of this thesis was to provide a software solution for a high-speed
communication interface between USB and Ethernet. The motivation was to solve a
requirement for the new iteration of GE HealthCare’s Portrait Mobile products, where
the Hub would need a stable and fast way of communicating with the core services
during patient monitoring, while being docked to the Charger. The presented solution
was to use the Charger’s software as a data bridge between the USB and Ethernet
peripherals of the ATSAME70Q20 microcontroller, by implementing the support for
Ethernet emulation protocols. A performance evaluation was done to conclude the
software was able to bridge the communication between the Hub and the LAN in a
fast and reliable manner.

This solution will contribute to the evolution of the Portrait Mobile products, by
providing a high-bandwidth stable connection for the Hub communication, allowing the
development of higher precision sensors and multi-parameter monitoring. The LAN
connectivity adds an extra level of robustness to the monitoring system, potentially
giving the patients and medical staff a higher confidence on the product. This
implementation also helps to offload the wireless infrastructure on the hospitals,
reducing interference and data loss.

The thesis had a higher focus on the USB operations, and most of the optimizations
were done on that section of the data path. One of the limitations of this study was the
Ethernet peripheral GMAC not being analyzed as much as the USBHS, as the hardware
support for 10/100 Mbps caused a bottleneck on the data path. There are improvements
to be done on the GMAC driver that could potentially increase the bandwidth for
small sized packets and optimize CPU utilization. For future developments on micro-
controllers that support gigabit Ethernet, improving the efficiency of the GMAC driver
is highly recommended. Another limitation of this thesis was the simplistic approach
for the CDC-EEM implementation. Although more taxing on CPU usage, CDC-EEM
has the potential for achieving higher bandwidth than CDC-ECM, given its packet
encapsulation capabilities. The Charger’s software was designed to support both
models, but the encapsulation method was not developed further. CDC-ECM was
chosen as the final emulation model given its lower CPU usage and satisfactory transfer
speeds.

The development of the USB to Ethernet interface inspired multiple topics to be
further studied. Kim et al. methods for improving throughput on uses of CDC-EEM
could greatly improve transfer speeds for small size packets [29]. The use of a lock-free
Single-Producer Single-Consumer (SPSC) buffering mechanism would improve the
performance and eliminate the risk of race conditions [37]. Exploring the possibility
of implementing support for additional Ethernet emulation protocols, such as RNDIS
and NCM, to provide more flexibility and compatibility with other types of devices.
And investigate the use of similar micro-controllers that support multi-gigabit Ethernet
and faster USB versions.

This thesis has made a number of contributions to the field of network communica-
tion, mainly by presenting the software design process for a high-speed communication
interface between USB and Ethernet. The proposed testing methods and performance

54

verification tools can be a useful reference for similar research topics. This work also
demonstrated the feasibility of using a software solution for the data bridge, proving
to be a valuable alternative to dedicated off-the-shelf hardware. Overall, the thesis has
contributed to the field of USB and network communication by presenting a method
for implementing a USB to Ethernet interface on an embedded device, as well as
identifying the limitations and areas for improvement. This can guide future research
and development in this area, leading to more efficient and reliable communication
solutions.

55

References
[1] H. Chao, "Improving patient safety with RFID and mobile technology," Interna-

tional Journal of Electronic Healthcare, vol. 3, no. 2, pp. 175-192, April 2007.
DOI: 10.1504/ĲEH.2007.013099.

[2] D. M. Berwick, D. R. Calkins, C. J. McCannon, et al., "The 100,000 lives
campaign: setting a goal and a deadline for improving health care quality,"
JAMA, vol. 295, no. 3, pp. 324-327, 2006. DOI: 10.1001/JAMA.295.3.324.

[3] K. K. Hall, A. Lim, and B. Gale. (Mar. 2020) Making HealthCare Safer III: A
Critical Analysis of Existing and Emerging Patient Safety Practices [Online].
Available: https://www.ncbi.nlm.nih.gov/books/NBK555513/

[4] K. Kohtamäki, "Wearable technology innovations can revolutionise patient moni-
toring and recovery," [Online]. Available: https://www.vttresearch.com/en/news-
and-ideas/wearable-technology-innovations-can-revolutionise-patient-
monitoring-and-recovery [Accessed: 2022-09-05].

[5] USB Implementers Forum, "Universal Serial Bus Class Definitions for Commu-
nications Devices," CDC specification revision 1.2 [Online], 2010-10-3. Avail-
able: https://www.usb.org/document-library/class-definitions-communication-
devices-12

[6] U.S. Food and Drug Administration, "Regulatory Controls," 2021. [On-
line]. Available: https://www.fda.gov/medical-devices/overview-device-
regulation/regulatory-controls [Accessed: 2022-09-05]

[7] USB Implementers Forum, "Universal Serial Bus Specification," USB specifica-
tion revision 2.0 [Online], 2000-4-27. Available: https://www.usb.org/document-
library/usb-20-specification

[8] USB Implementers Forum, "USB Data Flow Model," in Universal Serial Bus
Specification, revision 2.0, 2000-4-27, pp. 25-84.

[9] USB Implementers Forum, "USB Device Framework," in Universal Serial Bus
Specification, revision 2.0, 2000-4-27, pp. 239-274.

[10] USB Implementers Forum, "Protocol Layer," in Universal Serial Bus Specifica-
tion, revision 2.0, 2000-4-27, pp. 195-238.

[11] FTDI, "Simplified Description of USB Device Enumeration," Technical
Note TN_113, Aug. 2020. [Online]. Available: https://ftdichip.com/wp-
content/uploads/2020/08/TN_113_Simplified-Description-of-USB-Device-
Enumeration.pdf. [Accessed: 2023-03-13].

[12] USB Implementers Forum, "Electrical," in Universal Serial Bus Specification,
revision 2.0, 2000-4-27, pp. 119-194.

56

https://www.inderscienceonline.com/doi/abs/10.1504/IJEH.2007.013099
https://jamanetwork.com/journals/jama/article-abstract/202194
https://www.ncbi.nlm.nih.gov/books/NBK555513/
https://www.vttresearch.com/en/news-and-ideas/wearable-technology-innovations-can-revolutionise-patient-monitoring-and-recovery
https://www.vttresearch.com/en/news-and-ideas/wearable-technology-innovations-can-revolutionise-patient-monitoring-and-recovery
https://www.vttresearch.com/en/news-and-ideas/wearable-technology-innovations-can-revolutionise-patient-monitoring-and-recovery
https://www.usb.org/document-library/class-definitions-communication-devices-12
https://www.usb.org/document-library/class-definitions-communication-devices-12
https://www.fda.gov/medical-devices/overview-device-regulation/regulatory-controls
https://www.fda.gov/medical-devices/overview-device-regulation/regulatory-controls
https://www.usb.org/document-library/usb-20-specification
https://www.usb.org/document-library/usb-20-specification
https://ftdichip.com/wp-content/uploads/2020/08/TN_113_Simplified-Description-of-USB-Device-Enumeration.pdf
https://ftdichip.com/wp-content/uploads/2020/08/TN_113_Simplified-Description-of-USB-Device-Enumeration.pdf
https://ftdichip.com/wp-content/uploads/2020/08/TN_113_Simplified-Description-of-USB-Device-Enumeration.pdf

[13] USB Implementers Forum, About USB-IF, Available: https://www.usb.org/about.
[Accessed: 2022-09-06]

[14] J. Corbet, A. Rubini, and G. Kroah-Hartman, Linux Device Drivers, 3rd ed.
O’Reilly Media, 2005.

[15] R. B. Thompson, and B. F. Thompson, PC Hardware in a Nutshell, 3rd ed.
O’Reilly Media, 2003.

[16] USB Made Simple. A Series of Articles on USB [Online]. Available:
https://www.usbmadesimple.co.uk/ [Accessed 2022-09-20].

[17] Microchip Developer Guide. How USB Works [Online]. Available:
https://microchipdeveloper.com/usb:how-it-works [Accessed 2022-09-21].

[18] Microchip Developer Guide. Descriptor Tables [Online]. Available:
https://microchipdeveloper.com/usb:descriptor [Accessed 2022-09-21].

[19] J. Axelson, USB Complete: Everything You Need to Develop Custom USB
Peripherals, 5th ed. Lakeview Research, 2015.

[20] USB Implementers Forum, "Universal Serial Bus Communications Class Sub-
class Specification for PSTN Devices," USB CDC-ACM specification revision
1.2 [Online], 2007-02-09. Available: https://usb.org/document-library/class-
definitions-communication-devices-12

[21] USB Implementers Forum, "Universal Serial Bus Communications Class Sub-
class Specification for Ethernet Control Model Devices," USB CDC-ECM speci-
fication revision 1.2 [Online], 2007-02-09. Available: https://usb.org/document-
library/class-definitions-communication-devices-12

[22] USB Implementers Forum, "Universal Serial Bus Communications Class
Subclass Specification for Ethernet Emulation Model Devices," USB
CDC-EEM specification revision 1.0 [Online], 2005-02-02. Avail-
able: https://usb.org/document-library/cdc-subclass-specification-ethernet-
emulation-model-devices-10

[23] GE HealthCare. (2022). Portrait Mobile [Online]. Avail-
able: https://www.gehealthcare.co.uk/products/patient-monitoring/portrait-
mobile [Accessed 2022-09-25]

[24] Microchip Technology Inc., "32-bit Arm Cortex-M7 MCUs with FPU, Audio
and Graphics Interfaces, High-Speed USB, Ethernet, and Advanced Analog,"
SAM E70/S70/V70/V71 datasheet, Oct. 2013 [Revised July 2022].

[25] FreeRTOS. (2022). The FreeRTOS Kernel [Online]. Available:
https://www.freertos.org/RTOS.html [Accessed 2022-11-08]

57

https://www.usb.org/about
https://www.usbmadesimple.co.uk/
https://microchipdeveloper.com/usb:how-it-works
https://microchipdeveloper.com/usb:descriptor
https://usb.org/document-library/class-definitions-communication-devices-12
https://usb.org/document-library/class-definitions-communication-devices-12
https://usb.org/document-library/class-definitions-communication-devices-12
https://usb.org/document-library/class-definitions-communication-devices-12
https://usb.org/document-library/cdc-subclass-specification-ethernet-emulation-model-devices-10
https://usb.org/document-library/cdc-subclass-specification-ethernet-emulation-model-devices-10
https://www.gehealthcare.co.uk/products/patient-monitoring/portrait-mobile
https://www.gehealthcare.co.uk/products/patient-monitoring/portrait-mobile
https://www.freertos.org/RTOS.html

[26] R. Mikulak, R. McDermott, and M. Beauregard, The Basics of FMEA, 2nd ed.
Productivity Press, 2008.

[27] Microchip Technology Inc., Hi-Speed USB 2.0 to 10/100 Ethernet Con-
troller LAN9500A [Online]. Available: https://www.microchip.com/en-
us/product/LAN9500A [Accessed 2023-03-12]

[28] A. Silberschatz, G. Gagne, and P. B. Galvin, "System Components," in
Operating System Concepts, 9th ed. Wiley, 2013, pp. 838-861.

[29] K. Kim, J. Kim and A. Deep, "Throughput improvement for Ethernet over
USB," The 18th IEEE International Symposium on Consumer Electronics (ISCE
2014), Jeju, Korea (South), 2014, pp. 1-2, DOI: 10.1109/ISCE.2014.6884363.

[30] R. Barry. (2016). Mastering FreeRTOS Real Time Kernel, A Hands-On Tutorial
Guide [Online]. Available: https://freertos.org/Documentation/RTOS_book.html

[31] Yocto Project, Linux Kernel Development Manual [Online]. Available:
https://docs.yoctoproject.org/1.6.1/kernel-dev/kernel-dev.html [Accessed 2023-
03-11]

[32] M. Barr, and A. Massa, Programming Embedded Systems: With C and GNU
Development Tools, 2nd ed. O’Reilly Media, 2006.

[33] J. Dugan, S. Elliott, B. A. Mah, J. Poskanzer, and K. Prabhu. iPerf - The ultimate
speed test tool for TCP, UDP and SCTP [Online]. Available: https://iperf.fr/
[Accessed 2023-03-13]

[34] S. S. Kolahi, S. Narayan, D. D. T. Nguyen and Y. Sunarto, "Performance Moni-
toring of Various Network Traffic Generators," 2011 UkSim 13th International
Conference on Computer Modelling and Simulation, Cambridge, UK, 2011, pp.
501-506, DOI: 10.1109/UKSIM.2011.102.

[35] L. L. Peterson, and B. S. Davie, Computer networks: A systems approach, 5th
ed. Morgan Kaufmann, 2012.

[36] Die.net, Ping - Linux Manual Page [Online]. Available:
https://linux.die.net/man/8/ping [Accessed 2023-03-13]

[37] K. Kjeel. (2014). Lock-Free Single-Producer Single-Consumer Circular Queue
[Online]. Available: https://www.codeproject.com/Articles/43510/Lock-Free-
Single-Producer-Single-Consumer-Circular [Accessed 2023-03-22]

58

https://www.microchip.com/en-us/product/LAN9500A
https://www.microchip.com/en-us/product/LAN9500A
https://ieeexplore.ieee.org/document/6884363
https://freertos.org/Documentation/RTOS_book.html
https://docs.yoctoproject.org/1.6.1/kernel-dev/kernel-dev.html
https://iperf.fr/
https://ieeexplore.ieee.org/document/5754271
https://linux.die.net/man/8/ping
https://www.codeproject.com/Articles/43510/Lock-Free-Single-Producer-Single-Consumer-Circular
https://www.codeproject.com/Articles/43510/Lock-Free-Single-Producer-Single-Consumer-Circular

A iPerf Results

A.1 TCP
A.1.1 TCP - 500 MB - Uplink

iperf 3.7
Linux tms 5.13.0-40-generic #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022 x86_64
Time: Sat, 26 Nov 2022 13:43:40 GMT
Connecting to host 192.168.8.20, port 5201

Cookie: hjl62xpht3ktgam2opagzha42nkf2dep2wc6
TCP MSS: 1448 (default)

[6] local 192.168.8.3 port 37408 connected to 192.168.8.20 port 5201
Starting Test: protocol: TCP, 1 streams, 131072 byte blocks, omitting 0 seconds,
524288000 bytes to send, tos 0
[ID] Interval Transfer Bitrate Retr Cwnd
[6] 0.00-1.00 sec 11.6 MBytes 97.6 Mbits/sec 6 53.7 KBytes
[6] 1.00-2.00 sec 11.3 MBytes 94.4 Mbits/sec 25 46.7 KBytes
[6] 2.00-3.00 sec 11.2 MBytes 93.9 Mbits/sec 3 73.5 KBytes
[6] 3.00-4.00 sec 11.2 MBytes 93.7 Mbits/sec 2 69.3 KBytes
[6] 4.00-5.00 sec 10.9 MBytes 91.7 Mbits/sec 49 60.8 KBytes
[6] 5.00-6.00 sec 11.2 MBytes 94.3 Mbits/sec 5 73.5 KBytes
[6] 6.00-7.00 sec 11.2 MBytes 94.0 Mbits/sec 3 100 KBytes
[6] 7.00-8.00 sec 11.2 MBytes 93.7 Mbits/sec 55 86.3 KBytes
[6] 8.00-9.00 sec 11.2 MBytes 94.2 Mbits/sec 13 59.4 KBytes
[6] 9.00-10.00 sec 11.2 MBytes 94.3 Mbits/sec 6 58.0 KBytes
[6] 10.00-11.00 sec 11.0 MBytes 92.0 Mbits/sec 44 70.7 KBytes
[6] 11.00-12.00 sec 11.2 MBytes 93.9 Mbits/sec 5 53.7 KBytes
[6] 12.00-13.00 sec 11.4 MBytes 95.6 Mbits/sec 2 107 KBytes
[6] 13.00-14.00 sec 11.0 MBytes 91.9 Mbits/sec 29 59.4 KBytes
[6] 14.00-15.00 sec 11.2 MBytes 93.7 Mbits/sec 4 67.9 KBytes
[6] 15.00-16.00 sec 11.4 MBytes 95.6 Mbits/sec 7 86.3 KBytes
[6] 16.00-17.00 sec 10.9 MBytes 91.7 Mbits/sec 33 90.5 KBytes
[6] 17.00-18.00 sec 11.2 MBytes 93.7 Mbits/sec 4 70.7 KBytes
[6] 18.00-19.00 sec 11.4 MBytes 95.6 Mbits/sec 3 94.7 KBytes
[6] 19.00-20.00 sec 10.9 MBytes 91.7 Mbits/sec 24 77.8 KBytes
[6] 20.00-21.00 sec 11.2 MBytes 93.7 Mbits/sec 6 56.6 KBytes
[6] 21.00-22.00 sec 11.4 MBytes 95.6 Mbits/sec 5 69.3 KBytes
[6] 22.00-23.00 sec 11.0 MBytes 92.0 Mbits/sec 20 60.8 KBytes
[6] 23.00-24.00 sec 11.2 MBytes 94.0 Mbits/sec 5 82.0 KBytes
[6] 24.00-25.00 sec 11.2 MBytes 94.0 Mbits/sec 6 66.5 KBytes
[6] 25.00-26.00 sec 11.0 MBytes 92.1 Mbits/sec 31 49.5 KBytes
[6] 26.00-27.00 sec 11.2 MBytes 94.0 Mbits/sec 9 59.4 KBytes
[6] 27.00-28.00 sec 11.2 MBytes 94.0 Mbits/sec 5 83.4 KBytes
[6] 28.00-29.00 sec 11.2 MBytes 93.9 Mbits/sec 8 38.2 KBytes
[6] 29.00-30.00 sec 11.2 MBytes 93.7 Mbits/sec 17 59.4 KBytes
[6] 30.00-31.00 sec 11.2 MBytes 93.7 Mbits/sec 5 67.9 KBytes
[6] 31.00-32.00 sec 11.2 MBytes 93.9 Mbits/sec 4 74.9 KBytes
[6] 32.00-33.00 sec 11.2 MBytes 93.7 Mbits/sec 39 87.7 KBytes
[6] 33.00-34.00 sec 11.2 MBytes 93.9 Mbits/sec 9 67.9 KBytes
[6] 34.00-35.00 sec 11.2 MBytes 94.0 Mbits/sec 2 99.0 KBytes
[6] 35.00-36.00 sec 11.2 MBytes 93.7 Mbits/sec 57 66.5 KBytes
[6] 36.00-37.00 sec 11.2 MBytes 94.0 Mbits/sec 4 69.3 KBytes
[6] 37.00-38.00 sec 11.2 MBytes 93.8 Mbits/sec 7 39.6 KBytes
[6] 38.00-39.00 sec 11.0 MBytes 91.9 Mbits/sec 22 66.5 KBytes
[6] 39.00-40.00 sec 11.2 MBytes 93.8 Mbits/sec 9 48.1 KBytes
[6] 40.00-41.00 sec 11.4 MBytes 95.6 Mbits/sec 2 116 KBytes
[6] 41.00-42.00 sec 11.0 MBytes 92.1 Mbits/sec 52 52.3 KBytes
[6] 42.00-43.00 sec 11.2 MBytes 93.9 Mbits/sec 5 60.8 KBytes
[6] 43.00-44.00 sec 11.2 MBytes 93.7 Mbits/sec 4 82.0 KBytes
[6] 44.00-44.73 sec 8.20 MBytes 94.4 Mbits/sec 28 63.6 KBytes
- -
Test Complete. Summary Results:
[ID] Interval Transfer Bitrate Retr
[6] 0.00-44.73 sec 500 MBytes 93.8 Mbits/sec 683 sender
[6] 0.00-44.73 sec 499 MBytes 93.7 Mbits/sec receiver

59

CPU Utilization: local/sender 0.3% (0.0%u/0.3%s), remote/receiver 36.7% (1.7%u/35.0%s)
snd_tcp_congestion cubic
rcv_tcp_congestion cubic

iperf Done.

A.1.2 TCP - 100 MB - Uplink

iperf 3.7
Linux tms 5.13.0-40-generic #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022 x86_64
Time: Sat, 26 Nov 2022 13:42:59 GMT
Connecting to host 192.168.8.20, port 5201

Cookie: 7ivdpoc3smmabxmty5m5v64tpp7ozcwbajfa
TCP MSS: 1448 (default)

[6] local 192.168.8.3 port 37404 connected to 192.168.8.20 port 5201
Starting Test: protocol: TCP, 1 streams, 131072 byte blocks, omitting 0 seconds,
104857600 bytes to send, tos 0
[ID] Interval Transfer Bitrate Retr Cwnd
[6] 0.00-1.00 sec 11.7 MBytes 97.8 Mbits/sec 3 60.8 KBytes
[6] 1.00-2.00 sec 11.2 MBytes 94.0 Mbits/sec 28 63.6 KBytes
[6] 2.00-3.00 sec 11.2 MBytes 93.7 Mbits/sec 11 42.4 KBytes
[6] 3.00-4.00 sec 11.3 MBytes 94.5 Mbits/sec 5 73.5 KBytes
[6] 4.00-5.00 sec 11.0 MBytes 92.0 Mbits/sec 46 63.6 KBytes
[6] 5.00-6.00 sec 11.2 MBytes 93.6 Mbits/sec 5 91.9 KBytes
[6] 6.00-7.00 sec 11.2 MBytes 93.7 Mbits/sec 4 102 KBytes
[6] 7.00-8.00 sec 11.2 MBytes 94.2 Mbits/sec 40 99.0 KBytes
[6] 8.00-8.92 sec 10.3 MBytes 94.2 Mbits/sec 12 50.9 KBytes
- -
Test Complete. Summary Results:
[ID] Interval Transfer Bitrate Retr
[6] 0.00-8.92 sec 100 MBytes 94.2 Mbits/sec 154 sender
[6] 0.00-8.92 sec 99.5 MBytes 93.6 Mbits/sec receiver
CPU Utilization: local/sender 0.6% (0.0%u/0.5%s), remote/receiver 48.0% (1.3%u/46.7%s)
snd_tcp_congestion cubic
rcv_tcp_congestion cubic

iperf Done.

A.1.3 TCP - 500 MB - Downlink

iperf 3.7
Linux tms 5.13.0-40-generic #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022 x86_64
Time: Sat, 26 Nov 2022 13:54:51 GMT
Connecting to host 192.168.8.20, port 5201
Reverse mode, remote host 192.168.8.20 is sending

Cookie: b4slutp7wxefd3b4k27f5kd7oddrpsnzrxnf
TCP MSS: 1448 (default)

[6] local 192.168.8.3 port 37426 connected to 192.168.8.20 port 5201
Starting Test: protocol: TCP, 1 streams, 131072 byte blocks, omitting 0 seconds,
524288000 bytes to send, tos 0
[ID] Interval Transfer Bitrate
[6] 0.00-1.00 sec 10.9 MBytes 91.1 Mbits/sec
[6] 1.00-2.00 sec 10.9 MBytes 91.3 Mbits/sec
[6] 2.00-3.00 sec 10.9 MBytes 91.0 Mbits/sec
[6] 3.00-4.00 sec 10.9 MBytes 91.3 Mbits/sec
[6] 4.00-5.00 sec 10.9 MBytes 91.4 Mbits/sec
[6] 5.00-6.00 sec 10.9 MBytes 91.1 Mbits/sec
[6] 6.00-7.00 sec 10.9 MBytes 91.6 Mbits/sec
[6] 7.00-8.00 sec 10.9 MBytes 91.4 Mbits/sec
[6] 8.00-9.00 sec 10.9 MBytes 91.1 Mbits/sec
[6] 9.00-10.00 sec 10.9 MBytes 91.5 Mbits/sec
[6] 10.00-11.00 sec 10.9 MBytes 91.3 Mbits/sec
[6] 11.00-12.00 sec 10.9 MBytes 91.2 Mbits/sec

60

[6] 12.00-13.00 sec 10.9 MBytes 91.4 Mbits/sec
[6] 13.00-14.00 sec 10.9 MBytes 91.8 Mbits/sec
[6] 14.00-15.00 sec 10.8 MBytes 90.8 Mbits/sec
[6] 15.00-16.00 sec 10.9 MBytes 91.7 Mbits/sec
[6] 16.00-17.00 sec 10.9 MBytes 91.6 Mbits/sec
[6] 17.00-18.00 sec 10.9 MBytes 91.3 Mbits/sec
[6] 18.00-19.00 sec 10.9 MBytes 91.5 Mbits/sec
[6] 19.00-20.00 sec 10.8 MBytes 90.4 Mbits/sec
[6] 20.00-21.00 sec 10.8 MBytes 90.8 Mbits/sec
[6] 21.00-22.00 sec 10.9 MBytes 91.1 Mbits/sec
[6] 22.00-23.00 sec 10.9 MBytes 91.8 Mbits/sec
[6] 23.00-24.00 sec 10.9 MBytes 91.4 Mbits/sec
[6] 24.00-25.00 sec 10.9 MBytes 91.4 Mbits/sec
[6] 25.00-26.00 sec 10.9 MBytes 91.5 Mbits/sec
[6] 26.00-27.00 sec 10.9 MBytes 91.4 Mbits/sec
[6] 27.00-28.00 sec 10.9 MBytes 91.5 Mbits/sec
[6] 28.00-29.00 sec 10.9 MBytes 91.5 Mbits/sec
[6] 29.00-30.00 sec 10.9 MBytes 91.5 Mbits/sec
[6] 30.00-31.00 sec 10.9 MBytes 91.8 Mbits/sec
[6] 31.00-32.00 sec 10.9 MBytes 91.5 Mbits/sec
[6] 32.00-33.00 sec 10.9 MBytes 91.6 Mbits/sec
[6] 33.00-34.00 sec 10.9 MBytes 91.3 Mbits/sec
[6] 34.00-35.00 sec 10.9 MBytes 91.1 Mbits/sec
[6] 35.00-36.00 sec 10.8 MBytes 90.9 Mbits/sec
[6] 36.00-37.00 sec 10.9 MBytes 91.4 Mbits/sec
[6] 37.00-38.00 sec 10.9 MBytes 91.8 Mbits/sec
[6] 38.00-39.00 sec 10.9 MBytes 91.5 Mbits/sec
[6] 39.00-40.00 sec 10.9 MBytes 91.6 Mbits/sec
[6] 40.00-41.00 sec 10.9 MBytes 91.8 Mbits/sec
[6] 41.00-42.00 sec 10.9 MBytes 91.5 Mbits/sec
[6] 42.00-43.00 sec 10.9 MBytes 91.3 Mbits/sec
[6] 43.00-44.00 sec 10.9 MBytes 91.6 Mbits/sec
[6] 44.00-44.58 sec 6.33 MBytes 91.7 Mbits/sec
- -
Test Complete. Summary Results:
[ID] Interval Transfer Bitrate
[6] 0.00-44.58 sec 0.00 Bytes 0.00 bits/sec sender
[6] 0.00-44.58 sec 486 MBytes 91.4 Mbits/sec receiver
rcv_tcp_congestion cubic
iperf3: interrupt - the client has terminated

A.1.4 TCP - 100 MB - Downlink

iperf 3.7
Linux tms 5.13.0-40-generic #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022 x86_64
Time: Sat, 26 Nov 2022 13:54:28 GMT
Connecting to host 192.168.8.20, port 5201
Reverse mode, remote host 192.168.8.20 is sending

Cookie: ulrjgjlmx34jeew6jekbjyhcv6gevnk5mhrg
TCP MSS: 1448 (default)

[6] local 192.168.8.3 port 37420 connected to 192.168.8.20 port 5201
Starting Test: protocol: TCP, 1 streams, 131072 byte blocks, omitting 0 seconds,
104857600 bytes to send, tos 0
[ID] Interval Transfer Bitrate
[6] 0.00-1.00 sec 10.8 MBytes 91.0 Mbits/sec
[6] 1.00-2.00 sec 10.9 MBytes 91.2 Mbits/sec
[6] 2.00-3.00 sec 10.9 MBytes 91.5 Mbits/sec
[6] 3.00-4.00 sec 10.8 MBytes 90.9 Mbits/sec
[6] 4.00-5.00 sec 10.9 MBytes 91.8 Mbits/sec
[6] 5.00-6.00 sec 10.9 MBytes 91.6 Mbits/sec
[6] 6.00-7.00 sec 10.9 MBytes 91.5 Mbits/sec
[6] 7.00-8.00 sec 10.9 MBytes 91.8 Mbits/sec
[6] 8.00-9.00 sec 10.8 MBytes 90.9 Mbits/sec
[6] 9.00-9.81 sec 8.81 MBytes 91.6 Mbits/sec
- -

61

Test Complete. Summary Results:
[ID] Interval Transfer Bitrate
[6] 0.00-9.81 sec 0.00 Bytes 0.00 bits/sec sender
[6] 0.00-9.81 sec 107 MBytes 91.4 Mbits/sec receiver
rcv_tcp_congestion cubic
iperf3: interrupt - the client has terminated

A.1.5 TCP - 500 MB - Bidirectional

iperf 3.7
Linux tms 5.13.0-40-generic #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022 x86_64
Time: Sat, 26 Nov 2022 15:18:04 GMT
Connecting to host 192.168.8.20, port 5201

Cookie: pzax42igvt43rgb33a424azu3ejoarlf2346
TCP MSS: 1448 (default)

[6] local 192.168.8.3 port 37578 connected to 192.168.8.20 port 5201
[8] local 192.168.8.3 port 37580 connected to 192.168.8.20 port 5201
Starting Test: protocol: TCP, 1 streams, 131072 byte blocks, omitting 0 seconds,
524288000 bytes to send, tos 0
[ID][Role] Interval Transfer Bitrate Retr Cwnd
[6][TX-C] 0.00-1.00 sec 5.77 MBytes 48.4 Mbits/sec 8 43.8 KBytes
[8][RX-C] 0.00-1.00 sec 8.51 MBytes 71.4 Mbits/sec
[6][TX-C] 1.00-2.00 sec 5.64 MBytes 47.3 Mbits/sec 11 31.1 KBytes
[8][RX-C] 1.00-2.00 sec 8.92 MBytes 74.8 Mbits/sec
[6][TX-C] 2.00-3.00 sec 5.33 MBytes 44.7 Mbits/sec 7 22.6 KBytes
[8][RX-C] 2.00-3.00 sec 9.02 MBytes 75.7 Mbits/sec
[6][TX-C] 3.00-4.00 sec 5.82 MBytes 48.8 Mbits/sec 10 36.8 KBytes
[8][RX-C] 3.00-4.00 sec 8.99 MBytes 75.4 Mbits/sec
[6][TX-C] 4.00-5.00 sec 5.65 MBytes 47.4 Mbits/sec 8 36.8 KBytes
[8][RX-C] 4.00-5.00 sec 8.91 MBytes 74.7 Mbits/sec
[6][TX-C] 5.00-6.00 sec 4.91 MBytes 41.2 Mbits/sec 13 35.4 KBytes
[8][RX-C] 5.00-6.00 sec 9.14 MBytes 76.7 Mbits/sec
[6][TX-C] 6.00-7.00 sec 5.35 MBytes 44.9 Mbits/sec 8 42.4 KBytes
[8][RX-C] 6.00-7.00 sec 9.03 MBytes 75.8 Mbits/sec
[6][TX-C] 7.00-8.00 sec 5.44 MBytes 45.6 Mbits/sec 10 31.1 KBytes
[8][RX-C] 7.00-8.00 sec 9.08 MBytes 76.2 Mbits/sec
[6][TX-C] 8.00-9.00 sec 5.39 MBytes 45.2 Mbits/sec 10 55.1 KBytes
[8][RX-C] 8.00-9.00 sec 9.12 MBytes 76.5 Mbits/sec
[6][TX-C] 9.00-10.00 sec 5.32 MBytes 44.6 Mbits/sec 12 35.4 KBytes
[8][RX-C] 9.00-10.00 sec 9.09 MBytes 76.3 Mbits/sec
[6][TX-C] 10.00-11.00 sec 5.57 MBytes 46.8 Mbits/sec 7 46.7 KBytes
[8][RX-C] 10.00-11.00 sec 8.98 MBytes 75.3 Mbits/sec
[6][TX-C] 11.00-12.00 sec 5.48 MBytes 46.0 Mbits/sec 13 36.8 KBytes
[8][RX-C] 11.00-12.00 sec 9.06 MBytes 76.0 Mbits/sec
[6][TX-C] 12.00-13.00 sec 5.23 MBytes 43.8 Mbits/sec 10 41.0 KBytes
[8][RX-C] 12.00-13.00 sec 9.05 MBytes 76.0 Mbits/sec
[6][TX-C] 13.00-14.00 sec 5.03 MBytes 42.2 Mbits/sec 8 35.4 KBytes
[8][RX-C] 13.00-14.00 sec 9.08 MBytes 76.2 Mbits/sec
[6][TX-C] 14.00-15.00 sec 4.80 MBytes 40.3 Mbits/sec 10 26.9 KBytes
[8][RX-C] 14.00-15.00 sec 9.20 MBytes 77.1 Mbits/sec
[6][TX-C] 15.00-16.00 sec 5.18 MBytes 43.5 Mbits/sec 7 36.8 KBytes
[8][RX-C] 15.00-16.00 sec 9.15 MBytes 76.7 Mbits/sec
[6][TX-C] 16.00-17.00 sec 5.57 MBytes 46.8 Mbits/sec 12 43.8 KBytes
[8][RX-C] 16.00-17.00 sec 8.99 MBytes 75.4 Mbits/sec
[6][TX-C] 17.00-18.00 sec 5.76 MBytes 48.3 Mbits/sec 9 42.4 KBytes
[8][RX-C] 17.00-18.00 sec 9.00 MBytes 75.5 Mbits/sec
[6][TX-C] 18.00-19.00 sec 5.62 MBytes 47.1 Mbits/sec 11 36.8 KBytes
[8][RX-C] 18.00-19.00 sec 8.94 MBytes 75.0 Mbits/sec
[6][TX-C] 19.00-20.00 sec 5.88 MBytes 49.3 Mbits/sec 10 48.1 KBytes
[8][RX-C] 19.00-20.00 sec 8.89 MBytes 74.6 Mbits/sec
[6][TX-C] 20.00-21.00 sec 5.15 MBytes 43.2 Mbits/sec 12 42.4 KBytes
[8][RX-C] 20.00-21.00 sec 9.10 MBytes 76.3 Mbits/sec
[6][TX-C] 21.00-22.00 sec 5.50 MBytes 46.1 Mbits/sec 10 43.8 KBytes
[8][RX-C] 21.00-22.00 sec 9.09 MBytes 76.3 Mbits/sec
[6][TX-C] 22.00-23.00 sec 6.08 MBytes 51.0 Mbits/sec 9 35.4 KBytes

62

[8][RX-C] 22.00-23.00 sec 8.89 MBytes 74.6 Mbits/sec
[6][TX-C] 23.00-24.00 sec 4.31 MBytes 36.2 Mbits/sec 10 45.2 KBytes
[8][RX-C] 23.00-24.00 sec 9.43 MBytes 79.1 Mbits/sec
[6][TX-C] 24.00-25.00 sec 4.72 MBytes 39.6 Mbits/sec 9 39.6 KBytes
[8][RX-C] 24.00-25.00 sec 9.27 MBytes 77.7 Mbits/sec
[6][TX-C] 25.00-26.00 sec 5.03 MBytes 42.2 Mbits/sec 9 29.7 KBytes
[8][RX-C] 25.00-26.00 sec 9.19 MBytes 77.1 Mbits/sec
[6][TX-C] 26.00-27.00 sec 4.59 MBytes 38.5 Mbits/sec 9 26.9 KBytes
[8][RX-C] 26.00-27.00 sec 9.32 MBytes 78.1 Mbits/sec
[6][TX-C] 27.00-28.00 sec 4.57 MBytes 38.4 Mbits/sec 5 45.2 KBytes
[8][RX-C] 27.00-28.00 sec 9.35 MBytes 78.4 Mbits/sec
[6][TX-C] 28.00-29.00 sec 5.12 MBytes 42.9 Mbits/sec 20 31.1 KBytes
[8][RX-C] 28.00-29.00 sec 9.21 MBytes 77.2 Mbits/sec
[6][TX-C] 29.00-30.00 sec 4.31 MBytes 36.2 Mbits/sec 5 41.0 KBytes
[8][RX-C] 29.00-30.00 sec 9.44 MBytes 79.2 Mbits/sec
[6][TX-C] 30.00-31.00 sec 5.41 MBytes 45.4 Mbits/sec 11 42.4 KBytes
[8][RX-C] 30.00-31.00 sec 9.13 MBytes 76.6 Mbits/sec
[6][TX-C] 31.00-32.00 sec 5.10 MBytes 42.8 Mbits/sec 9 48.1 KBytes
[8][RX-C] 31.00-32.00 sec 9.22 MBytes 77.4 Mbits/sec
[6][TX-C] 32.00-33.00 sec 4.68 MBytes 39.2 Mbits/sec 9 43.8 KBytes
[8][RX-C] 32.00-33.00 sec 9.24 MBytes 77.5 Mbits/sec
[6][TX-C] 33.00-34.00 sec 4.74 MBytes 39.8 Mbits/sec 10 50.9 KBytes
[8][RX-C] 33.00-34.00 sec 9.22 MBytes 77.4 Mbits/sec
[6][TX-C] 34.00-35.00 sec 4.89 MBytes 41.0 Mbits/sec 10 39.6 KBytes
[8][RX-C] 34.00-35.00 sec 9.26 MBytes 77.6 Mbits/sec
[6][TX-C] 35.00-36.00 sec 4.51 MBytes 37.8 Mbits/sec 10 38.2 KBytes
[8][RX-C] 35.00-36.00 sec 9.34 MBytes 78.4 Mbits/sec
[6][TX-C] 36.00-37.00 sec 4.89 MBytes 41.0 Mbits/sec 9 31.1 KBytes
[8][RX-C] 36.00-37.00 sec 9.22 MBytes 77.4 Mbits/sec
[6][TX-C] 37.00-38.00 sec 4.74 MBytes 39.8 Mbits/sec 7 45.2 KBytes
[8][RX-C] 37.00-38.00 sec 9.25 MBytes 77.6 Mbits/sec
[6][TX-C] 38.00-39.00 sec 5.36 MBytes 45.0 Mbits/sec 10 43.8 KBytes
[8][RX-C] 38.00-39.00 sec 9.11 MBytes 76.5 Mbits/sec
[6][TX-C] 39.00-40.00 sec 4.97 MBytes 41.7 Mbits/sec 7 48.1 KBytes
[8][RX-C] 39.00-40.00 sec 9.14 MBytes 76.7 Mbits/sec
[6][TX-C] 40.00-41.00 sec 5.24 MBytes 44.0 Mbits/sec 15 45.2 KBytes
[8][RX-C] 40.00-41.00 sec 9.11 MBytes 76.4 Mbits/sec
[6][TX-C] 41.00-42.00 sec 4.77 MBytes 40.0 Mbits/sec 11 32.5 KBytes
[8][RX-C] 41.00-42.00 sec 9.24 MBytes 77.5 Mbits/sec
[6][TX-C] 42.00-43.00 sec 5.94 MBytes 49.8 Mbits/sec 10 43.8 KBytes
[8][RX-C] 42.00-43.00 sec 9.02 MBytes 75.7 Mbits/sec
[6][TX-C] 43.00-44.00 sec 5.10 MBytes 42.8 Mbits/sec 11 41.0 KBytes
[8][RX-C] 43.00-44.00 sec 9.16 MBytes 76.8 Mbits/sec
[6][TX-C] 44.00-45.00 sec 5.10 MBytes 42.8 Mbits/sec 7 39.6 KBytes
[8][RX-C] 44.00-45.00 sec 9.13 MBytes 76.5 Mbits/sec
[6][TX-C] 45.00-46.00 sec 4.47 MBytes 37.5 Mbits/sec 8 29.7 KBytes
[8][RX-C] 45.00-46.00 sec 9.33 MBytes 78.3 Mbits/sec
[6][TX-C] 46.00-47.00 sec 4.57 MBytes 38.4 Mbits/sec 11 26.9 KBytes
[8][RX-C] 46.00-47.00 sec 9.32 MBytes 78.2 Mbits/sec
[6][TX-C] 47.00-48.00 sec 4.80 MBytes 40.3 Mbits/sec 10 31.1 KBytes
[8][RX-C] 47.00-48.00 sec 9.06 MBytes 76.0 Mbits/sec
[6][TX-C] 48.00-49.00 sec 4.65 MBytes 39.0 Mbits/sec 8 36.8 KBytes
[8][RX-C] 48.00-49.00 sec 9.23 MBytes 77.4 Mbits/sec
[6][TX-C] 49.00-50.00 sec 5.36 MBytes 45.0 Mbits/sec 6 55.1 KBytes
[8][RX-C] 49.00-50.00 sec 9.05 MBytes 75.9 Mbits/sec
[6][TX-C] 50.00-51.00 sec 5.03 MBytes 42.2 Mbits/sec 12 29.7 KBytes
[8][RX-C] 50.00-51.00 sec 9.15 MBytes 76.7 Mbits/sec
[6][TX-C] 51.00-52.00 sec 4.74 MBytes 39.8 Mbits/sec 12 35.4 KBytes
[8][RX-C] 51.00-52.00 sec 9.29 MBytes 77.9 Mbits/sec
[6][TX-C] 52.00-53.00 sec 4.94 MBytes 41.4 Mbits/sec 10 33.9 KBytes
[8][RX-C] 52.00-53.00 sec 9.23 MBytes 77.4 Mbits/sec
[6][TX-C] 53.00-54.00 sec 5.26 MBytes 44.1 Mbits/sec 9 35.4 KBytes
[8][RX-C] 53.00-54.00 sec 9.09 MBytes 76.2 Mbits/sec
[6][TX-C] 54.00-55.00 sec 4.68 MBytes 39.2 Mbits/sec 9 32.5 KBytes
[8][RX-C] 54.00-55.00 sec 9.27 MBytes 77.8 Mbits/sec
[6][TX-C] 55.00-56.00 sec 5.10 MBytes 42.8 Mbits/sec 7 39.6 KBytes
[8][RX-C] 55.00-56.00 sec 9.17 MBytes 76.9 Mbits/sec
[6][TX-C] 56.00-57.00 sec 4.97 MBytes 41.7 Mbits/sec 10 31.1 KBytes

63

[8][RX-C] 56.00-57.00 sec 9.22 MBytes 77.4 Mbits/sec
[6][TX-C] 57.00-58.00 sec 4.92 MBytes 41.3 Mbits/sec 7 32.5 KBytes
[8][RX-C] 57.00-58.00 sec 9.17 MBytes 76.9 Mbits/sec
[6][TX-C] 58.00-59.00 sec 4.45 MBytes 37.3 Mbits/sec 7 38.2 KBytes
[8][RX-C] 58.00-59.00 sec 9.42 MBytes 79.0 Mbits/sec
[6][TX-C] 59.00-60.00 sec 5.38 MBytes 45.1 Mbits/sec 12 33.9 KBytes
[8][RX-C] 59.00-60.00 sec 9.08 MBytes 76.2 Mbits/sec
[6][TX-C] 60.00-61.00 sec 5.32 MBytes 44.6 Mbits/sec 6 35.4 KBytes
[8][RX-C] 60.00-61.00 sec 9.11 MBytes 76.4 Mbits/sec
[6][TX-C] 61.00-62.00 sec 5.12 MBytes 42.9 Mbits/sec 6 39.6 KBytes
[8][RX-C] 61.00-62.00 sec 9.16 MBytes 76.8 Mbits/sec
[6][TX-C] 62.00-63.00 sec 4.48 MBytes 37.6 Mbits/sec 7 43.8 KBytes
[8][RX-C] 62.00-63.00 sec 9.30 MBytes 78.0 Mbits/sec
[6][TX-C] 63.00-64.00 sec 4.91 MBytes 41.2 Mbits/sec 9 36.8 KBytes
[8][RX-C] 63.00-64.00 sec 9.18 MBytes 77.0 Mbits/sec
[6][TX-C] 64.00-65.00 sec 4.92 MBytes 41.3 Mbits/sec 6 48.1 KBytes
[8][RX-C] 64.00-65.00 sec 9.18 MBytes 77.0 Mbits/sec
[6][TX-C] 65.00-66.00 sec 5.32 MBytes 44.6 Mbits/sec 6 46.7 KBytes
[8][RX-C] 65.00-66.00 sec 9.11 MBytes 76.4 Mbits/sec
[6][TX-C] 66.00-67.00 sec 4.77 MBytes 40.0 Mbits/sec 12 39.6 KBytes
[8][RX-C] 66.00-67.00 sec 9.17 MBytes 77.0 Mbits/sec
[6][TX-C] 67.00-68.00 sec 5.39 MBytes 45.2 Mbits/sec 13 39.6 KBytes
[8][RX-C] 67.00-68.00 sec 9.09 MBytes 76.2 Mbits/sec
[6][TX-C] 68.00-69.00 sec 4.54 MBytes 38.1 Mbits/sec 10 29.7 KBytes
[8][RX-C] 68.00-69.00 sec 9.24 MBytes 77.5 Mbits/sec
[6][TX-C] 69.00-70.00 sec 4.91 MBytes 41.2 Mbits/sec 5 50.9 KBytes
[8][RX-C] 69.00-70.00 sec 9.27 MBytes 77.8 Mbits/sec
[6][TX-C] 70.00-71.00 sec 5.32 MBytes 44.6 Mbits/sec 11 55.1 KBytes
[8][RX-C] 70.00-71.00 sec 9.10 MBytes 76.3 Mbits/sec
[6][TX-C] 71.00-72.00 sec 4.72 MBytes 39.6 Mbits/sec 14 49.5 KBytes
[8][RX-C] 71.00-72.00 sec 9.26 MBytes 77.7 Mbits/sec
[6][TX-C] 72.00-73.00 sec 4.44 MBytes 37.2 Mbits/sec 8 38.2 KBytes
[8][RX-C] 72.00-73.00 sec 9.40 MBytes 78.8 Mbits/sec
[6][TX-C] 73.00-74.00 sec 4.74 MBytes 39.8 Mbits/sec 9 36.8 KBytes
[8][RX-C] 73.00-74.00 sec 9.23 MBytes 77.4 Mbits/sec
[6][TX-C] 74.00-75.00 sec 5.62 MBytes 47.1 Mbits/sec 9 43.8 KBytes
[8][RX-C] 74.00-75.00 sec 9.08 MBytes 76.2 Mbits/sec
[6][TX-C] 75.00-76.00 sec 4.88 MBytes 40.9 Mbits/sec 7 50.9 KBytes
[8][RX-C] 75.00-76.00 sec 9.21 MBytes 77.2 Mbits/sec
[6][TX-C] 76.00-77.00 sec 5.57 MBytes 46.8 Mbits/sec 9 49.5 KBytes
[8][RX-C] 76.00-77.00 sec 9.07 MBytes 76.1 Mbits/sec
[6][TX-C] 77.00-78.00 sec 4.95 MBytes 41.5 Mbits/sec 8 42.4 KBytes
[8][RX-C] 77.00-78.00 sec 9.24 MBytes 77.5 Mbits/sec
[6][TX-C] 78.00-79.00 sec 5.24 MBytes 44.0 Mbits/sec 7 46.7 KBytes
[8][RX-C] 78.00-79.00 sec 9.11 MBytes 76.4 Mbits/sec
[6][TX-C] 79.00-80.00 sec 5.48 MBytes 46.0 Mbits/sec 9 45.2 KBytes
[8][RX-C] 79.00-80.00 sec 9.03 MBytes 75.8 Mbits/sec
[6][TX-C] 80.00-81.00 sec 5.45 MBytes 45.7 Mbits/sec 7 46.7 KBytes
[8][RX-C] 80.00-81.00 sec 9.11 MBytes 76.4 Mbits/sec
[6][TX-C] 81.00-82.00 sec 4.92 MBytes 41.3 Mbits/sec 8 33.9 KBytes
[8][RX-C] 81.00-82.00 sec 9.17 MBytes 76.9 Mbits/sec
[6][TX-C] 82.00-83.00 sec 5.01 MBytes 42.0 Mbits/sec 8 42.4 KBytes
[8][RX-C] 82.00-83.00 sec 9.20 MBytes 77.1 Mbits/sec
[6][TX-C] 83.00-84.00 sec 4.47 MBytes 37.5 Mbits/sec 15 46.7 KBytes
[8][RX-C] 83.00-84.00 sec 9.35 MBytes 78.4 Mbits/sec
[6][TX-C] 84.00-85.00 sec 5.44 MBytes 45.6 Mbits/sec 8 43.8 KBytes
[8][RX-C] 84.00-85.00 sec 9.05 MBytes 76.0 Mbits/sec
[6][TX-C] 85.00-86.00 sec 4.63 MBytes 38.9 Mbits/sec 10 41.0 KBytes
[8][RX-C] 85.00-86.00 sec 9.27 MBytes 77.8 Mbits/sec
[6][TX-C] 86.00-87.00 sec 4.94 MBytes 41.4 Mbits/sec 7 46.7 KBytes
[8][RX-C] 86.00-87.00 sec 9.18 MBytes 77.0 Mbits/sec
[6][TX-C] 87.00-88.00 sec 5.44 MBytes 45.6 Mbits/sec 16 29.7 KBytes
[8][RX-C] 87.00-88.00 sec 9.09 MBytes 76.3 Mbits/sec
[6][TX-C] 88.00-89.00 sec 4.37 MBytes 36.7 Mbits/sec 12 29.7 KBytes
[8][RX-C] 88.00-89.00 sec 9.40 MBytes 78.9 Mbits/sec
[6][TX-C] 89.00-90.00 sec 4.71 MBytes 39.5 Mbits/sec 11 38.2 KBytes
[8][RX-C] 89.00-90.00 sec 9.26 MBytes 77.7 Mbits/sec
[6][TX-C] 90.00-91.00 sec 5.10 MBytes 42.8 Mbits/sec 8 26.9 KBytes

64

[8][RX-C] 90.00-91.00 sec 9.09 MBytes 76.2 Mbits/sec
[6][TX-C] 91.00-92.00 sec 4.83 MBytes 40.5 Mbits/sec 12 25.5 KBytes
[8][RX-C] 91.00-92.00 sec 9.23 MBytes 77.5 Mbits/sec
[6][TX-C] 92.00-93.00 sec 4.62 MBytes 38.7 Mbits/sec 8 35.4 KBytes
[8][RX-C] 92.00-93.00 sec 9.33 MBytes 78.3 Mbits/sec
[6][TX-C] 93.00-94.00 sec 4.01 MBytes 33.6 Mbits/sec 10 39.6 KBytes
[8][RX-C] 93.00-94.00 sec 9.50 MBytes 79.7 Mbits/sec
[6][TX-C] 94.00-95.00 sec 4.95 MBytes 41.5 Mbits/sec 12 33.9 KBytes
[8][RX-C] 94.00-95.00 sec 9.12 MBytes 76.5 Mbits/sec
[6][TX-C] 95.00-96.00 sec 5.10 MBytes 42.8 Mbits/sec 9 46.7 KBytes
[8][RX-C] 95.00-96.00 sec 9.19 MBytes 77.1 Mbits/sec
[6][TX-C] 96.00-97.00 sec 5.16 MBytes 43.3 Mbits/sec 8 42.4 KBytes
[8][RX-C] 96.00-97.00 sec 9.19 MBytes 77.1 Mbits/sec
[6][TX-C] 97.00-98.00 sec 4.77 MBytes 40.0 Mbits/sec 9 42.4 KBytes
[8][RX-C] 97.00-98.00 sec 9.24 MBytes 77.5 Mbits/sec
[6][TX-C] 98.00-98.81 sec 4.57 MBytes 47.3 Mbits/sec 8 42.4 KBytes
[8][RX-C] 98.00-98.81 sec 7.38 MBytes 76.2 Mbits/sec
- -
Test Complete. Summary Results:
[ID][Role] Interval Transfer Bitrate Retr
[6][TX-C] 0.00-98.81 sec 500 MBytes 42.4 Mbits/sec 933 sender
[6][TX-C] 0.00-98.82 sec 500 MBytes 42.4 Mbits/sec receiver
CPU Utilization: local/sender 3.5% (0.2%u/3.3%s), remote/receiver 16.6% (0.8%u/15.8%s)
CPU Utilization: local/receiver 3.5% (0.2%u/3.3%s), remote/sender 16.6% (0.8%u/15.8%s)
snd_tcp_congestion cubic
rcv_tcp_congestion cubic
[8][RX-C] 0.00-98.81 sec 906 MBytes 76.9 Mbits/sec 0 sender
[8][RX-C] 0.00-98.82 sec 905 MBytes 76.8 Mbits/sec receiver
snd_tcp_congestion cubic
rcv_tcp_congestion cubic

iperf Done.

A.1.6 TCP - 100 MB - Bidirectional

iperf 3.7
Linux tms 5.13.0-40-generic #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022 x86_64
Time: Sat, 26 Nov 2022 15:17:09 GMT
Connecting to host 192.168.8.20, port 5201

Cookie: xwkoucuaca3qekx32ly2ry7zvlmi7e3fs24v
TCP MSS: 1448 (default)

[6] local 192.168.8.3 port 37570 connected to 192.168.8.20 port 5201
[8] local 192.168.8.3 port 37574 connected to 192.168.8.20 port 5201
Starting Test: protocol: TCP, 1 streams, 131072 byte blocks, omitting 0 seconds,
104857600 bytes to send, tos 0
[ID][Role] Interval Transfer Bitrate Retr Cwnd
[6][TX-C] 0.00-1.00 sec 5.47 MBytes 45.9 Mbits/sec 14 41.0 KBytes
[8][RX-C] 0.00-1.00 sec 8.62 MBytes 72.3 Mbits/sec
[6][TX-C] 1.00-2.00 sec 6.24 MBytes 52.4 Mbits/sec 10 38.2 KBytes
[8][RX-C] 1.00-2.00 sec 8.87 MBytes 74.4 Mbits/sec
[6][TX-C] 2.00-3.00 sec 5.82 MBytes 48.8 Mbits/sec 17 33.9 KBytes
[8][RX-C] 2.00-3.00 sec 8.97 MBytes 75.3 Mbits/sec
[6][TX-C] 3.00-4.00 sec 6.05 MBytes 50.7 Mbits/sec 7 49.5 KBytes
[8][RX-C] 3.00-4.00 sec 8.89 MBytes 74.6 Mbits/sec
[6][TX-C] 4.00-5.00 sec 4.88 MBytes 40.9 Mbits/sec 11 52.3 KBytes
[8][RX-C] 4.00-5.00 sec 9.24 MBytes 77.5 Mbits/sec
[6][TX-C] 5.00-6.00 sec 5.65 MBytes 47.4 Mbits/sec 10 25.5 KBytes
[8][RX-C] 5.00-6.00 sec 8.93 MBytes 74.9 Mbits/sec
[6][TX-C] 6.00-7.00 sec 5.50 MBytes 46.1 Mbits/sec 12 36.8 KBytes
[8][RX-C] 6.00-7.00 sec 9.04 MBytes 75.8 Mbits/sec
[6][TX-C] 7.00-8.00 sec 5.42 MBytes 45.5 Mbits/sec 10 26.9 KBytes
[8][RX-C] 7.00-8.00 sec 9.03 MBytes 75.7 Mbits/sec
[6][TX-C] 8.00-9.00 sec 4.95 MBytes 41.5 Mbits/sec 5 48.1 KBytes
[8][RX-C] 8.00-9.00 sec 9.21 MBytes 77.3 Mbits/sec
[6][TX-C] 9.00-10.00 sec 5.15 MBytes 43.2 Mbits/sec 7 41.0 KBytes

65

[8][RX-C] 9.00-10.00 sec 9.05 MBytes 75.9 Mbits/sec
[6][TX-C] 10.00-11.00 sec 5.15 MBytes 43.2 Mbits/sec 8 43.8 KBytes
[8][RX-C] 10.00-11.00 sec 9.16 MBytes 76.9 Mbits/sec
[6][TX-C] 11.00-12.00 sec 5.35 MBytes 44.9 Mbits/sec 9 36.8 KBytes
[8][RX-C] 11.00-12.00 sec 9.05 MBytes 75.9 Mbits/sec
[6][TX-C] 12.00-13.00 sec 5.62 MBytes 47.1 Mbits/sec 7 45.2 KBytes
[8][RX-C] 12.00-13.00 sec 9.05 MBytes 75.9 Mbits/sec
[6][TX-C] 13.00-14.00 sec 5.54 MBytes 46.5 Mbits/sec 11 35.4 KBytes
[8][RX-C] 13.00-14.00 sec 9.02 MBytes 75.6 Mbits/sec
[6][TX-C] 14.00-15.00 sec 4.19 MBytes 35.2 Mbits/sec 10 43.8 KBytes
[8][RX-C] 14.00-15.00 sec 9.42 MBytes 79.0 Mbits/sec
[6][TX-C] 15.00-16.00 sec 5.53 MBytes 46.4 Mbits/sec 5 46.7 KBytes
[8][RX-C] 15.00-16.00 sec 9.04 MBytes 75.8 Mbits/sec
[6][TX-C] 16.00-17.00 sec 5.36 MBytes 45.0 Mbits/sec 6 59.4 KBytes
[8][RX-C] 16.00-17.00 sec 9.02 MBytes 75.7 Mbits/sec
[6][TX-C] 17.00-18.00 sec 5.51 MBytes 46.3 Mbits/sec 11 46.7 KBytes
[8][RX-C] 17.00-18.00 sec 9.00 MBytes 75.5 Mbits/sec
[6][TX-C] 18.00-18.51 sec 2.73 MBytes 44.9 Mbits/sec 6 53.7 KBytes
[8][RX-C] 18.00-18.51 sec 4.66 MBytes 76.5 Mbits/sec
- -
Test Complete. Summary Results:
[ID][Role] Interval Transfer Bitrate Retr
[6][TX-C] 0.00-18.51 sec 100 MBytes 45.4 Mbits/sec 176 sender
[6][TX-C] 0.00-18.51 sec 99.8 MBytes 45.2 Mbits/sec receiver
CPU Utilization: local/sender 3.7% (0.2%u/3.5%s), remote/receiver 7.9% (0.5%u/7.4%s)
CPU Utilization: local/receiver 3.7% (0.2%u/3.5%s), remote/sender 7.9% (0.5%u/7.4%s)
snd_tcp_congestion cubic
rcv_tcp_congestion cubic
[8][RX-C] 0.00-18.51 sec 168 MBytes 76.0 Mbits/sec 0 sender
[8][RX-C] 0.00-18.51 sec 167 MBytes 75.8 Mbits/sec receiver
snd_tcp_congestion cubic
rcv_tcp_congestion cubic

iperf Done.

A.1.7 TCP - 64 KB - Uplink

iperf 3.7
Linux tms 5.13.0-40-generic #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022 x86_64
Time: Sat, 26 Nov 2022 14:00:32 GMT
Connecting to host 192.168.8.20, port 5201

Cookie: nqbyhliu7e4msarxg6tndjlus5pwgiqyuy4l
TCP MSS: 1448 (default)

[6] local 192.168.8.3 port 37444 connected to 192.168.8.20 port 5201
Starting Test: protocol: TCP, 1 streams, 64 byte blocks, omitting 0 seconds, 10 second test, tos 0
[ID] Interval Transfer Bitrate Retr Cwnd
[6] 0.00-1.00 sec 2.31 MBytes 19.4 Mbits/sec 1 19.8 KBytes
[6] 1.00-2.00 sec 2.20 MBytes 18.4 Mbits/sec 2 15.6 KBytes
[6] 2.00-3.00 sec 2.20 MBytes 18.4 Mbits/sec 0 19.8 KBytes
[6] 3.00-4.00 sec 2.11 MBytes 17.7 Mbits/sec 2 21.2 KBytes
[6] 4.00-5.00 sec 1.99 MBytes 16.7 Mbits/sec 3 21.2 KBytes
[6] 5.00-6.00 sec 2.16 MBytes 18.1 Mbits/sec 2 22.6 KBytes
[6] 6.00-7.00 sec 2.20 MBytes 18.4 Mbits/sec 1 19.8 KBytes
[6] 7.00-8.00 sec 2.04 MBytes 17.1 Mbits/sec 0 19.8 KBytes
[6] 8.00-9.00 sec 2.17 MBytes 18.2 Mbits/sec 1 19.8 KBytes
[6] 9.00-10.00 sec 2.19 MBytes 18.3 Mbits/sec 1 21.2 KBytes
- -
Test Complete. Summary Results:
[ID] Interval Transfer Bitrate Retr
[6] 0.00-10.00 sec 21.6 MBytes 18.1 Mbits/sec 13 sender
[6] 0.00-10.00 sec 21.4 MBytes 18.0 Mbits/sec receiver
CPU Utilization: local/sender 11.2% (2.6%u/8.6%s), remote/receiver 48.2% (3.6%u/44.6%s)
snd_tcp_congestion cubic
rcv_tcp_congestion cubic

iperf Done.

66

A.1.8 TCP - 100 KB - Uplink

iperf 3.7
Linux tms 5.13.0-40-generic #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022 x86_64
Time: Sat, 26 Nov 2022 14:00:12 GMT
Connecting to host 192.168.8.20, port 5201

Cookie: 5qcyowny4wwsclvdqmncpaq34m52l7iwt77a
TCP MSS: 1448 (default)

[6] local 192.168.8.3 port 37440 connected to 192.168.8.20 port 5201
Starting Test: protocol: TCP, 1 streams, 100 byte blocks, omitting 0 seconds, 10 second test, tos 0
[ID] Interval Transfer Bitrate Retr Cwnd
[6] 0.00-1.00 sec 3.51 MBytes 29.4 Mbits/sec 4 21.2 KBytes
[6] 1.00-2.00 sec 3.34 MBytes 28.0 Mbits/sec 2 19.8 KBytes
[6] 2.00-3.00 sec 3.33 MBytes 28.0 Mbits/sec 2 19.8 KBytes
[6] 3.00-4.00 sec 3.33 MBytes 28.0 Mbits/sec 4 21.2 KBytes
[6] 4.00-5.00 sec 3.34 MBytes 28.0 Mbits/sec 0 21.2 KBytes
[6] 5.00-6.00 sec 3.35 MBytes 28.1 Mbits/sec 2 21.2 KBytes
[6] 6.00-7.00 sec 3.34 MBytes 28.0 Mbits/sec 3 22.6 KBytes
[6] 7.00-8.00 sec 3.29 MBytes 27.6 Mbits/sec 0 22.6 KBytes
[6] 8.00-9.00 sec 3.10 MBytes 26.0 Mbits/sec 2 19.8 KBytes
[6] 9.00-10.00 sec 3.32 MBytes 27.9 Mbits/sec 1 21.2 KBytes
- -
Test Complete. Summary Results:
[ID] Interval Transfer Bitrate Retr
[6] 0.00-10.00 sec 33.3 MBytes 27.9 Mbits/sec 20 sender
[6] 0.00-10.00 sec 33.1 MBytes 27.7 Mbits/sec receiver
CPU Utilization: local/sender 13.8% (2.3%u/11.5%s), remote/receiver 55.4% (3.8%u/51.6%s)
snd_tcp_congestion cubic
rcv_tcp_congestion cubic

iperf Done.

A.1.9 TCP - 500 KB - Uplink

iperf 3.7
Linux tms 5.13.0-40-generic #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022 x86_64
Time: Sat, 26 Nov 2022 13:59:54 GMT
Connecting to host 192.168.8.20, port 5201

Cookie: kgqysapsjwaaboabhanhtxezqfvmgfi3cu7d
TCP MSS: 1448 (default)

[6] local 192.168.8.3 port 37436 connected to 192.168.8.20 port 5201
Starting Test: protocol: TCP, 1 streams, 500 byte blocks, omitting 0 seconds, 10 second test, tos 0
[ID] Interval Transfer Bitrate Retr Cwnd
[6] 0.00-1.00 sec 11.3 MBytes 95.0 Mbits/sec 3 100 KBytes
[6] 1.00-2.00 sec 11.2 MBytes 94.2 Mbits/sec 6 59.4 KBytes
[6] 2.00-3.00 sec 10.7 MBytes 89.4 Mbits/sec 17 66.5 KBytes
[6] 3.00-4.00 sec 11.1 MBytes 93.5 Mbits/sec 4 87.7 KBytes
[6] 4.00-5.00 sec 11.0 MBytes 92.5 Mbits/sec 1 124 KBytes
[6] 5.00-6.00 sec 10.7 MBytes 89.6 Mbits/sec 49 73.5 KBytes
[6] 6.00-7.00 sec 10.3 MBytes 86.7 Mbits/sec 8 32.5 KBytes
[6] 7.00-8.00 sec 9.81 MBytes 82.3 Mbits/sec 6 32.5 KBytes
[6] 8.00-9.00 sec 11.0 MBytes 92.6 Mbits/sec 3 102 KBytes
[6] 9.00-10.00 sec 10.9 MBytes 91.5 Mbits/sec 9 49.5 KBytes
- -
Test Complete. Summary Results:
[ID] Interval Transfer Bitrate Retr
[6] 0.00-10.00 sec 108 MBytes 90.7 Mbits/sec 106 sender
[6] 0.00-10.00 sec 108 MBytes 90.3 Mbits/sec receiver
CPU Utilization: local/sender 4.7% (0.8%u/4.0%s), remote/receiver 22.8% (1.3%u/21.6%s)
snd_tcp_congestion cubic
rcv_tcp_congestion cubic

iperf Done.

67

A.1.10 TCP - 1448 KB - Uplink

iperf 3.7
Linux tms 5.13.0-40-generic #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022 x86_64
Time: Sat, 26 Nov 2022 13:59:14 GMT
Connecting to host 192.168.8.20, port 5201

Cookie: modf6humwyh62siocsl37edqaysb2loqe724
TCP MSS: 1448 (default)

[6] local 192.168.8.3 port 37432 connected to 192.168.8.20 port 5201
Starting Test: protocol: TCP, 1 streams, 1448 byte blocks, omitting 0 seconds, 10 second test, tos 0
[ID] Interval Transfer Bitrate Retr Cwnd
[6] 0.00-1.00 sec 11.5 MBytes 96.8 Mbits/sec 6 49.5 KBytes
[6] 1.00-2.00 sec 11.1 MBytes 92.9 Mbits/sec 26 43.8 KBytes
[6] 2.00-3.00 sec 11.2 MBytes 94.1 Mbits/sec 5 55.1 KBytes
[6] 3.00-4.00 sec 11.2 MBytes 94.3 Mbits/sec 5 62.2 KBytes
[6] 4.00-5.00 sec 11.1 MBytes 92.8 Mbits/sec 27 39.6 KBytes
[6] 5.00-6.00 sec 11.2 MBytes 94.1 Mbits/sec 3 96.2 KBytes
[6] 6.00-7.00 sec 11.2 MBytes 94.2 Mbits/sec 5 84.8 KBytes
[6] 7.00-8.00 sec 11.1 MBytes 92.8 Mbits/sec 24 43.8 KBytes
[6] 8.00-9.00 sec 11.2 MBytes 94.1 Mbits/sec 8 36.8 KBytes
[6] 9.00-10.00 sec 11.2 MBytes 94.1 Mbits/sec 6 65.0 KBytes
- -
Test Complete. Summary Results:
[ID] Interval Transfer Bitrate Retr
[6] 0.00-10.00 sec 112 MBytes 94.0 Mbits/sec 115 sender
[6] 0.00-10.01 sec 112 MBytes 93.7 Mbits/sec receiver
CPU Utilization: local/sender 4.1% (0.6%u/3.4%s), remote/receiver 2.7% (0.1%u/2.6%s)
snd_tcp_congestion cubic
rcv_tcp_congestion cubic

iperf Done.

A.1.11 TCP - 64 KB - Downlink

iperf 3.1.3
Linux ts-146 3.10.0-693.el7.x86_64 #1 SMP Tue Aug 22 21:09:27 UTC 2017 x86_64
Time: Sat, 26 Nov 2022 14:13:21 GMT
Connecting to host 192.168.8.20, port 5201
Reverse mode, remote host 192.168.8.20 is sending

Cookie: ts-146.1669472001.172061.0522d46b7d0
TCP MSS: 1448 (default)

[4] local 192.168.8.5 port 40078 connected to 192.168.8.20 port 5201
Starting Test: protocol: TCP, 1 streams, 64 byte blocks, omitting 0 seconds, 10 second test
[ID] Interval Transfer Bandwidth
[4] 0.00-1.00 sec 4.16 MBytes 34.9 Mbits/sec
[4] 1.00-2.00 sec 3.81 MBytes 32.0 Mbits/sec
[4] 2.00-3.00 sec 4.01 MBytes 33.7 Mbits/sec
[4] 3.00-4.00 sec 4.09 MBytes 34.3 Mbits/sec
[4] 4.00-5.00 sec 3.69 MBytes 31.0 Mbits/sec
[4] 5.00-6.00 sec 3.69 MBytes 30.9 Mbits/sec
[4] 6.00-7.00 sec 3.69 MBytes 31.0 Mbits/sec
[4] 7.00-8.00 sec 3.70 MBytes 31.1 Mbits/sec
[4] 8.00-9.00 sec 3.69 MBytes 31.0 Mbits/sec
[4] 9.00-10.00 sec 3.71 MBytes 31.1 Mbits/sec
- -
Test Complete. Summary Results:
[ID] Interval Transfer Bandwidth Retr
[4] 0.00-10.00 sec 38.3 MBytes 32.1 Mbits/sec 0 sender
[4] 0.00-10.00 sec 38.3 MBytes 32.1 Mbits/sec receiver
CPU Utilization: local/receiver 28.2% (3.7%u/24.5%s), remote/sender 3.8% (0.2%u/3.6%s)

iperf Done.

68

A.1.12 TCP - 100 KB - Downlink

iperf 3.1.3
Linux ts-146 3.10.0-693.el7.x86_64 #1 SMP Tue Aug 22 21:09:27 UTC 2017 x86_64
Time: Sat, 26 Nov 2022 14:07:05 GMT
Connecting to host 192.168.8.20, port 5201
Reverse mode, remote host 192.168.8.20 is sending

Cookie: ts-146.1669471625.574105.5bae26e5601
TCP MSS: 1448 (default)

[4] local 192.168.8.5 port 40070 connected to 192.168.8.20 port 5201
Starting Test: protocol: TCP, 1 streams, 100 byte blocks, omitting 0 seconds, 10 second test
[ID] Interval Transfer Bandwidth
[4] 0.00-1.00 sec 6.32 MBytes 53.0 Mbits/sec
[4] 1.00-2.00 sec 6.29 MBytes 52.7 Mbits/sec
[4] 2.00-3.00 sec 6.27 MBytes 52.6 Mbits/sec
[4] 3.00-4.00 sec 6.29 MBytes 52.7 Mbits/sec
[4] 4.00-5.00 sec 6.14 MBytes 51.5 Mbits/sec
[4] 5.00-6.00 sec 6.34 MBytes 53.1 Mbits/sec
[4] 6.00-7.00 sec 6.26 MBytes 52.5 Mbits/sec
[4] 7.00-8.00 sec 6.32 MBytes 53.0 Mbits/sec
[4] 8.00-9.00 sec 6.32 MBytes 53.0 Mbits/sec
[4] 9.00-10.00 sec 6.32 MBytes 53.0 Mbits/sec
- -
Test Complete. Summary Results:
[ID] Interval Transfer Bandwidth Retr
[4] 0.00-10.00 sec 62.9 MBytes 52.7 Mbits/sec 0 sender
[4] 0.00-10.00 sec 62.9 MBytes 52.7 Mbits/sec receiver
CPU Utilization: local/receiver 32.3% (4.2%u/28.1%s), remote/sender 33.0% (1.3%u/31.7%s)

iperf Done.

A.1.13 TCP - 500 KB - Downlink

iperf 3.7
Linux tms 5.13.0-40-generic #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022 x86_64
Time: Sat, 26 Nov 2022 14:03:49 GMT
Connecting to host 192.168.8.20, port 5201
Reverse mode, remote host 192.168.8.20 is sending

Cookie: 4kz5mmthla3sfbw3g73j3gv4g3huajtjj6i5
TCP MSS: 1448 (default)

[6] local 192.168.8.3 port 37452 connected to 192.168.8.20 port 5201
Starting Test: protocol: TCP, 1 streams, 500 byte blocks, omitting 0 seconds, 10 second test, tos 0
[ID] Interval Transfer Bitrate
[6] 0.00-1.00 sec 10.8 MBytes 90.2 Mbits/sec
[6] 1.00-2.00 sec 10.8 MBytes 90.3 Mbits/sec
[6] 2.00-3.00 sec 10.8 MBytes 91.0 Mbits/sec
[6] 3.00-4.00 sec 10.8 MBytes 90.2 Mbits/sec
[6] 4.00-5.00 sec 10.9 MBytes 91.8 Mbits/sec
[6] 5.00-6.00 sec 10.8 MBytes 90.8 Mbits/sec
[6] 6.00-7.00 sec 10.8 MBytes 90.8 Mbits/sec
[6] 7.00-8.00 sec 10.8 MBytes 90.8 Mbits/sec
[6] 8.00-9.00 sec 10.8 MBytes 90.6 Mbits/sec
[6] 9.00-10.00 sec 10.8 MBytes 90.9 Mbits/sec
- -
Test Complete. Summary Results:
[ID] Interval Transfer Bitrate Retr
[6] 0.00-10.00 sec 109 MBytes 91.0 Mbits/sec 0 sender
[6] 0.00-10.00 sec 108 MBytes 90.8 Mbits/sec receiver
snd_tcp_congestion cubic
rcv_tcp_congestion cubic

iperf Done.

69

A.1.14 TCP - 1448 KB - Downlink

iperf 3.7
Linux tms 5.13.0-40-generic #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022 x86_64
Time: Sat, 26 Nov 2022 14:03:24 GMT
Connecting to host 192.168.8.20, port 5201
Reverse mode, remote host 192.168.8.20 is sending

Cookie: i5hpil7gkwg52p4dughc66f7jlduedhsrsk4
TCP MSS: 1448 (default)

[6] local 192.168.8.3 port 37448 connected to 192.168.8.20 port 5201
Starting Test: protocol: TCP, 1 streams, 1448 byte blocks, omitting 0 seconds, 10 second test, tos 0
[ID] Interval Transfer Bitrate
[6] 0.00-1.00 sec 10.8 MBytes 90.7 Mbits/sec
[6] 1.00-2.00 sec 10.9 MBytes 91.4 Mbits/sec
[6] 2.00-3.00 sec 10.9 MBytes 91.1 Mbits/sec
[6] 3.00-4.00 sec 10.9 MBytes 91.4 Mbits/sec
[6] 4.00-5.00 sec 10.9 MBytes 91.2 Mbits/sec
[6] 5.00-6.00 sec 10.8 MBytes 90.6 Mbits/sec
[6] 6.00-7.00 sec 10.8 MBytes 90.2 Mbits/sec
[6] 7.00-8.00 sec 10.8 MBytes 90.6 Mbits/sec
[6] 8.00-9.00 sec 10.8 MBytes 90.3 Mbits/sec
[6] 9.00-10.00 sec 10.9 MBytes 91.1 Mbits/sec
- -
Test Complete. Summary Results:
[ID] Interval Transfer Bitrate Retr
[6] 0.00-10.00 sec 109 MBytes 91.1 Mbits/sec 0 sender
[6] 0.00-10.00 sec 108 MBytes 90.9 Mbits/sec receiver
snd_tcp_congestion cubic
rcv_tcp_congestion cubic

iperf Done.

A.1.15 TCP - 64 KB - Bidirectional

iperf 3.7
Linux tms 5.13.0-40-generic #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022 x86_64
Time: Sat, 26 Nov 2022 14:46:34 GMT
Connecting to host 192.168.8.20, port 5201

Cookie: btdxofn3wmjuaoxslp3gehfi7fmaw2flql6v
TCP MSS: 1448 (default)

[6] local 192.168.8.3 port 37490 connected to 192.168.8.20 port 5201
[8] local 192.168.8.3 port 37492 connected to 192.168.8.20 port 5201
Starting Test: protocol: TCP, 1 streams, 64 byte blocks, omitting 0 seconds, 10 second test, tos 0
[ID][Role] Interval Transfer Bitrate Retr Cwnd
[6][TX-C] 0.00-1.00 sec 547 KBytes 4.48 Mbits/sec 0 32.5 KBytes
[8][RX-C] 0.00-1.00 sec 3.45 MBytes 29.0 Mbits/sec
[6][TX-C] 1.00-2.00 sec 423 KBytes 3.47 Mbits/sec 0 32.5 KBytes
[8][RX-C] 1.00-2.00 sec 4.07 MBytes 34.1 Mbits/sec
[6][TX-C] 2.00-3.00 sec 404 KBytes 3.31 Mbits/sec 1 22.6 KBytes
[8][RX-C] 2.00-3.00 sec 4.09 MBytes 34.3 Mbits/sec
[6][TX-C] 3.00-4.00 sec 422 KBytes 3.46 Mbits/sec 1 17.0 KBytes
[8][RX-C] 3.00-4.00 sec 4.09 MBytes 34.3 Mbits/sec
[6][TX-C] 4.00-5.00 sec 402 KBytes 3.29 Mbits/sec 1 15.6 KBytes
[8][RX-C] 4.00-5.00 sec 3.94 MBytes 33.0 Mbits/sec
[6][TX-C] 5.00-6.00 sec 436 KBytes 3.57 Mbits/sec 3 8.48 KBytes
[8][RX-C] 5.00-6.00 sec 4.06 MBytes 34.1 Mbits/sec
[6][TX-C] 6.00-7.00 sec 405 KBytes 3.32 Mbits/sec 1 19.8 KBytes
[8][RX-C] 6.00-7.00 sec 4.07 MBytes 34.2 Mbits/sec
[6][TX-C] 7.00-8.00 sec 423 KBytes 3.47 Mbits/sec 3 19.8 KBytes
[8][RX-C] 7.00-8.00 sec 4.09 MBytes 34.3 Mbits/sec
[6][TX-C] 8.00-9.00 sec 408 KBytes 3.34 Mbits/sec 1 18.4 KBytes
[8][RX-C] 8.00-9.00 sec 4.08 MBytes 34.2 Mbits/sec
[6][TX-C] 9.00-10.00 sec 431 KBytes 3.53 Mbits/sec 3 21.2 KBytes
[8][RX-C] 9.00-10.00 sec 4.08 MBytes 34.2 Mbits/sec
- -

70

Test Complete. Summary Results:
[ID][Role] Interval Transfer Bitrate Retr
[6][TX-C] 0.00-10.00 sec 4.20 MBytes 3.52 Mbits/sec 14 sender
[6][TX-C] 0.00-10.00 sec 4.00 MBytes 3.36 Mbits/sec receiver
CPU Utilization: local/sender 13.0% (2.4%u/10.6%s), remote/receiver 11.9% (0.7%u/11.1%s)
CPU Utilization: local/receiver 13.0% (2.4%u/10.6%s), remote/sender 11.9% (0.7%u/11.1%s)
snd_tcp_congestion cubic
rcv_tcp_congestion cubic
[8][RX-C] 0.00-10.00 sec 40.0 MBytes 33.6 Mbits/sec 0 sender
[8][RX-C] 0.00-10.00 sec 40.0 MBytes 33.6 Mbits/sec receiver
snd_tcp_congestion cubic
rcv_tcp_congestion cubic

iperf Done.

A.1.16 TCP - 100 KB - Bidirectional

iperf 3.7
Linux tms 5.13.0-40-generic #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022 x86_64
Time: Sat, 26 Nov 2022 14:45:11 GMT
Connecting to host 192.168.8.20, port 5201

Cookie: bd4b3knwisig6dnexldnsuu76l54szualcxf
TCP MSS: 1448 (default)

[6] local 192.168.8.3 port 37484 connected to 192.168.8.20 port 5201
[8] local 192.168.8.3 port 37486 connected to 192.168.8.20 port 5201
Starting Test: protocol: TCP, 1 streams, 100 byte blocks, omitting 0 seconds, 10 second test, tos 0
[ID][Role] Interval Transfer Bitrate Retr Cwnd
[6][TX-C] 0.00-1.00 sec 679 KBytes 5.56 Mbits/sec 3 15.6 KBytes
[8][RX-C] 0.00-1.00 sec 4.51 MBytes 37.9 Mbits/sec
[6][TX-C] 1.00-2.00 sec 455 KBytes 3.73 Mbits/sec 0 21.2 KBytes
[8][RX-C] 1.00-2.00 sec 4.53 MBytes 38.0 Mbits/sec
[6][TX-C] 2.00-3.00 sec 469 KBytes 3.84 Mbits/sec 0 21.2 KBytes
[8][RX-C] 2.00-3.00 sec 4.54 MBytes 38.1 Mbits/sec
[6][TX-C] 3.00-4.00 sec 472 KBytes 3.86 Mbits/sec 1 19.8 KBytes
[8][RX-C] 3.00-4.00 sec 4.55 MBytes 38.2 Mbits/sec
[6][TX-C] 4.00-5.00 sec 445 KBytes 3.65 Mbits/sec 2 21.2 KBytes
[8][RX-C] 4.00-5.00 sec 4.54 MBytes 38.1 Mbits/sec
[6][TX-C] 5.00-6.00 sec 470 KBytes 3.85 Mbits/sec 0 21.2 KBytes
[8][RX-C] 5.00-6.00 sec 4.56 MBytes 38.2 Mbits/sec
[6][TX-C] 6.00-7.00 sec 476 KBytes 3.90 Mbits/sec 1 19.8 KBytes
[8][RX-C] 6.00-7.00 sec 4.55 MBytes 38.1 Mbits/sec
[6][TX-C] 7.00-8.00 sec 453 KBytes 3.71 Mbits/sec 1 21.2 KBytes
[8][RX-C] 7.00-8.00 sec 4.55 MBytes 38.2 Mbits/sec
[6][TX-C] 8.00-9.00 sec 474 KBytes 3.88 Mbits/sec 3 11.3 KBytes
[8][RX-C] 8.00-9.00 sec 4.51 MBytes 37.8 Mbits/sec
[6][TX-C] 9.00-10.00 sec 476 KBytes 3.90 Mbits/sec 1 12.7 KBytes
[8][RX-C] 9.00-10.00 sec 4.55 MBytes 38.1 Mbits/sec
- -
Test Complete. Summary Results:
[ID][Role] Interval Transfer Bitrate Retr
[6][TX-C] 0.00-10.00 sec 4.75 MBytes 3.99 Mbits/sec 12 sender
[6][TX-C] 0.00-10.00 sec 4.54 MBytes 3.81 Mbits/sec receiver
CPU Utilization: local/sender 10.6% (1.8%u/8.8%s), remote/receiver 1.4% (0.1%u/1.3%s)
CPU Utilization: local/receiver 10.6% (1.8%u/8.8%s), remote/sender 1.4% (0.1%u/1.3%s)
snd_tcp_congestion cubic
rcv_tcp_congestion cubic
[8][RX-C] 0.00-10.00 sec 45.4 MBytes 38.1 Mbits/sec 0 sender
[8][RX-C] 0.00-10.00 sec 45.4 MBytes 38.1 Mbits/sec receiver
snd_tcp_congestion cubic
rcv_tcp_congestion cubic

iperf Done.

71

A.1.17 TCP - 500 KB - Bidirectional

iperf 3.7
Linux tms 5.13.0-40-generic #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022 x86_64
Time: Sat, 26 Nov 2022 14:20:09 GMT
Connecting to host 192.168.8.20, port 5201

Cookie: hy7bytfwbfgqsgyoo5ybfnbbco6nlrj3jpkh
TCP MSS: 1448 (default)

[6] local 192.168.8.3 port 37472 connected to 192.168.8.20 port 5201
[8] local 192.168.8.3 port 37474 connected to 192.168.8.20 port 5201
Starting Test: protocol: TCP, 1 streams, 500 byte blocks, omitting 0 seconds, 10 second test, tos 0
[ID][Role] Interval Transfer Bitrate Retr Cwnd
[6][TX-C] 0.00-1.00 sec 6.09 MBytes 51.1 Mbits/sec 11 38.2 KBytes
[8][RX-C] 0.00-1.00 sec 8.57 MBytes 71.9 Mbits/sec
[6][TX-C] 1.00-2.00 sec 5.47 MBytes 45.9 Mbits/sec 8 32.5 KBytes
[8][RX-C] 1.00-2.00 sec 8.86 MBytes 74.3 Mbits/sec
[6][TX-C] 2.00-3.00 sec 5.28 MBytes 44.3 Mbits/sec 8 19.8 KBytes
[8][RX-C] 2.00-3.00 sec 8.84 MBytes 74.1 Mbits/sec
[6][TX-C] 3.00-4.00 sec 4.42 MBytes 37.0 Mbits/sec 7 31.1 KBytes
[8][RX-C] 3.00-4.00 sec 9.21 MBytes 77.3 Mbits/sec
[6][TX-C] 4.00-5.00 sec 4.79 MBytes 40.2 Mbits/sec 10 46.7 KBytes
[8][RX-C] 4.00-5.00 sec 9.11 MBytes 76.4 Mbits/sec
[6][TX-C] 5.00-6.00 sec 4.81 MBytes 40.3 Mbits/sec 7 50.9 KBytes
[8][RX-C] 5.00-6.00 sec 9.19 MBytes 77.1 Mbits/sec
[6][TX-C] 6.00-7.00 sec 4.97 MBytes 41.7 Mbits/sec 4 35.4 KBytes
[8][RX-C] 6.00-7.00 sec 9.13 MBytes 76.6 Mbits/sec
[6][TX-C] 7.00-8.00 sec 5.35 MBytes 44.8 Mbits/sec 10 31.1 KBytes
[8][RX-C] 7.00-8.00 sec 8.89 MBytes 74.6 Mbits/sec
[6][TX-C] 8.00-9.00 sec 5.35 MBytes 44.8 Mbits/sec 8 21.2 KBytes
[8][RX-C] 8.00-9.00 sec 8.95 MBytes 75.1 Mbits/sec
[6][TX-C] 9.00-10.00 sec 4.79 MBytes 40.2 Mbits/sec 7 28.3 KBytes
[8][RX-C] 9.00-10.00 sec 9.09 MBytes 76.3 Mbits/sec
- -
Test Complete. Summary Results:
[ID][Role] Interval Transfer Bitrate Retr
[6][TX-C] 0.00-10.00 sec 51.3 MBytes 43.0 Mbits/sec 80 sender
[6][TX-C] 0.00-10.00 sec 51.1 MBytes 42.9 Mbits/sec receiver
CPU Utilization: local/sender 4.7% (0.8%u/3.9%s), remote/receiver 9.0% (0.6%u/8.4%s)
CPU Utilization: local/receiver 4.7% (0.8%u/3.9%s), remote/sender 9.0% (0.6%u/8.4%s)
snd_tcp_congestion cubic
rcv_tcp_congestion cubic
[8][RX-C] 0.00-10.00 sec 90.1 MBytes 75.6 Mbits/sec 0 sender
[8][RX-C] 0.00-10.00 sec 89.8 MBytes 75.4 Mbits/sec receiver
snd_tcp_congestion cubic
rcv_tcp_congestion cubic

iperf Done.

A.1.18 TCP - 1448 KB - Bidirectional

iperf 3.7
Linux tms 5.13.0-40-generic #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022 x86_64
Time: Sat, 26 Nov 2022 14:18:50 GMT
Connecting to host 192.168.8.20, port 5201

Cookie: edothnq52va6kqnggyzgejma43hs2nobbmll
TCP MSS: 1448 (default)

[6] local 192.168.8.3 port 37466 connected to 192.168.8.20 port 5201
[8] local 192.168.8.3 port 37468 connected to 192.168.8.20 port 5201
Starting Test: protocol: TCP, 1 streams, 1448 byte blocks, omitting 0 seconds, 10 second test, tos 0
[ID][Role] Interval Transfer Bitrate Retr Cwnd
[6][TX-C] 0.00-1.00 sec 5.99 MBytes 50.3 Mbits/sec 8 33.9 KBytes
[8][RX-C] 0.00-1.00 sec 8.69 MBytes 72.9 Mbits/sec
[6][TX-C] 1.00-2.00 sec 5.65 MBytes 47.4 Mbits/sec 10 52.3 KBytes
[8][RX-C] 1.00-2.00 sec 8.76 MBytes 73.5 Mbits/sec
[6][TX-C] 2.00-3.00 sec 6.32 MBytes 53.1 Mbits/sec 12 26.9 KBytes

72

[8][RX-C] 2.00-3.00 sec 8.63 MBytes 72.4 Mbits/sec
[6][TX-C] 3.00-4.00 sec 5.65 MBytes 47.4 Mbits/sec 5 45.2 KBytes
[8][RX-C] 3.00-4.00 sec 8.85 MBytes 74.3 Mbits/sec
[6][TX-C] 4.00-5.00 sec 5.26 MBytes 44.1 Mbits/sec 11 26.9 KBytes
[8][RX-C] 4.00-5.00 sec 8.91 MBytes 74.7 Mbits/sec
[6][TX-C] 5.00-6.00 sec 5.43 MBytes 45.5 Mbits/sec 7 33.9 KBytes
[8][RX-C] 5.00-6.00 sec 8.84 MBytes 74.1 Mbits/sec
[6][TX-C] 6.00-7.00 sec 5.70 MBytes 47.8 Mbits/sec 5 53.7 KBytes
[8][RX-C] 6.00-7.00 sec 8.81 MBytes 73.9 Mbits/sec
[6][TX-C] 7.00-8.00 sec 5.37 MBytes 45.1 Mbits/sec 8 24.0 KBytes
[8][RX-C] 7.00-8.00 sec 8.93 MBytes 74.9 Mbits/sec
[6][TX-C] 8.00-9.00 sec 4.75 MBytes 39.9 Mbits/sec 6 33.9 KBytes
[8][RX-C] 8.00-9.00 sec 9.08 MBytes 76.1 Mbits/sec
[6][TX-C] 9.00-10.00 sec 5.94 MBytes 49.8 Mbits/sec 9 39.6 KBytes
[8][RX-C] 9.00-10.00 sec 8.77 MBytes 73.5 Mbits/sec
- -
Test Complete. Summary Results:
[ID][Role] Interval Transfer Bitrate Retr
[6][TX-C] 0.00-10.00 sec 56.1 MBytes 47.0 Mbits/sec 81 sender
[6][TX-C] 0.00-10.00 sec 55.9 MBytes 46.9 Mbits/sec receiver
CPU Utilization: local/sender 3.1% (0.5%u/2.7%s), remote/receiver 20.3% (1.1%u/19.3%s)
CPU Utilization: local/receiver 3.1% (0.5%u/2.7%s), remote/sender 20.3% (1.1%u/19.3%s)
snd_tcp_congestion cubic
rcv_tcp_congestion cubic
[8][RX-C] 0.00-10.00 sec 88.5 MBytes 74.3 Mbits/sec 0 sender
[8][RX-C] 0.00-10.00 sec 88.3 MBytes 74.0 Mbits/sec receiver
snd_tcp_congestion cubic
rcv_tcp_congestion cubic

iperf Done.

A.2 UDP
A.2.1 UDP - 64 KB - 4.1 Mbps - Uplink

iperf 3.7
Linux tms 5.13.0-40-generic #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022 x86_64
Time: Sat, 26 Nov 2022 14:59:56 GMT
Connecting to host 192.168.8.20, port 5201

Cookie: 6rhxrewedvet3rtirivyl4hndyokj5qndaad
Target Bitrate: 4099999

[6] local 192.168.8.3 port 58344 connected to 192.168.8.20 port 5201
Starting Test: protocol: UDP, 1 streams, 64 byte blocks, omitting 0 seconds, 10 second test, tos 0
[ID] Interval Transfer Bitrate Total Datagrams
[6] 0.00-1.00 sec 500 KBytes 4.10 Mbits/sec 8002
[6] 1.00-2.00 sec 500 KBytes 4.10 Mbits/sec 8007
[6] 2.00-3.00 sec 500 KBytes 4.10 Mbits/sec 8008
[6] 3.00-4.00 sec 500 KBytes 4.10 Mbits/sec 8008
[6] 4.00-5.00 sec 500 KBytes 4.10 Mbits/sec 8008
[6] 5.00-6.00 sec 500 KBytes 4.10 Mbits/sec 8008
[6] 6.00-7.00 sec 500 KBytes 4.10 Mbits/sec 8008
[6] 7.00-8.00 sec 500 KBytes 4.10 Mbits/sec 8007
[6] 8.00-9.00 sec 500 KBytes 4.10 Mbits/sec 8008
[6] 9.00-10.00 sec 500 KBytes 4.10 Mbits/sec 8008
- -
Test Complete. Summary Results:
[ID] Interval Transfer Bitrate Jitter Lost/Total Datagrams
[6] 0.00-10.00 sec 4.89 MBytes 4.10 Mbits/sec 0.000 ms 0/80072 (0%) sender
[6] 0.00-10.00 sec 4.88 MBytes 4.09 Mbits/sec 0.152 ms 93/80072 (0.12%) receiver
CPU Utilization: local/sender 5.9% (0.0%u/5.9%s), remote/receiver 13.8% (0.8%u/13.0%s)

iperf Done.

73

A.2.2 UDP - 100 KB - 6.4 Mbps - Uplink

iperf 3.7
Linux tms 5.13.0-40-generic #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022 x86_64
Time: Sat, 26 Nov 2022 14:57:48 GMT
Connecting to host 192.168.8.20, port 5201

Cookie: 62nt4lsbw3ja5qtc5fjpw2xtpbvd2ghufmtr
Target Bitrate: 6400000

[6] local 192.168.8.3 port 46333 connected to 192.168.8.20 port 5201
Starting Test: protocol: UDP, 1 streams, 100 byte blocks, omitting 0 seconds, 10 second test, tos 0
[ID] Interval Transfer Bitrate Total Datagrams
[6] 0.00-1.00 sec 781 KBytes 6.40 Mbits/sec 7996
[6] 1.00-2.00 sec 781 KBytes 6.40 Mbits/sec 7998
[6] 2.00-3.00 sec 781 KBytes 6.40 Mbits/sec 8000
[6] 3.00-4.00 sec 781 KBytes 6.40 Mbits/sec 7999
[6] 4.00-5.00 sec 781 KBytes 6.40 Mbits/sec 8001
[6] 5.00-6.00 sec 781 KBytes 6.40 Mbits/sec 8001
[6] 6.00-7.00 sec 781 KBytes 6.40 Mbits/sec 8000
[6] 7.00-8.00 sec 781 KBytes 6.40 Mbits/sec 8000
[6] 8.00-9.00 sec 781 KBytes 6.40 Mbits/sec 8000
[6] 9.00-10.00 sec 781 KBytes 6.40 Mbits/sec 8000
- -
Test Complete. Summary Results:
[ID] Interval Transfer Bitrate Jitter Lost/Total Datagrams
[6] 0.00-10.00 sec 7.63 MBytes 6.40 Mbits/sec 0.000 ms 0/79995 (0%) sender
[6] 0.00-10.00 sec 7.62 MBytes 6.39 Mbits/sec 0.183 ms 117/79995 (0.15%) receiver
CPU Utilization: local/sender 13.6% (13.6%u/0.0%s), remote/receiver 25.1% (1.6%u/23.5%s)

iperf Done.

A.2.3 UDP - 500 KB - 32 Mbps - Uplink

iperf 3.7
Linux tms 5.13.0-40-generic #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022 x86_64
Time: Sat, 26 Nov 2022 14:56:31 GMT
Connecting to host 192.168.8.20, port 5201

Cookie: mkxsie5e5ekm4xmdfxstuxhji2cqg3mr3zww
Target Bitrate: 32000000

[6] local 192.168.8.3 port 48594 connected to 192.168.8.20 port 5201
Starting Test: protocol: UDP, 1 streams, 500 byte blocks, omitting 0 seconds, 10 second test, tos 0
[ID] Interval Transfer Bitrate Total Datagrams
[6] 0.00-1.00 sec 3.81 MBytes 32.0 Mbits/sec 7994
[6] 1.00-2.00 sec 3.81 MBytes 32.0 Mbits/sec 8000
[6] 2.00-3.00 sec 3.81 MBytes 32.0 Mbits/sec 8000
[6] 3.00-4.00 sec 3.81 MBytes 32.0 Mbits/sec 8000
[6] 4.00-5.00 sec 3.81 MBytes 32.0 Mbits/sec 8000
[6] 5.00-6.00 sec 3.81 MBytes 32.0 Mbits/sec 8000
[6] 6.00-7.00 sec 3.81 MBytes 32.0 Mbits/sec 8000
[6] 7.00-8.00 sec 3.81 MBytes 32.0 Mbits/sec 8000
[6] 8.00-9.00 sec 3.81 MBytes 32.0 Mbits/sec 8000
[6] 9.00-10.00 sec 3.81 MBytes 32.0 Mbits/sec 8000
- -
Test Complete. Summary Results:
[ID] Interval Transfer Bitrate Jitter Lost/Total Datagrams
[6] 0.00-10.00 sec 38.1 MBytes 32.0 Mbits/sec 0.000 ms 0/79994 (0%) sender
[6] 0.00-10.00 sec 38.1 MBytes 32.0 Mbits/sec 0.190 ms 26/79994 (0.033%) receiver
CPU Utilization: local/sender 6.1% (6.1%u/0.0%s), remote/receiver 6.6% (0.7%u/5.9%s)

iperf Done.

A.2.4 UDP - 1448 KB - 90 Mbps - Uplink

74

iperf 3.7
Linux tms 5.13.0-40-generic #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022 x86_64
Time: Sat, 26 Nov 2022 14:55:15 GMT
Connecting to host 192.168.8.20, port 5201

Cookie: whrytxg7dy5uqtlfyezga4eydelc6jlbfbdu
Target Bitrate: 90000000

[6] local 192.168.8.3 port 46344 connected to 192.168.8.20 port 5201
Starting Test: protocol: UDP, 1 streams, 1448 byte blocks, omitting 0 seconds, 10 second test, tos 0
[ID] Interval Transfer Bitrate Total Datagrams
[6] 0.00-1.00 sec 10.7 MBytes 89.9 Mbits/sec 7763
[6] 1.00-2.00 sec 10.7 MBytes 90.0 Mbits/sec 7770
[6] 2.00-3.00 sec 10.7 MBytes 90.0 Mbits/sec 7769
[6] 3.00-4.00 sec 10.7 MBytes 90.0 Mbits/sec 7769
[6] 4.00-5.00 sec 10.7 MBytes 90.0 Mbits/sec 7770
[6] 5.00-6.00 sec 10.7 MBytes 90.0 Mbits/sec 7769
[6] 6.00-7.00 sec 10.7 MBytes 90.0 Mbits/sec 7769
[6] 7.00-8.00 sec 10.7 MBytes 90.0 Mbits/sec 7770
[6] 8.00-9.00 sec 10.7 MBytes 90.0 Mbits/sec 7769
[6] 9.00-10.00 sec 10.7 MBytes 90.0 Mbits/sec 7769
- -
Test Complete. Summary Results:
[ID] Interval Transfer Bitrate Jitter Lost/Total Datagrams
[6] 0.00-10.00 sec 107 MBytes 90.0 Mbits/sec 0.000 ms 0/77687 (0%) sender
[6] 0.00-10.00 sec 107 MBytes 89.9 Mbits/sec 0.200 ms 65/77687 (0.084%) receiver
CPU Utilization: local/sender 6.4% (6.4%u/0.0%s), remote/receiver 7.3% (0.6%u/6.7%s)

iperf Done.

A.2.5 UDP - 64 KB - 4.1 Mbps - Downlink

iperf 3.7
Linux tms 5.13.0-40-generic #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022 x86_64
Time: Sat, 26 Nov 2022 15:03:45 GMT
Connecting to host 192.168.8.20, port 5201
Reverse mode, remote host 192.168.8.20 is sending

Cookie: qcbktbkaxbmc2l3vhfv7uckrnqbyojwf2luo
Target Bitrate: 4099999

[6] local 192.168.8.3 port 39203 connected to 192.168.8.20 port 5201
Starting Test: protocol: UDP, 1 streams, 64 byte blocks, omitting 0 seconds, 10 second test, tos 0
[ID] Interval Transfer Bitrate Jitter Lost/Total Datagrams
[6] 0.00-1.00 sec 500 KBytes 4.09 Mbits/sec 0.160 ms 0/7995 (0%)
[6] 1.00-2.00 sec 501 KBytes 4.10 Mbits/sec 0.133 ms 0/8010 (0%)
[6] 2.00-3.00 sec 501 KBytes 4.10 Mbits/sec 0.139 ms 0/8010 (0%)
[6] 3.00-4.00 sec 500 KBytes 4.10 Mbits/sec 0.182 ms 0/7999 (0%)
[6] 4.00-5.00 sec 500 KBytes 4.10 Mbits/sec 0.154 ms 0/8004 (0%)
[6] 5.00-6.00 sec 500 KBytes 4.09 Mbits/sec 0.145 ms 0/7998 (0%)
[6] 6.00-7.00 sec 500 KBytes 4.10 Mbits/sec 0.150 ms 0/8003 (0%)
[6] 7.00-8.00 sec 501 KBytes 4.10 Mbits/sec 0.164 ms 0/8011 (0%)
[6] 8.00-9.00 sec 500 KBytes 4.10 Mbits/sec 0.147 ms 0/7999 (0%)
[6] 9.00-10.00 sec 499 KBytes 4.09 Mbits/sec 0.152 ms 0/7985 (0%)
- -
Test Complete. Summary Results:
[ID] Interval Transfer Bitrate Jitter Lost/Total Datagrams
[6] 0.00-10.00 sec 4.89 MBytes 4.10 Mbits/sec 0.000 ms 0/80082 (0%) sender
[6] 0.00-10.00 sec 4.88 MBytes 4.10 Mbits/sec 0.152 ms 0/80014 (0%) receiver

iperf Done.

A.2.6 UDP - 100 KB - 6.4 Mbps - Downlink

iperf 3.7
Linux tms 5.13.0-40-generic #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022 x86_64
Time: Sat, 26 Nov 2022 15:03:02 GMT

75

Connecting to host 192.168.8.20, port 5201
Reverse mode, remote host 192.168.8.20 is sending

Cookie: uj2leieknlwprebdqi6a6kb5kn5s6gpglkyy
Target Bitrate: 6400000

[6] local 192.168.8.3 port 44747 connected to 192.168.8.20 port 5201
Starting Test: protocol: UDP, 1 streams, 100 byte blocks, omitting 0 seconds, 10 second test, tos 0
[ID] Interval Transfer Bitrate Jitter Lost/Total Datagrams
[6] 0.00-1.00 sec 781 KBytes 6.39 Mbits/sec 0.182 ms 0/7994 (0%)
[6] 1.00-2.00 sec 780 KBytes 6.39 Mbits/sec 0.210 ms 0/7989 (0%)
[6] 2.00-3.00 sec 781 KBytes 6.40 Mbits/sec 0.158 ms 0/8001 (0%)
[6] 3.00-4.00 sec 781 KBytes 6.40 Mbits/sec 0.191 ms 0/7998 (0%)
[6] 4.00-5.00 sec 782 KBytes 6.41 Mbits/sec 0.145 ms 0/8011 (0%)
[6] 5.00-6.00 sec 782 KBytes 6.40 Mbits/sec 0.181 ms 0/8003 (0%)
[6] 6.00-7.00 sec 779 KBytes 6.38 Mbits/sec 0.147 ms 0/7977 (0%)
[6] 7.00-8.00 sec 783 KBytes 6.41 Mbits/sec 0.188 ms 0/8016 (0%)
[6] 8.00-9.00 sec 781 KBytes 6.40 Mbits/sec 0.159 ms 0/7997 (0%)
[6] 9.00-10.00 sec 779 KBytes 6.38 Mbits/sec 0.176 ms 0/7979 (0%)
- -
Test Complete. Summary Results:
[ID] Interval Transfer Bitrate Jitter Lost/Total Datagrams
[6] 0.00-10.00 sec 7.63 MBytes 6.40 Mbits/sec 0.000 ms 0/80000 (0%) sender
[6] 0.00-10.00 sec 7.63 MBytes 6.40 Mbits/sec 0.176 ms 0/79965 (0%) receiver

iperf Done.

A.2.7 UDP - 500 KB - 32 Mbps - Downlink

iperf 3.7
Linux tms 5.13.0-40-generic #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022 x86_64
Time: Sat, 26 Nov 2022 15:02:21 GMT
Connecting to host 192.168.8.20, port 5201
Reverse mode, remote host 192.168.8.20 is sending

Cookie: gdustswbxenkoaw2lyrauo54dcrjtskqyusy
Target Bitrate: 32000000

[6] local 192.168.8.3 port 45426 connected to 192.168.8.20 port 5201
Starting Test: protocol: UDP, 1 streams, 500 byte blocks, omitting 0 seconds, 10 second test, tos 0
[ID] Interval Transfer Bitrate Jitter Lost/Total Datagrams
[6] 0.00-1.00 sec 3.81 MBytes 31.9 Mbits/sec 0.166 ms 0/7981 (0%)
[6] 1.00-2.00 sec 3.80 MBytes 31.9 Mbits/sec 0.184 ms 0/7972 (0%)
[6] 2.00-3.00 sec 3.80 MBytes 31.9 Mbits/sec 0.183 ms 0/7979 (0%)
[6] 3.00-4.00 sec 3.80 MBytes 31.9 Mbits/sec 0.122 ms 0/7976 (0%)
[6] 4.00-5.00 sec 3.80 MBytes 31.9 Mbits/sec 0.125 ms 0/7975 (0%)
[6] 5.00-6.00 sec 3.80 MBytes 31.9 Mbits/sec 0.162 ms 0/7978 (0%)
[6] 6.00-7.00 sec 3.80 MBytes 31.9 Mbits/sec 0.087 ms 0/7969 (0%)
[6] 7.00-8.00 sec 3.80 MBytes 31.9 Mbits/sec 0.095 ms 0/7974 (0%)
[6] 8.00-9.00 sec 3.80 MBytes 31.9 Mbits/sec 0.092 ms 0/7978 (0%)
[6] 9.00-10.00 sec 3.81 MBytes 31.9 Mbits/sec 0.154 ms 0/7980 (0%)
- -
Test Complete. Summary Results:
[ID] Interval Transfer Bitrate Jitter Lost/Total Datagrams
[6] 0.00-10.00 sec 38.1 MBytes 31.9 Mbits/sec 0.000 ms 0/79839 (0%) sender
[6] 0.00-10.00 sec 38.0 MBytes 31.9 Mbits/sec 0.154 ms 0/79762 (0%) receiver

iperf Done.

A.2.8 UDP - 1448 KB - 90 Mbps - Downlink

iperf 3.7
Linux tms 5.13.0-40-generic #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022 x86_64
Time: Sat, 26 Nov 2022 15:01:08 GMT
Connecting to host 192.168.8.20, port 5201
Reverse mode, remote host 192.168.8.20 is sending

Cookie: emiwmmgwo2skod4fw6pietnrpexwc6t45nzq

76

Target Bitrate: 90000000
[6] local 192.168.8.3 port 35457 connected to 192.168.8.20 port 5201
Starting Test: protocol: UDP, 1 streams, 1448 byte blocks, omitting 0 seconds, 10 second test, tos 0
[ID] Interval Transfer Bitrate Jitter Lost/Total Datagrams
[6] 0.00-1.00 sec 10.7 MBytes 89.9 Mbits/sec 0.140 ms 0/7765 (0%)
[6] 1.00-2.00 sec 10.7 MBytes 90.0 Mbits/sec 0.156 ms 0/7767 (0%)
[6] 2.00-3.00 sec 10.7 MBytes 90.0 Mbits/sec 0.141 ms 0/7770 (0%)
[6] 3.00-4.00 sec 10.7 MBytes 90.0 Mbits/sec 0.169 ms 0/7769 (0%)
[6] 4.00-5.00 sec 10.7 MBytes 90.0 Mbits/sec 0.160 ms 0/7771 (0%)
[6] 5.00-6.00 sec 10.7 MBytes 90.0 Mbits/sec 0.146 ms 0/7769 (0%)
[6] 6.00-7.00 sec 10.7 MBytes 90.0 Mbits/sec 0.151 ms 0/7769 (0%)
[6] 7.00-8.00 sec 10.7 MBytes 90.0 Mbits/sec 0.140 ms 0/7769 (0%)
[6] 8.00-9.00 sec 10.7 MBytes 90.0 Mbits/sec 0.152 ms 0/7770 (0%)
[6] 9.00-10.00 sec 10.7 MBytes 90.0 Mbits/sec 0.154 ms 0/7769 (0%)
- -
Test Complete. Summary Results:
[ID] Interval Transfer Bitrate Jitter Lost/Total Datagrams
[6] 0.00-10.00 sec 107 MBytes 90.0 Mbits/sec 0.000 ms 0/77692 (0%) sender
[6] 0.00-10.00 sec 107 MBytes 90.0 Mbits/sec 0.154 ms 0/77688 (0%) receiver

iperf Done.

A.2.9 UDP - 64 KB - 4.1 Mbps - Bidirectional

iperf 3.7
Linux tms 5.13.0-40-generic #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022 x86_64
Time: Sat, 26 Nov 2022 15:10:24 GMT
Connecting to host 192.168.8.20, port 5201

Cookie: unpgqopesssxryt3wknjy334kcpkwupmehgj
Target Bitrate: 4099999

[6] local 192.168.8.3 port 33994 connected to 192.168.8.20 port 5201
[8] local 192.168.8.3 port 42588 connected to 192.168.8.20 port 5201
Starting Test: protocol: UDP, 1 streams, 64 byte blocks, omitting 0 seconds, 10 second test, tos 0
[ID][Role] Interval Transfer Bitrate Jitter Lost/Total Datagrams
[6][TX-C] 0.00-1.00 sec 500 KBytes 4.10 Mbits/sec 8001
[8][RX-C] 0.00-1.00 sec 501 KBytes 4.10 Mbits/sec 0.089 ms 0/8010 (0%)
[6][TX-C] 1.00-2.00 sec 500 KBytes 4.10 Mbits/sec 8007
[8][RX-C] 1.00-2.00 sec 500 KBytes 4.10 Mbits/sec 0.097 ms 0/8006 (0%)
[6][TX-C] 2.00-3.00 sec 500 KBytes 4.10 Mbits/sec 8008
[8][RX-C] 2.00-3.00 sec 500 KBytes 4.10 Mbits/sec 0.118 ms 0/8006 (0%)
[6][TX-C] 3.00-4.00 sec 500 KBytes 4.10 Mbits/sec 8008
[8][RX-C] 3.00-4.00 sec 500 KBytes 4.10 Mbits/sec 0.114 ms 0/8008 (0%)
[6][TX-C] 4.00-5.00 sec 500 KBytes 4.10 Mbits/sec 8008
[8][RX-C] 4.00-5.00 sec 500 KBytes 4.10 Mbits/sec 0.125 ms 0/8008 (0%)
[6][TX-C] 5.00-6.00 sec 500 KBytes 4.10 Mbits/sec 8008
[8][RX-C] 5.00-6.00 sec 501 KBytes 4.10 Mbits/sec 0.124 ms 0/8013 (0%)
[6][TX-C] 6.00-7.00 sec 500 KBytes 4.10 Mbits/sec 8007
[8][RX-C] 6.00-7.00 sec 500 KBytes 4.10 Mbits/sec 0.122 ms 0/8008 (0%)
[6][TX-C] 7.00-8.00 sec 500 KBytes 4.10 Mbits/sec 8008
[8][RX-C] 7.00-8.00 sec 500 KBytes 4.10 Mbits/sec 0.114 ms 0/8001 (0%)
[6][TX-C] 8.00-9.00 sec 500 KBytes 4.10 Mbits/sec 8008
[8][RX-C] 8.00-9.00 sec 501 KBytes 4.10 Mbits/sec 0.105 ms 0/8016 (0%)
[6][TX-C] 9.00-10.00 sec 500 KBytes 4.10 Mbits/sec 8008
[8][RX-C] 9.00-10.00 sec 500 KBytes 4.10 Mbits/sec 0.106 ms 0/8004 (0%)
- -
Test Complete. Summary Results:
[ID][Role] Interval Transfer Bitrate Jitter Lost/Total Datagrams
[6][TX-C] 0.00-10.00 sec 4.89 MBytes 4.10 Mbits/sec 0.000 ms 0/80071 (0%) sender
[6][TX-C] 0.00-10.00 sec 4.89 MBytes 4.10 Mbits/sec 0.133 ms 19/80071 (0.024%)
receiver
CPU Utilization: local/sender 100.0% (22.1%u/77.8%s), remote/receiver 25.1% (1.4%u/23.7%s)
CPU Utilization: local/receiver 100.0% (22.1%u/77.8%s), remote/sender 25.1% (1.4%u/23.7%s)
[8][RX-C] 0.00-10.00 sec 4.89 MBytes 4.10 Mbits/sec 0.000 ms 0/80090 (0%) sender
[8][RX-C] 0.00-10.00 sec 4.89 MBytes 4.10 Mbits/sec 0.106 ms 0/80080 (0%) receiver

iperf Done.

77

A.2.10 UDP - 100 KB - 6.4 Mbps - Bidirectional

iperf 3.7
Linux tms 5.13.0-40-generic #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022 x86_64
Time: Sat, 26 Nov 2022 15:09:44 GMT
Connecting to host 192.168.8.20, port 5201

Cookie: 3u2rvt4elbes7szl5igbtiiwhyd7rdbikb7z
Target Bitrate: 6400000

[6] local 192.168.8.3 port 53484 connected to 192.168.8.20 port 5201
[8] local 192.168.8.3 port 44144 connected to 192.168.8.20 port 5201
Starting Test: protocol: UDP, 1 streams, 100 byte blocks, omitting 0 seconds, 10 second test, tos 0
[ID][Role] Interval Transfer Bitrate Jitter Lost/Total Datagrams
[6][TX-C] 0.00-1.00 sec 781 KBytes 6.39 Mbits/sec 7993
[8][RX-C] 0.00-1.00 sec 781 KBytes 6.40 Mbits/sec 0.095 ms 0/7999 (0%)
[6][TX-C] 1.00-2.00 sec 781 KBytes 6.40 Mbits/sec 8000
[8][RX-C] 1.00-2.00 sec 781 KBytes 6.40 Mbits/sec 0.103 ms 0/7996 (0%)
[6][TX-C] 2.00-3.00 sec 781 KBytes 6.40 Mbits/sec 8000
[8][RX-C] 2.00-3.00 sec 782 KBytes 6.40 Mbits/sec 0.109 ms 0/8003 (0%)
[6][TX-C] 3.00-4.00 sec 781 KBytes 6.40 Mbits/sec 8000
[8][RX-C] 3.00-4.00 sec 781 KBytes 6.40 Mbits/sec 0.107 ms 0/7995 (0%)
[6][TX-C] 4.00-5.00 sec 781 KBytes 6.40 Mbits/sec 8000
[8][RX-C] 4.00-5.00 sec 781 KBytes 6.40 Mbits/sec 0.093 ms 0/8001 (0%)
[6][TX-C] 5.00-6.00 sec 781 KBytes 6.40 Mbits/sec 8000
[8][RX-C] 5.00-6.00 sec 782 KBytes 6.40 Mbits/sec 0.103 ms 0/8005 (0%)
[6][TX-C] 6.00-7.00 sec 781 KBytes 6.40 Mbits/sec 8000
[8][RX-C] 6.00-7.00 sec 781 KBytes 6.40 Mbits/sec 0.102 ms 0/7994 (0%)
[6][TX-C] 7.00-8.00 sec 781 KBytes 6.40 Mbits/sec 8000
[8][RX-C] 7.00-8.00 sec 782 KBytes 6.40 Mbits/sec 0.103 ms 0/8006 (0%)
[6][TX-C] 8.00-9.00 sec 781 KBytes 6.40 Mbits/sec 8000
[8][RX-C] 8.00-9.00 sec 781 KBytes 6.40 Mbits/sec 0.118 ms 0/7994 (0%)
[6][TX-C] 9.00-10.00 sec 781 KBytes 6.40 Mbits/sec 8000
[8][RX-C] 9.00-10.00 sec 782 KBytes 6.40 Mbits/sec 0.094 ms 0/8005 (0%)
- -
Test Complete. Summary Results:
[ID][Role] Interval Transfer Bitrate Jitter Lost/Total Datagrams
[6][TX-C] 0.00-10.00 sec 7.63 MBytes 6.40 Mbits/sec 0.000 ms 0/79993 (0%) sender
[6][TX-C] 0.00-10.00 sec 7.63 MBytes 6.40 Mbits/sec 0.102 ms 16/79993 (0.02%)
receiver
CPU Utilization: local/sender 100.0% (24.7%u/75.3%s), remote/receiver 21.3% (2.0%u/19.3%s)
CPU Utilization: local/receiver 100.0% (24.7%u/75.3%s), remote/sender 21.3% (2.0%u/19.3%s)
[8][RX-C] 0.00-10.00 sec 7.63 MBytes 6.40 Mbits/sec 0.000 ms 0/80006 (0%) sender
[8][RX-C] 0.00-10.00 sec 7.63 MBytes 6.40 Mbits/sec 0.094 ms 0/79998 (0%) receiver

iperf Done.

A.2.11 UDP - 500 KB - 32 Mbps - Bidirectional

iperf 3.7
Linux tms 5.13.0-40-generic #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022 x86_64
Time: Sat, 26 Nov 2022 15:08:58 GMT
Connecting to host 192.168.8.20, port 5201

Cookie: shcj2vr7v4mawc4xqewnjtsqehgddbcjnn4t
Target Bitrate: 32000000

[6] local 192.168.8.3 port 57779 connected to 192.168.8.20 port 5201
[8] local 192.168.8.3 port 34737 connected to 192.168.8.20 port 5201
Starting Test: protocol: UDP, 1 streams, 500 byte blocks, omitting 0 seconds, 10 second test, tos 0
[ID][Role] Interval Transfer Bitrate Jitter Lost/Total Datagrams
[6][TX-C] 0.00-1.00 sec 3.81 MBytes 32.0 Mbits/sec 7993
[8][RX-C] 0.00-1.00 sec 3.81 MBytes 32.0 Mbits/sec 0.122 ms 0/7996 (0%)
[6][TX-C] 1.00-2.00 sec 3.81 MBytes 32.0 Mbits/sec 8000
[8][RX-C] 1.00-2.00 sec 3.81 MBytes 32.0 Mbits/sec 0.102 ms 0/7999 (0%)
[6][TX-C] 2.00-3.00 sec 3.81 MBytes 32.0 Mbits/sec 8000
[8][RX-C] 2.00-3.00 sec 3.81 MBytes 32.0 Mbits/sec 0.110 ms 0/7998 (0%)
[6][TX-C] 3.00-4.00 sec 3.81 MBytes 32.0 Mbits/sec 8000
[8][RX-C] 3.00-4.00 sec 3.82 MBytes 32.0 Mbits/sec 0.114 ms 0/8002 (0%)

78

[6][TX-C] 4.00-5.00 sec 3.81 MBytes 32.0 Mbits/sec 8000
[8][RX-C] 4.00-5.00 sec 3.82 MBytes 32.0 Mbits/sec 0.109 ms 0/8005 (0%)
[6][TX-C] 5.00-6.00 sec 3.81 MBytes 32.0 Mbits/sec 8000
[8][RX-C] 5.00-6.00 sec 3.81 MBytes 32.0 Mbits/sec 0.123 ms 0/7993 (0%)
[6][TX-C] 6.00-7.00 sec 3.81 MBytes 32.0 Mbits/sec 8000
[8][RX-C] 6.00-7.00 sec 3.82 MBytes 32.0 Mbits/sec 0.118 ms 0/8004 (0%)
[6][TX-C] 7.00-8.00 sec 3.81 MBytes 32.0 Mbits/sec 8000
[8][RX-C] 7.00-8.00 sec 3.82 MBytes 32.0 Mbits/sec 0.113 ms 0/8001 (0%)
[6][TX-C] 8.00-9.00 sec 3.81 MBytes 32.0 Mbits/sec 8000
[8][RX-C] 8.00-9.00 sec 3.81 MBytes 32.0 Mbits/sec 0.118 ms 0/7995 (0%)
[6][TX-C] 9.00-10.00 sec 3.81 MBytes 32.0 Mbits/sec 8000
[8][RX-C] 9.00-10.00 sec 3.82 MBytes 32.0 Mbits/sec 0.114 ms 0/8004 (0%)
- -
Test Complete. Summary Results:
[ID][Role] Interval Transfer Bitrate Jitter Lost/Total Datagrams
[6][TX-C] 0.00-10.00 sec 38.1 MBytes 32.0 Mbits/sec 0.000 ms 0/79993 (0%) sender
[6][TX-C] 0.00-10.00 sec 38.0 MBytes 31.9 Mbits/sec 0.127 ms 263/79993 (0.33%)
receiver
CPU Utilization: local/sender 100.0% (24.1%u/75.8%s), remote/receiver 12.3% (1.1%u/11.3%s)
CPU Utilization: local/receiver 100.0% (24.1%u/75.8%s), remote/sender 12.3% (1.1%u/11.3%s)
[8][RX-C] 0.00-10.00 sec 38.1 MBytes 32.0 Mbits/sec 0.000 ms 0/80006 (0%) sender
[8][RX-C] 0.00-10.00 sec 38.1 MBytes 32.0 Mbits/sec 0.114 ms 0/79997 (0%) receiver

iperf Done.

A.2.12 UDP - 1448 KB - 90 Mbps - Bidirectional

iperf 3.7
Linux tms 5.13.0-40-generic #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022 x86_64
Time: Sat, 26 Nov 2022 15:07:37 GMT
Connecting to host 192.168.8.20, port 5201

Cookie: x3bkzhbsbdrn34yvxbgoo6veqgqv5nyewlhg
Target Bitrate: 90000000

[6] local 192.168.8.3 port 39110 connected to 192.168.8.20 port 5201
[8] local 192.168.8.3 port 60876 connected to 192.168.8.20 port 5201
Starting Test: protocol: UDP, 1 streams, 1448 byte blocks, omitting 0 seconds, 10 second test, tos 0
[ID][Role] Interval Transfer Bitrate Jitter Lost/Total Datagrams
[6][TX-C] 0.00-1.00 sec 10.7 MBytes 89.9 Mbits/sec 7762
[8][RX-C] 0.00-1.00 sec 10.3 MBytes 86.6 Mbits/sec 0.170 ms 0/7473 (0%)
[6][TX-C] 1.00-2.00 sec 10.7 MBytes 90.0 Mbits/sec 7770
[8][RX-C] 1.00-2.00 sec 10.3 MBytes 86.7 Mbits/sec 0.135 ms 0/7487 (0%)
[6][TX-C] 2.00-3.00 sec 10.7 MBytes 90.0 Mbits/sec 7769
[8][RX-C] 2.00-3.00 sec 10.3 MBytes 86.4 Mbits/sec 0.079 ms 0/7461 (0%)
[6][TX-C] 3.00-4.00 sec 10.7 MBytes 90.0 Mbits/sec 7769
[8][RX-C] 3.00-4.00 sec 10.3 MBytes 86.5 Mbits/sec 0.167 ms 0/7465 (0%)
[6][TX-C] 4.00-5.00 sec 10.7 MBytes 90.0 Mbits/sec 7770
[8][RX-C] 4.00-5.00 sec 10.3 MBytes 86.8 Mbits/sec 0.170 ms 0/7494 (0%)
[6][TX-C] 5.00-6.00 sec 10.7 MBytes 90.0 Mbits/sec 7769
[8][RX-C] 5.00-6.00 sec 10.3 MBytes 86.8 Mbits/sec 0.108 ms 0/7493 (0%)
[6][TX-C] 6.00-7.00 sec 10.7 MBytes 90.0 Mbits/sec 7769
[8][RX-C] 6.00-7.00 sec 10.3 MBytes 86.5 Mbits/sec 0.078 ms 0/7468 (0%)
[6][TX-C] 7.00-8.00 sec 10.7 MBytes 90.0 Mbits/sec 7770
[8][RX-C] 7.00-8.00 sec 10.4 MBytes 86.9 Mbits/sec 0.085 ms 0/7504 (0%)
[6][TX-C] 8.00-9.00 sec 10.7 MBytes 90.0 Mbits/sec 7769
[8][RX-C] 8.00-9.00 sec 10.3 MBytes 86.8 Mbits/sec 0.090 ms 0/7493 (0%)
[6][TX-C] 9.00-10.00 sec 10.7 MBytes 90.0 Mbits/sec 7769
[8][RX-C] 9.00-10.00 sec 10.3 MBytes 86.6 Mbits/sec 0.171 ms 0/7477 (0%)
- -
Test Complete. Summary Results:
[ID][Role] Interval Transfer Bitrate Jitter Lost/Total Datagrams
[6][TX-C] 0.00-10.00 sec 107 MBytes 90.0 Mbits/sec 0.000 ms 0/77686 (0%) sender
[6][TX-C] 0.00-10.08 sec 106 MBytes 88.1 Mbits/sec 0.202 ms 1064/77686 (1.4%)
receiver
CPU Utilization: local/sender 100.0% (23.2%u/76.8%s), remote/receiver 7.6% (0.5%u/7.1%s)
CPU Utilization: local/receiver 100.0% (23.2%u/76.8%s), remote/sender 7.6% (0.5%u/7.1%s)

79

[8][RX-C] 0.00-10.00 sec 104 MBytes 87.4 Mbits/sec 0.000 ms 0/75451 (0%) sender
[8][RX-C] 0.00-10.08 sec 103 MBytes 86.0 Mbits/sec 0.171 ms 0/74815 (0%) receiver

iperf Done.

80

B Ping Results

B.1 Latency Uplink 10 s

PING 192.168.8.3 (192.168.8.3) 56(84) bytes of data.
64 bytes from 192.168.8.3: icmp_seq=1 ttl=64 time=1.03 ms
64 bytes from 192.168.8.3: icmp_seq=2 ttl=64 time=0.945 ms
64 bytes from 192.168.8.3: icmp_seq=3 ttl=64 time=0.858 ms
64 bytes from 192.168.8.3: icmp_seq=4 ttl=64 time=0.996 ms
64 bytes from 192.168.8.3: icmp_seq=5 ttl=64 time=0.721 ms
64 bytes from 192.168.8.3: icmp_seq=6 ttl=64 time=0.892 ms
64 bytes from 192.168.8.3: icmp_seq=7 ttl=64 time=0.893 ms
64 bytes from 192.168.8.3: icmp_seq=8 ttl=64 time=0.718 ms
64 bytes from 192.168.8.3: icmp_seq=9 ttl=64 time=0.918 ms
64 bytes from 192.168.8.3: icmp_seq=10 ttl=64 time=0.956 ms

--- 192.168.8.3 ping statistics ---
10 packets transmitted , 10 received , 0% packet loss, time 9126ms
rtt min/avg/max/mdev = 0.718/0.892/1.026/0.098 ms

B.2 Latency Downlink 10 s

PING 192.168.8.20 (192.168.8.20) 56(84) bytes of data.
64 bytes from 192.168.8.20: icmp_seq=1 ttl=64 time=0.747 ms
64 bytes from 192.168.8.20: icmp_seq=2 ttl=64 time=0.960 ms
64 bytes from 192.168.8.20: icmp_seq=3 ttl=64 time=1.06 ms
64 bytes from 192.168.8.20: icmp_seq=4 ttl=64 time=0.904 ms
64 bytes from 192.168.8.20: icmp_seq=5 ttl=64 time=1.12 ms
64 bytes from 192.168.8.20: icmp_seq=6 ttl=64 time=0.900 ms
64 bytes from 192.168.8.20: icmp_seq=7 ttl=64 time=0.906 ms
64 bytes from 192.168.8.20: icmp_seq=8 ttl=64 time=1.13 ms
64 bytes from 192.168.8.20: icmp_seq=9 ttl=64 time=0.937 ms
64 bytes from 192.168.8.20: icmp_seq=10 ttl=64 time=0.785 ms

--- 192.168.8.20 ping statistics ---
10 packets transmitted , 10 received , 0% packet loss, time 9040ms
rtt min/avg/max/mdev = 0.747/0.944/1.129/0.121 m

B.3 Flooding - 64 B - Downlink

PING 192.168.8.20 (192.168.8.20) 56(84) bytes of data.
.
--- 192.168.8.20 ping statistics ---
79582 packets transmitted , 79581 received, 0.00125657% packet loss, time 60000ms
rtt min/avg/max/mdev = 0.382/0.707/15.254/0.224 ms, pipe 2, ipg/ewma 0.753/0.683 ms

B.4 Flooding - 100 B - Downlink

PING 192.168.8.20 (192.168.8.20) 92(120) bytes of data.
..
--- 192.168.8.20 ping statistics ---
79292 packets transmitted , 79290 received, 0.00252232% packet loss, time 59999ms
rtt min/avg/max/mdev = 0.427/0.710/15.604/0.223 ms, pipe 2, ipg/ewma 0.756/0.724 ms

81

B.5 Flooding - 500 B - Downlink

PING 192.168.8.20 (192.168.8.20) 492(520) bytes of data.
.
--- 192.168.8.20 ping statistics ---
77670 packets transmitted , 77669 received, 0.0012875% packet loss, time 60000ms
rtt min/avg/max/mdev = 0.475/0.720/15.585/0.238 ms, pipe 2, ipg/ewma 0.772/0.718 ms

B.6 Flooding - 1448 B - Downlink

PING 192.168.8.20 (192.168.8.20) 1440(1468) bytes of data.

--- 192.168.8.20 ping statistics ---
47034 packets transmitted , 47034 received, 0% packet loss, time 59999ms
rtt min/avg/max/mdev = 0.908/1.159/15.347/0.292 ms, pipe 2, ipg/ewma 1.275/1.163 ms

B.7 Flooding - 64 B - Uplink

PING 192.168.8.3 (192.168.8.3) 56(84) bytes of data.
.
--- 192.168.8.3 ping statistics ---
66223 packets transmitted , 66222 received, 0.00151005% packet loss, time 59999ms
rtt min/avg/max/mdev = 0.453/0.748/15.278/0.258 ms, pipe 2, ipg/ewma 0.906/0.779 ms

B.8 Flooding - 100 B - Uplink

PING 192.168.8.3 (192.168.8.3) 92(120) bytes of data.
.
--- 192.168.8.3 ping statistics ---
63990 packets transmitted , 63989 received, 0.00156274% packet loss, time 59999ms
rtt min/avg/max/mdev = 0.449/0.774/28.881/0.285 ms, pipe 2, ipg/ewma 0.937/0.820 ms

B.9 Flooding - 500 B - Uplink

PING 192.168.8.3 (192.168.8.3) 492(520) bytes of data.
.
--- 192.168.8.3 ping statistics ---
56451 packets transmitted , 56450 received, 0.00177145% packet loss, time 59999ms
rtt min/avg/max/mdev = 0.551/0.888/15.126/0.255 ms, pipe 2, ipg/ewma 1.062/0.838 ms

B.10 Flooding - 1448 B - Uplink

PING 192.168.8.3 (192.168.8.3) 1440(1468) bytes of data.

--- 192.168.8.3 ping statistics ---
44269 packets transmitted , 44269 received, 0% packet loss, time 59999ms
rtt min/avg/max/mdev = 0.818/1.158/15.484/0.305 ms, pipe 2, ipg/ewma 1.355/1.114 ms

82

	Abstract
	Preface
	Contents
	Abbreviations and Acronyms
	1 Introduction
	2 Introduction to USB
	2.1 Overview
	2.2 Design and Architecture of the USB
	2.3 Connector Types
	2.4 Physical Interface Wiring
	2.5 Data Flow
	2.6 Device control
	2.6.1 Device Descriptor
	2.6.2 Configuration Descriptor
	2.6.3 Interface Descriptor
	2.6.4 Endpoint Descriptor

	2.7 USB Emulation Models

	3 Case Study
	3.1 Current Platform
	3.1.1 Sensor Data
	3.1.2 Back-filling Offline Data

	3.2 Development Plan
	3.2.1 Objectives
	3.2.2 Requirements
	3.2.3 Hardware
	3.2.4 Software

	3.3 Thesis Methodology

	4 Solution Development
	4.1 USB Task
	4.1.1 USB Host Stack

	4.2 Ethernet Task
	4.3 Data Flow Management
	4.3.1 Charger Application Data Buffers
	4.3.2 Buffer Sizes
	4.3.3 Rate of Data Flow

	4.4 End-to-end Design

	5 Testing Process
	5.1 iPerf
	5.1.1 Setup
	5.1.2 TCP
	5.1.3 UDP

	5.2 Ping
	5.3 Network Stream Service
	5.3.1 Patient Monitoring Simulation
	5.3.2 Stress Testing

	5.4 Hub MCU Utility
	5.4.1 UART Downlink Using CDC-ACM
	5.4.2 UART Uplink Using CDC-ACM

	5.5 End-to-End Monitoring Test
	5.6 Results Analysis

	6 Conclusion
	References
	A iPerf Results
	A.1 TCP
	A.1.1 TCP - 500 MB - Uplink
	A.1.2 TCP - 100 MB - Uplink
	A.1.3 TCP - 500 MB - Downlink
	A.1.4 TCP - 100 MB - Downlink
	A.1.5 TCP - 500 MB - Bidirectional
	A.1.6 TCP - 100 MB - Bidirectional
	A.1.7 TCP - 64 KB - Uplink
	A.1.8 TCP - 100 KB - Uplink
	A.1.9 TCP - 500 KB - Uplink
	A.1.10 TCP - 1448 KB - Uplink
	A.1.11 TCP - 64 KB - Downlink
	A.1.12 TCP - 100 KB - Downlink
	A.1.13 TCP - 500 KB - Downlink
	A.1.14 TCP - 1448 KB - Downlink
	A.1.15 TCP - 64 KB - Bidirectional
	A.1.16 TCP - 100 KB - Bidirectional
	A.1.17 TCP - 500 KB - Bidirectional
	A.1.18 TCP - 1448 KB - Bidirectional

	A.2 UDP
	A.2.1 UDP - 64 KB - 4.1 Mbps - Uplink
	A.2.2 UDP - 100 KB - 6.4 Mbps - Uplink
	A.2.3 UDP - 500 KB - 32 Mbps - Uplink
	A.2.4 UDP - 1448 KB - 90 Mbps - Uplink
	A.2.5 UDP - 64 KB - 4.1 Mbps - Downlink
	A.2.6 UDP - 100 KB - 6.4 Mbps - Downlink
	A.2.7 UDP - 500 KB - 32 Mbps - Downlink
	A.2.8 UDP - 1448 KB - 90 Mbps - Downlink
	A.2.9 UDP - 64 KB - 4.1 Mbps - Bidirectional
	A.2.10 UDP - 100 KB - 6.4 Mbps - Bidirectional
	A.2.11 UDP - 500 KB - 32 Mbps - Bidirectional
	A.2.12 UDP - 1448 KB - 90 Mbps - Bidirectional

	B Ping Results
	B.1 Latency Uplink 10 s
	B.2 Latency Downlink 10 s
	B.3 Flooding - 64 B - Downlink
	B.4 Flooding - 100 B - Downlink
	B.5 Flooding - 500 B - Downlink
	B.6 Flooding - 1448 B - Downlink
	B.7 Flooding - 64 B - Uplink
	B.8 Flooding - 100 B - Uplink
	B.9 Flooding - 500 B - Uplink
	B.10 Flooding - 1448 B - Uplink

