
Loudspeaker Modelling with
Recurrent Neural Networks

Teodors Kerimovs

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 31.05.2023

Supervisor and advisor

Prof. Sebastian Jiro Schlecht

Copyright © 2023 Teodors Kerimovs

Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the master’s thesis

Author Teodors Kerimovs
Title Loudspeaker Modelling with Recurrent Neural Networks
Degree programme Master of Science (Technology)
Major Acoustics and Audio Technology Code of major ELEC3030
Supervisor and advisor Prof. Sebastian Jiro Schlecht
Date 31.05.2023 Number of pages 57 Language English
Abstract
Digital twins of loudspeakers are a useful assets for fine-tuning purposes during
the design and the manufacturing phase. They can serve as an alternative to
real-time measurement for objective evaluation of adjustments made by digital
signal processing. Binaural loudspeaker models could introduce a more repeatable
framework for subjective listening and provide flexibility for remote work due to the
reduced need for actual physical devices.

Neural Networks are a well-proven tool for system identification of different
audio hardware devices. This thesis project will focus on creating a digital twin
of a multimedia stereo loudspeaker system by using stereo audio waveform as the
input and a binaural recording of the system’s playback as the target waveform for
Recurrent Neural Network (RNN) training. The RNN architecture is inspired by
the current state-of-the-art method for single channel audio effects modelling, and is
adapted for the stereo waveform use case.

Firstly, the RNN model is tested with different synthesized target data that
simulates the real recorded data. This approach allows us to estimate the properties
which are the most challenging for the RNN to learn. Secondly, the experiments
are run with a real recorded, time-aligned dataset, and the RNN’s performance is
objectively evaluated by the Error-To-Signal Ratio (ESR).

In the current state-of-the-art method on single channel audio modelling, the
initial hidden state of the RNN is computed by using no-gradient startup inference
to accumulate the hidden state over the first few hundred samples of the training
sequence. The thesis project proposes a new method called Discontinuous Sequence
Training (DISCO). The method prepares the training dataset according to the RNNs
architecture’s hyper-parameter sequence length and the system’s impulse response
length, such that it allows for correct initialization of the initial hidden state without
additional pre-training inference. DISCO reaches the training and inference precision
of hidden state initialization in the current state-of-the-art method for black-box
modelling with RNNs only by modifying the dataset.
Keywords Loudspeaker modelling, Deep Learning, Stereo modelling, RNN, DISCO

sequence training, Digital Twin, System Identification

4

Preface
This master’s thesis project was completed at Aalto University between April 2022
and February 2023.

The project was funded by Microsoft Finland. I am grateful for having Bryn
Louise as my colleague for the first few months of the project. I would like to extend
my gratitude to Heikki Laine and other Microsoft team members for managing the
project. I was very happy to notice the interest not only in the results but also in
the process of my research.

I sincerely thank my thesis supervisor, Professor Sebastian Schlecht, for his
invaluable guidance and support throughout my master’s studies. Even if my ideas
did not work out that well most of the time, Sebastian always gave me useful feedback
that was encouraging. That is indeed a special skill of a professor. The discussions
that we had, both within and outside the scope of my thesis, were an important
experience of my studies here at Aalto University and allowed me to learn from his
constructive and creative way of thinking.

I would also like to express my gratitude to Doctoral Student Alec Wright and
Professor Vesa Välimäki. Their contribution to deep learning in audio and their
work on real-time black-box modelling with recurrent Neural Networks are crucial
scientific sources for my master’s thesis work.

My studies at Aalto started in the autumn of 2021. While majoring in Acoustics
and Audio Technology, an important part of my time here has been my dear friends:
AV, BS, AG, MP, AJ, and IS. Thank you guys for the nudge when it was necessary
and for all the great adventures together!

Otaniemi, 31.05.2023

Teodors Kerimovs

5

Contents
Abstract 3

Preface 4

Contents 5

Symbols and abbreviations 6

1 Introduction 7
1.1 Background . 7
1.2 The Scope of this Research . 8
1.3 Research Goals and Questions . 9
1.4 Structure . 9

2 Theoretical Background 10
2.1 Loudspeaker Modelling . 10

2.1.1 Mathematical Models of Nonlinear Loudspeaker Modelling . . 10
2.1.2 White-box and Black-box Modelling 12
2.1.3 Receiver and Propagation Path from the Source 13

2.2 Deep Learning in Raw Audio Waveform modelling 15
2.2.1 Introduction to Terminology 15
2.2.2 Recurrent Neural Networks and Their Architectures 17
2.2.3 Loss functions . 23
2.2.4 RNN and other architectures compared for time-series modelling 25
2.2.5 Loudspeaker Modelling with Neural Networks 26

3 Method and Data 27
3.1 Recurrent Neural Network Architecture in Experiment 27
3.2 Hidden State Initialization . 29
3.3 Discontinuous sequence modelling . 30
3.4 Content of Data . 34
3.5 Dummy Head Recording . 35
3.6 Multimedia Loudspeaker Recording Simulation 36
3.7 Input - Target Time Alignment . 40

4 Results 42
4.1 Neural Network’s performance on raw MLRS data 42
4.2 Neural Network’s performance on MLRS data with delay correction . 45
4.3 Neural Network’s performance on DISCO MLRS data with delay

correction . 46
4.4 Neural Network’s performance on DISCO real data with delay correction 48

5 Discussion 52

6 Conclusion 53

6

Symbols and abbreviations

Symbols
fs sampling frequency

θ learnable parameters of the model

z−1 one sample time delay

||x − x̂||1 L1 norm between x and x̂

δ Dirac delta function

σ sigmoid function

Operators
(f ⋆ g)(n) discrete cross-correlation between f and g, with lag (n)

(f ∗ g)(n) discrete convolution between f and g, with lag (n)

≜ definition

⊙ element-wise multiplication

Abbreviations
MSE Mean-Squared-Error

ESR Error-to-Signal Ratio

SNR Signal-to-Noise Ratio

MLRS Multimedia Loudspeaker Recording Simulation

THD Total Harmonic Distortion

LSTM Long Short-Term Memory

GRU Gated Recurrent Unit

HRTF Head Related Transfer Function

7

1 Introduction
A loudspeaker is an electroacoustic device that includes one or more electroacoustic
transducers that convert electrical signals into sound pressure. Loudspeakers can be
used as standalone units or as part of applications where such signal conversion is
necessary, such as consumer electronics.

Strong commercial growth in the consumer electronics market appeared in the
mid-twentieth century when people and institutions turned their focus towards
peacetime uses of technologies [1]. Since then, technical capabilities in audio have
grown significantly hand in hand with expectations of the produced sound quality.
Small mobile devices such as smartphones, tablets, and laptops are an important
part of the modern consumer electronics market. First, cost and size are two major
design constraints for the built-in sound system of such mobile device. Loudspeakers
used in multimedia devices are miniature compared to HI-FI audio systems. It is
a challenging task for engineers and designers to deal with trade-offs between low
cost, small size, and the best possible sound quality of the built-in audio systems of
mobile devices [2].

Achieving optimal audio system performance for consumer electronics or multi-
media devices requires fine-tuning of the audio settings. The process involves using
a range of techniques such as equalization, compression, and noise reduction to
optimize sound quality for the target audience. To obtain objective measurements of
the resulting sound after adjustments, specialized equipment and techniques such as
measuring microphones and frequency analyzers may be used, and measurements
may be performed in an anechoic chamber to eliminate any unwanted reflections
or reverberation. In many cases, the adjustments to the audio playback may be
implemented using digital signal processing (DSP) blocks that are integrated into the
multimedia device. Collaboration with software developers responsible for implement-
ing the DSP algorithms is necessary to ensure that the adjustments are optimized
for the specific hardware and software components of the device. The process of
fine-tuning audio playback in multimedia devices requires technical expertise and
specialized equipment.

A digital twin of loudspeaker might be a useful asset for fine-tunning purposes
during the design and also manufacturing phase. It can serve as a alternative for
real-time measurement for objective evaluation of an adjustment made by digital
signal processing. Binaural loudspeaker models could introduce a more repeatable
environment for subjective listening and flexibility for the remote work due to the
reduced need for actual physical device.

1.1 Background
Neural Networks (NNs) have proved to be a useful tool in almost any field of technology,
including Acoustics and Audio Technologies. NNs’ ability to learn nonlinear functions
with a time-dependency from different types of audio signal representations solves
many tasks. In the audio effect industry over the last decade, one of the top challenges
has been the task of creating a digital twin for analog hardware units. Due to this

8

demand, there has been a lot of research related to Neural Networks being applied
to this issue. An important property for the neural network is the inference time,
since the emulation should work in real-time. Recurrent Neural Network (RNN)
architectures have proved to be sufficient for real-time tasks.

This Master’s Thesis aims to create a system identification model (digital twin)
of a stereo multimedia loudspeaker system recorded by a dummy head. The model
will be created using RNN. The digital twin will be further used in the fine-tuning
process of the stereo multimedia loudspeaker system.

1.2 The Scope of this Research
In the research, an RNN architecture proposed by [3] will be adapted to learn stereo
raw waveform data.

An input will be played through the loudspeaker system, and a target will be
recorded. Both the input and target are 2-channel (stereo) audio.

The model does not have any insight into the loudspeaker system itself, so the
modelling could be defined as a black-box problem for learning a non-linear transfer
function. A non-linear transfer function is a mathematical relationship between input
and output signals that does not satisfy the property of superposition. In other
words, the output of the system is not proportional to the input, and the relationship
between them can be complex, exhibiting behaviors such as saturation, compression,
distortion, and frequency-dependent effects.

The RNN parameters will be optimized by the Error-To-Signal-Ratio (ESR)
criterion and will try to replicate the recording (target). The model is trained on
waveform data.

The loudspeaker system (source) is recorded by a dummy head (receiver) at a
distance of 0.30 m in between. The recording is made in an anechoic chamber. The
model is dedicated to learning the whole system, i.e., the impulse response of the
loudspeaker system and Head-Related Transfer Functions.

Due to the loudspeaker-microphone distance in the measurement setup, a time
delay between the input and target is present, which degrades the model’s training
performance. A band-passed (40-18000 Hz) impulse is placed at the beginning of
the input data before the recording. The impulse response is recorded in the target
data. The input and target are time-aligned by using cross-correlation between the
band-passed impulse in the input and its recorded response in the target.

A new data management method that allows for the correct initialization of the
initial hidden state of the RNN will be presented. Each training sequence starts at
the sample when the previous sample’s hidden state represents the loudspeaker’s
rest state and can be initialized to a zero vector. The rest state refers to the state of
the black-box when it is not being excited, which means that there is silence in the
input and output of the black-box; no input signal is moving the membrane of the
loudspeaker.

9

1.3 Research Goals and Questions
The goal of the research is to create a system identification model of a multimedia
stereo loudspeaker using an RNN architecture. The training dataset consists of stereo
music as the input and binaural recording of multimedia stereo loudspeaker playback
as the target. The main research questions are:

• Which properties of the transfer function are challenging for an RNN to learn?

• Can the hidden state of the RNN be initialized better by modifying the training
data preparation according to the hyperparameters of the RNN’s architecture?

1.4 Structure
Theoretical background of loudspeaker modelling using Recurrent Neural Networks
(RNN) is discussed in Section 2. The practical implementation of the model and a
new approach to hidden state initialization are presented in Section 3. Additionally,
the recording, processing, and properties of data for RNN modelling are described
in Section 3. Results based on different datasets or training approaches are shown
and organized in Section 4. The Section 5 proposes possible improvements for the
implemented method, and the main outcomes are summarized in Section 6.

10

2 Theoretical Background
Section 2 introduces the reader to the theoretical background of the two main do-
mains necessary for implementation: loudspeaker modelling and raw audio waveform
modelling with RNNs.

2.1 Loudspeaker Modelling
Loudspeaker models allow for estimating the effects of adjustments without physically
modifying the system. Olive [4] conducted a listening test and concluded that the
most preferred loudspeakers among experienced listeners had the smoothest, flattest,
and most extended frequency responses, maintained uniformly off the listening
axis. To achieve such a design goal, system identification (creation of a digital
twin) could be very beneficial. Simultaneously achieving accurate and efficient
loudspeaker system identification presents a broad range of challenges [5], [6], [7].
Nonlinear loudspeaker models are valuable for various purposes, such as driver design,
loudspeaker equalization, linearization, or virtualization [8, 9, 10].

2.1.1 Mathematical Models of Nonlinear Loudspeaker Modelling

Loudspeakers are characterized by coupled multiphysical phenomena, including
mechanical, magnetic, electrical, thermodynamic, and acoustic aspects. The non-ideal
transduction process often results in nonlinear distortion, which significantly affects
sound quality. Nonlinear distortion is particularly pronounced when a loudspeaker is
driven by high-magnitude, low-frequency signals [11, 12]. When small electrodynamic
loudspeakers are operated close to their maximum rated power, they exhibit significant
objectively measurable nonlinear distortion.

Wiener model It is possible to approximate nonlinear input-output relationship
by decomposing it into two or more interconnected elements. In the Wiener modelling
approach, the dynamics of nonlinearity can be captured by combining a linear transfer
function that passes the signal to a static nonlinear function. A basic memory-less
Wiener model is shown in Fig. 1. The H(z) in Eq. (1) represents a linear transfer
function in the Z-Transform domain [13]:

H(z) = b0 + b1z
−1 + b2z

−2 + · · · + bMz−M

1 + a1z−1 + a2z−2 + · · · + aNz−O
, (1)

where the highest value between M and O denotes the transfer function length. The
absolute value of the power of z denotes the necessary amount of delay taps for the
input sample x(t) before it gets multiplied with corresponding gain coefficients a
in recursive path and b in non-recursive path in digital filter implementation. The
transfer function length and the values of the coefficients depend on the expected
dynamics of the Wiener structure. The choice of N can vary based on implementation,
e.g, hyperbolic tangent, sigmoid function, etc., could be used. Most commonly

11

exploited N in Wiener models are the power series:

ŷ(t) = N(x′(t)) = γ1x
′(t) + γ2(x′(t))2 + · · · + γi(x′(t))i, (2)

where γi is the gain coefficient for the i-th term in the power series. The value of i is
a design choice for the Wiener model.

Figure 1: Block diagram of the Wiener model in discrete time.

To perform system identification with Wiener model an input signal of system
x(t) and corresponding output signal of system y(t) is necessary. Wiener model for
optimization can be denoted as:

x′(t) = Z−1(H(Z(x(t)); b, a)), (3)

ŷ(t) = N(x′(t); γ), (4)
where b, a and γ are parameter vectors for optimization. Z denotes Z-Transform and
Z−1 denotes inverse Z-transform. The goal of optimization is to model ŷ(t) as close
as possible to the real system’s output y(t) [14]. These models have a convenient
block representation, a transparent relationship to linear systems, and are easier
to implement compared to more complex nonlinear models like Volterra models.
However, they do not take into account the previous state of the system or the input
from previous time steps.

State-space Modelling The loudspeaker signal can be viewed as time-series data.
Time-series can be seen as being generated by systems that transform information
from the past and present into future observations. In the most general case, such
modelling can be described by:

zt+1 = f(zt, xt), (5)

where the system’s future state zt+1 is described by the function f , zt represents
the system’s current state, and xt is the exogenous input to the system. Eq. (5)
is an example of a state (space) representation of zt [15]. State-space modelling
can be used for nonlinear loudspeaker modelling by finding a polynomial nonlinear
state-space model [16].

Volterra Series Expansion The nonlinear behavior of a loudspeaker mainly
depends on the excursion of the voice coil, and the governing differential equations
can be written as:

u(t) = Ri(t) + L
di

dt
+ Bl

dx

dt
, (6)

12

Bli(t) = m
d2x

dt2 + r
dx

dt
+ kx(t), (7)

where u(t) is the input voltage, i(t) is the input current, x(t) is the cone displacement,
Bl is the force factor, L is the voice coil inductance, k is the nonlinear function of
the displacement x, and R, m, and r are the electromechanical parameters of the
loudspeaker. The nonlinear differential equation can be derived by approximating
terms from Eq. (6) and (7) with a second-order truncated power series to capture
the nonlinear behavior of the voice coil:

Bl = bl0 + b1x + b2x
2, (8)

k = k0 + k1x + k2x
2, (9)

LE = LE0 + l1x + l2x
2. (10)

These nonlinear Differential Eqs. (6) and (7) can be solved using Volterra series
expansion [17]. The discrete-time expression for the Volterra series expansion is
shown in Eq. (11). In the Volterra series, the output of the nonlinear system depends
on the input to the system at all previous time steps in a causal system.

y(t) = h0 +
P∑︂

p=1

b∑︂
τ1=a

· · ·
b∑︂

τp=a

hp[τ1, . . . , τp]
p∏︂

j=1
x[t − τj], (11)

The hp(τ1, . . . , τp) are called discrete-time Volterra kernels. The variable x represents
the input of the system at the current discrete time step t, and τj allows for looking
at previous input values, depending on which Volterra kernel is used. If P is finite,
the series operator is said to be truncated. If a, b, and P are finite, the series
operator is called a doubly finite Volterra series. If a ≥ 0, the operator is said to be
causal. Volterra kernels are generalized nonlinear impulse response coefficients that
hold the information about the "memory" of the system. Solving the Volterra series
individually is complicated because the basis functionals of the Volterra series are
correlated.

2.1.2 White-box and Black-box Modelling

System modelling methods can be categorized into two classes based on how knowledge
of the system’s building blocks is incorporated in the modelling process.

White-box modelling This modelling approach utilizes the physical insight of the
system. The first attempts at such modelling were made by using lumped electrical
equivalent circuits and their descriptive differential equations [18]. Early work on
the white-box modelling approach was done by Thiele and Small, who discussed the
linear modelling of drivers and their enclosures when the loudspeaker is excited by
low-amplitude signals [19, 20]. Later, circuital models were extended to describe

13

the nonlinear loudspeaker behavior under the excitation of high-amplitude signals,
where different nonlinearities could be characterized by polynomial functions of the
voice coil [11]. The previously mentioned approach with Volterra series expansion
also utilizes insights into the system’s mechanics [17].

More modern white-box modelling approaches for loudspeaker modelling are
described in [7], where Wave Digital Filters (WDF) are used. WDF represents an
equivalent circuit of a nonlinear loudspeaker in discrete-time and is implemented as a
more efficient method of simulating the speaker. The results were compared to SPICE
equivalent circuits and showed promising outcomes, supporting the effectiveness of
this approach for loudspeaker virtualization.

Black-box modelling In black-box modelling, there is no information available
about the physical parameters of the system. These types of models solely rely on
the input signal and the output target signal of the device for system identification.
There are several approaches to black-box identification.

NARMAX modelling [21] utilizes sampled input and output data of the loud-
speaker to optimize function parameters based on Akaike’s information criterion.
This approach aims to learn a mathematical model that accurately reproduces the
loudspeaker’s output for a given input.

Volterra series can also be utilized in black-box modelling. In [8], a second-order
Volterra filter approximation is employed. The proposed filter structure, called multi-
memory decomposition (MMD), consists of three linear FIR filters and one multiplier.
The coefficients of MMD are determined with respect to a second-order reference
Volterra kernel. Block-oriented adaptive algorithms are proposed to calculate the
MMD weights using input and output measurements of the system. The parameters
of the Volterra model are obtained by minimizing the Mean-Squared-Error (MSE).

A separate research area has been dedicated to the modelling of nonlinear audio
effects and amplification simulations, which incorporates valuable principles and
approaches applicable to the topic of loudspeaker modelling [3, 22, 23, 24].

2.1.3 Receiver and Propagation Path from the Source

By viewing loudspeaker modelling from a system identification method’s perspective,
then a measurement of the loudspeaker’s output (target) corresponding to the input
should be recorded to create a mathematical model, which can replicate the system.
The resulting system’s impulse response is not only the loudspeaker itself. In addition,
the receiver’s and the propagation path’s response is a part of the system under the
modelling process.

In this thesis project, the source is a two channel loudspeaker system. The goal
is to create a model, which can replicate binaural recording of source. The source is
recorded by a dummy head. Thus, the impulse response consists also of Head-Related
Transfer Function for each recording channel.

Another aspect is that the propagation path adds time delay due to the sound
propagation through air. This significantly increases the length of total system’s
impulse response.

14

Source Directivity Sound sources have a specific radiation pattern that changes
over different wavelengths λ. Additionally, the calculation method of the radiation
pattern depends on the distance chosen from the radiator.

Let us assume that the radiator is a piston. In close distances, referred to as the
source’s near-field, the sound field is more complicated. The sound wave is spherical.
The particle velocity and pressure have a change in their phase difference over the
distance from the piston. At the piston’s surface, the phase difference is π

2 radians.
It gradually decreases and reaches 0 radians at the far-field. The distance of the
far-field for λ can be estimated by the inequality:

r >
πa2

λ
, (12)

where r is the distance from the piston, λ is the wavelength, and a is the surface
area of the piston. To ensure the far-field, r >> a.

In the far-field, r is large enough to approximate the sound wave as a plane wave.
The sound pressure at point M within distance r from the piston and θ as the angle
between the acoustical center of the piston and the unit vector pointing towards the
piston’s center from point P could be found by:

Mp(r,θ) = Aπa2 2J1(ka sin θ)
ka sin θ

eikr

r
, (13)

where A is the pressure amplitude, J1 is the Bessel function of order 1, k is the
wavenumber, and a is the surface area of the piston [25].

In the case of a stereo multimedia loudspeaker, the approximation with a piston
might be found too rough [26], and the stereo source (two moving radiators close to
each other) adds another degree of complexity for radiation patterns due to inference.

If the sound source is recorded at a single point, the directional characteristics
could be modeled with directional filtering. This would require a new equation
adjusted for the particular source. Recording at one point suppresses the reality
of sound sources emitting sound from different parts of their body [27]. Relatively
far away from the source (r >> a), complex source geometry is negligible. The
estimation of r for the far-field is also dependent on λ. During the transition from the
near-field to far-field, the radiation from different body parts could still be important.
If the source is recorded with multiple microphones, then the source directivity could
be combined with multiple point source interpretations. For stereo source modelling,
at least two point source interpretations are necessary, which could be later processed
and filtered in the manner of interest.

Head-Related Transfer Functions The human skull, outer ear, and ear canal
comprise the final segments of the transmission path before sound reaches the
tympanic membrane and enters the middle ear. A head-related transfer function
(HRTF) describes the acoustic transfer function between a point sound source in
the free-field and a specific position in the listener’s ear canal. HRTFs are vital for
creating immersive virtual acoustic environments reproduced over headphones or
loudspeakers [28]. Although HRTFs are individual-specific, a functional generalized
model can still be identified [29].

15

Dummy Head One of the commonly utilized microphone systems that incorpo-
rates HRTFs is known as a dummy head. The dummy head replicates a generalized
human torso and head, including the outer ear and ear canal, each with their charac-
teristic resonance, for each canal individually. Recordings made with a dummy head
are referred to as binaural recordings. These recordings capture source directivity
and serve as the final segment of the transmission path until the sound is captured
by the microphone in the binaural recording setup.

Time Delay Alignment with Cross Correlation Cross-correlation also known
as the sliding dot product is a measure of similarity of two data series, as a function of
the displacement of one relative to the other. For discrete time, the cross-correlation
is determined as:

(f ⋆ g)(n) ≜
∞∑︂

t=−∞
f(t)g(t + n), (14)

where f(t) denotes the complex conjugate of first function f(t), g(t + n) is the second
function and n is the displacement between two functions. For two correlated, but
time delayed signals, the cross correlation is a simple method to measure the time
delay. The highest function value of cross correlation appears when two signals are
most similar and the displacement argument n is equal to the time delay between
two signals. The discrete time delay τdelay in samples is found by:

τdelay = |arg max
t∈Z

((f(t) ⋆ g(t))(n))|. (15)

2.2 Deep Learning in Raw Audio Waveform modelling
It is assumed that the reader is familiar with the basics of Deep Learning. Section
2.2 is dedicated to introducing the reader and providing a high-level explanation
of the terminology used. The book "Deep Learning" by Ian Goodfellow [30] will be
referenced as a single, relatively comprehensive source for the terminology.

2.2.1 Introduction to Terminology

The quintessential example of a Neural Network is a single-layer feed-forward per-
ceptron, which can be described by:

ŷ = f(x; θ), (16)

where ŷ represents the output, x is the input, and f is the function of the perceptron
with its learnable parameters θ.

If the system’s response y (also called target) is measured using an input x, then
the model’s output f(x; θ) is denoted as ŷ. During the training of the network, the
parameters θ are optimized to adjust the model’s output in order to meet the defined
criterion, which is determined by the loss function. One of the most commonly used
optimization objectives is to minimize the difference between y and ŷ:

arg min
Lθ

L(y, f(x; θ)), (17)

16

where L could represent the Mean-Squared-Error between the arguments.
A widely used training method is back-propagation, where the gradient of a loss

function with respect to learnable weights θ denotes the adjustment of θ. For a single
perceptron, the parameter values for the next forward-propagation, denoted as θfp+1,
could be calculated as follows:

θfp+1 = θfp − ηg(θfp), (18)

where θfp represents the parameter values during forward pass before current back-
propagation, g is the gradient of the loss function with respect to θfp, and η is the
learning rate, which is a training hyper-parameter. The gradient of the loss function
with respect to θ can be computed as:

∂L
∂θ

= ∂L
∂ŷ

∂ŷ

∂θ
, (19)

where ŷ = f(x; θ) is the output of the model, used for computing the loss function in
Eq. (17).

Figure 2: Two consecutive single-layer perceptrons. f1 and f2

It is important to mention that for multiple consecutive single-layer perceptrons,
the chain rule can be applied to calculate parameter updates for a particular percep-
tron. In the case of two consecutive single-layer perceptrons, the chain rule can be
applied:

∂L
∂w

= ∂L
∂ŷ

∂ŷ

∂h

∂h

∂w
, (20)

where w are the learnable parameters of the first single-layer perceptron f1, and h is
the output value of it (see Fig. 2).

Mini-batch training Mini-batch training is a technique used in training deep
learning models, where the training data is divided into smaller subsets called mini-
batches. Instead of updating the model’s parameters based on the loss function
accumulation over single forward-propagation over the whole dataset, mini-batch
training computes the gradients based on smaller subsets of data.

Each mini-batch contains a fixed number of training examples. In case of raw
audio, mini-batch contains at least one sequence length of audio samples (see Fig. 3).
Sequence length is a training hyper-parameter. The amount of sequences "stacked"
on top of each other is called batch size, which is another training hyper-parameter.

17

Figure 3: Mini-batch training.

For each mini-batch, the model performs forward propagation, where the input
data is passed through the network, and predictions are generated. The model’s
predictions (output) are compared to the real system’s output (target), and loss value
is calculated to quantify the discrepancy between the predicted and actual values for
mini-batch.

The gradients of the loss function with respect to the model’s parameters are
computed using back-propagation and indicate the direction of the parameter updates
required to minimize the loss. The magnitude of update rule is further controlled by
optimization algorithm (such as Stochastic Gradient Descent [31] (SGD) or slightly
modified version ADAM optimizer [32]) based on the computed gradients. The
update rule adjusts the learnable parameters to reduce loss.

Forward-propagation for different mini-batches, loss calculation, back-propagation
and learnable parameter updates are repeated for until all mini-batches in the training
data have been processed. This completes one epoch of mini-batch training. Multiple
epochs may be performed to further refine the model.

Mini-batch training offers several advantages. It provides a balance between the
efficiency of SGD (which updates parameters after each batch) and the stability
of single batch gradient descent (which updates parameters after processing the
entire dataset). By utilizing different batch sizes, the training process can benefit
from parallel processing, memory optimization, and more stable parameter updates.
Parallelism is important, especially considering that the audio data has high sampling
rates and high resolution, resulting in a large amount of data within a small time
frame [33, 30, 34].

2.2.2 Recurrent Neural Networks and Their Architectures

Recurrent Neural Networks (RNNs) are a family of Neural Networks for processing
sequential data x1, x2, ..., xt−1, xt. RNN is sharing the same learnable parameters
between the time steps. This fact introduces the memory mechanism and allows the

18

network to learn time dependencies over sequential data.

Recurrent Neural Network Let us consider a dynamic system driven by an
external force xt:

st = f(st−1, xt), (21)

where st denotes the current state of the system, and f takes the system’s state
from the previous time step st−1. To learn such a system with an RNN, we use the
following equation:

ht = f(ht−1, xt; θ), (22)

where ht denotes the current hidden state, f is the RNN that takes the previous
hidden state ht−1 and the current input xt, and uses the learnable parameters θ,
which are shared across all time steps. The hidden state dimensionality is defined by
the RNN hyper-parameter hidden size. RNNs perform an embedding from the input
dimensions to the hidden size.

The hidden state is often used as an RNN output. An affine transformation
of the hidden state to the output dimensions can be performed by a multilayer
perceptron (MLP) to calculate the loss value between the output and the target. An
MLP is a type of Neural Network that consists of multiple layers of interconnected
single-layer perceptrons (see Section 2.2.1). For this particular affine transformation,
at a minimum, a two-layer MLP could be used with input dimensions corresponding
to the hidden size and output dimensions corresponding to the target dimensions per
time step.

The Eq. (22) can be visualized as shown in Fig. 4. This RNN processes
information from the input x by calculating h. On the left side, when the RNN cell
is "unfolded", it represents the training process. On the right side, the RNN cell is
"folded" to show the recurrence path during sample-by-sample filtering after training
(inference).

Figure 4: "Unfolded" and "folded" representation of an RNN.

The RNN structure introduces two major advantages due to its recursive nature.
Firstly, the sequence length of mini-batch can have different lengths because the RNN

19

can "unfold" as many times as there are time steps. Secondly, it is possible to use
the same transition function f with shared parameters across the time steps. These
two factors allow for learning a single model f that operates on all time steps for
different sequence lengths. The "unfolded" graph illustrates the idea of information
flowing forward in time when computing the output and loss [30].

Back-propagation through time The process of back-propagation through time
(BPTT) is used in RNNs to train the network by "unfolding" it in time (see Fig. 4).
During BPTT, starting from the last time step, the gradients of the loss function are
propagated backwards through the "unfolded" network with respect to the shared
parameters θ at each time step. The gradient calculation for a particular time step
is done using the chain rule (see Eq. (20)), and each time step can be interpreted
as a new copy of the network when BPTT is performed (the parameters θ remain
shared). This leads to increasingly long chains of gradient calculations towards the
beginning of the sequence. For long sequences, this is computationally expensive
and also leads to the vanishing gradient problem, which is further explained in
Section 2.2.2. Another drawback is the infrequent gradient updates, as only one
back-propagation is performed per mini-batch. This suggests using short sequences
for training, although there is specific advice on choosing the shortest sequence length
for modelling a particular system. At the beginning of a new forward propagation
with a new sequence, the output (hidden state) of the previous time step is not taken
into account. This results in a discontinuity in sequential modelling. The advice is
to pick a long enough mini-batch sequence that includes at least one full length of
the modeled system’s impulse response [3].

Figure 5: Truncated Backpropagation Through Time (TBPTT) in minibatch training.

An alternative approach to BPTT is Truncated Backpropagation Through Time
(TBPTT), depicted in Fig. 5 TBPTT breaks the mini-batch sequence into shorter
segments or chunks during training. Instead of back-propagating through the entire

20

sequence, TBPTT back-propagates through a truncated segment of fixed length,
which is defined as the network’s hyper-parameter. The "unfolded" segment is then
treated as a separate subsequence, and the gradients are computed and applied
within that subsequence, which can be referred to as the TBPTT length. The hidden
state of the RNN is preserved between segments to carry forward information and to
avoid discontinuity in sequential data. TBPTT does not provide the precise gradient
value for the whole mini-batch, but it gives an approximation that is used to update
the network’s learnable parameters. Although the hidden state is preserved, it is still
advised to choose a TBPTT length longer than the system’s impulse response to
ensure that the impulse response is not truncated [3].

Problems with RNN training The "unfolded" RNN is trained by applying back-
propagation over multiple time steps. This involves calculating the overall error
gradient, which is the sum of the error gradients at each individual time step (see
Section 2.2.1). In this paragraph the time step notation is put in the subscript for
convenience.

If we take a total of T time steps, the gradient update is given by the following
equation:

∂L
∂W

=
T∑︂

t=1

∂Lt

∂W
, (23)

where W is the learnable weight matrix. By utilizing the chain rule, we can determine
the overall loss gradient through the following computation:

∂L
∂W

=
T∑︂

t=1

∂L
∂ŷt

∂ŷt

∂ht

⋆⏟ ⏞⏞ ⏟
∂ht

∂hk

∂hk

∂W
, (24)

where ⋆ marks derivative of the hidden state at time t with respect to the hidden
state at time k. This term involves products of Jacobians ∂hi

∂hi−1
over subsequences

linking an event at time t and one at time k given by:

∂ht

∂hk

= ∂ht

∂ht−1

∂ht−1

∂ht−2
· · · ∂hk+1

∂hk

=
t∏︂

i=k+1

∂hi

∂hi−1
. (25)

Calculation of RNN hidden state which is also used as the RNN output for loss
calculation is stated by:

ht = fnonlin (Whxxt + Whhht−1) , (26)

where Whx and Whx are parameter matrices, ht is the current hidden state, ht−1 is the
previous hidden state, xt is the current input and fnonlin is the activation function.

The products of Jacobians in Eq. (25) features the derivative of the term ht w.r.t
ht−1, i.e. ∂hi

∂hi−1
which when evaluated on Eq. (26) yields to:

t∏︂
i=k+1

∂hi

∂hi−1
=

t∏︂
i=k+1

W ⊤diag [f ′
nonlin (hi−1)] (27)

21

If eigen-decomposition is performed on the Jacobian matrix ∂hi

∂hi−1
given by

W ⊤diag [f ′ (ht−1)], it leads to eigenvalues λ1, λ2, · · · , λt and corresponding eigen-
vectors v1, v2, · · · , vn. Any change on the hidden state between two time steps
∆ht = ht − ht−1 in the direction of a vector vi has the effect of multiplying the
change with the eigenvalue associated with this eigenvector λi∆ht. The product
of these Jacobians as seen in Eq. (25) implies that subsequent time steps, will
result in scaling the change with a factor equivalent to λt

i. Looking at the sequence
λ1

i ∆h1, λ2
i ∆h2, · · · λn

i ∆hn it is possible to see that the factor λt
i will end up dominating

the ∆ht, because this term grows exponentially for increasing t. This means that
if the largest eigenvalue λ1 < 1 then the gradient will vanish while if the value of
λ1 > 1 the gradient explodes [35]. Methods for preventing vanishing and exploding
gradients are mentioned in [30, 36].

Gated RNNs Most effective RNN architectures have gated memory mechanisms.
The two most widely used architectures are Long Short-Term Memory (LSTM) units
and gated recurrent units (GRU) units. Gated RNNs are based on the idea of creating
paths through time that have derivatives that neither vanish nor explode. If the
input consists of a longer sequence composed of shorter sequences, it might be useful
to learn the shorter sequences and forget the old state. The gate mechanisms of
LSTM and GRU units are used to learn when to forget the old state.

Figure 6: Architecture of an LSTM cell.

The LSTM unit’s state consists of two vectors: the cell state c and the hidden
state h. At each time step, the inputs are the current time step input xt, the cell
state from the previous time step ct−1, and the hidden state from the previous time
step ht−1. The LSTM produces two outputs: the updated hidden state ht and the
updated cell state ct (see Fig. 6). The output of the LSTM can be calculated using
the following equations:

it = σ(Wiixt + bii + Whiht−1 + bhi), (28)

ft = σ(Wifxt + bif + Whfht−1 + bhf), (29)

22

c̃t = tanh(Wicxt + bic + Whcxt−1 + bhc), (30)

ot = σ(Wioxt + bio + Whoht−1 + bho), (31)

ct = ftct−1 + itc̃t, (32)

ht = ottanh(ct), (33)

where it is the input gate, ft is the forget gate, c̃t is the candidate cell state, ot is the
output gate, tanh is the hyperbolic tangent function, and σ is the logistic sigmoid
function.

The LSTM unit’s state is determined by eight weight matrices and eight bias
vectors (if bias is used), denoted by W and b respectively. These weights and biases
are the learnable parameters of the LSTM unit, which are learned during training.
The dimensions of the weight matrices are determined by the channel amount in the
input and the hidden size.

The GRU is an alternative gated RNN unit [37]. The GRU unit’s state consists
of a single hidden state vector, h. At each time step, the inputs are the current time
step input xt and the initial hidden state ht−1. The GRU is depicted in Fig. 7. The
hidden state of the GRU is calculated according to the following functions:

Figure 7: Architecture of a GRU cell.

rt = σ(Wirxt + bir + Whrht−1 + bhr), (34)

zt = σ(Wizxt + biz + Whzht−1 + bhz), (35)

h̃t−1 = tanh(Wihxt + bih + rt(Whhht−1 + bhh)), (36)

ht = (1 − zt)h̃t + ztxt−1, (37)

23

where rt is the reset gate, zt is the update gate, and h̃t is the candidate hidden
state. The hidden state vector is determined by six weight matrices and six bias
vectors (if used). The weight matrices and bias vectors are learnable during network
training. The updated hidden state ht−1 is used as the initial state for time step t.
The dimensionality of the hidden state is a hyper-parameter of the LSTM and GRU
units. The ht is usually used as the output of these units.

2.2.3 Loss functions

In deep learning, various combinations of optimizers are used. Good results for time
series prediction with LSTM RNNs are reported by using the ADAM optimizer with
MSE loss [38]. MSE is written in Eq. (38), where yi is the target, yî is the model’s
output, and N is the length of the sequence used for loss calculation:

MSE = 1
N

N−1∑︂
i=0

(yi − yî)2 . (38)

Wright et al. [39] propose using the Error-to-Signal ratio (ESR) stated in Eq. (39).
By algebraic modification, it is possible to see that ESR is MSE normalized over the
target signal’s average energy. The MSE loss value depends only on the difference
between the target and the output, thus it does not depend on the target energy.
However, in the case of audio, the same MSE loss could be perceived differently
depending on the target signal’s level. In other words, a higher signal level masks the
same error better than lower signal levels. Using ESR as the loss function ensures a
higher penalty to the network’s weights in the case of lower target signals for the
same error value, as it is normalized over the signal’s energy:

ESR =
∑︁N−1

i=0 (yi − yî)2∑︁N−1
i=0 y2

i

=
1
N

∑︁N−1
i=0 (yi − yî)2

1
N

∑︁N−1
i=0 y2

i

= MSE
1
N

∑︁N−1
i=0 y2

i

. (39)

To show the previously mentioned statements, a visualization of MSE and ESR
calculations was performed. Firstly, white noise sequences with levels ranging from
-78 dB to -24 dB with 50 steps were generated to imitate the signal. Secondly, white
noise error sequences with levels ranging from -60 dB to -45 dB with 50 steps were
generated to imitate the error. ESR values within the given signal and error levels
are up to 108 higher than MSE values. However, this does not directly translate to
108 higher penalties for the model’s parameters (weights and/or biases) when the
ADAM optimizer is used, due to its loss function’s momentum accumulation [32].
The MSE loss is not dependent on the signal level and depends only on the error level.
On the other hand, ESR is highest when the error level is highest and the signal level
is lowest. This difference does affect the training process, even when the ADAM
optimizer’s loss momentum accumulation is used, because ESR introduces a different
loss function characteristic based on the signal level. In Fig.8, the MSE and ESR are
normalized over their maximum values. This type of visualization shows how these
two loss functions, depending on the signal-to-error ratio, affect the training with
the ADAM optimizer.

24

Figure 8: Normalized MSE and ESR loss functions.

Wright et al. [39] propose a perceptual loss function. While working with RNNs,
they showed that RNNs do not necessarily converge to replicate high-frequency
content well, since the signal energy there is much smaller than in low frequencies.
Despite the energy difference, high frequencies are audible. By using an emphasis
filter, high frequencies were learned better. Furthermore, they introduced an A-
weighted ESR loss as the training criterion. This type of loss function puts more
emphasis on learning content that is important for the subjective evaluation of the
model.

To express the noise-robust loss function described in [40], let us begin with the
given equation:

L =
∑︂

t

(ŷ(t) − [s(t) ∗ h(t) + n(t)])2, (40)

where s(t) represents the source signal, ŷ(t) is the measured noisy target signal, h(t)
is the ideal impulse response, and n(t) is the uncorrelated noise. By defining the
residual r(t) = ŷ(t) − s(t) ∗ h(t), we can rewrite the loss as:

L =
∑︂

t

(r(t) − n(t))2 =
∑︂
ω

|(R(ω) − N(ω)|2, (41)

where ω represents the angular frequency. We have now expressed the loss function
in the frequency domain using Parseval’s theorem. If we assume that the phase of
the residue r(t) is equivalent to the phase of the noise n(t), we can further simplify
the loss function:

L =
∑︂
ω

(|Ŷ (ω) − S(ω)H(ω)| − |N(ω)|)2, (42)

where Ŷ (ω) and S(ω) represent the Fourier transforms of ŷ(t) and s(t), respectively,
and H(ω) represents the Fourier transform of the impulse response h(t). This L
allows us to consider the spectrum of the noise in the loss function.

25

The multi-scale spectral loss, introduced in [41], addresses the limitations of
point-wise loss on raw audio waveforms by considering the spectral characteristics of
the signals. Given the model signal’s spectrogram Si and the target signal’s spectrum
Ŝi, with a specific FFT size i, the spectral amplitude distance is defined as follows:

Li = ||Si − Ŝi||1 + α|| log Si − log Ŝi||1, (43)

where || · ||1 represents the L1 norm, and α is a weighting term. The spectral
amplitude distance is computed between the model signal’s spectrogram and the
target signal’s spectrum, considering both the magnitude and logarithmic differences.
To reconstruct the overall loss, the individual spectral losses are summed:

Lreconstruction =
∑︂

i

Li. (44)

The authors of [41] used specific FFT sizes of (2048, 1024, 512, 256, 128, 64) and set
the neighboring frames in the Short-Time Fourier Transform (STFT) to overlap by
75%. By using different FFT sizes and considering the spatial-temporal resolutions,
the Li values capture the differences between the original and synthesized audio
at multiple scales. This allows for a more perceptually meaningful evaluation and
comparison of the synthesized signals.

2.2.4 RNN and other architectures compared for time-series modelling

There have been several approaches to use RNNs and WaveNet architectures in
time-series modelling tasks. Both methods have their advantages and disadvantages.
Wright et al. [3] state that the WaveNet approach used in [23] and [22] is more
precise than RNNs in exceptional cases when comparing the Error-To-Signal ratio.
In terms of inference time, RNNs appear to be faster. The inference time comparison
was conducted using optimized C++ implementations.

Another comparison between architectures is published in [24]. The comparison
was made between Python implementations, and the results showed lower precision
for WaveNet. In terms of speed, this review publishes results indicating that WaveNet
works faster than RNNs during the inference stage.

From a theoretical perspective, RNNs are hardly parallelizable during training
because the output sample of the RNN unit depends on the previous state. In
contrast, WaveNet is parallelizable since output samples are not dependent on the
previous output and are computed from independent samples of different receptive
fields. However, during inference, RNNs consume less time for the task due to the
same reason. WaveNet produces one output sample from a large receptive field. The
large receptive field is converted to one output sample with several hidden layers, each
consisting of three stages: kernel filtering, nonlinear activation, and down-pooling.
This means a lot of operations per sample. For RNNs, during inference, one output
sample is produced for each time step of the RNN unit operation.

Recently, there has been a publication about learning State-Space Models that
can work with both advantages - parallel training and recursive generations [42].
This model operates on raw audio waveforms and is used for generative tasks, similar

26

to WaveNet [43]. This work also includes a theoretical comparison of RNNs and
WaveNet as discussed in this paragraph.

2.2.5 Loudspeaker Modelling with Neural Networks

The dominant part of loudspeaker nonlinear behavior is the voice coil actuator. In
[44], the voice coil is modeled with RNNs. 3-D modelling and then the Finite Element
Method could also work, but that is computationally inefficient and does not allow
for short-time loudspeaker simulations. In this paper, RNNs are incorporated into a
3-D Multiphysics simulation to increase computational efficiency. It is just a part of
the actual physical model, but the RNN that simulates the voice coil is trained as a
black box. The simulation trains the RNN for 14,000 time steps, and for the next
6,000 time steps, the LSTM predicts the transient behavior.

Recently, another black-box loudspeaker modelling approach using RNNs was
proposed in [45]. The objective is to develop a versatile and generic nonlinear
model that can be applied in industrial applications such as distortion cancellation
and excursion or power limiters. The proposed model takes a digital audio signal
as input and generates output of membrane displacement and voice coil current,
resembling a discrete-time single input multiple output system. The training and
validation signals employed in the model are explained, and data from a two-inch
broadband loudspeaker driver is used for training purposes. The trained LSTM-based
model is then compared to a classical state-space model that includes standard
displacement-related nonlinearities.

Another domain where nonlinear modelling is often used is guitar effect modelling.
In this field, Neural Networks are very often used, and architectures such as RNNs
and CNN Wavenets are very popular. Both are used for modelling the black box of
guitar stomp-boxes or tube amplifiers [3], [24]. The practical part of the Master’s
thesis is greatly influenced by [3], as there are a lot of principles that could be
borrowed from this domain since both are dealing with nonlinear modelling.

27

3 Method and Data
One of the important aspects of RNN training is the initialization of hidden state.
Thesis project proposes new method of hidden state initialization called Discontinuous
(DISCO) sequence training (see Section 3.3). To perform system identification the
data of the system’s input and corresponding output (target) is necessary. The
following Section 3 will also discuss the data used for the training of RNN architecture.

In the Sections 3.5 and 3.6 the two systems that produce the data for the NN
to learn are discussed. In the Real Recorded data, one of the most challenging
properties for network to learn is the time delay due to sound propagation from
source to receiver. If the network is pushed to learn this part of total impulse response,
it degrades the later part of learned response.

LSTMs and GRUs are gated RNNs and they prove to be better than Vanilla RNNs
for learning time dependencies in sequential data, however it is still under a question
mark, what is the upper length of time dependencies that RNN can sufficiently learn.
This is one of the reasons why the Multimedia Loudspeaker Recording Simulation
(MLRS) system was created (see Section 3.6). Generating data with MLRS for
different properties (sample delay, SNR, etc.) and training the NN on it helps to find
the optimal NN architecture and its parameters. For an example, in the original
paper [3], a skip connection was introduced between input sample and the output
sample to allow NN to learn only the difference between input and target. However,
it will not be used in this method due to its diminishing effect when the time delay
between the input sample and output sample is present.

3.1 Recurrent Neural Network Architecture in Experiment
For the experimental part of this thesis work, an adaptation of Neural Network
proposed in [3] will be used. The architecture of the the network is depicted in Fig.
9.

It consists of one or more stacked RNN units and fully connected layer. In
previous work, this particular network was used to learn wave forms of nonlinear
guitar effects with black-box modelling approach. Modeled nonlinear guitar effects
were single channel audio. In thesis work, the dataset is two channel audio - a stereo
recording. Two modifications were introduced to make the previous architecture
functional for stereo data. Firstly, the amount of input features were changed from 1
to 2. Secondly, the fully connected layer’s output features were changed from 1 to 2,
to perform affine transformation from RNN’s hidden state to stereo output per time
step.

For the network’s training, truncated back propagation through time (TBPTT)
is used. TBPTT is applied after each 1000 samples of sequence with preservation of
hidden state (see Section 2.2.1).

Loss function (criterion) in the experiment is Error-to-Signal Ratio (ESR). Wright
[39] was mentioning that simple ESR without using high-emphasis filtering and DC
correction term leads into lack of high frequencies and less perceptual quality. In
this thesis experiment simple ESR is going to be used (see Section 2.2.3), to evaluate

28

Figure 9: Neural Network’s architecture [3] is adapted for stereo audio, where xt is
the input signal, ht and ht−1 are recurrent unit’s hidden states and ŷt is the Neural
Network’s predicted output sample.

networks performance objectively.
One of the first adjustments that were made to adapt the original single channel

architecture [3] was the elimination of skip connection between the input and output,
which enabled to learn only the difference between the input and target. However,
the skip connection was degrading the networks performance, in case there was a
time delay between input and target longer than 3 samples in 48 kHz sampling rate.
All the further experiments were performed without skip connection, due to the fact
that input and target time-alignment method does not ensure 0 sample delay.

Table 1: Model’s and training hyper-parameters

TBPTT
Model Layers Skip Channels Hidden Sequence Batch Epochs Criterion after

connection size length size n
samples

LSTM 2 No 2 128 4800 50 150 ESR 1000

GRU 2 No 2 128 4800 50 150 ESR 1000

29

Model and training hyper-parameters are shown in Table 1.

3.2 Hidden State Initialization
In the Section 2.2.2 the basic RNN was discussed:

ht = f(ht−1, xt; θ), (45)

where ht denotes current hidden state, f is the RNN, which intakes previous hidden
state ht−1 and current input xt and uses the learnable parameters θ, which are shared
across all the time steps. Important aspect of RNN training is the initialization
of very first hidden state h0. A default method is to initialize it to a vector of
zeros, however there are approaches which use no gradient inference (pre-run) for
few hundred samples to accumulate the h0 [3].

Figure 10: RNN h0 initialization with zero vector.

A naive approach is to set it to a zero vector based on the Neural Network’s
hyper-parameter called hidden size, and then start training with the first sample
(see Fig. 10). However, this approach fails to consider the system’s state during
h0 initialization, resulting in an incorrect beginning of the training sequence if the
system has not been in a rest state (see Section 3.3).

Another approach was presented in [3] and the idea is depicted in Fig. 11.

30

Figure 11: RNN h0 initialization with start up inference.

At the beginning of the training sequence, a no-gradient startup inference is
performed for a few hundred samples. This allows the hidden state to initialize
properly. Once the hidden state is accumulated during this startup inference, it is
referred to as the initial hidden state h0. This initial hidden state is then used as
the previous hidden state for the first sample during training with gradients.

The very first hidden state of the startup inference is also initialized as the zero
vector, matching the dimensionality of the hidden size. However, because of the
startup inference before the actual training, the impact of this initialization mistake
is reduced. It is important to note that startup inference is loosing data for gradient
updates.

3.3 Discontinuous sequence modelling
Discontinuous sequence modelling (DISCO) is a new method of data management
(see Fig. 12) that assures correct hidden state initialization for the first time step for
all training sequences (see Eqs. (46) - (57)). Let us take a look at LSTM and GRU
Eq. (28) and plug the zero vectors in the input of current time step and hidden state
of previous time step. The networks are not using bias parameters.

ft = σg(Wfxt + Ufht−1) (46)

it = σg(Wixt + Uiht−1), (47)

ot = σg(Woxt + Uoht−1), (48)

c̃t = σc(Wcxt + Ucht−1), (49)

31

ct = ft ⊙ ct−1 + it ⊙ c̃t, (50)

ht = ot ⊙ σc(ct), (51)
where σg is sigmoid function and σc is hyperbolic tangent. Silence in the input
denotes xt = 0. The vectors ht−1 = {0} and ct−1 = {0}, so the Eqs.(46)-(51) could
be rewritten as:

ft = σg(0) = 0.5, (52)

it = σg(0) = 0.5, (53)

ot = σg(0) = 0.5, (54)

c̃t = σc(0) = 0, (55)

ct = ft ⊙ ct−1 + it ⊙ c̃t = 0, (56)

ht = ot ⊙ σc(ct) = 0. (57)
Assumed input values and derivations (eqs. (46) - (57)) show that the hidden

state as zero vector are valid during the rest state and correct for the LSTM and
GRU training as the initial hidden state if the black-box has been in rest state before
first time step of training. If the black-box is a loudspeaker the rest state means that
loudspeaker membrane is not under excitation.

A waveform-wise example is depicted in Fig. 13, where the input′ and target′

of DISCO training is depicted and compared to continuous sequence in context of
training and initial hidden state initialization. The silent parts had not been excluded
yet in input′ and target′.

Let us consider that the black-box has a linear impulse response (see Fig. 13).
In linear example, the continuous target could be generated by using convolution
between continuous input and black-box impulse response, and DISCO input′ and
black-box impulse response respectively.

The input is modified - an empty vector of audio (silence) is periodically inserted
after certain amount of samples corresponding to the NN’s hyper parameter sequence
length - when input′ data set is created. The target′ is recorded by using modified
DISCO input′. After the recording, the empty parts are excluded and the input′′

and target′′ are used for NN’s training. Original audio length is restored after the
empty parts are excluded before tn for more time steps than the impulse response
length of the black-box. The rest state of black-box is ensured by using silence in
the input′ while recording target′. No excitation means zero signal in the recording
microphone, thus no signal in the training data (input′′ and target′′). Since the
system does not include DC component, the silence in the input does not provide

32

Figure 12: Continuous and DISCO data management.

any information about the impulse response of the black-box. Black-box starts to
be excited at tn (see Section 3.1, Fig. 9). During the rest state the h0 or (h0 and
c0) could be initialized to zero vectors with dimensions corresponding to the NN’s
parameter hidden size.

33

Figure 13: Discontinuous sequence training and initial hidden state initialization
compared to training with continuous sequence.

The time steps corresponding to the h0 (t39 or t79) are present in input′ and
target′. The signal value corresponding to the first samples of two RNN training
sequences are at t40 or t80. NN’s hyperparameter sequence length is taken into
account when DISCO input′ is generated and when silent parts are excluded from
the input′ and target′ to create input′′ and target′′. In the example of Fig.13 the
sequence length is set to 20 samples. The time steps corresponding to the h0 is not
present in input′′ and target′′, so that the previous hidden state can be correctly
initialized to the zero vector (see Section 2.2.1 and 3.1). Method proposes that the
initial (previous) hidden state vector h0 at time step t1 could be correctly initialized

34

to zero vector if the system has been into rest state before first this first training
step t1.

3.4 Content of Data
Two main datasets are going to be used in this experiment. Datasets have sampling
frequency of 48000 Hz and are encoded in 32-bit floating - point. This type of data
is used for NN’s training in thesis experiment. In the training sequence, the data is
organized as follows. 90% of data is used for training and validation purposes. At
first the training and validation part is split into sequences, e.g. 4800 samples (100
ms). The length of the sequences is training hyper-parameter. These sequences are
randomly shuffled before the first training epoch (see Section 2.2.1). After shuffling
the training and validation set is divided into a half again, so that during single
epoch 50% or data is used for training and 50% is used for the validating of the
current epoch.

Figure 14: Data organization during training, validation and testing.

The rest 10% of the overall data is used for the test step, which evaluates the
trained network’s performance for the whole dataset after all epochs (see Fig. 14).

The short input dataset consists of 60 seconds of audio from "deadmau5 - Strobe"
(4:00 - 5:00) that will be processed by Multimedia Loudspeaker Recording Simulation
(MLRS) and will create different types of MLRS processed target data. The chosen
musical fragment consists of transients that are wide in spectrum. This type of audio
content is challenging for the network to learn. Processed target is going to be used
for experiments with different properties of data and the results are collected in
Section 4.1. MLRS is described more in Section 3.6.

The long input dataset is 42 minutes in length and covers most of the music
genres to ensure that digital twin of loudspeaker could be used for wide variety of
music. It will be used to record the multimedia device and is composed as follows:

• Training and Validation part:

– Ultra Bra - Minä Suojelen Sinua Kaikelta (0:00 - 3:00)
– Katedrāle - Tas Trakais Kavalieru Gads (0:00 - 3:00)
– Dons - Izdrāz man zirdzin, u (1:15 - 4:15)
– J.S. Bach - Suite No 3 in C major (Viola) (0:15 - 3:15)
– Sergei Rachmaninoff - Piano Concerto No 2 (8:15 - 11:15)
– Sergei Prokofiev - Toccata op. 11 (0:00 - 3:00)
– deadmau5 - bot (2:15 - 5:15)

35

– deadmau5 - FML (0:29 - 3:29)
– deadmau5 - Ghosts’n’Stuff (2:15 - 5:15)
– ANÚNA - Fill, Fill a Rún (0:08 - 3:08)
– ANÚNA - An Raibh Tú ar an gCarraig (0:37 - 3:37)
– Dead Air - Edwin feat. Joshua Lee Turner (1:05 - 4:05)

• Testing part:

– Ultra Bra - Minä Suojelen Sinua Kaikelta (3:00 - 3:30)
– Katedrāle - Tas Trakais Kavalieru Gads (3:00 - 3:30)
– Dons - Izdrāz man zirdzin, u (4:15 - 4:45)
– J.S. Bach - Suite No 3 in C major (Viola) (3:15 - 3:45)
– Sergei Rachmaninoff - Piano Concerto No 2 (11:15 - 11:45)
– Sergei Prokofiev - Toccata op. 11 (3:00 - 3:30)
– deadmau5 - bot (5:15 - 5:45)
– deadmau5 - FML (3:29 - 3:59)
– deadmau5 - Ghosts’n’Stuff (5:15 - 5:45)
– ANÚNA - Fill, Fill a Rún (3:08 - 3:38)
– ANÚNA - An Raibh Tú ar an gCarraig (3:37 - 4:07)
– Dead Air - Edwin feat. Joshua Lee Turner (4:05 - 4:35)

The recording approach for acquiring target is more discussed in the following
Section 3.5.

3.5 Dummy Head Recording
In the experiment, a multimedia stereo loudspeaker system with two drivers is
recorded with GRAS 45BB KEMAR Head & Torso simulator. Recording was done
in anechoic chamber. Distance between loudspeaker system and the Dummy Head is
0.30 m. Loudspeaker system is placed at the same height as the dummy head. The
acoustical center is parallel to the chamber’s floor and aimed towards Dummy Head
nose. Loudspeaker system was recorded at LAeq = 65dB (A-weighted equivalent
loudness level) playback, measured with a sound level meter at 0.02 m distance from
Dummy Head’s left ear. Recording setup is generally depicted in Fig. 15. The
resulting linear impulse response of the whole recording setup is about 12 ms long of
which 4 ms is the time delay due to the 0.30 m distance between source and receiver.
Due to the reason that dummy head does not simulate human skin, the reflections
of a rigid mannequin might even more elongate the response. SNR (Signal-To-Noise
ratio) of recording is 45 dB.

36

Figure 15: Recording setup of physical system with dummy head in anechoic chamber.

3.6 Multimedia Loudspeaker Recording Simulation
Real recorded data has distinguishable properties such as:

• Sample delay due to distance from the microphone to the loudspeaker

• Linear part of speaker’s and HRTF’s impulse response

• Nonlinear distortion of the drivers

• Signal To Noise Ratio due to audio recording

These properties could be simulated separately or in chosen combination by
creating artificial datasets by Multimedia Loudspeaker Recording Simulation (MLRS).
This approach will help to look after network’s ability to learn single or a combination
of real recording properties, e.g. 100 sample time delay with SNR = 30 dB.

MLRS consists of three main blocks - time delay, nonlinear Wiener structure and
degradation with noise. Time delay is controllable zero pad length, that is concate-
nated with an input audio vector, so that after the attachment the zero pad appears
in the beginning of input audio vector over the time dimension. Mathematically the
concatenation could be replaced with convolution with delayed Dirac function δ (in
Fig. 16, the ∗ stands for convolution). Further, the signal path enters nonlinear
Wiener structure, where the signal is convolved with Linear Impulse Response (IR)

37

Figure 16: Multimedia Loudspeaker Recording Simulation processing pipeline.

which is generated from the temporally filtered white noise. The length of Linear IR
is a controllable MLRS parameter. Temporal filter is written in

38

Figure 17: MLRS linear impulse responses and corresponding decay curves.

s′(t) = s(t) ∗ δ(t − d), (58)

where the s′(t)) is the time delayed signal, δ is Dirac delta function, s(t) is the input
signal, n is the sample and d is the delay in samples (length of zero pad).

s′(t) = tanh(ctanh · s(t)), (59)

where s′(t) is the nonlinear processed signal, ctanh is gain coefficient and s is the
input signal. Linear IR and nonlinear function forms the Wiener structure.

After the convolution, audio is processed by nonlinear block, which applies tanh
nonlinearity with controllable intensity (see Eq. (59)).

39

Figure 18: MLRS tanh nonlinearity curves.

The last block in MLRS is the degradation with noise, by using signal output
of Wiener structure. Signal gets convolved with white noise, which simulates the
recording noise and it is controlled by Signal-To-Noise ratio (SNR) as a MLRS
parameter. A random noise vector is generated by drawing samples from Gaussian
distribution and s(t) is the signal, that is under noise contamination.

Psignal, dB = 10log10(s(t)2
rms), (60)

where Psignal, dB is the signal power in dB.

Pnoise, dB = 10log10(noise(t)2
rms), (61)

where Pnoise, dB is the noise power in dB.

gnoise, dB = Psignal, dB − Pnoise, dB − SNR, (62)

where gnoise, dB is the necessary gain for noise in dB.

gnoise = 10
gnoise, dB

20 , (63)

where gnoise is the necessary linear gain.

noisescaled = noise(t) · gnoise (64)

40

s(t)′ = s(t) + noise(t)scaled, (65)

where s(t)′ is the signal with determined SNR. The amplitude of s(t)′ should be
normalized between [-1; 1].

The signal and noise vectors’ average powers are calculated in Eqs.(60), (61) and
further used in Eq. (62) to find the gnoise which scales the random noise vector, so
that the Eq. (65) outputs signal vector with Signal-To-Noise ratio determined by
MLRS parameter SNR.

3.7 Input - Target Time Alignment
In the real recorded data a time delay between input and recorded target is introduced
due to the distance between microphone and source. This delay could be eliminated
by using simple delay adjustment method, that shortens the time - dependency that
NN’s need to learn and improves the performance. A discrete, non-fractional delay
adjustment will be used.

τdelay = |arg max
t∈Z

((input(t) ⋆ target(t))[n])|, (66)

where ⋆ denotes cross-correlation, n is the sample delay in discrete time t.
At the beginning of input, a band passed (40Hz - 18kHz) impulse is placed. The

target is recorded and black-box impulse is captured. To estimate the time delay
a cross correlation is performed between input’s band passed impulse and target’s
impulse response. The cross correlation maximum appears before t0 sample. The
absolute value of sample number where the cross correlation maximum appears is
the time delay for the target (see Eq. (66)).

41

Figure 19: Input and Target time alignment with cross correlation.

A 5 sample (fs = 48000) safe addition of delay is kept for the target to ensure
the systems causality. From experiments, if the delay correction is relaying only
on the cross correlation result, the causality might be lost, because the during the
playback and propagation through air, the impulse gets low-passed and smeared in
time. The (τdelay − 5) is the amount of samples that is deleted from the beginning of
recorded target signal, to ensure the input and target alignment. A zero-pad with an
equivalent length is added at the end of target after deletion [46].

42

4 Results
In the following chapter the results are gathered over two different systems by using
two different datasets.

The first system is the Multimedia Loudspeaker Recording Simulation (MLRS)
system, which is using the Short Dataset. The results from MLRS are used for
determining most challenging properties of a real recording for the network to learn.
By analyzing such NN’s results on MLRS, it is possible to state possible improvements
for recording setup, NN’s architecture and existing methods or create new methods,
to treat the challenging properties.

The second group of results states the performance of NN’s over Real Recorded
Data. The network is evaluated by an objective measure Error-To-Signal Ratio
(ESR). This is the final and most important evaluation of the network’s performance
and the new-found methods in this thesis project.

4.1 Neural Network’s performance on raw MLRS data
Multimedia Loudspeaker Recording Simulation (MLRS) data sets were used to model
speaker recording, to show model’s ability to learn different features of data. Data
used for MLRS target generation is discussed in Section 3.5. Network’s architecture
from Wright 2019 [3] with no skip connection (more discussed in 3.1) was used in
following experiments for Tables 2., 3., 4., 5 combined in Fig. 20. Fixed model
hyper-parameters are shown in Table 1. The hyper-parameters for first experiments
were found empirically.

For the results the ESR loss evaluated over test part and converted to dB by
10log10(ESR). The target signal is generated from input by MLRS with hyper-
parameters that are shown in Tables 2., 3., 4., 5.

Table 2: LSTM and GRU performance over different impulse response lengths
evaluated by ESR in dB

Model
Impulse response length in samples

0 6 12 24 48 96 192 384 768
LSTM -60 -24 -30 -31 -28 -21 -20 -13 -11
GRU -52 -24 -30 -27 -23 -21 -19 -15 -12

Other parameters:
linear response; delay = 0; SNR > 90 dB

When LSTM and GRU are trained by dataset with changing impulse response
length, both models perform similarly (see Table 2). The longer the impulse response,
the higher is the difference and ESR of the test set. When impulse response length
is 768 samples (16ms) long the model performs the worst.

43

Figure 20: Network’s performance with MLRS data.

44

Table 3: LSTM and GRU performance over different delay lengths evaluated by ESR
in dB

Model
Delay length in samples

0 6 12 24 48 96 192 384 768
LSTM -63 -42 -40 -25 -24 -11 -8 -3 -1
GRU -50 -30 -26 -22 -18 -17 -16 -11 -9

Other parameters:
linear response; IR = 0; SNR > 90 dB

LSTM and GRU react differently on the change of delay lengths (Table 3). Up
to delay of 24 samples, the LSTM learns with lower ESR, but when the time delay
is longer than 48 samples, the GRU shows better ESR. The experiment shows that
there is no crucial difference for the NN to learn impulse response compared to the
time delay. However, the NN’s learn shorter time dependencies better. It is not in
experiment’s interest to shorten the impulse response, but the delay reduction is
possible by input - target time alignment and could provide better results. Delay
adjustment takes place in Section 4.2.

Table 4: LSTM and GRU performance over different levels of nonlinearity evaluated
by ESR in dB

Model
Tanh nonlinearity

0 (linear) 2 4 6 8 10
LSTM -13 -12 -12 -13 -12 -12
GRU -14 -13 -14 -13 -14 -13

Other parameters:
SNR = 60; IR = 384; delay = 6

MLRS distortion is regulated by ctanh. This fact might bias the results, since
the RNN units has the same nonlinear function in the architecture. Never the less,
experiment with changing ctanh shows that the network does not loose performance
in terms of ESR over different strength of nonlinearity.

45

Table 5: LSTM and GRU performance over different SNR evaluated by ESR in dB

Model
SNR

80 60 40 20 10
LSTM -12 -12 -12 -12 -10
GRU -15 -13 -14 -13 -11

Other parameters:
ctanh = 4; IR = 384; delay = 6

Different SNR affect LSTM and GRU similarly, with GRU performing with
slightly lower ESR over all SNR ratios. For MLRS dataset with changing SNR a
384 samples (8ms) long impulse response and 6 samples (0.25ms) long time delay
was applied. It might be that the response was too complicated for network to learn
properly, so that the affection of SNR could be slightly mispronounced with this
dataset. However, the impulse response of the real recording is expected to be 5 ms
if the input and the target does not include from the time delay.

As it is discussed before, the RNNs do have problems with learning long time
dependencies, the performance drops by increasing length of dependency.

4.2 Neural Network’s performance on MLRS data with de-
lay correction

Section 3.7 discusses method for input - target time alignment. In this section, data
that was generated for the experiment in Section 4.1, Table 3 will be time - aligned.
The NN’s performance on time-aligned data is shown in Table 6.

Table 6: LSTM and GRU performance over time-aligned delay lengths evaluated by
ESR in dB

Model
Delay length in samples

0 6 12 24 48 96 192 384 768
LSTM -63 -62 -63 -63 -61 -62 -61 -61 -61
GRU -50 -48 -49 -49 -50 -49 -48 -47 -48

Other parameters:
linear response; IR = 0; SNR > 90 dB

* - time aligned

Time-alignment eliminates the time delay, improves the results and maintains
the ESR approximately in the same level over different delay lengths. The slightly
different values are appearing due to the training with Stochastic Gradient Descent

46

and non-fixed initial weights and bias terms. The results of Table 6. and 3. are
shown in Fig. 21. The time-alignment will be further used in evaluating the DISCO
training with MLRS and real data system, due to the significant improvement in
results over different time delays.

Figure 21: Network’s performance on data with different Delay lengths compared to
adjusted Delay lengths.

Another aspect of the results is the training time. In previous tables and figures
the results were gathered by using the hyper-parameters stated in Table 1. The NNs
were training for 150 epochs. GRU units are converging faster than the LSTM units
due to the less learnable parameters, however, the LSTM’s learn more precise, when
the time delay is adjusted. The training curves evaluated by ESR over optimizer
steps are going to be shown in Section 4.4.

4.3 Neural Network’s performance on DISCO MLRS data
with delay correction

The current section gathers the results over three different approaches of hidden
state initialization. First is the naive approach of "Cold Start", when the hidden
state is initialized to zero vector. The second approach is the no gradient startup
run for accumulating the hidden state over first few hundred samples of training
sequence. The third will be the proposed approached called DISCO sequence training,
which is a new method of initializing the hidden state (see Section 3.3). All three
approaches are used for LSTM and GRU recurrent units. The results are depicted
in Fig. 22. The hyper-parameters of NNs were set to previously used ones (see
Table 1). The MLRS parameters were set to following: IR = 4 samples, Delay = 2
samples, ctanh = 4 and SNR > 90 dB. Long dataset was used to produce input and

47

target signals (see Section 3.4). The goal for the particular experiment is determine
whether DISCO sequence training functions or not. Its ability to learn longer time
dependencies is further tested in Section 4.4.

Figure 22: Training and Validation curves of NN’s training with 3 hidden state
initialization approaches for 2 recurrent cell types performing on MLRS data. ESR
depicted in logarithmic scale over training epochs.

The DISCO sequence training on MLRS data reaches the precision of no-gradient
startup run for hidden state accumulation when using the GRU. The DISCO training
with LSTM performs the best in the test inference (see Fig. 23). The performance
of LSTM with no-gradient startup run might an unsuccessful training run. This
claim is based on the fact that results with Real Recorded data in Section 4.4 shows
similar performance between DISCO and no-gradient startup run.

48

Figure 23: Test run results of NNs with 3 hidden state initialization approaches for
2 recurrent cell types performing on MLRS data. ESR stated in dB.

Special treatment for the hidden state initialization is important. Results in Fig.
23 shows that the naive "cold start" approach with initializing the hidden state to
zeros reduces the test precision by approximately 10 dB in case of MLRS data.

Training and testing results on MLRS data show that DISCO sequence training is a
well-functioning approach of hidden state initialization and shows similar performance
to no-gradient startup. The section presents the results on Real Recorded data.

4.4 Neural Network’s performance on DISCO real data with
delay correction

The following section presents project’s results over the real recorded data by using
the long dataset stated in Section 3.4. Before the training, the input and target is
time-aligned with non-fractional delay correction (see Section 3.7). Three different
approaches on hidden state initialization are used from Section 3. Two different
recurrent cells will be tested as a part of the architecture - LSTM and GRU - with
hyper-parameters that were utilized in previous results (see Section 1). In total, 6
different training and testing approaches are gathered. The training and validation
curves are depicted in Fig. 4.4 and show no evidence of common training problems
(see Section 2.2).

49

Figure 24: Training and Validation curves of NN’s training with 3 hidden state
initialization approaches for 2 recurrent cell types performing on Real Recorded data.
ESR depicted in logarithmic scale over training epochs.

NNs were trained for 150 epochs. The best result is shown by LSTM with
the DISCO training (see Fig. 25). The DISCO approach reaches the precision of
no gradient startup run, which is the method presented in [3]. Results show how
important it is to treat the initial hidden state. The naive approach by just initializing
it to zero vector corresponding to hidden size gives 6 dB higher Error-To-Signal
Ratio.

50

Figure 25: Test run results of NNs with 3 hidden state initialization approaches for
2 recurrent cell types performing on Real Recorded data. ESR stated in dB.

The LSTM recurrent cells show better final precision, however the GRU converges
faster due to smaller amount of learnable parameters. In training epoch number 55,
the GRU shows validation performance of ESR = -28 dB. After this training epoch,
the GRU does not show any decrease in ESR in validation or test curves by further
training. The LSTM stably shows higher precision than -28 dB only after training
epoch number 100 and the final ESR of LSTM is just 2 dB lower of that by being
-30 dB (see Fig. 25).

Figure 26: Signal power levels of target, model’s output, their difference and target’s
SNR.

Another objective perspective over the best performance by LSTM with DISCO
training is depicted in Fig. 26, by comparing 4 different signal power levels of the
test run data. The Target of the test part is used to evaluate the model’s output
precision during the inference, by in-taking the input of the test part of dataset.
The Difference is acquired by subtracting the wave forms of test part’s target and
output resulting into another waveform. Also, the noise during the target recording
is measured. The levels are further calculated by using Root-Mean-Squared value of

51

corresponding waveform with 10log10(RMStest)2. Levels are plotted in bars. The L1
norm between the Difference and Target results in the ESR loss value during test
inference.

Figure 27: Target and model’s Output waveforms during test run.

In dB scale the L1 norm between target and model’s output is the same when
rounded to two decimal numbers, since the wave form of target is replicated by model
with precision of ESR = -30 dB (see Fig. 27). The goal of the model is to reach ESR
as low as possible. The best possible precision without any noise reduction would be
when Difference reaches the value of Noise, so that there is no more deterministic
part between input and target to learn. The SNR of dataset is 45 dB. The L1 norm
between the Noise and Difference is 14 dB of the best model. Expressed in dB scale,
the model has learned 69% of the deterministic part between the input and target.

52

5 Discussion
The results (Section 4) of thesis work show that it is possible to create a system
identification model of a stereo loudspeaker system by using a relatively simple RNN
architecture. The ESR of -30 dB denotes that the inferred audio generated by the
model is coherent and close to the target. The State-Of-Art single channel audio
modelling [3] was adapted for the stereo use case and functioned well without drastic
changes in the model’s architecture.

The networks were trained by using an ESR loss. This metric also serves as the
main value for objective evaluation of the model. Further evaluation of the model
should be made by conducting subjective listening tests, since one of the use cases
for the model would be the emulation of the physical system during fine tuning and
subjective listening.

In the Section 2.2.3, several approaches on the loss functions were discussed. If
the main objective of the model was to perform well in subjective listening tests,
the training results would benefit from a perceptual loss function. The multi-scale
spectral loss with an emphasis on high frequencies should be tested for such purpose.
However, there is an obstacle - the changing size of sequence length in case of TBPTT
when whole number of TBPTT length does not fit into batch sequence, or whole
number of TBPTT length does not fit into whole training data length. This fact
should be taken into account when spectral loss is used, because of multi-scale
calculations are chaning the FFT window length. A combination of two loss function
could be used - ESR for keeping the wave forms similar and the multi scale spectral
loss for learning the spectral content, which is perceptually more descriptive.

The DISCO sequence training has been shown as a functioning method for hidden
state initialization and reaches the precision of startup inference stated in [3]. There
should be further investigation over DISCO sequence training method for other use
cases. For an example it could prepare the data for other Neural Network architecture
- such as State Space Models [42].

The time delay in Real Recorded data was manually time-aligned by using the
cross-correlation argument at its maximum value. Some methods may allow the NN
to learn the delay during training for an example using a Differentiable Digital Signal
Processing (DDSP) All-Pass filter with amount of coefficients that correspond to the
maximum length of delay in samples [41], but this would lead to slow training for
the NN due to the amount of All-Pass filter coefficients.

The used time delay adjustment method does not guarantee a fractional precision
for alignment. It might be useful to use the cross-correlation delay adjustment and
small DDSP filter in the architecture to further adjust the delay of the system. This
might allow the usage of the skip connection that was stated in [3] to further increase
the NNs performance.

53

6 Conclusion
The system identification for stereo loudspeaker system by using an RNN architecture
was successful, and the best performing digital twin shows -30 dB of Error-To-Signal
ratio. Such an ESR describes a model which can reproduce the physical system in a
coherent manner.

Large improvement in the NN performance was made by performing an input
and target time-alignment by a simple, non-fractional but effective method of the
cross-correlation between the two signals. A slight manual delay for the target was
left to ensure causality in data.

For the real recorded data of physical system, in 150 epoch training with 36
minute long dataset, the LSTM performed better than the GRU, but the convergence
process took more training epochs. The GRU reached its maximum precision in 35%
of the training epochs that are needed for LSTM to outperform the GRU. The total
improvement of using LSTM compared to GRU is decrease in ESR of about 2 dB,
which is hardly visible in wave forms, but might be noticeable in subjective listening
tests - when a perceptual ESR loss is used. It is less computationally expensive to
train the GRUs due to less learnable parameters.

Discontinuous sequence (DISCO) training is a new data management method
that allows correct initial hidden state (h0) initialization for RNN training. DISCO
reaches the precision of method which accumulates the hidden state by no-gradient
startup inference, to use it as the h0 for the first sample of training for gradient. The
DISCO sequence training does not introduce any loss of data for training compared
to previous method. The DISCO approach could be used for training other sequential
mathematical models, where the previous output of the model is used as the input
for the current time step, and the absence of the previous model’s output produces
error at the very first sample of sequence.

54

References
[1] Mark R Gander. Fifty years of loudspeaker developments as viewed through the

perspective of the audio engineering society. Journal of the Audio Engineering
Society, 46(1/2):43–58, 1998.

[2] Erik Larsen and Ronald M Aarts. Reproducing low-pitched signals through
small loudspeakers. Journal of the Audio Engineering Society, 50(3):147–164,
2002.

[3] Alec Wright, Eero-Pekka Damskägg, Vesa Välimäki, et al. Real-time black-box
modelling with recurrent neural networks. In 22nd international conference on
digital audio effects (DAFx-19), 2019.

[4] Sean E Olive. Differences in performance and preference of trained versus
untrained listeners in loudspeaker tests: A case study. Journal of the Audio
Engineering Society, 51(9):806–825, 2003.

[5] Marcelo Soria-Rodríguez, Moncef Gabbouj, Nick Zacharov, Matti S Hamalainen,
and Kalle Koivuniemi. Modeling and real-time auralization of electrodynamic
loudspeaker non-linearities. In 2004 IEEE International Conference on Acoustics,
Speech, and Signal Processing, volume 4, pages iv–iv. IEEE, 2004.

[6] Pascal Brunet and Bahram Shafai. New trends in modeling and identification of
loudspeaker with nonlinear distortion. In Proceedings of the International Con-
ference on Modeling, Simulation and Visualization Methods (MSV), page 1. The
Steering Committee of The World Congress in Computer Science, Computer . . . ,
2011.

[7] Alberto Bernardini, Lucio Bianchi, and Augusto Sarti. Loudspeaker
virtualization–part i: Digital modeling and implementation of the nonlinear
transducer equivalent circuit. Signal Processing, 202:108720, 2023.

[8] Walter A Frank. An efficient approximation to the quadratic volterra filter
and its application in real-time loudspeaker linearization. Signal Processing,
45(1):97–113, 1995.

[9] Bruno Defraene, Toon Van Waterschoot, Moritz Diehl, and Marc Moonen.
Embedded-optimization-based loudspeaker precompensation using a hammer-
stein loudspeaker model. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 22(11):1648–1659, 2014.

[10] Hocine Merabti, Daniel Massicotte, and Wei-Ping Zhu. Electrodynamic loud-
speaker linearization using a low complexity pth-order inverse nonlinear filter.
In 2019 IEEE International Symposium on Signal Processing and Information
Technology (ISSPIT), pages 1–5. IEEE, 2019.

[11] Wolfgang Klippel. Tutorial: Loudspeaker nonlinearities—causes, parameters,
symptoms. Journal of the Audio Engineering Society, 54(10):907–939, 2006.

55

[12] Pascal Brunet. Nonlinear system modeling and identification of loudspeakers.
PhD thesis, Northeastern University, 2014.

[13] Refaat El Attar. Lecture notes on Z-Transform, volume 1. Lulu. com, 2006.

[14] Mahdi Kazemi and Mohammad Mehdi Arefi. A fast iterative recursive least
squares algorithm for wiener model identification of highly nonlinear systems.
ISA transactions, 67:382–388, 2017.

[15] Masanao Aoki. State space modeling of time series. Springer Science & Business
Media, 2013.

[16] Pascal Brunet and Bahram Shafai. State-space modeling and identification
of loudspeaker with nonlinear distortion. In Modelling, Identification, and
Simulation, IASTED International Conference on, volume 755, 2011.

[17] Arie JM Kaizer. Modeling of the nonlinear response of an electrodynamic
loudspeaker by a volterra series expansion. Journal of the Audio Engineering
Society, 35(6):421–433, 1987.

[18] Friedrich Alexander Fischer. Fundamentals of electroacoustics. Interscience
Publishers, 1955.

[19] Neville Thiele. Loudspeakers in vented boxes: Part 1. Journal of the Audio
Engineering Society, 19(5):382–392, 1971.

[20] Richard H Small. Closed-box loudspeaker systems-part 1: analysis. Journal of
the Audio Engineering Society, 20(10):798–808, 1972.

[21] Andrzej B Dobrucki and Piotr Pruchnicki. Application of the narmax method
to the modelling of the nonlinearity of dynamic loudspeakers. Archives of
Acoustics, 26(4), 2001.

[22] Eero-Pekka Damskägg, Lauri Juvela, Vesa Välimäki, et al. Real-time modeling
of audio distortion circuits with deep learning. In Proc. Int. Sound and Music
Computing Conf.(SMC-19), Malaga, Spain, pages 332–339, 2019.

[23] Eero-Pekka Damskägg, Lauri Juvela, Etienne Thuillier, and Vesa Välimäki.
Deep learning for tube amplifier emulation. In ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 471–475. IEEE, 2019.

[24] Tara Vanhatalo, Pierrick Legrand, Myriam Desainte-Catherine, Pierre Hanna,
Antoine Brusco, Guillaume Pille, and Yann Bayle. A review of neural network-
based emulation of guitar amplifiers. Applied Sciences, 12(12):5894, 2022.

[25] David T Blackstock. Fundamentals of physical acoustics, 2001.

56

[26] Hanieh Khalilian, Ivan V Bajić, and Rodney G Vaughan. 3d sound field
reproduction using diverse loudspeaker patterns. In 2013 IEEE International
Conference on Multimedia and Expo Workshops (ICMEW), pages 1–4. IEEE,
2013.

[27] Tapio Lokki and Lauri Savioja. Virtual acoustics. Handbook of Signal Processing
in Acoustics, pages 761–771, 2008.

[28] Song Li and Jürgen Peissig. Measurement of head-related transfer functions: A
review. Applied Sciences, 10(14):5014, 2020.

[29] Birger Kollmeier, Helmut Riedel, Manfred Mauermann, and Stefan Uppenkamp.
Physiological measures of auditory function. Handbook of Signal Processing in
Acoustics, pages 159–173, 2008.

[30] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016.

[31] Léon Bottou. Stochastic gradient descent tricks. Neural Networks: Tricks of
the Trade: Second Edition, pages 421–436, 2012.

[32] Zijun Zhang. Improved adam optimizer for deep neural networks. In 2018
IEEE/ACM 26th international symposium on quality of service (IWQoS), pages
1–2. Ieee, 2018.

[33] Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient
backprop. In Neural networks: Tricks of the trade, pages 9–50. Springer, 2002.

[34] Sebastian Ruder. An overview of gradient descent optimization algorithms.
arXiv preprint arXiv:1609.04747, 2016.

[35] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of
training recurrent neural networks. In International conference on machine
learning, pages 1310–1318. Pmlr, 2013.

[36] Herbert Jaeger, Mantas Lukoševičius, Dan Popovici, and Udo Siewert. Opti-
mization and applications of echo state networks with leaky-integrator neurons.
Neural networks, 20(3):335–352, 2007.

[37] Rahul Dey and Fathi M Salem. Gate-variants of gated recurrent unit (gru)
neural networks. In 2017 IEEE 60th international midwest symposium on
circuits and systems (MWSCAS), pages 1597–1600. IEEE, 2017.

[38] SVG Reddy, K Thammi Reddy, and V ValliKumari. Optimization of deep
learning using various optimizers, loss functions and dropout. Int. J. Recent
Technol. Eng, 7:448–455, 2018.

[39] Alec Wright and Vesa Välimäki. Perceptual loss function for neural modeling
of audio systems. In ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 251–255. IEEE, 2020.

57

[40] Alexander Richard, Peter Dodds, and Vamsi Krishna Ithapu. Deep impulse
responses: Estimating and parameterizing filters with deep networks. In
ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 3209–3213. IEEE, 2022.

[41] Jesse Engel, Lamtharn (Hanoi) Hantrakul, Chenjie Gu, and Adam Roberts.
Ddsp: Differentiable digital signal processing. In International Conference on
Learning Representations, 2020.

[42] Karan Goel, Albert Gu, Chris Donahue, and Christopher Ré. It’s raw! audio
generation with state-space models. arXiv preprint arXiv:2202.09729, 2022.

[43] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu.
Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499,
2016.

[44] Tianjian Lu, Michael Smedegaard, and Ken Wu. Multiphysics modeling of voice
coil actuators with recurrent neural network. IEEE Journal on Multiscale and
Multiphysics Computational Techniques, 4:12–19, 2019.

[45] Denys Volkov and Lars-Johan Brännmark. Loudspeaker modeling using
long/short term memory neural networks. In Audio Engineering Society Con-
vention 154. Audio Engineering Society, 2023.

[46] G. Jacovitti and G. Scarano. Discrete time techniques for time delay estimation.
IEEE Transactions on Signal Processing, 41(2):525–533, 1993.

	Abstract
	Preface
	Contents
	Symbols and abbreviations
	1 Introduction
	1.1 Background
	1.2 The Scope of this Research
	1.3 Research Goals and Questions
	1.4 Structure

	2 Theoretical Background
	2.1 Loudspeaker Modelling
	2.1.1 Mathematical Models of Nonlinear Loudspeaker Modelling
	2.1.2 White-box and Black-box Modelling
	2.1.3 Receiver and Propagation Path from the Source

	2.2 Deep Learning in Raw Audio Waveform modelling
	2.2.1 Introduction to Terminology
	2.2.2 Recurrent Neural Networks and Their Architectures
	2.2.3 Loss functions
	2.2.4 RNN and other architectures compared for time-series modelling
	2.2.5 Loudspeaker Modelling with Neural Networks

	3 Method and Data
	3.1 Recurrent Neural Network Architecture in Experiment
	3.2 Hidden State Initialization
	3.3 Discontinuous sequence modelling
	3.4 Content of Data
	3.5 Dummy Head Recording
	3.6 Multimedia Loudspeaker Recording Simulation
	3.7 Input - Target Time Alignment

	4 Results
	4.1 Neural Network's performance on raw MLRS data
	4.2 Neural Network's performance on MLRS data with delay correction
	4.3 Neural Network's performance on DISCO MLRS data with delay correction
	4.4 Neural Network's performance on DISCO real data with delay correction

	5 Discussion
	6 Conclusion

