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Pollen classification is considered an important task in palynology. In the Netherlands, two genera of the
Urticaceae family, named Parietaria and Urtica, have high morphological similarities but induce allergy at
a very different level. Therefore, distinction between these two genera is very important. Within this
group, the pollen of Urtica membranacea is the only species that can be recognized easily under the micro-
scope. For the research presented in this study, we built a dataset from 6472 pollen images and our aim
was to find the best possible classifier on this dataset by analysing different classification methods, both
machine learning and deep learning-based methods. For machine learning-based methods, we measured
both texture and moment features based on images from the pollen grains. Varied feature selection tech-
niques, classifiers as well as a hierarchical strategy were implemented for pollen classification. For deep
learning-based methods, we compared the performance of six popular Convolutional Neural Networks:
AlexNet, VGG16, VGG19, MobileNet V1, MobileNet V2 and ResNet50. Results show that compared with
flat classification models, a hierarchical strategy yielded the highest accuracy with 94.5% among machine
learning-based methods. Among deep learning-based methods, ResNet50 achieved an accuracy of 99.4%,
slightly outperforming the other neural networks investigated. In addition, we investigated the influence
on performance by changing the size of image datasets to 1000 and 500 images, respectively. Results
demonstrated that on smaller datasets, ResNet50 still achieved the best classification performance. An
ablation study was implemented to help understanding why the deep learning-based methods outper-
formed the other models investigated. Using Urticaceae pollen as an example, our research provides a
strategy of selecting a classification model for pollen datasets with highly similar pollen grains to support
palynologists and could potentially be applied to other image classification tasks.
� 2022 Leiden Institute of Advanced Computer Science, Leiden University. Published by Elsevier B.V. This

is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The analysis of pollen grains is widely used in detection and
monitoring of airborne allergenic particles. In recent years, pollen
seasons are prolonged due to global warming and climate change
[1]. This subsequently causes an increase of hay fever patients
who are affected by rising allergenic pollen levels in the air [2].
In palynological research, identification of pollen grains plays a
key role to suggest safety treatments to patients with allergic
rhinitis. It helps patients and medical professionals to monitor
the levels of airborne allergenic pollen and thus plan outdoor activ-
ities and medication treatments accordingly. Pollen recognition
analysis is often implemented by human visual inspection under
the microscope, and includes the identification of differences in
shape, texture, size and other specific features of pollen categories
[3]. However, merely relying on human inspection for pollen clas-
sification tasks is unrealistic as the size of image datasets is rapidly
increasing due to high-throughput screening, while the expertise
needed to perform this detailed analysis is rapidly disappearing.
Another limitation of manual classification is that it may induce
classification biases with varied inspectors when the differences
among pollen categories are very subtle. Thus, automatic classifica-
tion techniques are now being developed that have proven to per-
form well in pollen classification tasks [3]4567.

Researchers have adopted different approaches to automate the
process of pollen classification. In general, the two main technical
approaches of pollen image classification tasks are machine
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learning-based methods [3]8 and deep learning-based methods [5]
[9][10][11][12].

Machine learning methods need to be fed with manually
selected features before they can extract these from images. The,
so called, handcrafted features used in machine learning tech-
niques are mostly based on shape, texture and other related prop-
erties of pollen grain images. The extracted features play an
important role in the performance of classification. In addition,
suitable feature selection methods and classifiers are also crucial
for machine learning-based classification methods.

In the work of del Pozo-Baños et al. [13], a combination of geo-
metrical and texture characteristics was proposed as the discrimi-
native features for a 17 class pollen dataset. Incorporation of Linear
Discriminant Analysis (LDA) and Least Square Support Vector
Machines (LS-SVM) accomplished the best performance of 94.92%
accuracy. Marcos et al. [14] extracted four texture features includ-
ing Gray-Level Cooccurrence Matrices (GLCM), log-Gabor filters
(LGF), Local Binary Patterns (LBP) and Discrete Tchebychev
Moments (DTM) from a pollen image dataset with 15 classes. Fish-
er’s Discriminant Analysis (FDA) and K-Nearest Neighbour (KNN)
were subsequently applied to perform dimensionality reduction
and multivariate classification. It yielded an accuracy of 95%. Man-
ikis et al. [8] used texture features obtained by GLCM and seven
geometrical features computed from the binary mask of a pollen
image dataset. A Random Forest (RF) classifier was used in the clas-
sification stage; with this classifier 88.24% accuracy was achieved
on 6 pollen classes. Machine learning thus show highly varying
results, and is seemingly dependent on the dataset used.

Instead of manual design of the features, deep leaning methods
automatically extract image features through convolutional layers
of the network. In recent years, many state-of-the-art Convolu-
tional Neural Networks (CNNs) were applied in pollen classifica-
tion tasks. In the work of Sevillano et al. [5], pretrained AlexNet
was used to classify a dataset with 46 different classes of pollen
grains. By incorporating data augmentation and cross-validation
techniques, an accuracy of 98% was achieved. In the work pre-
sented by Battiato et al. [4], both AlexNet and SmallerVGGNet were
implemented to classify five classes of pollen grains, with 13,000
images. The two networks obtained a performance of 89.63% and
89.73% accuracy, respectively. A seven layer deep Convolutional
Neural Network designed by Daood et al. [9], was trained on a
dataset of 30 pollen classes and accomplished a 94% correct classi-
fication rate. Astolfi et al. [15] analysed a pollen dataset composed
of 73 pollen categories. They compared the performance of eight
state-of-the-art CNNs which included Inception-V3, VGG16,
VGG19, ResNet-50, NASNet, Xception, DenseNet-201 and
Inception-ResNet-V2. They showed that DenseNet-201 and
ResNet-50 achieved superior performance against other CNNs with
an accuracy of 95.7% and 94.0%, respectively.

Based on the analysis of related work mentioned above, both
machine learning and deep learning-based methods have achieved
comparable performance on pollen datasets. However, the pollen
datasets used in these studies is derived from species or genera
from different plant families [16]. The morphology of each class
of pollen is already clearly distinctive under the microscopy by
human analysts. For example, the public POLEN23E dataset [3]
consists of 23 pollen classes from the Brazilian Savannah, derived
from 23 genera in 15 families. Each class of pollen has a, different
shape, size and texture. The other public pollen dataset from the
Brazilian Savannah, called POLLEN73S, which was analysed by
Astolfi et al. [15], has 73 pollen classes with clearly variable colour,
shape and other morphological differences. These distinct features
ensured the high performance of the classification model applied.
However, in this research, we are more interested in distinguishing
genera of the same family Urticaceae, namely, Parietaria and Urtica
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which are morphological very similar, but cause completely differ-
ent allergy levels. Pollen of the two genera cannot currently be dis-
tinguished easily by a palynologist; the species Urtica
membranacea represents the only species that can be specifically
distinguished.

Parietaria and Urtica are two genera commonly encountered in
the Netherlands. The occurrence of Parietaria plants is very much
increasing and could induce severe allergy in hay fever patients
while Urtica does not [12]. Species from the genus Parietaria as well
as Urtica membranacea originate from the Mediterranean area and
now increase in North Europe. Due to climate change these species
can maintain themselves in northern countries such as the Nether-
lands. The pollen grains from these taxa exhibit a similar round-
ness, and are all very small, but differ in the following features:
1) different number of pores: Parietaria and Urtica have 3 to 4
pores, while this is variable for Urtica membranacea (usually 5 to
10; i.e. pantoporate). 2) The average size of Parietaria pollen is
slightly smaller (�11–18lm) and it with a coarser and more irreg-
ular surface than Urtica. Urtica pollen are bigger in size on average
(�15.2–21.1lm), and often have a more pronounced thickened
exine around the pore (annulus). The shape of Urtica membranacea
is slightly angular and is easily distinguished because of its small
size (�10–12lm) and high number of pores. Although these pollen
grains have the aforementioned differences, it is not possible for
experts to distinguish the three different classes by the naked-
eye using a light microscope. This is mainly because of their small
size. Therefore, in order to improve the accuracy and efficiency of
Urticaceae pollen classification, automatic algorithms are required.

Currently, very few studies focused on pollen classification of
the Urticaceae family. Rodrı̀guez-Damián et al. [16] extracted both
geometrical and texture features and probed three classifiers: Sup-
port Vector Machines (SVM), Multi-Layer Perceptron (MLP) and
Minimum Distance Classifier (MDC). The best performance of
88% success rate was reached on a total of 291 pollen images of
the three species Parietaria judaica, Urtica urens and Urtica mem-
branacea. Compared with their relatively small Urticaceae dataset,
we aimed to analyse a much larger dataset that includes all species
(Parietaria judaica, Parietaria officinalis, Urtica dioica, Urtica urens
and Urtica membranacea) present in the Netherlands. We grouped
these five species into 3 classes: Parietaria (Parietaria judaica, Pari-
etaria officinalis), Urtica (Urtica urens, Urtica dioica) and Urtica mem-
branacea. Both Parietaria and Urtica dominate in the Netherlands
but cause a totally different allergy level. Urtica membranacea is
an exotic Mediterranean species and it is the only species can be
easily distinguished. Hence our starting point for three labels and
thus, our study is based on a three-class classification task. The
best performance achieved in our study is 99.4% by a ResNet50.
Actually, it is also possible to do a classification task over all five
species (see Supplementary Table 1). Another challenge is that
the pollen grains that we used were unacetolyzed. Acetolyzed pol-
len grains are those that all pollen materials are destroyed by ace-
tolysis with the exception of sporopollenin that forms the outer
pollen wall, the exine. In contrast to acetolyzed pollen grains,
unacetolyzed pollen keep their original organic features which
are less apparent. To the best of our knowledge, our previous work
[12] was the first and the only time that CNNs were applied and
compared for the analysis of the unacetolyzed Urticaceae pollen
grains. In this study, we extended this work further and aimed to
find an automatic classification model with the best performance
in both machine learning-based and deep learning-based methods
for our unacetolyzed Urticaceae dataset. In general, for a deep
learning model, a large dataset is required as input. However, there
are many limitations for researchers to collect a sufficiently large
dataset in practice. Subsequently, we were curious about how
machine learning-based and deep learning-based methods work
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on a smaller sized image dataset. Therefore, two additional exper-
iments on smaller datasets were designed to compare the perfor-
mance of different classification models. For a 1000-image
dataset, a ResNet50 yielded the best performance of 96.3% while
for a 500-image dataset, it achieved the best accuracy of 93.3%.
2. Methods

2.1. Sample and Image preparation

2.1.1. Sample preparation of the pollen grains
Our pollen data included both fresh pollen specimens and dry

pollen specimens [12]. Fresh pollen specimens were collected by
an experienced biologist in the surroundings of Leiden and The
Hague (the Netherlands) during the flowering season of 2018 and
2019. Dry pollen specimens were collected from the herbarium of
Naturalis Biodiversity Center, Leiden, the Netherlands, using iden-
tification keys and descriptions. For each species in our dataset,
pollen samples from 4 to 8 plants were taken, from different geo-
graphical locations in order to cover as much variation as possible
(see Supplementary Table 2). Microscope slides were freshly pre-
pared by aerobiological experts from Naturalis Biodiversity Center.
The thecae of open flowers were carefully opened on a microscopic
slide using tweezers. Non-pollen materials were manually
removed. The pollen grains were mounted using a glycerin:
water:gelatin (7:6:1) solution with 2% phenol and stained with
Safranin (0.002% w/v). Cover slips were sealed with paraffin. Each
slide contained only one plant of each species of Urticaceae.
2.1.2. Image capturing and pre-processing
The slide area rich in pollen was scanned automatically using a

Zeiss Observer Z1 microscope with a Plan Apochromat
100 � objective (NA 1.4), equipped with a Hamamatsu c9100
EM-CCD camera. As pollen grains are three dimensional, it is diffi-
cult to set a focal plane for pollen samples. Therefore, we captured
20 slices of images along the Z axis for pollen grains. The step size
was 1.8 lm. After obtaining a stack of images including pollen, the
grains were detected and cropped; this is referred to as the 3D pol-
len stack. Fig. 1 (a) shows an example of a slice from the raw image.
Fig. 1 (b) shows all 20 slices of different focal depths of an individ-
ual pollen grain. In total, 6472 individual pollen stack images were
captured. Three categories were included for the image classifica-
tion study. These were (1) Parietaria (including Parietaria judaica,
Parietaria officinalis), (2) Urtica (Urtica dioica, Urtica urens), (3)
Urtica membranacea (see Fig. 2).

As shown in Fig. 1(b), not all of the 20 slices in the Z-stack were
in-focus. In order to obtain as much informative features as possi-
ble, all Z-stack images were further processed using a Z-stack pro-
jection method [17]. Z-stack projection is a method of analysing
and highlighting specific features from all slices in a stacked image
without incorporating out-of-focus blurriness. The selected projec-
tions were Standard Deviation (STD), Minimum Intensity (MIN),
and Extend Focus (EXT) [18], which are shown in Fig. 1 (c) and
Fig. 2. The three projections per pollen grain were treated as three
separate channel images for the input of supervised classification
models. Same-sized images are required to feed into classification
models which is achieved by resizing images to the same size.
However, for pollen images captured by a microscope, the mor-
phology and details of pollen grains are expected to be changed
by resizing. We did not opt for resizing as the resized images might
ignore the original size differences of pollen grains, which is a
potentially important diagnostic feature. There are several ways
to preserve this nature of the features. One can crop images of
the pollen grains to the same size from a slide-scan image.
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However, some pollen grains are very closely located to each other
so that cropping to the same size might cause incomplete pollen
separation. Therefore we chose for as another approach which is
to use padding of the cropped images so that the resulting images
all have the same size. For the padding size, the biggest size of all
individual pollen images was selected, i.e.276 � 276 pixels. The
padding value was set to the median value at the edge of each pol-
len image in order to make the content of the padding images more
natural.

After the pre-processing of the images, we aimed to find the
best classification model for our Urticaceae pollen dataset.
Machine learning and deep learning-based classification models
were constructed and the performance of each model was evalu-
ated and compared.
2.2. Machine learning methods

2.2.1. Feature extraction and selection
Machine learning methods require manual selection of relevant

features before extracting these from images. One challenge is how
to select an appropriate set of features for classification. By observ-
ing the characteristics of Urticaceae pollen grains, we noticed that
Parietaria has a coarser ornamentation on the surface of its pollen
grains, Urtica has thickened pores and Urtica membranacea has an
angular outline. Texture attributes of surface and shape features
was considered as the appropriate pollen descriptors for Urticaceae
pollen grains. We aimed to include as much representative features
as possible for Urticaceae pollen classification due to their high
morphological similarities. The following selected features have
been proven to be successful in classification tasks for pollen
recognition: GLCM, LBP, Gabor filter texture features and His-
togram of Oriented Gradients (HOG). These features have provided
satisfactory results as reported in [4]14. Both First Order Statistics
(FOS), which are derived from statistical properties of the intensity
histogram of an image, and Wavelet measurements, which is a tex-
ture analysis based on a Discrete Wavelet Transform (DWT) have
been included as they have been successfully used in pattern
recognition of cells [19]20. In addition, the seven Hu invariant
moments and three shape measures derived from the invariants,
referred to as Extension, Dispersion and Elongation (EDE) were
included as invariant descriptors for shape [21]. So, based on afore-
mentioned image-based studies [22]23 we have selected six tex-
ture features and two moment-based features to represent the
characteristics of pollen grains in our study. Table 1 shows the
selected features with the dimensions of each feature vector.

HOG features in combination with a SVM classifier have proven
to be a representative texture descriptor in the image recognition
field [24]. In the procedure of HOG feature extraction, we divided
an image into several small connected regions, aka cells. Each cell
returns a 9 � 1 feature vector. In order to be more invariant in rep-
resenting the changes of shadowing and illumination, a larger
region, referred to as the block, is formed. The block consists of four
cells and returns a 36 � 1 feature vector. In the experiment, a pol-
len image with size (276 � 276) can be divided into 100 blocks,
consequently, a 3600 � 1 feature vector is returned at the end.

LBP is an invariant descriptor that can be used for texture clas-
sification. A n-digit binary number is obtained by comparing each
pixel with its n neighbour pixels on a circle with radius r and used
to compute the histogram. In our study, we fine-tuned the param-
eters and set it as n = 24, r = 3. Similar to the HOG feature extrac-
tion procedure, the image was also divided into 16 smaller blocks.
In this manner a 416 � 1 LBP feature vector is returned.

GLCM characterizes the texture of images by considering the
spatial relationship of pairs of pixels in an image. GLCM is created



Fig. 1. The workflow of pollen image acquisition. (a) One plane of raw pollen image. (b) 20 slices at different focal depths of gray scale images of one individual pollen grain.
(c) 3 different projections in Z axis, STD = Standard Deviation Projection, MIN =Minimum Intensity Projection, EXT = Extend Focus Projection. (d) The padding images of each
projection.

Fig. 2. A sample pollen grain of each category in our dataset. (a) Parietaria judaica.
(b) Urtica urens. (c) Urtica membranacea. Each column represents the STD, MIN, EXT
projections of each pollen grain, respectively.

Table 1
The dimension of feature vector of each feature.

Feature Dimension

HOG 3600 � 3
LBP 416 � 3

Gabor filter 60 � 3
GLCM 24 � 3
FOS 5 � 3

Wavelet 9 � 3
Hu moments 7 � 3

EDE 3 � 3
Total 4124 � 3
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based on a statistical rule P i; j; d; thetað Þ, which refers to the num-
ber of times that gray-level j occurs at a distance d and at a direc-
tion theta from gray-level i. Our experiment set d ¼ 1 and the
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direction theta = 0�, 45�, 90�, 135�. We further calculated the prop-
erties based on the matrix which are defined by Haralick et al. [25],
as the extracted feature vector. Finally, a 24 � 1 feature vector was
returned.

A 5 � 1 texture feature vector of FOS named standard deviation
of intensity, smoothness, skewness, uniformity and entropy was
calculated [20]. These measures reflect the statistical properties
of the intensity histogram of each pollen image. Wavelet-based
texture measurements show the image details in different direc-
tions after DWT. We calculated the mean, standard deviation and
entropy of intensity in three directions (horizontal, vertical, diago-
nal) of each pollen image. The dimension of wavelet measurement
is 9 � 1.

Another commonly used texture descriptor is the Gabor filter: it
reflects frequency content in a specific direction of a localized
region of the image. In this study, 12 Gabor filters are designed
at four directions 0�, 45�, 90�, 135� with three different frequencies
p=4;p=2;3p=4. Therefore, the dimension of the Gabor filter feature
vector is 60 � 1.

Hu moments are normally extracted from pollen images with
the property of scale and rotation invariance. A total of seven
moment invariants as proposed by Hu [26] were extracted. EDE

features are derived from the 1st and the 2nd order invariants. Even
though the morphological differences of pollen between genera is
subtle, it was expected that these image moment features could
play a role in the pollen classification task.

Each pollen image in our dataset consisted of 3 projections
(STD, MIN, and EXT) obtained by projecting 20-slice Z-stack
images. Fig. 2 shows that the features of each projection are differ-
ent, especially the texture features. In order to include as much
information of the pollen grain dataset as possible, we calculated
8 features for 3 projections of pollen images and concatenated
these together as the final feature vector (cf. Table 1). Therefore,
after feature extraction, the dimension of feature vector reaches
4124 � 3. Compared with public pollen image datasets like
POLEN23E, POLLEN73S [3]15 and the 2D Urticaceae pollen images
used in [16], our dataset based on a method of projection of 3D
images might intrinsically extract more representative features.
This partially underlies the reason of the high performance results
that we have achieved.



Fig. 3. Hierarchical tree of pollen classification.
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In order to remove redundant and irrelevant features, feature
selection and dimensionality reduction techniques were applied.
Feature selection returns prominent subsets of features while
dimensionality reduction creates new features with lower dimen-
sion from the original features. Feature selection includes a filter
method, wrapped method and embedded method [27]. These
methods have been shown to improve the accuracy of classifica-
tion studies [28]29.

In this study, feature selection methods including Mutual infor-
mation, SelectFromModel and Principal Component Analysis (PCA)
were assessed. Mutual information is a filter feature selection
method. In this method a subset of the best K features which are
most relevant to the target labels is chosen; the selection of the
number K is mostly based on experience. The embedded method
named SelectFromModel works more flexible. It selects the most
relevant features according to the performance of machine learn-
ing models during the training process. This integrated approach
ensures that the selected features are the best for the model. Alter-
natively, PCA is widely used in feature dimensionality reduction. It
is a process of computing the principal components and preserving
the first few of them that maximize the variances between differ-
ent classes. PCA is known for obtaining lower-dimensional features
and improving the accuracy of machine learning model in many
fields such as image recognition [13]30.

In short, these selected feature selection and dimensionality
reduction methods were applied after feature extraction. Subse-
quently, classification models were used as the last step to classify
pollen grains.
2.2.2. Classifiers
Once features are extracted from images, an efficient classifica-

tion model is required so that it can perform well on the pollen
classification task. A large number of classification approaches
exist. In this study, SVM, RF, MLP and Adaboost classifiers were
used as they have shown to perform well in previous pollen classi-
fication studies [16]48.

Combined with extracted features and feature selection meth-
ods, the classifiers have been trained and the hyperparameters
were tuned based on the performance of the experiment.
2.2.3. Hierarchical strategy
A flat classification model is a straight-forward approach for

taxonomic classification tasks. Only one classifier is used to classify
all classes. However, the process ignores potential hierarchical
structure among different classes which could reduce performance
[31]. Hierarchical classification can be seen as a particular tree-
structured approach. It merges the classes which are more similar
into subgroups and classifies these subgroups separately. Varied
classifiers are used to classify classes at different hierarchical levels
until reaching the leaf nodes. Hierarchical strategy has been used
in many classification tasks [20]32 and has proven to increase
the performance compared with flat classification models.

For our work, we structured the three classes of pollen grains as
a hierarchical tree as shown in Fig. 3. We used a local classifier per
parent node approach to train a two-stage classifier for each parent
node in the hierarchical tree. In the first stage we merged Parietaria
and Urtica into one subgroup based on high morphological similar-
ity. Urtica membranacea is a distinct species that can already be
clearly distinguished under the light microscope and it was there-
fore treated as the other subgroup. In the second stage, Parietaria
and Urticawere subsequently classified. At both stages we selected
the best classifier and feature selection method for each parent
node in order to get a better performance of the hierarchical clas-
sification model.
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2.3. Deep learning methods

2.3.1. Convolutional neural networks
We selected several well-established deep learning models for

pollen classification. AlexNet achieved the best performance on
an ImageNet classification task in 2012 [33]. In order to prove that
convolutional network depth affects image classification accuracy,
Simonyan et al. [34] proposed VGGNet for large-scale image recog-
nition. A 16-layer VGG16 network and 19-layer VGG19 network
have proven to be the two best-performing convolutional neural
networks in other studies. ResNet introduces a residual learning
framework to ease the training process of very deep networks–
up to 152 layers [35]. Even though ResNet has lower complexity
than VGGNets, it still has millions of parameters making the net-
work computational heavy. A more light-weighted set of neural
networks, named MobileNets, was designed in order to embed it
into mobile devices or other applications [36]. In this study, we
selected the aforementioned models: i.e., AlexNet, VGG16,
VGG19, ResNet50, and MobileNet V1 and V2 [37] to classify our
pollen dataset.

In addition, we used a transfer learning technique to alleviate
the computational burden of training from scratch. With our three
classes pollen dataset, we fine-tuned the pretrained AlexNet based
on the ImageNet dataset in the PyTorch framework. The other pre-
trained networks implemented in the Keras Library were fine-
tuned on the TensorFlow platform. All experiments were executed
on a dedicated server equipped with two NVidia GeForce GTX 2070
with 8 GB GPUs using Linux Ubuntu operating system.

2.3.2. Data augmentation
Deep learning models need a large number of image datasets

covering diverse scenarios. Data augmentation techniques play
an important role in increasing the variety of images. Furthermore,
if appropriate transforms are applied to a dataset, data augmenta-
tion can greatly improve the performance and reduce overfitting.
In our case, differences between pollen of Urticaceae genera are
very subtle and slight configurational changes during image cap-
turing may affect the classification performance. Therefore, a large
amount of training data was needed for our study.

In order to simulate the possible transforms of pollen data,
brightness and flip transforms were most obvious and straightfor-
ward to select and therefore applied as augmentation options.
Other transforms like rotation, zoom range, etc., were not selected.

2.3.3. Cross-validation and hard voting
Cross-validation is applied in an image training process to

improve the effectiveness, robustness and generalization ability
of deep learning models, as well as to prevent overfitting. In this
study, K values of 5 or 10 were used [11]38. A 5-fold cross-
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validation means the ratio of training data and validation data is
8:2 while 10-fold cross-validation means the ratio is 9:1. We com-
pared the performance of deep learning models with 5-fold cross-
validation and 10-fold cross-validation, respectively. After 5/10-
fold cross-validation, 5/10 models were obtained and tested on test
datasets. In this study, hard voting was adopted to calculate the
final accuracy rather than the average accuracy of 5/10 models.
Hard voting sums the votes for class labels from each model for
predicting the class with the majority votes. The experimental
results show that the hard voting technique further improves the
classification performance on the test dataset.
2.4. Performance evaluation

Before addressing the results, we first introduce the perfor-
mance measures that we used. These were:

precision ¼ TP
TP þ FP

ð1Þ
recall ¼ TP
TP þ FN

ð2Þ
F1score ¼ 2� precision� recall
precisionþ recall

ð3Þ

Where TP refers to true positives, TN represents true negatives, FP is
false positives and FN is false negatives. High precision and recall
values are able to verify good performance against false positives
and false negatives of a model [5]. The F1 score is an overall mea-
surement which combines precision and recall together. A high F1
score means that a model retrieved both low false positives and
low false negatives, which proves the consistency of those measures
and the reliability of the model. Precision, recall and F1 score were
calculated as the average weighted by the number of true instances
for each class in our experiments. The accuracy of the classification
model was also calculated by the number of true predictions
divided by the total number of samples.

The performance measurements mentioned above are com-
monly applied in flat classification models. However, they are not
suitable for hierarchical classification models since they do not dif-
ferentiate the misclassification errors among different hierarchical
stages. Instead, we adopted the measures suggested in [32], which
include hierarchical precision (hP), hierarchical recall (hR) and
hierarchical f-measure (hF). These are defined as follows:

hP ¼

X
i

j bCi \ bC0
i j

X
i

j bC0
i j

ð4Þ
hR ¼

X
i

j bCi \ bC0
i j

X
i

j bCi j
ð5Þ
hF ¼ 2� hP � hR
hP þ hR

ð6Þ

Where bCi is a set of real classes with all of its ancestors and bC0
i is a

set of predict classes with all of its ancestors. Ancestors here refer to
all the nodes which are connected to the specific real/predict class
node in the hierarchical tree structure.
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3. Experiment results and discussion

We derived results from two parts: a comparison of pollen clas-
sification performance with different machine learning algorithms
and an analysis of performance of deep learning neural networks.
Two additional experiments show how machine learning-based
and deep learning-based methods work on smaller-size image
datasets. Our results are based on performance measures.
3.1. Results with machine learning methods

For machine learning methods, the 6472 pollen images were
divided into training and test datasets in a ratio of 9:1. In this
experiment, we compared the performance of each classification
model using 5-fold and 10-fold cross-validation, respectively. In
addition, a grid search technique [39] was applied in the training
process to help search for optimal hyperparameters automatically.
With this technique, a list of hyperparameter values is defined
beforehand and the optimal set of parameters, that can maximize
the accuracy of the model, is returned.

Table 2 shows the performance of each classifier with corre-
sponding hyperparameter settings and feature selection methods.
In Table 2 we present the results of a SVMwith a Radial Basis Func-
tion (RBF). This SVM, with a penalty parameter C = 4, was shown to
be optimal for this type of data. These parameters were deter-
mined by a grid search technique. Two dictionaries which included
kernel functions (linear, rbf, poly) and penalty values (from 1 to 10)
were set and the best parameter combination was returned. Other
parameters in SVM were selected by default values. The highest
score with an accuracy of 91.5% (r= ±0.008) and F1 score of
0.915 was achieved in combination with a PCA threshold of 0.8
with 5-fold cross-validation. The threshold 0.8 of the PCA means
that the first few principal components with the ratio of accumu-
lated data variation and total data variation greater than 0.8 are
preserved while all others are discarded. In this case, the final size
of the selected feature vector is 179 � 1 (see Supplementary
Table 3). For the RF classifier, the number of trees was set to 500.
The SelectFromModel function of a threshold ‘mean’ embedded
in a classifier can achieve the best performance of 88.6% (±0.015)
with 10-fold cross-validation. The threshold ‘mean’ was set accord-
ing to the importance of each feature. It means that a feature
whose importance is greater or equal to the ‘mean’ is kept while
others are discarded. The final size of the selected feature vector
is 2064 � 1. Similarly, all of these parameters are fine-tuned by
the grid search technique.

Furthermore, we carried out experiments with MLP and Ada-
boost classifiers. The MLP led to the best accuracy of 89.8%
(±0.011) with the following settings: the optimizer was Stochastic
Gradient Descent (SGD); the number of maximal iterations was
300; PCA feature reduction was at a threshold of 0.85. The final size
of feature vector after PCA feature reduction becomes 337 � 1.
Adaboost reached a performance of 75.4% (±0.021) with the num-
ber of Estimators set to 500 and a Learning Rate (LR) of 0.5. Mutual
Information plays an important role in the accuracy of the Ada-
boost classifier because it selected 2000 features most relevant to
target classes of pollen datasets. In addition, 5-fold and 10-fold
cross-validation obtained a comparable performance with differ-
ent machine learning-based classification models.

In order to improve the performance of the flat classification
model further, we applied a hierarchical strategy classification.
We have implemented different combinations of flat models to
form a two-level hierarchical structure which includes SVM
+ SVM, SVM + MLP, MLP + SVM, SVM + RF, RF + SVM. Table 3
shows all permutations with SVM for the hierarchical classification
model except for Adaboost. This is because SVM achieved the best



Table 2
Performance comparison of different flat classification models. Standard deviation, of each subset via cross-validation, is given in brackets.

Classifiers Hyperparameters Feature selection with threshold Cross-validation Precision Recall F1 score Accuracy

SVM kernel=‘rbf’, C = 4 PCA (0.8) 10-fold 0.913
(±0.012)

0.913
(±0.012)

0.913
(±0.012)

0.913
(±0.012)

5-fold 0.915
(±0.008)

0.915
(±0.008)

0.915
(±0.008)

0.915
(±0.008)

RF Estimators = 500 SelectFromModel
(mean)

10-fold 0.886
(±0.015)

0.886
(±0.015)

0.886
(±0.015)

0.886
(±0.015)

5-fold 0.884
(±0.010)

0.884
(±0.010)

0.884
(±0.010)

0.884
(±0.010)

MLP Solver=’sgd’,
Maxiter = 300

PCA (0.85) 10-fold 0.898
(±0.011)

0.898
(±0.011)

0.898
(±0.011)

0.898
(±0.011)

5-fold 0.890
(±0.008)

0.890
(±0.008)

0.890
(±0.008)

0.890
(±0.008)

Adaboost Estimators = 500,
LR = 0.5

Mutual Information
(2000)

10-fold 0.789
(±0.014)

0.754
(±0.021)

0.749
(±0.025)

0.754
(±0.021)

5-fold 0.784
(±0.015)

0.745
(±0.024)

0.743
(±0.028)

0.748
(±0.024)

Table 3
Performance comparison of hierarchical classification models.

Hierarchy Level 1 Hierarchy Level 2 hP hR hF Accuracy

Classifier with
Hyperparameters

Feature selection
with threshold

Classifier with
Hyperparameters

Feature selection
with threshold

SVM
(kernel=’rbf’,C = 6)

PCA (0.8) SVM
(kernel=’rbf’,C = 4)

PCA (0.8) 0.941 0.941 0.941 0.945

SVM
(kernel=’rbf’,C = 4)

PCA (0.8) MLP
(Solver=’sgd’, Maxiter = 300)

PCA (0.85) 0.920 0.920 0.920 0.916

MLP
(Solver=’sgd’, Maxiter = 300)

PCA (0.85) SVM
(kernel=’rbf”,C = 4)

PCA (0.8) 0.929 0.929 0.929 0.933

SVM
(kernel=’rbf’,C = 4)

PCA (0.8) RF
(Estimators = 500)

SelectFromModel
(mean)

0.907 0.907 0.907 0.897

RF
(Estimators = 500)

SelectFromModel
(mean)

SVM
(kernel=’rbf’,C = 4)

PCA (0.8) 0.913 0.913 0.913 0.911
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performance of the flat classification models while Adaboost
achieved the lowest performance. In Table 3 the best combination
is SVM + SVM which obtained 94.5% of accuracy and 0.941 of all of
the hP, hR and hF. The reason why hP, hR and hF are equal is that
our simple hierarchical tree structure only has 3 layers and for each
parent node, it only has 2 children. According to the definition of hP
and hR (cf. Eq. (5)), in this case, the calculation of hP, hR and hF is
equal. Based on our experiments, a hierarchical model which com-
bined SVM + PCA and SVM + PCA at both 2 levels was considered
as the best model among machine learning-based methods.

3.2. Results with deep learning methods

Our starting point has been to work with commonly available
deep learning methods, the AlexNet, VGG16, VGG19, ResNet50,
MobileNet V1 and MobileNet V2. First of all, a total of 6472 pollen
grain images were divided into a training set and test set in a ratio
of 9:1 randomly. The test set was composed of images that were
not seen by the model during the training process and that were
used to test the trained classification model. Secondly, considering
that deep learning models require a huge amount of data, a data
augmentation technique was applied. Thirdly, similar with
machine learning models, 5-fold and 10-fold cross-validation were
used to prevent overfitting and increase the robustness as well as
the generalization ability of the deep learning models. Data aug-
mentation process was performed for each cross-validation set
independently.

Based on these aforementioned procedures, we fine-tuned six
representative deep learning classification models. The pretrained
AlexNet was implemented in the PyTorch framework. The whole
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five convolutional layers and three fully connected layers were
fine-tuned with a learning rate 0.001. We set the batch size to
128 and the number of batches to 4000. Fig. 4 (a) shows the perfor-
mance plot of AlexNet. The plot shows the accuracy and loss for
both training and validation dataset. The accuracy drastically
increases in the first 700 batches and then converges gradually.
AlexNet achieved an accuracy of 94.1% with a standard deviation
of (±0.002) using 10-fold cross-validation while 5-fold cross-
validation retrieved a comparable accuracy of 92.4% (±0.002) (see
Table 4). The average accuracy and standard deviation were calcu-
lated by training each model three times. The accompanied preci-
sion, recall and F1 score achieved with the same 0.941. The reason
why these three measurements are so similar is that, for this case,
False Positive (FP) samples are nearly equal to the number of False
Negatives (FN). The consistency of these measurements shows the
reliability of the model. Six positive samples and six negative sam-
ples among three classes of pollen grains performed by AlexNet are
shown in Fig. 5 (a) and (b). The actual label, predicted label and
confidence score of each sample are indicated. Label 1 to 3 repre-
sent the 3 classes of pollen: Parietaria, Urtica, Urtica membranacea.
In Fig. 5 (a), positive samples clearly show the distinguished prop-
erties. Urtica pollen has obviously thickened pores compared with
pollen of Parietaria and Urtica membranacea. Pollen of Urtica mem-
branacea has more angular outlines than pollen of the other two
genera. In Fig. 5 (b) illustrates that, when the properties of the 3
classes of pollen are not clearly displayed, the network will mis-
classify these samples because of high similarities among the 3
classes.

Similarly, the pretrained VGG16 and VGG19 models were fine-
tuned with a batch size of 64 and the number of epochs set to 30.



Fig. 4. The performance plots of (a) AlexNet, (b) VGG16, (c) VGG19, (d) MobileNet V1, (e) MobileNet V2, and (f) ResNet50, in terms of training loss, etc., with respect to the
number of epochs.

Table 4
Classification performances of different deep learning classification models. Standard deviation, training each model three times, is given in brackets.

Cross-validation Precision Recall F1 score

AlexNet 10-fold 0.941(±0.002) 0.941(±0.002) 0.941(±0.002)
5-fold 0.924(±0.002) 0.924(±0.002) 0.924(±0.002)

VGG16 10-fold 0.983(±0.001) 0.983(±0.001)) 0.983(±0.001)
5-fold 0.985(±0.002) 0.985(±0.002) 0.985(±0.002)

VGG19 10-fold 0.986(±0.002) 0.986(±0.002) 0.986(±0.002)
5-fold 0.988(±0.003) 0.988(±0.003) 0.988(±0.003)

ResNet50 10-fold 0.994(±0.002) 0.994(±0.002) 0.994(±0.002)
5-fold 0.993(±0.002) 0.993(±0.002) 0.993(±0.002)

MobileNet V1 10-fold 0.981(±0.003) 0.981(±0.003) 0.981(±0.003)
5-fold 0.980(±0.002) 0.980(±0.002) 0.980(±0.002)

MobileNet V2 10-fold 0.985(±0.003) 0.985(±0.003) 0.985(±0.003)
5-fold 0.984(±0.003) 0.984(±0.003) 0.984(±0.003)
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Label: 1

Predicted: 1
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Label: 2

Predicted: 2

0.57609
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Label: 3

Predicted: 3

0.57606

Label: 3

Predicted: 3

0.53123

Label: 1

Predicted: 2

0.55665
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Predicted: 2

0.57449
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Predicted: 1

0.41037

Label: 2

Predicted: 1

0.55925
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Predicted: 1

0.56865

Label: 3

Predicted: 1

0.40726

(a)

(b)

Fig. 5. Examples of classification performed by AlexNet. (a) Positive samples with their predicted label and confidence score. (b) Negative samples with their predicted label
and confidence score.
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The whole network was fine-tuned using learning rate 2e-5 with-
out freezing any layers. Fig. 4 (b) and (c) show the performance
plots of VGG16 and VGG19, respectively. Both plots show that
188
the models converge well in the training process. Table 4 lists
detailed measurements of these two models. For 10-fold cross-
validation, VGG16 obtained an average accuracy of 98.3% with a



1 Two differently sized groups of subsets consist of 1000- and 500-sized image
subsets, they are given as an indication; the real number is slightly higher.
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standard deviation of (±0.001) while VGG19 achieved a compara-
ble average accuracy of 98.6% with (±0.002).

The pretrained ResNet50, MobileNet V1 and MobileNet V2
models were constructed based on Keras as well. And all of these
models were fine-tuned on our pollen dataset. Table 4 shows that
light-weights MobileNets achieved a comparable accuracy with
VGGNets but it had a slightly higher standard deviation. This
means that light models are not as robust as heavy-weight models.
ResNet50 obtained the highest performance of 99.4% with 10-fold
cross-validation among the six models investigated due to its dee-
per network layers and a creative residual structure. Consequently,
ResNet50 was selected as the best performing model among all the
models that we implemented. In addition, both 5-fold and 10-fold
cross-validation achieved comparable performance for all of the
deep learning models studied.

Fig. 6 and 7 show the positive and negative samples classified
by VGG16 and ResNet50, respectively. Compared with AlexNet
(Fig. 5), the confidence score of the classified pollen of VGG16
was higher. The reason is that VGG16 has deeper layers which
results in the extraction of more detailed and distinct features of
pollen data. ResNet50 has a much deeper and complex network
structure and the classification accuracy was higher than that of
VGG16 (Table 4). For positive samples in Fig. 7 (a), the confidence
score of ResNet50 was almost 1.00 which was higher than that of
VGG16. And in the test dataset, only three negative samples,
shown in Fig. 7 (b), were misclassified due to the high performance
of the ResNet50 model.

After analysing automatic classification models based on both
machine learning and deep learning methods on our pollen data-
set, we observed that the ResNet50 neural network reached an
accuracy of 99.4% (±0.002) which is 4.9% higher compared to the
hierarchical machine learning model. Deep learning-based meth-
ods perform better to classify our Urticaceae pollen grains. In addi-
tion to our pollen images dataset, we have used the deep learning
classifiers to other pollen image datasets available to us. These
have not been used in the training/testing but are used as unseen
samples to probe the classifiers from our study. The classification
results with these additional datasets confirm the findings from
study. Early results with these extra datasets, based on VGG16,
have already been reported in [12]. With our ResNet50 model,
the results with unseen data are even better. In Supplementary
Table 4 these results are summarized.

3.3. Results on smaller-size image datasets

It is common knowledge that the training process of deep learn-
ing model requires the use of a large data set. However, in daily
practice, there are limitations in the collection of sufficient samples
and images. Therefore, we examined the robustness of both
machine learning-based and deep learning-based methods when
facing a smaller dataset. Are machine learning-based method and
deep learning-based method comparable in performance? To
answer this question, starting from the original data, two smaller
pollen image datasets consisting of 1000-sized and 500-sized
image subsets, were constructed. These image subsets were ran-
domly selected from 6472 images. And the ratio of the 3 classes
was 1:1:1. The experimental results on smaller datasets shown
in Table 5 was based on one round of selection.

On both smaller pollen datasets (1000 and 500 images), the
same six deep learning-based models were applied. For machine
learning models, we refine-tuned the hyperparameters of the best
performed flat model (SVM) and hierarchical model (SVM + SVM).
Table 5 shows the performance of both machine learning-based
and deep learning-based methods on the two smaller image data-
sets. Compared with the 88% accuracy of the flat model on the
1000-image dataset, the 93.9% accuracy obtained by the hierarchi-
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cal model demonstrated that hierarchical strategy improves the
performance. The performance of the hierarchical model was, how-
ever, still lower than the deep learning models, except for AlexNet.
We obtained similar results with the larger 6472-image dataset
(Table 3 and Table 4). This is probably due to the fact that AlexNet
has a shallow layer-structure which includes only five convolu-
tional layers and three fully connected layers. The results indicate
that extracting as many features as possible manually as well as
using a hierarchical strategy outperforms a shallow deep learning
neural network such as AlexNet. For the 500-image dataset we
obtained similar results.

In order to obtain sufficient information for a statistical analysis
of the performance of the models, we used a cross-validation
approach over the entire image set with two differently sized
groups of subsets 1. We implemented the 5-fold cross-validation
to select five image subsets from the 6472-image dataset, as well
as the 10-fold cross-validation to select ten smaller image subsets.
With this selection method, the average performance of all subsets
from different models was compared, the results of which are given
in Supplementary Table 5. The experiments confirmed that ResNet50
achieved the best performance on both 1000- and 500-sized dataset.

Deep learning-based methods show a better performance on
both the large and smaller pollen datasets. An ablation study was
conducted to help understand why this difference was retrieved.
Convolutional layers of deep neural networks can catch more rep-
resentative features compared with extracting handcrafted fea-
tures manually. We visualized intermediate feature maps of
VGG16 and ResNet50 in Fig. 8 and Fig. 9 to provide extra insight
in the procedure of feature extraction. For each different layer of
the model, different features were extracted. In Fig. 8, the feature
maps of convolutional layers 1, 4 and 7 of VGG16 are shown. In
Fig. 9, we show the feature maps of the convolutional layer in stage
1 and three bottlenecks in stage 2 of ResNet50. The structure of
ResNet50 can be divided into five stages [35]. Stage 1 consists of
1 convolutional layer and stage 2–5 consist of a different number
of bottleneck structures. From both feature maps, we can conclude
that, in the first several convolutional layers, basic pollen features
such as edges and textures (surface ornamentation) are clearly dis-
played as was also found in [12]. With an increase of the number of
network layers, more and more complex and abstract features
influence the performance of pollen classification. For example,
in convolutional layer 4 of VGG16 and the first bottleneck in stage
2 of ResNet50, other important parts of pollen such as the pores are
highlighted. In the higher layers of the network, only the most rep-
resentative features are retained but these features are difficult to
grasp. With the help of a deep convolutional network that can
extract different features from low level (detail) to high level (ab-
stract), the best score in pollen classification tasks is achieved.

In addition, all of the techniques, i.e., transfer learning, data
augmentation and hard voting, clearly contributed to improve
the performance of the deep learning models under study. Table 6
shows to what extent the accuracy can be improved by different
techniques applied on the around 1000-sized image subset. Five
1000-sized image subsets were selected via 5-fold cross-
validation. The average performance of five subsets was calculated
and the results are shown in Table 6. The first row shows that
ResNet50 achieved 81.4% accuracy if the model was trained from
scratch. Transfer learning improved the accuracy to 95.0% using
pre-trained parameters which were trained on the ImageNet data-
set. Based on the 95.0% accuracy of transfer learning, the ResNet50
model with data augmentation improved the accuracy to 96.2%.
The accuracy is 1.2% higher than without data augmentation which
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Fig. 6. Examples of classification performed by VGG16. (a) Positive samples with their predicted label and confidence score. (b) Negative samples with their predicted label
and confidence score.

Fig. 7. Examples of classification performed by ResNet50. (a) Positive samples with their predicted label and confidence score. (b) Negative samples with their predicted label
and confidence score.

Table 5
Performance comparison of different methods on smaller-size image datasets. Standard deviation, training each model three times, is given in brackets.

Deep learning-based Machine learning-based

AlexNet VGG16 VGG19 ResNet50 MobileNet V1 MobileNet V2 Flat model Hierarchical model

Accuracy of
1000 images

0.916
(±0.006)

0.943
(±0.006)

0.943
(±0.012)

0.963
(±0.012)

0.947
(±0.015)

0.950
(±0.010)

0.880 0.939

Accuracy of
500 images

0.861
(±0.032)

0.920
(±0.000)

0.920
(±0.020)

0.933
(±0.012)

0.927
(±0.012)

0.907
(±0.023)

0.760 0.896
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is shown in the second row. Data augmentation helped to increase
the variety and the size of image data. Hard voting predicted the
class labels with the majority votes of different classification mod-
els. The combination of all these techniques significantly improved
the accuracy of the ResNet50 model to 97.5%. The third row of
Table 6 shows that without transfer learning, the accuracy of the
ResNet50 model was only 86.1%. We can conclude that, in this
study, transfer learning plays a more important role in the perfor-
mance of deep learning models comparing with data augmentation
and hard voting. Because of these advanced techniques, we
achieved great success with our deep learning models in the
190
classification of our Urticaceae pollen data. Supplementary Table
6 shows the ablation study of ResNet50 based on 10-fold cross-
validation selection method.
4. Conclusion

This study aimed to find the automatic classification model
with the best performance to classify Urticaceae pollen grains. Pol-
len grains of this family have high morphological similarity while
they induce different allergenic levels. Few researchers focused
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Fig. 8. Example of feature maps of VGG16. (a) Parietaria. (b) Urtica. (c) Urtica membranacea. Column 1 represents the input data, column 2–4 are the output of convolutional
layer 1, 4, and 7, respectively.
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Fig. 9. Example of feature maps of ResNet50. (a) Parietaria. (b) Urtica. (c) Urtica membranacea. Column 1 represents the input data, column 2–5 are the output of convolutional
layer in stage 1, and output of three bottlenecks in stage 2, of ResNet50, respectively.

Table 6
Ablation study with ResNet50. The average performance of ResNet50 based on five (about) 1000-sized image subsets via 5-fold cross-validation selection method is given.
Standard deviation, of five subsets, is given in brackets. Numbers in italics refer to training without transfer learning and data augmentation, respectively.

Training from
scratch

With/without
transfer learning

With/without data
augmentation

With hard
voting

Accuracy 0.814
(±0.025)

0.950
(±0.017)

0.962
(±0.004)

0.975
(±0.002)

0.814
(±0.025)

0.950
(±0.017)

0.950
(±0.017)

0.971
(±0.022)

0.814
(±0.025)

0.814
(±0.025)

0.837
(±0.026)

0.861
(±0.023)
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on classification of pollen of the Urticaceae nettle family to genus
and species level. For our research, a pollen grain image dataset
of the Urticaceae family was constructed, consisting of 6472
images. The pollen grains were unacetolyzed and to our knowl-
edge, these had not yet been used before the analysis of pollen
image classification tasks except for our own previous work [12].
Two approaches in image classification techniques including
machine learning-based methods and deep learning-based meth-
ods were implemented and analysed. For machine learning-based
methods, six texture features and two moment features were
extracted. Subsequently, several popular feature selection tech-
niques and classifiers were applied. Compared with flat classifica-
tion models, a hierarchical strategy was confirmed to achieve great
success with the classification task. Among the different machine
learning methods, the highest performance of 94.5% accuracy
was achieved by hierarchical classification models. For deep
learning-based methods, six well-established deep Convolutional
Neural Networks were used to perform a classification task.
Together with data augmentation, cross validation and hard voting
techniques, the pretrained ResNet50 model, which achieved an
accuracy of 99.4% (±0.002) was considered the best classification
model among the six models investigated.

From our comparison of machine learning-based with deep
learning-based methods, we conclude that deep learning-based
methods perform better for pollen image classification. Two addi-
tional experiments demonstrated that deep learning models are
more successful for both large and smaller sized datasets. One rea-
son is that deep learning models can extract more representative
features of pollen images from low (detailed) to high (abstract)
level. The performance of machine learning methods is, however,
highly dependent on the quality of features that are extracted from
the image dataset. In addition, transfer learning, data augmenta-
tion and hard voting techniques drastically improved the perfor-
mance of deep learning models. An ablation study showed that
the accuracy of deep learning models is improving step by step.
Deep nets such as Inception-V3, DenseNets, and NASNets have
shown to perform well on datasets in the public domain. Neverthe-
less, ResNet50 has already yield an accuracy of 99.4% on our data-
set. We may apply these deeper networks on a larger dataset in the
future. Our work clearly demonstrates what automatic classifica-
tion methods can accomplish for highly similar images of pollen
species in the Urticaceae family. This technique can be broader
applied to similar pollen from other families. This method could
also potentially be extended to cope with other image classifica-
tion tasks.
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