
Real-time interactive visualization of large networks on a tiled display
system
Brinkmann, G.G.; Rietveld, K.F.D.; Verbeek, F.J.; Takes, F.W.

Citation
Brinkmann, G. G., Rietveld, K. F. D., Verbeek, F. J., & Takes, F. W. (2022). Real-time
interactive visualization of large networks on a tiled display system. Displays, 73.
doi:10.1016/j.displa.2022.102164

Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/3641638

Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/3641638

Displays 73 (2022) 102164

A
0

Contents lists available at ScienceDirect

Displays

journal homepage: www.elsevier.com/locate/displa

Real-time interactive visualization of large networks on a tiled display
system✩

G.G. Brinkmann, K.F.D. Rietveld, F.J. Verbeek, F.W. Takes ∗

Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

A R T I C L E I N F O

MSC:
65Y20
05C85
52C30

Keywords:
Network visualization
Tiled display systems
Interactive visualization
GPU
CUDA

A B S T R A C T

This paper introduces a methodology for visualizing large real-world (social) network data on a high-
resolution tiled display system. Advances in network drawing algorithms enabled real-time visualization and
interactive exploration of large real-world networks. However, visualization on a typical desktop monitor
remains challenging due to the limited amount of screen space and ever increasing size of real-world datasets.

To solve this problem, we propose an integrated approach that employs state-of-the-art network visual-
ization algorithms on a tiled display system consisting of multiple screens. Key to our approach is to use the
machine’s graphics processing units (GPUs) to their fullest extent, in order to ensure an interactive setting with
real-time visualization. To realize this, we extended a recent GPU-based implementation of a force-directed
graph layout algorithm to multiple GPUs and combined this with a distributed rendering approach in which
each graphics card in the tiled display system renders precisely the part of the network to be displayed on the
monitors attached to it.

Our evaluation of the approach on a 12-screen 25 megapixels tiled display system with three GPUs,
demonstrates interactive performance at 60 frames per second for real-world networks with tens of thousands
of nodes and edges. This constitutes a performance improvement of approximately 4 times over a single
GPU implementation. All the software developed to implement our tiled visualization approach, including the
multi-GPU network layout, rendering, display and interaction components, are made available as open-source
software.
1. Introduction

In this paper we propose a framework for real-time interactive
network visualization on a tiled display system, using its graphics pro-
cessing units (GPUs). The framework is implemented on a 25 megapixel
tiled display system, composed of twelve monitors connected to a single
off-she-shelf desktop machine (see Fig. 3). We test the approach on a
number of real-world datasets consisting of, e.g., networks representing
social media interaction, protein interaction networks and scientific
collaboration networks.

A network (or graph) describes relationships between a set of enti-
ties. We consider the most common visualization method, in which the
network’s entities (nodes) are drawn as dots in the plane, with lines
(edges) connecting any two related nodes. Fig. 1 provides an example
drawing of a small protein–protein interaction network. In the field of
social network analysis [1], also referred to as network science [2],
visualization is one of many approaches to understanding the structure
of a network dataset. Interactive network visualization is usually a first

✩ This paper was recommended for publication by Cong Bai.
∗ Corresponding author.
E-mail address: f.w.takes@liacs.leidenuniv.nl (F.W. Takes).

explorative step in understanding the data and may assist in finding
outliers, important nodes, dense clusters or others patterns in the data.

The challenge in drawing a network is positioning the nodes in
such a way that the resulting layout clearly depicts the structure of the
network. In general, one wants to position a given node in proximity of
related nodes, and at distance of unrelated nodes. Also, edge crossings,
overlapping nodes and long edges should be prevented as much as
possible. For humans, this becomes difficult when the size of the net-
work exceeds a dozen of edges, which led to the development of graph
layout algorithms. Although the first graph layout algorithms were
designed to operate on thousands of nodes, recent algorithms scale to
millions of nodes and edges [3]. Besides being a result of algorithmic
advances, this is also the result of improved implementations and a
focus on exploiting real-world network structure. Algorithms in partic-
ular take advantage of the fact that networks in the real-world, such as
social networks, have skewed degree distributions, exhibit small-world
connectivity and have a modular structure [2].
vailable online 20 February 2022
141-9382/© 2022 The Authors. Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.displa.2022.102164
Received 11 May 2021; Received in revised form 21 January 2022; Accepted 7 Feb
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ruary 2022

http://www.elsevier.com/locate/displa
http://www.elsevier.com/locate/displa
mailto:f.w.takes@liacs.leidenuniv.nl
https://doi.org/10.1016/j.displa.2022.102164
https://doi.org/10.1016/j.displa.2022.102164
http://crossmark.crossref.org/dialog/?doi=10.1016/j.displa.2022.102164&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Displays 73 (2022) 102164G.G. Brinkmann et al.
Fig. 1. Drawing of a protein–protein interaction network [5] in which the nodes
represent proteins and the edges denote the interactions between proteins in a particular
substance.

Fig. 2. Network drawing for a large network with 391,966 nodes and 1,711,968
edges [6], illustrating the excessive visual clutter caused by the small amount of
available screen space.

However, visualizing very large networks on a typical desktop com-
puter still poses challenges. Due to the relatively small amount of screen
space that is available, viewing the layout of a very large network,
such as the one depicted in Fig. 2, results in excessive visual clutter.
An interactive presentation that allows for zooming and panning can
overcome this issue. However, this reduces the number of nodes and
edges that can be viewed at once, and thereby the viewer’s ability
to grasp the overall structure of the network. As such, applying a
standard ‘overview first, zoom and filter, then details on demand’ infor-
mation seeking principle remains challenging for visualizations of large
networks [4].

To overcome this problem, the use of tiled display systems has
been suggested [7,8]. Tiled display systems are composed of multiple
displays, usually identical models, which are arranged as tiles to form
a single large display area. For an example, see Fig. 3. Tiled display
systems provide a scalable and cost-effective solution to the limited
amount of screen space provided by a typical desktop computer, and
have been successfully applied in diverse scenarios [9–11]. Depending
on the number of displays, their resolution, and the demands of the
application, the displays connect to a single computer or a distributed
cluster consisting of multiple computers. In this paper we focus on the
former case, in which all monitors connect to a single machine.

Earlier studies on the use of tiled display systems for network
visualization relied on the system’s central processing units (CPUs)
2

Fig. 3. ‘BigEye’, the tiled display system considered in this paper.

to algorithmically compute network layouts. Given the computational
requirements for network visualization at high resolutions, we consider
using the system’s graphics processing units (GPUs) instead. Tiled
display systems generally contain multiple graphics cards to be able
to connect all displays to the system. On each of these graphics cards
a GPU is located, which combined provide tremendous computational
power. It has been shown that the GPU allows for high-performance
implementations of graph layout algorithms [12–14]. Therefore we
hypothesize that using the GPUs in a tiled display system allows for
high-performance visualization of large-scale networks using its full res-
olution. More specifically, we expect to achieve real-time performance,
where user’s input is accounted for without visible delay, for networks
with hundreds of thousands of nodes and edges. Real-time performance
combined with interactivity improves the user’s ability to effectively
analyze a network. Besides easing data exploration (e.g., as depicted
in Fig. 4), it allows users to manually steer the layout process, which
can be crucial to prevent the layout algorithm from converging to a
sub-optimal layout.

Our methodology considers ForceAtlas2 [15] as the graph layout
algorithm to use for network visualization. The main contribution of
our work is an extension of an existing GPU implementation of ForceAt-
las2 in order to distribute the work over multiple GPUs. We adapt
and combine this with distributed rendering and a ‘tiled visualization’
approach in which each GPU renders the part of the network to be
displayed on the monitors attached to it. The focus of our work is on
modifying the ForceAtlas2 algorithm in efficiently exploiting multiple
GPUs, while guaranteeing the quality of the layout that is computed by
the algorithm. This results in a system enabling real-time interactive
visualization for networks with tens of thousands of nodes and edges,
at a resolution of 5760 × 4320 pixels. To assess the resulting system’s
interactive capabilities, we will implement a number of interactions
using a wireless control device that enables natural interactions with
visualizations on the wall-sized display.

In summary, our contribution is a new methodology for visualizing
large real-world networks on a tiled display system utilizing multiple
GPUs. In doing so, the layout can be computed and thereafter imme-
diately rendered, resulting in the possibility of real-time interactive
visualization. Although an implementation was done on a particular
12-screen tiled display system, the approach can be used on any tiled
display system equipped with one or multiple GPUs. Our implemen-
tation and demonstration videos of the framework are available at
https://liacs.leidenuniv.nl/~rietveldkfd/tiledvis.

The content of this paper is structured as follows. In Section 2 we
first discuss the preliminaries of this study. As such, we discuss defini-
tions for concepts used throughput the paper, graph layout algorithms,
the GPU as a platform for general purpose computation, as well as the

https://liacs.leidenuniv.nl/~rietveldkfd/tiledvis

Displays 73 (2022) 102164G.G. Brinkmann et al.
Fig. 4. Impression of a user analyzing a large network on BigEye.

ForceAtlas2 algorithm. Related work and existing approaches to net-
work visualization on tiled display systems are discussed in Section 3.
Our ‘tiled visualization’ approach to achieve real-time visualization
on a tiled display system addressing the network visualization steps,
distributed ForceAtlas2 layout and rendering, and the combination with
‘tiled visualization’, is explained in Section 4. Experiments to evaluate
the performance of various aspects of the approach are outlined in Sec-
tion 5. Finally, Section 6 concludes the paper and provides suggestions
for future work.

2. Preliminaries

In this section, we review relevant concepts related to networks
(Section 2.1), graph layout algorithms (Section 2.2) , the architec-
ture and potential benefits of graphics processing units (Section 2.3),
and an existing GPU implementation of the ForceAtlas2 algorithm
(Section 2.4).

2.1. Networks

In this work we do not make a distinction between networks and
graphs, and hence use the terms interchangeably. We define a network
or graph 𝐺 = (𝑉 ,𝐸), as a set of vertices, or nodes, together with a set
of edges, or links. The set of edges that relate vertices, denoted 𝐸, is
defined such that 𝐸 = {{𝑢, 𝑣} ∶ 𝑢, 𝑣 ∈ 𝑉 ∧ 𝑢 ≠ 𝑣}. This means that we
are dealing with undirected graphs; for the purpose of our visualization
method the directionality of a graph can be ignored. Also, we do not
consider networks with self-loops. Instead of {𝑢, 𝑣} ∈ 𝐸, we can also
write that node 𝑣 is adjacent to node 𝑢, or that 𝑢 and 𝑣 are neighbors.

Below, we discuss several common and well-known topological
properties of graphs. The density of a graph is defined as the ratio
between the number of edges and the maximum number of edges,
given the number of nodes. The density of an undirected graph equals
2|𝐸|∕(|𝑉 |(|𝑉 | − 1)). The degree of node 𝑢 is defined as the number of
nodes it links to, i.e., 𝑑𝑒𝑔(𝑢) = |{𝑣 ∈ 𝑉 ∶ {𝑢, 𝑣} ∈ 𝐸}|. The average degree
of a graph is the average over all node degrees.

Two nodes 𝑢, 𝑣 ∈ 𝑉 are connected if a path between them exists. A
length-𝑛 path between nodes 𝑢 and 𝑣 consists of a sequence of nodes
(𝑥0, 𝑥1,… , 𝑥𝑛) such that 𝑥0 = 𝑢, 𝑥𝑛 = 𝑣 and ∀𝑖, 0 ≤ 𝑖 < 𝑛 ∶ {𝑥𝑖, 𝑥𝑖+1} ∈ 𝐸.
The shortest path between nodes 𝑢 and 𝑣 is defined as the path with the
shortest length that connects nodes 𝑢 and 𝑣, and its length is referred to
as the distance between these nodes, denoted 𝑑(𝑢, 𝑣). If no path between
𝑢 and 𝑣 exists, i.e. they are not connected, 𝑑(𝑢, 𝑣) = ∞. A graph is
connected if all node pairs are connected via a path.

Given a graph 𝐺 = (𝑉 ,𝐸), we define the subgraph induced by the set
of nodes 𝑉 ′ ⊆ 𝑉 to be the graph 𝐺′ = (𝑉 ′, 𝐸′), such that {𝑢, 𝑣} ∈ 𝐸′ ⇔
3

𝑢, 𝑣 ∈ 𝑉 ′ ∧{𝑢, 𝑣} ∈ 𝐸. The connected components of a graph are its maxi-
mal connected subgraphs. These components are maximal in the sense
that no nodes can be added to them without breaking the property that
the subgraph is connected. Since we do not consider the directionality
of edges for the purpose of our visualizations, we do not need to distin-
guish between strongly connected components (SCCs) that account for
directionality and weakly connected components (WCCs) that ignore
edge direction.

2.2. Graph layout algorithms

To reveal the structure of a graph, it is commonly drawn in a plane
with vertices represented as points, and edges as straight lines between
neighbors, as shown in Fig. 1. As discussed in Section 1, the challenge
in drawing a graph is assigning a position 𝐩𝑣 ∈ R2 to each 𝑣 ∈ 𝑉 such
that a ‘readable’ layout emerges. In a readable layout related nodes
are generally positioned in spatial proximity of each other, whereas
unrelated nodes are at distance of each other. Also, overlapping nodes
and edge crossings should be avoided. Most importantly, the layout
should reflect the structure of the network.

Whilst determining readable layouts for networks with less than a
dozen edges is feasible for a human, it is desirable to use a computer
and a graph layout algorithm as the network size increases. A graph
layout algorithm takes as input the graph 𝐺 = (𝑉 ,𝐸), potentially with
additional information on nodes and edges, and computes for each
𝑣 ∈ 𝑉 a position 𝐩𝑣 ∈ R2, such that a readable layout emerges.
From the different types of graph layout algorithms that have been
conceived [3,16], we choose to focus on force-directed graph layout
algorithms. In Section 2.4 we describe how these algorithms work and
why they are especially suitable for our goal of realizing interactive
network visualization.

2.3. Graphics processing units (GPUs)

For the present study we use graphics processing units (GPUs) for
network visualization, i.e., to implement the layout algorithm and the
network renderer that generates network drawing from the layouts.
In contrast to the CPU architecture, that is optimized to achieve low
latency on a wide range of computational problems, the GPU is op-
timized for high throughput on (highly) data-parallel problems [17].
This is partly due to the relatively large number of functional units
that the GPU features, which generally come at the expense of omitting
the advanced, latency-reducing, features employed by the CPU such as
speculative execution. Although the design of the GPU has its origins in
computer graphics applications, which involve the processing of many
independent pixels and geometrical primitives, the architecture has
increasingly been used in high-performance implementations of general
purpose computations [18]. Whereas general purpose computation on
GPUs (GPGPU) initially required formulating problems using graphics
APIs such as OpenGL [19], dedicated GPGPU frameworks such as
CUDA [20] and OpenCL [21] have since been released.

Given the large number of independent, per-node, operations used
in graph layout algorithms, the GPU has enabled high-performance
implementations [12,22,23] of these algorithms as well. Implementing
the layout algorithm on the GPU also enables ‘in situ’ visualization,
where the GPU datastructures are shared between the network layout
and drawing algorithms. The performance improvements this brings,
can be especially important for interactive applications. When using
NVIDIA graphics cards, the CUDA-OpenGL interoperability API [24]
can be used to implement an in situ visualization approach.

Since we use the NVIDIA compute unified device architecture
(CUDA) platform [20] to implement our multi-GPU network layout
algorithm, which is discussed in Section 4.4, we use this section to
provide some background information on CUDA and the architecture
of NVIDIA GPUs.

Displays 73 (2022) 102164G.G. Brinkmann et al.

e
o
C

t
e
o
w
e
p
r
t
u

2

b
i
S
p
u
t
a
m
f
s
a
a

p
b
t
o
n
f
f
n
‘
c

a
y

CUDA enables programmers to implement general purpose compu-
tations on the highly parallel architecture provided by NVIDIA GPUs.
For our study we use CUDA C, which is an extension to C programming
language. Using CUDA C, programmers can specify kernels, which are
functions to be executed in parallel on the GPU using many threads of
xecution. Although threads execute the same kernel, they generally
perate on different data elements, thus parallelizing a computation.
UDA threads are organized by the programmer into a grid of thread
blocks. When launching a grid for execution, the blocks contained
therein are assigned to different GPU multiprocessors, which subse-
quently subdivides the thread block into warps of 32 threads. The
threads in a warp concurrently execute the same instruction, through
a single instruction multiple threads (SIMT) architecture and the mul-
iprocessor is equipped with dedicated hardware to interleave the
xecution of different warps in order to hide latency. To achieve
ptimal hardware utilization, it is important that the threads in a
arp share execution paths, since diverged threads in a warp cannot
xecute concurrently. Also, to effectively utilize the memory bandwidth
rovided by the GPU, threads in a warp should access consecutive
anges of aligned memory. This allows for multiple memory accesses
o be coalesced into single transactions, which greatly improves the
tilization of memory bandwidth.

.4. GPU implementation of ForceAtlas2

We selected ForceAtlas2 [15] as graph layout algorithm for a num-
er of reasons. First, it is designed for interactive applications, hence
ts origins in the well-known Gephi [25] network analysis software.
econd, the iterative approach, which corresponds to a time-continuous
rocess, allows for the entire layout process to be visualized. As such
sers can comprehend the layout procedure, and better understand
he effect the different parameters have. The force-directed method
lso accounts for interaction with the layout process, allowing users to
anually steer it to improve layout quality. Since ForceAtlas2 largely

ollows the general force-directed approach to graph layout, our re-
ults have the potential to apply to other force-directed graph layout
lgorithms as well. An open source implementation of the ForceAtlas2
lgorithm for the GPU was introduced in previous work [12].

Like other force-directed graph layout algorithms, ForceAtlas2 ap-
roaches the graph layout problem by considering the graph layout to
e a physical system. Nodes are represented by physical bodies, and
he layout process corresponds to a simulation of their interactions
ver time. An iterative procedure repeatedly displaces each node in the
etwork in accordance to the resultant force acting on it. Repulsive
orces between all node-pairs serve to move unrelated nodes away
rom each other, whereas the attractive forces between neighboring
odes should cause related nodes to move towards each other. A

gravitational’ force towards the origin of the layout ensures that all
omponents of the graph remain in proximity of each other.

A direct implementation of ForceAtlas2 would result in evaluating
ll node-pairs to calculate the repulsive force acting on each node,
ielding a computational complexity in 𝛩(|𝑉 |

2). Naturally this does not
scale well to large networks. Repulsive forces between all node pairs
are thus approximated using the Barnes–Hut algorithm [26], which
employs a quadtree representation of the graph layout to approximate
the pair-wise force interactions. As a consequence, the computational
complexity of the repulsive force computation is reduced from 𝛩(|𝑉 |

2)
to 𝛩(|𝑉 | log |𝑉 |). Since the computational complexity of computing
attractive forces is in 𝛩(|𝐸|), and since gravitational forces can be
applied in 𝛩(|𝑉 |) time, the computational complexity of one iteration
of the ForceAtlas2 Algorithm is then in 𝛩(|𝑉 | log (|𝑉 |) + |𝐸|).

Algorithm 1 presents pseudocode for ForceAtlas2, which describes
the procedure discussed in this paragraph more formally. Note that the
many per-node force calculations during an iteration of the algorithm
are independent and can all be performed in parallel. This property is
4

used to develop a highly parallel GPU implementation of this algorithm
Algorithm 1 Pseudocode for a simplified version of the ForceAtlas2
graph layout algorithm, adapted from [12]. Full details on ForceAtlas2
can be found in [15].

Input: Graph 𝐺 = (𝑉 ,𝐸), 𝑖𝑡𝑚𝑎𝑥 (number of layout iterations), 𝑘𝑔 (grav-
itational force scalar) and 𝑘𝑟 (repulsive force scalar), 𝜃 (Barnes–Hut
accuracy).
Output: For each 𝑣 ∈ 𝑉 , a position 𝐩𝑣 ∈ R2.

⊳ Initialize variables
1: 𝑔𝑙𝑜𝑏𝑎𝑙_𝑠𝑝𝑒𝑒𝑑 ← 1.0
2: for all 𝑣 ∈ 𝑉 do
3: 𝐩𝑣 ← random()
4: 𝐟𝑣 ← (0.0, 0.0)⊤ ⊳ Net force on node 𝑣
5: 𝐟 ′𝑣 ← (0.0, 0.0)⊤ ⊳ 𝐟 ′𝑣 is 𝐟𝑣 of preceding iteration
6: end for

⊳ Start layout process
7: for 𝑖 = 1 → 𝑖𝑡𝑚𝑎𝑥 do
8: BH.build() ⊳ (Re)build Barnes–Hut tree
9: for all 𝑣 ∈ 𝑉 do

10: 𝐟𝑣 ← 𝐟𝑣 − (𝑘𝑔 ∗ (𝑑𝑒𝑔(𝑣) + 1) ∗ 𝐩𝑣) ⊳ (Strong) Gravity
11: 𝐟𝑣 ← 𝐟𝑣 + (𝑘𝑟 ∗ BH.force_at(𝐩𝑣, 𝑑𝑒𝑔(𝑣), 𝜃)) ⊳ Repulsion
12: for all 𝑤 ∈ neighbors(𝑣) do
13: 𝐟𝑣 ← 𝐟𝑣 + (𝐩𝑤 − 𝐩𝑣) ⊳ Attraction
14: end for
15: end for
16: 𝑔𝑙𝑜𝑏𝑎𝑙_𝑠𝑝𝑒𝑒𝑑 ← UpdateGlobalSpeed()
17: for all 𝑣 ∈ 𝑉 do
18: 𝐩𝑣 ← local_speed(𝑣) ∗ 𝐟𝑣 ⊳ Displacement
19: 𝐟 ′𝑣 ← 𝐟𝑣
20: 𝐟𝑣 ← (0.0, 0.0)⊤

21: end for
22: end for

23: function local_speed(𝑣) ⊳ for a node 𝑣
24: return 𝑔𝑙𝑜𝑏𝑎𝑙_𝑠𝑝𝑒𝑒𝑑

1.0+𝑔𝑙𝑜𝑏𝑎𝑙_𝑠𝑝𝑒𝑒𝑑
√

swing(𝑣)
25: end function

26: function swing(𝑣) ⊳ for a node 𝑣
27: return |𝐟𝑣 − 𝐟 ′𝑣|
28: end function

that has the potential to scale to significantly larger networks than
serial implementations. In this paper, we further extend the open
source CUDA implementation of ForceAtlas2 that we published pre-
viously [12]. The CUDA implementation of the Barnes–Hut algorithm
used by this ForceAtlas2 implementation is taken from [27]. For further
details on these implementations, we refer reader to the corresponding
papers.

3. Previous work

In this section we discuss previous work on the use of tiled display
systems for network visualization, and compare these works to the
approach taken for the present study.

Mueller et al. [8] present a network visualization approach for
distributed (tiled display) systems, that uses MPI [28] for parallel
computation and Chromium [29] for distributed rendering and display.
A distributed force-directed graph layout algorithm is derived, based
on the classical algorithm by Fruchterman and Reingold [30], by
considering how different approaches to data- and work-distribution
affect performance and the layout quality. Realizing performance levels
suitable for interactivity is a clear objective of the authors. The authors
evaluate their system on an eight monitor tiled display system, con-
nected to an eight node cluster, both in terms of its scalability when
using increasing numbers of processors and in terms of the ‘costs’ re-
sulting from displaying the layouts. Randomly generated networks are

used for the evaluation. For networks with 2000 nodes the results show

Displays 73 (2022) 102164G.G. Brinkmann et al.
an average performance improvement of 10× when scaling from one to
four processors, after which performance improvements saturate. Using
eight processors allowed for randomly generated networks with 8000
nodes, and up to (approximately) 80,000 edges, to be visualized at
frame rates between 2 to 5 frames per second.

Chae [7,31] presents distributed algorithms for network visual-
ization, which are evaluated on a 200 megapixel cluster-based tiled
display system composed of 50 monitors. In the development of the
algorithms, techniques are considered to reduce the number of edges
crossing between nodes in the cluster, but also to prevent nodes in the
layout from being positioned on the bezels of monitors. A modified k-
means clustering algorithm is evaluated in order to reduce the running
time of the layout algorithm. The algorithms are evaluated both in
terms of their scalability and the layout qualities that result from them.

Jingai et al. [32] report their intermediary results on adapting the
open source Gephi [25] network analysis and visualization software to
run on a cluster-based tiled display system via a commercial middle-
ware. Since the middleware supports the OpenGL graphics library, that
Gephi uses for network rendering, few changes to Gephi were required.
The authors report their system was successful at visualizing a protein–
protein interaction network with 2361 nodes and 7182 edges, with
all labels visible, and that the performance of the system should be
assessed in future studies.

Gu et al. [33] present an approach for the interactive visual analysis
of image collections by means of a compound ‘iGraph’ representing
the relationships between the images and keywords in the collection.
To visualize the iGraph, a force-directed graph layout algorithm based
on the classical algorithm by Fruchterman and Reingold [30] is first
used to compute a layout for the backbone of iGraph, which consists
of images and keywords that are representative for the collection. This
layout is then further refined ‘on demand’ as the user navigates around
the iGraph. The system allows for the interactive filtering and compar-
ison of data in the iGraph, and uses an approach akin to collaborative
filtering to recommend interesting data to users for further exploration.
The approach is evaluated using two datasets on an eight node cluster
using graphs with thousands of nodes and millions of edges. Besides,
a method for using the cluster to visualize results on a 50 megapixel
tiled display system is discussed. The GPUs in the system are used for
data pre-processing, whereas the CPUs are used for the graph layout
process. Finally, a user evaluation is discussed.

Similar to the studies discussed in this section, we focus on using
force-directed graph layout algorithms for our visualization system.
However, we do not consider significant modifications to the algo-
rithms to improve their operation in the context of the tiled display
system. We rather focus on improvements in their implementation.
Most importantly, we consider using the GPUs in the tiled display
system for their implementation rather than the CPU. Also, we do
not focus on a tiled display system which distributes the visualization
over multiple computers (nodes), but on a single computer with 12
monitors connected to three graphics cards. We consider the multiple
GPUs for improved processing power only, so to distribute the com-
putational load, without distributing the data between the GPUs to
obtain an increased memory capacity. Our previous work [12] does
not suggest that the memory capacity of current systems bounds the
size of networks that can be visualized interactively. In contrast to the
studies we discussed in this section, we use a wider collection of large
real-world networks for the evaluation of our system. Similar to the
study of Mueller et al. we focus on realizing an interactive system.
However, we aim to avoid any perceivable delay between user input
and corresponding updates on the monitors, since this would degrade
the extent to which users experience interactivity. We choose to focus
on obtaining a frame rate of 60 Hz., matching the refresh rate of the
5

monitors in the tiled display system.
4. Approach

Our goal is to enable the visualization of large networks at high
resolutions and on large screen areas, while still allowing a user to
interactively explore the network through panning and zooming. The
resolution and screen area that we would like to achieve require the
use of more monitors than can be connected to a single graphics card.
As a result, it is required to use multiple graphics cards. This intro-
duces performance and synchronization challenges, which significantly
complicate the implementation compared to a typical desktop system.
We discuss these challenges and present a ‘tiled visualization approach’
to overcome them in this section. In Section 5 the effectiveness of the
proposed solutions will be evaluated.

We first briefly describe the target hardware used in this study in
Section 4.1. Next, in Section 4.2, we propose a GPU accelerated net-
work renderer as an extension of the GPU implementation of ForceAt-
las2 that was described in Section 2.4. It enables high resolution
visualizations of results of the layout process. To then be able to depict
the visualization on a tiled display, Section 4.3 addresses performance
and synchronization issues with full screen visualizations spanning
multiple graphics cards (GPUs) in a Linux-based system. In Section 4.4
we describe a distributed implementation of the layout algorithm and
network renderer, which exploits the multiple GPUs that are available
in the system to further improve the performance.

We describe the integration of the aforementioned distributed GPU
implementation of ForceAtlas2 and network renderer with the tiled
visualization approach in Section 4.5. Finally, we address interaction
with the wall-sized display using the Nintendo WiiMote in Section 4.6.

4.1. Target hardware

In this paper, we focus specifically on off-the-shelve components,
which allows this setup to be easily replicated. Our target system
consists of a single computer equipped with an Intel Core i7 proces-
sor and three NVIDIA GeForce GTX660 graphics cards to which 12
monitors with a resolution of 1920 × 1080 pixels are connected. The
software installation consists of Ubuntu 16.04.3 LTS with the NVIDIA
proprietary graphics driver. Throughout the paper, we will refer to this
system as ‘BigEye’ (see Figs. 3 and 4). Full details on this system can
be found in Section 5.1.

4.2. GPU accelerated network rendering

The ForceAtlas2 algorithm computes a graph layout, which consists
of positions in the two-dimensional plane for each node of a graph.
In order to visualize such a computed layout, the nodes and edges
must be rendered in a framebuffer of pixels. In this section, we pro-
pose a GPU accelerated network renderer as an extension to the GPU
implementation of ForceAtlas2.

In order to implement GPU acceleration, the network renderer
is implemented using OpenGL 4.1 (Core Profile) [19]. CUDA and
OpenGL code is typically controlled and executed separately. This
implies that the resulting node positions of the CUDA implementation
of the ForceAtlas2 layout algorithm must be transferred from the
GPU back to the CPU memory and in order to initialize the OpenGL
accelerated network renderer, these same node positions need to be
wrapped in an OpenGL datastructure and uploaded to the GPU memory
again. This can be seen in Fig. 5(a), in which the copy operations have
been highlighted in red. The transfer of data to/from the GPU is subject
to PCIe bandwidth and latency constraints and these frequent transfers
can prohibit us from achieving real-time visualization performance for
larger networks.

To mitigate this, we use the CUDA-OpenGL interop [24] capability
to map an OpenGL datastructure into CUDA memory, such that the
CUDA implementation of ForceAtlas2 can store the node positions
directly in an OpenGL datastructure. We represent the network data in

Displays 73 (2022) 102164G.G. Brinkmann et al.
Fig. 5. Display loop used for our network visualizer. Green boxes correspond to calls
to the CUDA API, blue boxes correspond to calls to the OpenGL API.

OpenGL as follows. All node positions are stored in an OpenGL buffer
object, which is indexed by node identifiers (node IDs) that range from
0 to |𝑉 |. Both the CUDA implementation of ForceAtlas2, as well as
the OpenGL network renderer, operate directly on this OpenGL buffer.
Additional node attributes can be represented in additional buffers, or
can be interleaved with the data on nodes’ positions. Such data could
be accounted for in different stages of the OpenGL pipeline, and as
such could be reflected in the appearance of nodes. For example, this
would allow nodes to be sized or colored based on a property, such
as their degree. The network’s edges are also stored in an OpenGL
buffer object, and are represented by their respective source- and
target-node IDs, which are stored consecutively in the buffer of edges.
This data is uploaded only once to OpenGL, and is not shared with
CUDA, given that it remains static throughout the layout process. The
resulting display loop is depicted in Fig. 5(b), where the expensive copy
operations have been eliminated.

The network’s nodes are drawn by generating OpenGL point primi-
tives using node positions from the described buffer object. The square
shapes that result from this operation are transformed into circles
using a fragment-shader as described in [34]. Edges are drawn as
OpenGL line primitives, whose starting- and end-points are obtained
by indexing into the buffer of node positions using the source- and
target-node identifiers stored in the buffer representing the network’s
edges. In order to enable user navigation, a vertex shader contains
uniforms representing the current view. Using the vertex shader, all
vertices are translated according to these uniforms, which are updated
in correspondence to the user’s interactions.

4.3. Tiled visualization

In this subsection we describe how to display the network drawings
resulting from the renderer presented in the preceding section at the
full resolution available on a wall-sized display comprising of multiple
monitors. This visualization method is also referred to as the use of tiled
display systems for visualization; for a more general overview we refer
the reader to [35].

Displaying a framebuffer to multiple monitors connected to a single
graphics card is already provided by various graphics card drivers. In
our particular system, we make use of the most recent version (390.42)
6

of the proprietary NVIDIA driver that was available for the graphics
cards in our system at the time of implementation. Using the NVIDIA
driver up to four display devices connected to a single graphics card
can be addressed as a single uniform display device.

To span the visualizations beyond the monitors connected to a single
graphics card, we consider the extensions to the X Window System [36],
the windowing system adopted by most Linux distributions, that en-
able this. For example, the Xinerama extension, allows applications to
address all physical display devices connected to the system through a
single X screen, instead of a distinct X screen per display device. Besides
Xinerama, the X Resize, Rotate and Reflect extension for the X Windows
System (RandR) also provides multi-monitor support for systems using
multiple graphics cards, since version 1.4 [37]. Unfortunately version
1.4 of RandR is not fully supported by latest version of the proprietary
NVIDIA driver for the graphics cards in our system [38] at the time
of implementation. Also, using Xinerama presents severe performance
and synchronization issues.

We will discuss these performance and synchronization issues,
and how our ‘tiled visualization’ approach overcomes them, in Sec-
tions 4.3.1 and 4.3.2 respectively.

4.3.1. Displaying framebuffers spanning multiple graphics cards
A main problem with the Xinerama approach when combined with

the use of OpenGL for rendering, is that addressing individual GPUs is
no longer possible, and that one relies on the NVIDIA driver to (eventu-
ally) distribute the OpenGL command stream between the GPUs. With
regard to the NVIDIA implementation of OpenGL it appears in practice,
to the best of our knowledge, that one GPU is made responsible of per-
forming all OpenGL rendering, after which the resulting framebuffers
are pushed to the other GPUs. As a consequence, the other GPUs do not
contribute to the rendering and essentially sit idle, and, secondly, the
transfer of resulting framebuffers to the other GPUs are subject to PCI
Express (PCIe) latency and bandwidth limitations.

To address these challenges, we propose and implement a ‘tiled
visualization approach’ in which each GPU in the tiled display system
renders the part of the visualization to be displayed on the monitors
directly attached to it. This is achieved by creating a separate X
screen for each GPU present in the system. Each GPU visualizes and
displays the data residing on it, without transferring computed data nor
rendered framebuffers to other parts of the system. This significantly
reduces the amount of PCIe bandwidth utilization for each GPU. This
manifests itself in particular for increasing image resolutions, where
order of magnitude performance differences are seen compared to CPU
and Xinerama GPU implementations that do require framebuffers to be
transferred to different GPUs. Additional benefits of this approach are
that by individually addressing the different GPUs, we can potentially
reduce tearing artifacts between different monitors (see Section 4.3.2),
and that the computational power provided by all GPUs can be em-
ployed to scale to the high resolution of the tiled display system (see
Section 4.4).

Implementation details. We use the existing support at the level of the
graphics-card driver, in our case the proprietary NVIDIA driver, to
provide for each graphics card a single framebuffer and X screen that
spans the monitors connected to that card. As such we end up with one
framebuffer per graphics card, in our case each addressing a column of
monitors in the tiled display system.

A separate CPU thread is created for each of the GPUs, which
will create the corresponding OpenGL context and execute the display
loop described in Section 4.2 to update the contents of the distributed
framebuffers. Each framebuffer is stored in an OpenGL Pixel Buffer
Object (PBO) and is displayed on the monitors connected to a certain
GPU by setting the PBO as the source of an OpenGL texture that is
drawn to a window spanning all monitors connected to that particular
GPU. This window is configured to be a double-buffered drawable. As
such, all drawing occurs to an invisible back-buffer and the contents of

Displays 73 (2022) 102164G.G. Brinkmann et al.
Fig. 6. Example of tearing artifacts when using Xinerama.

this buffer are only displayed once its contents are exchanged with the
visible front-buffer through a bufferswap. This bufferswap completes
the display loop, which then proceeds with its next iteration. Each GPU
will be operating on its own OpenGL (and CUDA) datastructures.

In order to successfully implement the proposed approach, it is
crucial to choose the appropriate X client library. The multi-threading
support of Xlib [39] was found to be insufficient.1 Therefore, we turned
to the ‘X protocol C-language Binding’ (XCB) [40] library, which did not
present these issues. Using XCB, it was possible to address the X server
from all threads through a single connection. Moreover, for a coherent
visualization without tearing artifacts, the threads are required to be
synchronized, which will be discussed next.

4.3.2. Monitor and input synchronization
To ensure a coherent image on the tiled display system, updates to

the monitors in the system need to synchronize to both their vertical
refresh, as well as to updates to the other monitors in the system. If this
is neglected, moving imagery can result in discontinuities, that appear
as horizontal or vertical tearing artifacts between past and current input
to the display. An example of such vertical tearing artifacts can be seen
in Fig. 6. For our study we do not consider synchronizing updates to the
monitors with their vertical refresh, but rather focus on synchronizing
updates between the sets of monitors connected to different graphics
cards. We deem the latter to be of greatest importance in ensuring a
coherent image across the different monitors.

As discussed in the preceding section, the framebuffer for our dis-
play system is distributed between the different GPUs, and a separate
display loop is executed for each GPU in a distinct CPU thread. We
will refer to these threads as display threads. These display threads are
executed in parallel. Updates to the different GPUs that are performed
by these separate display threads have to be synchronized to ensure a
coherent image across the wall-sized display.

Next to the display threads, the system foresees in a separate event
thread that handles user input such as keyboard and mouse events.
These events control the current view-state, i.e. the part of the network
that should be visualized on the tiled display. Updates to the view-state
from the event thread can occur interleaved with reads by the display
threads, during the generation of a single video frame. For example,
imagine that for a given frame the display thread controlling GPU 2
first reads the view state. Next, the view-state is updated from the event

1 Although we explicitly enabled multi-threading support through the
XInitThreads function, we observed that a call to XNextEvent, to
retrieve events from the event-queue, blocked all display threads. This could
not be resolved by using a distinct connection to the X server for each of the
threads.
7

thread, after which the display thread controlling GPU 1 read the view-
state. If this occurs the different display threads no longer agree on
the part of the network that should be visualized, each working on a
different version of the view-state. This causes discontinuities in the
visualization, similar to tearing.

Implementation details. To synchronize updates to monitors that con-
nect to different GPUs, we synchronize the OpenGL bufferswap across
the different CPU threads executing the display loops in parallel. A
thread-barrier is used to block each thread from advancing until all
threads are ready to perform the bufferswap. However, by default the
NVIDIA driver synchronizes the OpenGL bufferswap operation for a
given GPU to the vertical refresh of one of the monitors attached to
it [41]. If the monitors selected for this across different GPUs are
not synchronized in terms of their vertical refresh, this can introduce
delays between the bufferswaps on different GPUs. These delays can
take up to 16.67 ms, assuming a refresh at rate of 60 Hz. Hence we
disable the synchronization between bufferswap and vertical refresh
via the EXT_swap_control [42] extension to OpenGL. The image
corruption introduced by this is relatively minor. Besides, it potentially
allows for significant improvements in the framerate that is achieved,
given that the bufferswap operation no longer waits for the next refresh
of one of the monitors.

This inter-GPU synchronization approach leaves room for further
improvement, since it only synchronizes the initiation of the bufferswap
processes for different graphics cards on the CPU, rather than the actual
bufferswap operations which occur on the graphics cards. For our target
system, it appeared impossible to enforce a synchronized bufferswap at
the level of the graphics card. The NVIDIA provided NV_swap_group
[43] OpenGL extension that accounts for this, was not available on the
consumer-grade GeForce graphics cards we use.

The thread-barrier is also used to solve the synchronization of the
view-state. Similar to the framebuffers, two copies of the view-state
are maintained. The event thread only accesses one copy, the ‘event-
view-state’, which it updates continuously based on user input. The
other copy, the ‘display-view-state’, is used by all display threads to
determine what needs to be drawn to the display. A single display
thread copies the event-view-state to the display-view-state, once all
display threads have reached the thread-barrier. Display threads are
released from the barrier only after this copy completes, guaranteeing
that all display threads used the same view-state.

4.4. Distributing network visualization over multiple GPUs

In initial experiments we found that the majority of the network
visualization time is spent on ForceAtlas2 layout computation and
on drawing the resulting layout. Given that we have multiple GPUs
available in our target system due to the fact that these are required
to attach the large number of monitors, we can improve the perfor-
mance by extending the ForceAtlas2 GPU implementation and network
renderer to distribute the work over multiple GPUs. As a consequence
of the improved performance, we can scale our network visualization
approach to larger networks.

4.4.1. Distributed ForceAtlas2
Our objective in modifying ForceAtlas2 to use multiple GPUs is

to exploit the increased processing power provided by multiple GPUs,
rather than using the increased amount memory that is available. This,
given that the former limits the size of networks that can be visual-
ized interactively in real-time. For example, the email-EUAll network,
with 224,832 nodes and 339,924 edges, requires at most 100 MiB of
memory, which is approximately 5% of the memory available on a
single NVIDIA GTX660 graphics card. As such, we allocate a copy of all
datastructures on each GPU. Besides simplifying our implementation,
duplicating data across different GPUs also reduces the need for com-
munication between GPUs, potentially improving performance. Only

Displays 73 (2022) 102164G.G. Brinkmann et al.
the partial results computed by each GPU need to be transferred to the
other GPUs.

Initial experiments prior to modification of the ForceAtlas2 GPU
implementation showed that force approximation using the Barnes–Hut
algorithm accounts for approximately 80% of the running time, on av-
erage (see Section 5.3.2 for a validation of the workload composition).
Hence, we initially focused on utilizing multiple GPUs to improve the
performance of the force approximation component of ForceAtlas2. In
order to do so, we adapted the existing force approximation code [27]
that is used in our ForceAtlas2 implementation, to run on multiple
GPUs.

The distributed ForceAtlas2 algorithm can be seen in Algorithm
2. In this algorithm, the repulsive force approximation computation
was distributed between GPUs by partitioning the network’s nodes into
equally sized parts, and assigning a different part to each GPU. After
each GPU has sorted all nodes according to their spatial proximity, each
GPU will perform the repulsive force approximation computation for
its assigned part. By doing so, nodes assigned to the same streaming
multiprocessor on a given GPU are in spatial proximity of each other.

As described by the authors of the force approximation code [27],
this is important to achieve good performance. Note that our work
distribution does not assign the nodes displayed by a given GPU to
that same GPU for repulsive force approximation. Although this would
allow for true in situ visualization, it would pose a number of problems.
For example, if nodes move between monitors connected to different
GPUs, either as a result of user interaction or as the result of layout
process, they would need to be assigned to a different GPU. Especially
during the initial iterations of the layout algorithm, which involves
large displacements for most nodes, this would result in significant
amounts of inter-GPU communication. Besides, distributing nodes to
different GPUs based on their location in the layout would not always
allow for a balanced computational load between the different GPUs.

After approximating the repulsive forces in a distributed manner,
the results are reduced to a master GPU. The global speed update and
node displacements are performed on the master GPU, after which the
new node positions are broadcasted to the other GPUs, such that each
GPU again holds an up-to-date copy of all data. Given that from our
initial experiments followed that speed-update and node displacement
comprise a negligible fraction of the total iteration duration, we did
not consider distributing them between the GPUs to focus our effort
on distributing the parts of the computation forming the scalability
bottleneck.

4.4.2. Distributed network rendering
Rendering network drawings comprises approximately 46% of the

visualization time, of which 45% is due to the time spent on drawing
the network’s edges, see also Section 4.2. As such, we also distributed
the network renderer across multiple, which comprises the blue boxes
in Fig. 5(b). As for the distributed ForceAtlas2 implementation, all
datastructures are duplicated on the different GPUs.

To distribute the render work across GPUs in general, the layout
space was partitioned into equally sized columns, and each GPU was
assigned a column for which to render the network drawing. As the first
step, on each GPU the view uniform is updated which causes vertices to
be translated to reflect the partitioning of the layout space. Secondly,
each GPU will issue commands to render all nodes and edges. Due to
the updated view uniform, each GPU will discard vertices which are
part of the layout space assigned to other GPUs, via vertex clipping in
the OpenGL pipeline. Finally, each GPU will perform a buffer swap.
Summarizing, distribution is achieved by issuing commands for all
nodes and edges to each GPU, and relying on the OpenGL pipeline
to discard unnecessary work. This can also be seen in Fig. 7. In the
case of BigEye three parts are used that correspond to three columns of
monitors, where each column of monitors is attached to a single GPU.
8

4.5. Network visualization on a tiled display system

To realize interactive network visualization on BigEye, we com-
bine the multi-GPU network layout and rendering implementation,
described in Section 4.4, with the tiled visualization approach described
in Section 4.3. The resulting architecture is shown in Fig. 7. Three
display loops, that run on different CPU threads, each address one of
the GPUs in the system. The X window and GL context for each of the
display loops is setup using XCB. For each GPU, the display loop repeat-
edly advances the layout algorithm. The CUDA implementation of the
layout algorithm outputs the node positions directly into an OpenGL
datastructure using CUDA-OpenGL interop. Subsequently, the part of
the layout to be displayed on connected monitors is rendered and
displayed. An additional synchronization point between the threads is
required, besides the thread-barrier that synchronizes the bufferswap.

The reduction step is introduced due to the work distribution used in
the ForceAtlas2 implementation, as is detailed in Algorithm 2. Strictly
seen the computation of the layout does now no longer happen fully
‘in situ’. As will be described in Section 5.3.2 the performance benefits
of using multiple GPUs outweighs the time required to exchange the
results, which comprises a negligible part of the total duration of the
display loop.

4.6. Interaction

In order to be able to test and assess the interactive capabilities
of our network visualization system we implemented a number of
interactions. All interactions were controllable by means of standard
X keyboard and mouse events. Besides simplifying development, this
provides an interface that many input devices can target. Basic nav-
igation, i.e. panning and zooming, was implemented by means of
mouse dragging and mouse scrolling, respectively, as well as via the
keyboard’s arrow-keys and the +/– keys. Next, we enabled control over
a number of the network layout algorithm’s parameters, as well as
parameters for the network renderer, through the keyboard. As such
users can adapt the scalars used for repulsive and gravitational forces
during the layout process, and adjust the opacity of nodes and edges.
The network renderer can also be set to color nodes based on their
degree. Finally, we added two special interaction modes:

1. Local repulse mode, causing the mouse pointer to act as a re-
pulsive force. Nodes will move away from the pointer, with a
displacement proportional to their distance to it and a keyboard-
controlled scalar. Using the local repulse mode, it is possible to
destabilize the layout locally, potentially causing it to converge
to a different configuration.

2. Local heat mode, causing the local speed to increase for nodes
near the mouse pointer. This increases the distance by which
nodes around the pointer are displaced. We expect it can also
aid to further develop certain parts of the layout that may have
converged to a sub-optimal layout.

Fig. 8 depicts our ‘‘BigEye’’ system. A standard keyboard and mouse
do not prove a natural form of interaction with such a wall-sized
display. Therefore, we evaluated the use of a Nintendo Wii remote as
input device for our system. The WiiMote connects to the system via
Bluetooth and reports on button presses, its acceleration along three
dimensions and on its position in relation to infrared light sources that
it tracks using an embedded camera. The latter allows the position
of the WiiMote to be determined in relation to a ‘sensor bar’, which
contains a number of infrared light sources. In our system the sensor
bar is mounted underneath the middle column of displays.

The open source XWiimote [44] software was used to convert
WiiMote data into keyboard and mouse events to be processed by our
system. We configured the X input driver provided by XWiimote such
that the mouse pointer followed the location to which the WiiMote was

Displays 73 (2022) 102164

9

G.G. Brinkmann et al.

Fig. 7. Network visualization on BigEye using the tiled visualization approach, implemented using multiple threads. Green boxes correspond to calls to the CUDA API, blue boxes
to calls to the OpenGL API. Event-processing commands are shown in purple. Dotted lines are branches taken when the application should exit.

Fig. 8. The resulting network visualization application running for two different networks on BigEye. Bottom-right image depicts the local repulsion mode.

Displays 73 (2022) 102164G.G. Brinkmann et al.
Algorithm 2 Pseudocode for a distributed version of the ForceAtlas2 graph layout algorithm shown in Algorithm 1.
Input: Graph 𝐺 = (𝑉 ,𝐸), 𝑛 (number of GPUs), 𝑖𝑡𝑚𝑎𝑥 (number of layout iterations), 𝑘𝑔 (gravitational force scalar), 𝑘𝑟 (repulsive force scalar), 𝜃 (Barnes–Hut
accuracy)
Output: For each 𝑣 ∈ 𝑉 , a position 𝐩𝑣 ∈ R2.

1: 𝑔𝑙𝑜𝑏𝑎𝑙_𝑠𝑝𝑒𝑒𝑑 ← 1.0 ⊳ Initialize variables
2: for all 𝑣 ∈ 𝑉 do
3: 𝐩𝑣 ← random()
4: 𝐟𝑣 ← (0.0, 0.0)⊤ ⊳ Net force on node 𝑣
5: 𝐟 ′𝑣 ← (0.0, 0.0)⊤ ⊳ 𝐟 ′𝑣 is 𝐟𝑣 of preceding iteration
6: end for
7: for 𝑗 = 1 → 𝑛 do ⊳ Copy graph to all GPUs
8: Transfer (𝑉 ,𝐸),𝐩, 𝐟 , 𝐟 ′ from 𝐶𝑃𝑈 to 𝐺𝑃𝑈𝑗
9: end for

⊳ Start layout process
10: for 𝑖 = 1 → 𝑖𝑡𝑚𝑎𝑥 do
11: parfor 𝑗 = 1 → 𝑛 do ⊳ Perform on all GPUs in parallel
12: BH.build() on 𝐺𝑃𝑈𝑗 ⊳ (Re)build Barnes–Hut tree on all GPUs
13: parfor 𝑚 = 1 → |𝑉 | do
14: 𝐟𝑣𝑚 ← 𝐟𝑣𝑚 − (𝑘𝑔 ∗ (𝑑𝑒𝑔(𝑣𝑚) + 1) ∗ 𝐩𝑣𝑚) ⊳ (Strong) Gravity
15: end parfor
16: Sort 𝑉 based on spatial proximity.
17: parfor 𝑚 = ((𝑗 − 1) × ⌊|𝑉 |∕𝑛⌋) → max(𝑗 × ⌊|𝑉 |∕𝑛⌋, |𝑉 |) do
18: 𝐟𝑣𝑚 ← 𝐟𝑣𝑚 + (𝑘𝑟 ∗ BH.force_at(𝐩𝑣𝑚 , 𝑑𝑒𝑔(𝑣𝑚), 𝜃)) ⊳ Repulsion
19: end parfor
20: parfor 𝑚 = 1 → |𝑉 | do
21: parfor 𝑤 ∈ neighbors(𝑣𝑚) do
22: 𝐟𝑣𝑚 ← 𝐟𝑣𝑚 + (𝐩𝑤 − 𝐩𝑣𝑚) ⊳ Attraction
23: end parfor
24: end parfor
25: end parfor
26: for 𝑗 = 2 → 𝑛 do ⊳ Reduction: Aggregate results to master
27: Transfer {𝐟𝑣𝑚 ∣ 𝑚 ∈ [(𝑗 − 1) × ⌊|𝑉 |∕𝑛⌋,max(𝑗 × ⌊|𝑉 |∕𝑛⌋, |𝑉 |)]} from 𝐺𝑃𝑈𝑗 to 𝐺𝑃𝑈1
28: end for
29: Update 𝐟 on 𝐺𝑃𝑈1 with 𝐟𝑣

⊳ Update speed and displacement on master GPU
30: 𝑔𝑙𝑜𝑏𝑎𝑙_𝑠𝑝𝑒𝑒𝑑 ← UpdateGlobalSpeed()
31: parfor 𝑣 ∈ 𝑉 do
32: 𝐩𝑣 ← local_speed(𝑣) ∗ 𝐟𝑣 ⊳ Displacement
33: 𝐟 ′𝑣 ← 𝐟𝑣
34: 𝐟𝑣 ← (0.0, 0.0)⊤

35: end parfor
36: for 𝑗 = 2 → 𝑛 do ⊳ Broadcast node positions to all GPUs
37: Transfer 𝐩, 𝐟 , 𝐟 ′ from 𝐺𝑃𝑈1 to 𝐺𝑃𝑈𝑗
38: end for
39: end for
i
g
E
M
c
P
i

m
f
1
w
c
D

pointed, and mapped the left mouse button to the button on the back
of the WiiMote, which is controlled using the index finger. Buttons on
the top of WiiMote were configured to control zooming, the opacity
of nodes and edges, and the two interaction modes described in the
preceding paragraph.

5. Experiments

In order to evaluate the effectiveness of our distributed implemen-
tation of the network visualization code and the tiled visualization
approach proposed in Section 4, we conducted a number of experi-
ments. After describing the experimental setup in Section 5.1, we first
evaluate the effectiveness of the tiled visualization approach and in
situ rendering in Section 5.2. Then, in Section 5.3 we evaluate the per-
formance and scalability of the developed distributed ForceAtlas2 and
network renderer implementations. Finally in Section 5.4 we assess the
complete system in which the distributed visualization code and tiled
visualization approach are combined. Findings regarding interaction
are listed in Section 5.5. Finally, in Section 5.6 we relate to previous
work and consider directions for future research.
10

k

5.1. Experimental setup

Our experimental setup consists of the ‘BigEye’ tiled display system,
which is our target system for this study and is depicted in Fig. 3,
consists of twelve 47" Philips BDL4777XL monitors with a resolution of
1920 × 1080 pixels, that are arranged in a 3 × 4 grid. The four monitors
n each column are connected to a single NVIDIA GeForce GTX660
raphics card via DVI-I, DVI-D, HDMI and DisplayPort connections.
ach graphics card is equipped with 1999MiB of GDDR5 memory. An
SI Big Bang-Marshal (MS-7670) motherboard hosts the three graphics

ards, which are connected to it using the PCI Express v2 bus, with 8
CIe lanes available to each card. Note that the graphics cards are not
nterconnected via other means, such as an NVIDIA SLI bridge.

The NVIDIA GeForce GTX660 GPU implements the NVIDIA Kepler
icroarchitecture and is composed of 960 CUDA cores. The base clock

requency is 980 MHz and the chip can attain a peak clock frequency of
098 MHz. The system is equipped with an Intel Core i7-2600K CPU,
hich consists of 4 cores (8 threads), 8 MiB shared L3 cache and is

locked at 3.4 GHz with a boost clock of 3.8 GHz. Further, 16 GiB of
DR (1333 MHz) memory is available.

The network datasets used in our experiments stem from well-
nown sources commonly used in network science, in particular the

Displays 73 (2022) 102164G.G. Brinkmann et al.
Table 1
Obtained framerates (fps) for Mandelbrot visualization on BigEye, using
both the single-GPU Xinerama baseline and the three-GPU tiled approach.

Baseline Tiled approach (speedup)

Worst case 4.4 25.2 (5.7×)
Average case 6.5 47.9 (7.3×)

KONECT [5] (http://konect.cc) and SNAP [45] (https://snap.stanford.
edu/data) repositories. The datasets span a range of different sci-
entific domains, and include for example social networks, scientific
collaboration networks, road networks, protein interaction networks
and communication networks. For each network used, we list basic
topological properties (as discussed in Section 2.1) in Table 2. All
properties were computed using NetworkX (version 2.1) [46]. These
properties demonstrate how we experiment with networks of varying
size in terms of number of nodes and edges, as well as varying sparse-
ness measured through the average degree. In addition, we analyze a
number of extremely large network datasets (with up to 3 million nodes
and 117 million edges) in a specific set of scalability experiments in
Sections 5.3.2 and 5.3.3, for which properties are listed in Table A.5.
The software installation consists of Ubuntu 16.04.3 LTS, which is
configured to use the Xfce Desktop Environment and a regular X
implementation. Version 9.2.148 of the CUDA toolkit is installed, and
the proprietary NVIDIA driver (version 396.37) is used.

For our experiments of the multi-GPU implementation’s scalability,
we use a dedicated machine that is equipped with six NVIDIA GeForce
GTX 980Ti GPUs. These GPUs are based on the NVIDIA Maxwell
microarchitecture and each comprise 2816 CUDA cores running at a
default base block frequency of 1000 MHz. The software installation of
this system consists of CentOS 7.5, version 396.26 of the proprietary
NVIDIA driver and version 9.2.88 of the CUDA Toolbox.

5.2. Effectiveness of tiled visualization

In this section, we evaluate our implementation of the tiled visual-
ization approach described in Section 4.3 in comparison to a standard
visualization implementation that runs across all monitors of the BigEye
system by means of Xinerama. When Xinerama is used, one GPU gen-
erates the entire visualization which is subsequently transferred over
the PCIe bus for display on the monitors connected to other GPUs. We
therefore hypothesize that our tiled visualization, should reduce PCIe
bus traffic and improve framerates. Additionally, we expect our efforts
to achieve synchronization, as described in Section 4.3.2 to achieve a
coherent image across all monitors without tearing artifacts occurring
as a result of moving imagery. In order to perform these comparisons
we use an application that computes and visualizes Mandelbrot [47]
on the GPU, that we have modified to implement our tiled approach.
Mandelbrot is a straightforward embarrassingly parallel application,
which allows us to evaluate the tiled visualization approach without
external influences.

Regarding improvement in framerate, we consider both the worst-
and average-case framerates achieved by both implementations. The
worst-case performance is determined by viewing a part of the Mandel-
brot set that requires iteration up to 𝑛𝑚𝑎𝑥 for all pixels. We approximate
the average-case framerate by displaying the whole Mandelbrot set at
a particular setting. Note that we disable synchronization between the
OpenGL bufferswap and the vertical refresh of the monitors for both
implementations. Table 1 provides our results.

As the results demonstrate, the tiled visualization approach im-
proves performance significantly. We observe an average performance
improvement of 6.5× between the two cases. The average case fram-
erate of 48 fps enables more responsiveness than the framerate of
7 fps achieved using the baseline Xinerama implementation. These
11

performance improvements are in part due to using all GPUs in the
Fig. 9. PCIe utilization for each GPU during two runs of the Mandelbrot visualization,
once using Xinerama and once using the tiled visualization approach.

system to compute the Mandelbrot drawings, without requiring inter-
GPU communication over the PCIe bus to display resulting drawings
on all monitors. To determine whether the inter-GPU communica-
tion has indeed reduced, we compare the PCIe utilization of each
GPU for both implementations. We obtain this metric using nvidia-
settings [48] which reports it as part of the GPUUtilization
attribute. The results are depicted in Fig. 9. As can be seen in the figure,
in the case of Xinerama all GPUs show a PCIe utilization between 40
and 60%. Our tiled visualization approach reduces this to 5% for all
GPUs, signifying that the inter-GPU communication has almost been
fully eliminated and as such contributing to the improved framerate.

To evaluate whether our approach prevents tearing artifacts be-
tween different monitors, we synchronize the calls that initiate the
OpenGL bufferswap for each of the GPUs. As discussed, this approach
leaves room for improvement since it only synchronizes the initiation of
the bufferswap process on the CPU rather than the actual bufferswap
on the GPU. Still, our approach significantly reduces tearing artifacts
compared to the implementation using Xinerama. When operating at
high framerates, only slight tearing artifacts between different monitors
could be observed. Tearing artifacts can be more significant when
framerates were reduced. The latter is an additional motivation to
disable the synchronization of the OpenGL bufferswap and the vertical
refresh of selected monitors.

5.3. Distributed network visualization using multiple GPUs

To assess the effectiveness of the distributed ForceAtlas2 GPU imple-
mentation and distributed network renderer described in Section 4.4,
we first establish the baseline performance for the GPU implementation
of ForceAtlas2, as described in Section 2.4, and the GPU accelerated
network rendered, described in Section 4.2. After that, we analyze the
workload composition of the algorithm when run on a single GTX660
GPU compared to on two GTX660 GPUs. Subsequently, we describe a
number of scaling experiments on the dedicated multi-GPU machine
equipped with six 980Ti GPUs. The aim of these experiments is to
establish to what extent the distributed algorithms can improve the
performance when more GPUs are utilized. Because the peak perfor-
mance of the GPUs in this system is significantly greater than the peak
performance of the GPUs installed in BigEye, we do also consider a set
of larger networks for these experiments.

5.3.1. Baseline GPU accelerated layout and rendering performance
The baseline experiments were conducted on BigEye using a single

NVIDIA GTX660 graphics card. We use a range of real-world networks

for our experiments, which are further detailed in Appendix A. We

http://konect.cc
https://snap.stanford.edu/data
https://snap.stanford.edu/data
https://snap.stanford.edu/data

Displays 73 (2022) 102164G.G. Brinkmann et al.

n
f
r

a
t

Table 2
Network datasets, their topological properties (number of nodes, edges and average degree) and running time on a single GTX660 GPU (the ForceAtlas2 layout (𝑡𝑓𝑎2), drawing
odes (𝑡𝑟𝑛) drawing edges (𝑡𝑟𝑒), and total running time (𝑡𝑡𝑜𝑡𝑎𝑙)). The final two columns denote the fraction of layout time spent in the Force Approximation step for single GPU and
or dual GPU runs. Times are in milliseconds, and averaged over the first 500 iterations. Standard deviations are denoted between parentheses and the dashed line indicates the
eal-time threshold. Network data was obtained from KONECT [5] and SNAP [45] (see Section 5.1).
Network Nodes Edges Avg. deg. 𝑡𝑓𝑎2 𝑡𝑟𝑛 𝑡𝑟𝑒 𝑡𝑡𝑜𝑡𝑎𝑙 𝑡𝐹𝐴 single GPU 𝑡𝐹𝐴 two GPUs

ppi_dip_swiss 3,766 11,922 6.3 14.16 (0.93) 0.52 (0.06) 22.35 (7.67) 37.03 1.24 (76.08%) 1.17 (74.32%)
petster 1,788 12,475 14.0 3.84 (0.32) 0.21 (0.03) 2.90 (1.38) 6.95 0.91 (77.41%) 0.87 (76.25%)
CA-GrQc 4,158 13,422 6.5 1.79 (0.09) 0.13 (0.03) 1.92 (0.62) 3.85 1.26 (75.95%) 1.19 (74.18%)
PGPgiantcompo 10,680 24,316 4.6 24.26 (1.12) 0.78 (0.08) 42.26 (5.57) 67.30 2.80 (77.33%) 1.48 (63.29%)
ca-HepTh 8,638 24,806 5.7 3.68 (0.19) 0.19 (0.03) 4.44 (1.17) 8.31 2.83 (80.06%) 1.49 (66.68%)
dip 19,928 41,202 4.1 7.85 (0.36) 0.32 (0.04) 8.28 (2.14) 16.45 6.20 (81.98%) 3.38 (70.36%)
Newman-Cond_mat 22,015 58,578 5.3 9.64 (0.23) 0.34 (0.05) 16.14 (2.19) 26.12 7.96 (84.59%) 4.06 (72.95%)
ca-CondMat 21,363 91,286 8.5 8.28 (0.39) 0.33 (0.04) 15.85 (4.44) 24.46 6.55 (80.99%) 3.34 (67.70%)
wiki-Vote 7,066 100,735 28.5 3.33 (0.21) 0.17 (0.03) 32.77 (4.10) 36.26 2.38 (74.94%) 1.36 (62.35%)
ca-HepPh 11,204 117,619 21.0 4.64 (0.19) 0.21 (0.02) 26.27 (5.06) 31.13 3.45 (76.93%) 1.87 (63.71%)
ppi 37,333 135,618 7.3 1.82 (0.05) 0.13 (0.03) 3.67 (0.44) 5.62 11.20 (80.44%) 5.92 (67.62%)
p2p-Gnutella31 62,561 147,877 4.7 1.34 (0.05) 0.11 (0.03) 3.99 (0.42) 5.44 19.39 (81.47%) 9.80 (68.05%)
GoogleNw 15,763 148,585 18.9 6.50 (0.35) 0.26 (0.03) 42.64 (10.11) 49.40 4.88 (78.86%) 2.94 (68.63%)
email-Enron 33,696 180,811 10.7 12.56 (1.13) 0.46 (0.04) 44.89 (9.98) 57.91 9.62 (78.72%) 4.98 (64.77%)
ca-AstroPh 17,903 196,972 22.0 7.22 (0.25) 0.29 (0.03) 43.51 (7.70) 51.02 5.50 (78.34%) 3.28 (67.56%)
Brightkite 56,739 212,945 7.5 22.80 (1.22) 0.75 (0.07) 44.64 (9.65) 68.18 18.20 (81.41%) 9.73 (69.18%)
email-EuAll 224,832 339,924 3.0 100.6 (25.76) 2.73 (0.11) 87.69 (37.80) 191.06 86.19 (83.79%) 42.85 (71.49%)
Cit-HepTh 27,400 352,021 25.7 11.60 (0.40) 0.41 (0.05) 74.53 (16.44) 86.54 9.06 (79.70%) 5.13 (68.17%)
soc-Epinions1 75,877 405,738 10.7 30.90 (1.87) 0.93 (0.09) 123.24 (19.09) 155.08 24.37 (80.00%) 12.34 (66.15%)
Cit-HepPh 34,401 420,784 24.5 14.26 (0.55) 0.49 (0.05) 63.14 (19.03) 77.88 11.40 (81.44%) 5.86 (68.47%)
soc-Slashdot0902 82,168 504,230 12.3 35.62 (1.40) 1.02 (0.08) 182.22 (12.45) 218.86 27.94 (79.62%) 14.58 (66.31%)
measured the average iteration duration over the first 500 iterations
of the display loop (Fig. 5(b)), setting 𝑓𝑟 = 80, 𝑓𝑔 = 1 and 𝜃 = 1
with the gravity setting of ForceAtlas2 set to ‘strong’.2 Drawings were
rendered at a resolution of 5760 × 4320 pixels, matching the resolution
of the BigEye tiled display system we use for this study. Note that we do
not display drawings, but only consider the time required to generate
them. Table 2 presents the results, in addition to common topological
properties of the network datasets, as discussed in Section 2.1.

The results in Table 2 demonstrate that the majority of the time in
the display loop is spent on computing the layout (𝑡𝑓𝑎2) and on drawing
the edges (𝑡𝑟𝑒). The time required to draw the nodes (𝑡𝑟𝑛) is small, taking
only a few percent of the total iteration time for most networks. We
did not expect the edge drawing time to constitute a significant part of
the total visualization time. For future implementations of the network
renderer we would consider the use of OpenGL triangle primitives to
draw the edges, instead of using the provided line primitives. Given the
prevalence of triangle drawing in most 3D computer graphics applica-
tions, we hypothesize that this primitive might yield better performance
than the line primitive.

5.3.2. Workload composition of distributed ForceAtlas2
As Table 2 displayed, a significant amount of the time is spent

on computing the layout. In order to characterize the workload com-
position of the layout computation, we measured the running times
for individual components of the layout algorithm, using the NVIDIA
nvprof profiler tool [49], for a number of datasets. The results for
the baseline single-GPU implementation demonstrate that force approx-
imation using the Barnes–Hut algorithm accounts for approximately
80% of the running time, as displayed in the second to last column of
Table 2. Time spent on the other components is listed in Table B.6,
demonstrating how speed-update and node displacement comprise a
small fraction of the total iteration duration and were therefore not
considered for distribution over multiple GPUs.

To determine how the multi-GPU implementation of ForceAtlas2
affects the fraction of time spent in different components of the algo-
rithm, the last column of Table 2 presents the results for the multi-GPU
implementation running on two of the GPUs in BigEye. As can be

2 The gravity setting is a ForceAtlas2-specific setting that allows the user to
dapt the force-model employed by the algorithm. For more details we refer
he reader to [15].
12
seen, although the time spent in the force approximation component
decreased from 80% to 68% on average, compared to the single GPU
results, it still comprises the majority of the running time for a single
iteration of ForceAtlas2.

5.3.3. Scalability of distributed ForceAtlas2 implementation
In our experiments we measure the speedup of the average iteration

duration, over the first 500 iterations of the layout algorithm, using up
to six GPUs. We use the same algorithm settings as before: 𝑓𝑟 = 80, 𝑓𝑔 =
1, 𝜃 = 1 and set the gravity setting of ForceAtlas2 to ‘strong’. Fig. 13
depicts the speedups we observed, as well as the speedup that would
result from a linear speedup in the force approximation component
that we distribute across multiple GPUs. The latter is derived from
the average fraction of time spent on force approximation, across the
different networks we evaluate, and denoted as ‘Linear Speedup of
82.91%’.

As our results in Fig. 13 depict, the speedup of ForceAtlas2 we
obtained for the different networks generally follows the trend cor-
responding to the speedup that would follow from a linear speedup
of the force approximation component. The speedup gained by using
additional GPUs diminishes as the number of GPUs increases, given
that parts of ForceAtlas2 other than the multi-GPU force approximation
start to dominate the layout time. Although this limits the scalability of
our approach, this effect is less severe for our intended use-case with
three GPUs. The obtained speedups generally increase with network
size, which can be explained as the result of an increasing degree of
parallelism being available to the system. Still, the ‘wiki’ and ‘orkut’
networks (see Appendix A for detail), the two largest we consider used
for our experiments, yield small speedups given their size. We attribute
this to the relatively large number of edges in these networks, i.e. their
higher average degree, compared to the other networks. Indeed, as the
single-GPU evaluation in Fig. 10 shows, the ‘wiki’ and ‘orkut’ networks
spend a larger proportion of the layout time on computing attrac-
tive forces between neighboring nodes. Given that only the repulsive
force calculation is distributed between different GPUs, the speedup
we obtain will be less for networks that spend more time in other
components.

5.3.4. Scalability of distributed network rendering
We evaluate the scalability of our distributed rendering approach

using the same machine used to evaluate the distributed implementa-
tion of ForceAtlas2. The same set of networks is used, and we again

Displays 73 (2022) 102164G.G. Brinkmann et al.

t
i
w
t

G
r
i
o
b
t
r
r
b
w
r

t
m
o
T
‘
t

Fig. 10. Fraction of the time spent in different components of ForceAtlas2 for the single GPU implementation. Derived from average running times for the different components
over the first 500 iterations. Colors in the legend below the figure each denote phases of Algorithm 2 as explained in Section 4.4.
Fig. 11. Performance scaling of our multi-GPU network renderer, on a machine
equipped with six NVIDIA GeForce GTX980Ti GPUs. Legend denotes network name
and (|𝑉 |, |𝐸|).

determine the speedup for the average iteration duration over the first
500 layout steps, setting 𝑓𝑟 = 80, 𝑓𝑎 = 1, 𝜃 = 1 and the gravity mode
o ‘strong’. During the layout process, we adapt the view after each
teration to ensure that the layout continues to span the image which
e render. This is important to, for example, ensure that no parts of

he layout get clipped and discarded, which would affect performance.
As our results in Fig. 11 depict, performance scales up to six

PUs without significant saturation for most datasets. Notable are the
educed speedups when using uneven numbers of GPUs. This effect
s strongest when using three GPUs, and it diminishes as the number
f GPUs increases. We explain this as the result of sub-optimal load
alancing between the GPUs. When using an odd number of GPUs,
he layout space is partitioned into an odd number of columns. As a
esult, the center of the layout will be assigned to a single GPU for
endering. Since the layouts that are generated are circular, there might
e a tendency for most edges to cross the center of the layout, which
ould result in an increased amount of work being assigned to the GPU

endering the center of the layout.
Since the majority of the network rendering time consists of drawing

he network’s edges, see Table 2, we would expect networks with
any edges to benefit especially from a multi-GPU implementation

f the network renderer. This is not the pattern revealed by Fig. 11.
o investigate the cause of this, we considered the layouts for the

com-amazon’ and ‘cnr_200’ networks, since these are the networks
hat benefit the most, and the least from a multi-GPU implementation,
13
respectively. Fig. 12 depicts the layouts for both networks. Clearly,
the ‘cnr_2000’ network has more larger clusters than the ‘com-amazon’
network, whereas the ‘com-amazon’ network resulted in a layout that
is not readable, but is uniform. This might explain the scalability
differences for these networks, as the lack of clusters in the ‘com-
amazon’ network results in more uniform load-distribution between
GPUs.

5.4. Network visualization on a tiled display system

The preceding experiments show reasonable to good performance
scaling of our distributed network visualization implementation when
evaluated on six GPUs in dedicated multi-GPU machine. In this sec-
tion, we evaluate the combined effect of our distributed ForceAtlas2
implementation and network renderer on BigEye, using the same set
of real-world networks. Subsequently, this is embedded into the tiled
visualization approach in order to evaluate the final system.

5.4.1. Distributed network visualization on BigEye
The combined performance improvements provided by distributed

visualization approach on BigEye, involving both distributed layout and
rendering, are presented in Table 3. For our experiments we used all
of the three GPUs in BigEye and the same set of real-world networks
used when determining the baseline performance using a single GPU,
of which the results are presented in Table 2. Note that we now enable
peer-to-peer data transfers between the GPUs in BigEye, thus bypassing
CPU memory. This was not possible between all of the GPUs used for
the scalability experiments, which is why we only consider this option
at this point.

As shown in Table 3, the multi-GPU approach provides speedups for
all networks we evaluated. As the network size increases, a speedup
of approximately 1.7× is realized. Consequently, this extends the set
of networks that can be visualized in real-time with the ‘ca-CondMat’,
‘Newman-Cond_mat’ and ‘ca-HepPh’ networks.

5.4.2. Tiled network visualization
As a final step, we embed the distributed network visualization

in our tiled visualization approach and evaluate whether it meets the
demands of real-time visualization for a range of real-world networks.
With real-time visualization, the displayed visualization reflects user
input with the next monitor refresh, making interactive exploration a
reality. In the case of BigEye, this corresponds to achieving a frame-
rate of 60 frames per second (fps). This bounds the time available to
generate a frame to approximately 16.67 ms and as such the combined
running time of the ForceAtlas2 layout algorithm and the network
renderer must remain below 16.67 ms. Note that this bound is lower

Displays 73 (2022) 102164G.G. Brinkmann et al.

i
t

t
a
o
t
a
t
m

e
𝑓

(a) cnr_2000 (b) com-amazon

Fig. 12. Layouts for two datasets, where (a) benefited the least from the multi-GPU implementation and (b) the most. Saturation corresponds to node degree.
Table 3
Average layout (𝑡𝑓𝑎2), render (𝑡𝑟𝑒𝑛𝑑𝑒𝑟) and total iteration times (𝑡𝑡𝑜𝑡𝑎𝑙) obtained using our multi-GPU visualization approach
with three GPUs. Times are in milliseconds, speedups are between parentheses and in comparison to the initial single GPU
implementation. Real-time threshold indicated by dashed line.
Network Nodes Edges 𝑡𝑓𝑎2 (Speedup) 𝑡𝑟𝑒𝑛𝑑𝑒𝑟 (Speedup) 𝑡𝑡𝑜𝑡𝑎𝑙 (Speedup)

CA-GrQc 4,158 13,422 2.00 (0.9×) 1.39 (1.5×) 3.39 (1.1×)
petster 1,788 12,475 1.62 (0.8×) 2.75 (1.5×) 4.37 (1.2×)
ppi_dip_swiss 3,766 11,922 2.00 (0.9×) 2.40 (1.6×) 4.39 (1.3×)
PGPgiantcompo 10,680 24,316 2.73 (1.4×) 1.95 (1.6×) 4.68 (1.5×)
ca-HepTh 8,638 24,806 2.63 (1.4×) 2.65 (1.7×) 5.28 (1.6×)
dip 19,928 41,202 4.99 (1.6×) 5.23 (1.6×) 10.21 (1.6×)
ca-CondMat 21,363 91,286 5.39 (1.5×) 9.33 (1.7×) 14.72 (1.7×)
Newman-Cond_mat 22,015 58,578 5.86 (1.6×) 8.87 (1.9×) 14.73 (1.8×)
ca-HepPh 11,204 117,619 3.45 (1.3×) 13.06 (2.0×) 16.51 (1.9×)
wiki-Vote 7,066 100,735 2.62 (1.3×) 18.91 (1.7×) 21.53 (1.7×)
ppi 37,333 135,618 7.85 (1.8×) 10.51 (2.2×) 18.36 (2.0×)
GoogleNw 15,763 148,585 3.96 (1.6×) 26.01 (1.6×) 29.97 (1.6×)
ca-AstroPh 17,903 196,972 4.57 (1.6×) 25.71 (1.7×) 30.28 (1.7×)
email-Enron 33,696 180,811 7.40 (1.7×) 26.88 (1.7×) 34.28 (1.7×)
p2p-Gnutella31 62,561 147,877 13.48 (1.8×) 24.50 (1.8×) 37.99 (1.8×)
Brightkite 56,739 212,945 12.42 (1.8×) 26.43 (1.7×) 38.84 (1.8×)
Cit-HepPh 34,401 420,784 7.69 (1.9×) 28.65 (2.2×) 36.33 (2.1×)
Cit-HepTh 27,400 352,021 6.96 (1.7×) 39.85 (1.9×) 46.80 (1.8×)
soc-Epinions1 75,877 405,738 17.30 (1.8×) 78.88 (1.6×) 96.19 (1.6×)
email-EuAll 224,832 339,924 51.27 (2.0×) 53.07 (1.7×) 104.34 (1.8×)
soc-Slashdot0902 82,168 504,230 20.05 (1.8×) 106.99 (1.7×) 127.03 (1.7×)
l
r
r

t
a
t
r
a
a
a
p

n practice, since the resulting drawings also need to be transferred to
he framebuffer for display on the system.

We evaluate its performance in comparison to a baseline implemen-
ation, that uses a single GPU for the layout and rendering processes,
nd Xinerama to display resulting visualizations across all monitors
f the tiled display system. The baseline system uses the implemen-
ations of the layout algorithm and the network renderer that served
s the starting point for the multi-GPU variants we discussed in Sec-
ion 4.4. The tiled system uses our tiled visualization approach and the
ulti-GPU network layout algorithm and renderer.

We evaluate both systems on BigEye, comparing the average fram-
rate over the first 500 frames. As for previous experiments, we set
= 80, 𝑓 = 1, 𝜃 = 1 and the gravity setting to ‘strong’. After each
14

𝑟 𝑔 b
ayout step, we update the view such that the entire network drawing
emains on the displays. Table 4 presents our results for a number of
eal-world networks.

As shown in Table 4, the performance improvements obtained using
he tiled visualization framework, over a baseline implementation,
pproach 4.5× as the network size increases. This is in part due to
he multi-GPU implementation of the layout algorithm and network
enderer, as discussed in Section 4.4 and evaluated in Sections 5.3
nd 5.3.4. However, we observe an additional speedup that can be
ttributed to the performance benefits of using the tiled visualization
pproach instead of Xinerama. Real-time visualization at 60 fps is now
ossible for an additional number of the networks, compared to the
aseline implementation.

Displays 73 (2022) 102164G.G. Brinkmann et al.
Fig. 13. Performance scaling of our multi-GPU implementation of ForceAtlas2 on a
machine equipped with six NVIDIA GeForce GTX980Ti GPUs. Legend denotes network
name and (|𝑉 |, |𝐸|).

Table 4
Average framerates (in fps), over the first 500 frames, for the tiled visualization
approach including use of the multi-GPU network layout algorithm and renderer,
in comparison to the baseline (BL) implementation using Xinerama and single-GPU
layouting and redendering.

Network Nodes Edges BL Speedup

CA-GrQc 4,158 13,422 82.04 229.0 (2.8×)
petster 1,788 12,475 64.93 201.0 (3.1×)
ppi_dip_swiss 3,766 11,922 64.91 182.7 (2.8×)
PGPgiantcompo 10,680 24,316 61.29 168.4 (2.7×)
ca-HepTh 8,638 24,806 51.10 155.9 (3.1×)
dip 19,928 41,202 28.07 88.28 (3.1×)
Newman-Cond_mat 22,015 58,578 15.86 62.34 (3.9×)
ca-CondMat 21,363 91,286 16.67 62.26 (3.7×)
ppi 37,333 135,618 11.30 49.85 (4.4×)
ca-HepPh 11,204 117,619 11.69 46.38 (4.0×)
wiki-Vote 7,066 100,735 9.38 45.81 (4.9×)
GoogleNw 15,763 148,585 7.05 33.10 (4.7×)
ca-AstroPh 17,903 196,972 6.86 31.85 (4.6×)
email-Enron 33,696 180,811 6.73 31.01 (4.6×)
p2p-Gnutella31 62,561 147,877 6.20 25.68 (4.1×)
Brightkite 56,739 212,945 5.90 24.37 (4.1×)
Cit-HepPh 34,401 420,784 4.17 23.96 (5.8×)
Cit-HepTh 27,400 352,021 4.03 21.14 (5.2×)
soc-Epinions1 75,877 405,738 2.39 10.74 (4.5×)
email-EuAll 224,832 339,924 2.58 9.64 (3.7×)
soc-Slashdot0902 82,168 504,230 1.68 7.13 (4.2×)

5.5. Interaction

The tiled visualization approach enabled performance levels suit-
able to real-time interaction for a number of the networks we evaluated.
The interactive capabilities of the resulting system are assessed by
implementing a number of interactions using a Nintendo Wii remote.
Since an evaluation of the human computer interaction (HCI) aspects
related to these interactions is beyond the scope of this study, which
focuses rather on the technical challenges related to facilitating inter-
activity, we do not consider any usability experiments. Still, for the
reader’s information, we will report on our personal observations, and
provide a number of videos demonstrating our results on the supporting
web page https://liacs.leidenuniv.nl/~rietveldkfd/tiledvis.

In our experience the WiiMote was effective at allowing users to
navigate through networks. By means of simple point-and-drag gestures
most users of the system were able to navigate around large networks,
to reveal and inspect its substructures. We perceived that the wireless
connectivity provided by the controller, enabling one to freely position
oneself in front of the displays, was both effective and natural whilst
exploring networks. Positioning oneself at distance of the displays
15
improved the contrast between different parts of the network, causing
the overall structure of the network to be better perceivable, most likely
due to the blending of fine structures. The ability to interactively adjust
the opacity of nodes and edges also proved to be valuable in revealing
the structure of the network. This is illustrated in Fig. 14, which depicts
how the structure of dense parts layouts can be revealed by reducing
the opacity of edges.

Regarding the two interaction modes, we found that the local repul-
sion mode indeed allowed users to force parts of the layout to converge
to a different configuration. Based on our specific experience it is not
possible to conclude whether this enables better layouts in general.
However, we did observe an interesting, and unintended, use for the
local repulsion mode. As illustrated in Fig. 15, the local repulsion mode
can be used to arrange nodes based on their degree. When positioned at
the origin of the layout, the local repulsion mode imposes a ‘sorting’ on
the layout, forcing low-degree nodes to the periphery of the layout. This
likely results from the combined effects of gravitational forces and the
local repulsive force. Local repulsion forces nodes away from the origin
of the layout, whereas the gravitational force moves nodes towards
the origin, but with a magnitude proportional to the node’s degree.
The magnitude by which nodes are forced to the periphery of the
layout is thus based on their degree. If a network consists of different
components, the components with a similar topology, are likely to be
positioned in proximity of each other.

The local heat mode proved to be less intuitive to use. Correctly
configuring the temperature offset to be used near the mouse was
important to prevent chaotic displacements of all nodes. Once a correct
setting was found, nodes near the pointer were indeed displaced by
a larger distance than other nodes in the network. However, in our
experience this had no clear effect on the layout quality in this part
of the network.

5.6. Discussion and future research

We consider our results in relation to the previous work on in-
teractive network visualization using tiled display systems that was
discussed in Section 3. We specifically consider the work by Mueller
et al. [8], which also describes a general-purpose interactive network
visualization system.

Mueller et al. consider an eight node cluster-based tiled display
system composed of eight monitors, whereas we consider a single-
node system with three GPUs connected to twelve monitors for the
present study. Although Mueller et al. do not report the resolution of
their system, the photos in the paper do not suggest it exceeds the 25
megapixel resolution of the system considered for the present study.
Mueller et al. report framerates of up to 5 frames per second (fps)
for randomly generated graphs with 8000 nodes and (approximately)
80,000 edges. For a real-world graph of similar size we achieve a
framerate of approximately 60 fps. This corresponds to a performance
improvement of 12×, at the same (but most likely higher) resolution,
using only a single node with three graphics cards. We should note this
improvement is in part due to the more recent hardware used in the
present study, which came to market almost a decade after the study.

The tiled visualization approach enabled performance levels suit-
able to real-time interaction for a number of the networks that we
evaluated. We successfully exploited this possibility in our assessment
using the WiiMote. We consider our results a proof-of-concept, which
is not directly applicable for data-exploration and -analysis. This is
mainly due to the limited number of interactions we implemented.
In the context of the standard ‘overview first, zoom and filter, then
details on demand’ information seeking mantra [4], we now provide
overview for larger networks, but still lack filter and details on demand.
However, we expect the implementation of these to be significantly
less complicated than the performance-related challenges focused on in
this paper, and applicable in the framework we presented. In general

we expect our findings to translate to larger networks on more recent

https://liacs.leidenuniv.nl/~rietveldkfd/tiledvis

Displays 73 (2022) 102164G.G. Brinkmann et al.
(a) Initial opacity for nodes and edges (b) Decreased opacity for edges

Fig. 14. Interactively adjusting the opacity of nodes and edges reveals modular network structure.
(a) Without local repulsion (b) With local repulsion

Fig. 15. The same network visualized with and without a local repulsive force at the origin of the layout. Saturation of node color corresponds to degree.
graphics cards and GPUs, which provide factors of additional compute
units and memory bandwidth. This may further advance the real-time
threshold as well. To conclude this section, we indicate a number of
areas where we expect further improvements can be made.

For future work on the distributed ForceAtlas2 implementation,
we would initially consider improving the performance of the force
approximation component. As Table 2 reveals, the force approximation
component of ForceAtlas2 continues to comprise the majority of the
iteration duration, even after parallelization using multiple GPUs. Fur-
ther performance improvements might also be realized by distributing
additional ForceAtlas2 components, besides the force approximation
computation, across multiple GPUs. As the scalability results in Fig. 13
shows, this is crucial to ensure performance scales when using increas-
ing numbers of GPUs. Distributing the computation of attractive forces
between different GPUs might be considered first to account for dense
networks. Finally, alternative force approximation approaches could be
considered to improve performance. For example, the Bonsai code [50],
16
which is designed to utilize multiple GPUs. However, such codes might
need to be adapted and optimized for operation on a 2-d plane instead
of in 3-d space.

We suggest future work on the network rendering implementation
to focus on two problems. First, the factors limiting the performance
of the edge drawing implementation could be assessed. We hypothe-
size that performance might be improved by using OpenGL triangle
primitives instead of line primitives to draw the edges, given the
prevalence of this procedure in most computer graphics applications.
Second, the multi-GPU implementation could be improved by assuring
a more uniform work distribution between the different GPUs. Given
our results, we would consider partitioning the render work based
on graph topology, e.g. by assigning individual edges and nodes to
GPUs, rather than through the spatial partitioning we employed. The
effect this would have on inter-GPU communication would need to be
considered.

Displays 73 (2022) 102164G.G. Brinkmann et al.
The employed tiled visualization approach has to synchronize up-
dates to the different monitors to ensure a coherent image spanning
all monitors. To this end we synchronize the initiation of the OpenGL
buffer swap procedure for different GPUs, on the CPU. As discussed
this is a sub-optimal approach, since it synchronizes the initiation of
the buffer swap process rather than the actual buffer swap. Given the
importance of image coherency we deem improvements in this area
valuable.

With the purpose of evaluating the interactive capabilities of our
system, we implemented a number of interactions, enabling users of the
system to navigate the network and to locally destabilize it through the
‘local repulse’ and ‘local heat’ modes. There are various other interac-
tions that we did not consider here, which would yield a significant
improvement in the system’s data-exploration capabilities, based on
our experience with the system and users’ comments. A user may wish
to obtain properties of selected nodes and edges in the networks, for
example through pop-up menu’s or node labels providing information
on selected nodes, or by highlighting the nodes and edges connected to
a selected node. The possibility to filter for nodes or edges with certain
properties, or to color and size them based on these properties, would
also be valuable for the purposes of data-exploration. To improve users’
sense of context, i.e., what part of the drawing they are viewing, a
map of the network drawing indicating the part that is viewed could
be superimposed in one of the display’s corners.

6. Conclusion

In this work we presented an approach to using the graphics pro-
cessing units (GPUs) in a tiled display system for interactive network
visualization at high resolutions. We showed how using the GPU as a
platform for both network layout and network drawing allows for high
performance levels. Our method extends an existing GPU implemen-
tation of force-directed graph layout to be capable of distributing the
work over multiple GPUs as well as proposed a distributed rendering
approach in which each GPU in the system draws the part of the
network to be displayed on the monitors attached to it. An evaluation
of our approach demonstrated real-time performance at 60 frames per
second for networks with tens of thousands of nodes and edges on
a 25 megapixel tiled display system with twelve monitors and three
NVIDIA GeForce GTX660 graphics cards. This constitutes a perfor-
mance improvement of approximately 4× over the standard single GPU
implementation that served as the starting point for our multi-GPU
approach. We were furthermore able to successfully implement real-
time navigation and a number of interactions with the layouts using a
Nintendo Wii remote as input device.

Although our results are promising, two main challenges remain.
First, the performance of our multi-GPU network visualization ap-
proach could be improved by optimizing the time spent on repulsive
force approximation, by reducing the number of non-distributed com-
ponents in the layout algorithm, and by optimizing the approach to
render the network’s edges. Second, synchronous updates between
the different monitors in the tiled display system would resolve the
remaining discontinuities that currently appear, especially if frame
rates decrease as result of increased network sizes. We believe these
problems can be resolved without a major revision of the framework
presented in this study, and as such we expect future work to be
effective at scaling the approach to even larger real-world networks.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Appendix A. Network properties
17

See Table A.5.
Table A.5
Properties of the network datasets used. Original data, obtained from well-known
network repositories KONECT [5] and SNAP [45], was filtered for the largest connected
component, self-loops were removed and the resulting graph was considered to be
undirected. ‘‘Avg. deg.’’ denotes ‘‘average degree’’.

Dataset Nodes Edges Density Avg. deg.

Amazon0505 410,236 2,439,437 0.0000 11.9
Brightkite 56,739 212,945 0.0001 7.5
CA-GrQc 4,158 13,422 0.0016 6.5
Cit-HepPh 34,401 420,784 0.0007 24.5
Cit-HepTh 27,400 352,021 0.0009 25.7
GoogleNw 15,763 148,585 0.0012 18.9
Newman-Cond_mat 22,015 58,578 0.0002 5.3
PGPgiantcompo 10,680 24,316 0.0004 4.6
auto 448,695 3,314,611 0.0000 14.8
ca-AstroPh 17,903 196,972 0.0012 22.0
ca-CondMat 21,363 91,286 0.0004 8.5
ca-HepPh 11,204 117,619 0.0019 21.0
ca-HepTh 8,638 24,806 0.0007 5.7
cnr_2000 325,557 2,738,969 0.0001 16.8
com-amazon 334,863 925,872 0.0000 5.5
dblp20080824 511,163 1,871,070 0.0000 7.3
dip 19,928 41,202 0.0002 4.1
email-Enron 33,696 180,811 0.0003 10.7
email-EuAll 224,832 339,924 0.0000 3.0
orkut 3,072,441 117,185,083 0.0000 76.3
p2p-Gnutella31 62,561 147,877 0.0001 4.7
petster 1,788 12,475 0.0078 14.0
ppi_dip_swiss 3,766 11,922 0.0017 6.3
ppi 37,333 135,618 0.0002 7.3
soc-Epinions1 75,877 405,738 0.0001 10.7
soc-Slashdot0902 82,168 504,230 0.0001 12.3
wiki-Vote 7,066 100,735 0.0040 28.5
wiki 1,791,489 25,444,207 0.0000 28.4
ydata-ysm-ad 653,260 2,278,448 0.0000 7.0
youtube 1,134,890 2,987,624 0.0000 5.3

Appendix B. Additional results

See Tables B.6 and B.7.

Table B.6
Average amount of time (in ms) spent on the three most time consuming components
of the ForceAtlas2 algorithm, during a single iteration. Fractions, relative to all
components, are given between parentheses. Results are averaged over the first 500
iterations, using a single GPU.

Dataset Force approx. Tree summarize Tree building

petster 0.91 (77.41%) 0.14 (11.88%) 0.04 (3.36%)
ppi_dip_swiss 1.24 (76.08%) 0.24 (14.83%) 0.05 (3.00%)
CA-GrQc 1.26 (75.95%) 0.25 (15.21%) 0.05 (2.90%)
wiki-Vote 2.38 (74.94%) 0.49 (15.27%) 0.07 (2.19%)
ca-HepTh 2.83 (80.06%) 0.48 (13.55%) 0.09 (2.58%)
PGPgiantcompo 2.80 (77.33%) 0.58 (15.93%) 0.10 (2.67%)
ca-HepPh 3.45 (76.93%) 0.68 (15.11%) 0.10 (2.28%)
GoogleNw 4.88 (78.86%) 0.91 (14.63%) 0.13 (2.06%)
ca-AstroPh 5.50 (78.34%) 0.99 (14.15%) 0.14 (1.94%)
dip 6.20 (81.98%) 1.00 (13.19%) 0.14 (1.84%)
ca-CondMat 6.55 (80.99%) 1.12 (13.84%) 0.15 (1.80%)
Newman-Cond_mat 7.96 (84.59%) 1.04 (11.10%) 0.14 (1.54%)
Cit-HepTh 9.06 (79.70%) 1.47 (12.90%) 0.18 (1.56%)
email-Enron 9.62 (78.72%) 1.92 (15.74%) 0.21 (1.71%)
ppi 11.20 (80.44%) 2.05 (14.74%) 0.23 (1.62%)
Cit-HepPh 11.40 (81.44%) 1.62 (11.55%) 0.20 (1.45%)
Brightkite 18.20 (81.41%) 3.13 (13.98%) 0.34 (1.50%)
p2p-Gnutella31 19.39 (81.47%) 3.29 (13.84%) 0.36 (1.51%)
soc-Epinions1 24.37 (80.00%) 4.39 (14.43%) 0.46 (1.51%)
soc-Slashdot0902 27.94 (79.62%) 4.90 (13.96%) 0.50 (1.44%)
email-EuAll 86.19 (83.79%) 12.70 (12.35%) 1.63 (1.59%)

Average 79.53% 13.91% 2.00%

Displays 73 (2022) 102164G.G. Brinkmann et al.
Table B.7
Average amount of time (in ms) spent on the three most time consuming components
of the ForceAtlas2 algorithm, during a single iteration. Fractions, relative to all
components, are given between braces. Results are averaged over the first 500
iterations, using two GPUs.

Dataset Force approx. Tree summarize Tree building

petster 0.87 (76.25%) 0.14 (12.12%) 0.04 (3.42%)
ppi_dip_swiss 1.17 (74.32%) 0.24 (15.35%) 0.05 (3.12%)
CA-GrQc 1.19 (74.18%) 0.25 (15.74%) 0.05 (3.03%)
wiki-Vote 1.36 (62.35%) 0.49 (22.21%) 0.07 (3.17%)
ca-HepTh 1.49 (66.68%) 0.49 (21.85%) 0.09 (4.12%)
PGPgiantcompo 1.48 (63.29%) 0.58 (24.78%) 0.10 (4.17%)
ca-HepPh 1.87 (63.71%) 0.68 (22.96%) 0.10 (3.48%)
GoogleNw 2.94 (68.63%) 0.90 (20.90%) 0.13 (2.96%)
dip 3.38 (70.36%) 1.00 (20.76%) 0.14 (2.91%)
ca-AstroPh 3.28 (67.56%) 0.99 (20.48%) 0.14 (2.81%)
ca-CondMat 3.34 (67.70%) 1.11 (22.51%) 0.15 (2.94%)
Newman-Cond_mat 4.06 (72.95%) 1.04 (18.62%) 0.14 (2.59%)
Cit-HepTh 5.13 (68.17%) 1.47 (19.54%) 0.18 (2.36%)
email-Enron 4.98 (64.77%) 1.93 (25.09%) 0.21 (2.73%)
Cit-HepPh 5.86 (68.47%) 1.61 (18.87%) 0.20 (2.39%)
ppi 5.92 (67.62%) 2.05 (23.45%) 0.22 (2.56%)
Brightkite 9.73 (69.18%) 3.13 (22.27%) 0.34 (2.40%)
p2p-Gnutella31 9.80 (68.05%) 3.30 (22.90%) 0.36 (2.50%)
soc-Epinions1 12.34 (66.15%) 4.39 (23.54%) 0.46 (2.48%)
soc-Slashdot0902 14.58 (66.31%) 4.89 (22.24%) 0.51 (2.30%)
email-EuAll 42.85 (71.49%) 12.48 (20.82%) 1.60 (2.66%)

Average 68.49% 20.81% 2.91%

References

[1] J. Scott, Social Network Analysis, Sage, 2012.
[2] A.-L. Barabási, Network Science, Cambridge University Press, Cambridge, 2016.
[3] Y. Hu, L. Shi, Visualizing large graphs, Wiley Interdiscip. Rev. Comput. Stat. 7

(2) (2015) 115–136.
[4] B. Shneiderman, The eyes have it: A task by data type taxonomy for information

visualizations, in: Proceedings of the IEEE Symposium on Visual Languages,
1996, pp. 336–343.

[5] J. Kunegis, KONECT – the koblenz network collection, in: Proceedings of the
22nd International World Wide Web Conference, WWW, 2013, pp. 1343–1350.

[6] F.W. Takes, E.M. Heemskerk, Centrality in the global network of corporate
control, Soc. Netw. Anal. Min. 6 (1) (2016) 97:1–97:18.

[7] S. Chae, HD-GraphViz: Highly Distributed Graph Visualization on Tiled Displays
(Ph.D. thesis), University of California, Irvine, 2013.

[8] C. Mueller, D.P. Gregor, A. Lumsdaine, Distributed force-directed graph lay-
out and visualization, in: Eurographics Symposium on Parallel Graphics and
Visualization, EGPGV, 2006, pp. 83–90.

[9] J. Davis, X. Chen, Lumipoint: Multi-user laser-based interaction on large tiled
displays, Displays 23 (5) (2002) 205–211.

[10] J.-y. Huang, K.M. Wang, K.-W. Hsu, The frame synchronization mechanism for
the multi-rendering surrounding display environment, Displays 25 (2–3) (2004)
89–98.

[11] W.-J. Li, C.-C. Chang, K.-Y. Hsu, M.-D. Kuo, D.-L. Way, A PC-based distributed
multiple display virtual reality system, Displays 22 (5) (2001) 177–181.

[12] G.G. Brinkmann, K.F.D. Rietveld, F.W. Takes, Exploiting GPUs for fast force-
directed visualization of large-scale networks, in: Proceedings of the 46th
International Conference on Parallel Processing, ICPP, 2017, pp. 382–391.

[13] A. Godiyal, J. Hoberock, M. Garland, J.C. Hart, Rapid multipole graph drawing
on the GPU, in: Proceedings of the 16th International Symposium on Graph
Drawing, 2008, pp. 90–101.

[14] P. Mi, M. Sun, M. Masiane, Y. Cao, C. North, Interactive graph layout of a million
nodes, Informatics 3 (4) (2016) 23.

[15] M. Jacomy, T. Venturini, S. Heymann, M. Bastian, ForceAtlas2, a continuous
graph layout algorithm for handy network visualization designed for the gephi
software, PLoS One 9 (6) (2014) 1–12.

[16] H. Gibson, J. Faith, P. Vickers, A survey of two-dimensional graph layout
techniques for information visualisation, Inf. Vis. 12 (3–4) (2013) 324–357.

[17] M. Garland, D.B. Kirk, Understanding throughput-oriented architectures,
Commun. ACM 53 (11) (2010) 58–66.

[18] D. Blythe, Rise of the graphics processor, in: Proceedings of the IEEE, 2008, pp.
761–778.

[19] M. Segal, K. Akeley, The OpenGL Graphics System: A Specification, The Khronos
Group Inc. 2017, https://www.khronos.org/registry/OpenGL/specs/gl/glspec41.
18

core.pdf. (Accessed 30 July 2018).
[20] NVIDIA Corporation, CUDA toolkit documentation, 2018, https://docs.nvidia.
com/cuda/. (Accessed 30 July 2018).

[21] K.O.W. Group, in: A. Bourd (Ed.), OpenCL Specification, 2017, https://www.
khronos.org/registry/OpenCL/specs/opencl-2.2.pdf. (Accessed 30 July 2018).

[22] A. Godiyal, J. Hoberock, M. Garland, J.C. Hart, Rapid multipole graph drawing
on the GPU, in: Graph Drawing, 16th International Symposium, GD 2008,
Heraklion, Crete, Greece, September 21-24, 2008. Revised Papers, 2008, pp.
90–101, URL http://dx.doi.org/10.1007/978-3-642-00219-9_10.

[23] Y. Frishman, A. Tal, Multi-level graph layout on the GPU, IEEE Trans. Vis.
Comput. Graph. 13 (6) (2007) 1310–1319.

[24] NVIDIA Corporation, Programming guide :: CUDA toolkit documentation, 2018,
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html. (Accessed
30 July 2018).

[25] M. Bastian, S. Heymann, M. Jacomy, Gephi: An open source software for
exploring and manipulating networks, in: Proceedings of the 3rd International
Conference on Weblogs and Social Media, ICWSM, 2009, p. 2.

[26] J. Barnes, P. Hut, A hierarchical O(N log N) force-calculation algorithm, Nature
324 (1986) 446–449.

[27] M. Burtscher, K. Pingali, An efficient CUDA implementation of the tree-based
barnes hut n-body algorithm, in: W. mei W. Hwu (Ed.), GPU Computing Gems
Emerald Edition, Morgan Kaufmann, 2011, pp. 75–92.

[28] C.T.M. Forum, MPI: a message passing interface, in: Proceedings of the
International Conference on Supercomputing, 1993, pp. 878–883.

[29] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P.D. Kirchner, J.T.
Klosowski, Chromium: A stream-processing framework for interactive rendering
on clusters, in: Proceedings of the 29th Annual Conference on Computer Graphics
and Interactive Techniques, 2002, pp. 693–702.

[30] T.M.J. Fruchterman, E.M. Reingold, Graph drawing by force-directed placement,
Softw. Pract. Exp. 21 (11) (1991) 1129–1164.

[31] S. Chae, A. Majumder, M. Gopi, HD-GraphViz: HIghly distributed graph visual-
ization on tiled displays, in: The 8th Indian Conference on Vision, Graphics and
Image Processing, ICVGIP, 2012, p. 43.

[32] R. Jingai, Y. Kido, S. Date, S. Shimojo, Research note: A high resolution graph
viewer for multi-monitor visualization environment, Rev. Socionetw. Strateg. 9
(1) (2015) 19–27.

[33] Y. Gu, C. Wang, J. Ma, R.J. Nemiroff, D.L. Kao, Igraph: a graph-based technique
for visual analytics of image and text collections, in: Visualization and Data
Analysis 2015, San Francisco, CA, USA, 2015, February 9-11, 2015 939708.

[34] G. Mukundan, Drawing anti-aliased circular points using OpenGL/WebGL -
A circular reference, 2018, https://www.desultoryquest.com/blog/drawing-anti-
aliased-circular-points-using-opengl-slash-webgl. (Accessed 30 July 2018).

[35] J. Leigh, A.E. Johnson, L. Renambot, T. Peterka, B. Jeong, D.J. Sandin, J.
Talandis, R. Jagodic, S. Nam, H. Hur, Y. Sun, Scalable resolution display walls,
Proc. IEEE 101 (1) (2013) 115–129.

[36] R.W. Scheifler, X Window System Protocol X Consortium Standard X Version 11,
Release 6.7, X Consortium, Inc. 2004, https://www.x.org/docs/XProtocol/proto.
pdf. (Accessed 30 July 2018).

[37] J. Gettys, K. Packard, The X resize, rotate and reflect extension, 2015,
X.org, https://cgit.freedesktop.org/xorg/proto/randrproto/tree/randrproto.txt.
(Accessed 16 March 2018).

[38] NVIDIA Corporation, Offloading graphics display with RandR 1.4, 2018, https:
//download.nvidia.com/XFree86/Linux-x86_64/390.42/README/randr14.html.
(Accessed 30 July 2018).

[39] J. Gettys, R.W. Scheifler, C. Adams, V. Joloboff, H. Hiura, B. McMahon, R.
Newman, A. Tabayoyon, G. Widener, S. Yamada, Xlib - C language X inter-
face, 2002, https://www.x.org/releases/X11R7.7/doc/libX11/libX11/libX11.pdf.
(Accessed 30 July 2018).

[40] xcb.freedesktop.org, The X protocol C-language binding, 2018, (Accessed 30 July
2018).

[41] NVIDIA Corporation, Specifying OpenGL environment variable settings,
2018, https://download.nvidia.com/XFree86/Linux-x86_64/390.42/README/
openglenvvariables.html. (Accessed 30 July 2018).

[42] NVIDIA Corporation, EXT_swap_control specification, 2011, https://www.
khronos.org/registry/OpenGL/extensions/EXT/EXT_swap_control.txt. (Accessed
18 june 2018).

[43] NVIDIA Corporation, GLX_NV_swap_group specification, 2008, https://www.
khronos.org/registry/OpenGL/extensions/NV/GLX_NV_swap_group.txt. (Accessed
18 March 2018).

[44] D. Herrmann, XWiimote - open-source nintendo wii / wii U device driver, 2018,
https://dvdhrm.github.io/xwiimote/. (Accessed 30 July 2018).

[45] J. Leskovec, A. Krevl, SNAP Datasets: Stanford large network dataset collection,
2014, https://snap.stanford.edu/data. (Accessed 30 July 2018).

[46] A.A. Hagberg, D.A. Schult, P.J. Swart, Exploring network structure, dynamics,
and function using networkx, in: Proceedings of the 7th Python in Science
Conference, SciPy, 2008, pp. 11—15.

http://refhub.elsevier.com/S0141-9382(22)00013-0/sb1
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb2
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb3
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb3
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb3
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb4
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb4
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb4
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb4
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb4
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb5
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb5
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb5
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb6
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb6
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb6
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb7
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb7
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb7
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb8
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb8
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb8
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb8
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb8
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb9
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb9
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb9
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb10
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb10
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb10
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb10
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb10
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb11
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb11
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb11
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb12
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb12
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb12
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb12
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb12
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb13
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb13
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb13
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb13
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb13
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb14
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb14
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb14
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb15
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb15
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb15
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb15
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb15
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb16
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb16
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb16
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb17
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb17
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb17
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb18
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb18
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb18
https://www.khronos.org/registry/OpenGL/specs/gl/glspec41.core.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/glspec41.core.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/glspec41.core.pdf
https://docs.nvidia.com/cuda/
https://docs.nvidia.com/cuda/
https://docs.nvidia.com/cuda/
https://www.khronos.org/registry/OpenCL/specs/opencl-2.2.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-2.2.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-2.2.pdf
http://dx.doi.org/10.1007/978-3-642-00219-9_10
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb23
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb23
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb23
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb25
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb25
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb25
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb25
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb25
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb26
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb26
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb26
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb27
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb27
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb27
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb27
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb27
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb28
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb28
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb28
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb29
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb29
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb29
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb29
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb29
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb29
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb29
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb30
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb30
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb30
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb31
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb31
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb31
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb31
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb31
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb32
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb32
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb32
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb32
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb32
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb33
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb33
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb33
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb33
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb33
https://www.desultoryquest.com/blog/drawing-anti-aliased-circular-points-using-opengl-slash-webgl
https://www.desultoryquest.com/blog/drawing-anti-aliased-circular-points-using-opengl-slash-webgl
https://www.desultoryquest.com/blog/drawing-anti-aliased-circular-points-using-opengl-slash-webgl
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb35
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb35
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb35
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb35
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb35
https://www.x.org/docs/XProtocol/proto.pdf
https://www.x.org/docs/XProtocol/proto.pdf
https://www.x.org/docs/XProtocol/proto.pdf
https://cgit.freedesktop.org/xorg/proto/randrproto/tree/randrproto.txt
https://download.nvidia.com/XFree86/Linux-x86_64/390.42/README/randr14.html
https://download.nvidia.com/XFree86/Linux-x86_64/390.42/README/randr14.html
https://download.nvidia.com/XFree86/Linux-x86_64/390.42/README/randr14.html
https://www.x.org/releases/X11R7.7/doc/libX11/libX11/libX11.pdf
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb40
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb40
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb40
https://download.nvidia.com/XFree86/Linux-x86_64/390.42/README/openglenvvariables.html
https://download.nvidia.com/XFree86/Linux-x86_64/390.42/README/openglenvvariables.html
https://download.nvidia.com/XFree86/Linux-x86_64/390.42/README/openglenvvariables.html
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_swap_control.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_swap_control.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_swap_control.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/GLX_NV_swap_group.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/GLX_NV_swap_group.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/GLX_NV_swap_group.txt
https://dvdhrm.github.io/xwiimote/
https://snap.stanford.edu/data
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb46
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb46
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb46
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb46
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb46

Displays 73 (2022) 102164G.G. Brinkmann et al.
[47] A. Douady, Julia sets and the mandelbrot set, in: The Beauty of Fractals: Images
of Complex Dynamical Systems, Springer Berlin Heidelberg, Berlin, Heidelberg,
1986, pp. 161–174.

[48] NVIDIA Corporation, GitHub - NVIDIA/nvidia-settings: NVIDIA driver con-
trol panel, 2018, https://github.com/NVIDIA/nvidia-settings. (Accessed 30 July
2018).
19
[49] NVIDIA Corporation, Profiler user’s guide, 2018, https://docs.nvidia.com/cuda/
pdf/CUDA_Profiler_Users_Guide.pdf. (Accessed 30 July 2018).

[50] J. Bédorf, E. Gaburov, M.S. Fujii, K. Nitadori, T. Ishiyama, S.P. Zwart, 24.77
PFlops on a gravitational tree-code to simulate the milky way galaxy with 18600
GPUs, in: Proceedings of the 26th International Conference for High Performance
Computing, Networking, Storage and Analysis, 2014, pp. 54–65.

http://refhub.elsevier.com/S0141-9382(22)00013-0/sb47
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb47
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb47
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb47
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb47
https://github.com/NVIDIA/nvidia-settings
https://docs.nvidia.com/cuda/pdf/CUDA_Profiler_Users_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_Profiler_Users_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_Profiler_Users_Guide.pdf
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb50
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb50
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb50
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb50
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb50
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb50
http://refhub.elsevier.com/S0141-9382(22)00013-0/sb50

	Real-time interactive visualization of large networks on a tiled display system
	Introduction
	Preliminaries
	Networks
	Graph layout algorithms
	Graphics processing units (GPUs)
	GPU implementation of ForceAtlas2

	Previous work
	Approach
	Target hardware
	GPU accelerated network rendering
	Tiled visualization
	Displaying framebuffers spanning multiple graphics cards
	Monitor and input synchronization

	Distributing network visualization over multiple GPUs
	Distributed ForceAtlas2
	Distributed network rendering

	Network visualization on a tiled display system
	Interaction

	Experiments
	Experimental setup
	Effectiveness of tiled visualization
	Distributed network visualization using multiple GPUs
	Baseline GPU accelerated layout and rendering performance
	Workload composition of distributed ForceAtlas2
	Scalability of distributed ForceAtlas2 implementation
	Scalability of distributed network rendering

	Network visualization on a tiled display system
	Distributed network visualization on BigEye
	Tiled network visualization

	Interaction
	Discussion and future research

	Conclusion
	Declaration of competing interest
	Appendix A. Network Properties
	Appendix B. Additional Results
	References

