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Abstract

The malware landscape is ever-changing, with threat actors utilising more sophis-

ticated techniques to compromise data. As the usage of smartphones increases,

more threat actors will turn their attention to capitalise on the popularity.

This thesis addresses this ongoing issue and focuses on encryption-type ran-

somware, which has been a rising malware threat in recent years, on the Android

operating system. Many state-of-the-art anti-malware solutions have shifted away

from static signature-based approaches as the techniques utilised by threat actors

have become more advanced. Most newer solutions look towards the use of dy-

namic analysis to automatically identify malware. However, the large quantities of

information required by dynamic analysis approaches often present a challenging

task for developing robust automated anti-malware solutions and may be easily cir-

cumvented by future threat actors, which implies that more specialised automated

solutions are required.

In the work presented in this thesis, we observe encryption-type ransomware

behavioural patterns at a system call-level. We describe the Android Applica-

tions dataset on which a large portion of this work is based. By utilising the

created dataset and the behavioural patterns, this thesis presents solutions using

Finite State Machines (FSM) and supervisor reduction to quickly detect Android

encryption-type ransomware. Furthermore, the solutions are evaluated on Linux

encryption-type ransomware to show its transferability and generalisability.

We measured the success of our techniques by using the following accuracy

metrics: true positive rates, false negative rates, true negative rates, false positive

rates, and achieved an F1-score of up to 93.8%.
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Chapter 1

Introduction

1.1 Ransomware

Ransomware poses a critical risk to all businesses and organisations in multiple sec-

tors, such as healthcare, insurance, and entertainment, which have caused severe

disruption of services, and compromised sensitive data (Burrell and RNZ, 2021;

Gatlan, 2021; Toulas, 2022). The increasing frequency and sophistication of ran-

somware attacks have negative financial implications. According to Sophos (2022)

an average of $1.4 million was required to recover from a ransomware attack in

2021. Furthermore, the cost and frequency of ransom demands have increased so

much that it has even led some insurance companies to refuse cover for ransomware

attacks (Umawing, 2023; Dissent, 2023). In addition to the financial implications,

ransomware attacks can also have adverse ramifications on society, such as caus-

ing long-term psychological effects (Help Net Security, 2022) and, in some cases,

leading to the loss of lives (Collier, 2021; Miller, 2022).

The criticality of the threat of ransomware has lead to a substantial body of
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work in the area of ransomware detection and mitigation (Scalas et al., 2019; Al-

soghyer and Almomani, 2019). There is, however, a scarcity of work focusing on

encryption-type ransomware detection that attempts to address the resource con-

straints on mobile devices. This is a concern as the usage of mobile phones in our

daily lives has increased significantly, with a total of 14.91 billion mobile devices

worldwide surveyed in 2021. This number is expected to reach 18.22 billion by

2025 (Statista, 2021). The increase in usage of mobile phones is likely attributed

to the conveniences available, such as communication applications, digital wallets,

and entertainment applications. As these devices continue to become more perva-

sive in our lives, we are not only amassing private information on them, such as

personal photos, credit card information, contacts, but also business and organ-

isational information. Consequently, mobile phones have become a valuable and

portable data storage and therefore targets of ransomware and malware attacks.

The frequency of these attacks is predicted to rise as the usage of mobile phones

continues to become more prominent (Awan, 2023).

1.2 Ransomware Mitigation

Malware analysts and researchers have used a variety of techniques to address and

mitigate the threat of ransomware specifically and malware in general. These tech-

niques fall into two main categories, which are static and dynamic. Static analysis

techniques analyse static elements of applications, such as permissions, Applica-

tion Programming Interfaces (APIs), and bytecode without executing them (Li

et al., 2017; Bakour et al., 2018). Conversely, dynamic analysis observes applica-

tions during runtime to obtain behavioural information. This can be done, among
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others, through the use of system calls or API calls (Bhandari et al., 2018; Tam

et al., 2015).

Many state-of-the-art anti-malware solutions leverage artificial intelligence (AI)

or machine learning (ML) techniques to automatically classify malware. One of

the issues facing current state-of-the-art anti-malware solutions that utilise AI and

machine learning is the significant resource investment required, which is often not

feasible to implement on resource constrained devices. Furthermore, as the arms

race between malware researchers and malware authors continues, malware authors

will eventually develop methods to circumvent such AI and machine learning based

anti-malware solutions. Therefore, developing more diverse techniques without

relying on AI and machine techniques is essential for deterring future malware

attacks.

1.3 Challenges of Anti-Malware Methods

The landscape of malware is constantly changing, posing many challenges for the

development of anti-malware systems. Although improvements have been made

over the years for static signature-based methods, the use of static analysis meth-

ods is no longer sustainable as malware developers utilise obfuscation techniques

to evade detection (Moser et al., 2007; Yan and Yin, 2012; Or-Meir et al., 2019).

Anti-malware solutions have trended towards the development of dynamic analysis

approaches, which are resilient to simple obfuscation (Guerra-Manzanares et al.,

2022). These dynamic analysis approaches range from varying levels of sophisti-

cation and robustness. One of the more prominent dynamic analysis techniques

used in recent literature is behaviour-based analysis (Sekar et al., 2000; Isohara
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et al., 2011a; Tam et al., 2015; Bhandari et al., 2018), which is a technique that

monitors applications to identify malicious or benign behaviours. Other examples

of dynamic analysis techniques, such as real-time malware analysis (Alam et al.,

2015; Mehnaz et al., 2018), and self-protection systems (Skandylas and Khakpour,

2021; Iannucci et al., 2018), offer capabilities of early to immediate detection and

consistent active monitoring.

Mobile phones have advanced significantly throughout the years, but they are

often restricted by limited resources due to their portability and compactness. A

large body of work in the anti-malware and anti-ransomware literature relies on the

use of AI and machine learning based techniques. Such techniques often require

considerable resources to perform well. As such, effective and automated solutions

are often difficult to apply in a realistic scenario whilst conforming to the limited

resources of mobile devices.

As previously mentioned, the use of static signature-based methods is no longer

sustainable due to the constantly evolving threat landscape. Hence, some re-

searchers have leaned towards dynamic analysis approaches that utilise behavioural

patterns. Behavioural patterns provide more flexibility in detecting malicious ac-

tivity as compared to traditional static signature-based methods. However, gen-

eral observation of behavioural patterns can result in lower accuracy as benign

and malicious applications can share similar behavioural patterns. For example,

benign applications, such as cache-cleaning applications, can replicate similar sys-

tematic file removal behaviours to ransomware. Conversely, some malware variants

can mimic benign applications to avoid the detection by anti-malware solutions

(Aboaoja et al., 2022). Therefore, developing a reliable detection method using

behavioural patterns can present a challenging task to achieve.
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Some dynamic analysis approaches utilise system calls. For example, Tam et al.

(2015) employ various techniques to extract high-level behaviour from system call

sequences. Alternatively, Bhandari et al. (2018) adopt a different approach by

using probabilistic analysis and machine learning to build a Markov chain model

based on system call traces. System calls offer a balance between user-level and

kernel-level analysis. User-level analysis is often unable to capture the behaviour

of more sophisticated malware variants and is prone to tampering. Kernel-level

offers more depth and resilience. However, the devised approaches can often result

in a complex design. The large quantity of information produced by system calls

can offer valuable information about an application’s behaviour. This also presents

a challenging task for creating automated anti-malware solutions as some of this

information might not be relevant in discerning benign from malicious behaviour.

Of particular interest in this work is the utilisation of Finite State Machine

(FSM) techniques and algorithms. FSMs are often fast and can be used to gen-

eralise observed patterns of malicious and benign behaviour for malware detec-

tion. Furthermore, FSMs can be used to compliment specific dynamic analysis

approaches, such as the use of behavioural patterns. For example, a behavioural

pattern can be converted and minimised into an FSM, which can be used to quickly

identify malicious activity in linear time. As such, the use of FSMs is advantageous

for developing anti-malware solutions that focus on early to immediate detection,

which is crucial for more destructive types of malware, such as ransomware. Re-

cent works have attempted to use the benefits of FSMs to detect malicious activity,

but none have focused on applying specialised FSM simplification techniques on

mobile devices to detect encryption-type ransomware. One of the main challenges

facing the use of FSMs and other malware detection techniques is the represen-



8

tation of large quantities of information produced with dynamic analysis (e.g.,

system calls). Such information can be difficult to process and may not produce

useful results.

Ransomware has been established as a prevalent issue and can affect multi-

ple operating systems. Many anti-malware solutions are often devised for specific

operating systems. This raises concerns as future malware developers will con-

tinue to develop malware, particularly ransomware, with cross-platform capabili-

ties (Glazova, 2022; McDermott, 2023). Hence, an area of research to explore is

the transferability of methodologies to detect specific malware types on different

operating systems. The information gained from exploring this avenue can be

used to aid in the development of more robust anti-malware solutions or improve

existing anti-malware solutions.

1.4 Summary of Research Contributions

The previous section explored the landscape and challenges of anti-malware meth-

ods. The following contributions of this thesis apply dynamic analysis methods to

detect Android and Linux encryption-type ransomware.1

• Research Contribution 1: The first research contribution identifies sys-

tem call-level behavioural patterns for encryption-type ransomware. Chap-

ter 5 explores this avenue by presenting a set of behavioural patterns, such as

file encryption and tampering with user files through the use of system call

logs. By assessing the efficacy and feasibility of the behavioural patterns to

1The scripts and regular expressions defined in this thesis can be accessed in the following

repository: https://github.com/cc246/behavioural-ransomware-detection
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detect encryption-type ransomware, shared common behaviours from differ-

ent ransomware families are identified. Additionally, a dataset is generated

to examine and understand the behaviour of Android encryption-type ran-

somware 2. This dataset was also made available to aid researchers in their

malware research. Chapter 6 expands on the first contribution by applying

the advantages of real-time malware analysis to detect encryption-type ran-

somware. To achieve this, a streaming approach was designed using token

FSMs. The detection rates of this proof-of-concept implementation was eval-

uated and demonstrates that it is feasible to run on an Android operating

system with acceptable overhead.

• Research Contribution 2: Chapter 7 proposes an alternative approach us-

ing supervisor reduction (Vaz and Wonham, 1986; Su and Wonham, 2004),

which deviates from traditional machine learning and AI approaches. Su-

pervisor reduction is an FSM simplification technique used in supervisory

control of discrete event systems (Ramadge and Wonham, 1989). This thesis

employ this approach to automatically classify encryption-type ransomware

on Android using system call data. The extensive experiments conducted in

this chapter indicate that the detection rates of this approach are compa-

rable to other anti-malware solutions with a promising avenue for detecting

unknown variants.

• Research Contribution 3: The aforementioned contributions outlined the

success of using behavioural patterns and FSMs to detect encryption-type

2This dataset can be accessed by request from vimal.kumar@waikato.ac.nz or

info@crow.org.nz.
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ransomware on Android devices. Chapter 8 demonstrates the generalisability

of applying the aforementioned methods of behavioural patterns and FSMs

to identify Linux encryption-type ransomware. Experiments in this chapter

evaluated the detection rates and further identified differences and similari-

ties between Android and Linux encryption-type ransomware.

1.5 Thesis Structure

The thesis is structured as follows. Chapter 2 describes the background followed by

Chapter 3, which describes the related work along with the research gaps identified

in recent literature. Chapter 4 provides an overview of the dataset and methodol-

ogy used throughout this thesis. Chapter 5 describes a methodology, which utilises

predefined behavioural patterns for identifying encryption-type ransomware on

Android devices using system call data. The following chapter, Chapter 6, ex-

pands on the work of Chapter 5 by adopting a 2-layer FSM approach to detect

Android encryption-type ransomware in real-time. Next, Chapter 7 proposes an

automated approach using FSM algorithms and supervisor reduction to classify

Android encryption-type ransomware. Chapter 8 examines the generalisability of

the methodologies defined in Chapter 5 and Chapter 7 on Linux encryption-type

ransomware as well as identifies the differences and similarities between Android

and Linux ransomware behavioural patterns. Finally, Chapter 9 explores future

work and concludes with closing remarks.



Chapter 2

Background1

The first section provides an overview of Android’s architecture and its security

history, followed by an introduction to ransomware and its behaviour. The next

section describes system calls and the different categories. The following section

introduces Finite State Machines (FSMs) along with the formal definition and

expands on FSMs by explaining the problem of supervisor reduction and the al-

gorithms to solve it in the tool Waters/Supremica (Åkesson et al., 2006).

2.1 Android Platform Architecture

Android is a prominent open-source, Linux based mobile operating system, which

was introduced in 2008 and held a 71.62% of the operating systems market world-

wide in September 2022 (StatCounter, September 2022). This section provides a

description of its platform architecture. Similar to other operating systems, An-

1Most of this chapter is reproduced from previous publications with minor modifications.

Section 2.2 is taken from (Chew et al., 2020), Section 2.3 appeared in (Chew et al., 2020, 2022),

and Section 2.5 is taken from (Chew et al., 2022).
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Figure 2.1: Android software stack reproduced from Google (2021) Platform Ar-

chitecture. Retrieved from: https://developer.android.com/guide/platform

droid leverages a platform architecture which consists of different component layers

that work in cohesion with each other to create the system. Figure 2.1 depicts the

general architecture of the Android software stack.

System Apps is the topmost layer, where applications are installed and coexist

with each other. Following that layer is the Java API layer, which provides access

to the set of Android Operating System features in the form of APIs written in

Java, and simplifies core modular components and services for developing appli-
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cations. For example, NotificationManager can be used for custom notifications

on the status bar, or ActivityManager for managing application lifecycle and

navigation to the backstack.

The third layer consists of the Native C/C++ Libraries and Android Runtime

(ART). The native libraries enable access to the core system components and ser-

vices to applications. For example, the OpenGL API, can add support for drawing

and manipulation of 2D and 3D graphics in applications. The native libraries can

only be accessed via the Java framework APIs, and cannot be accessed directly by

applications.

The second component that coexists in the same layer as Native Libraries is

Android Runtime (ART). This component manages the run-time of Android ap-

plications and core system services. Originally, the Android run-time compiler was

known as Dalvik. However, in 2014, this was replaced by ART (Petrovan, 2014),

which offers a few improvements compared to the predecessor, such as an improved

garbage collection and more extensive debugging features for applications.

The Android operating system utilises two process virtual machines (VMs)

known as Dalvik and Android Runtime (ART). Dalvik, incorporates a just-in-time

(JIT) compiler that dynamically converts code as it is required for execution. How-

ever, its successor, ART, replaced Dalvik and introduced notable enhancements

in performance, memory management, and application execution. The primary

distinguishing feature of ART lies in its adoption of an ahead-of-time (AOT) com-

pilation approach where code is compiled during installation or updates, in contrast

to the JIT compilation method employed by the Dalvik VM. Additionally, ART

can utilise both AOT and JIT compilation techniques.

The next layer is the Hardware Abstraction Layer (HAL), comprising a set
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of interfaces that exposes hardware capabilities to the Java API framework such

as camera, and sensors. Each interface contains library modules that are loaded

when the Java API framework requests to access hardware-specific components.

The last layer is the Linux kernel which is the core structure for Android that

many components rely on, for example, ART relies on the kernel to do threading,

and low-level memory management. The kernel also allows Android to make use

of the security features that exist within the Linux kernel, such as user based

permission model, and process isolation.

The Linux kernel allows the usage of application sandboxing (Google, 2022b),

which isolates and separates applications from each other, preventing malicious

applications from infiltrating the system and other applications. To achieve this,

Android uses Discretionary Access Control (DAC) and assigns a unique user ID

(UID) for each application, thus allowing them to run in their own space, iso-

lated from each other. Overtime, this idea was further improved such as, in An-

droid 5.0 where Mandatory Access Control (MAC) separation between the system

and applications was introduced, with subsequent Android versions improving on

the security of application sandboxing. Furthermore, the application sandbox

leverage process isolation and per-process security provided by the Android MAC

framework, which is based on SELinux (Security-Enhanced Linux) and SEAndroid

(Security-Enhanced Android). Each application process is assigned a unique se-

curity context within this framework. This security context encompasses security

identifiers that define the permissions and privileges associated with the respective

process.
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2.2 Android Security History

Since the introduction of Android, there have been many updates and improve-

ments to its security. In 2012, Bouncer was released in an effort to combat the

upsurge of Android malware in the preceding year (Micro, n.d.). Bouncer targeted

pre-existing applications as well as new applications. The approach that Bouncer

took was sandboxing (Lockheimer, 2012) where applications were executed and

scanned for malware in an isolated environment on a cloud infrastructure; this

was devoid of any access to the users’ real data.

However, Bouncer’s vulnerabilities were quickly identified. Oliva Hou from

Trend Micro (Hou, 2012) noted that researchers were able to acquire specific details

of the runtime environment, such as the duration of Bouncer’s testing phase (which

was five minutes), and the phone contents used in the simulated environment

(two photos, one contact and the Google account). These details could easily be

exploited by attackers through the use of simple obfuscation techniques to avoid

detection by Bouncer.

A few years later in May 2017, a more robust approach known as Play Protect

was introduced. Play Protect is the current system for defending users from ma-

licious applications that may be lurking in the official or third-party app stores.

Play Protect performs security scans periodically on the user’s mobile device, and

before an application is installed on the user’s mobile device (Google, 2019a). If

Play Protect finds a Potentially Harmful Application (PHA) from a scan, then one

of the three mitigation actions are carried out depending on the severity of the

application’s malice.

On a low severity application, the users are warned of an application that
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could be malicious via a notification; the user can interact with the notification

to uninstall the application. With a medium severity application, Play Protect

disables the application until it is uninstalled from the mobile device. On the

highest severity, Play Protect removes the application from the user’s mobile device

entirely.

Play Protect determines if an application is deemed as a PHA based on a few

criteria; the first one is if the application violates Google’s Unwanted Application

policy (Google, n.d.b), the second one is if the application is purposefully omitting

critical information, and thirdly, if the application encroaches on the privacy of

users by violating the Developer Policy (Google, n.d.a). Furthermore, Play Protect

utilises machine learning algorithms to identify PHA applications (Tetali, 2018).

The algorithms aim to observe common PHA behaviour detected in applications,

such as, accessing other applications on the user’s device, and accessing or sharing

private user data. These observations are used to determine if an application is

malicious. If the algorithm detects that applications contain similar malicious be-

haviours, then it will group them into their respective families (i.e., backdoors, and

click frauds). New unidentified PHAs are reviewed to determine if the application

is malicious or a false positive.

In addition to the introduction of Play Protect, a security Application Program-

ming Interface (API) called SafetyNet Verify Apps was introduced in September

of the same year. This API aimed to address three key goals: to help further pro-

tect users from malicious applications, determine if a user’s device is protected by

Play Protect, and prompt users to enable Play Protect if it is disabled. SafetyNet

achieves the aforementioned goals through a combination of different security mea-

sures and checks. One of them is through device attestation, which verifies the
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integrity and authenticity of an Android device.

2.3 Ransomware

The definition of Ransomware is broadening and ever-evolving, such that threat

actors are employing all available tactics to obtain ransom. The work described

in this thesis limits the definition of ransomware to a malware, that aims to hold

the users’ device or data at ransom, often for monetary gain. Ransomware uses a

variety of methods to gain access to computers and devices, ranging from exploit

kits and email phishing links to being incorporated with other types of malware

such as trojans and botnets (Al-rimy et al., 2018a; Kumar and Ramlie, 2021;

Hull et al., 2019; Aurangzeb et al., 2017). Newer variants and iterations have

appeared over the years, adopting more sophisticated techniques, such as self-

propagation, stronger encryption, and alternative infection vectors (Richardson

and North, 2017; O’Kane et al., 2018).

With the growing numbers of mobile devices, ransomware, such as Wan-

naLocker, SimpleLocker, Filecoder, and Black Rose Lucy (Goud, n.d.; Mana et al.,

2020), have found their way into the mobile ecosystem. Ransomware are generally

of two types: locker ransomware and encryption ransomware (Mohammad, 2020).

Locker-type ransomware traditionally displays a persistent screen that prevents the

user from interacting with the rest of the system. This screen will often display

the ransom note demanding monetary payment. On mobile devices, specifically

Android, locker-type ransomware makes the application persistent by displaying

a perpetual alert dialog or activity, or disabling interactions with the navigation

bar (Andronio et al., 2015). Another technique used is altering users’ lock screens,
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thus preventing access to their devices (Al-rimy et al., 2018b; Kanwal and Thakur,

2017).

Encryption-type ransomware manipulates information on the user device by

encrypting their files to prevent them from accessing any of their data (Kok et al.,

2019; Al-rimy et al., 2018b). Similar to locker-type ransomware, a ransom note

is often displayed after the encryption phase has been completed. Typically, for

encryption-type ransomware, the process begins by scanning the user’s personal

directories, such as Documents, and Pictures for files. Once the scanning phase has

completed, the ransomware often identifies files containing specific extensions, such

as, .docx, .png, and .jpg to encrypt. This method is normally used to accelerate the

encryption process, and efficiently determine the important user files to encrypt

(i.e., the files most important to a user) (Gazet, 2010). For the encryption process,

the data of the identified files are read, and written to a new encrypted file with a

non-standard file extension. The original file is then removed or overwritten (Chen

et al., 2017).

The ever shrinking cost of malware production as well as better chances of

ransom payment have resulted into a shift towards encryption-type ransomware

(Alzahrani and Alghazzawi, 2019; McConnell, 2017; Richardson and North, 2017).

This trend raises further issues due to the low mitigation rates for encryption-type

ransomware. For example, according to the 2021 State of Ransomware report by

Sophos (Sophos, 2021) only 34% of cross-sector and 39% of retail sector organi-

sations (from surveyed retail IT managers) successfully prevented their data from

being encrypted by ransomware attacks. All of these put together indicate the

need for preventative measures, specifically aimed at combating encryption-type

ransomware.



19

2.4 Introduction to System Calls

System calls are used to communicate and request actions to specific resources be-

tween a user application and the kernel of an operating system (Kerrisk, 2021a,h).

System calls on the Linux operating system can be classified into six main cate-

gories (Silberschatz, 1998). As Android was built upon the same operating system,

the same categorisation can be applied.

• Process Control – Process Control is the first category of system calls.

System calls associated with this category handles process creation and ter-

minations, such as the exit() system call on Android, which is used to

terminate a process (Kerrisk, 2021c).

• File Management – The second category of system calls is File Manage-

ment. System calls in this category are used for file related operations. For

example, close() can be used to close an open file descriptor and read()

can be used to read the contents of a file (Kerrisk, 2021b,g).

• Device Management – Another category of system calls is Device Manipu-

lation. In this category, system calls are used for manipulating device-specific

interactions. An example of a Device Management system call is ioctl(),

which is used for handling special interactions related to the device (Kerrisk,

2021e).

• Information Maintenance – The Information Maintenance category are

system calls that can transfer information between the user application and

the operating system. For example, getpid() can be used to acquire the

process ID of the requesting process (Kerrisk, 2021d).
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• Communication – Some system calls can be classified in the Communica-

tion category. This category of system calls are used for interprocess com-

munication. An example of a Communication system call is mmap2(), which

maps a file or device into memory (Kerrisk, 2021f).

• Protection – The last category of system calls is Protection. System calls in

this category are often used for controlling access to specific resources, such

as umask(), which is used for changing the default permissions on newly

created files or directories (Kerrisk, 2021i).

System calls have been used for kernel-level malware analysis in recent litera-

ture. Many authors have used this approach as precise information can be obtained

from monitoring the system call operations that occurred during the execution of

an application, which can help identify malicious activities. For example, openat()

represents a file was being opened, followed by accompanying arguments and flags.

The flags can be used to determine the type of file open operation (e.g., O CREAT is

used to create a new file if the file does not already exist). Due to this, system calls

can often provide useful behavioural information of an application from a single

operation.

To intercept and log system calls, authors often rely on debugging tools, such

as strace (Levin, n.d.). strace is a Linux command-line tool, which can intercept

the system calls of a given process ID. On Android, the standard emulator (created

using Android Studio) can utilise strace through Android Debug Bridge (ADB) to

intercept the system calls of an application. Some researchers have deviated from

the usage of debugging tools and implemented their own logging mechanisms, such

as Tam et al. (2015), which utilised a modified emulator to intercept and analyse
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system calls. Alternatively, instrumentation methods can also be used to intercept

system calls, such as (Beaucamps et al., 2010), which relies on Pin (Intel, 2020),

a tool for instrumenting a program, that can be used to acquire system calls.

Intercepted system calls can be used to generate a system call trace. A system

call trace is a collection of system calls captured from a user application. System

calls can generate large quantities of information due to the interactions that occur,

which often results in large system call traces. Large system call traces can present

a challenging task for pre-processing, particularly if they are used for streaming

data.

2.5 Introduction to Finite State Machines

Finite State Machines (FSMs) are used in both hardware and software imple-

mentations, to indicate a sequence of logical statements. The main components

consist of states, that represent the different traversal locations, and state transi-

tions, that link the different states together with a set of possible transition rules

(Hopcroft et al., 2001). The use of FSMs is advantageous in ransomware detection

it provides fast detection times, which is useful for more destructive variants of

ransomware, particularly, encryption-type ransomware. Furthermore, FSMs can

be implemented in a lightweight monitoring system, offering benefits for resource

constrained devices. The following section describes in more detail the formal

definition of FSMs in relation to system call traces.
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2.5.1 Languages and Finite-State Machines

There are two distinct types of FSMs; deterministic and nondeterministic. A

Deterministic FSM has a unique target state for a given source state and event.

Conversely, a nondeterministic FSM can contain more than one target state for a

given source state and event.

System call traces can be described as traces of events taken from a finite

alphabet Σ. The set Σ∗ contains all finite traces of the form σ1 · · ·σn of events

from Σ, including the empty trace ε. A subset L ⊆ Σ∗ is called a language. The

concatenation of two traces s, t ∈ Σ∗ is written as st. A trace s ∈ Σ∗ is called a

prefix of t ∈ Σ∗, written s ⊑ t, if there exists a trace u ∈ Σ∗ such that su = t.

The prefix-closure of a language L ⊆ Σ∗ is the set of all the prefixes of its traces,

written Pre(L) = { s ∈ Σ∗ | s ⊑ t for some t ∈ L }.

Definition 2.1. A (nondeterministic) finite-state machine (FSM) is a tuple G =

⟨Σ, Q,→, Q◦⟩ where Σ is a set of events, Q is a finite set of states, → ⊆ Q×Σ×Q

is the transition relation, and Q◦ ⊆ Q is the set of initial states.

The transition relation is written in infix notation x
σ→ y and extended to

traces s ∈ Σ∗ in the standard way. For state sets X, Y ⊆ Q, the notation X
s→ Y

means x
s→ y for some x ∈ X and y ∈ Y . For a state or state set x and y and

s ∈ Σ∗, the notation x
s→ means x

s→ y for some y ∈ Q. The language L(G) of an

FSM G is the set of all traces that can be executed from an initial state,

L(G) = { s ∈ Σ∗ | Q◦ s→} . (2.1)

An FSM G is deterministic if it has exactly one initial state, |Q◦| = 1, and the

transition relation allows at most one successor state for any given source state

and event, i.e., x
σ→ y1 and x

σ→ y2 implies y1 = y2.
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Figure 2.2: Nondeterministic FSM example
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Figure 2.3: Deterministic FSM example

Example 2.1. Consider a nondeterministic FSM G consisting of states 0, 1,

and 2 with the events {α, β} in Figure 2.2. The FSM is nondeterministic as it

consists of two β transitions that occur from state 1. Conversely, Figure 2.3 is the

deterministic equivalent of the same FSM G using subset construction (Hopcroft

et al., 2001). The main distinction for determinism is the singular initial state,

labelled as state 0, and the transition relation has at most one successor state.

2.5.2 Supervisor Reduction Problem

Supervisor reduction (Vaz and Wonham, 1986) is an FSM simplification method

used for supervisory control of discrete event systems (Ramadge and Wonham,

1989). It can be characterised based on two subsets of an FSM’s state set Q, the

set of positive states Q+ ⊆ Q and the set of negative states Q− ⊆ Q. The sets of
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traces leading to these states are

L+(G) = { s ∈ Σ∗ | Q◦ s→ Q+ } ; (2.2)

L−(G) = { s ∈ Σ∗ | Q◦ s→ Q− } . (2.3)

In supervisory control, Q+ may represent a set of states where a particular control

action is to be enacted, while the same action is to be prevented at states in Q−.

When classifying system call traces, positive traces in L+(G) are known malicious

traces, while traces in L−(G) are benign.

It is assumed that no trace is both positive and negative, i.e., L+(G)∩L−(G) =

∅. On the other hand, the sets of positive and negative states do not necessarily

cover the complete state set, and likewise the combined positive and negative

languages do not cover the full language of the FSM. That is, Q+ ∪ Q− ⊆ Q

and L+(G) ∪ L−(G) ⊆ L(G) where equality does not necessarily hold. States or

traces that are neither positive nor negative are called “don’t care” states or traces.

For supervisory control, “don’t care” states are states where it is safe to enable

or disable a control action, for example because the action has no effect in that

state. When classifying system call traces, “don’t care” traces are not known to

be malicious or benign, their classification is yet to be determined.

The objective of supervisor reduction is to replace a deterministic FSM G by

a smaller deterministic FSM G′ while preserving the positive and negative traces

and still not classifying any trace as both positive and negative. That is,

L+(G) ⊆ L+(G′) and L−(G) ⊆ L−(G′) and L+(G′) ∩ L−(G′) = ∅ . (2.4)

Every trace classified as positive or negative by the original FSM G must be clas-

sified in the same way by the reduced FSM G′. This reduction problem is different
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from standard FSM minimisation problems (Hopcroft et al., 2001) because of the

“don’t care” traces, which the reduced FSM may classify as positive or negative

in ways that allow for a smaller number of states.

2.5.3 Supervisor Reduction Algorithm

Given a deterministic FSM with positive and negative states, the usual approach

to supervisor reduction is to merge states, grouping them into a single state in

the reduced supervisor. Positive states can be merged with other positive states

or with “don’t care” states, and likewise negative states can be merged with other

negative states or with “don’t care” states; it is also possible to merge two “don’t

care” states. However, it is not possible to merge a positive state with a negative

state, because this leads to violation of the requirement L+(G′) ∩ L−(G′) = ∅

in (2.4), meaning that the reduced supervisor cannot separate the positive and

negative traces accurately.

Additionally, the transition relation needs to be taken into account. When

merging two states that both have outgoing transitions with the same event, their

successor states must also be merged. The successors must not be in direct conflict,

i.e., it is not possible for one of them to be positive while the other is negative,

and the outgoing transitions of the successors must also be checked. Once all

successors have been checked without ever having to merge a positive state with a

negative state, the original two states can be merged to form a reduced supervisor,

provided that all the checked pairs of successors are also merged.

Example 2.2. Consider states 0 and 1 of FSM G in Figure 2.4. There is no

immediate problem to merge these states as the negative state 0 can be merged with
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Figure 2.4: Example of supervisor reduction. States 0 and 1 of G are merged to

form a new state 01 of G′, and likewise states 2 and 3 are merged to 23.

the “don’t care” state 1. Yet, both states have outgoing transitions with event α.

If 0 and 1 are merged, then their successors 2 and 3 must also be merged. This

is possible here, as 2 is a “don’t care” state that can be merged with the positive

state 3. As neither 0 and 1 nor 2 and 3 have other common successors, they can

be merged.

The result G′ is shown in Figure 2.4. It classifies traces that do not contain

the event α as negative and traces that contain the event α as positive. In terms of

states, the don’t care state 1 of G is classified as negative by G′ while 2 is classified

as positive. With this assignment, the number of states is reduced from 4 to 2 while

still classifying all the positive and negative traces of G correctly.

In general, supervisor reduction algorithms seek to establish a cover of the

state space, i.e., a set C = {C1, . . . , Ck} of subsets Ci ⊆ Q of the state set Q

that covers the entire state set, i.e., C1 ∪ · · · ∪ Ck = Q. The subsets Ci are called

cells, and each cell becomes a state of the reduced supervisor. For the cover to be

feasible for supervisor reduction, none of its cells can contain both a positive and

a negative state, and the cover must be dynamically consistent (Su and Wonham,
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2004), i.e., it must respect the transitions as explained above.

This thesis uses an algorithm described by Su and Wonham (2004) to compute

such a cover and reduce an FSM. This algorithm repeatedly selects two states and

attempts to merge them. To do so, it explores all successor pairs to determine

whether a positive state needs to be merged with a negative state, collecting addi-

tional pairs that need merging in the process. Any overlapping cells encountered

are merged into a single cell, so that the computed cover has no overlapping cells

and becomes a partition. If the two states selected are found to be mergible, they

are merged, otherwise the pair is skipped. In this way, the algorithm systematically

tries to merge all state pairs.

The supervisor reduction algorithm by Su and Wonham (2004) is arguably the

most popular supervisor reduction algorithm currently used in supervisory control

due to its trade-off between speed and reduction effectiveness. Its time complexity

is O(|Σ||Q|4) where |Σ| and |Q| are the numbers of events and states of the FSM

to be reduced. The result of the algorithm is sensitive to the order in which the

state pairs are processed and merged. The implementation in Waters/Supremica

(Åkesson et al., 2006) supports different orderings of states and pairs to allow for

experimentation.

The supervisor reduction algorithm can be combined with a pre-processing

step of projection (Malik, 2020). The idea is that many supervisory control and

classification problems contain more events than necessary to distinguish positive

and negative traces. It can be determined with a relatively quick verifier algorithm

whether or not an event or a set of events can be removed from an FSM while

still allowing for the distinction of all positive and negative traces. Using this

repeatedly, the method of Malik (2020) searches for a set of events that removes
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as many transitions as possible. Once an event set is found, the events are removed,

the resulting nondeterministic FSM is determinised using subset construction and

minimised (Hopcroft et al., 2001), and the result of this simplification is passed

to supervisor reduction with the algorithm of Su and Wonham (2004). While

the removal of events is usually beneficial, this cannot be guaranteed due to the

exponential worst-case of subset construction.

2.6 Chapter Summary

This chapter presented the relevant background information for the works to follow

in this thesis. The following chapter presents the related work and identifies the

research gaps in recent literature.



Chapter 3

Literature Review

This chapter explains the four different categories of malware analysis techniques

and describes the state-of-the-art malware analysis research in the respective cat-

egories.

3.1 Static Analysis

Static analysis observes static components of a given application to determine if it

is malicious or benign, and gains insight on its functionality without executing the

application. Many Android-based static analysis methods extract static features,

such as permissions, Application Programming Interface (API), or bytecode, from

an application. These static features are then used with other techniques, such as

machine learning algorithms, to classify applications as malicious or benign.

An example is DroidDet (Zhu et al., 2018), which uses machine learning on

extracted static features consisting of permissions, system events, frequency of

permissions, sensitive APIs and URLs, to detect Android malware. Similarly,
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Maiorca et al. (2017), focuses on extracting invoke-type instructions from the

Application Package Kit’s (APK) bytecode. Another work that observes Android

bytecode is DroidAPIMiner (Aafer et al., 2013), which mines for specific API calls

and parameters. MaMaDroid (Onwuzurike et al., 2019), observes sequences of

abstracted API calls represented as Markov chains and classified through machine

learning to identify Android malware. Alternately, DroidNative’s (Alam et al.,

2017) approach utilises both bytecode and native code to detect Android malware.

Traditional code and signature analysis techniques have been shown to be capa-

ble of detecting some known malware. The main challenges facing static analysis

is the use of obfuscation techniques, such as binary/code/control flow obfuscation,

and polymorphic coding (Gandotra et al., 2014; Moser et al., 2007; Faruki et al.,

2014), which are often employed in more sophisticated malware to avoid detec-

tion. Researchers, such as, Alam et al. (2017) have attempted to alleviate some

of the effects of obfuscation by observing native code. One of the core limitations

of utilising signature and code analysis stems from the inability to detect newer

and unknown variants of malware, which is an issue as the malware landscape

continues to evolve with more destructive and unique variants.

3.2 Dynamic Analysis

The second category of malware analysis techniques is dynamic analysis, which

monitors and observes the behaviour of applications while they are executing,

such as tracking file system access, network activity, or memory contents. Such

information can be acquired by using tools to log or intercept system calls and

other API calls using debugging tools (e.g., strace (Levin, n.d.)), implementing
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logging interfaces (Sekar et al., 2000; Tam et al., 2015), or by using instrumen-

tation (Beaucamps et al., 2010; Xu et al., 2012; Abbasi et al., 2022). Dynamic

methods are more resilient to common static obfuscation techniques (Hou et al.,

2016; Guerra-Manzanares et al., 2022) because they observe the behaviour of an

application rather than its static elements.

Similar to the approach used in Arzt et al. (2014), taint analysis can also

be used in dynamic analysis. Enck et al. (2014) uses this approach along with

variable-level tracking of native methods within the Dalvik VM interpreter, which

contains taint markings in a taint map. These taint markings propagate through

the Android Inter-Process Communication Binder, based on the defined data flow

rules on how the application uses the tainted data, to the untrusted application’s

taint map. If the untrusted application makes a library call deemed as a taint sink

(e.g., network send), then the application is considered malicious.

Behavioural pattern detection at a system call-level is another dynamic analy-

sis technique, which has often been used in kernel-level malware analysis. System

calls are useful in determining the precise operations that occurred during the exe-

cution of an application, which can help identify malicious activities or behaviours.

Works, such as Isohara et al. (2011b); Tam et al. (2015); Lin et al. (2013) lever-

age system calls to identify malicious applications effectively on mobile operating

systems.

System call monitoring often generates large quantities of information, some of

that information might not be relevant in identifying the behaviour of an appli-

cation, such as clock gettime() that periodically records the system clock time.

Works, such as Isohara et al. (2011b) attempts to mitigate this issue by using a

filtering process. The filtering process selects categories of system calls that are
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important for identifying malicious activity, and uses a process tree to remove

processes, which are considered unrelated to the application.

CopperDroid (Tam et al., 2015) adopts a dynamic analysis approach, which

utilises value-based data flow analysis on system call sequences and Interprocess

Communication (IPC) unmarshalling to reconstruct the high-level behaviour of

Android malware. Similarly, Lin et al. (2013) uses the Longest Common Subse-

quence (LCS) algorithm to extract potentially malicious patterns from system calls

and utilises the Bayes theorem to determine if an application was a Maliciously

Repackaged Application (MRA) based on the extracted patterns.

While there have been recent works on pattern detection on system call logs

(Isohara et al., 2011b; Lin et al., 2013), none has specifically focused on patterns

produced by encryption-type ransomware at a system call-level. Hence, one of the

research gaps is to discover a set of common behavioural patterns for encryption-

type ransomware, such as file encryption and tampering with user files by utilising

the system call logs. Furthermore, many malware datasets have been made avail-

able for research purposes throughout the years. A few of which focus on specific

types of malware, such as spyware, and botnets. While there exist malware col-

lections, such as malware zoo and malware datasets, which target specific types

of malware, like spyware and botnets, none of them have specifically focused on a

dataset encompassing Android-based encryption-type ransomware along with ac-

companying system call logs. This thesis addresses this by building a collection

of Android based encryption-type ransomware as well as a system call dataset to

experiment with system call-based detection techniques.
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3.3 Hybrid Analysis

Hybrid analysis is a combination of both static and dynamic analysis. The idea of

hybrid analysis is to combine the advantages that each analysis technique has to of-

fer (Gaikwad et al., 2015), and use them to counteract the drawbacks, where appli-

cable. For example, static analysis alone is incapable of detecting unknown/undis-

covered malware. The use of dynamic analysis can be used to counteract this issue

by first capturing the behaviour of the application before passing the results to a

static component for further analysis.

A work that focuses on a hybrid approach is DNADroid (Gharib and Ghor-

bani, 2017), which adopts a real-time malware detection approach to detect An-

droid ransomware. In the static module, features are extracted from the Android

Application Package (APK), such as permission requests, words, terms, and im-

ages commonly used in ransomware screens. These features are then processed by

machine learning models and given a malware score (between 0 and 1). Whereas,

the dynamic component utilises a sandbox environment to capture the API call

sequences, which are pre-processed by removing common API calls sequences

that appear in both benign and malicious applications. After pre-processing,

DNADroid utilises Multiple Sequence Alignment (MSA) for aligning multiple ex-

tracted strands of API call sequences to acquire the common malicious subse-

quences.

These modules are utilised by the real-time detection module, which determines

if an application is malicious or benign. To achieve this, the static classifier scores

the application between 0-1 (benign or malicious) based on the trained model. If

an application contains a score higher than the threshold (1-confidence score of
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application), then the dynamic component extracts the common API subsequences

using MSA. These extracted subsequences compares against other previously ex-

tracted subsequences using Binary Subsequence Alignment (similar to MSA except

the comparison is only between two sequences). If the sequence matches, then the

application is deemed malicious. Otherwise, the application continues to execute

within the dynamic environment in 5-minute intervals until a malicious sequence

match is detected.

Tong and Yan (2017) provide a good illustration of a hybrid approach used

in Android malware analysis. The implementation begins with a dynamic com-

ponent that compiles individual and sequential system call data acquired from

applications through the modification of the Android operating system. This data

is then passed through to a static component that generates malicious and benign

patterns, and performs pattern comparison to determine the true nature of the

application.

Hybrid analysis combines the benefits of static and dynamic methods together.

Often time, this alleviates the limitations of each respective approaches. Unlike

static or dynamic analysis alone, the limitations of hybrid analysis are not as

clearly defined. One notable limitation of dynamic analysis is its susceptibility

to potential false positives, coupled with the inherent risk of triggering infections

while executing applications.

Conversely, static analysis is less effective in detecting unknown variants and

is susceptible to simple obfuscation techniques. In the case of hybrid analysis, the

limitations can vary depending on the methods employed, but resource consump-

tion emerges as a common constraint. It is important to note that the precise

limitations of hybrid analysis can vary based on the applied methodologies and
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implementation strategies. While resource consumption is the most common lim-

itation, further exploration is warranted to identify other limitations associated

with hybrid analysis techniques.

3.4 Real-Time Analysis

With the dynamically changing and ever-evolving threat landscape, malware

has become more sophisticated and cunning. Hence, to counteract this rapidly

changing landscape, some malware detection systems have trended towards real-

time malware analysis, which provide benefits, such as early to immediate detection

and consistent active monitoring. Encryption-type ransomware attacks currently

poses as one of the more challenging types of malware to recover from once a

user has been affected, and adopting a real-time approach would be beneficial in

minimising or mitigating its effects.

Hofmeyr et al. (1998) is one of the earlier works that adopted a real-time

approach. Hofmeyr et al. (1998) work focus on the detection of anomalous in-

trusions through the utilisation of system call sequences, employing a distinction

between self-discriminating and non-self discriminating system call sequences. A

self-discriminating system call sequence refers to one that is deemed benign, while

a non-self sequence is characterised as malicious.

Similarly, Maggi et al. (2008) propose a host-based intrusion detection system

(HIDS) using system call sequence clustering and Markov Chains for modelling

system call sequence to detect anomalous activity, specifically focusing on buffer

overflow attacks. Their work expands and improves on a pre-existing Intrusion

Detection System (IDS) known as SyscallAnomaly (Kruegel et al., 2003), which



36

generates profiles of system calls based on the arguments to identify the normal

behaviour of a program. The methodology of Maggi et al. (2008) clusters same

system calls based on the arguments to identify the different ways the same sys-

tem calls can be used (i.e., an open system call can be used to read a file with

the read-only flag (O RDONLY) or read and write to a file with the read-write flag

(O RDWR). To model the program flow, they utilise Markov Chains to observe se-

quences of clustered system calls, enabling them to identify and characterise the

program’s behaviour. Maggi et al. (2008) applied their methodology in a proto-

type implementation to show the feasibility of the proposed approach as an IDS.

This prototype was further improved on in later works, which focuses on reducing

the false positive rates (Maggi et al., 2009). However, the clustering of system

calls generates noticeable performance issues with 700 MB of memory usage in the

worst-case scenario.

Sun et al. (2018) adopts a similar approach, which uses systems calls for real-

time malware detection. The first process is initialisation, which generate resource

files upon the first execution of the Android application. The second process,

dynamic behaviour detection, adds a hook to the kernel to acquire system calls.

The application’s permissions and APIs are extracted with the decompiler tool

known as ApkTool (Wísniewski, 2010). These are utilised in a preparation phase,

where applications statistics are acquired, such as the number of permissions used.

The final process is Malware Application Identification, which implements a classi-

fier with naive Bayes to identify if an application was benign or malicious. One of

their limitations due to the usage of dynamic analysis approaches is the potentially

extensive analysis time, which is more evident in larger applications.

Based on the surveyed literature of real-time approaches, we conclude that none
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have specifically developed a real-time streaming approach focusing on Android

encryption-type ransomware at a system call-level. This thesis explores this re-

search gap by proposing a proof-of-concept real-time streaming approach to detect

Android encryption-type ransomware.

3.5 Automaton-based Approaches

Some malware analysis approaches monitor behavioural aspects and use the infor-

mation to build a finite-state machine (FSM) model of malicious behaviour. One

of the earlier works of automaton-based approaches is Erlingsson and Schneider

(1999), which propose a method to merge security policy enforcement code into

the object code for a targeted system, in their work they evaluated on x86 archi-

tecture and Java JVML (Java virtual machine language). This was achieved using

a security automaton where the alphabet is the events that the reference monitor

would see (e.g., read or send), and the transition relation encodes a security policy.

Simiarly, Beaucamps et al. (2010) utilises trace abstraction to model behaviours in

programs. Their approach achieves this by extracting the execution trace of pro-

grams and later abstracted to indicate a high-level behaviour represented through

a trace automaton. Using the trace automaton, they acquire behavioural pat-

terns from observing malicious execution traces and basic execution sequences that

could correlate to malicious behaviour. Alternatively, other works focus on utilis-

ing Markov Chains and machine learning to classify malware, such as Onwuzurike

et al. (2019), which observe sequences of API calls represented as Markov Chains

and classified through machine learning to detect Android malware.

Similarly, other works have also adopted the use of system calls in an automaton-
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Table 3.1: Comparison of Static (SMA), Dynamic (DMA), Hybrid (HMA), and

Real-time (RMA) malware analysis approaches

SMA DMA HMA RMA

Safely identify known malware Can identify unknown malware Combines benefits of static and dynamic Quickly prevent malicious activity

Quickly identify known malware Resilient to common obfuscation Often counteract drawbacks of static and dynamic Constant and active monitoring

Ineffective to unknown malware variants Often long analysis times Often resource intensive Effective for detecting evolving threats

Vulnerable to common obfuscation techniques Can produce higher false positives and negatives

based approach such as, Sekar et al. (2000) developed an FSM and machine learn-

ing approach based on system calls sequence and program counters for intrusion de-

tection. Whereas, Semantic aWare andrOid malwaRe Detector (SWORD) (Bhan-

dari et al., 2018) generates sequential system call graphs (SSG) through the use of

Markov Chains to acquire the expected paths exhibited by malware. From the de-

rived paths, they apply Average Logarithmic Branching Factor (ALBF) to acquire

numerical representations of the typical paths.

Automaton-based approaches, such as the aforementioned literature, constructs

an FSM model from observed system call traces. However, none have focused

specifically on classifying encryption-type ransomware for resource constrained de-

vices. Hence, one of the research gaps is to develop an alternative automated solu-

tion using an FSM simplification technique for identifying Android encryption-type

ransomware, without the reliance on machine learning or AI, which often requires

demanding resource investment.

3.6 Chapter Summary

This chapter explored the state-of-the-art malware analysis techniques in different

categories.The main points of each malware analysis approaches explored in this
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chapter have been summarised in Table 3.1. Furthermore, based on the literature

surveyed, different research gaps were identified. The following chapter describes

the dataset acquisition process and main methodology used in this thesis.



Chapter 4

Methodology

This chapter describes the data collection methodology used in this thesis, and also

the challenges encountered during the collection process. The first section outlines

the process of acquiring an Android Applications dataset with the following section

describing the acquisition of a Linux dataset. The subsequent section describes

how the two datasets are used to acquire system call logs, which will be utilised

for various experiments in the following chapters of this thesis.

4.1 Android Applications Dataset Acquisition

The Android Applications dataset compromises of 715 cumulative samples, 502

were benign and 213 were malicious. The 502 benign samples were acquired

through web-scraping from APKPure (n.d.). The samples include a variety of

categories such as entertainment, utility, and productivity applications. Two dis-

tinct benign cache cleaning applications were included in the dataset to simulate

similar behaviours resembling that of encryption-type ransomware, such as the sys-
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tematic removal of files. The primary objective of a collecting a benign dataset is

to ensure that there is diversity in the applications observed, and that each benign

sample was capable of executing on the emulated device, which was not always

feasible with some benign samples due to errors occurring, such as the usage of an

incompatible API level.

For malicious samples, 213 Android encryption-type ransomware were acquired

by retrieving the hash or package name published from established anti-virus ven-

dors, such as Avast Blog (n.d.) and ESET (WeLiveSecurity, n.d.), and relevant

search tags, such as family name. Furthermore, hashes were validated utilising

VirusTotal (Sood, 2017) to identify and classify the ransomware by family. The

validated hashes were used to download the associated application from Koodous

(n.d.), which contains a repository of packages often used for malware analysis.

One of the motivations of developing our own dataset was due to the observa-

tion of illegal explicit content in existing dataset. Some malware samples in the

existing datasets were found to contain Child Sexual Abuse Material (CSAM).

The use of illegal explicit content is a common tactic used by malware develop-

ers to threaten and scare the users into paying the ransom. As dynamic analysis

was the primary method utilised in the thesis, the execution of ransomware was

required. This posed a challenging issue as often times the explicit content was

displayed during the execution of the ransomware, which was deemed inappropri-

ate for viewing. To alleviate this issue, we developed a dataset that deviated from

such content.

Initially, the malicious dataset consisted of 500 applications from 10 different

ransomware families. However, we required malicious ransomware samples, which

had functioning encryption capabilities. Hence, after further analysis, it was dis-
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covered that several ransomware applications did not encrypt the users’ files. This

was likely due to a few samples requiring a connection to a C&C server that was

no longer active. Additionally, some samples were unable to be observed due to

issues, such as crashes occurring during start-up, or missing manifest files. Hence,

the final malicious dataset contains 213 malicious samples from 6 distinct families.

The six distinct families are shown in Table 4.1. These are families of known

malware that first appeared during 2014–2020, and all were still circulating in 2020,

which was the year our data collection began. The applications in each family can

be traced to the same malware core, albeit with slight variations and different

packaging (e.g., different application type, or name). Except for Wipelocker, the

malicious applications exhibit typical ransomware behaviour of encrypting and

replacing files. Wipelocker only deletes the user’s files with no evidence of en-

cryption occurring (Chew et al., 2020). It is nevertheless included in the dataset

because the deletion of files is still malicious, and the behaviour is similar to that

of encryption-type ransomware.

4.2 Linux Dataset Acquisition

Linux is the operating system of choice for a number of users who typically work in

core ICT fields. The environment, applications, and the toolchains used, however,

vary significantly from user to user. As such, acquiring benign samples was a

challenging task as tools and applications used by the average Linux user cannot

be easily defined. Hence, to mitigate this issue, the selected samples attempt to

conform to a particular category of applications, specifically, applications used by

developers for software development.
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Table 4.1: Distribution of Android ransomware based on family

Ransomware Family Sample Size

Simplelocker 64

Pletor 6

Filecoder 5

Black Rose Lucy 17

Wipelocker 70

Wannalocker 51

Total 213

Based on the aforementioned category, we have selected 170 benign samples to

reproduce a similar distribution of samples to the Android Applications dataset.

Similarly, two cache-cleaning applications were included in the 170 samples. The

acquired dataset contains command-line interface (CLI) and graphical user-interface

(GUI) applications, which were specifically selected to replicate different opera-

tions. It should be noted that each operation performed is counted as an individual

sample (i.e., one application can be represented as multiple samples based on the

operations performed.) For example, Docker has multiple command-line options

available, such as docker create, docker pull, and docker remove. Similarly,

Visual Studio Code (vscode) (Microsoft, n.d.), a GUI application for editing code

and text, can perform operations, such as file open, file delete, and file rename. The

different operations often present a distinct system call trace. Hence, the opera-

tions of applications with multiple options were also evaluated. Some applications
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have been utilised multiple times to replicate different operations. For example,

Visual Studio Code (VSCode) was used to replicate different file operations, such

as file reading, file deletion, and file opening. Within the Linux benign dataset,

different operations were treated as separate samples. The list of applications and

their application type is as follows:

• Apache CLI

• apt CLI

• bash CLI

• bleachbit GUI

• cat CLI

• conda CLI

• cp CLI

• diff CLI

• docker CLI

• emacs GUI

• enpass GUI

• find CLI

• fslint GUI

• gcc CLI

• gedit GUI

• gimp GUI

• git CLI

• keepass GUI

• ls CLI

• make CLI

• mv CLI

• mysql CLI

• netbean GUI

• netcat CLI

• nimstall CLI

• nmon CLI

• npm CLI

• ping CLI

• python CLI

• rename CLI

• rm CLI

• ssh CLI

• tar CLI

• vagrant CLI

• vim CLI

• virtualbox CLI

• vscode GUI

• wget CLI

To acquire the malicious encryption-type Linux samples, two malware reposi-

tories were utilised, VirusShare (VirusShare, n.d.) and Malware Bazaar (Malware

Bazaar, n.d.). VirusShare provides over 45 million malware samples identified in

the wild and relies on VirusTotal (Sood, 2017) reports to categorise the samples.

Furthermore, VirusShare provides a curated dataset consisting of ELF binaries

(Linux’s equivalent to Window’s executables), observed from the years 2014 to

2020. This dataset consists of 43,553 samples, which was also considered. Whereas,

Malware Bazaar has a corpus of over 500,000 malware samples with associated

classification tags, such as family name or malware type.

Both VirusShare and Malware Bazaar repositories were searched for Linux bi-
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naries and bash scripts. The repositories’ search functions were used to conduct

the search by finding potentially malicious hashes (SHA256 or MD5) associated

with specific samples from different anti-virus vendors, specific ransomware fam-

ily names, or unique naming conventions used by anti-virus vendors to identify

ransomware. From this search, 46 Linux binaries and bash scripts with working

encryption capabilities were identified.

For the VirusShare dataset, regular expressions were utilised on common sub-

strings found in the classification names of anti-virus vendors, such as rans, coder,

and crypt to automatically identify potentially malicious encryption-type ran-

somware. After searching through 20,000 samples using this method, one new

sample was discovered. Hence, the dataset was no longer considered as the prob-

ability of identifying newer samples in the remaining dataset was very low.

The aforementioned searches produced a total of 47 samples consisting of Linux

binaries and bash scripts that exhibited working encryption capabilities. The

limited number of encryption samples was a result of several issues encountered

while testing the samples. Similar to the Android Applications dataset, some

samples were unable to run due to corrupted files or other code issues. Whereas,

other samples, which specifically target ESXi servers, did not encrypt the emulated

environment as the specific file or key was not found in the system. By further

observing the 47 samples, it was discovered that the samples were split between

15 different families. This can be seen in Table 4.2, which shows the distribution

of samples based on family. It is important to note that some families shown in

Table 4.2 can often be classified as the same family due to the stark similarities

they share with each other, such as Sodinokibi and REvil. The classification of

families was derived from various anti-virus engines using VirusTotal. Hence, in
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our Linux malicious dataset, these families were considered separate.

Due to the limited number of samples acquired from the aforementioned repos-

itories, open-source ransomware projects on GitHub (n.d.) were also included

to increase the sample size of the dataset. In total, 11 open-source ransomware

projects were explored. Similarly, Table 4.3 shows the distribution of open-source

ransomware by project name.

A notable open-source project was RAASNet (leonv024 and HugoLB, 2019),

which can be configured differently based on the functionalities selected. In total,

RAASNet contained four different forms of encryption, which are Ghost, Wiper,

Pycrypto, and PyAES. The open-source project also provides two different file

removal behaviours, which are unlink and remove and overwrite and rename. In

addition to the different behaviours, there is an option to automatically remove

the payload after the encryption process. A total of 16 different payloads were

generated using different configurations of these functionalities. With the inclusion

of the 16 samples from RAASNet and the aforementioned open-source ransomware

the number of samples further increased by 26, which yielded a dataset consisting of

73 ransomware samples from 26 different families exhibiting encryption behaviours.

The presence of the large number of RAASNET variants may introduce bias in

the dataset. However, these samples were included to address the limitation of the

limited sample size.

4.3 Acquisition of System Call Logs

Having obtained the samples, the next step is to execute them and observe the

generated system calls. To achieve this, an emulated environment was used. Em-
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Table 4.2: Distribution of Linux ransomware based on family

Ransomware Family Sample Size

Babuk 12

Avoslocker 6

Dark Radiation 6

Sodinokibi 5

TellYouThePass 4

BlackCat 4

Cryptor 2

Polaris 1

REvil 1

Conti 1

Cerber 1

DarkSide 1

Generic.223935 1

Generic.220825 1

BlackMatter 1

Total 47
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Table 4.3: Distribution of open-source ransomware based on project

Ransomware Family Sample Size

RAASnet 16

Jimmy-ly00 1

Hash-glitch 1

Kishenkumar345 1

Gonnacry 1

Crypy 1

Bware 1

Wasper 1

Gowther 1

Ransom0 1

Cryptsky 1

Total 26
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ulated environments have been a staple of many works surrounding dynamic mal-

ware analysis (Tam et al., 2015; Hull et al., 2019; Abbasi et al., 2022) as they

can create a simulated computer system in an isolated environment. The isolated

environment can safely analyse malware without the risk of compromising the host

machine.

The work described in this thesis utilises Android and Linux emulated envi-

ronments. Both emulated environments attempt to replicate a user file system.

This was achieved by inserting trap files of common file extensions, such as .txt,

.png, and .jpg stored within the user directory. As established, encryption-type

ransomware aims to compromise the user’s files through encryption. Hence, the

trap files also function as an indicator of compromise, which can aid in capturing

the malicious behaviour at a system call-level.

Having set up the emulated environments, each sample was executed and

strace (Levin, n.d.) was used to capture system call logs. While each sample

was running, simulated user interactions were inserted automatically and manu-

ally to replicate a more realistic user environment.

Having identified the similarities of both Android and Linux emulated environ-

ments, we now shift our focus to distinct details of each emulated environment.

Starting with the Android emulated environment, the trap files included in the

Android emulated environment initially covered a few common file extensions.

However, the included trap files do not necessarily completely represent a realistic

user environment as users often have more files of varying sizes and file types.

Hence, the emulated environment was further improved in Chapter 6 and Chap-

ter 7 by including a total of 105 trap files obtained from Kaggle (n.d.), which

contains various user-created datasets often used for machine learning and data
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science. The additional trap files have more varying file sizes with the additional

file types .mp3, .mp4, .cfg, and .xml, which are also commonly encountered on

real user smartphones (Du et al., 2021).

The process ID observed on strace for the Android samples, was the Zygote

process, which is the main parent process on Android. This ensures that sys-

tem calls from all running processes are captured and makes it possible to detect

malware that uses multiple processes to avoid behaviour-based detection (Bidoki

et al., 2017).

For the collection process of Android system call logs, Android Debug Bridge

(Google, 2020a) was used to send commands to the emulator. Each sample was

installed from its Android Package Kit (APK) file, under elevated privileges. Ad-

ditionally, Android Monkey (Google, 2020b) was used to simulate user interaction.

The collection of system call logs for Linux used two emulated environments.

One of those emulated environments was used to execute the sample, whereas the

second emulated environment was used to capture the system calls via strace.

All Linux samples were executed and interacted manually as specific arguments

and parameters were required for the ransomware to run.

As previously established, both Android and Linux emulated environments

use strace to capture system calls. However, the process observed was different.

On Linux, the process observed was the bash terminal that was executing the

sample. By observing the bash terminal, it is feasible to achieve a similar result

to the Android Zygote process, which can capture the malicious process that was

running.
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4.4 Chapter Summary

This chapter described the dataset acquisition for Android and Linux encryption-

type ransomware and the challenges encountered during the collection phase. Ad-

ditionally, this chapter presented the different methodologies for acquiring system

call data. The acquired data will be utilised for different experiments in the fol-

lowing chapters of this thesis.



Chapter 5

Detection of Encryption-type

Ransomware using System Call

based Behavioural Patterns1

Ransomware has been established as a prevalent issue and poses a serious cyber

threat to society. Some researchers have trended towards the use of dynamic anal-

ysis with system call data to develop anti-malware and anti-ransomware solutions.

However, none have focused on developing behavioural patterns for encryption-

type ransomware on a specific platform. Hence, one of the research contributions

outlined in Section 1 is to identify behavioural patterns at a system call level for

encryption-type ransomware on Android devices.

This chapter addresses the aforementioned research contribution and presents a

1The material in this chapter is reproduced from a co-authored conference paper entitled

ESCAPADE: Encryption-type-ransomware: System Call based Detection (Chew et al., 2020)

with minor modifications to Section 5.2 and Section 5.3.4.
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Figure 5.1: Methodology process overview

ransomware detection technique based on behaviours observed in the system calls

performed by the malware and identifies a set of common behavioural patterns for

encryption-type ransomware. Furthermore, the behavioural patterns are evaluated

to assess the viability and efficacy of these patterns at detecting encryption-type

ransomware behaviours from different families, to discover the shared common

behaviour among encryption-type ransomware.

5.1 Methodology

Figure 5.1 provides an overview of the process followed in this work. The sand-

box environment component is our run-time environment where applications are

examined, which was previously described in Section 4.3. The sandbox environ-

ment was created using Android Studio, on a Google Pixel 2 (API level 24) with

2048MB internal storage, 512MB SDCard storage, and 1536MB of RAM. Whereas
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the host machine was running MAC-OS, Intel Core i5 2.3 GHz Quad Core, with

8GB RAM.

The output of the sandbox environment splits into two phases. The first phase

is the observation phase where applications are observed for their behaviour during

runtime. After which, regular expressions are created based on the benign and

malicious behaviours observed during that phase. These regular expressions are

then converted into our token representation for pattern matching.

These tokens are used in the second phase, labelled as Evaluation. This phase

starts with the extraction of the raw system call logs (similar to the observation

phase), then applies multiple layers of filtering to abstract and remove repetitive

or unrelated system calls. After which, the filtered log is formatted for pattern

matching using our created tokens. This process is repeated for all unique variants

containing a unique hash—also known as a sample—resulting into the final dataset,

which contains the formatted system call logs and detected patterns. Examples

of a true positive pattern match and false positive pattern match are provided in

Listing 5.1 and Listing 5.2 in the filtered log format. The following subsections

extensively describe our methodology of formatting and categorising system call

data for detection of encryption-type ransomware in more detail.

Listing 5.1: Filecoder true positive pattern match for Write To File Unknown

Extension

4179;23:18:22;openat;(AT_FDCWD, "U_DIR/large_text.txt.seven",

O_WRONLY|O_CREAT|O_TRUNC|O_LARGEFILE, 0666 <unfinished ...>

4179;23:18:22;openat;( ) = 36

4179;23:18:22;fstat64;(36, <unfinished ...>

4179;23:18:22;fstat64;( {st_mode=0, st_size=1, ...}) = 0

4179;23:18:22;write;(36,"\10\261{H|\254\226\32\202\342\322\222\230
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\376c\256h\347\253\347v\271\"\303\265W\203\"\203\244\265T"...,

148720 <unfinished ...>

Listing 5.2: Benign cache-cleaning application false positive pattern match for

Read User File

4436;21:30:03;openat;(AT_FDCWD, "U_DIR/large_image.jpg",

O_RDONLY|O_LARGEFILE) = 119

4436;21:30:03;fstat64;(119, {st_mode=0, st_size=1, ...}) = 0

4436;21:30:03;read;(119, <unfinished ...>

4436;21:30:03;read;( "\377\330\377\340\0\20JFIF\0\1\1\1\0d\0d\0\0

\377\376\0LFile sou"..., 8192) pow2

4436;21:30:03;read;(119, "\344\6Q,\24\266\325j\333\244\312N\371#

\2\247\236*\244\363Bx\2\356\f\235\205(\266\360.\7"

..., 8192) pow2

4436;21:30:03;read;(119, <unfinished ...>

4436;21:30:03;read;( "l\214\254\223\10\250\222H\356\304\366\2\275\

r-\251S\342\273t\357\177\336\306\376\33G\315\225p

\272\276"..., 8192) pow2

5.1.1 Detection of Behavioural Patterns

To acquire a set of high-level common behavioural patterns for encryption-type

ransomware, we conducted an evaluation with 10 encryption-type ransomware

samples from five families obtained from CICAndMal2017 (Lashkari et al., 2018)

and Koodous (n.d.). Each application was executed 10 times and manually ob-

served during runtime to comprehensively acquire their malicious behaviour. Ad-

ditionally, 10 benign samples were also analysed to observe the differences in be-

haviour.

The five ransomware families used for our pattern observation phase consisted

of: WannaLocker, DoubleLocker, SimpleLocker, Filecoder, and Wipelocker. The
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selection of these five families were used as a pilot test aimed at acquiring system

call-level behavioural patterns exhibited by encryption-type ransomware. All sam-

ples were evaluated from each of these families to acquire our common high-level

behaviours. The samples used within our pattern observations phase are excluded

from our dataset of malicious applications to avoid any potential bias within our

evaluation phase in Section 5.3. However, all families, excluding Doublelocker,

are still included in our malicious dataset. During the observation phase, we were

able to discover 12 behavioural patterns. We classified the behavioural patterns in

three categories, five of these patterns are classified as Malicious, four are classified

as Suspicious, and three are General behavioural patterns.

5.2 Token Description

Table 5.1 shows the 12 patterns we identified and created. Within this table, the

use of > is to concatenate each token. Additionally, Table 5.2 provides each token’s

objective. The following paragraphs provide more details of the representation of

each pattern.

1 Rename & Unlink File – The first pattern created was Rename & Unlink

File, the following pattern combination begins with a renameat system call.

As this pattern observe multiple lines of system calls, the two tokens N and

ON were used to capture the next line. The component argument of this

system call requires the location of a file to rename, therefore the token UD

was used to capture any renames within the user directory followed by the

exclusion of the Android directory as this directory does not often contain

user created files. The next system call observed was fstat64, which returns
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Table 5.1: List of common behavioural patterns discovered and their token repre-

sentation

Pattern Name Pattern Combination

Rename & Unlink File OP(renameat)>UD>\\(?!Android)>N>ON

>OP(fstatat64) >N>ON>OP(unlinkat)>UD>A

Unlinking User Files OP(unlinkat)>UD>MF

Unknown File Ext Created OP(openat)>UD>UFC>A

Read User File OP(openat)>UD>MF>(>AL>OP(read)>N>){3}

Write File Unknown Extension OP(openat)>UD>UFC>AL>OP(write)>A

IPv4 Connections OP(connect)>DQ

Directory Search OP(openat)>MD>N>N>(>OP(getdents64)>N>)*

>OP(close)>A

URL to Obfuscated Filename OP(openat)>OF>(>OP(openat>)?>AL

>OP(pwrite64)>AD

Socket Create and Connect OP(socket)>SF>N>(>OP(socket)>N>)?>A

>OP(setsockopt) >N>(>OP(setsockopt)

>N>)>?>OP(connect) >N>(>OP(connect)

>N>)>?>OP(fcntl64) >N>(>OP(fcntl64)>N>)

>?>OP(fstat64) >N>(>OP(fstat64)>N>)

>?>OP(write)>GA

File Write OP(openat)>AL>OP(write)>A

File Read OP(openat)>AL>OP(read)>A

Generic File Unlink OP(unlinkat)

(.*?(.(\w+)(̇\bflock|xml|bak|db-wal\b)\”).+)

Note: Some sub-patterns were retained as a regular expression as certain parts are too specific

to be represented as tokens.
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Table 5.2: List of token names and their respective pattern

Token Pattern Purpose

OP System call operation

AL All including newline

UD User directory

N Newline

ON Optional match newline

A Match all

UFC Unknown file creations

DQ Dotted quad formats (i.e., IPv4)

AD URL address

OF Obfuscated file

SF Socket flags

GA Get address info

MD Match directory

MF Match file (regular file with one extension)

information regarding a file; finalising with the unlinkat system call and UD

token, which represents the unlinking of a file in the user directory.

2 Unlinking User Files – Unlinking User Files is a pattern that observes a

single line of system call. This pattern contains three core tokens, which rep-

resent the system call operation, directory location, and file observed. This

is represented with the pattern combination beginning with the unlinkat

system call followed by the token UD and MF, which represents the unlinking

of a file with any file extension within the user directory.

3 Unknown File Ext Created – The Unknown File Ext Created pattern also
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observes a single line of system call. This pattern begins with the openat

system call followed by the user directory token UD, which represents the ob-

servation of open operations in the user directory. The token is subsequently

followed by UFC, which observes the generation of unknown file extensions

(e.g., excluding common extensions like .jpg, .png, and .txt). Concluding

the sequence is the token A, designed as a wildcard to match any content

within the line.

4 Read User Files – Pattern Read User Files observes multiple lines of sys-

tem calls, which begins with the openat system call followed by the UD and MF

system call, which denotes the opening of a file containing a single extension

within the user directory. This is then followed by the tokens AL for match-

ing all lines, the system call read, and the token N for matching a newline.

These three tokens are subsequently repeated 3 times, which is annotated

with the brackets followed by the number 3 encapsulated within braces. The

3 subsequent read tokens were derived from observing the way that benign

and malicious applications read files. Generally, from the observation of the

system calls logs, malicious applications read user files in specific block sizes,

whereas this occurrence is less frequent in benign applications.

5 Write File Unknown Extension – The following pattern, Write File Un-

known Extension, observe two lines of system calls. However, it follows the

same set of token combinations as Unknown File Ext Created with the addi-

tion of a write system call followed by the wildcard token A.

6 IPv4 Connections – IPv4 Connections observes the connect system call,

which is used to establish a connection to a socket. This connection is estab-
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lished by specifying an address in the argument. Hence, the token DQ was

used to match an IPv4 address in a dotted quad format.

7 Directory Search – Directory Search matches multiple lines of system calls

beginning with the openat system call, this system call is accompanied by

the tokens MD and N. This combination of tokens is used to denote the opening

of a directory in any location. Subsequently, a group of system calls with

getdents64 by the token N is used to capture the directory entries. The

final system call observed in this pattern is close followed by the token A to

signify the closing of the directory search.

8 URL to Obfuscated Filename – The pattern URL to Obfuscated File-

name observes the openat system call with the OF token, which represents

an opening of an obfuscated file. This is followed by an optional match for

any openat system call, which is signified by encapsulating the system call

in brackets followed by the symbol ?. Following the optional match is the

system call pwrite64 with the token AD, which reads or writes to a given file

descriptor in the form of a URL address.

9 Socket Create and Connect – Another pattern related to network connec-

tion behaviours was Socket Create and Connect. This pattern observes mul-

tiple system calls. The pattern starts with the socket system call followed

by tokens SF and N to signify an established communication with a speci-

fied endpoint. This is followed by an optional match for the socket system

call. The next set of system calls observed in this pattern was setsockopt

with the token N. This system call was used to set or get the socket options.

Similarly, the system call is followed by an optional match. The next se-
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quences observe the connect, fcntl64 and fstat64 system calls with each

system call containing an optional match, finalising with the write system

call and the token GA, which is used to represent the acquisition of network

information.

10, 11 File Read and File Write – File Read and File Write share similar pattern

combinations with both of the pattern starting with an openat system call

with the token AL and subsequently end with the system calls read or write

with the token A.

12 Generic File Unlink – The final pattern created is Generic File Unlink.

This pattern observes the unlinkat system call and a regular expression to

match any file that matches the common file extensions flock, xml, bak,

and db-wal, which were often removed from benign applications based on

observations in the system call logs.

5.2.1 Pattern Acquisition and Classification

The method of acquiring the patterns was based on manual deduction in the obser-

vation phase. This was achieved by going through each application and identifying

malicious (or potentially malicious) behaviour and its respective high-level system

call counterpart via the captured log. For example, if an application encrypted

the user’s files then the high-level behaviour at a system call level would translate

to openat - open user file, one or multiple read system calls, openat - create new

encrypted file, one or multiple write system calls.

We aim to observe common high-level behavioural patterns specifically focusing

on encryption-type ransomware. However, not all captured behavioural patterns
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correlate to malicious behaviour.

For example, consider the creation of a socket to connect to an external URL to

transfer specific resources. This type of behaviour occurs in both benign and ma-

licious applications. However, the usage will differ. A malicious application often

uses that connection to contact a Command and Control (C&C) server (Lipovský

et al., 2016) to download the payload, whereas a benign application would use

the connection to download resources; often occurring in applications requiring

frequent updates, such as online mobile games, or linking accounts such as social

media accounts. Therefore, to aid in distinguishing the behaviour of patterns, we

created a classification to better represent the patterns detected.

Patterns in the Malicious category are explicitly classified as malicious be-

haviours. Applications that contain Malicious patterns contain malicious seg-

ments that resemble behaviour of encryption-type ransomware, such as unlinking

or renaming a file within the user directory.

Behavioural patterns classified in the Suspicious category are deemed as poten-

tially malicious. These types of patterns can lead to malicious behaviour. However,

the behaviour by itself does not indicate any malice. An example of a Suspicious

pattern is the connection of an IPv4 address.

Patterns in the General category are common benign behaviours that exist in

malicious and benign applications with low indication of malicious behaviour, such

as a file read or file write from any directory.

Note: Suspicious and General patterns are not used in our evaluations for this

work. These patterns were primarily identified and created to aid future detection

systems that utilise common high-level behaviour. Furthermore, encryption-type

ransomware exhibits distinct malicious behavioural patterns unlike other types of
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malware, such as Adware and Trojans, where the malicious behaviours are not

always immediately evident. The inclusion of these two pattern categories will be

more beneficial in those types of malware.

5.2.1.1 Malicious Patterns

Our first malicious pattern observed from the logs was related to file renaming

and unlinking within the user’s main directory (Rename & Unlink File). This

behaviour was observed in the WannaLocker/Slocker sample, which renamed the

initial encrypted file using an unknown file extension. Once the file extension has

changed, the ransomware proceeded to unlink the user’s original file that was re-

lated to the encrypted file. We only looked for this pattern in files within the

user directory or external directory (SDcard) as these directories are the points of

interest for encryption-type ransomware due to the importance of the files residing

within them (often important to the users, such as photos, notes, and other im-

portant documents, but not required for the system to work) (Song et al., 2016).

Additionally, during our observation phase, the folder Android was also within the

user directory. Hence, we added a condition to exclude that specific directory.

The next malicious pattern from our observations was unlinking of users’ files.

From our analysis, we were able to find consistent occurrences of this pattern in

the ransomware samples and there were no traces of this pattern occurring in the

10 benign samples during our observation phase.

Another malicious behavioural pattern discovered was the creation of files with

unknown file extensions within the user’s main directory (Unknown File Ext Cre-

ated). From the different samples observed, this was a prevalent file encryption

behaviour of ransomware where a new file was created to hold the encrypted data
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of the original user’s file. This encrypted file was in a nonstandard file extension

and the file name consisted of the original file’s name including its original file

extension.

The last two common malicious patterns discovered were reading of user files

and writing to a file with an unknown file extension. These two behavioural

patterns represented the encryption segment of an encryption-type ransomware.

This was a common behaviour that occurred in all of our ransomware logs.

The first pattern that represents the encryption component is Read User File.

This pattern focuses on capturing the behaviour of applications reading three

times from a file within the user directory. From our observation phase, some of

the malicious variants observed read the contents of files within the user directory

over multiple read operations in a specific block size, unlike the benign samples,

which read the file contents in one single block. Hence, the inclusion of three read

operations; this is to filter out apparent benign applications.

The second pattern of the encryption component isWrite File Unknown Exten-

sion. This pattern observed the behaviour of applications writing data to a newly

created file with an unknown file extension. This pattern, together with Read User

File, represented the encryption behaviour seen from the various encryption-type

ransomware in our observation phase. Figure 5.2 provides an abstracted example

of our process for modelling the aforementioned malicious behavioural patterns

using regular expressions. We utilised a similar process for Suspicious and General

patterns.
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\bUnlinkat\b

/Storage/emulated/0

Unlinking User File

System call operation

(.(\w+)\.(\w+).*)

User directory location

File type

(\d+\:\d+\:\d+)

(\d+) Process ID

Timestamp

Figure 5.2: Abstract view of representing ’Unlinking of user files’ malicious pattern

using regular expressions

5.2.1.2 Suspicious Patterns

The first suspicious pattern we noted was applications making connections to an

external IPv4 address. This could mean the malicious app making connection to

a C&C server. However, this can also just be a non-malicious app connecting

to the outside internet. We, therefore, classified as suspicious but not malicious.

IPv6 addresses were not considered as IPv4 addresses were the most prevalent

occurrences observed in our initial observation phase. Furthermore, our main

methodology of pattern matching utilises regular expressions as such, it would be

challenging to represent IPv6 addresses as regular expressions. The sequence of

this pattern observes any connect system call followed by an IPv4 address.

Another suspicious behavioural pattern was directory searching. This be-

haviour is traditionally exhibited by encryption-type ransomware, which searches
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for user files within the device to encrypt. However, this behaviour does not inher-

ently signify malicious behaviour as there are benign applications that can exhibit

the same behaviour, such as cache-cleaning applications.

The next notable suspicious pattern discovered in some ransomware samples,

was the creation of an obfuscated file. This file had no file extension and the

content contained an external URL. Similar to the first suspicious pattern, we

were unable to validate the legitimacy of the URL address. However, many of the

ransomware logs observed, contained URL addresses that were related to C&C

servers.

The last suspicious pattern was the acquisition of network information via

getaddrinfo. From our observations, the majority of the ransomware logs at-

tempted to acquire network information, such as socket addresses, and socket types

from unknown domains via getaddrinfo. However, this does not necessarily in-

dicate malice as we discovered legitimate trusted domains in benign applications

such as, googleadservices.

5.2.1.3 General Patterns

There are three patterns in the General category. These patterns consist of simple

file I/O operations, read and write file behaviour, and generic file unlinking (targets

known file extensions in any directory location), such as temporary files (.tmp,

tmp), backup files (.bak), or file locks (.flock).

The patterns in the General category aim to provide more detailed informa-

tion regarding an application’s behaviour regardless of whether the application is

malicious or benign.

For File Read, and File Write, the sequence started with an openat system
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call, then a read/write operation. The last pattern Generic File Unlink matches

any unlinkat system call with any file matching .flock, .xml, .bak, or .db-wal.

One of the objectives of this work was to identify common high-level be-

havioural patterns for encryption-type ransomware at a system call level. To satisfy

this requirement, we identified 12 different behavioural patterns, represented as to-

kens, and categorised them into three severity levels based on our observations.

The use of behavioural patterns can be a challenging task for binary classification

as benign and malicious applications can often exhibit similar behavioural patterns.

Hence, the severity levels aimed to address this issue by categorising the identi-

fied behavioural patterns based on their relevance to encryption-type ransomware

behaviours. By utilising these patterns with the methodology for collecting and

extracting system calls in Section 4.3, we were able to devise a meta language for

detecting malicious encryption-type ransomware behavioural patterns. This ap-

proach presents an easily reproducible testbed for researchers to create behavioural

patterns based on system call logs.

5.3 Evaluation

This section details the method of evaluation used in this work, which includes the

evaluation of detected patterns identified in a set of encryption-type ransomware

and benign applications. These evaluations are conducted to identify shared com-

monalities that exist between different encryption-type ransomware families as well

as assessing the viability against a benign set of applications.



68

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

WannaLocker SimpleLocker WipeLocker Pletor Filecoder Black Rose Lucy

Overview of detected patterns

Unlinking user files Files created with unknown extensions

Reading of user files Writing to unknown file extensions

Figure 5.3: Overall results of each detected pattern

5.3.1 Evaluation Method

We ran each application for two minutes using our automation script. Based on

our initial observations, all malicious Android applications evaluated were able to

exhibit malicious activity within the two minute threshold. Once all the system

calls were extracted, we put them through our detection program, and calculated

the number of all detected patterns for the different severity levels.

For our ransomware dataset, we identified different malicious patterns for all

six ransomware families. Any application whose log contained a match for at least

one malicious pattern was classified as malicious. Any falsely identified malicious

patterns were noted within this evaluation.

5.3.2 Detected Patterns

This section details our evaluation of the six different encryption-type ransomware

families. Figure 5.3 illustrates the results of our evaluation for the malicious
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dataset. The following paragraphs provide a thorough elaboration of each family

and their discovered patterns.

WannaLocker: For WannaLocker we acquired 51 samples; from these 51 samples,

we detected 850 malicious patterns. Unlinking User Files and Read User File were

detected 211 times each, Write File Unknown Extension was detected 162 times,

and 266 patterns were Unknown File Ext Created.

SimpleLocker: We acquired 64 encryption-type ransomware samples of Simple-

Locker, and out of these 64 samples, we were able to discover 1280 malicious

patterns. Within the 1280, we detected an even split of 320 Unlinking User Files,

Unknown File Ext Created, Read User File, and Write File Unknown Extension.

However, we were unable to detect any Rename & Unlink File as this behaviour

did not occur in any of the samples.

WipeLocker: For WipeLocker, 70 samples were acquired for evaluation. All

70 samples detected 5 Unlinking User Files with no other malicious patterns de-

tected. This led to a total of 350 malicious patterns detected. Although Wipe-

Locker did not indicate any behaviour of file encryption (even after re-evaluating

the applications manually), the attributes this family exhibited were similar to

encryption-type ransomware such as, the detected pattern of unlinking user files,

and directory searching (a suspicious pattern, which we were able to detect a total

of 733 occurrences); hence, the inclusion of this family within our evaluation.

Pletor: We were able to acquire six samples from Pletor and from those six

samples, a total of 120 malicious patterns were discovered; with even split of 30

between Unlinking User Files, Read User File, Write File Unknown Extension,

and Unknown File Ext Created.

FileCoder: For Filecoder, we were only able to acquire five samples. However,
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out of these five samples, we were able to discover 95 malicious samples. From

those 95 patterns, Unlinking User Files and Write File Unknown Extension were

split evenly with 25 total detected samples each,20 were classified as Read User

File, whilst the remaining 25 were classified as Unknown File Ext Created.

Black Rose Lucy: For Black Rose Lucy, we acquired 17 samples for our evalua-

tion. Out of these 17 samples, 307 malicious patterns were detected. Out of these,

we identified 45 instances of Unlinking User Files, 95 Unknown File Ext Created,

72 Read User File, and 95 Write File Unknown Extension.

Unlike other encryption-type ransomware, we noticed that Black Rose Lucy

specifically targeted the user’s external storage directory (/sdcard/) rather than

the user’s internal directory during our evaluation. Additionally, we required man-

ual interaction with each of the samples as Android Monkey was unable to detect

the package name of the application.

One of the objectives of this work was to evaluate the viability of the de-

vised patterns for behavioural pattern detection against a set of encryption-type

ransomware. Within our evaluation, we were unable to discover any patterns

for Rename & Unlink File as this behaviour was likely tied to a specific variant

of WannaLocker or SimpleLocker. However, from the overall results of our eval-

uation, seen in Figure 5.3, there is clear indication of shared common behaviour

among encryption-type ransomware regardless of the family, with the only excep-

tion of WipeLocker, which is known to only remove user files. Through the pat-

terns detected and shared commonalities identified, we have validated the viability

of these common high-level behavioural patterns for detection of encryption-type

ransomware.



71

Table 5.3: Summary of all benign applications evaluated

Benign Samples Percentage Sample Size

True Negative 98.6% 495

False Positive 1.4% 7

5.3.3 Benign Applications Results

Table 5.3 contains a summary of our results where we evaluated the efficacy of our

patterns on our benign dataset. The Percentage column provides the percentages

of true negatives and false positives detected for all benign samples evaluated.

The Sample Size column denotes the numerical value of true negatives and false

positive samples detected.

To evaluate the efficacy and viability of our patterns, we tested our approach

on a dataset consisting of 502 benign applications. Two of those are the cache-

cleaning applications discussed separately below. Out of the other 500 benign

applications, we encountered six falsely classified applications. This was due to a

mismatch of four different patterns, specifically, Unlinking User Files, Read User

File, Unknown File Ext Created, and Write File Unknown Extension.

For our pattern matching results, two applications incorrectly matched Read

User File; this was due to the applications creating and reading application related

files within the user directory, such as dslv state.txt. To mitigate this issue,

openat system calls with the flag O CREAT could be excluded. This would ensure

that only user created files were captured within this pattern.

The third benign application that was falsely classified incorrectly matched
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the patterns Unlinking User Files and Read User File, due to the application

creating and utilising temporary files within the user directory. This was one of

the drawbacks of capturing high-level behaviour. For most cases, these patterns

would capture unlinking of user created files and existing user file access and reads,

which is a behaviour often exhibited by encryption-type ransomware as part of the

file encryption process. However, in the case of an application creating and utilising

a file within the user directory, it would be classified as a false positive. A potential

solution is to exclude files created by the application within the user directory, as

previously suggested, or reduce and combine the behavioural patterns related to

file encryption.

The last three benign applications falsely classified were incorrectly matching

two behavioural patterns: Unknown File Ext Created and Write File Unknown

Extension. These patterns were falsely classified due to the applications creating

an application folder within the user directory and a file with an unknown file

extension within the application folder.

Similar to the proposed solution for the aforementioned third application, com-

bining behavioural patterns related to file encryption could provide a more accurate

representation. Alternatively, the pattern could be altered to only check for pri-

mary directories (i.e., directories not created by the application), such as Photos,

Documents, and Downloads.

5.3.3.1 Cache Cleaning Applications

For the two cache cleaning applications, one of them resulted in a false positive.

There were four total malicious patterns matched and all four of those patterns

were linked to Read User File.
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From the examination of the patterns file and system call log file, these four

patterns were deemed as irregular behaviour as it was unusual for a benign appli-

cation to be reading the contents of user created files (i.e., pre-existing files, not

created by the application).

5.3.4 Discussion

This section explores some of the limitation of the aforementioned work. One of the

limitations relates to the generation of regular expressions. Currently, we require

manual observation and interaction to create regular expressions. This process can

often be tedious and difficult. As we continue to develop our approach, we intend

to automate this process.

Another limitation is our approach of identifying behavioural patterns. The

patterns identified were based on our observations from various applications. As

a result of this, there may have been some behaviours that were not captured. In

future, we would like to introduce a more formalised and robust methodology of

identifying behavioural patterns at a system call-level ensuring that all behaviours

are captured without any uncertainty.

Additionally, we intend to introduce more behavioural patterns capable of de-

tecting other types of malware, such as Backdoors and Trojans, which were identi-

fied as two of the most prominent types of infections for third-party apps (Google,

2019b). This enables us to expand our dataset and evaluate the efficacy of our

methodology on a larger sample size consisting of different types of malware.

Many dynamic anti-malware solutions often utilises isolated environments,

most commonly through the use of Virtual Machines (VMs), to contain and analyse
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malware. This presents an issue as more contemporary malware are equipped with

the capabilities to detect and evade those environments (Gadhiya and Bhavsar,

2013; Uppal et al., 2014). Although the experiments conducted in this thesis were

evaluated on VM, the work has shown to be feasible to implement on a real device.

In future, a potential avenue for improvement is to develop a system that incor-

porates the concepts proposed in this thesis, which can efficiently capture system

calls in real time on a real user device whilst adhering to the resource constraints

of mobile devices.

As previously mentioned in Section 5.2.1, Suspicious and General patterns

were not utilised in our evaluations. However, these patterns were still identified

and created to lead into future work. These patterns can be expanded to create a

more robust real time malware detection model for Android devices, or aid current

and future anti-malware solutions in detecting and deterring malware.

The use of system calls enables the ability to capture large quantities of informa-

tion, which can often be used to associate behaviours exhibited by an application.

However, by further exploring system calls, it was observed that more complex

behaviours are difficult to capture and understand at a system call level. One of

the examples was locker-type ransomware behaviour and SMS Trojans. The core

mechanism of a locker-type ransomware is to restrict the users’ ability to access

their devices, often times, this restriction is imposed by a perpetual overlay or

window, which cannot be closed. Conversely, SMS Trojans send or intercept SMS

messages for malicious purposes (e.g., stealing of credentials and involuntary sub-

scription to premium services). At a system call-level, these types of behaviours

are often handled by the ioctl system call, which observes binder transactions.

Due to the complexity of binder transactions, the ioctl system calls are not easily
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understandable.

Based on the understanding of this limitation, it would not be feasible to accu-

rately identify and understand the complex behaviours of specific types of malware

by solely relying on system calls alone. Further additions, such as frequency anal-

ysis (Bhatia and Kaushal, 2017), specialise decoding of Binder transactions (Tam

et al., 2015), or additional observable features, such as permissions (Ferrante et al.,

2017), would be necessary to produce a more descriptive overview of an applica-

tion’s behaviour. Nevertheless, solely utilising system calls and its sequence does

not inhibit the ability to observe behavioural patterns in general. However, this

is a limitation that should be considered for more complex behaviours or specific

malware types.

The use of dynamic analysis methods are more resilient to common static ob-

fuscation techniques, such as code obfuscation, and junk code insertion. However,

it should be noted that obfuscation techniques have been effectively explored to

invalidate existing dynamic analysis methods. A dynamic analysis obfuscation

technique of particular interest is system call obfuscation. Srivastava et al. (2011)

proposed an Illusion attack that utilises an Alternative System Call Execution

Path (ASEP) and the ioctl system call to obfuscate malicious behaviour. The

proposed method showed that it was possible to masquerade the behaviours per-

formed by malicious applications as the system calls invoked through the use of

ioctl, which is difficult to discern from benign applications due to the marshalling

process, unless a specialised decoding process was implemented.

In this work, the use of regular expressions to devise behavioural patterns have

been shown to effectively detect encryption-type ransomware. However, regular

expressions have its limitations, particularly relating to more complex pattern
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matching, such as nested parentheses, and counting or checking for balanced sets

of characters. In the following chapters of this thesis, this issue is addressed by

deviating from the prevalent use of regular expressions in the behavioural patterns.

5.4 Chapter Summary

In this chapter, we identified and explored different system call level behavioural

patterns for encryption-type ransomware. To achieve this, we presented an exten-

sive methodology for collecting and identifying behavioural patterns at a system

call level. Using this methodology, we were able to discover a set of common

high-level behavioural patterns at a system call level.

Additionally, the effectiveness of behavioural patterns identified was evaluated.

This was achieved by creating 12 behavioural patterns for detecting encryption-

type ransomware. Consequently, this chapter evaluated the patterns against a set

of encryption-type ransomware to identify shared commonalities between differ-

ent families using pattern matching. The methodology and behavioural patterns

presented in this chapter contributed and further extends to dataset mentioned

in Chapter 4 by including the formatted system call logs of encryption-type ran-

somware.



Chapter 6

Real Time System Call based

Ransomware Detection

The threat landscape of malware is ever-evolving, and the techniques used by

malware developers have become more intricate over the years. To counteract

the evolving landscape, some researchers have shifted towards the use of real-time

malware analysis as it can offer the benefit of immediate and active monitoring of

malware. One of the research contributions outlined in this thesis is to leverage the

benefits of real-time malware analysis and system call level analysis to dynamically

identify behavioural patterns of encryption-type ransomware on mobile devices.

This chapter further extends the work mentioned in Chapter 5 by adopting a

proof of concept real time streaming approach. The following sections describe the

revised methodology for a real-time streaming approach to detect encryption-type

ransomware. This is achieved by using a 2 layer token Finite State Machine (FSM)

approach, which distinguishes between individual and sequential behavioural pat-

terns. The new methodology was compared to the previous methodology in Chap-
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Figure 6.1: Block diagram for streaming approach

ter 5 to evaluate its efficacy. Furthermore, the performance of the new approach

was evaluated and shows that it is feasible to run on an Android operating system.

6.1 Implementation with streaming system calls

In the previous chapter (Chapter 5) an offline methodology for detecting encryption-

type ransomware was proposed, which utilises system call data. The main limita-

tion of the approach is the offline data collection process, which is not scalable and

not indicative of a real-world scenario where data and information is constantly

generated in real time. We improved this through a new streaming architecture,

where each line of system call generated by strace is processed in real time. This

approach consists of two primary modules, Process Token Module, and Detection

Module. Figure 6.1 provides an abstract overview of our proposed approach, with

the following subsections further elaborating on each module.
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6.1.1 Process Token Module

To stream the system call data (i.e., capture the system call data in real time),

we used a similar environment as previously mentioned in Chapter 4, Section 4.3,

which adopts Android Debug Bridge (ADB) and strace on an Android emu-

lator running Android 7.0 Nougat (API level 24). The process observed using

strace was the parent process (Zygote), which allows us to capture a broad range

of behaviours, such as the application’s behaviour and application to Operating

System (OS) interactions occurring within the device. System calls produced by

strace are sent to the Process Token module, which checks if it is a white-listed

system call, then formats the system call with a separation character (;) and con-

verts it into a unique token for the Detection Module. By adopting a streaming

approach, we were able to provide a more realistic, real-world, evaluation of our of-

fline approach of using system call behavioural patterns to detect encryption-type

ransomware in real time.

Not all system calls recorded by strace are relevant to the behaviour of an ap-

plication of interest. For example, clock gettime() is used to obtain the system

clock time and gettimeofday(), can acquire the current time and the timezone,

irrespective of application behaviour. We filtered out system calls following a simi-

lar method of filtering unrelated system calls from our offline approach, which was

mentioned in Chapter 5, Section 5.1, to the streaming process. We improved this

process by white-listing a smaller subset of system calls used for encryption-type

ransomware (e.g., open, write, read). By applying the white-list, the processing

and detection time are further reduced as system calls that are not in the white-list

will not be processed.
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After the initial filtering process, each system call was formatted using the sep-

aration character ; for easier token conversion (e.g., <pid>;<timestamp>;<system

call>;<arguments>), then converted into unique tokens to be utilised by the FSMs

(i.e., token FSMs) in the Detection Module. This was done to reduce the num-

ber of state transitions required. The conversion process condensed each system

call into a unique token. To convert system calls into tokens, we developed a set

of unique tokens (provided in Table 6.1), derived from regular expressions, that

matched each system call based on the operation and system call arguments.

6.1.2 Detection Module

The Detection Module utilises the behavioural patterns previously discussed in

Chapter 5, Section 5.2.1. These behavioural patterns are converted into token

FSMs, which are used in our detection phase. As each token is streamed from the

Process Token module, the Detection module validates the current token against

a set of FSMs. In this module, the proposed method includes two layers of finite

state machines to acquire a more precise detection model for encryption-type ran-

somware. Suspicious and General patterns were not used in the Detection Module

except for Directory Search, as those patterns did not provide additional benefits

in the process of detecting malicious activity with this proposed implementation.

The first layer of FSM consists of individual behavioural patterns previously

mentioned in Section 5.2.1. These behavioural patterns were converted into a more

compact and generalised FSM to reduce the time taken to detect behaviour. It

needs to be kept in mind that generalisations like this can increase the likelihood

of false positives.
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Table 6.1: Token representations of systems calls

Tokens Text Representation

O U CREATE Open create unknown file extension

O UDIR FILE Open user file

O UD Open user directory

RD Generic read

O OBF Open obfuscated filename

S Generic socket

W Generic write

O Generic open

C DQ Connect to dotted quad address

SS Generic setsockopt

FC 64 Generic fcntl64

W GA Write getaddrinfo

FS 64 Generic fstat64

GET ENT64 Get entries in directory

U UDIR Unlinking file in user directory

G U Generic unlink

PW 64 Generic pwrite64

PW 64 AD Pwrite64 URL

RN UDIR Rename file in user directory

Encryption-type ransomware follows a distinct and common sequence of be-

haviours. Hence, to further distinguish the differences between malicious and be-

nign behaviours we have devised a second layer of FSMs, which determines if the

sequence of matched patterns corresponds to the sequence of behavioural patterns

exhibited by encryption-type ransomware. The second layer of FSMs represents
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the sequential occurrence of behaviours observed in encryption-type ransomware

(i.e., combination of layer 1 FSMs). The second layer FSM will only be checked

if the first layer FSM matches a pattern (i.e., a layer 1 FSM has reached a final

state). The state transition of a layer 2 FSM is the layer 1 FSM behavioural

pattern name (e.g., Unlink user file, General unlink).

6.1.2.1 Creation of layer 1 FSMs

Layer 1 FSMs are based on previously discovered encryption-type ransomware

behavioural patterns. However, as mentioned in Section 6.1.2 they were generalised

and compacted through the utilisation of tokens. To acquire the token FSMs, we

simplified the expanded regular expressions by removing fine-grain details, such as

timestamps, newline matches (\n), and multi-line matches (((.|\n)*?)) as these

matches were no longer due to the real time streaming approach, which processes

one token at a time rather than iterating over multiple lines of system calls. After

this simplification, the system calls and their respective arguments used in the

regular expression were converted into a unique token as previously explored in

Section 6.1.1. Through this process of generalisation and compaction, we acquired

tokenised FSMs. Figure 6.2 shows an example of this process, which takes the

offline tokenised regular expression and expands it to the full regular expression.

This is done to remove the fine-grain details, thus resulting in a more compact

regular expression. After removing the fine-grain details, the regular expression is

converted into a unique token, which is then created into a layer 1 token FSM.
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OP(unlinkat)>UD>MF

ESCAPADE: Tokenised Regular Expression

(\\d+);(\\d+\\:\\d+\\:\\d+);\bunlinkat\b;(.*?(U_DIR)|.*?
(sdcard))(.(\\w+)\\.(\\w+)\\\")

ESCAPADE: Expanded Regular Expression

\bunlinkat\b;(.*?(U_DIR)|.*?(sdcard))(.(\\w+)\\.(\\w+)\\\")

Remove fine-grain details

O_UDIR_FILE

Layer 1 Token FSM:
Unlink User file

S1 F

Token Conversion

O_UDIR_FILE

Figure 6.2: Transformation of behavioural patterns to layer 1 token FSM

6.1.2.2 Creation of layer 2 FSMs

Layer 2 FSMs focus on behaviour sequences (i.e., sequence of behavioural pat-

terns from layer 1 FSMs). As previously mentioned, encryption-type ransomware

exhibited distinct sequences of behaviours. To acquire the specific sequences of

behaviours, we randomly selected six samples from six different ransomware fam-

ily (one sample from each family) and manually observed the sequence of layer

1 FSMs detected. From this observation, we acquired 4 distinct sequences of

behaviours commonly exhibited by encryption-type ransomware as shown in Ta-

ble 6.2. The table shows the four distinct sequences of behaviours; the symbol > is

used to show the concatenation of individual behaviours (e.g., Directory Search

> Unlink User File means a directory search behaviour followed by another be-
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S1 S2 S3
Directory Search Unlink User File

FSM layer 2: Search Unlink

Figure 6.3: Layer 2 FSM example for search Unlink

haviour, which unlinks user files). If one of these sequences is discovered in the

2nd layer of FSMs, the application is considered malicious. Figure 6.3 shows an

example of a layer 2 FSM.

The streaming approach described in this section addresses the limitations of

the previous offline approach by establishing an improved processing and detec-

tion system. This approach adopted the previously defined behavioural patterns,

and created a real time detection system utilising a 2 layer FSM, which observed

individual behavioural patterns and sequences of behavioural pattern, thus further

validating the first half of our fourth research objective. In the following section,

we evaluate the improvements of this streaming implementation compared to the

previously established offline approach.

6.2 Evaluation

In this section, we present the results of our comparison between the streaming

implementation, which observed system calls in real time and utilised a two layer

FSM approach to detect behavioural patterns, and the offline approach, which

observed system call logs to detect behavioural patterns. Furthermore, this section

describes the methods used to evaluate our approaches, and the results of our

experimentation, which consist of the detected malicious patterns, false positives
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Table 6.2: Sequence of common behaviours exhibited by encryption-type ran-

somware

Pattern Name Behaviour sequence

Search Read Unknown Create Write Directory Search > Read User File

> Unknown File Creation

> Write Unknown File Extension

Search Read Unlink Directory Search > Read User File

> Unlink User File

Search Unknown Create Write Directory Search > Unknown File Creation

> Write Unknown File Extension

Search Unlink Directory Search > Unlink User File

within benign applications, and the overhead incurred by the streaming approach.

The environment used in our evaluation was running MAC-OS, Intel Core i5

2.3 GHz Quad Core, with 8GB RAM. The Android emulator was created using

Android Studio, and the emulator environment was a Pixel 2 running API level

24, Android 7.0 (Google APIs), with 2048MB internal storage, 512MB SDCard

storage, and 1536MB of RAM.

6.2.1 Evaluation Method

To evaluate the offline approach, we ran each application for two minutes using

our automation script. As mentioned in Chapter 4, this work utilises the inclu-

sion of additional trap files. Hence, the application runtime has been increased to

two minutes as opposed to the initial one minute mentioned in Chapter 5. This

automation script installs and starts the applications and utilises Android Mon-
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key Google (2022a) to inject random events to simulate real user interaction. Once

all the system calls were extracted, we put them through our detection program,

and calculated the number of all detected patterns for the different severity levels.

A similar method was utilised for our streaming approach. However, rather than

collecting system call logs, we piped the output of strace into our implementa-

tion and measured the number of layer 2 FSM matches (i.e., sequential behavioural

patterns). We identified various malicious patterns for all six ransomware fami-

lies. Any application containing a match for at least one malicious pattern, for

the offline approach or one layer 2 FSM match, for the streaming approach, was

classified as malicious. Any falsely identified malicious patterns were noted within

this evaluation.

This section details our evaluation of the six different encryption-type ran-

somware families. Figure 6.4, shows the individual malicious patterns detected in

the offline approach and Figure 6.5 shows the sequence of malicious patterns de-

tected using the streaming approach. Although different patterns were utilises

in the detection process (offline uses individual behavioural patterns, whereas

streaming uses sequences of malicious behavioural pattern), the two figures in-

dicate a similar outcome in detected behavioural patterns for encryption-type ran-

somware. This similarity shows that the streaming approach with an altered de-

tection method, using sequence of behavioural patterns, is capable of successfully

identifying shared common behavioural patterns in encryption-type ransomware

and is comparable to our offline approach.

One of our research objectives was to evaluate the feasibility of the devised

patterns for behavioural pattern detection against a set of encryption-type ran-

somware. The results of our evaluation in Figure 6.4 and Figure 6.5, provide vis-
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Figure 6.4: Offline: Malicious behaviour results
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Figure 6.5: Streaming: Sequence of malicious behaviour results

ible indication of shared common behaviour among encryption-type ransomware

regardless of the family. The only exception is of WipeLocker, which demonstrates

a singular behavioural pattern. WipeLocker is known to only remove user files,

without encrypting them. Although there have been different classifications for

WipeLocker Chen et al. (2017), we chose to classify this specific family as an
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encryption-type ransomware based on the observed system behaviour (unlinking

files) rather than the user perceived behaviour, such as ransom notes or displaying

a perpetual window, which may result in a different classification. Further, in

our evaluation, we were unable to find any match for the Rename & Unlink File

pattern as this behaviour was likely tied to a specific variant of WannaLocker.

The results shown in this evaluation have validated the feasibility of our discov-

ered malicious behavioural patterns for detection of encryption-type ransomware.

Additionally, we have shown the feasibility of our streaming approach for detecting

malicious patterns by achieving similar successful results to our offline approach.

6.2.2 Benign Applications Test

We tested both approaches on a dataset consisting of 502 benign applications. Two

of the benign applications were cache-cleaning applications, which are discussed

in a separate section. In the following subsections, we explain the results of our

experiments. The results of the benign applications were previously described in

Chapter 5, Section 5.3.3. We further extended this evaluation on our streaming

approach by utilising the same dataset. However, we applied incremental changes

to refine the patterns. This is further elaborated in the next section.

6.2.2.1 Streaming Method

Our initial streaming approach contained one layer of FSMs where each pattern

represented a behaviour, similar to the offline approach. As we evaluated this

initial design on our benign dataset, we encountered 2.2% (11 out of 500) false

positives and 100% true positives. To help alleviate the false positives, we applied
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a second layer of FSM as mentioned in Section 6.1.2.2, which captured the sequence

of behaviours.

After re-evaluating with the inclusion of layer 2 FSM, we encountered a much

higher false positive rate of 4.2% (21 out of 500) with unchanged true positive

rates. The increase in false positive rate was caused by the combination of the

suspicious pattern directory search and unlinking user file, which was present in

17 out of 21 of falsely classified benign applications. This issue occurred because

the initial directory search pattern matched all folders within the user directory.

This included the Android folder where application-specific files were stored. The

unlinking user file pattern also had the same issue where any file within the user

directory was considered a match. To alleviate this issue, we restricted the Direc-

tory Search pattern to exclude the Android folder. This alteration significantly

reduced the false positive rate to 1% (5 out of 500) whilst retaining the 100% true

positive rate.

This method, however, can potentially produce false negatives, as applications

may store valuable data for the user within the application-specific folders or users

can also store their own files within the folder. To observe this, we tested the new

pattern on 6 different encryption-type ransomware (from different families). Each

sample was observed for 5 minutes in an emulated environment with trap files

stored within the Android directory. The extension of time from 2 minutes to 5

minutes is to extensively evaluate each application and ensure that all behavioural

patterns were captured. In this test, 5 out of 6 ransomware encrypted the files

within the Android directory except for Wannalocker, which did not encrypt files

within the Android folder. These results posed an issue as the exclusion of the

Android directory limited the scope of our detection process. The Android di-
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rectory is often used to store application related files. For example, gaming save

files. Some ransomware samples might not consider specific directories to encrypt,

but rather the file extensions. Hence, if there is a file extension of interest in the

Android directory, then encryption will still occur.

To mitigate this issue without compromising on the detection rate, we observed

the differences in behaviour between benign and encryption-type ransomware,

specifically the behaviour of directory search. We noticed that with encryption-

type ransomware, a directory search occurred for multiple folders within the user

directory to ensure a widespread effect. However, for benign applications this

search was less frequent, except for specific applications, such as cache-cleaning

applications. To evaluate this theory, the directory search pattern was altered to

detect directory searches that occurred two or more times in separate directories.

With this alteration, the false positives rates were reduced to 0.4% (2 out of 500)

with 100% true positives. This was a 250% reduction in false positives compared

to the methodology of excluding Android directory without compromising on the

scope, and accuracy of our detection. Hence, we utilised this methodology in our

detection system.

Utilising the Altered Directory Search method, two false positives were de-

tected. These two false positives consisted of search unlink sequences. This was

likely caused by the applications accessing the same user directory multiple times

(i.e., Android directory) and unlinking application related files. As the systems

calls were abstracted into tokens, the detection system was unable to identify fine-

grain details, such as different user directories being accessed (i.e., if the same user

folder was accessed twice, it would be considered a directory search pattern). This

is one of the known limitations of our proposed streaming approach.
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6.2.2.2 Cache-Cleaning Applications

As previously detailed in Chapter 5, Section 5.2.1.1, specific benign applications,

such as cache-cleaning applications could produce behaviours, which can poten-

tially be deemed as malicious if the context is not known (e.g., unlinking junk

files within the user directory). Hence, we separately evaluated two cache-cleaning

applications to evaluate the efficacy of our approaches. By utilising the offline

methodology mentioned in Chapter 5, Section 5.1, one of the cache-cleaning ap-

plication resulted in a false positive. There were four total malicious patterns

matched, and all four of those patterns were linked to Read User File. From the

examination of the patterns file and system call log file, these four patterns were

reading the contents of the user created files (i.e., pre-existing files, not created by

the application), which would be deemed as malicious behaviour as it is unusual

for most benign application to be reading the contents of user created files.

Table 6.3 contains a summary of our results, which utilised the offline approach.

The Percentage column shows the percentages of true negatives and false positives

detected for all benign samples evaluated. The Sample Size column denotes the

numerical value of true negatives and false positive samples detected, while Ta-

ble 6.4 provides an overview of the true negatives and false positives of 502 benign

applications for the streaming approach with the 4 aforementioned alterations.

Additionally, the evaluation results for cache-cleaning application have also been

included.

We can see that the false positive rates of our streaming approach have notice-

ably improved (using the Altered Directory Search method) compared to the offline

approach. This was due to the introduction of a layer 2 FSM, which observed se-
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quences of behaviours, thus further distinguished the differences between a benign

and malicious application behaviour. Additionally, based on our observations, we

made incremental alterations to the patterns based on the behaviours exhibited by

benign and malicious applications to identify the best-fit method for our approach.

The false positive rates show that detecting ransomware and malware in general

through behaviours exhibited in system calls is feasible.

Table 6.3: Summary of all benign applications evaluated using offline approach

Benign Samples Percentage Absolute Number Sample Size

True Negative 98.6% 495
502

False Positive 1.4% 7

Table 6.4: Summary of benign evaluation with the streaming approach using afore-

mentioned methods

Methodology True Negative False Positive Sample Size

Layer 1 Evaluation 489 (97.8%) 11 (2.2%) 500

Layer 2 Evaluation 479 (95.8%) 21 (4.2%) 500

Restricting User Directory 495 (99%) 5 (1%) 500

Altered Directory Search 498 (99.6%) 2 (0.4%) 500

Incl. Cache-cleaning application 498 (99.2%) 4 (0.8%) 502

6.2.3 Performance Evaluation

A critical aspect of such a detection system is the time it takes to detect malicious

activity, which affects its feasibility in a real-world environment. We tested both
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Table 6.5: Average detection time for individual patterns in seconds

Pattern Name Offline Single Match Sequential Match

Unlink User File 0.623s ± 0.0081s 0.026s ± 0.0171s 0.335s ± 0.0908s

Unknown File Ext 0.670s ± 0.0076s 0.175s ± 0.3068s 0.406s ± 0.1437s

Read User File 0.738s ± 0.0079s 0.021s ± 0.0112s 0.384s ± 0.0897s

Write to Unknown File Ext 0.661s ± 0.0027s 0.024s ± 0.0120s 0.454s ± 0.0982s

our offline and streaming approaches on this aspect.

To evaluate the pattern matching time, we executed a malicious ransomware

variant 10 times on each approach for 120 seconds. For the offline approach, the log

file was recorded once. However, the detection component was executed 10 times

on the same log file. This was done to ensure consistent results. Table 6.5 shows

a summary of our results. Offline indicates the offline approach, Single Match

represents individual behaviours matched (i.e., layer 1 FSM), and Sequential Match

is the combination of individual behaviours matched in sequential order (i.e., layer

2 FSM) in the streaming approach. To calculate the Offline time, we measured

the average time taken to match a pattern using the regular expression. For

Single Match and Sequential Match, we measured the average time from the first

transition to the last transition of the FSMs (both layer 1 and layer 2 respectively).

As seen in the results, the pattern matching times in the streaming approach are

significantly lower compared to the offline approach. This was due to the change

in the design of the architecture by introducing a tokenised FSM approach, which

retained the current state without the intricacies of regular expression matching.

We conducted another evaluation to assess the efficacy of our streaming ap-
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proach by measuring the number of system calls that can be processed per second

(i.e., throughput). To achieve this, we observed 10 random benign samples for 120

seconds and measured the average CPU time (user time+ system time) of all sam-

ples. We then acquired the average number of system calls generated from all sam-

ples and computed the number of system calls that can be processed by our stream-

ing approach per second (i.e., Throughput = Number of system calls/CPU time).

The throughput produced from our streaming approach can be compared to the

number of system calls that can be produced by the application over 120 sec-

onds (i.e., Application run-time throughput = Number of system calls/120s) to de-

termine the feasibility of our approach. In our experiment, we found that the

average number of system calls generated from our applications over 120 seconds

was 134020 ± 96078, and the average CPU time for our streaming approach was

17.57s± 12.975s. From these two values, the calculated throughput of our stream-

ing approach was 7628 system calls/s. In comparison to the number of system

calls produced by the application over 120s, which is 1117 system calls/s, the re-

sults indicate that our proposed streaming approach is feasible, as it is capable of

processing more system calls than an application can generate.

6.2.4 Discussion

In this section, we discuss some of the experiences we had and the observations we

made. As established by now, we were observing the behaviour of encryption-type

ransomware on Android operating system, however, the samples of such malware

are limited and hard to find especially for Android devices. Additionally, the

process of acquiring and validating these samples was time-consuming as each
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downloaded sample had to be manually checked against VirusTotal Sood (2017)

to ensure that the malware was of an encryption-type ransomware family. Of the

500 samples we collected, 213 exhibited encryption-type ransomware behaviour.

The remaining 287 samples were not utilised due to reasons such as,

• The application not executing due to missing manifest files

• The application not executing due to incompatible Android versions

• The applications not exhibiting encryption-type ransomware behaviour

• The application requiring a connection to C&C server

As a result of the dataset, we realised that our models could potentially lead to

the issue of an overfitted solution due to the low malicious sample size. However,

the samples collected covered the vast majority of encryption-type ransomware

samples on Android devices; although limited, we believe this is close to the extent

of the current encryption-type ransomware landscape on Android.

Relevant literature indicates that insufficient data can have an adverse effect

on the results, leading to lower accuracy or overfitting. Of importance, Stockwell

and Peterson (2002) investigated different sample sizes using different machine

learning method. From the analysis, they concluded that some methods requires

fewer data points to produce a model with acceptable accuracy. However, over-

all, the most accurate model was achieved using the most data points. Vabalas

et al. (2019) observed the effects of different validation methods using a limited

sample size. Based on their evaluation results, a regular K-fold cross validation

method can produce optimistically biased results on relatively small sample sizes.

Whereas, a nested K-fold cross validation was a more effective solution to produce
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unbiased results irrespective of the sample size as the training and validation data

are separated by two layers. Although the core limitation of the sample size is still

existent. Many of the existing datasets generated were based on multiple types

of malware. Hence, by generating datasets targeted at a specific malware type, it

enables more avenue of exploration for specific malware types in the future.

We have specifically developed our approach for detecting encryption-type ran-

somware as it is more prevalent and destructive compared to locker-types in recent

years. Due to the specificity of our approach, we do not believe it would be feasible

to accurately detect locker-type ransomware using the current behavioural imple-

mentation without further significant adjustments. Hence, as part of our future

work, we aim to explore the adjustments required and broaden our approach to

include other types of malware, such as trojans, and spyware or introduce different

variants of our dataset to counteract the aforementioned issues and concerns.

It needs to be noted that the intention of this work was the creation of FSMs

models and behavioural patterns, which currently require manual observation and

human interaction. This often makes the process time-consuming and difficult.

For our future work, we intend to further develop our approach by automating the

process of identifying behavioural patterns and FSM creation, thus alleviating the

requirement of human interaction and enable us to create a fully automated self-

protecting system. Additionally, as all experiments were conducted in an emulated

environment, the performance evaluation results while indicative of acceptable

performance do not truly reflect a real-world implementation. Hence, in future,

we intend to implement the streaming approach on a real user device.

An astute reader would also make the observation that the sequence of events

in the layer 2 FSM are allowed to occur in any order except for the last detected
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behaviour, thus resulting in a partial shuffling of events. This provides flexibility

in the detection process. However, a potential limitation of this partial shuffle

is the last event in a layer 2 FSM, which always occurs in the same order (e.g.,

Search Read Unlink = Directory Search OR Read User File > Read User

File OR Directory Search > Unlink User File). Even though our evaluation

for detecting encryption-type ransomware was successful, there is potential for false

negatives if a malicious application exhibits a malicious sequence of behaviour,

which does not match the last occurring behaviour. In future, we would like to

expand this work by utilising a full shuffle approach or a fixed sequence of occurring

events and compare the differences in detection rates.

6.3 Chapter Summary

The work proposed in this chapter presents a real time behaviour-based ran-

somware detection method, which expanded on the methodology proposed in

Chapter 5. This is achieved by adopting a 2-layer token-based finite state ma-

chine streaming approach. The evaluations conducted in this chapter demonstrate

that our ransomware detection system can run on an Android operating system

with acceptable overhead.



Chapter 7

Automatic Detection of

Encryption-type Ransomware

using Supervisor Reduction1

Many systems leverage machine learning or artificial intelligence techniques to

automatically detect ransomware and malware. Such approaches can offer robust

classification of malware. However, some of the devised solutions often result in

hefty resource consumption. This presents a challenging obstacle for developing

automated and robust solutions for malware detection on resource constrained

devices. One of the research objectives of this thesis aims to address this issue by

adopting an alternative approach, without the reliance of machine learning and

artificial intelligence, to detect encryption-type ransomware on Android devices.

This chapter proposes a Finite State Machine (FSM) based approach to recog-

1This chapter is a co-authored journal paper, which is under review (Chew et al., 2022) with

slight modifications in Section 7.2.2 and Section 7.2.8.
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Figure 7.1: Steps of classification model generation.

nise encryption-type ransomware based on their behaviour. Malicious and benign

Android applications are executed to capture the system calls they generate, which

are then filtered and tokenised and converted to finite-state machines. The finite-

state machines are simplified using supervisor reduction, which generalises the be-

havioural patterns and produces compact classification models. The classification

models can be implemented in a lightweight monitoring system to detect malicious

behaviour of running applications quickly. An extensive set of cross validation ex-

periments is carried out to demonstrate the viability of the approach, which show

that ransomware can be classified accurately with an F1 score of up to 93.8%.

7.1 Methodology

Figure 7.1 gives an overview of the proposed method to detect encryption-type

ransomware at a system call level. In the first step, system call logs are acquired

by running applications from a dataset of encryption-type ransomware. In the

second step, the system call logs are filtered and tokenised, replacing the system

calls by a small set of tokens suitable for an FSM model. Next, loop detection com-

presses the token traces to regular expressions by identifying repeated behaviour.
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Then the FSM generation step combines the regular expressions for all traces in

a nondeterministic FSM, which is then converted to a minimal deterministic FSM

using subset construction and minimisation. Finally, supervisor reduction min-

imises the FSM further and produces a classification model, which can then be

used to monitor running applications and check for malicious behaviour.

The following subsections explain these steps in further detail. Subsection 7.1.1

describes filtering and tokenisation, Subsection 7.1.2 describes loop detection, and

Subsection 7.1.3 describes the process of converting regular expressions to FSMs

and their minimisation, which covers the three remaining steps. Afterwards, Sub-

section 7.1.4 examines the computational complexity of the whole procedure.

7.1.1 System Call Filtering and Tokenisation

Applications typically generate a large number of system calls, not all of which are

helpful to classify the behaviour as malicious or benign. An example is the system

function clock gettime(), which is frequently used to read the system clock time

by both malicious and benign applications. Such irrelevant system calls increase

the volume of the system call data significantly and make it difficult to identify

malicious behaviour. To combat this issue, a white-listing approach (Isohara et al.,

2011a; Chew et al., 2020) is used to filter out some system calls.

Furthermore, after filtering system calls based on the white-list, the raw data

generated by strace still contains a lot of detail about each system call including

timestamps, parameters, and return values, which needs to be abstracted from to

build a useful FSM classification model. Therefore, the system calls that survive

filtering are replaced by tokens selected from a small set, again similar to the
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Table 7.1: Six possibilities to tokenise system calls.

Tokens

Operation Set I Set II Set III Set IV Set V Set VI

Open directory O OD OD OD OD OD

Open file for reading O ORF ORF ORF OXF ORF

Open file for writing (create) O OWF OCWF OCWF OCWF OCWF

Open file for writing (append) O OWF — OAWF OXF OXWF

Open file for writing (other) O OWF — — OXF OXWF

Rename file RN RN — RN RN RN

Unlink/delete file U U U U U U

approaches of Chew et al. (2020) and Isohara et al. (2011a).

Table 7.1 shows six different ways considered in this work to convert system

calls to tokens. The defining behaviour of encryption-type ransomware is through

the encryption process (Chew et al., 2020; Kok et al., 2019; Lemmou et al., 2021),

and therefore the selected tokens are related to the specific system calls used

when the ransomware searches for and encrypts files. The most relevant system

call is openat(), which is needed to open directories in order to search them,

to open files to read their contents, and to create files to write encrypted data.

Additionally, the renameat() system call is represented by a token, because certain

samples of Wannalocker exhibit behaviour where the encrypted file is renamed

(Chew et al., 2020). Lastly, encryption-type ransomware often removes the original

file after the encryption process or as part of the extortion process, and therefore

the unlinkat() system call is represented by another token.

The encryption of files also generates a large number of calls to read() and
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write(), but these were found to be less relevant, as the opening of a file is

followed by these calls in benign applications as well. Instead, it is determined

from the arguments to openat() how a file is opened, in the hope that the pattern

of different types of openat() system calls provides more relevant information in

a more concise form. Firstly, it is of interest whether a directory or file is opened,

which is easily determined by the presence or absence of the O DIRECTORY flag.

When a file is opened, it is distinguished whether it is opened for reading (with

the flag O RDONLY) or for writing (with the flag O WRONLY). In the case of writing

a file, it is furthermore distinguished whether the system call allows for creation

of a new file (with the flag O CREAT), whether it tries to append to an existing file

(with the flag O APPEND), or whether neither of these flags is used. The captured

system call logs also contain a large number of system calls to open files for reading

and writing (with the flag O RDWR), which are filtered out. The read/write access

is common in malicious and benign applications, and including it was found to

produce long token traces that are difficult to process without producing useful

results.

The six token sets in Table 7.1 are defined to examine the effects of different

levels of abstraction in the token traces. Set I is the coarsest set, which represents

all openat() system calls with the same token O and makes no distinction based

on the flags, while Set II distinguishes between opening directories and opening

files for reading or writing, without separating the different modes of writing.

Some token sets filter out certain system calls, which is shown by a dash in the

table to indicate that no token is generated. Most of the evaluation presented in

the following is based on Set IV, which is designed based on the understanding

of ransomware behaviour in the hope of preserving a reasonable level of detail
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while keeping the token traces small. The other tokenisations are evaluated in

Section 7.2.4 below.

To measure the effectiveness of the filtering process, the average length of all

unfiltered system call traces was calculated and compared to the average length

of the filtered token traces. The average length of all unfiltered traces collected

was 167489 system calls. After filtering and tokenisation using Set IV, the average

trace length was 552 tokens, resulting in a 99.7% reduction. This is a significant

decrease in the number of tokens, which greatly facilitates the following processing

steps.

7.1.2 Loop Detection

System call traces can be long even after filtering, and several of the traces in

the dataset contain significant subsequences of repeated tokens, which are likely

produced by loops in the application code. To improve the classification models,

a simple loop detection process is used to detect patterns of repeated tokens and

compress them into loops. The method proposed here differs from related work

(Gharib and Ghorbani, 2017; Bhandari et al., 2018) in that repeated subsequences

are not removed, but replaced by loops. This reduces the size of the traces and

helps to produce smaller state machines, while at the same time trying to infer a

more general behavioural model from the trace.

A sliding window technique is used to combine sequences of repeated tokens

into loops. The process begins by taking a token trace and a threshold k ≥ 1 as

input. The threshold signifies the number of repeated tokens required before a

token sequence is replaced by a loop. For example, with threshold 2, a sequence
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OO is replaced by O2+, which indicates two or more occurrences of the token O.

In general Ek+ = EkE∗ for k ≥ 1 and regular expressions E, and at threshold k

any sequence αj with j ≥ k and α ∈ Σ is replaced by αk+.

Example 7.1. Assuming Σ = {O,R}, the token trace OORRR is replaced by

O2+R2+ at threshold 2 and by OOR3+ at threshold 3.

The loop detection process is repeated to detect longer repeated subsequences

and nested loops. For the second step, each subterm of the form Ek+ is considered

as a single token, and the maximum size of the sliding window is increased by 1,

thus searching for subsequences of length 2 that are repeated. This process is re-

peated for a set number of iterations, where the i-th iteration searches for repeated

subsequences of any length up to i.

Example 7.2. Given a threshold value of 2, the token trace OOOROOROOOOR is

replaced by O2+RO2+RO2+R in the first iteration, and this is replaced by (O2+R)2+

in the second iteration.

Both the threshold and the number of iterations are adjustable parameters of

the loop detection process. Section 7.2.3 contains the results of an experiment

to examine how changing these parameters affects the accuracy of ransomware

detection.

7.1.3 Classification Model Generation

Having captured and filtered samples of malicious and benign traces, the next

step is to combine these traces in an FSM. Given a set Σ of tokens and two sets

B,M ⊆ Σ∗ of benign and malicious token traces, an FSM G is constructed with
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positive and negative languages

L+(G) = MΣ∗ ; (7.1)

L−(G) = Pre(B) \MΣ∗ . (7.2)

Every malicious trace and every possible continuation of a malicious trace is clas-

sified as positive (7.1). This represents the idea that, once malicious behaviour

in M has occurred, damage has been done and cannot be reverted by further ac-

tion. Furthermore, all prefixes of benign traces are classified as negative, so traces

that can be continued to an observed benign trace are not considered as mali-

cious (7.2). To ensure the requirement from Section 2.5.2 that the positive and

negative languages are disjoint, traces that occur both in the malicious and be-

nign sets are classified only as positive by removing the continuations of malicious

traces from the negative language (7.2). That is, ambiguous traces encountered as

both malicious and benign lead to false positives rather than false negatives. This

situation did not arise during the experiments carried out for this work.

To construct the FSM G, first the regular expressions representing the reduced

token traces according to Section 7.1.2 are converted to nondeterministic FSMs us-

ing a standard algorithm (Hopcroft et al., 2001). These FSMs are then combined in

a single nondeterministic FSM with several initial states that includes the positive

and negative languages (7.1) and (7.2). This nondeterministic FSM is converted

to a minimal deterministic FSM with the same positive and negative languages

using subset construction and Hopcroft’s minimisation algorithm (Hopcroft et al.,

2001). If the deterministic FSM from subset construction contains any states that

are marked as both positive and negative, then the negative marking is removed

from these states to ensure (7.2).
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Figure 7.2: Constructing a classification model. The nondeterministic FSM G is

constructed from the malicious and benign traces, converted to a deterministic

FSM det(G), and minimised by supervisor reduction to obtain the classification

model S.

Finally, the minimal deterministic FSM is passed to supervisor reduction (Sec-

tion 2.5.3) to obtain the classification model. The classification model is a deter-

ministic FSM that can then be used to classify new observed behaviour as malicious

or benign as follows. Starting from the initial state, system calls are observed and

converted to tokens, and each token is used to update the classification model’s

state. If a positive state is reached at some point, this means that malicious be-

haviour has been detected. It is also possible that a token is generated for which

no transition is defined from the current state of the classification model—then no

further tokens are processed and the behaviour is considered as benign.

Example 7.3. Consider the token set Σ = {OD,OCWF,ORF,U} and the benign
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and malicious languages

B = {ORFORFOCWF, ORFOCWF, ODORFORFORF} ; (7.3)

M = {ODORFOCWF, ODUU} . (7.4)

Figure 7.2 shows the nondeterministic FSM G constructed from these traces (with-

out loop detection). The three benign traces appear on the left with all their states

negative. Thus, all prefixes of benign traces lead to negative states. The two ma-

licious traces on the right have positive end states, and the selfloops labelled Σ

indicate transitions with all events in Σ to represent that continuations of mali-

cious traces remain malicious. Figure 7.2 also shows the minimal deterministic

FSM det(G) equivalent to G and a classification model S resulting from super-

visor reduction. Here, comma-separated tokens on a transition indicate parallel

transitions with each listed token.

It is clear that the benign trace ORFORFOCWF takes S to a negative state,

indicating classification as benign, while the malicious trace ODORFOCWF takes S

to its positive state and is classified as malicious. The trace ODU, which takes

det(G) to a “don’t care” state, takes S to its positive state and is classified as

malicious. The trace UU is not accepted by S from the first step onward and is

considered as benign.

As shown in the example, supervisor reduction does not only reduce the number

of states to produce a more manageable classification model, it also attempts

to predict and generate a best-fit model based on the “don’t care” states. The

hope is that this way of minimising the number of states also leads to improved

classification accuracy.
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FSMs with positive and negative states as shown in Figure 7.2 cannot be sub-

mitted directly to supervisor reduction in a supervisory control tool such as Water-

s/Supremica. Therefore, the FSM model is modified to convert the classification

problem to a supervisory control problem as follows. The nondeterministic FSM G

is augmented with two states b and m, and with an event µ to represent the de-

tection of malicious behaviour. For each negative state x, a transition x
µ→ b is

created, and for each positive state y, a transition y
µ→ m is created, and all states

except b are declared to be accepting states. This ensures that, if a maximally

permissive nonblocking supervisor (Ramadge and Wonham, 1989) is synthesised

from the resulting deterministic FSM, the event µ is enabled in positive states

and disabled in negative states that are not also positive. That is, the event µ is

enabled to signal the detection of malicious behaviour.

7.1.4 Computational Complexity

Considering the steps of classification model generation in Figure 7.1, the steps

with the highest computational complexity are Subset Construction and Minimi-

sation and Supervisor Reduction.

The worst-case time complexity of subset construction is exponential in the

number of states of the nondeterministic FSM being converted to a deterministic

FSM. Fortunately, this worst-case does not apply to the FSMs generated from the

token traces by the proposed method. Without loop detection, the maximum pos-

sible number of transitions of the deterministic FSM is equal to the total number

of tokens in all malicious and benign traces combined, and the maximum num-

ber of states is one more than the number of transitions. This means linear time
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complexity in the size of the input.

The bound on the number of states increases with the number of loop detection

iterations to a limit of O(Nk) where N is the length of the longest trace and k is the

number of traces, which is exponential in the number of traces. However, this limit

can only be reached with a high number of loop detection iterations. Exponential

blow-up at this stage was not observed in our experiments with up to four loop

detection iterations. The exponential worst-case can be avoided by monitoring the

number of states generated during subset construction and restarting with a lower

number of loop detection iterations when the number of states exceeds a threshold.

Then the time complexity remains linear in the size of the input, the threshold,

and the number of loop detection iterations.

The next time consuming step is Supervisor Reduction, which has a worst-case

time complexity of O(|Σ||Q|4) as explained in Section 7.1.4. The worst-case for

the number of states is |Q| = Nk, which means exponential time complexity in

the number k of traces. If the number of states can be kept linear in the size of

the input, then the complexity of the supervisor reduction step is polynomial in

the size of the input, O(n4). As supervisor reduction is the step with the highest

complexity in Figure 7.1, this becomes the theoretical worst-case time complexity

for the entire classification model generation process.

It is important to note that classification model generation is only performed

a single time as an offline computation step. Once a classification model FSM

has been generated, its state transition function can be implemented as a hash

table, which can be used to process system calls very quickly. The worst-case time

complexity for processing one system call while monitoring a running application

is constant, O(1).
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7.2 Evaluation

This section evaluates the performance of the classification models obtained using

the method described in Section 4 in terms of their size and accuracy. First, Sub-

section 7.2.1 describes the evaluation methodology, and the following Subsections

7.2.2–7.2.4 present experiments to determine how different parameters of the clas-

sification model generation process affect the results. Afterwards, Subsection 7.2.5

presents an experiment that attempts to detect malware from an unknown family,

and Subsection 7.2.6 compares the proposed approach to related work.

7.2.1 Cross Validation Approach

K-fold cross validation is a statistical method that is commonly used to evaluate

machine learning applications (Marsland, 2011). In this work, a ten-fold cross

validation approach is used to measure the accuracy of classification. The traces

obtained from 502 benign and 205 malicious applications are randomly split into

ten sets. Nine of these sets form the training data and are used to generate the

classification model following the steps outlined in Section 4. The tenth set forms

the testing data: its traces are classified as malicious or benign using the classifi-

cation model constructed from the training data, and the results are compared to

the actual status of the application that generated the trace to determine whether

the classification is correct or not. This process is repeated ten times by swapping

the roles of the traces in the ten sets, so that each trace is used nine times as

training data and once as testing data.

After classifying the testing data for all ten rounds of cross validation, the

results are accumulated to determine the numbers of true positives, false positives,
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true negatives, and false negatives. A true positive occurs if the classification model

correctly identifies a trace from a malicious application as malicious. Otherwise,

if a malicious trace is incorrectly classified as benign, it is called a false negative.

Similarly, a benign trace is called a true negative if it is correctly classified as benign

and a false positive if it is incorrectly classified as malicious. After the numbers of

true positives etc. are determined, it is possible to calculate their rates :

TPR =
True Positives

True Positives + False Negatives
FPR =

False Positives

False Positives + True Negatives

(7.5)

TNR =
True Negatives

False Positives + True Negatives
FNR =

False Negatives

True Positives + False Negatives

(7.6)

Here, “True Positives” is the absolute number of traces identified as true positives,

etc. The true positive rate TPR is the ratio of malicious traces that are correctly

classified as malicious, while the false negative rate FNR is ratio of malicious traces

that are incorrectly classified as benign. Similarly, the true negative rate TNR and

false positive rate FPR measure the ratio of benign traces that are classified as

benign or malicious, respectively. It is clear that TPR+FNR = TNR+FPR = 1.

Additionally, the F1 score is used as a combined measure:

F1 =
2× True Positives

2× True Positives + False Positives + False Negatives
(7.7)

The F1 score combines the rates of false positives and false negatives into a single

number between 0 and 1 such that a value of 1 indicates perfect accuracy. It is

often used to measure the accuracy of classification models, although it can be

criticised for its failure to take the number of true negatives into account.
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7.2.2 Evaluation of Supervisor Reduction Options

In the first experiment, it is examined how different supervisor reduction settings

affect the generated classification model. As mentioned in Section 2.5.3, the su-

pervisor reduction algorithm (Su and Wonham, 2004) is sensitive to the order

in which it attempts to merge state pairs. Therefore, the tool Waters/Supremica

(Åkesson et al., 2006), which was used for all experiments, supports several options

to control this algorithm.

Firstly, the states of the FSM being reduced can be ordered in different ways.

Of particular interest is the depth-first search (DFS) state ordering, which arranges

the states in the order in which they are visited by depth-first search traversal of

the FSM. The initial state is the first state, and states that appear on paths

without branching are kept together. Also considered is the reversed breadth-first

search (RBFS) state ordering, which arranges the states in the reverse of the order

in which they are visited by breadth-first search traversal. The states with the

longest distance from the initial state appear first in this ordering, which are the

end states of the longest trace or traces in the training data, whether these traces

are malicious or benign. Four other state ordering options in Waters/Supremica

were found to produce poor results throughout initial explorations, and are not

considered in this work.

Having ordered the states of the FSM being reduced, there are different possi-

ble orders in which to consider state pairs for merging. The simplest strategy is

the Lexicographic pair ordering, where the first state in the state ordering is first

paired with the remaining states in the state ordering. After that, the second state

is paired with the states that appear after it in the state ordering, etc. Alterna-
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tively, the Diagonal pair ordering strategy starts by pairing the first and second

states, then considers pairings of the third state with the states before it in the

state ordering, before moving on to the fourth state, etc. There are two variants,

Diagonal1 and Diagonal2 where the states each state is paired with are considered

in ascending or descending order. The main difference is that lexicographic pair

ordering starts pairing the first state with all others, while diagonal pair orderings

give preference to pairs of states that are both close to the start.

Additionally, Waters/Supremica supports the pre-processing step of projection,

which attempts to remove unnecessary tokens from the FSM before passing it to

the supervisor reduction algorithm. Consistently with previous results (Malik,

2020), it was found sufficient to use a greedy search strategy to identify the events

to be removed in all experiments. Therefore, the third option considered in the

following experiments is whether projection is disabled or enabled with the Greedy

search method.

For the first experiment, the system call logs in the training data are tokenised

based on Set IV in Table 7.1 and subjected to one iteration of loop detection with a

threshold value of eight, and the resulting regular expressions are used to produce

a nondeterministic and then a minimal deterministic FSM. Then classification

models are generated by supervisor reduction with all combinations of the options

mentioned above, and used to classify the traces in the testing data.

Table 7.2 shows the results of this evaluation. For each combination of options,

the table shows the true positive and associated rates according to (7.5) and (7.6)

as well as the F1 score according to (7.7) from ten-fold cross validation. It also

shows the number of states of the generated classification model FSMs and the

time taken by the supervisor reduction algorithm to compute them, averaged over
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Table 7.2: Classification models with different supervisor reduction options.

Supervisor Reduction Options Accuracy Result

States Pairs Projection TPR FNR TNR FPR F1 States Time

DFS Lexicographic Off 0.444 0.556 0.984 0.016 0.599 2078 72.6 s

DFS Diagonal 1 Off 0.585 0.415 0.954 0.046 0.690 742 1493.0 s

DFS Diagonal 2 Off 0.620 0.380 0.930 0.070 0.692 581 528.2 s

DFS Lexicographic On 0.649 0.351 0.972 0.028 0.756 1281 32.7 s

DFS Diagonal 1 On 0.673 0.327 0.902 0.098 0.704 909 175.0 s

DFS Diagonal 2 On 0.702 0.298 0.896 0.104 0.718 1192 100.2 s

RBFS Lexicographic Off 0.951 0.049 0.948 0.052 0.915 91 502.5 s

RBFS Diagonal 1 Off 0.951 0.049 0.946 0.054 0.913 91 535.0 s

RBFS Diagonal 2 Off 0.312 0.688 0.998 0.002 0.474 13293 665.3 s

RBFS Lexicographic On 0.917 0.083 0.938 0.062 0.887 107 52.8 s

RBFS Diagonal 1 On 0.922 0.078 0.942 0.058 0.894 114 54.8 s

RBFS Diagonal 2 On 0.620 0.380 0.994 0.006 0.758 7665 84.9 s

the ten rounds of cross validation. The experiments were carried out on a PC

running Ubuntu 18.04.6 LTS with a 3.8GHz Intel Core i5-7600K CPU and 16GiB

of RAM.

The most effective classification models were produced by the RBFS state

ordering and the Lexicographic or Diagonal1 pair orderings. With projection dis-

abled, these models achieve false negative rates below 5% and false positive rates

below 6%, which results in F1 scores above 91%. While a few other models have

lower false positive rates, those are accompanied by high false negative rates of

35% or above, suggesting that those models have not changed much compared to

the unreduced deterministic FSM and may be overfitted to the data. The models

with the highest accuracy also have the lowest number of states, suggesting that
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minimisation of the number of states leads to good classification accuracy. The

combinations of RBFS with Lexicographic and Diagonal1 both start by pairing a

state furthest removed from the initial state with the states preceding it, which

seems to be most effective for the FSMs resulting from the construction in this

work. Because of the strong performance of these strategies compared to all other

combinations of options, which was also observed on several other occasions, the

experiments presented in the following sections focus on these strategies.

As explained in Section 2.5.3, projection searches for events that are irrelevant

for the classification task and removes them from the FSM prior to supervisor

reduction. Table 7.2 shows that projection always changes the generated classifi-

cation model. By closer inspection of the classification models, it is found that the

tokens ORF and OAWF of Set IV are removed in all ten rounds of cross validation,

and RN is removed in nine of the ten rounds. The token ORF indicates opening

a file for reading and regularly appears in both benign and malicious traces. The

token OAWF, which indicates opening a file for appending, is used less frequently,

and RN, which indicates renaming of a file, is only observed in some Wannalocker

traces. The removal of these tokens by projection suggests that the corresponding

system calls are not needed to distinguish malicious and benign traces, and ran-

somware can be detected by only considering the pattern of directory accesses, files

opened for writing, and file deletions. This makes sense given that the malicious

activity of the applications considered involves the creation of encrypted files and

the deletion of user files, usually in combination with directory searches.

While the use of projection often reduces the runtime of supervisor reduction

significantly, it reduces the number of states only once and never leads to better

accuracy in this experiment. Particularly with events that are used only occasion-
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ally, although accurate classification may be possible without them, it may require

a more complicated classification model. In this experiment, supervisor reduction

seems to be able to find better classification models that use all events, although

it takes longer to do so because the supervisor reduction algorithm has to process

more states.

The supervisor reduction times in Table 7.2 are all below 25 minutes, with

the better performing supervisor reduction options finishing in less than ten min-

utes. Notwithstanding the theoretical complexity analysis, the by far most time-

consuming step when generating a classification model is running the applications.

It takes 36 hours to run the 707 applications for three minutes each, although the

process can be parallelised. System call logs can also be saved and reused, so when

a dataset is extended with new applications, only the new applications need to be

run. Still, the supervisor reduction times are comparatively small, even if several

classification models are constructed to choose the smallest one. The times taken

for the other steps in Figure 7.1 are negligible in comparison.

Additionally, the storage requirements to implement the classification models

on a real device are acceptable. Such an implementation requires 16 bit for a source

state, 3 bits to represent the number of events (i.e., tokens), and an additional 16

bits for the destination state. By utilising a half-full hash-table implementation,

the sum is multiplied by 2, resulting in a requirement of 16 bytes per transition.

For example, multiplying the largest average number of transition shown in Ta-

ble 7.2, the resulting FSM would require 212.69KB. However, it is possible to

achieve a more compact model by calculating the exact sizes of the source state,

event, and destination state. The calculated value is significant smaller when com-

pared to the recorded average of 23.46MB for Android smartphone applications
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based on a study conducted by Chen et al. (2021) where they explored the differ-

ences and similarities for 223 application pairs between Android smartphones and

smartwatch. The space complexity can be presented as O(n) without the usage

of loop detection and O(n2) with loop detection where n is the total number of

system calls.

Overall, the runtimes suggest that it is feasible to generate a classification

model offline for later use on a smartphone. Once a classification model has been

generated, it can be used easily to monitor a running application with minimal

processor or memory overheads on a real device. This is an important benefit as

real-time and early detection approaches are critical for protecting devices of users.

7.2.3 Evaluation of Loop Detection

A series of experiments was carried out to evaluate the efficacy of the loop detec-

tion process described in Section 7.1.2. Loop detection has two parameters, the

number of iterations which determines the length of repeated sequences and the

potential nesting level of detected loops, and the threshold which determines the

minimum number of repetitions before a sequence of tokens is replaced by a loop.

In the experiment, the ten-fold cross validation process described above is repeated

after performing 1–4 iterations of loop detection with threshold values in the range

2–12. All system call logs are tokenised using Set IV, and the supervisor reduc-

tion options are limited to the combinations found most effective in Section 7.2.2,

namely reversed breadth-first search (RBFS) state ordering and Lexicographic or

Diagonal1 pair ordering.

Figure 7.3 gives an overview of the accuracy and size of the classification models
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Figure 7.3: Classification model accuracy and size depending on loop detection

parameters and projection.

produced in this experiment. Each circle indicates the results for one particular

combination of loop detection and supervisor reduction options. The position of

the circle indicates the false positive and false negative rates measured by ten-fold

cross validation, and the size of the circle represents the average number of states

of the classification models in the ten rounds of cross validation. The results can

also be compared to classification models computed with loop detection disabled,

which are shown in Table 7.3.

All the classification models in this experiment have F1 scores between 86.5%

and 93.8%. Figure 7.3 shows that the majority of the models computed with loop
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Table 7.3: Classification models obtained without loop detection.

Supervisor Reduction Options Accuracy Result

States Pairs Projection TPR FNR TNR FPR F1 States Time

RBFS Lexicographic Off 0.912 0.088 0.946 0.054 0.893 176 2407.4 s

RBFS Diagonal1 Off 0.912 0.088 0.946 0.054 0.893 176 2461.3 s

RBFS Lexicographic On 0.922 0.078 0.944 0.056 0.896 77 74.1 s

RBFS Diagonal1 On 0.917 0.083 0.940 0.060 0.889 75 78.3 s

detection are more accurate than those computed without loop detection, which

have F1 scores between 88.9% and 89.6%. This suggests that loop detection can

help to find more accurate classification models.

Figure 7.3 suggests that more accurate classification models have fewer states,

but with the poorly performing supervisor reduction options removed, this trend

is less pronounced than previously observed in Table 7.2. The numbers of states

obtained with the different loop detection options range from 78 to 930. The

smallest model with 78 states, obtained with one loop detection iteration and a

threshold of five, has an F1 score of 88.8% and a false negative rate of 8.8%. The

most accurate model with an F1 score of 93.8% and a false negative rate of 4.4%

has 91 states; it is obtained with three or four iterations and a threshold of eight.

Furthermore, there is a difference in accuracy between models obtained with

projection enabled and disabled, which was already observed in Table 7.2. The

models computed with projection and with one and particularly two loop detection

iterations are among the least accurate. On the other hand, models computed with

two loop detection iterations and without projection form a group of fairly accurate

models. A higher number of iterations leads to a more irregular spread, including
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Figure 7.4: Lowest false positive and false negative rates depending on loop detec-

tion parameters.

the most accurate models as well as several large and poorly performing models

both with projection enabled or disabled.

For a more detailed analysis of the effect of the number of loop detection

iterations and the threshold, the graphs in Figure 7.4 show the lowest false positive

and false negative rates among the four models obtained for each combination

of these two parameters. These diagrams suggest that two iterations lead to the

lowest false negative rates, while four iterations produce slightly lower false positive

rates. Also, the false positive rates are relatively high for threshold values in the

range 3–6, with a possible local minimum of the false positive rate at a threshold

of 2, and another possible local minimum of both false positive and false negative

rates at a threshold of 7 or 8.

These minima may be explained by the way how loop detection separates re-
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peated token sequences that are shorter than the threshold from longer ones. A

sequence of repeated tokens shorter than the threshold is left unchanged, while a

longer sequence is modified with a loop at the end. As a result, the states corre-

sponding to these two types of sequences are not merged when constructing the

minimal deterministic FSM, leaving it to supervisor reduction to decide whether

such states should be treated alike or differently. More uniform classification can

be ensured when similar subsequences are treated alike, either converting them all

to loops or not. This seems to be achieved best by thresholds of 2, 7, or 8, which

produce the most accurate models in this experiment.

Figure 7.5 shows the supervisor reduction times measured in this experiment.

The graphs show average runtimes over four combinations of supervisor reduction

options and over ten rounds of cross validation, depending on the two loop de-

tection parameters. The diagram shows that the runtime increases steadily with

increasing threshold towards the average of 1255.3 s without loop detection, when

using one loop detection iteration. Yet, this increase is not observed with more

iterations. The runtime of supervisor reduction is mainly determined by the size of

the deterministic FSMs, whose number of states appears to remain limited when

two or more loop detection iterations are used. A secondary factor affecting the

runtime is the structure of the FSMs, which become more complex as each it-

eration produces longer and more deeply nested loops. In this experiment, two

iterations seem to result in the fastest runtime.

Loop detection broadens the sets of positive and negative traces in the training

data. For each positive trace, a group of similar traces is identified that contain

the same subsequences with more repetitions, and these similar traces are removed

from the set of “don’t care” traces and added to the set of positive traces; the set
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Figure 7.5: Average supervisor reduction times depending on loop detection pa-

rameters.

of negative traces is broadened likewise. This results in a more difficult supervisor

reduction problem, which has the potential to provide a more accurate classifica-

tion model provided that the broadening is accurate. This explains why most of

the models computed with loop detection are more accurate than those without.

Additionally, loop detection tends to produce smaller deterministic FSMs, which

usually means faster supervisor reduction times.

7.2.4 Evaluation of Different Tokenisations

This section describes an experiment to determine how classification models are

affected by different ways of filtering and tokenising system calls. This experiment

again uses one iteration of loop detection with a threshold of eight, and the su-

pervisor reduction options identified as most effective in Section 7.2.2, i.e., RBFS
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Table 7.4: ESCAPADE tokenisation.

Tokens

Operation User directory Other directory

Open directory ODudir ODother

Open file for writing (create) OCWFudir OFother

Open file for reading or writing (excluding create) OXFudir OFother

Rename file RNudir —

Unlink/delete file Uudir Uother

pair ordering and Lexicographic or Diagonal1 state ordering.

In addition to the six ways of tokenisation introduced in Table 7.1 in Sec-

tion 7.1.1, a seventh tokenisation is considered that was originally proposed for

ESCAPADE (Chew et al., 2020). This tokenisation, shown in Table 7.4, distin-

guishes system calls based on whether they access the user directory or another

directory. The user directory on Android is a space for the user to create and store

personal files such as photos, downloads, or multi-media, which are a primary tar-

get for encryption-type ransomware. The other directories predominantly contain

system files, applications, and their configuration files. As shown in Table 7.4, the

ESCAPADE tokenisation uses different granularities of tokens representing system

calls in the user directory or in other directories, which was found effective for use

with the hand-coded classification models of Chew et al. (2020).

Figure 7.6 shows the false positive and false negatives rates in relation to the

average state numbers of the classification models, which is represented by the

size of the circles in the same format as in Figure 7.3. Some tokenisations appear

to have fewer than four classification models, which occurs when the same false
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Figure 7.6: Classification model accuracy and size for different tokenisations.

positive and false negative rates are obtained using different supervisor reduction

options. Additionally, Table 7.5 shows the classification models with the lowest

false negative rates for each tokenisation.

Most of the tokenisations result in accuracy and state numbers comparable to

those observed in Section 7.2.3, but there are outliers. The ESCAPADE tokenisa-

tion produces both the most and the least accurate classification models by large

margins. With projection enabled, it produces a false positive rate of 0.2% and a

false negative rate of 1.0%. The classification models have only 12 states on aver-

age and use only some of the tokens related to user directory access, while the other

tokens (including all tokens related to non-user directories) have been projected

out. These accurate and compact models are only found with projection enabled.
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Table 7.5: Classification models with the lowest false negative rates for each to-

kenisation.

Supervisor Reduction Options Accuracy Result

Tokenisation States Pairs Projection TPR FNR TNR FPR F1 States Time

Token Set I RBFS Diagonal1 Off 0.941 0.059 0.968 0.032 0.932 92 330.1 s

Token Set II RBFS Lexicographic Off 0.917 0.083 0.924 0.076 0.872 106 554.0 s

Token Set III RBFS Lexicographic Off 0.951 0.049 0.948 0.052 0.915 91 416.5 s

Token Set IV RBFS Lexicographic Off 0.951 0.049 0.948 0.052 0.915 91 499.8 s

Token Set V RBFS Lexicographic On 0.922 0.078 0.952 0.048 0.904 124 61.5 s

Token Set VI RBFS Lexicographic Off 0.946 0.054 0.948 0.052 0.913 98 558.7 s

ESCAPADE RBFS Lexicographic On 0.990 0.010 0.998 0.002 0.993 12 3.0 s

Without projection, supervisor reduction fails to identify a reasonable pattern,

which may be caused by the large number of tokens or the coarse granularity of

the non-user directory tokens.

Unfortunately, the compact and accurate models produced by the ESCAPADE

tokenisation may be caused by a bias in the dataset. The user directory is accessed

by all 205 malicious applications, but only by 49 of the 502 benign applications, and

this explains why projecting out the non-user directory tokens produces so small

classification models. Yet, the bias may not only be a reflection of the fact that the

user directory is the primary target of ransomware, which has also been observed

to encrypt files in other directories. Benign applications may access files in the

user directory if requested to do so, but such behaviour is unlikely to be exposed

when user interaction is generated randomly by Android Monkey. A different way

of capturing traces may be needed to produce more reliable classification models
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based on the ESCAPADE tokenisation.

Setting aside the ESCAPADE tokenisation, the lowest false negative rate of 4.9%

in this experiment is shared by Token Set IV, which is the set used for all other

experiment, and Set III. Set III differs from Set IV by the removal of tokens that

have been removed by projection in Section 7.2.2, and this may explain the sim-

ilarities. The best F1 score of 93.8% and the lowest false positive rate of 3.2%

besides ESCAPADE is obtained by Set I. This may be a surprise, considering that

Set I is the coarsest tokenisation that does not differentiate between the openat()

system calls based on their flags. Yet, the small number of tokens makes it easy

for supervisor reduction to minimise the FSM, while the low level of loop detection

in this experiment seems to be enough to reduce misclassification. The slightly

finer Set II does not achieve the same accuracy and produces some of the most

inaccurate models. It seems that the increased number of tokens makes it more

difficult to minimise the FSM, and the model does not benefit from the distinction

between the write operations in the remaining tokenisations.

This experiment suggests that a tokenisation similar to Set III or Set IV works

well, which recognises directory access, file read access, file creation, and deletion,

while possibly filtering out other file access and renaming. A coarse tokenisation

like Set I also is a strong candidate, but this may be less reliable as evidenced by

the results for Set II.

7.2.5 Unknown Ransomware Detection

As the malware landscape continues to evolve rapidly, one of the main concerns

for anti-malware products is the need to detect unknown malware. Therefore,
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this section presents an experiment to evaluate the feasibility of the proposed

approach to detect unknown encryption-type ransomware. This evaluation follows

the same process for generating classification models as Section 4, except that

six-fold cross validation is used instead of ten-fold cross validation. Each round of

cross validation attempts to detect one of the six ransomware families (Wipelocker,

Wannalocker, etc.). For example, a Wipelocker classification model is constructed

using the malicious samples from the other five ransomware families, and then it

is attempted to classify the Wipelocker samples with this model. This simulates

a more challenging scenario where a classifier trained with old data is exposed to

an unknown new generation of malware.

The benign samples are randomly split into six sets of equal size, with five of

the six sets used to build each classification model. As in Section 7.2.3, the traces

are tokenised using Set IV and simplified using one iteration of loop detection

with a threshold of eight, and the supervisor reduction options are those identified

as most effective in Section 7.2.2, i.e., RBFS pair ordering and Lexicographic or

Diagonal1 state ordering.

Figure 7.7 shows the false positive and false negatives rates in relation to the

average state numbers of the classification models, which is represented by the size

of the circles in the same format as in Figure 7.3. The diagram shows fairly low

false positive rates: the highest false positive rate is 20.2% while the majority of

the data points falls below 8%. These rates are comparable to those observed in

Section 7.2.3, which is expected given the random split of the benign samples.

The false negative rates in this experiment are higher and deserve a more de-

tailed analysis. Hence, Table 7.6 shows the classification models with the lowest

false negative rates for each family. These results suggest that the proposed ap-
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lies.

proach is capable of accurately classifying the benign samples, whereas unknown

encryption-type ransomware is only detectable in some cases. While up to 86% of

Simplelocker samples are recognised as malicious, and some of the Wannalocker

and Pletor samples are detected, the remaining families are only recognised in a

few cases or not at all. Usually, the classification models with a small to medium

number of states have lower false positive rates, but the smallest model is not

always the best. The failure to detect some of Wipelocker, Filecoder, and Black

Rose Lucy samples is likely due to the fact that these families exhibit unique

behavioural aspects, in combination with the small number of only six families

sampled.
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Table 7.6: Classification models with the lowest false negative rate in each family.

Ransomware Family Supervisor Reduction Options Accuracy Result

Name Size States Pairs Projection TPR FNR TNR FPR F1 States Time

Black Rose Lucy 9 RBFS Diagonal1 On 0.111 0.889 0.952 0.048 0.143 75 51.0 s

Filecoder 5 RBFS Lexicographic Off 0.000 1.000 0.917 0.083 0.000 222 53.4 s

Pletor 6 RBFS Lexicographic Off 0.500 0.500 0.964 0.036 0.500 92 494.5 s

Simplelocker 64 RBFS Lexicographic On 0.859 0.141 0.964 0.036 0.902 62 58.7 s

Wannalocker 51 RBFS Diagonal1 On 0.412 0.588 0.857 0.143 0.500 1812 20.2 s

Wipelocker 70 RBFS Diagonal1 On 0.614 0.386 0.929 0.071 0.656 223 18.5 s

7.2.6 Comparison to Related Work

This subsection compares the accuracy of the approach proposed in this work

to various static and dynamic methods from relevant literature as referenced in

Section 3 of Chapter 2. The results are summarised in Table 7.7.

DNA-Droid (Gharib and Ghorbani, 2017) employs a real-time hybrid approach

with static and dynamic components, which is evaluated using cross validation

based on dataset of 1928 ransomware samples and 2500 benign samples. Their

most accurate result is obtained with the static component and using model B

with DNN classifier, reporting a true positive rate of 0.981 and false positive rate

of 0.005.

R-PackDroid (Maiorca et al., 2017) is another static method. The best re-

ported result is based on cross validation with 440 ransomware samples from Hel-

Droid (Andronio et al., 2015). The reported number of 415 of these samples

classified as ransomware or malware corresponds to a true positive rate of 0.943.

ESCAPADE (Chew et al., 2020) is based on the same dataset as this work.
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Table 7.7: Accuracy of methods to detect Android malware.

Method Accuracy

Name Approach TPR FNR TNR FPR F1

Methods to detect Android ransomware:

DNA-Droid (Gharib and Ghorbani, 2017) hybrid 0.981 0.019 0.995 0.005 —

R-PackDroid (Maiorca et al., 2017) static 0.943 0.057 — — —

ESCAPADE (Chew et al., 2020) dynamic 1.000 0.000 0.986 0.014 0.984

Amer and El-Sappagh (2022) dynamic 0.989 0.011 0.989 0.011 0.980

Methods to detect other types of Android malware:

DroidAPIMiner (Aafer et al., 2013) static 0.978 0.022 — — —

DroidNative (Alam et al., 2017) static 0.936 0.064 0.973 0.027 0.844

DroidDet (Zhu et al., 2018) static 0.933 0.067 — — —

SWORD (Bhandari et al., 2018) dynamic 0.958 0.042 0.926 0.074 0.943

MaMaDroid (Onwuzurike et al., 2019) static 0.92 0.08 — — 0.92

Supervisor reduction (this work) dynamic 0.956 0.044 0.966 0.034 0.938

Their method is based on patters designed manually to capture all malicious traces

in the dataset, resulting in a true positive rate of 1. The benign dataset is used

to evaluate the efficacy of the patterns, with malicious behavioural patterns also

detected in 1.4% of benign applications. These results are not based on cross

validation.

Amer and El-Sappagh (2022) use several datasets to train their approach and

evaluate it using 10-fold cross validation. One of the experiments uses the ES-

CAPADE dataset (Chew et al., 2020) and reports both true positive and true

negative rates as 0.989. This result is shown in Table 7.7 as the data is the most

similar to our work.
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The above methods are specifically designed to detect Android ransomware.

The second group of entries in Table 7.7 covers a wider group of methods for dif-

ferent types of malware. While possibly less relevant, the detection and evaluation

techniques employed in these methods are similar and comparable to ransomware

detection.

DroidAPIMiner (Aafer et al., 2013) is a static method that includes four ma-

chine learning algorithms, which is evaluated using split validation on a dataset

consisting of 3987 malware samples and approximately 16000 benign samples. The

most accurate model uses the KNN algorithm with a reported true positive rate

of 0.978.

DroidNative (Alam et al., 2017) is another static method and evaluated using

split validation on a dataset consisting of 358 malware samples and 3732 benign

samples. They report a true positive rate of 0.936 and a false positive rate of 0.027.

Similarly, DroidDet (Zhu et al., 2018) employs a 10-fold cross validation ap-

proach to evaluate the methodology using a dataset of 1065 malicious applications

and 1065 benign applications. The most accurate model has a true positive rate

of 0.933.

SWORD (Bhandari et al., 2018) is a dynamic approach, evaluated using 10-

fold cross validation on a dataset consisting of 1000 malicious and 1000 benign

applications. The most accurate model achieves a true positive rate of 0.958 and

a false positive rate of 0.074.

MaMaDroid’s (Onwuzurike et al., 2019) dataset contains 35493 malicious sam-

ples and 8447 benign samples, but only parts of the data are used in any single

experiment. For the most relevant comparison, Table 7.7 shows results of 10-fold

cross validation based on the latest dataset collected in 2016, which contains 2974
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malicious samples and 2568 benign samples. Based on this data, the most accurate

model produces a true positive rate of 0.92 and an F1-score of 0.92.

The last line in Table 7.7 represents the best classification model obtained

with supervisor reduction as mentioned in Section 7.2.3, which is obtained using

three iterations of loop detection and a threshold of eight, and lexicographic state

ordering without projection. Overall, the approach based on supervisor reduction

achieves accuracy scores comparable to those presented in the literature.

7.2.7 Threats to Validity

The main concern about the experiments described in this section is the limited

size of the dataset, which consists of only 205 malicious applications from six ran-

somware families. The sparseness of the dataset raises issues in some experiments

as mentioned in Section 7.2.4, and generally makes it difficult to determine how

the method scales as the amount of data increases. As this work focuses on a spe-

cific type of malware, namely encryption-type ransomware for Android devices, we

were unable to obtain more samples. While new ransomware will arise overtime,

the dataset in this work is believed to be close to the current extent of Android

encryption-type ransomware.

Another possible issue is the randomly generated user interaction through An-

droid Monkey when capturing traces. This random user interaction is unlikely to

be representative of typical behaviour patterns of smartphone use. Additionally,

traces are captured in on offline environment without Internet access, which makes

it impossible to capture typical use cases of benign communication or social me-

dia applications. While the presented experiments demonstrate the feasibility to



133

m

R

B1_1

W

B1_3

R

B1_2

B1_4

R

B2_1

B2_3

W

B2_2

O

B3_1

W

B3_3

R

B3_2

W

B3_4

B3_5

Failed

O

M1_1

R

M1_3

R

M1_2

M1_4

O

M2_1

U

M2_3

W

M2_2

m

M2_4

Malicious

O
U
R
W
 

O
U
R
W
 

Other

O
U
R
W
 

Figure 7.8: Nondeterminsitic FSM model with other state

distinguish applications based on system call traces, different ways of capturing

behaviour will have to be explored for deployment on real-user smartphones.

7.2.8 Discussion

A nondeterministic FSM was necessary to generate the supervisor models. Ini-

tially, the first model consisted of an additional state defined as other with a

self-looping transition containing all observed events (i.e., tokens) in the traces.

The inclusion of the other state ensures that the generated deterministic models

and supervisors are complete with all events defined in every state. The result of

this created supervisors with the same results regardless of the algorithm or options

used. An example of the NFSA with other state can be seen in Figure 7.8.

The second nondeterministic FSM model removed the other state, which gen-
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erates incomplete deterministic and supervisor models, thus every event is no

longer existent in every state. The incomplete models can still be utilised as

classifiers if the classification process considers blocked states and states that were

projected out. This also created more variation in the generated supervisors, thus

the classification results are often more diverse. The removal of the other state

is more beneficial for classification as the generated deterministic model produces

fewer states, thus often providing faster supervisor reduction times and more ac-

curate models. Hence, this chapter utilises the second nondeterminsitic model.

One of the more challenging objective encountered throughout this work was

the verification of FSM models. The implementation of reduction methods and

conversion from system call traces into Waters/Supremica format should strictly

adhere to the rules specified in Section 2.5.2. The generated models were verified

to ensure its correctness and prevent inaccuracies in the results. The classification

process adopted a 10-fold cross validation approach. As such, each of the classifi-

cation models generated were verified against the original 9 sets, which were used

to generate the models (i.e., training set). A model is correctly generated if it

adheres to rule 2.4 defined in Section 2.5.2 of Chapter 2.

7.3 Chapter Summary

This chapter proposes and evaluates a method for automatically detecting encryp-

tion-type ransomware at a system call level using a supervisor reduction algorithm.

This is achieved by constructing an FSM model to classify benign and malicious

applications based on sequences of system calls, which are represented as simplified

token traces. Experimental results show that the proposed approach is effective in
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detecting encryption-type ransomware with a promising avenue for detecting un-

known variants. The classification models can be implemented to monitor real-user

devices with minimal processor and memory requirements.



Chapter 8

Identification of Linux

Encryption-type Ransomware

Ransomware will continue to be a widespread issue, that affects all operating

systems. Hence, there is a demand for more flexible solutions with capabilities

to detect ransomware for multiple operating systems. A research contribution of

this thesis is to explore the generalisability of applying behavioural patterns and

FSMs methodologies that have been devised for Android to detect encryption-type

ransomware on a different operating system.

This chapter observes behavioural patterns in Linux encryption-type ransomware

by applying methodologies described in Chapter 5 and Chapter 7. Android is based

on the Linux Operating System (OS). Hence, one would think that the behavioural

patterns should apply to Linux. We investigate if that indeed is the case by ex-

ploring the applicability of the previously proposed methodologies for ransomware

detection on the Linux OS and further identify the differences between Android

and Linux encryption-type ransomware.
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8.1 Methodology

This section presents a set of findings for Linux encryption-type ransomware, which

differs from the observed behavioural patterns of Android encryption-type ran-

somware.

8.1.1 Linux Behavioural Observations

Linux is a general purpose operating system generally used for development. Due

to this, applications are often more specialised compared to other operating sys-

tems. The following two sections explore in more detail the unique traits of benign

and malicious Linux applications and the differences in behavioural patterns com-

pared to the Android Applications dataset.

8.1.1.1 Benign Linux Applications

As mentioned in Section 4.2 of Chapter 4, the Linux benign dataset consists of

carefully selected applications used in software development. As a result, the

samples in the benign dataset are more distinct and contain a broader range of

application types and behaviours.

Contributing to the specialised environment of the Linux OS, is the command-

line interface, which offers diverse tools. For example, netcat is a tool used

to monitor Transmission Control Protocol (TCP) and User Datagram Protocol

(UDP) connections. Whereas, diff can perform comparisons between file and di-

rectories. Some of these tools can also perform similar actions to encryption-type

ransomware, such as mv, which can be used to rename files or directories.

Many applications on Linux rely on passing arguments through the command-
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line interface. Command-line arguments are used by applications to perform ad-

ditional actions. For example, using ls on the command-line interface will list

the contents of a directory, adding the command-line argument -S will list the

directory contents sorted by file size in descending order. Similarly, adding the

command-line argument -t will sort the contents of a directory by the creation

time.

The diversity of tools offered by the Linux OS enables the creation of a benign

dataset that covers a broader range of behaviours, which was not feasible with the

Android Applications dataset due to the randomly simulated interactions from

Android Monkey.

8.1.1.2 Malicious Linux Applications

The specialised environment of Linux also incentivises malware developers to en-

gineer their ransomware to target unique and critical files for specific groups and

organisations, such as the storage file of virtual machines for ESXi servers (De-

vkar, 2022). This behaviour differs from the Android samples as most traditional

encryption-type ransomware target the average user and common file types, which

are considered important to the user, such as .jpg, .txt, and .png. Related to

the specific file types, it has been observed that some Linux ransomware samples

target a specific directory specified by the user. As most Linux tools or software

can be executed through the command-line, malware authors can design their ran-

somware to encrypt a specific directory to be entered as command-line arguments.

As observed in Android samples, the primary behavioural pattern of an encryp-

tion-type ransomware is to perform an unlink on files after the encryption process.

For the Linux samples, the behavioural pattern is broader as some samples encrypt
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and rename the original file instead of unlinking. Some Linux ransomware samples

utilise a more covert approach by encrypting the original file and overwriting its

contents without renaming or unlinking. This observation suggests that obtaining

more diverse encryption-type ransomware samples can provide a more complete

overview of encryption-type ransomware behaviour.

Due to the specific target of Linux ransomware, there are some samples, which

can avoid detection if a specific argument, file, or environment was not found or

provided. For example, the Hive ransomware searches for a key file to export

(Matire and Ragusa, 2022). If the ransomware is unsuccessful in finding the file,

then the program would exit without executing the malicious component. Tech-

niques such as searching for specific files or checking for a specific environment

(e.g., simulated environments) are common for Android ransomware samples and

ransomware in general. However, Linux ransomware utilise techniques, which are

distinct to the type of group that the ransomware is targeting (e.g., a ransomware

can check for the specific location of an ESXi storage location or identify running

background VM processes).

Further observation of the Linux system call logs indicates that there are some

minor differences in system call usage compared to Android. Based on the observed

Android samples, the system calls produced often contain the suffix at, which

is used to consider the relative path specified by the file description (Kerrisk,

2022). For example, unlinkat and openat. In contrast, most Linux samples

utilise system call variants without the at suffix, such as unlink and open.
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8.2 Evaluation

This section details the evaluation methods and results for detecting Linux en-

cryption-type ransomware. For consistency, we utilised a similar evaluation as

described in Chapter 5 and Chapter 7 to show the viability of the two proposed

Android methodologies for detecting Linux encryption-type ransomware.

8.2.1 System Call based Behavioural Pattern Alterations

The implementation employed in this work follows a similar methodology as Chap-

ter 5 and Chapter 7. It is important to note that no major alterations were made

as the primary objective of this work is to identify the generalisability of the pro-

posed Android methodologies for detecting Linux encryption-type ransomware.

However, in Section 8.1.1, it was noted that the behavioural patterns of Linux

encryption-type ransomware are slightly different. Hence, minor alterations to the

methodology were implemented to accommodate the differing behaviours exhibited

by Linux encryption-type ransomware.

One of the main differences between Linux and Android encryption-type ran-

somware is associated with the type of system calls used. It has been observed

that the Android operating system often produces system call logs that utilised

the suffix at. For example, openat(), unlinkat(), and renameat(). Thus, these

specific variations of system calls were white-listed in the filtering process. How-

ever, this was an issue for Linux system calls logs, as it was observed that most

system calls do not utilise the suffix at. Due to the strict filtering process us-

ing regular expressions it was not possible to capture the malicious behaviours of

Linux encryption-type ransomware, as the regular variants of system calls were not
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considered, thus resulting in empty token traces. To alleviate this issue, a minor

alteration was made to the tokenisation process to consider system calls with or

without the at suffix using a conditional regular expression.

The methodology of Chapter 5 relies on predefined and carefully crafted be-

havioural patterns. One of the additional alterations was to observe the inclusion

of a malicious rename pattern to capture the overwriting of user files exhibited

by some Linux ransomware samples as mentioned in Section 8.1.1. This pattern

follows a similar definition to other previously defined malicious patterns, in which

it only observes file renames within the user directory. The following pattern com-

binations were used to define the new malicious rename pattern, using the same

notation as Table 5.1 in Chapter 5:

OP (rename) > UD > MF > A (8.1)

One of the objectives of this work is to assess the generalisability of the behavioural

patterns discovered in Chapter 5. To achieve this, an experiment was conducted to

identify malicious behavioural patterns in Linux encryption-type ransomware. The

Linux dataset is evaluated multiple times, with each iteration containing a minor

alteration to the patterns. Some samples in the Linux dataset produced different

system call log formats due to the collection process using strace. Hence, all

system call logs were formatted to ensure that it is in a consistent formatting

for pre-processing. Unlike the evaluation method described in Chapter 5, which

observes common malicious behaviours between different Android encryption-type

ransomware families, this evaluation observes the detection rates. A malicious

sample is classified as true positive if a malicious pattern was discovered in the
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Table 8.1: Comparison of detection rates between Linux dataset and Android

benign dataset.

Pattern Alteration TPR FNR TNR FPR F1

None 0.123 0.877 0.982 0.018 0.212

Additional system call variants 0.616 0.384 0.835 0.165 0.616

Malicious rename pattern 0.836 0.164 0.812 0.188 0.735

Android 1 0 0.986 0.014 0.984

traces, whereas a false negative occurs when no malicious patterns are discovered

in the traces. The types of pattern alteration and detection rates of each iteration

are shown in Table 8.1.

As shown in Table 8.1, the patterns discovered in Chapter 5 with no pattern

alterations detected 9 out of 73 malicious samples, leading to a low true positive

rate of 0.123. This can be attributed to the strict regular expressions, which were

manually crafted to specifically capture Android encryption-type ransomware. Due

to the strictly defined regular expression, the malicious patterns try to identify

different system call variants or an alternative form of encryption, as mentioned

in Section 8.1.1. This was confirmed after further inspection of the logs files.

By altering the white-listed system calls to include the system call variants

without the suffix at, the true positive rate increases to 0.616, which is a signif-

icant increase compared to the previous case. The increased detection rate is an

indication that Linux malware utilises different variants of system calls, but share

similar malicious behaviour to Android system calls.



143

As noted in Section 8.1.1, some Linux encryption-type ransomware overwrite

and rename the original file. This behaviour is different from the observed An-

droid samples, which writes the contents to a new encrypted file and removes the

original files. The third row of Table 8.1 includes a new malicious rename pattern,

which observes renames that occur within the user directory. The inclusion of this

pattern results in a true positive rate of 0.836, which is a noticeable increase from

the previous two iterations. The increase in detection rates is an indication that

Linux encryption-type ransomware exhibits more diverse encryption behaviours

compared to the observed Android samples.

In addition to the true positive rates, the results in Table 8.1 also present the

true negative rates and false positive rates of the benign Linux dataset in compar-

ison to the benign Android Applications dataset. The true negative rate without

any alterations is 0.982, which is comparable to the Android benign true negative

rate of 0.986. As further pattern alternations were made, the true negative rate

also decreased. The most notable decrease observed was the inclusion of additional

system call variants, which lowered the true negative rate to 0.835. This has stark

similarities to the results of the malicious Linux dataset in Section 8.2.1, which

significantly increased the true positive rate with the inclusion of the additional

system call variants. This implies that the benign dataset shares similar trends in

patterns compared to the malicious Linux dataset, particularly in the system call

variants utilised.

The final pattern alteration further decreased the true negative rate of the be-

nign Linux dataset to 0.812, which is noticeably lower compared to the Android

benign dataset of 0.986. This is unsurprising as the Linux benign dataset was care-

fully designed to contain more diverse samples, which exhibit similar behaviours to
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encryption-type ransomware, including samples mimicking the renaming of files.

This was not the case with the Android Applications dataset as many of the benign

applications did not access user files. This can likely be attributed to the randomly

simulated events from Android Monkey, which made it infeasible to replicate all

possible events in an application.

Further, inspecting the pattern files of the misclassified benign Linux samples

showed that the most prominent malicious pattern to occur was read user file,

which occurred in 23 samples, followed by 11 occurrences of unlinking user file,

10 rename user files, 3 file created with unknown extensions, and 3 writing to un-

known file extensions. The predominant occurrence of read user file pattern was

expected as the pattern closely resembles the behaviours exhibited in benign sam-

ples. The same malicious pattern was also observed in the misclassified Android

benign applications.

The unlink user files and rename user files patterns share similar number of

occurrence in benign samples. This is a result of the Linux benign samples ex-

hibiting a broader range of file operation behaviours, such as using a text editor

to unlink or rename a file.

The last two malicious pattern occurrences were files created with unknown

extensions and writing to unknown file extensions, which were present in 3 benign

samples. The benign sample was related to a password manager software, which

attempted to create and write to temporary files and special password files using

a custom file extension. Distinct and specific software, such as password managers

and cache-cleaning applications, are expected to be falsely detected in the ab-

sence of any other secondary detection measures. This is often unavoidable due to

similarities in high-level behavioural patterns with encryption-type ransomware.
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Further, inspecting the false positive rates of the Linux dataset, there is a

noticeable increase compared to the Android dataset. This increase is likely at-

tributed to the more diverse behaviours in the benign applications. As previously

mentioned, some benign applications in the Linux dataset were specifically crafted

to closely resemble behaviours to encryption-type ransomware, such as file delete,

and file write. This was done to highlight the efficacy of the aforementioned ap-

proach on a more challenging dataset.

This section explored the detection rates of the Linux benign dataset in com-

parison with the Android Applications dataset. The results without any pattern

alteration showed low true positive rates of 0.123. This is a result of the carefully

crafted regular expressions, which were specifically designed to detect Android

samples. Although effective for Android samples, the patterns in Chapter 5 were

an indication of overfitting. By broadening the white-listing process and the set

of malicious behaviours, it was possible to achieve a more reasonable true posi-

tive rate of up to 0.836. In stark comparison, the true negative rates achieved

a true negative rate of 0.982 without any pattern alteration. Further alterations

decreased the true negative rate to 0.812, which is likely a result of the more

diverse benign Linux applications, which exhibited behaviours similar to that of

encryption-type ransomware.

8.2.2 Supervisor Reduction Evaluation

This evaluation presents the results of applying FSM algorithms and supervisor

reduction to classify Linux encryption-type ransomware. The evaluation method-

ology applies a similar approach and metrics as Chapter 7.
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Table 8.2: Classification models obtained with 3 iterations and a threshold of 4.

Supervisor Reduction Options Accuracy Result

States Pairs Projection TPR FNR TNR FPR F1 States Time

RBFS Lexicographic Off 0.753 0.247 0.982 0.018 0.840 77 794.6 s

RBFS Diagonal1 Off 0.740 0.260 0.982 0.018 0.831 77 817.0 s

RBFS Diagonal2 Off 0.329 0.671 1.000 0.000 0.495 12281 923.0 s

Preliminary results in Table 8.2 show the generated classification models for

the Linux dataset using three iterations and a threshold of four with a timeout of

1 hour. Based on our previous observations, a timeout of 1 hour was a sufficient

indicator to determine if a classification can be generated. These values were se-

lected to identify the upper-bound of generating classification models. The results

in the table show fewer generated models and lower accuracy than the Android

Applications dataset, implying that the data in the Linux dataset contains more

challenging patterns for classification.

As previously mentioned in Section 8.1.1 the benign dataset has been dis-

tinctively generated to exhibit a more diverse set of behaviours compared to the

Android Applications dataset. This diversity generates a broader range of be-

havioural patterns, some of which resemble similar file operation behaviours to

malicious samples, resulting in a more challenging task for minimisation, thus

producing less accurate classification models overall. This could also explain the

success of the Android results in Chapter 7 as the Android benign samples were

randomly simulated using Android Monkey. Consequently, it was unlikely to ob-

serve all behavioural paths that were representative of a typical user. The random
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simulation of user interaction was noted as a possible threat to validity of the pre-

vious evaluation in Chapter 7 as some benign applications could have exhibited

file operation behaviours, which were not explored, resulting in an easier model

for classification.

The number of tokens in the Linux samples also contribute to the complexity

of the models. The average token length of the malicious Linux dataset is 5101 and

the benign dataset is 2885 tokens, which is noticeably longer than the average token

length of 489 and 599 for the malicious and benign Android Applications dataset

respectively. This observation suggests that malicious Linux samples exhibit more

file operation sequences compared to Android malicious samples, and the longer

trace lengths presents a more difficult task generating a classification model.

In Section 7.2.7 of Chapter 7, one of the main threats to validity of the Android

Applications dataset was the sparseness of the data, which resulted in issues for

some experiments. The Linux dataset is affected even more by this issue as it con-

tains fewer samples compared to the Android Applications dataset. Furthermore,

the traces present a challenging task for minimisation due to the more diverse

benign dataset, which also contributes to lower detection rates.

The preliminary results of this evaluation explored the application of FSM algo-

rithms and supervisor reduction to a Linux encryption-type ransomware. Several

challenges were identified, which prevented the Linux classification models from

generating more accurate classification models when compared to the Android

Applications dataset. However, overall the results show acceptable detection rates

with an F1 score up to 0.84, which is better than the highest behavioural pattern

F1 score in the previous section.
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8.2.3 Filtered Sample Results

The previous section presented a set of preliminary results without modifications

to the dataset. Further inspection of the Linux dataset showed that 8 samples en-

crypted one or two specific files. These files often contain the file extension .vmdk,

which are storage disk files for virtual machines. This creates a challenging task

for supervisor reduction to distinguish between benign and malicious applications

as the distinctive patterns that differentiate between malicious and benign file op-

erations are no longer as evident. This section explores the results of removing

these 8 malicious samples, leading to a smaller dataset of 65 malicious samples.

It is important to note that the removal of these 8 samples can have a negative

implication as .vmdk files are often important files that can contain valuable in-

formation. As such, these specific variants of encryption-type ransomware that

target a specific type of file can pose a potential limitation.

In addition to the removal of the 8 samples, further observations of the token

traces showed that one of the benign applications generated an empty token trace

file as the Set IV did not consider open() with the O RDWR flag. To alleviate

this issue, a new token set was created in the following experiments, which also

considers other uses of open() that have not been observed, including O RDWR.

This new token set is shown in Table 8.3.

As indicated in Table 8.4 the highest F1 score obtained was 0.847, which was

achieved with a pair ordering of RBFS and Diagonal1 state ordering with pro-

jection off. In comparison to Table 8.2 the highest F1 score was 0.84 using the

same parameters. The minor increase in F1 score suggests that the removal of

malicious samples with single file encryption has a positive effect on the accuracy
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Table 8.3: New token set.

Operation New Token Set

Open directory OD

Open file for reading ORF

Open file for writing (create) OCWF

Open file for writing (append) OAWF

Open file for writing (other + RDWR) OXF

Rename file RN

Unlink/delete file U

of the classification models, however, as previously mentioned, there are other

challenges, which contribute to the lower accuracy of the classification models.

Overall, these results indicate a minor increase in the detection rates. Hence, the

following experiments utilises this malicious dataset of 65 Linux samples.

8.2.4 Evaluation of Supervisor Reduction Options

This section applies the same evaluation methodology as in Section 7.2.2 of Chap-

ter 7. We observe the effects of applying different supervisor reduction and loop

detection options to the filtered Linux dataset using a ten-fold cross validation

approach. The new token set used in Table 8.3 was utilised instead of Set IV.

DFS pair ordering was omitted in the results as some sets were unable to generate

a classification model. After initial observations, two iterations of loop detection

and a threshold value of 8 produced the most effective models based on the F1
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Table 8.4: Classification models obtained with three iterations and threshold of

four with removal of 8 samples.

Supervisor Reduction Options Accuracy Result

States Pairs Projection TPR FNR TNR FPR F1 States Time

RBFS Lexicographic Off 0.738 0.262 0.982 0.018 0.828 247 794.6 s

RBFS Diagonal1 Off 0.769 0.231 0.982 0.018 0.847 354 834.6 s

RBFS Diagonal2 Off 0.277 0.723 0.994 0.006 0.429 12246 932.5 s

Table 8.5: Classification models obtained with 2 iterations and a threshold of 8.

Supervisor Reduction Options Accuracy Result

States Pairs Projection TPR FNR TNR FPR F1 States Time

RBFS Lexicographic Off 0.846 0.154 0.982 0.018 0.894 45 772.8 s

RBFS Lexicographic On 0.785 0.215 0.965 0.035 0.836 163 872.8 s

RBFS Diagonal1 Off 0.831 0.169 0.988 0.012 0.893 53 807.3 s

RBFS Diagonal1 On 0.800 0.200 0.953 0.047 0.832 119 774.3 s

RBFS Diagonal2 Off 0.323 0.677 1.000 0.000 0.488 15928 872.3 s

RBFS Diagonal2 On 0.677 0.323 0.953 0.047 0.752 3047 804.4 s

score. The results of this evaluation are shown in Table 8.5.

The results indicate that classification models generated with Lexicographic

and Diagonal1 state ordering without projection produced the highest F1 score

of 0.894 with a true positive rate of 0.846 and a true negative rate of 0.982. In

relation to the state sizes, the data indicates that lower state sizes result in more

accurate true positive rates, thus leading to a more accurate overall, similar to the

results in Chapter 7.
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The classification models generated with projection on can still achieve accept-

able detection rates with Lexicographic and Diagonal1. Whereas, Diagonal2 mod-

els consistently produce low F1 scores, similar to the Android Applications dataset.

Setting aside the Diagonal2 models, the true positive rates of Lexicographic and

Diagonal1 are noticeably lower compared to the models without projection.

Further examination of the projection models indicated that all ten rounds

of cross validation removed OAWF, nine rounds removed U, two rounds removed

ORF, one round removed O, and one round removed OD. The removal of O, ORF,

and OD, which corresponds to open, open file for reading, and open directory re-

spectively, appears to occur less frequently in some rounds, which is likely due to

the random distribution of samples. Similarly, the removal of the token OAWF, in-

dicating open file for appending, suggests the occurrence of this token is infrequent

in the Linux sample, this is similar to the Android Applications dataset, which

also observed the removal of OAWF in all ten rounds of cross validation. One of

the more notable differences between removed tokens for Android and Linux sam-

ples is U, which is the token used to indicate file unlinking. The removal of this

token implies that unlinking of files is an infrequent occurrence for Linux samples.

This is consistent with Section 8.1.1, which indicated that some Linux samples

overwrite the original files using a rename operation as opposed to unlink.

The classifications models produced using the Linux dataset are less effective

compared to the Android Applications dataset, which could be a result of a more

diverse and smaller dataset. Considering these challenges, the highest F1 score of

0.894 is still acceptable, achieving high true negative rates, with minor difficulties

in identifying malicious encryption-type ransomware.
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8.2.5 Evaluation of Loop Detection

Similar to Chapter 7, this section observes the effectiveness of loop detection using

ten-fold cross validation. As previously mentioned, Set IV from the Android Ap-

plications dataset was unable to be used due the empty trace that was produced

by a benign application. Although, an empty trace will have no impact on the

overall results of the benign set due to the effects of supervisor reduction, this sec-

tion introduces a new token to the set, which also considers other open() system

calls, including the O RDWR flag. As shown in the previous section, 3 iterations

and a threshold value of 4 were unable to produce the models with projection on.

Hence, this evaluation only considers 1 and 2 iterations with a maximum threshold

value of 12. Additionally, 2 iterations with a threshold value of 1 were unable to

generate models. Therefore, it will be omitted from this evaluation.

Figure 8.1 shows the results of the false positive and false negative rates in

relation to the average state numbers of the classification models. The results of

this evaluation can also be compared to Table 8.6, which shows the results of the

classifications model obtained without loop detection. Furthermore, as shown in

Table 8.6, it was not feasible to generate classification models without the use of

projection, which was likely attributed to the larger initial state sizes.

The results of Figure 8.1 suggest that the classification models can correctly

identify most malicious and benign applications. The highest false positive rate

was 0.047 whereas the majority of data points are within 0.01 to 0.03. Conversely,

the false negative rates are significantly higher up to 0.31 with the majority of data

points falling between 0.18 to 0.27. The high false positive rates are unsurprising

due to the challenges previously mentioned.
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Figure 8.1: Classification model accuracy and size depending on loop detection

parameters and projection for the Linux dataset.

Additionally, the models obtained without projection generally produced bet-

ter classification rates compared to the models with projection, which share stark

similarities to the Android Applications dataset. Furthermore, models with pro-

jection often produced higher false positives. The trend is more pronounced when

observing the iterations for models with projection enabled, which indicates that

higher iterations generally produce models with higher false positive rates.

A comparison between Figure 8.1 and Table 8.4 shows that applying loop

detection provides several benefits. One of the more noticeable benefits is the
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Table 8.6: Classification models obtained without loop detection.

Supervisor Reduction Options Accuracy Result

States Pairs Projection TPR FNR TNR FPR F1 States Time

RBFS Lexicographic On 0.692 0.308 1.000 0.000 0.818 628 1766.8 s

RBFS Diagonal1 On 0.692 0.308 0.982 0.018 0.796 628 1873.7 s

RBFS Diagonal2 On 0.369 0.631 0.976 0.024 0.516 18787 2148.4 s

number of classification models generated. Without loop detection, it was not

possible to generate classification models with projection disabled due to the initial

large state sizes. By reducing the number of states with loop detection, it was

feasible to generate models with projection enabled and disabled. Additionally,

the models obtained with loop detection are generally more accurate, with the most

effective models achieving an F1 score of up to 0.894. Whereas, models without

loop detection can only produce an F1 score up to 0.818. Furthermore, the models

have fewer states compared to models without loop detection. The classification

model with the fewest states with loop detection has 35 states, whereas, the model

with the fewest states without loop detection has 628 states. Conversely, the

classification models with the most states have 871 and 18,787 states with loop

detection and without loop detection respectively. This implies that loop detection

often results in classification models with fewer states, whilst also maintaining a

higher accuracy compared to the models without loop detection. The smaller

number of states often also results in faster supervisor reduction times.

Overall, this evaluation demonstrates the efficacy of loop detection on the Linux

dataset. Similar to the results of the Android Applications dataset, models with
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Table 8.7: Android and Linux open system call variants count.

(a) Android open token count

Token Token Occurrence (%)

RF 50.64%

RDWR 37.56%

CWF 5.51%

O D 4.76%

Other Write 1.42%

AWF 0.11%

(b) Linux open token count

Token Token Occurrence (%)

RF 58.15%

RDWR 12.60%

CWF 6.13%

O D 23.09%

Other Write 0.02%

AWF 0.01%

loop detection are more beneficial than models without loop detection.

8.2.6 Token Set Changes

In Section 8.2.3 it was noted that one of the benign applications produced an empty

trace file as Set IV did not observe open() system calls with the flag O RDWR. Hence,

a new tokenisation was introduced, which also explored other open() system calls

for writing, including the flag O RDWR. Initially, O RDWR flag was omitted from the

token sets in the Android Applications dataset as it was not feasible to generate

models for classification. This differed for the Linux dataset and by further explor-

ing the open system call token variants in Table 8.7 we found significant difference

between the number of occurrences for open() system call variants.

One of the differences between Android and Linux is the open directory vari-

ant, which is represented using the token OD. The occurrence of this token is

more frequent in Linux system calls compared to Android token traces, which is a
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result of applications exhibiting more diverse behaviours, particularly for benign

applications. A more important difference between the Android and Linux open

variants is the ORW token, which is significantly more prevalent in the Android

Applications dataset compared to the Linux dataset. The infrequent occurrence

of open system calls with the O RDWR flag in the Linux dataset is likely attributed

to the inclusion of more command line tools, which exhibit more traditional file

access behaviours, such as opening a file for reading or opening a file for writ-

ing. This also explains why it was feasible to generate classification models with

the inclusion of open system call variants with the O RDWR whereas the Android

Applications dataset produced long traces, which were difficult to process.

Table 8.8: Nine possibilities to tokenise Linux system calls.

Tokens

Operation Set I Set II Set III Set IV Set V Set VI Set VII Set VIII Set IX

Open directory O OD OD OD OD OD OD OD OD

Open file for reading O ORF ORF ORF OXF ORF ORF ORF ORF

Open file for writing (create) O OWF OCWF OCWF OCWF OCWF OCWF OCWF OCWF

Open file for writing (append) O OWF OAWF OAWF OXF OXWF OAWF OXWF OAWF

Open file for writing (other) O OWF OXF — OXF OXWF OXF OXWF —

Open File for writing (RDWR) O OWF OXF — OXF OXWF ORW ORW ORW

Rename file RN RN RN RN RN RN RN RN RN

Unlink/delete file U U U U U U U U U

Based on the aforementioned observations, new tokenisations were created.

The new tokenisations are presented in Table 8.8 and Table 8.9. These tokenisa-

tions differ and expand the Android tokensations to further explore the effects of

including open() system call variants with the O RDWR flag.
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Table 8.9: Altered ESCAPADE tokenisation.

Tokens

Operation User directory Other directory

Open directory ODudir ODother

Open file for writing (create) OCWFudir OFother

Open file for reading or writing (excl. create, incl. RDWR) OXFudir OFother

Rename file RNudir —

Unlink/delete file Uudir Uother

Set I and Set II follow a similar tokenisation process to the Android Applica-

tions dataset. Set I tokenises all observed open() system call variants with the

token O. Whereas, Set II distinguishes between Open file for reading and Open

file for writing. The difference between the tokenisation for the Linux dataset is

the inclusion of the additional open() system call variant with O RDWR. Set III is

the token set used for the previous evaluations, which shares a similar tokenisation

to Set IV. The main difference is the inclusion of the additional OXF token, which

observes other open file for writing variants, including O RDWR. Token Set IV is

the original token set used in the Android Applications dataset. Although this

tokenisation does produce an empty benign trace, the trace can still be considered

for classification as it would not affect the result of the models due to the effects

of supervisor reduction. The fifth and sixth token sets utilise a similar tokenisa-

tion to the Android Applications dataset with the inclusion of the new open file

for writing variant, which considers the flag O RDWR. Token Set V does not distin-

guish between different open file operations, except open directory and open file for
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writing (create). Conversely, token Set VI does not distinguish between different

open file for writing operations except open file for writing (create). Set VII dis-

tinguishes between all open file variants, including the new variant with the flag

O RDWR. Whereas, Set VIII merges the tokens for open file for writing (append)

and (other). Due to the low occurrences of other open file for writing variants in

Table 8.7, Token Set IX explores a tokenisation, which excludes the observation of

other variants and includes the new open for writing variant with O RDWR.

For consistency with other token sets, the tokenisation from Chapter 5 will be

referred to as ESCAPADE tokenisation. Furthermore, the tokenisation has also

been expanded to include open() system call variants with the flag O RDWR. As

shown in Table 8.9, the new variant is merged with the tokenisations of open file

for reading or writing.

This section explored the occurrences of open() system call variants between

Linux and Android traces, which showed that tokenising open system variants with

flag O RDWR was feasible due to the significantly lower occurrences in the Linux

dataset. Based on the observations, a new set of tokenisations were introduced

to extensively explore the effects of including the open system call variant. The

following section examines the efficacy of the presented token sets by applying

supervisor reduction options.

8.2.7 Evaluation of Different Tokenisations

Following the same evaluation as previously conducted in Chapter 7, this section

describes the effects of using different tokenisation options based on the sets de-

fined in Section 8.2.6. Similarly, the experiments conducted in this section use
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the most effective options identified in the previous section, which are two loop

detection iterations with a threshold value of 8 and the pair ordering of RBFS

with Lexicographic or Diagonal1 state orderings.
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Figure 8.2: Classification model accuracy and size for different Linux tokenisations.

Following the same format as Section 7.2.4, Figure 8.2 shows the false positive

and false negative rates of different tokenisations options in relation to the average

state sizes. It should be noted that some models achieved the same false positive

and false negative rates, which results in overlapping data points. Furthermore,
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Table 8.10 shows a more detailed analysis of the classification models with the

lowest false negative rates for each tokenisation option.

Table 8.10: Classification models with the lowest false negative rates for each Linux

tokenisation.

Supervisor Reduction Options Accuracy Result

Tokenisation States Pairs Projection TPR FNR TNR FPR F1 States Time

Token Set I RBFS Lexicographic Off 0.969 0.031 0.124 0.876 0.455 8 0.7 s

Token Set II RBFS Lexicographic Off 0.800 0.200 0.982 0.018 0.867 86 791.1 s

Token Set III RBFS Lexicographic Off 0.846 0.154 0.982 0.018 0.894 45 813.2 s

Token Set IV RBFS Lexicographic Off 0.846 0.154 0.971 0.029 0.880 62 681.9 s

Token Set V RBFS Diagonal1 Off 0.800 0.200 0.976 0.024 0.860 65 810.8 s

Token Set VI RBFS Lexicographic Off 0.846 0.154 0.982 0.018 0.894 45 802.5 s

Token Set VII RBFS Diagonal1 On 0.785 0.215 0.953 0.047 0.823 159 810.1 s

Token Set VIII RBFS Diagonal1 On 0.785 0.215 0.953 0.047 0.823 159 806.2 s

Token Set IX RBFS Lexicographic Off 0.846 0.154 0.982 0.018 0.894 55 808.6 s

ESCAPADE RBFS Diagonal1 On 0.769 0.231 0.947 0.053 0.806 462 656.1 s

One of the more striking outliers seen in Figure 8.2 is Set I, which produced a

low false negative rate of 0.031 and a high false positive rate of 0.876. This can be

explained by the abstracted open() file operation, which creates a challenging task

for supervisor reduction as the patterns exhibited in benign and malicious token

traces are no longer evident. Conversely, the Android Applications dataset showed

that it was feasible to derive a classification model with an F1 score of 0.932. This

difference in accuracy is indicative of the diversity in benign and malicious samples

between the two datasets. The Android Applications dataset contained patterns,
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which could still accurately classify benign and malicious samples even with the

abstracted tokens, whereas the low F1 score in the Linux tokenisation provides a

more realistic outcome due to the inclusion of more diverse samples and shows a

more reliable dataset overall.

By introducing a more fine-grained tokenisation in Set II, the classifications

models are more consistent with the results obtained in the previous experiments,

achieving a false negative rate of 0.2 and a false positive rate of 0.018, resulting in

an acceptable F1 score of 0.867. In comparison, Set II for the Android Applications

dataset produced some of the most inaccurate models and the usage of a finer

tokenisation set makes it more difficult to minimise the FSM, while results for the

Linux dataset suggests that the models benefit from distinguishing open() read

and write operations due to the higher accuracy achieved compared to the coarse

tokenisation of Set I.

The most effective model for the ESCAPADE tokenisation achieved an F1 score

of 0.806 with a false positive rate of 0.053 and a false negative rate of 0.231. In

comparison, the ESCAPADE tokenisation from the Android Applications dataset

achieved a false positive rate of 0.010 and a false negative rate of 0.002 resulting in

an F1 score of 0.999 for the most effective classification model. The ESCAPADE

tokenisation from the Android Applications dataset was flawed due to the poten-

tially biased dataset, where only 49 benign applications exhibited user directory

access as noted in Section 7.2.4 of Chapter 7, which explains the high F1 score.

Although the Linux dataset achieved a noticeably lower F1 score, the outcome

was expected given the results of Section 8.2.1, which suggested that ESCAPADE

behavioural patterns were less effective in classifying encryption-type ransomware

due to the more complex samples in the dataset.
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Set VII and Set VIII achieved an F1 score of 0.823 with a false positive rate

of 0.047 and a false negative rate of 0.215. Although more effective than the

ESCAPADE tokenisation, the classification accuracy is still lower than other sets,

such as Set III. The lower classification accuracy could be related to the more

fine-grained tokenisation used in Set VII, which creates a more challenging task for

minimisation using supervisor reduction. Furthermore, the tokenisation of Set VIII

suggests that inclusion of open() with the O RDWR flag and not distinguishing

between open file for appending and other open file for writing can produce less

accurate classification models. Conversely, tokenisations that distinguish between

file read access and create file often produce good results as indicated in Set III,

Set VI, and Set IX, which obtained the highest F1 scores of 0.894 with a false

positive rate of 0.018 and a false negative rate of 0.154.

Overall, the experiment described in this section shows that the inclusion of

open system calls with the O RDWR flag, and distinguishing between file read ac-

cess and create file generally produces the most effective classification models as

indicated by the results of Set III, Set VI, and Set IX. The accuracy of the clas-

sification models obtained in this experiment are lower than the models obtained

in the Android Applications dataset, however, the results obtained are indicative

of a more realistic dataset.

8.2.8 Discussion

One of the core ideas adopted in this thesis was the tokenisation of system calls and

their arguments. This tokenisation process was achieved by manually evaluating

the collected systems call logs and constructing regular expressions that matched
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specific system calls and arguments, which correlate to observed behavioural pat-

terns. The manual creation of regular expressions is a more targeted approach in

identifying specific patterns. However, as previously mentioned in Section 6.2.4

of Chapter 6, these regular expressions are often complex and time-consuming to

define. The complexity of these regular expressions can also lead to an overfitted

definition, which could result in undetected behaviours. Chapter 7 alleviated these

issues by evaluating more tokenisation options with varying degrees of coarseness.

The issue of precise definition for regular expressions arose in this work. It

was discovered that the majority of malicious patterns defined in Chapter 5 were

unrecognisable in Linux samples. This was caused by minor variations in syntax,

behaviour, or different usage of system calls, which share similarities, such as

open() and openat(). This issue is not as prevalent if an automated approach is

used to classify the samples, such as the use of supervisor reduction in Chapter 7.

Manual construction of patterns using regular expressions might lead to undetected

behaviours in the future due to overfitting, thus a more reliable and automated

approach of defining patterns would be more advantageous.

8.3 Chapter Summary

This chapter expands on the work described in Chapter 5 and Chapter 7 by explor-

ing the feasibility of applying the methodologies for detecting Linux encryption-

type ransomware. Additionally, this chapter identifies the different behavioural

patterns between Android and Linux encryption-type ransomware. Our obser-

vations and experimental results indicate that Linux encryption-type ransomware

often exhibits different behavioural patterns compared to Android encryption-type
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ransomware, and minor modifications to the patterns were required. Overall, the

results indicate that the proposed methodologies are transferable and can be used

to classify Linux encryption-type ransomware.



Chapter 9

Conclusions

This thesis highlighted the growing threat of encryption-type ransomware and

presented effective alternative solutions to combat this ongoing issue. This chapter

explores closing remarks and concludes with future improvements.

9.1 Closing Remarks

This thesis explored and analysed the behavioural patterns exhibited in encryption-

type ransomware at a system call-level for resource constrained devices. Based on

this analysis, 12 behavioural patterns were developed using regular expressions,

which can be utilised to aid in the development of future anti-ransomware or pat-

tern detection solutions. Using the behavioural patterns discovered, this thesis fur-

ther presented a real-time detection method to effectively identify encryption-type

ransomware at a system call-level using two-layered token FSMs. Additionally, this

thesis explored an automated and alternative encryption-type ransomware detec-

tion approach using supervisor reduction algorithms. This approach deviated from
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traditional ML approaches and presents a promising avenue to counteract the ever-

changing malware landscape. The proposed approach can also be implemented in

a lightweight monitoring system on a real device, which conforms to the compu-

tational and storage constraints of mobile devices. Finally, this thesis showed the

transferability and generalisability of methodologies on a different operating sys-

tem and present a promising path for further development of more effective and

alternative behaviour-based malware detection solutions.

9.2 Future Work

The collection of system calls logs on Android heavily relies on the randomly simu-

lated interaction of Android Monkey. As mentioned in Section 7.2.7 of Chapter 7,

the random simulation of events is a limitation as it would not be feasible to cap-

ture all behaviours exhibited by an application. Hence, a potential avenue for

future work is to develop a more robust and deterministic method of capturing be-

havioural patterns at a system call-level and reduce the uncertainty of behaviours

captured.

The generation of classification models using supervisor reduction was a time-

consuming process. This was due to the partially manual process of creating the

deterministic models. A future improvement for this issue is to develop a fully

automated approach to convert any given set of system call traces into a deter-

ministic model. One of the potential solutions to achieve this is by developing a

CLI tool, which first converts a set of system call traces into token traces and sep-

arates the converted traces into their respective validation-sets. Once the sets are

separated, it would then be possible to generate a nondeterministic model, which
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can be used in Waters/Supremica to generate a deterministic model. To acquire

the deterministic model programmatically, modification of Waters/Supremica is

required. This can be achieved by developing a LUA script to call the respective

functions for subset construction.

In addition to the potential improvements and amendments of the work pro-

posed in this thesis, there are other areas that the proposed solutions can be

applied in. One of those areas is the observation of other malware types. Malware

will continue to evolve by adopting more sophisticated techniques. Thus, there is

demand for more adaptive anti-malware solutions. A future work is to introduce

more behavioural patterns capable of detecting other types of malware, such as

Backdoors, and Trojans. This will also alleviate the issue of the limited dataset

samples as more types of malware can be observed. The final goal is to iden-

tify behavioural patterns for different types of malware and utilise the automated

approach proposed in this thesis as part of a monitoring system that recognises

malicious applications and stops them before they can cause damage.

An important factor to note is the timing of API and system calls. Works

such as Hull et al. (2019) developed a ransomware deployment predictive model

(Randep) to predict the deployment characteristics of ransomware. The model

observed various variables such as propagation time. It was observed that malware

often completed specific operations in different time intervals. In relation to the

work proposed in this thesis, one potential approach to incorporate the findings

of Hull et al. (2019) is to introduce a delay token mechanism. By implementing

this mechanism, a token would be produced at regular intervals when no activity

occurs or when the application is in an idle state. This strategy allows for the

monitoring of delays that may occur within the application.
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The methodology proposed in this thesis focuses on the detection of encryption-

type ransomware based on tokenised system calls. Fundamentally, it is achievable

as the classification models are only reliant on tokenised system call traces, which

were derived from system call logs. A classification model can be generated given

that an arbitrary log is tokenisable. This presents opportunities to apply the

methodology in other areas of cybersecurity, such as the observation of network

traffic to identify anomalous activity.
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