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Abstract. In Cytomics, the study of cellular systems at the single cell level,
High-Throughput Screening (HTS) techniques have been developed to imple-
ment the testing of hundreds to thousands of conditions applied to several or up
to millions of cells in a single experiment.

Recent technological developments of imaging systems and robotics have lead
to an exponential increase in data volumes generated in HT'S-experiments. This
is pushing forward the need for a semantically oriented bioinformatics approach
capable of storing large volume of linked metadata, handling a diversity of data
formats, and querying data in order to extract meaning from the experiments per-
formed.

This paper describes our research in developing CytomicsDB, a modern
RDBMS based platform, designed to provide an architecture capable of deal-
ing with the computational requirements involved in high-throughput content.
CytomicsDB supports web services and collaborative infrastructure in order to
perform further exploration of linked information generated in each experiment.

The objective of this system is to build a semantic layer over the data so as
to enable querying metadata and at the same time allowing scientists to integrate
new tools and APIs taking care of the image and data analysis. The results will
become part of the metadata of the whole HTS experiment and will be available
for semantic post analysis.

1 Introduction

High-Throughput Screening (HTS) is a well-established process in drug discovery for
pharma and biotechnology companies and is now also being set up for basic and ap-
plied research in academia and some research hospitals [10]. Recent developments in
microscopy systems and robotics enabled large-scale screening of cellular systems. A
popular screen setup is automated time-lapse confocal image acquisition which enables
capturing of e.g. high content subcellular information (derived as features) or dynamic
aspects like cell migration. Cells are exposed to hundreds and even thousands of dif-
ferent conditions using one or several multiwell (96, 384, 1536) plates. This typically
results in 20-40 GB of data consisting of in the order of 100,000 - 200,000 images in
an overnight experiment.

In cytometry, HTS-experiments are usually employed in the context of functional
analysis, closing the gap between genomics-proteomics and functional responses on the

M. Comin et al. (Eds.): PRIB 2014, LNBI 8626, pp. 72-84, 2014.
(© Springer International Publishing Switzerland 2014



CytomicsDB: A Metadata-Based Storage and Retrieval Approach 73

cellular level. Examples are genome wide siRNA screens, where all existing genes are
lowered in activity one at a time using siRNA mediated knock down followed by some
cellular-level phenotypic readout, e.g., cell migration speed, focal adhesion dynamics,
subcellular morphological changes, cell death.

A next step in the HTS-experiment pipeline is image quantification using image
analysis software tools. In this manner, biological hypothesis can be statistically tested
using the quantification results from the image analysis stage, and can depict an objec-
tive understanding of the cell response to various treatments or exposures.

In a typical HTS workflow, spreadsheet applications are commonly used for book-
keeping all information related to the design of the multiwell-imaging plates, image
analysis quantification results and even statistical analysis results. This approach has
many drawbacks. Firstly, it is extremely difficult to link the data produced during the
different stages of an HTS experiments, such as linking the images generated in the HTS
experiment and the metadata collected during the design of the plate layout. Secondly,
it is highly prone to man made errors. The lack of standards, formats and a centralized
place for storing the information makes it difficult to promote a collaborative environ-
ment with or between research groups. Finally, spreadsheet applications are not suitable
for knowledge discovery, as they do not allow to combine sophisticated visualization
and querying of the (meta)data previously stored.

In our previous work [8], we presented the initial design of a platform for managing
and analyzing HTS images resulting from cytomics screens taking the automated HTS
workflow as a starting point. This platform seamlessly integrates the whole HTS work-
flow into a single system. The platform relies on a modern relational database system
to store user data and process user requests, while providing a convenient web inter-
face to end-users. Using this platform, the overall workload of HTS experiments, from
experiment design to data analysis, can be significantly reduced. Additionally, the plat-
form provides the potential for data integration to accomplish genotype-to-phenotype
modeling studies. In this paper, the initial design, particularly, the database model, has
been rigorously revised and generalised to manage all kinds of metadata produced by
automated HTS systems. We call our system CyfomicsDB, which is designed as a user
oriented platform but considers the HTS workflow as a template for managing, visual-
izing and querying the metadata.

Current software and architectures for HTS are mostly based on generic Lab In-
formation Management Systems (LIMS) [12], which face significant challenges to ac-
cessing, analyzing, and sharing the data required to drive day-to-day processes within
the laboratory. Furthermore, the limited connectivity to other legacy systems and poor
visualization of the data is an obstacle to extract new insights from the data stored,
and cause a deep impact in the efficiency of the HTS experiment. Comparing with the
existing LIMS systems, CytomicsDB has a number of important advantages:

1. Ease of promoting scientific collaborations. Since all data in CytomicsDB are cen-
tralized, granting access to collaborators or sharing information has been made
simple;

2. Flexibility for integration with other legacy systems. It it common to use external
APIs for performing image and data analysis results, such as Weka, PRTools. In the
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design of the architecture of CytomicsDB, special care has been taken to assure the
possibility of invoking external API through web services.

3. The web-based architecture allows its users to easily access to their experiments
data from wherever and at any time. The architecture also allows the whole or parts
of the system to be smoothly moved to a Cloud based environment.

4. The capability to drill-down through experiments’ metadata due to the metadata-
based approach.

5. A single interface for visualization of all experiments data, include raw images,
metadata and analysis results.

6. Pattern recognition (PR) within an experiment and PR across HTS experiments.

To sum up, the contributions of this work include:

1. Metadata organization in an HTS experiment (Section 2).

2. Data modeling and storage (Section 3).

3. A case study in endocytosis of EGFR, describing how a Metadata-based RDBMS
approach can facilitate the identification of EGFR dynamics and classification of
EGFR phenotype stages (Section 4).

Finally, in Section 5 we discuss related work and in Section 6 present our conclu-
sions.

2 Metadata Organization in an HTS Experiment

The metadata of an HTP experiment consists of a variety of types and formats and has
been grouped in five levels as showed in Figure 1: Project, Experiment, Plate - Wells,
Video/Images and Measurements. These levels contain each other in a cascade fashion,
for instance: [1] Project contains [1..n] Experiments, [1] Experiment contains [1..n]
Plates, [1] Plate contains [24,48,96,384] Wells, [1] Well contains [1..n] Video/Images
and finally [1] Well contains [1..n] measurements.

Project. This level contains a title which describes the aim of the project, the dura-
tion, the author, etc. When a project is created, its creator becomes its administrator
and is possible to grant access to another scientist in order to promote a collaborative
environment.

Experiment. Figure 2 shows the structure of the metadata contained in the Experiment
level. This level is divided in Hardware and Type of Experiment. Firstly, the metadata
associated to the hardware correspond to the microscope and the imaging technique
used. Depending on which microscope is used, the set of imaging techniques differs.
For instance, the imaging techniques available for a Becton Dickinson (BD) Pathway
microscope are EPI, Spinning disk or Bright Field, but in a Nikon TE 2000-e micro-
scope it is possible to use: FRAP, FRET, EPI, Confocal, Spectral or DIC. Secondly, the
metadata associated to the type of experiment can be separated in four groups: (1) Fixed
or Live experiment including a 2D or 3D option for each case; (2) Assay type, in this
case there are the following options: migration/invasion, proliferation, primary tumor,
apoptosis and sub cellular perturbations; (3) Species, the options available are: human,
rat, mouse and zebrafish; and (4) Cell / Tissue origin, considering in this area: primary,
cell line, iPSC, stem cel, biopsy, etc.
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Plate-Wells. This level is also divided into two groups: metadata about the Hardware
and about the Parameters used. Figure 2 shows an UML diagram of the structure of
these two groups. The Hardware sub level includes information about the plate type, the
brand and the fabrication material. The level of Parameters includes information about
(1) Coating, (2) Cell-line / tissue, (3) treatment, (4) siRNA, (5) Antibodies / reagents and
(6) Parameters of control or comments. The metadata of Wells is a subset of metadata
of the plate level. For instance, in a 8x12 wells plate, different wells can have a subset of
the parameters assigned to the whole plate. This level is also associated with the output
of the HTS process (Raw Video / Images) and with the results of the image and data
analysis phase which is also called measurements.

Part of the metadata at this level is critical information that should be verified and
validated when it is uploaded. For instance, The parental cell line/tissue, or the treatment
and its concentration are just two cases which the entry is verified in a first instance
(obligatory data) and then they are validated with the information pre loaded in the
imaging database. In order to keep the consistency of the metadata it is necessary to
validate each entry and when a new value is detected the administrator of the platform
is in charge of accepting this new entry as valid or correct to the right value if it is
necessary. The consistency in the metadata is a key task in the imaging database because
the obligatory data will be further used as a controlled vocabulary for querying.
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Raw Images. Raw images are obtained after image acquisition with automated mi-
croscopy systems. These images are the basis for the image analysis which results
in quantitative data used for hypothesis testing. The response of the cells is recorded
through time-lapse microscopy imaging and the resulting image sequences are the ba-
sis for the image analysis. The structure of an image file depends on the type of ex-
periment (Fixed/Live) and the microscopy technique used in the experiment. Currently,
four types of structures are supported (cf. Figure 3) [8]:

1. 2D (XY): this structure corresponds to one frame containing one image which is
composed of multiple channels ([1]Frame - [1]Image - [1..n]Channels).

2. 2D+T (XY+T): this structure corresponds to one video with multiple frames. Each
frame contains one image composed of multiple channels ([1]Video - [1..n]Frame
- [1]Image - [1..n]Channels).

3. 3D (XYZ): this structure corresponds to one frame with multiple sections. Each
section contains one image composed of multiple channels ([1]Frame - [1..n]
Sections - [1]Image - [1..n]Channels).

4. 3D+T(XYZ+T):this structure corresponds to one video with multiple frames. Each
frame can have multiple sections and each section contains one image composed
of multiple channels ([1]Video - [1..n]Frame - [1..n]Sections - [1]Image - [1..n]
Channels).

Measurements. This level contains the results of the Image and Data Analysis process
(cf. Figure 4):

Results of Image Analysis: The results of image analysis are auxiliary images which
are usually binary masks or trajectories. These images are results of the application of
quality enhancing filters and segmentation algorithms employed to extract regions of
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interests (ROIs). These metadata are also linked to the raw video image file, on which
the image analysis has been applied.

Results of Data Analysis:

Measurements extracted from the image analysis are further analyzed using pattern
recognition tools. After applying operations such as feature selection, clustering and
classification, a CSV file is generated with the results accompanied by a HDF file with
information of the structure of the CSV file (features).

3 Data Modeling and Storage

The relational database schema designed to store the metadata in an HTS experiment is
divided in 5 schema views according to the structure described in Section 2. Figure 5
shows the key components for the project metadata and the possibility to create groups
and grant 4 different levels of access to our experiments (Author, Expert User, Analyst
User and Guest).

Figure 6 describes the entity Experiment and how the metadata is stored according
to the type of experiment performed, the microscope used and the image technique
associated. Furthermore, other key components of metadata are mandatory for creating
an experiment, such as the specie, assay type and cell/tissue origin.

The most critical part of the metadata corresponds to the Plate-Well metadata shown
in figure 7. It requires a validation and verification process before registering new entries
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Fig. 8. Database schema for Raw Images and Measurement Metadata

to these entities. The author of an experiment uploads the metadata associated to a plate
upon completion of the plate layout design and every entry is validated with the master
entities for siRNAs, cell lines, antibodies, reagents, coatings and treatments in order to
ensure consistency with the metadata being uploaded.

The main output in an HTS experiment are the raw images or time lapse sequence
of images. The image dataset is located on a file server and the URLSs to access them
are stored in the database (cf. Figure 8). Those images are uploaded to the CytomicsDB
through a web interface, which represents the web plate layout interface. During up-
loading time, using the open source Bio-Formats library [9], a new dataset of images
(thumbnails) is generated, and also linked to the raw images in the database. These
images are used to have a preview visualization of the plate layout in the web interface.
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Another key component to consider in the database schema are the image and data
analysis results. The information obtained after the image analysis process is parsed to
the database using the entities Features and Measurements (cf. Figure 8). These two
entities store the information required by another API such as PRTools [6] to perform
the pattern recognition and statistical analysis.

4 Case Study in Endocytosis of EGFR: Identification of EGFR
Dynamics and Classification of EGFR Phenotype Stages

In this section we describe a case study on how the structure of the metadata and
RDBMS are applied in order to identify the EGFR dynamics and classify the differ-
ent EGFR phenotypes.

Endocyetosis is regarded as a mechanism of attenuating epidermal growth factor re-
ceptor (EGFR) signaling and of receptor degradation. Increasingly, evidence becomes
available showing that cancer progression is associated with a defect in EGFR
endocytosis [5]. Functional genomics technologies combine high-throughput RNA in-
terference with automated fluorescence microscopy imaging and multi-parametric im-
age analysis, thereby enabling detailed insight into complex biological processes, like
EGFR endocytosis. The experiments produce over half a million images. Such a volume
of images is beyond the capacity of manual processing and therefore, image processing
and machine learning are required to provide an automated analysis solution for HTS
experiments [2]. The total size in average can vary between 500 Mb to 20 Gb of raw
images per experiment and CytomicsDB is designed to cope with the growing data size
due to the scalable architecture for storing the images in a File Server and the metadata
of the entire experiment in the database.

According to the methodology described in [2], three stages are identified: (1) Im-
age Acquisition, (2) Image Analysis and (3) Data Analysis. We describe each stage as
follows:

Image Acquisition: The experiment “Endocytosis of EGFR” is created in the Cy-
tomicsDB platform and its respectively plates. The type of metadata required for creat-
ing an experiment and the plates in our platform is described in Section 2. The respective
values associated to each type of metadata have been detailed in [2]. After designing
the plate in the platform, the wet-lab experiment is initiated, which includes the fol-
lowing steps: (1) cell culturing, siRNA transfection and EGF exposure, (2) fluorescent
staining of proteins of interest and (3) image acquisition. Upon completion of the ac-
quisition process 960 images are uploaded to the platform which size in total is 767
Mbytes. These images correspond to a 96 wells plate (cf. Figure 9) and for each well,
images are captured from ten randomly selected locations. However, an experiment can
consist of more than one plate and the number of samples per well can differ per case.

Image Analysis: The API in charge of the image analysis, request from the database the
location of each image to process. The query executed is:

SELECT v.vide_id, v.vide_name, v.vide_url, v.vide_position, v.well_row, v.well_column
FROM HTS.Video v
WHERE v.plat_id = 17;
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Fig. 9. Web plate layout

The value of column plat id is in this case 17 and it was assigned after selecting the
plate for endocytosis in the web interface. Three steps are performed by this API: (1)
noise suppression, (2) image segmentation and (3) phenotype measurement. The algo-
rithms and process details are described in [2]. Upon completion of the image analysis
process, the API returns two outputs: (1) The location in the database of a new set of
images and (2) a CSV file containing the features and the phenotype measurement re-
spectively. The set of images generated are: (a) Original image: PERK (red), EFGR
(green) and nucleus (blue) (cf. Figure 10), (b) Component definition: artificial cell bor-
der (red) and binary mask of protein expression (green) (cf. Figure 11), (c) Cell border
reconstruction: artificial cell border (W-V) (cf. Figure 12), (d) Image segmentation: bi-
nary mask of EFGR channel by WMC (cf. Figure 13) [13].

The phenotype measurements (CSV file) are parsed first and then stored in the
database by a web service executing the following query:

INSERT INTO HTS.Measurement
(Obje_id, Feat_id, Plat_id, Chan_id, Imag_id, Sect_id, Fram_id, Vide_id)
VALUES (0,1,17,1,1,1,1,1,14.0);

In this example, the column Feat id=1 corresponds to Area in the entity Feature and
the measurement obtained for this feature is 14.0. The column Plat id is still 17 because
we refer to the same plate.

The measurements are categorized in two subgroups: (1) basic measurements of the
phenotypes covering shape descriptors and (2) the localization phenotype describing the
assessment of the correlation between two information channels. The basic phenotype
measurement includes a series of shape parameters such as: size, perimeter, extension,
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dispersion, elongation, orientation, intensity, circularity, semi-major axis length, semi-
minor axis length, closest object distance and in nucleus, these can be extended as the
experiments so dictates. In addition to the basic phenotype measurement, localization
measurements can be derived for a specific experimental hypothesis. The localization
phenotypes are quantifications of comparative measurement between information chan-
nels such as relative structure-to-nucleus distance or structure-to-border distance. The
features in EGFR-screen based localization phenotypes used are: nucleus distance, bor-
der distance and intactness. On the basis of the phenotype measurements, objects are
classified into phenotypic stages. For the assessment of significance statistical analysis
is performed [2]. Upon completion of the image analysis, it is possible to visualize the
results in a web plate layout and export the measurements to files.

Data Analysis: The aim of the endocytosis study is to quantify the process of EGF-
induced EGFR endocytosis in human breast cells and to identify proteins that may
regulate this process. The EGFR endocytosis process can roughly be divided into three
characteristic episodes: i.e. (1) at the onset EGFR is present at the plasma-membrane;
(2) subsequently, small vesicles containing EGFR will be formed and transported from
the plasma-membrane into the cytoplasm; and (3) finally, vesicles are gradually merging
near the nuclear region forming larger structures or clusters. The characteristic episodes
are the read-out for HTS. Based on this model it is believed that EGFR endocytosis reg-
ulators may be potential drug targets for EGFR-induced breast cancer. Studying each
of the stages, i.e. plasma-membrane, vesicle and cluster, may provide a deeper under-
standing of the EGFR endocytosis process [2].

When the data analysis process is triggered, a web service request to the database
(entities feature and measurement) the results from the image analysis process. The
output of this web service is the location of a file which contains the results of the test
for each siRNA regulator. This file will be requested for the API PRTools for generating
classifications and graphs with the comparison of the results, such as: (1) Weighted clas-
sification error curve, which represents a combination of a feature selection/extraction
method and a classifier algorithm, (2) Results of the feature extraction and (3) Aver-
age number of plasma-membrane (a) and vesicle (b) per nucleus [2]. Consolidating in
CytomicsDB the experiment’s metadata, raw images and images/data analysis results,
facilitates further comparison with the result of other HTS experiments.

5 Related Work

In the current area of -omics research, various systems/tools have emerged to try to solve
the problem that the existing practice of keeping meta data does not allow for effective



82 E. Larios et al.

data searching and mining. They are generally referred to as Laboratory Information
Management System (LIMS).

The work proposed by Colmsee et. al. [4] is probably the closest to CytomicsDB.
The authors defined central requirements for a primary lab data management and as-
pects of best practices to realise those requirements. As a proof of concept, the authors
implemented a pipeline to manage primary lab data of crop plants. The pipeline consists
of 1) data storages including a Hierarchical Storage Management system, an RDBMS
and a BFiler package to store primary lab data and their meta information; ii) the Vir-
tual Private Database for the realisation of data security and the LIMS Light application
to iii) upload and iv) retrieve stored primary lab data. Compared with this work, Cy-
tomicsDB has a more sophisticated data model to cope with different types of data
(i.e., images, videos, and data produced in different steps in an HTS experiment), pays
special attention to the extensibility of the architecture to enable adding new tools.

In [11], the authors presented three open-source, platform independent software tools
for genomic data: a next generation sequencing / microarray LIMS and analysis project
center (GNomEX); an application for annotating and programmatically distributing ge-
nomic data using the DAS/2 data exchange protocol (GenoPub); and a standalone Java
Swing application (GWrap) that provides a GUI for the command line analysis tools.
CytomicsDB provides similar functionalities as these tools, but focuses on dealing with
Cytomic data. Moreover, for the design of CytomicsDB, we have deliberately chosen
for a single integrated system to include all features required for conduction HTS ex-
periments and analysis, instead of individual tools and enabling high profile pattern
recognition.

In [12], the authors describe a general modeling framework for laboratory data. The
model utilises several abstraction techniques, with focus on the concepts of inheritance
and meta-data. In this model, distinct regular entity and event schemas can be defined
and fully integrated via a standardized interface. The design allows definition of a pro-
cessing pipeline as a sequence of events. A layer above the event-oriented schema inte-
grates events into a workflow by defining processing directives, which act as automated
project managers of items in the system. This LIMS is built on the Oracle RDBMS, and
is maintained by multiple database administrators (DBAs). While with CytomicsDB,
our goal is to meet the needs of HTS experiments with a more light-weight, flexible
system. By adapting modern web and database technologies, CytomicsDB is easy to
maintain (i.e., no DBAs required) and extend (i.e., allowing integrating new tools natu-
rally).

The work by Chan et al. [3] focuses on interactive visualization methods for data
generated by HTS experiments. The visualization methods might be adapted by Cy-
tomicsDB. However, CytomicsDB is a much more comprehensive information system
for HTS data, because it integrates both experiments and analysis data into a single
system, and allows various types of users and groups to be defined.

Based on the Golm Plant Database System, Kohl et. al. [7] devised a data manage-
ment system based on a classical LIMS combined with web-based user interfaces for
data entry and retrieval to collect this information in an academic environment. This
system stores plant cultivation units in an MS ACCESS database, which would quickly
run into scalability issues as the data size grows.
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6 Conclusions and Future Work

In this paper, we have presented a semantic approach for organizing metadata and an
RDBMS for metadata management in High-Throughput Screening experiments. Our
goal is to facilitate the exploration process in the HTS workflow, scientist are aware
of semantics and they are pushing forward the need for new approaches in organizing
the metadata according to which queries are mostly applied on the data. In HTS, im-
ages by itself do not have any meaning, but linking images to their respective metadata
allows researchers to learn from their experience and help them in mentalizing seman-
tic structures of the metadata. The RDBMS schema has been designed to support the
acquisition, visualization and integration stages using a metadata-based approach. Fur-
thermore, CytomicsDB uses a database engine suitable for applications which demands
intensive data mining tasks. Finally, we plan to extend this architecture to a more sophis-
ticated interdisciplinary platform for cytomics. The structure of the metadata proposed
in this paper will further evolve to an ontology based framework. A new layer to the
architecture will be added in order to perform semantic queries, turning the architecture
to a web based interactive semantic platform for cytomics [1].
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