
Computational thinking through design patterns in video games
Barbero, G.; Gómez-Maureira, M. A.; Hermans, F.F.J.; Yannakaki, G.N.; Liapis, A.; Kyburz, P.;
... ; Lopes, P.

Citation
Barbero, G., Gómez-Maureira, M. A., & Hermans, F. F. J. (2020). Computational thinking
through design patterns in video games. Fdg '20: Proceedings Of The 15Th International
Conference On The Foundations Of Digital Games, 111. doi:10.1145/3402942.3409622

Version: Publisher's Version
License: Licensed under Article 25fa Copyright Act/Law (Amendment Taverne)
Downloaded from: https://hdl.handle.net/1887/3641656

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/3641656

Computational Thinking through Design Patterns in Video
Games

Giulio Barbero
Leiden University

Leiden, The Netherlands
g.barbero@liacs.leidenuniv.nl

Marcello A. Gómez-Maureira
Leiden University

Leiden, The Netherlands
m.a.gomez.maureira@liacs.leidenuniv.nl

Felienne F. J. Hermans
Leiden University

Leiden, The Netherlands
f.f.j.hermans@liacs.leidenuniv.nl

ABSTRACT
Prior research has explored potential applications of video games
in programming education to elicit computational thinking skills.
However, existing approaches are often either too general, not tak-
ing into account the diversity of genres and mechanisms between
video games, or too narrow, selecting tools that were specifically
designed for educational purposes. In this paper we propose a more
fundamental approach, defining beneficial connections between
individual design patterns present in video games and computa-
tional thinking skills. We argue that video games have the capacity
to elicit these skills and even to potentially train them. This could
be an effective method to solidify a conceptual base which would
make programming education more effective.

CCS CONCEPTS
• Social and professional topics→ Computational thinking;
• Applied computing→ Computer games.

KEYWORDS
computational thinking, video games, design patterns
ACM Reference Format:
Giulio Barbero, Marcello A. Gómez-Maureira, and Felienne F. J. Hermans.
2020. Computational Thinking through Design Patterns in Video Games.
In International Conference on the Foundations of Digital Games (FDG ’20),
September 15–18, 2020, Bugibba, Malta. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3402942.3409622

1 INTRODUCTION
Learning how to program involves more than absorbing syntax and
semantics of a specific programming language, it also requires sen-
sibility in combining and implementing these terms in an efficient
and functional way. Programming makes use of procedural think-
ing, planning, data analysis, data re-elaboration and established
praxes such as testing and debugging [5]. All these components and
skills find definition under the concept of “computational thinking”.
Training computational thinking skills and being able to use them
proficiently is a common objective for programming education and
it is often one of the most challenging components for learners.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FDG ’20, September 15–18, 2020, Bugibba, Malta
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8807-8/20/09. . . $15.00
https://doi.org/10.1145/3402942.3409622

An important part of the research in the field is focused on
finding new media and techniques to facilitate the development of
these skills. Promising research has been conducted using computer
games to train computational thinking components [20].

Video games present advantageous characteristics for this scope:
they can support problem-based learning, require information re-
trieval to succeed, provide immediate feedback allowing testing,
can easily embed assessments and often create a social environment
or community [13]. They also motivate users with challenges and
entertaining components [14]. Prior research at the intersection of
video games and computational skills has often been carried out in
two main directions: one tends to embed and test these components
in environments that were created specifically for that purpose,
such as is generally the case in educational games [17]. The other
seeks to analyse the effect of general gaming experiences (i.e., not
purpose-built for personal improvement) on a set of computational
thinking skills [5].

While the first approach tends to deliver results for the study of
the actual medium, the second takes a too general point of view
that often faces noisy results due to the extreme diversity of el-
ements in the game world. In this paper we argue that focusing
on generalizable game features and design patterns that benefit
the development of computational thinking skills offers a valuable
middle-ground between these two approaches. We present this
approach by outlining examples of design patterns that are most
promising in the context of supporting programming education.
In the following sections we present and describe the set of com-
putational thinking skills we decided to use. We will then list and
describe design patterns that we think can be positively connected
to each of them also providing practical examples of where they
are applied. The diversity and specificity of the examples suggests
that each skill is activated by different video game components.
Recognising these we can explore a new potential way to study the
relation between gaming and computational thinking.

2 RELATEDWORK
2.1 Computational Thinking and

Programming Education
The definition of computational thinking skills varies depending on
the author, with different sets of overlapping components; often con-
ceptually related to methods for data extraction and re-elaboration
or logical and procedural reasoning. A commonly citedmodel comes
from Kazimoglu et al. [11] and builds on the work ofWing 2006 [18],
Wing 2008 [19], Ater-Kranov et al. [2] and Berland & Lee [3]. It lists
five fundamental computational thinking skills. These are (1) con-
ditional logic, (2) building algorithms, (3) debugging, (4) simulation
and (5) distributed computation.

https://doi.org/10.1145/3402942.3409622
https://doi.org/10.1145/3402942.3409622
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3402942.3409622&domain=pdf&date_stamp=2020-09-17

FDG ’20, September 15–18, 2020, Bugibba, Malta Barbero et al.

Conditional logic involves an understanding of true and false
values and their use in control flow statements. This involves being
able to evaluate the status of a system in a specific local statement
and an understanding of how each operation manipulates it. Build-
ing algorithms is a form of step-by-step problem-solving that
requires a more solution-driven view of the multiple conditional
logic instances. It shares some overlap with the previous skill but
in this case it is necessary to have an overview of all the single
manipulations to understand how the system reaches a desired
final status (i.e., the solution). Debugging describes the process of
testing in order to spot and find solutions to problems in the code.
Simulation refers to the creation of mental or physical models
to define how to implement algorithms and which circumstances
apply. Finally, distributed computation groups all the social as-
pects of programming, from project-oriented working to making
use and contributing to a community [11].

The main advantage of this set of computational thinking skills
is its practicality; each skill is well-defined, easy to understand and
covers a good part of the components that are necessary in the
process of programming. It goes to depict a picture of computa-
tional thinking as a reasoning process that goes from the detail
(conditional logic) to a larger view of the relations between them
(building algorithms). It further includes practical elements that
are necessary throughout the whole programming process such as
debugging and simulating interactions between the components to
reach the desired final state. Finally, programming is often an activ-
ity that heavily relies on the community behind it and distributed
computation can be used to describe all the skills necessary to
access, use and contribute to this community.

2.2 Design Patterns in Video Games
In order to identify useful video game components we follow the
definition of “game design patterns” as described by Björk and
Holopainen [4]. Generally, design patterns are reusable structures
for finding solutions to common problems in a domain (such as
architecture [1] or computer science [9]). Depending on the field,
this can range from the application of narrowly defined instructions
to more general recommendations for specific circumstances. In the
field of game research, Björk and Holopainen define game design
patterns as “semi-formal interdependent descriptions of commonly
reoccurring parts of the design of a game that concerns gameplay”.

Game design patterns fit the purpose of our approach formultiple
reasons. First, their definition is derived from a common term in the
field of computer science. When studying computational thinking
this is a beneficial connection, especially in terms of communication
and structure of the knowledge for both the fields of computer
science and game research. Second, they help to deconstruct video
games into elements that can be studied and used more flexibly
than focusing on the entirety of a game.

3 CONCEPTS OF COMPUTATIONAL
THINKING IN VIDEO GAMES

In this section we list and describe, for each computational thinking
skill, some game design patterns that we consider useful for the
activation and, perhaps, training of those skills.

Conditional logic: Some could argue that most decisions, es-
pecially in video games, are binary, therefore based on conditional
logic. Even though this could be the case, there are some particularly
connected components in video games that are worth mentioning.
In Björk 2004 we find the pattern of “Incompatible goals” which
refers to those situations in which pursuing a certain objective
automatically forbids trying to pursue others. Players need to be
able to evaluate the conditional status of those game elements
that are triggering this pattern in order to understand the logical
developing of the video game. Another pattern that requires the ap-
plication of conditional logic is “Varied gameplay”. This pattern
describes how certain choices and settings can provide the players
with completely different game instances. Especially role-playing
games (RPGs) serve as a fitting example, given that every decision
players make opens up some paths while closing down others. A
popular example can be found in the ‘The Elder Scrolls’ [15] series
where different choices in the character creation and in the story
itself lead to very different gameplay options and overall narrative
experiences (see Figure 1). This is facilitated by a sequence of con-
ditional choices that allow and disallow certain features within the
game as players progress.

Figure 1: Example of an interaction withmutually exclusive
choices with a NPC in Skyrim

Building algorithms: Building algorithms entails following
a step-by-step plan to solve a problem. It requires the ability to
individually evaluate those steps (using conditional logic) and to
analyse the results of their sequential combination. Many of the
game patterns that stimulate this skill make use of different aspects
of this skill, requiring players to plan, concatenate and modulate
the manipulations necessary to reach the desired status. A fitting
game design pattern is the “producer-consumer” pattern which
guides the use and importance of resources. In some games, it even
determines the speed of the gameplay . In complex systems this
pattern generates network of interrelated producers and consumers.
Often, to reach a specific objective there are multiple steps of re-
sources gathering, production and manipulation (which usually
includes consumption) to be developed. Being able to foresee and
plan over multiple cycles of discovering, extracting, transporting,
storing and consuming resources requires similar mental mecha-
nisms as building a computational algorithm. We can compare the
producer-consumers to different functions returning elements as

Computational Thinking through Design Patterns in Video Games FDG ’20, September 15–18, 2020, Bugibba, Malta

outputs and requiring outputs from other functions as input. The se-
quence of these elements and their inputs-outputs must be planned
carefully in order to reach a certain goal. A very important concept
of building an algorithm is taking a step-by-step approach [11]
and, similarly, we can see a step-by-step approach when building a
producer-consumer network in many ‘4X’ games (a sub-genre of
strategy games that involves eXploration, eXpansion, eXploitation,
and eXtermination). This game design pattern is noted to conflict
with the pattern “predictable consequences” which makes sense
from a computational thinking point of view as well: complex algo-
rithms with multiple steps and data manipulations are often more
difficult to manage and usually require careful debugging.

Practical examples for this pattern are numerous, and it is ar-
guably an essential component to most strategy games. For in-
stance, in ‘Stellaris’ [16], developed by Paradox Development Stu-
dio, certain jobs (tasks in the game) produce ‘minerals’ that are
then consumed to produce ‘consumer goods’. These can then be
consumed again by other jobs to produce ‘research’. Since the ratio
of consumption-production is hardly 1:1, this system requires play-
ers to carefully plan the construction of jobs, usually in order not
to end up with a negative balance in any of the above mentioned
resources. Another typical example is the complex and ramified
network of resources of ‘Thea 2: The Shattering’ [8], developed by
MuHa Games and Eerie Forest Studio. In this case we have four
different tiers of resources with the last one being ‘crafted’, con-
suming resources of the previous tier and requiring the acquisition
of specific technologies. In this case we can see a sequence of steps
necessary in order to acquire technologies, gather resources and
craft them into a higher level one.

Figure 2: Screenshot of ‘Doodle God’ showing combinations
of basic elements to create complex elements.

Debugging: In order to analyse debugging we need to unpack
the several elements that compose this skill. Debugging is under-
stood as a process of trial and error that is developed through
testing. A corresponding game design pattern is “experimentation”.
It usually indicates that a part of the game mechanics require a
process of trial and error to be evident, understood or mastered. In
the most extreme cases the whole gameplay revolves around exper-
imentation in the form of ‘puzzles’ to be solved. Experimentation
is often realized through trial and error as well, with testing being
a necessary component of it. Similarly, debugging usually involves

being able to critically think about the current configuration and
can necessitate multiple trials to determine where the errors are,
as well as how to fix them efficiently. It is important to point out
that experimentation is a quite broad pattern and its usefulness to
debugging skills generally holds only under specific applications.
If we want to better specify the context we need to limit it to the
intersection with the game design pattern referred to as “Puzzle-
solving”. This refers to game features that need to be solved through
inductive or deductive reasoning. If applied together with exper-
imentation we are arguably defining an even closer reasoning to
debugging; a mental process that, through deductive or inductive
trials and errors attempts to spot and solve problems in the current
solution. An interesting game example can be found in the mobile
game ‘Doodle God’ [10] by JoyBits (see Figure 2). In the game the
player needs to combine basic elements (such as fire or water) to
create new more complex ones (for example life or energy) that can
be used to create even more complex elements. The whole game
is based on a process of reasoning and, especially, trial and error.
Players can think about potential element combinations and try
them to see if they achieve new elements. The game also features
helpful support for players that can partially (but rarely completely)
provide hints to the creation of new components, highlighting one
of the two elements that need to be combined.

Simulation: Similarly to ‘conditional logic’, simulation is a very
broad category that refers to essential concepts of many video
games built as representations of real or imaginary phenomena. It
seems self-evident that video games include simulations of some
sort. However, it can be beneficial to focus on patterns that allow
or elicit simulation skills within games themselves rather than un-
derstanding games as a simulation of real-life processes. Here we
encounter some overlap with “debugging” since the game design
pattern “experimentation” can once again be useful in this con-
text. Players can create a set of possible actions and evaluate them
using simulation skills. After, these actions are then validated by
experimenting with them. In general, experimentation requires to
activate simulation mental mechanisms in order to narrow the set
of possibilities to try. Other game patterns do not directly trigger
simulations but might favour it. Having “Save-load cycles” in a
game is a typical example. With this pattern, players are allowed to
save and load games at specific points (some games are more flexi-
ble on the saving locations), being able to replay certain challenges
or actions. This can elicit simulation skills similarly to experimenta-
tion; players can simulate and select certain solutions and then try
them in multiple rounds, loading back the game at every iteration.
In the ‘Final Fantasy’ game series (for instance ‘Final Fantasy X’ [6],
see Figure 3), players can usually find saving spots right before
the most challenging battles. In this way the player can try certain
settings and, in case of failure, analyse their own errors improving
on them after reloading the game from that last saving location.

Distributed Computation: We can identify several game de-
sign patterns that show useful traits to aspects of distributed compu-
tation. One example is “communication channels” which are present
in many games that allow players to communicate with each other.
“Cooperation” is another design pattern that can be reconnected to
the idea of working together for a goal. However, we argue that
it is even more compelling to notice how programming and gam-
ing often behave similarly in their relationship with the respective

FDG ’20, September 15–18, 2020, Bugibba, Malta Barbero et al.

Figure 3: Example of a saving point in Final Fantasy X

communities. We would argue that that distributed computation is
a skill that is necessary not only in computational thinking but also
in many multiplayer games, or perhaps even certain single-player
games with multi-agent aspects. Indeed both involve massive on-
line communities interacting, debating and sharing information to
complete tasks that would be hard or impossible to achieve alone.
Moreover, even though both tend to also congregate on different
platforms focusing on the context (e.g. GitHub for programmers
and Steam for gamers), sometimes these communities even interact
on the same online networks such as Twitch or Reddit. The similar-
ities do not stop here; as already mentioned, both the communities
developed mainly online and became important resources for the
fields (at least in many modern video games). In this sense, both
communities based themselves on a “Remix culture” encouraging
the sharing and re-elaboration of information, blurring the line be-
tween final consumer and contributor [7, 12]. The overall argument
in this case is that learning to make use and contribute to a gaming
community probably involves similar skills to be able to do the
same in a programming community because of these underlining
similarities. A great example of an online community not directly
connected to a video game (not referring to online gaming necessar-
ily) is the community that formed around the ‘Elder Scrolls’ series.
Many online resources surrounding that series share information
to both new and more seasoned players about how to develop their
characters and how to customise their game experience. Another
more general example is the massive amount of online videos of
‘playthroughs’ (often referred to as “Let’s Play” content) in which
players record their game sessions while commenting and explain-
ing their actions to show other players how to achieve a certain
goal in a video game. Curiously we can find similar videos about
programming, with (more or less) expert programmers coding and
illustrating how to use certain languages, libraries or functions.

4 CONCLUSIONS
When highlighting video games as educative media for computa-
tional thinking purposes, we often tend to neglect the great variety
of genres, mechanics and, more in general, game experiences. How-
ever, as we argue in this paper, the individual constituent game
design patterns are perhaps a more fitting lens to assess the po-
tential of a video game to improve computational thinking skills.
Such individual elements can trigger very different thinking strate-
gies and stimulate users in different ways. What we proposed is
a different way of studying the connection between gaming and

the development of programming skills, starting from the design
elements that make up a video game rather than from the medium
or specific game titles in general. This approach can also be instru-
mental to the creation of educational video games that make use of
design concepts developed specifically for the medium rather than
adapting them to the scope. In this paper we presented a examples
of design patterns and games that could be investigated regarding
their ability to improve computational thinking skills. Further re-
search, both empirical and theoretical in nature, should focus on
developing a design process to create or modify video games for
that purpose. This would strengthen the case for the use of video
games to improve computational thinking skills in general, and
deepen our understanding for how to target such efforts towards
individual skills.

REFERENCES
[1] Christopher Alexander. 1977. A pattern language: towns, buildings, construction.

Oxford university press.
[2] Ashley Ater-Kranov, Robert Bryant, Genevieve Orr, Scott Wallace, and Mo Zhang.

2010. Developing a community definition and teaching modules for computa-
tional thinking: accomplishments and challenges. In Proceedings of the 2010 ACM
conference on Information technology education. 143–148.

[3] Matthew Berland and Victor R Lee. 2011. Collaborative strategic board games as
a site for distributed computational thinking. International Journal of Game-Based
Learning (IJGBL) 1, 2 (2011), 65–81.

[4] Staffan Bjork and Jussi Holopainen. 2004. Patterns in Game Design (Game Devel-
opment Series). Charles River Media, Inc., USA.

[5] Sue Inn Ch’ng, Yeh Ching Low, Yun Li Lee, Wai Chong Chia, and Lee Seng
Yeong. 2019. Video Games: A Potential Vehicle for Teaching Computational
Thinking. In Computational Thinking Education. Springer Singapore, 247–260.
https://doi.org/10.1007/978-981-13-6528-7_14

[6] Square Enix. 2001. Final Fantasy X. [PlayStation 2].
[7] Kirby Ferguson. 2011. Everything is a Remix. https://vimeo.com/14912890.
[8] MuHa Games and Eerie Forest Studio. 2018. Thea 2: The Shattering. [PC].
[9] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1994. Design

Patterns: Elements of Reusable Object-Oriented Software. Pearson Education.
[10] JoyBits. 2010. Doodle God. [PC, Consoles].
[11] Cagin Kazimoglu, Mary Kiernan, Liz Bacon, and Lachlan Mackinnon. 2012. A

Serious Game for Developing Computational Thinking and Learning Introductory
Computer Programming. Procedia - Social and Behavioral Sciences 47 (2012), 1991–
1999. https://doi.org/10.1016/j.sbspro.2012.06.938

[12] Amanda A. Madden. 2005. Teen Content Creators and Consumers.
[13] Marina Papastergiou. 2009. Digital Game-Based Learning in high school Com-

puter Science education: Impact on educational effectiveness and student moti-
vation. Computers and Education 52, 1 (2009), 1–12. https://doi.org/10.1016/j.
compedu.2008.06.004

[14] Marc Prensky. 2003. Digital Game-Based Learning. 1, 1 (2003), 1–4.
[15] Bethesda Softworks. 1994. The Elder Scrolls. [PC, Consoles].
[16] Paradox Development Studio. 2016. Stellaris. [PC, Consoles].
[17] David Weintrop, Nathan Holbert, Michael S. Horn, and Uri Wilensky. 2016.

Computational thinking in constructionist video games. International Journal
of Game-Based Learning 6, 1 (jan 2016), 1–17. https://doi.org/10.4018/IJGBL.
2016010101

[18] Jeannette M Wing. 2006. Computational thinking. Commun. ACM 49, 3 (2006),
33–35.

[19] Jeannette M. Wing. 2008. Computational thinking and thinking about computing.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences 366, 1881 (2008), 3717–3725. https://doi.org/10.1098/rsta.
2008.0118

[20] Min LunWu and Kari Richards. 2011. Facilitating computational thinking through
game design. In International Conference on Technologies for E-Learning and Digital
Entertainment. Springer, 220–227.

https://doi.org/10.1007/978-981-13-6528-7_14
https://vimeo.com/14912890
https://doi.org/10.1016/j.sbspro.2012.06.938
https://doi.org/10.1016/j.compedu.2008.06.004
https://doi.org/10.1016/j.compedu.2008.06.004
https://doi.org/10.4018/IJGBL.2016010101
https://doi.org/10.4018/IJGBL.2016010101
https://doi.org/10.1098/rsta.2008.0118
https://doi.org/10.1098/rsta.2008.0118

	Abstract
	1 Introduction
	2 Related Work
	2.1 Computational Thinking and Programming Education
	2.2 Design Patterns in Video Games

	3 Concepts of Computational Thinking in Video Games
	4 Conclusions
	References

