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Abstract
The antiarrhythmic agent quinidine is a potent inhibitor of cytochrome P450 
(CYP) 2D6 and P- glycoprotein (P- gp) and is therefore recommended for use in 
clinical drug– drug interaction (DDI) studies. However, as quinidine is also a 
substrate of CYP3A4 and P- gp, it is susceptible to DDIs involving these proteins. 
Physiologically- based pharmacokinetic (PBPK) modeling can help to mechanis-
tically assess the absorption, distribution, metabolism, and excretion processes 
of a drug and has proven its usefulness in predicting even complex interaction 
scenarios. The objectives of the presented work were to develop a PBPK model 
of quinidine and to integrate the model into a comprehensive drug– drug(– gene) 
interaction (DD(G)I) network with a diverse set of CYP3A4 and P- gp perpe-
trators as well as CYP2D6 and P- gp victims. The quinidine parent- metabolite 
model including 3- hydroxyquinidine was developed using pharmacokinetic pro-
files from clinical studies after intravenous and oral administration covering a 
broad dosing range (0.1– 600 mg). The model covers efflux transport via P- gp and 
metabolic transformation to either 3- hydroxyquinidine or unspecified metabo-
lites via CYP3A4. The 3- hydroxyquinidine model includes further metabolism 
by CYP3A4 as well as an unspecific hepatic clearance. Model performance was 
assessed graphically and quantitatively with greater than 90% of predicted phar-
macokinetic parameters within two- fold of corresponding observed values. The 
model was successfully used to simulate various DD(G)I scenarios with greater 
than 90% of predicted DD(G)I pharmacokinetic parameter ratios within two- fold 
prediction success limits. The presented network will be provided to the research 
community and can be extended to include further perpetrators, victims, and tar-
gets, to support investigations of DD(G)Is.
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INTRODUCTION

Cytochrome P450 (CYP) 2D6 is thought to be involved in 
the metabolism of about 20– 25% of drugs and exhibits a 
highly polymorphic expression.1 Consequently, CYP2D6 
drug– gene interactions (DGIs) adversely affecting drug 
pharmacology frequently occur in clinical practice. 
Additionally, the concomitant administration of drugs 
can also modulate CYP2D6 metabolism, potentially re-
sulting in drug– drug– gene interactions (DDGIs) which 
may further increase the risk of adverse drug reactions 
(ADRs).2 Here, drug- induced CYP2D6 phenoconversion 
(i.e., the conversion from normal to poor metabolizer 
phenotypes due to the co- administration of strong inhibi-
tors), has been described in the literature with varying 
magnitudes of interaction effects in different CYP2D6 
phenotypes.3

Quinidine is a class 1A anti- arrhythmic drug and 
acts by blocking voltage- gated sodium channels. Due 
to its high risk for side effects and interaction potential 
as well as the availability of more advantageous anti- 
arrhythmic treatment options, the clinical relevance of 
quinidine has been in decline with steadily decreasing 
prescription rates over the last decades.4 However, as a 
strong CYP2D6 inhibitor and inhibitor of P- glycoprotein 
(P- gp), quinidine is still used in clinical drug– drug inter-
action (DDI) studies, as recommended by the US Food 
and Drug Administration (FDA).5 Here, the investigation 
of these interactions can provide valuable insights into 

the involved absorption, distribution, metabolism, and 
excretion (ADME) processes of concomitantly adminis-
tered CYP2D6 and P- gp substrates.

Quinidine exhibits extensive hepatic and intestinal 
first- pass metabolism.6 For this, CYP3A4 was found to 
be the most important enzyme in vitro and researchers 
have proposed to utilize quinidine 3- hydroxylation as 
a specific in vitro marker reaction for CYP3A4 activity.7 
Furthermore, quinidine has been identified as a substrate 
of P- gp in vitro,5 making it susceptible to DDIs involving 
CYP3A4 and P- gp. Quinidine displays nonlinear phar-
macokinetics that can be attributed to a saturation of in-
testinal CYP3A4 and P- gp.8 Although quinidine shares 
structural similarities with many CYP2D6 substrates, the 
contribution of CYP2D6 to the metabolism of quinidine 
is negligible.7 However, due to its high affinity to the met-
abolic site of CYP2D6, quinidine is a potent competitive 
inhibitor of CYP2D6.9 Its metabolites have been found to 
contribute to the inhibition of CYP2D6.10

Several DDGI studies have been published investigat-
ing the effect of CYP2D6 polymorphisms and quinidine 
administration on victim drug pharmacokinetics (e.g., 
metoprolol11), resulting in considerable increases in drug 
exposure. Here, innovative tools are required to investigate 
DDGIs, as performing dedicated clinical trials routinely 
in drug development is infeasible due to combinatorical 
complexities and can put study subjects at a considerable 
risk of experiencing ADRs.2 For this, physiologically- 
based pharmacokinetic (PBPK) modeling is a powerful 

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Quinidine is an inhibitor of cytochrome P450 (CYP) 2D6 and P- gp as well as a 
substrate of CYP3A4 and P- gp. It is recommended for use in clinical drug– drug 
interaction studies.
WHAT QUESTION DID THIS STUDY ADDRESS?
Quinidine pharmacokinetics were extensively studied applying physiologically- 
based pharmacokinetic (PBPK) modeling. Furthermore, its interaction potential 
was assessed within a comprehensive CYP2D6- CYP3A4- P- gp drug– drug– gene 
interaction (DDGI) network, involving quinidine as both perpetrator and victim 
drug.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
The in vivo interaction potential of quinidine could be accurately modeled, em-
phasizing the potential of the PBPK approach to investigate even complex DDGI 
scenarios.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT 
AND/OR THERAPEUTICS?
This work highlights the evaluation of PBPK models in the context of a complex 
interaction network. The quinidine model can assist in future investigations on 
CYP2D6- CYP3A4- P- gp DDGIs during model- informed drug development.

 21638306, 2023, 8, D
ow

nloaded from
 https://ascpt.onlinelibrary.w

iley.com
/doi/10.1002/psp4.12981 by U

niversity O
f L

eiden, W
iley O

nline L
ibrary on [13/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



   | 1145PBPK MODELING OF QUINIDINE

mechanistic approach to model the pharmacokinetics of a 
drug, taking an individual's physiological and genetic pro-
file into account.2 Thoroughly built and evaluated PBPK 
models can be valuable to describe the underlying ADME 
processes and investigate even complex DD(G)I scenar-
ios.2 Furthermore, these models can assist in generating 
and testing hypotheses regarding, for instance, (patho- )
physiological changes affecting ADME processes where 
in vitro and in vivo data are incomplete or inconclusive.12 
Mechanistic DGI models have shown their usefulness in 
describing and predicting the effect of polymorphisms on 
drug pharmacokinetics (e.g., for the CYP2D6 substrates 
metoprolol and dextromethorphan), demonstrating how 
PBPK models can assist in understanding the underlying 
ADME- related processes and explain observed interindi-
vidual variability.13,14 PBPK DD(G)I networks can have 
enormous potential in this area, as evaluated models can 
support simulating untested DD(G)I scenarios and sup-
port model- informed drug discovery and development.15

Due to the importance of quinidine as DDI probe drug 
for CYP2D6 and P- gp inhibition as well as CYP3A4 and 
P- gp substrate, the main objectives of this work were (i) to 
develop a comprehensive PBPK model of quinidine and 
its major metabolite 3- hydroxyquinidine and (ii) to pre-
dict complex quinidine DD(G)Is within a comprehensive 
PBPK interaction network involving CYP3A4, CYP2D6, 
and P- gp.

METHODS

Software

The development of the quinidine PBPK model, parame-
ter optimizations, and sensitivity analysis, as well as simu-
lation of different DD(G)I scenarios were performed with 
PK- Sim (version 11, Open Systems Pharmacology Suite, 
www.open- syste ms- pharm acolo gy.org). Published plasma 
concentration- time profiles were digitized with Engauge 
Digitizer 10.12 (M. Mitchell, https://marku mmitc hell.
github.io/engau ge- digit izer). Model evaluations (i.e., 
graph generation and calculation of pharmacokinetic pa-
rameters as well as statistics) were accomplished using the 
R programming language version 4.2.1 (The R Foundation 
for Statistical Computing, Vienna, Austria) and Rstudio 
2022.07.0 (Rstudio).

Quinidine PBPK model building

PBPK model building was initialized by collecting phys-
icochemical and ADME- related parameters of quinidine 
and 3- hydroxyquinidine from the literature. Additionally, 

studies reporting quinidine and 3- hydroxyquinidine 
plasma concentrations alongside subject information 
and administration protocols were collected. Studies 
were preferably included if performed in healthy volun-
teers and if concentration- time profiles were reported 
alongside unambiguous dosing and regimen informa-
tion. Gathered concentration- time profiles were split 
into a model training (model development) and a test 
dataset (model evaluation). The model training dataset 
was assembled to (i) maximize the cardinality of the test 
dataset and to cover (ii) intravenous and oral adminis-
tration, (iii) the whole dosing range of published studies, 
and (iv) single and multiple dose administration while 
preferring information- dense as well as (v) additional 
measurements of 3- hydroxyquinidine profiles. Virtual 
individuals (“mean individuals”) were created based on 
the mean and mode of the reported study demograph-
ics if available. By selecting ethnicities according to 
the study cohorts from the PK- Sim database, varying 
organ volumes and perfusion rates were taken into ac-
count. Relevant enzymes and transporters were imple-
mented according to literature reports and the PK- Sim 
expression database (see Tables  S1– S3). Parameter op-
timizations were performed to identify suitable quan-
titative structure– activity relationship methods to 
calculate cellular permeabilities and partition coeffi-
cients. Furthermore, model parameter values that could 
not be informed from literature reports (e.g., quinidine 
intestinal permeability as well as relevant catalytic and 
transport rate constants) were optimized by fitting model 
simulations against all studies of the training dataset ap-
plying Monte Carlo optimization minimizing the least- 
squares objective function.16

Quinidine PBPK model evaluation

Model performance was evaluated graphically by compar-
ison of population simulation predictions and observed 
quinidine and 3- hydroxyquinidine plasma concentration- 
time profiles. For this, virtual populations of 1000 indi-
viduals were generated, based on the study demographics 
listed in the respective publications, such as ethnic back-
ground as well as age and weight range. Additional vari-
ability regarding the expression of metabolizing enzymes 
and transporters was implemented according to the  
PK- Sim ontogeny database (see Table S1).

Furthermore, predicted plasma concentrations for 
mean individuals, area under the plasma concentration- 
time curve calculated between the first and last concen-
tration measurement (AUClast) and maximum plasma 
concentration (Cmax) values were compared to their 
respective observed values in goodness- of- fit plots by 
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assessing the proportion of predictions within two- fold 
of observed concentration, AUClast and Cmax data. As 
quantitative measures to evaluate the model perfor-
mance, mean relative deviations (MRDs) for all pre-
dicted concentration- time profiles and geometric mean 
fold errors (GMFEs) for all predicted AUClast, Cmax, ap-
parent volume of distribution (Vd) and half- life values 
were calculated as previously described.13,17 Predictions 
with MRDs and GMFEs less than two were considered 
successful.

To assess the influence of single parameter changes 
on model- simulated AUC, a local sensitivity analysis 
was performed using a parameter perturbation of 1000%. 
Parameters were considered sensitive if their sensitiv-
ity value was equal or greater than 0.5. More details on 
the conducted local sensitivity analysis are provided in 
Supplement S1 (Section S2.10).

DD(G)I modeling network building

To assess the performance of the newly developed qui-
nidine model to predict various DD(G)I scenarios, the 
model was linked to previously published PBPK models 
of carbamazepine,18 cimetidine,12 fluvoxamine,19 itra-
conazole,20 R- /S- omeprazole,21 rifampicin,20 and R- /S- 
verapamil22 (here, quinidine is acting as CYP3A4 and 
P- gp victim drug) as well as to models of dextrometho-
rphan,14 digoxin,20 metoprolol,13 mexiletine,21 and par-
oxetine23 (here, quinidine is acting as an inhibitor of 
CYP2D6 and P- gp). Moreover, CYP2D6 DDGI scenarios 
with dextromethorphan, metoprolol, and mexiletine 
were modeled by adjusting CYP2D6 activity related to 
the phenotype (normal and poor metabolizers) accord-
ing to previous modeling work.13,14,21 For all simulated 
interactions, the quinidine inhibitory constant (Ki) val-
ues were kept constant over the whole range of CYP2D6 
activity.

DD(G)I modeling network evaluation

DD(G)I model performances were evaluated by compar-
ing victim drug population predictions with observed 
plasma concentrations alone and during perpetrator co- 
administration. Furthermore, predicted compared to ob-
served DD(G)I pharmacokinetic parameter ratios (ratios 
between AUClast or Cmax during the DD(G)I and of the 
victim drug alone) were plotted in goodness- of- fit plots. 
Here, limits for the assessment of DD(G)I ratios were ap-
plied according to Guest et al.24 including 20% variability. 
Additionally, GMFEs of DD(G)I AUClast and Cmax ratios 
were calculated.

RESULTS

Quinidine PBPK model

A comprehensive quinidine- 3- hydroxyquinidine parent- 
metabolite whole- body PBPK model was built and evalu-
ated using data from 22 clinical studies reporting a total 
of 43 plasma concentration- time profiles for quinidine. 
Additionally, two profiles of unbound quinidine and eight 
plasma concentration- time profiles of 3- hydroxyquinidine 
were included in the model datasets. In these studies, 
plasma concentration- time profiles were reported after 
single intravenous administration of 260.3– 520.6 mg qui-
nidine gluconate (corresponding to 162.2– 324.4 mg qui-
nidine base) and single or multiple oral administrations 
of 0.1– 600 mg quinidine sulfate (corresponding to 0.08– 
497.2 mg quinidine base). The training dataset included 10 
profiles of quinidine in plasma, two profiles of quinidine in 
urine, and five profiles of 3- hydroxyquinidine in plasma. 
Information about all utilized studies, including the demo-
graphics and implemented ethnicities of study subjects, is 
provided in Tables  S4, S13, and S14. Efflux transport of 
quinidine via P- gp was incorporated and metabolism via 
CYP3A4 (saturable Michaelis– Menten kinetics) was im-
plemented for the building of 3- hydroxyquinidine and 
other unspecific metabolites. The 3- hydroxyquinidine 
metabolism was modeled via CYP3A4 and an unspe-
cific hepatic clearance process as a surrogate for further 
unspecified enzymes (both first- order kinetics). Renal 
excretion of both compounds was modeled as passive 
glomerular filtration. Additionally, active tubular secre-
tion via P- gp transport was incorporated in the model for 
quinidine. For oral formulations (quinidine sulfate im-
mediate release), a Weibull dissolution was incorporated. 
All relevant quinidine and 3- hydroxyquinidine drug- 
dependent parameters are listed in Table S5, information 
about the expression and localization of relevant proteins 
is provided in Tables S1– S3.

A selection of population predictions of quinidine and 
3- hydroxyquinidine compared to their respective observed 
data after intravenous and oral administration is shown in 
Figure 1a– f. Semilogarithmic and linear plots of all mod-
eled studies are shown in Figures S1– S14. The good de-
scriptive and predictive model performance is displayed in 
goodness- of- fit plots (Figures 1g– i, S15, S16), where 94%, 
100%, and 100% of quinidine training dataset, 90%, 97%, 
and 91% of quinidine test dataset, 79%, 100%, and 80% of 
3- hydroxyquinidine training dataset and 89%, 100%, and 
100% of 3- hydroxyquinidine test dataset predicted plasma 
concentrations, AUClast and Cmax values were within two- 
fold of the corresponding observed values, respectively. 
Moreover, nine of 10 quinidine training dataset, 30 of 
33 quinidine test dataset, five of five 3- hydroxyquinidine 
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training dataset, and three of three 3- hydroxyquinidine 
test dataset predicted plasma concentration profile MRDs 
were less than two. For quinidine, 10 of 10 (training data-
set) and 32 of 33 (test dataset) AUClast GMFEs, and eight 

of eight (training dataset) and 30 of 33 (test dataset) Cmax 
GMFEs were below two. For 3- hydroxyquinidine, five 
of five (training dataset) and three of three (test dataset) 
AUClast GMFEs, and four of five (training dataset) and 

F I G U R E  1  Quinidine physiologically- based pharmacokinetic modeling performance evaluation. (a– f) Predicted compared to observed 
plasma concentration- time profiles of quinidine and 3- hydroxyquinidine after (a) intravenous and (b– f) oral administration. Population 
geometric means are shown as lines, geometric standard deviations are shown as shaded areas, and observed data are shown as dots 
(training dataset) and triangles (test dataset) (±standard deviation, if reported).8,25– 29 (g– i) Goodness- of- fit plots comparing predicted and 
observed (g) plasma concentrations, (h) area under the plasma concentration- time curve calculated between first and last concentration 
measurement (AUClast) and (i) maximum plasma concentration (Cmax) values. The solid line represents the line of identity, whereas 1.25- 
fold and two- fold prediction limits are shown as dotted and dashed lines, respectively. Doses indicate (a) quinidine gluconate and (b– f) 
quinidine sulfate administration. Respective doses of quinidine base were calculated and incorporated in simulations. iv, intravenous;  
n, number of study participants; po, oral, q.i.d., four times daily; s.d., single dose.

(a) (b) (c)

(d) (e) (f)

(g) Plasma concentration (i) Cmax(h) AUClast
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three of three (test dataset) Cmax GMFEs values were 
within the two- fold threshold. For quinidine, all predicted 
Vd and half- life values are within twofold of observed val-
ues. The calculated MRD and GMFE values for all studies 
are listed and summarized in Tables S6– S9.

A local sensitivity analysis using a multiple dose 
simulation of 200 mg quinidine sulfate (protocol ac-
cording to Ochs et al.25) revealed that the quinidine 
model is sensitive to the quinidine fraction unbound in 
plasma and lipophilicity (both implemented as fixed lit-
erature values). The 3- hydroxyquinidine model is sen-
sitive to 3- hydroxyquinidine fraction unbound, the 
Michaelis– Menten (both fixed values from the litera-
ture) and catalytic- rate constants (optimized) describ-
ing the CYP3A4- dependent metabolism of quinidine to 
3- hydroxyquinidine and the optimized unspecific hepatic 
clearance process. Parameters evaluated during sensitiv-
ity analysis are provided in Table S10, results of the local 
sensitivity analyses are visualized in Figures S17 and S18.

DD(G)I modeling network

The quinidine model was evaluated within a comprehen-
sive CYP2D6- CYP3A4- P- gp DD(G)I network (Figure  2). 
Information about published perpetrator and victim mod-
els’ relevant interaction constants and model parameters 
are provided in Tables S11 and S12. A total of nine quini-
dine and four 3- hydroxyquinidine profiles obtained from 
eight DDI studies were utilized to assess the quinidine- 
3- hydroxyquinidine model performance in DDI scenarios 
affected by CYP3A4 and P- gp perpetrator drugs. Here, one 
study described the carbamazepine- quinidine DDI, two 
studies the cimetidine- quinidine DDI, and one study each 
the fluvoxamine- quinidine, itraconazole- quinidine, and 
omeprazole- quinidine DDIs, one study the rifampicin- 
quinidine DDI, and one study the verapamil- quinidine 
DDI. Interaction parameters for the various modes of in-
teraction (see Figure 2) were gathered from literature re-
ports, if not already defined in the respective model files. 
To inform the relative contributions of CYP3A4 and P- gp 
to quinidine metabolism and transport during quinidine 
model building, data from the carbamazepine- quinidine 
DDI (i.e., the extent of 3- hydroxyquinidine formed) was 
included in the training dataset. Data from the remain-
ing DDIs were used for the evaluation of model predictive 
performance.

Moreover, eight studies were utilized to model DD(G)
I scenarios where quinidine and 3- hydroxyquinidine 
act as inhibitors of CYP2D6 and P- gp. One study was 
available to assess the effect of CYP2D6 inhibition via 
quinidine and 3- hydroxyquinidine for the quinidine- 
metoprolol interaction and one study on the effect of the 

quinidine- paroxetine- dextromethorphan interactions. 
Additionally, several DDGI studies in subpopulations 
with different CYP2D6 activities were available for the 
victim drugs dextromethorphan (two studies), metop-
rolol (one study), and mexiletine (one study). Finally, 
two studies reported data on the quinidine- digoxin DDI 
(P- gp inhibition). Multiple studies included plasma 
concentration- time profiles of multiple compounds, in-
cluding parent victim drugs, respective enantiomers, 
and metabolites. For competitive inhibition of CYP2D6, 
Ki values of 0.017 μmol/L (quinidine30) and 2.30 μmol/L 
(3- hydroxyquinidine10) were incorporated from the liter-
ature as well as a Ki value of 0.10 μmol/L to describe com-
petitive inhibition of P- gp by quinidine.31 Information 
about all utilized studies covering perpetrator and victim 
drug regimens and subject demographics are provided in 
Tables S13 and S14.

Population predictions of victim plasma concentration- 
time profiles alone or with perpetrator co- administration 
compared to observed data demonstrated a good DD(G)I 
model performance (Figures 3 and 4). Semilogarithmic and 
linear plots of all studies are shown in Figures S19– S28.

Graphical comparisons of predicted and observed 
DD(G)I AUClast and Cmax ratios of all investigated DD(G)
Is are shown in Figures 5, S29, and S30, revealing adequate 
model performance of quinidine either as a victim or per-
petrator drug. For quinidine as CYP3A4 and P- gp victim, 
12 of 13 and 12 of 13 of DDI AUClast and Cmax ratios were 
within two- fold of observed values and 12 of 13 and 11 
of 13 within the prediction success limits proposed by 
Guest et al.24 with mean GMFEs of 1.29 and 1.34, respec-
tively. Overall, DD(G)Is with quinidine as a perpetrator 
of CYP2D6 and P- gp and the victim drugs dextrometho-
rphan, digoxin, metoprolol, mexiletine, and paroxetine 
were accurately predicted with 15 of 17 DD(G)I AUClast 
ratios and 13 of 15 DD(G)I Cmax ratios within two- fold of 
the corresponding observed ratios. All AUClast and Cmax 
ratios grouped by the respective victim drugs and their 
metabolites are listed in Tables S15 and S16.

DISCUSSION

In this study, we present a newly developed whole- body 
parent- metabolite PBPK model of quinidine and its major 
metabolite 3- hydroxyquinidine. The good predictive per-
formance simulating quinidine and 3- hydroxyquinidine 
plasma concentration- time profiles was evaluated by es-
tablished graphical and quantitative measures. The model 
was further evaluated by simulating various modes of 
interactions in a comprehensive DD(G)I network. Here, 
the final model could be successfully linked with a diverse 
set of previously published CYP3A4 and P- gp perpetrator 
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   | 1149PBPK MODELING OF QUINIDINE

models (quinidine acting as victim) as well as CYP2D6 
and P- gp victim models (quinidine acting as perpetrator) 
to predict various DD(G)I scenarios.

Quinidine ADME processes include efflux via P- gp5  
(e.g., located at the intestinal barrier and, therefore,  
affecting oral bioavailability). Furthermore, quinidine 
is described as a substrate of CYP3A4 in vitro7 and this 
enzyme can be attributed to the extensive first- pass me-
tabolism of quinidine.6 The reported quinidine average 
oral bioavailability of 70%6 is in good agreement with 
our model simulations of oral bioavailabilities ranging 

from 37% (0.1 mg single dose) to 79% (600 mg single dose) 
and is in line with the proposed P- gp saturation as one 
cause for its nonlinear pharmacokinetics.8 Total fractions 
of dose metabolized via CYP3A4 vary between very low 
(17%) and high doses (65%) of quinidine. This might be a 
result of varying fraction absorbed due to P- gp activity at 
the intestinal barrier and therefore a different impact of 
first- pass metabolism in the intestinal mucosa and in the 
liver. Another site of the body where P- gp contributes to 
quinidine pharmacokinetics is in tubule cells, where P- gp 
is responsible for the active tubular secretion of quinidine. 

F I G U R E  2  Quinidine drug– drug(– gene) interaction (DD(G)I) modeling network. (Upper panel) With quinidine acting as cytochrome 
P450 (CYP) 3A4 and P- glycoprotein (P- gp) victim drug, interactions with carbamazepine, cimetidine, fluvoxamine, itraconazole,  
R- /S- omeprazole, rifampicin, and R- /S- verapamil were modeled, taking different modes of interaction into account. (Lower panel) With 
quinidine acting as CYP2D6 and P- gp perpetrator drug, interactions were modeled with dextromethorphan, mexiletine, R- /S- metoprolol, 
and paroxetine in subjects with varying CYP2D6 activity (depending on data availability) and with digoxin (P- gp substrate).
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Profiles of the amount of quinidine excreted in urine over 
time have been included in parameter optimizations to 
inform this process. However, urinary excretion of qui-
nidine has been described to be pH dependent,32 which 
might explain challenging the description and prediction 
of urine data.

Metabolism via CYP3A4 shows the largest contribution 
in vitro compared to other CYP enzymes.7 However, in vivo 
metabolism via CYP3A4 was not easily assessable from liter-
ature reports, because competitive inhibitors of CYP3A4 in 
clinical DDI studies showed only a small effect on quinidine 
plasma concentrations.26,33 Therefore, plasma concentration- 
time profiles of quinidine and 3- hydroxyquinidine during 
interaction with carbamazepine, a CYP3A4 inducer, were 
consulted to serve as a surrogate for lacking in vitro and in 
vivo data to estimate the relative contribution of CYP3A4 
to quinidine metabolism. This approach has been success-
fully applied before, to estimate the previously unknown 

contribution of CYP3A4 and tubular secretion (also medi-
ated via P- gp) in a PBPK model of trimethoprim.17 Here, a 
DDI study with rifampicin, a CYP3A4 and P- gp competitive 
inhibitor and inducer, was included in the training dataset 
during the model building process, leading to a favorable 
description of trimethoprim concentrations in plasma and 
fractions excreted in urine.17

The co- administration of quinidine and various perpe-
trator and victim drugs covering different modes of inter-
action on several targets has been investigated in this work. 
To cover relevant interaction mechanisms and targets, the 
main metabolite of quinidine, 3- hydroxyquinidine, was 
included, (i) to adequately assess the impact of CYP3A4 
perpetrator drugs and (ii) to incorporate its interaction po-
tential, as inhibition of CYP2D6 has also been reported for 
the metabolite.10

Cimetidine is classified as a weak clinical inhibitor of 
CYP3A4 by the FDA.5 In the model, inhibition of CYP3A4 

F I G U R E  3  Modeled drug– drug interactions (DDIs) involving quinidine as cytochrome P450 (CYP) 3A4 and P- glycoprotein (P- gp) 
victim. (a– f) Predicted compared to observed plasma concentration- time profiles of quinidine and 3- hydroxyquinidine alone and after 
pretreatment with and/or concomitant administration of (a) carbamazepine, (b) fluvoxamine, (c) itraconazole, (d) R- /S- omeprazole, (e) 
rifampicin, and (f) R- /S- verapamil (low verapamil dose regimen). Population geometric means are shown as lines (solid: quinidine and 
3- hydroxyquinidinde alone, dashed: quinidine and 3- hydroxyquinidinde during DDI), geometric standard deviations are shown as shaded 
areas and observed data are shown as dots (control) and squares (DDI) (±standard deviation, if reported).26,32– 36 Quinidine doses indicate 
quinidine sulfate administration. Respective doses of quinidine base were calculated and incorporated in simulations. b.i.d., twice daily;  
n, number of study participants; po, oral; q.d., once daily; s.d., single dose; t.i.d, three times daily.
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   | 1151PBPK MODELING OF QUINIDINE

by cimetidine is incorporated, and the model has been 
evaluated in DDI predictions with the CYP3A4 index sub-
strate midazolam.5,12 Linking the cimetidine model to the 

newly developed quinidine model, no interaction effect 
could be observed via simulation. However, as a small in-
teraction effect could be observed in clinical studies,43,44 

F I G U R E  4  Modeled drug– drug(– gene) interactions (DD(G)Is) involving quinidine as cytochrome P450 (CYP) 2D6 and P- glycoprotein 
(P- gp) perpetrator. (a– i) Predicted compared to observed plasma concentration- time profiles of (a) dextromethorphan (+ metabolites) 
in CYP2D6 normal metabolizers (NMs), (b, c) digoxin, (d) R- /S- metoprolol, (e, f) racemic metoprolol (low quinidine dose regimen), 
(g, h) mexiletine, and (i) paroxetine (in combination with dextromethorphan) alone and after pretreatment with and/or concomitant 
administration of quinidine. Population geometric means are shown as lines (solid: victim alone, dashed: victim during drug- drug 
interaction [DDI]), geometric standard deviations are shown as shaded areas and observed data are shown as dots (control) and squares 
(DDI) (± standard deviation, if reported).11,37– 42 Quinidine doses indicate quinidine sulfate administration. Respective doses of quinidine 
base were calculated and incorporated in simulations. b.i.d., twice daily; iv, intravenous; n, number of study participants; norm, dose- 
normalized; PM, CYP2D6 poor metabolizer; po, oral; q.d., once daily; q.i.d., four times daily; s.d., single dose.
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1152 |   FEICK et al.

F I G U R E  5  Quinidine drug– drug(– gene) interaction (DD(G)I) model performance evaluation. (a, b) For quinidine acting as a 
cytochrome P450 (CYP) 3A4 and P- glycoprotein (P- gp) victim, predicted drug−drug interaction (DDI) (a) area under the plasma 
concentration- time curve calculated between the first and last concentration measurement (AUClast) and (b) maximum plasma 
concentration (Cmax) ratios of quinidine and 3- hydroxyquinidine are plotted against their respective observed values after pretreatment with 
and/or concomitant administration of carbamazepine, cimetidine, fluvoxamine, itraconazole, R- /S- omeprazole, rifampicin, and  
R- /S- verapamil.26,32– 36,43,44 (c, d) For quinidine acting as a CYP2D6 and P- gp perpetrator, predicted DD(G)I (c) AUClast and (d) Cmax ratios 
of dextromethorphan (DEX), dextrorphan- O- glucuronide (DXG), total dextrorphan (DTT), digoxin (DIG), metoprolol (MET), S- metoprolol 
(SME), and R- metoprolol (RME), mexiletine (MEX) and paroxetine (PAR) are plotted against their respective observed values after 
pretreatment with and/or concomitant administration of quinidine.11,37– 42,45 The solid line represents the line of identity, whereas 1.25- fold 
and two- fold prediction limits are shown as dotted and dashed lines, respectively. Prediction success limits proposed by Guest et al.24 are 
shown as curved lines (including 20% variability).
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   | 1153PBPK MODELING OF QUINIDINE

this effect might be attributed to interaction processes 
which could not be attributed to incorporated processes. 
For instance, cimetidine is a known inhibitor of several 
other proteins (e.g., transporters and other metabolic en-
zymes),12 and further transport mechanisms have been 
discussed for quinidine but not incorporated due to lim-
ited information.

Quinidine has been described as P- gp substrate and 
inhibitior,5 and mutual interactions with other drugs that 
can also be classified as P- gp substrate and inhibitor or 
inducer are plausible. This was considered for the mod-
eled interaction between quinidine and verapamil by in-
corporating interaction parameters for both quinidine and 
verapamil. However, in the analyzed verapamil- quinidine 
interaction study by Edwards et al.,34 only quinidine 
plasma concentrations were reported with no profiles of 
verapamil. Therefore, the effect of quinidine on verapamil 
pharmacokinetics could not be evaluated.

Regarding the rifampicin- quinidine DDI, which in-
volves induction and inhibition of CYP3A4 (metabolism 
of quinidine and 3- hydroxyquinidine) and P- gp (transport 
of quinidine), plasma concentration- time profiles, DDI 
AUClast and Cmax ratios are well- predicted for the parent 
drug quinidine. However, for the metabolite, AUClast and 
Cmax are underpredicted during the DDI. This might be 
attributed to CYP3A4 involved in the formation as well 
as the metabolism of 3- hydroxyquinidine with an un-
known extent of contribution for the latter process. In 
addition, other enzymes that might be involved in the me-
tabolism could be the subject of induction by rifampicin.  
Additionally, P- gp may play a role in the active transport 
of 3- hydroxyquinidine. This could account for the un-
derestimation of 3- hydroxyquinidine levels in urine, al-
though this process was not included in the model due 
to insufficient data. Conducting in vitro studies to deter-
mine the extent of inducible CYP enzymes involved in 
3- hydroxyquinidine metabolism, as well as the potential 
contribution of P- gp, may enhance our understanding of 
DDI mechanisms. This information could then be incor-
porated into the model as it becomes available.

The investigated DDIs with CYP2D6 victim drugs 
could be satisfactorily predicted with the model. For the 
modeled DDGIs with dextromethorphan (two studies)37,45 
and metoprolol (one study)11 as victim drugs, CYP2D6- 
dependent metabolism was estimated from the control 
studies without an interaction partner to cover the exten-
sive unexplained interindividual variability in CYP2D6 
activity (Table S14). Subsequently, these adjustments were 
carried over to the DDI simulations. These studies solely 
provided CYP2D6 phenotypes, however, applying a finer- 
scaled activity score- based system to classify polymorphic 
CYP2D6 activity has been shown to lead to accurate DGI 
modeling results.13,14,23 Here, no quinidine DDGI studies 

reporting CYP2D6 genotypes or activity scores could be 
obtained from published literature. Hence, the quinidine 
DDGI model performance of such scenarios remained 
unassessed, but the model could be extended in the fu-
ture as far as such studies come available. For mexiletine, 
plasma- concentration- time profiles are slightly under-
predicted, especially in CYP2D6 normal metabolizers. 
However, the profiles reported in the study by Abolfathi 
et al.38 show representative profiles rather than mean pro-
files. Additionally, the variability in CYP2D6 activity and 
also other metabolic processes, such as CYP1A2- mediated 
metabolism, might contribute to interindividual variabil-
ity of mexiletine pharmacokinetics. Of note, the model 
has a tendency to underpredict mexiletine clearance in 
normal metabolizers, as mentioned by the authors of the 
model publication,21 likely resulting in a slight mispre-
diction of mexiletine in both control and DDI scenarios. 
Nonetheless, DDI AUClast and Cmax ratios were within 
the prediction success limits proposed by Guest et al.,24 
indicating good performance of the quinidine model in 
CYP2D6 DDI scenarios.

Several PBPK model analyses have been published for 
quinidine. These focused on DDI predictions with quini-
dine as either a perpetrator drug with, for example, tra-
madol,46 nifedipine and metoprolol47 or as a victim drug, 
in DDI scenarios with rifampicin48 or itraconazole and 
verapamil.49 Furthermore, one article presented a PBPK/
pharmacodynamic model of quinidine to investigate its ef-
fect on the length of QT- interval.50 In contrast to previous 
work, our whole- body PBPK model covers the formation 
of the main quinidine metabolite, 3- hydroxyquinidine 
(mainly via CYP3A4) for correct interaction predictions 
considering CYP3A4 and CYP2D6 as well as the mecha-
nistic implementation of ADME processes for both com-
pounds (e.g., quinidine transport via P- gp). Furthermore, 
several DD(G)I scenarios could be successfully described 
and predicted within a comprehensive interaction net-
work, evaluating quinidine as a perpetrator (CYP2D6 and 
P- gp) and as a victim drug (CYP3A4 and P- gp). Moreover, 
the presented quinidine PBPK model was developed 
using a variety of quinidine and 3- hydroxyquinidine 
concentration- time profiles covering two routes of admin-
istration (intravenous and oral administration), a large 
dosing range (0.1– 600 mg) and both single and multiple 
administrations. The presented quinidine model focuses 
on quinidine sulfate formulations for oral administra-
tion, but implementation of further formulations (e.g., 
extended- release), could be performed with the model 
once required data (e.g., in vitro dissolution profiles), be-
come available.

To conclude, this work presents a comprehen-
sive quinidine whole- body PBPK model that de-
scribes and predicts quinidine and 3- hydroxyquinidine 
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pharmacokinetics administered alone or in combination 
with CYP3A4 and P- gp inhibitors or inducers. Moreover, 
the model has demonstrated its predictive performance 
in interaction scenarios with a diverse set of CYP2D6 
and P- gp victim drugs— also in subjects with altered 
CYP2D6 activity due to genetic polymorphisms. The 
presented network can be extended in the future by inte-
grating more interaction studies on further perpetrator 
and victim drugs. The PBPK model files are provided to 
the modeling community (http://models.clini calph ar-
macy.me/) to assist model- informed drug development 
through further investigations on DD(G)Is involving 
quinidine.
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