
Western Kentucky University Western Kentucky University

TopSCHOLAR® TopSCHOLAR®

Computer Science Faculty Publications Computer Science

11-2011

Measuring Stability of Threshold-based Feature Selection Measuring Stability of Threshold-based Feature Selection

Techniques Techniques

Huanjing Wang

Taghi Khoshgoftaar

Follow this and additional works at: https://digitalcommons.wku.edu/comp_sci

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

This Article is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in
Computer Science Faculty Publications by an authorized administrator of TopSCHOLAR®. For more information,
please contact topscholar@wku.edu.

https://digitalcommons.wku.edu/
https://digitalcommons.wku.edu/comp_sci
https://digitalcommons.wku.edu/computer_science
https://digitalcommons.wku.edu/comp_sci?utm_source=digitalcommons.wku.edu%2Fcomp_sci%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.wku.edu%2Fcomp_sci%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.wku.edu%2Fcomp_sci%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages

Western Kentucky University

From the SelectedWorks of Dr. Huanjing Wang

November, 2011

Measuring Stability of Threshold-based Feature
Selection Techniques
Huanjing Wang, Western Kentucky University
Taghi M. Khoshgoftaar, Florida Atlantic University

Available at: https://works.bepress.com/huanjing_wang/17/

http://www.wku.edu
https://works.bepress.com/huanjing_wang/
https://works.bepress.com/huanjing_wang/17/

Measuring Stability of Threshold-based Feature Selection Techniques

Huanjing Wang
Western Kentucky University

Bowling Green, Kentucky 42101
huanjing.wang@wku.edu

Taghi M. Khoshgoftaar
Florida Atlantic University
Boca Raton, Florida 33431

khoshgof@fau.edu

Abstract

Feature selection has been applied in many domains,
such as text mining and software engineering. Ideally a
feature selection technique should produce consistent out-
puts regardless of minor variations in the input data. Re-
searchers have recently begun to examine the stability (ro-
bustness) of feature selection techniques. The stability of a
feature selection method is defined as the degree of agree-
ment between its outputs to randomly-selected subsets of
the same input data. This study evaluated the stability of 11
threshold-based feature ranking techniques (rankers) when
applied to 16 real-world software measurement datasets of
different sizes. Experimental results demonstrate that AUC
(Area Under the Receiver Operating Characteristic Curve)
and PRC (Area Under the Precision-Recall Curve) per-
formed best among the 11 rankers.
Keywords: threshold-based feature ranking, stability, ro-
bustness, software metrics.

1 Introduction

Feature selection is an important data mining prepro-
cessing step used to find a subset of features, which will
then be used in further study, such as for defect predic-
tion models. Feature selection techniques can be broadly
classified as feature ranking and feature subset selection.
Feature ranking sorts the attributes according to their indi-
vidual predictive power, while feature subset selection finds
subsets of attributes that collectively have good predictive
power. Feature selection techniques can also be categorized
as filters, wrappers, or embedded methods. Filters are algo-
rithms in which a feature subset is selected without involv-
ing any learning algorithm. Wrappers are algorithms that
use feedback from a learning algorithm to determine which
feature(s) to include in building a classification model. Em-
bedded methods do not perform explicit feature selection
like filters and wrappers; instead, feature selection is incor-
porated within a learning algorithm.

During the past decade, numerous studies have exam-
ined feature selection with respect to classification per-
formance, but very few studies focus on the robustness
(or stability) of feature selection techniques. The stability
of a feature selection method is defined as the degree of
agreement between its outputs when applied to randomly-
selected subsets of the same input data [15, 18]. In this pa-
per, we present our newly proposed threshold-based feature
selection techniques (TBFS) and assess the stability perfor-
mance of these 11 rankers. This assessment is based on
the degree of agreement between a filter’s outputs on both
the original datasets and on modified datasets which have
had some instances removed. The experiment was imple-
mented through a case study of four consecutive releases of
a very large telecommunications software system (denoted
as LLTS), three datasets from NASA project KC1, and nine
datasets from the Eclipse project. The experimental results
showed that AUC and PRC performed best among the 11
rankers and OR (Odds Ratio), PR (Probability Ratio), and
GI (Gini Index) performed worst.

The main contribution of the present work is that we con-
sider the stability of feature selection techniques by com-
paring the selected features before and after some instances
are deleted from a dataset (or equivalently, before and after
some instances are added), rather than directly comparing
separate subsamples of the original dataset. This is an im-
portant distinction because in many real-world situations,
software practitioners want to know whether adding addi-
tional instances to their dataset will change the results of
feature selection. The experiments discussed in this study
contain the answer. To our knowledge, no previous compre-
hensive empirical investigation has been performed com-
paring the stability performance of 11 threshold-based fea-
ture selection techniques in the domain of software reliabil-
ity engineering and perhaps other application domains.

The remainder of the paper is organized as follows. Sec-
tion 2 provides an overview of related work, while Section 3
presents the 11 threshold-based rankers and our stability
metric. Section 4 describes the datasets, experimental de-
sign, and experimental results. Finally, we conclude the pa-

per in Section 5 and provide suggestions for future work.

2 Related Work

Feature selection has been applied in many data mining
and machine learning applications. The main goal of fea-
ture selection is to select a subset of features that minimizes
the prediction errors of classifiers. Guyon and Elisseeff [9]
outlined key approaches used for attribute selection, includ-
ing feature construction, feature ranking, multivariate fea-
ture selection, efficient search methods, and feature validity
assessment methods. Hall and Holmes [10] investigated six
attribute selection techniques that produce ranked lists of at-
tributes and applied them to several datasets from the UCI
machine learning repository. Forman [7] investigated multi-
ple filter-based feature ranking techniques. Liu and Yu [17]
provided a comprehensive survey of feature selection algo-
rithms and presented an integrated approach to intelligent
feature selection.

Although feature selection has been widely applied in
numerous application domains for many years, its applica-
tion in the software quality and reliability engineering do-
main is limited. Chen et al. [4] have studied the applica-
tions of wrapper-based feature selection in the context of
software cost/effort estimation. They concluded that the
reduced data set improved the estimation. Rodrı́guez et
al. [20] applied attribute selection with three filter models
and two wrapper models to five software engineering data
sets using the WEKA [23] tool. Both techniques are feature
subset selection and not ranking techniques. It was stated
that the wrapper model was better than the filter model;
however, that came at a very high computational cost.

Although previous work has focused on the performance
of models built using the selected features, another way to
evaluate a feature selection technique is robustness (stabil-
ity), which has received less attention in the past. Few stud-
ies exist on the stability of feature selection algorithms. The
stability of a feature selection method is normally defined as
the degree of agreement between its outputs when applied to
randomly-selected subsets of the same input data [15, 18].
Recent work in this area mainly focuses on consistency of
the outputs by measuring the variations between subsets of
features obtained from different subsamples of the original
training dataset. Saeys et al. [21] assessed the robustness of
feature selection techniques using the Spearman rank cor-
relation coefficient and Jaccard index. Dunne et al. [5] ad-
dressed the instability of the wrapper approach to feature
selection. They suggested a measure based on the Ham-
ming distance to assess the stability of a feature selection
technique. Loscalzo et al. [18] demonstrated a strong de-
pendency between the sample size (in terms of number of
instances in a dataset) and the stability of a feature selection
method. Abeel et al. [1] studied the process for selecting

biomarkers from microarray data and presented a general
framework for stability analysis of such feature selection
techniques. They showed that stability could be improved
through ensemble feature selection, where the training data
is bootstrapped, recursive feature elimination (RFE) is ap-
plied to each subset, and either a complete linear or com-
plete weighted linear aggregation method is used to get a
consensus output.

3 Methodology

3.1 Thresholdbased Feature Selection Tech
niques

In this study, we focus on filter-based feature ranking
techniques and applied these feature ranking techniques to
software engineering datasets. Filter-based feature ranking
techniques rank features independently without involving
any learning algorithm. Eleven threshold-based feature se-
lection techniques (TBFS) were recently proposed and im-
plemented by our research group within WEKA [23]. The
procedure is shown in Algorithm 1. First, each attribute’s
values are normalized between 0 and 1 by mapping F j to
F̂ j . The normalized values are treated as posterior proba-
bilities. Each independent attribute is then paired individ-
ually with the class attribute and the reduced two attribute
dataset is evaluated using 11 different performance metrics
based on this set of “posterior probabilities.” In standard
binary classification, the predicted class is assigned using
the default decision threshold of 0.5. The default decision
threshold is often not optimal, especially when the class is
imbalanced. Therefore, we propose the use of performance
metrics that can be calculated at various points in the distri-
bution of F̂ j . At each threshold position, we classify val-
ues above the threshold as positive, and below as negative.
Then we go in the opposite direction, and consider values
above as negative, and below as positive. Whatever direc-
tion produces the more optimal performance metric values
is used. The true positive (TPR), true negative (TNR),
false positive (FPR), and false negative (FNR) rates can
be calculated at each threshold t ∈ [0, 1] relative to the nor-
malized attribute F̂ j . The threshold-based attribute ranking
techniques we propose utilize these rates as described be-
low.

• F-measure (FM): is a single value metric derived from
the F-measure that originated from the field of infor-
mation retrieval [23]. The maximum F-measure is ob-
tained when varying the decision threshold value be-
tween 0 and 1.

• Odds Ratio (OR): is the ratio of the product of correct
(TPR times TNR) to incorrect (FPR times FNR)

Algorithm 1: Threshold-based Feature Selection Algorithm
input :
1. Dataset D with features F j , j = 1, . . . ,m;
2. Each instance x ∈ D is assigned to one of two classes
c(x) ∈ {fp, nfp};
3. The value of attribute F j for instance x is denoted F j(x);
4. Metric ω ∈ {FM, OR, PO, PR, GI, MI, KS, DV, GM, AUC, PRC};
5. A predefined threshold: number (or percentage) of the features to be
selected.
output:
Selected feature subsets.

for F j , j = 1, . . . ,m do
Normalize F j 7→ F̂ j =

Fj−min(Fj)

max(Fj)−min(Fj)
;

Calculate metric ω using attribute F̂ j and class attribute at various
decision threshold in the distribution of F̂ j . The optimal ω is used,
ω(F̂ j).

Create feature ranking R using ω(F̂ j) ∀j.
Select features according to feature ranking R and a predefined threshold.

predictions. The maximum value is taken when vary-
ing the decision threshold value between 0 and 1.

• Power (PO): is a measure that avoids common false
positive cases while giving stronger preference for pos-
itive cases [7]. Power is defined as:

PO = max
t∈[0,1]

(
(TNR(t))k − (FNR(t))k

)
where k = 5.

• Probability Ratio (PR): is the sample estimate proba-
bility of the feature given the positive class divided by
the sample estimate probability of the feature given the
negative class [7]. PR is the maximum value of the ra-
tio when varying the decision threshold value between
0 and 1.

• Gini Index (GI): measures the impurity of a dataset [3].
GI for the attribute is then the minimum Gini index at
all decision thresholds t ∈[0, 1].

• Mutual Information (MI): measures the mutual depen-
dence of the two random variables [19]. High mu-
tual information indicates a large reduction in uncer-
tainty, and zero mutual information between two ran-
dom variables means the variables are independent.

• Kolmogorov-Smirnov (KS): utilizes the Kolmogorov-
Smirnov statistic to measure the maximum difference
between the empirical distribution functions of the at-
tribute values of instances in each class [13]. It is ef-
fectively the maximum difference between the curves
generated by the true positive and false positive rates
as the decision threshold changes between 0 and 1.

• Deviance (DV): is the residual sum of squares based
on a threshold t. That is, it measures the sum of the

squared errors from the mean class given a partition-
ing of the space based on the threshold t and then the
minimum value is chosen.

• Geometric Mean (GM): is a single-value performance
measure which is calculated by finding the maximum
geometric mean of TPR and TNR as the decision
threshold is varied between 0 and 1.

• Area Under ROC (Receiver Operating Characteristic)
Curve (AUC): has been widely used to measure clas-
sification model performance [6]. The ROC curve is
used to characterize the trade-off between true positive
rate and false positive rate. In this study, ROC curves
are generated by varying the decision threshold t used
to transform the normalized attribute values into a pre-
dicted class.

• Area Under the Precision-Recall Curve (PRC): is a
single-value measure that originated from the area of
information retrieval. The area under the PRC ranges
from 0 to 1. The PRC diagram depicts the trade off
between recall and precision.

3.2 Stability

To assess the robustness of feature selection techniques,
past works have used different similarity measures, such as
Hamming distance [5], correlation coefficient [11], consis-
tency index [15], and entropy [16]. Among these four sim-
ilarity measures, consistency index is the only one which
takes into consideration bias due to chance. Because of this,
in our work the consistency index was used. Our stability
metric is defined as follows: First, we assume the original
dataset has m instances and n features. Let Ti and Tj be
subsets of features, where |Ti| = |Tj | = k. The consistency
index [15] is obtained as follows:

IC (Ti, Tj) =
dn− k2

k (n− k)
, (1)

where n is the total number of features in the dataset, d is the
cardinality of the intersection between subsets Ti and Tj ,
and −1 < IC (Ti, Tj) ≤ +1. The greater the consistency
index, the more similar the subsets are.

4 Experiments

To test the stability of different feature selection tech-
niques under different circumstances, we performed a case
study on 16 different software metric datasets, using 11
threshold-based feature selection techniques, four different
levels of change to the datasets, and nine different numbers
of chosen features. Discussion and results from this case
study are presented below.

4.1 Datasets

The software metrics and fault data for this case study
were collected from real-world software projects, including
a very large telecommunications software system (denoted
as LLTS) [8], the Eclipse project [24], and NASA software
project KC1 [14].

LLTS contains data from four consecutive releases,
which are labeled as SP1, SP2, SP3, and SP4. The soft-
ware measurement datasets consist of 42 software metrics,
including 24 product metrics, 14 process metrics, and four
execution metrics [8].

From the PROMISE data repository [24], we also ob-
tained the Eclipse defect counts and complexity metrics
dataset. In particular, we use the metrics and defects data
at the software package level. The original data for Eclipse
packages consists of three releases denoted 2.0, 2.1, and
3.0 respectively. We transform the original data by: (1)
removing all nonnumeric attributes, including the package
names, and (2) converting the post-release defects attribute
to a binary class attribute: fault-prone (fp) and not fault-
prone (nfp). Membership in each class is determined by a
post-release defects threshold λ, which separates fp from
nfp packages by classifying packages with λ or more post-
release defects as fp and the remaining as nfp. In our study,
we use λ ϵ {10, 5, 3} for release 2.0 and 3.0 while we use λ
ϵ {5, 4, 2} for release 2.1. All nine derived datasets contain
209 attributes. Releases 2.0, 2.1, and 3.0 contain 377, 434
and 661 instances respectively.

The NASA project, KC1 [14], includes 145 instances
containing 95 attributes each. After removing 32 Halstead
derived measures, we have 63 attributes. We used three
different thresholds to define defective instances, thereby
obtaining three structures of the preprocessed KC1 dataset.
The thresholds are 20, 10, and 5, indicating instances with
numbers of defects greater than or equal to 20, 10, or 5 be-
long to the fp class. The three datasets are named KC1-20,
KC1-10, and KC1-5.

Table 1 lists the characteristics of the 16 datasets utilized
in this work, which exhibit different distributions of class
skew (i.e., the percentage of fp modules).

4.2 Experimental Design

For this study, we consider stability based on changes to
the datasets (perturbations) at the instance level. Consider
a dataset with m instances: a smaller dataset can be gener-
ated by randomly removing a fraction c of instances from
the original data, where c is greater than 0 and less than 1.
For a given c, this process can be performed x times. This
will create x new datasets, each having (1 − c) × m in-
stances, where each of these new datasets is unique (since
each was built by randomly removing c×m instances from

Table 1. Software Datasets Characteristics
Data #Metrics #Modules %fp %nfp
SP1 42 3649 6.28% 93.72%

LLTS SP2 42 3981 4.75% 95.25%
SP3 42 3541 1.33% 98.67%
SP4 42 3978 2.31% 97.69%

E2.0-10 209 377 6.1% 93.9%
E2.0-5 209 377 13.79% 86.21%
E2.0-3 209 377 26.79% 73.21%
E2.1-5 209 434 7.83% 92.17%

Eclipse E2.1-4 209 434 11.52% 88.48%
E2.1-2 209 434 28.8% 71.2%
E3.0-10 209 661 6.2% 93.8%
E3.0-5 209 661 14.83% 85.17%
E3.0-3 209 661 23.75% 76.25%

KC1-20 63 145 6.90% 93.10%
KC1 KC1-10 63 145 14.48% 85.52%

KC1-5 63 145 24.83% 75.17%

the original dataset). In this study, x was set to 30 and c
was set to 0.05, 0.1, 0.2, or 1/3 (giving new datasets with
0.95 × m, 0.9 × m, 0.8 × m, or 2/3 × m instances, re-
spectively), thereby obtaining 30 datasets for each original
dataset and choice of c. In total, 16×4×30 = 1920 datasets
are generated.

For each dataset and feature ranking technique, the fea-
tures are ranked according to their relevance to the class,
and then a subset consisting of the most relevant ones (top
k features) is selected. In this study, nine subsets are chosen
for each dataset. The number of features that is retained in
each subset for each dataset are 2, 3, 4, 5, 6, 7, 8, 9, and
10. These numbers are deemed reasonable after some pre-
liminary experimentation conducted on the corresponding
datasets [22].

For each original dataset and choice of c (the percentage
of instances to remove), let T0 represent the set contain-
ing the top k ranked features obtained by a particular fea-
ture ranking technique on that particular original dataset.
Then x datasets of same size are generated by deleting
data instances from that original dataset. Accordingly, let
{T1, T2, ..., Tx} be the sets of features selected from the
datasets generated. A single stability index (KI) is obtained
as follows:

KI =
1

x

x∑
i=1

IC (T0, Ti). (2)

This is the average of the consistency index (see Sec-
tion 3.2) for each pairing of the original dataset and one of
the x new datasets. Note that although this use is not iden-
tical to more traditional KI consistency measures, since the
consistency index IC is still a core component of the mea-
sure, we retain the name. Thus, given a dataset and a feature
ranking technique, 36 KI values are obtained, since each of
the four choices of c and nine choices of feature subset size
gives one KI value (and 4× 9 = 36).

4.3 Results and Analysis

Experiments were conducted with 11 threshold-based
feature ranking techniques on 16 software engineering met-
rics datasets. Aggregated and selected results are presented
below. To briefly summarize, Figure 1 shows combining all
16 datasets to highlight variations caused by degree of per-
turbation to the dataset, size of feature subset, and choice
of filter. Figure 2 shows degree of perturbation impact on
stability. Table 2 shows each dataset separately, but only
presents results for one chosen degree of permutation (95%)
and feature subsets of size four. Table 3 and Figure 3 show
ANOVA results and multiple comparison results for one
chosen size (size four) of feature subset. Further analysis
of the results across all the parameters was not possible due
to space limitations.

4.3.1 Average Stability Performance

Figure 1 shows how the average stability performance of
each ranker is affected by the nine different feature sub-
set sizes, averaged across all sixteen datasets and with the
four different perturbation levels shown in separate graphs.
These graphs show the following observations:

• Among the eleven filters, OR shows the least stability
on average, followed by PR and GI, while PRC and
AUC show the most stability.

• The size of the feature subset can influence the stability
of a feature ranking technique. For most rankers, sta-
bility is improved by increasing the number of features
in the selected subset.

4.3.2 Degree of Perturbation Impact on Stability

Figure 2 shows the effect of the degree of dataset perturba-
tion on the stability of feature ranking techniques across all
sixteen datasets and nine feature subsets. The figure demon-
strates that the more instances retained in a dataset (e.g., the
fewer instances deleted from the original dataset), the more
stable the feature ranking on that dataset will be.

4.3.3 Most and Least Stable Filters

Table 2 summarize the results of robustness analysis for fea-
ture subsets of size four and datasets which contain 95% of
the instances from their original dataset. In general, it can
be observed that PR shows the least stability for 7 out of
16 and AUC and PRC shows the most stability for 4 out
of 16 each. The inconsistent performance of KS, MI, OR,
and GM appears to stem from their greater sensitivity to the
specific choice of dataset. The last column of Table 2 shows
average performance across all 16 datasets.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 3 4 5 6 7 8 9 10

FM

OR

PO

PR

GI

MI

KS

Dev

GM

AUC

PRC

Size of Feature Subsets

K
I

V
a

lu
e

s

(a) Datasets with 2/3

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 3 4 5 6 7 8 9 10

FM

OR

PO

PR

GI

MI

KS

Dev

GM

AUC

PRC

Size of Feature Subsets

K
I

V
a

lu
e

s
(b) Datasets with 80%

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 3 4 5 6 7 8 9 10

FM

OR

PO

PR

GI

MI

KS

Dev

GM

AUC

PRC

Size of Feature Subsets

K
I

V
a

lu
e

s

(c) Datasets with 90%

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 3 4 5 6 7 8 9 10

FM

OR

PO

PR

GI

MI

KS

Dev

GM

AUC

PRC

Size of Feature Subsets

K
I

V
a

lu
e

s

(d) Datasets with 95%

Figure 1. Average Stability Performance on 16
Datasets

Table 2. Stability Performance for feature subset of Size Four and Datasets with 95% of the instances
from their original datasets

SP1 SP2 SP3 SP4 E2.0-10 E2.0-5 E2.0-3 E2.1-5 E2.1-4 E2.1-2 E3.0-10 E3.0-5 E3.0-3 KC1-5 KC1-10 KC1-20 Average

FM 0.908 0.889 0.908 0.825 0.762 0.822 0.915 0.839 0.788 0.907 0.745 0.915 0.788 0.786 0.831 0.875 0.844
OR 0.908 0.797 0.917 0.705 0.779 0.949 0.805 0.771 0.771 0.737 0.779 0.779 0.941 0.510 0.804 0.884 0.802
PO 0.889 0.945 0.770 0.816 0.694 0.805 0.941 0.873 0.830 0.813 0.762 0.932 0.890 0.831 0.857 0.893 0.846
PR 0.936 0.843 0.926 0.650 0.405 0.703 0.737 0.584 0.941 0.711 0.567 0.796 0.839 0.840 0.884 0.902 0.766
GI 0.936 0.843 0.843 0.696 0.558 0.788 0.788 0.703 0.932 0.711 0.669 0.856 0.839 0.840 0.884 0.902 0.799
MI 0.889 0.991 0.963 0.880 0.856 0.949 0.958 0.847 0.873 0.796 0.737 0.915 0.762 0.679 0.706 0.831 0.852
KS 0.963 0.807 1.000 0.724 0.805 0.932 0.839 0.779 0.898 0.924 0.822 0.754 0.754 0.929 0.893 0.920 0.859
Dev 0.834 0.751 0.834 0.788 0.669 0.788 0.983 0.915 0.771 0.924 0.652 0.907 0.771 0.911 0.768 0.840 0.819
GM 0.908 0.797 1.000 0.733 0.788 0.941 0.915 0.703 0.813 0.924 0.873 0.711 0.822 0.822 0.822 0.929 0.844
AUC 0.991 0.991 0.779 0.761 0.856 1.000 1.000 0.915 0.915 0.992 0.898 0.915 0.881 0.822 0.884 0.831 0.902
PRC 0.982 0.926 0.917 0.834 0.847 0.983 1.000 0.941 0.924 0.983 0.966 0.975 0.830 0.742 0.938 0.893 0.917

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

67.00% 80% 90% 95%

Size of Data Subsets

K
I

V
a

lu
e

s

Figure 2. Degree of Perturbation Impact on
Stability

4.3.4 ANOVA Analysis

Although our previous study showed that three features
(software metrics) are sufficient for building software qual-
ity classification models [22, 12], we found there is no
significant difference between the models built with three,
four, and five features. Thus, to simplify things, in this sec-
tion we present stability results only for size four feature
subsets. A two-way ANalysis Of VAriance (ANOVA) F test
[2] was performed for datasets with feature subsets of size
four. The two factors are Factor A, in which 11 rankers were
considered, and Factor B, in which four different levels of
deletion (c values) were included. In this ANOVA test, the
results from all sixteen datasets were taken into account to-
gether. The ANOVA results are presented in Table 3. The p
values of Factor A and Factor B are 0, which indicates there
was a significant difference between the average KI values
of the 11 rankers and four different levels of deletion (c val-
ues). We further conducted multiple pairwise comparison
tests on Factor A. The multiple comparison test results are
shown in Figure 3. The figure displays graphs with each
group mean represented by a symbol (◦) and the 95% con-
fidence interval as a line around the symbol. Two means are
significantly different if their intervals are disjoint, and are
not significantly different if their intervals overlap. Matlab
was used to perform the ANOVA and multiple comparisons

Table 3. Analysis of Variance
Source Sum Sq. d.f. Mean Sq. F p-value
A 3.0871 10 0.30871 23.69 0
B 7.6609 3 2.55364 195.97 0
Error 8.9911 690 0.01303
Total 19.7391 703

presented in this work, and the assumptions for construct-
ing ANOVA models were validated. The results show the
following facts:

• For factor A, we can observe that three distinct patterns
emerge when we are ordering the 11 rankers: (1) PRC
and AUC performed significantly best among the 11
rankers; (2) PR, OR, and GI performed significantly
worst; (3) Dev, GM, PO, KS, MI, and FM performed
moderately.

• For Factor B, datasets with 95% instances of original
datasets performed best, followed by 90%, 80%, and
2/3.

5 Conclusion

This paper examines the stability performance of 11
threshold-based feature selection techniques on 16 real-
world software datasets. Experimental results demonstrate
that AUC and PRC performed significantly best among the
11 rankers and OR, GI, and PR performed worst. Re-
sults also showed that the number of instances deleted from
the dataset affects the stability of the feature ranking tech-
niques. The fewer instances removed from (or equivalently,
added to) a given dataset, the less the selected features will
change when compared to the original dataset, and thus
the feature ranking performed on this dataset will be more
stable. Hence, the findings of this study suggest that the
choice of feature selection technique, the dataset size, and
the size of feature subset should be considered in the insta-
bility problem.

Future work will involve conducting additional empirical
studies with data from other software projects and applica-

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

PRC

AUC

GM

Dev

KS

MI

GI

PR

PO

OR

FM

(a) Factor A

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

95%

90%

80%

67%

(b) Factor B

Figure 3. Multiple Comparisons

tion domains and experiments with other similarity mea-
sures for stability analysis.

References

[1] T. Abeel, T. Helleputte, Y. Van de Peer, P. Dupont, and
Y. Saeys. Robust biomarker identification for cancer diagno-
sis with ensemble feature selection methods. Bioinformat-
ics, 26(3):392–398, February 2010.

[2] M. L. Berenson, M. Goldstein, and D. Levine. Intermediate
Statistical Methods and Applications: A Computer Package
Approach. Prentice-Hall, Englewood Cliffs, NJ, 2 edition,
1983.

[3] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classifi-
cation and Regression Trees. Chapman and Hall/CRC Press,
Boca Raton, FL, 1984.

[4] Z. Chen, T. Menzies, D. Port, and D. Boehm. Finding
the right data for software cost modeling. Software, IEEE,
22(6):38–46, Nov.-Dec. 2005.

[5] K. Dunne, P. Cunningham, and F. Azuaje. Solutions to Insta-
bility Problems with Sequential Wrapper-Based Approaches
To Feature Selection. Technical Report TCD-CD-2002-28,
Department of Computer Science, Trinity College, Dublin,
Ireland, 2002.

[6] T. Fawcett. An introduction to ROC analysis. Pattern Recog-
nition Letters, 27(8):861–874, June 2006.

[7] G. Forman. An extensive empirical study of feature selection
metrics for text classification. Journal of Machine Learning
Research, 3:1289–1305, 2003.

[8] K. Gao, T. M. Khoshgoftaar, and H. Wang. An empirical
investigation of filter attribute selection techniques for soft-
ware quality classification. In Proceedings of the 10th IEEE
International Conference on Information Reuse and Inte-
gration, pages 272–277, Las Vegas, Nevada, August 10-12
2009.

[9] I. Guyon and A. Elisseeff. An introduction to variable and
feature selection. Journal of Machine Learning Research,
3:1157–1182, March 2003.

[10] M. A. Hall and G. Holmes. Benchmarking attribute selection
techniques for discrete class data mining. IEEE Transactions
on Knowledge and Data Engineering, 15(6):1437 – 1447,
Nov/Dec 2003.

[11] A. Kalousis, J. Prados, and M. Hilario. Stability of feature
selection algorithms: a study on high-dimensional spaces.
Knowledge and Information Systems, 12(1):95–116, De-
cember 2006.

[12] T. M. Khoshgoftaar, K. Gao, and N. Seliya. Attribute se-
lection and imbalanced data: Problems in software defect
prediction. In Proceedings of 22nd IEEE International Con-
ference on Tools with Artificial Intelligence, pages 137–144,
Arras, France, October 27-29 2010.

[13] T. M. Khoshgoftaar and N. Seliya. Fault-prediction model-
ing for software quality estimation: Comparing commonly
used techniques. Empirical Software Engineering Journal,
8(3):255–283, 2003.

[14] A. G. Koru, D. Zhang, K. E. Emam, and H. Liu. An in-
vestigation into the functional form of the size-defect rela-
tionship for software modules. IEEE Trans. Software Eng.,
35(2):293–304, 2009.

[15] L. I. Kuncheva. A stability index for feature selection. In
Proceedings of the 25th conference on Proceedings of the
25th IASTED International Multi-Conference: artificial in-
telligence and applications, pages 390–395, Anaheim, CA,
USA, 2007.

[16] P. Křı́žek, J. Kittler, and V. Hlaváč. Improving stability
of feature selection methods. In Proceedings of the 12th
international conference on Computer analysis of images
and patterns, CAIP’07, pages 929–936, Berlin, Heidelberg,
2007. Springer-Verlag.

[17] H. Liu and L. Yu. Toward integrating feature selection algo-
rithms for classification and clustering. IEEE Transactions
on Knowledge and Data Engineering, 17(4):491–502, 2005.

[18] S. Loscalzo, L. Yu, and C. Ding. Consensus group stable
feature selection. In KDD ’09: Proceedings of the 15th
ACM SIGKDD international conference on Knowledge dis-
covery and data mining, pages 567–576, New York, NY,
USA, 2009.

[19] H. Peng, F. Long, and C. Ding. Feature selection based
on mutual information: Criteria of max-dependency, max-
relevance, and min-redundancy. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 27(8):1226–1238,
2005.

[20] D. Rodriguez, R. Ruiz, J. Cuadrado-Gallego, and J. Aguilar-
Ruiz. Detecting fault modules applying feature selection to
classifiers. In Proceedings of 8th IEEE International Confer-
ence on Information Reuse and Integration, pages 667–672,
Las Vegas, Nevada, August 13-15 2007.

[21] Y. Saeys, T. Abeel, and Y. Peer. Robust feature selection us-
ing ensemble feature selection techniques. In ECML PKDD
’08: Proceedings of the European conference on Machine
Learning and Knowledge Discovery in Databases - Part II,
pages 313–325, Berlin, Heidelberg, 2008. Springer-Verlag.

[22] H. Wang, T. M. Khoshgoftaar, and N. Seliya. How many
software metrics should be selected for defect prediction?
In Proceedings of the Twenty-Fourth International Florida
Artificial Intelligence Research Society Conference, pages
69–74, May 2011.

[23] I. H. Witten and E. Frank. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, 2 edi-
tion, 2005.

[24] T. Zimmermann, R. Premraj, and A. Zeller. Predicting de-
fects for eclipse. In ICSEW ’07: Proceedings of the 29th
International Conference on Software Engineering Work-
shops, page 76, Washington, DC, USA, 2007. IEEE Com-
puter Society.

	Measuring Stability of Threshold-based Feature Selection Techniques
	Western Kentucky University
	From the SelectedWorks of Dr. Huanjing Wang
	November, 2011

	Measuring Stability of Threshold-based Feature Selection Techniques
	tmpbBHg4v.pdf

