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A B S T R A C T   

Trait ‘absorption’ is a psychological construct with a rich history that was initially born from early work on hypnotic suggestibility. Absorption characterizes an 
individual’s tendency to become effortlessly engrossed in the contents of experience, whether in terms of external sensory phenomena or internal imagery and 
fantasy, and is reliably associated with a constellation of psychological, cognitive, and behavioral traits. Here, we conducted a comprehensive neuroimaging 
investigation of associations between trait absorption and the brain. In particular, we assessed multivariate relationships between absorption scores and neuro
imaging measures of grey matter density, as well as static and dynamic resting-state functional connectivity. We investigated these relationships using partial least 
squares in a discovery dataset (n = 201) and then attempted to reproduce results in an independent replication dataset (n = 68). Results revealed a lack of significant 
associations between absorption and grey matter density across both datasets, and a significant association between absorption and static resting-state functional 
connectivity in the discovery dataset which was not replicated in the replication dataset. Additional control analyses further indicated the lack of a reliable brain- 
absorption relationship, whereas we found a replicable association between the closely related trait of ‘openness to experience’ and resting-state functional con
nectivity. We conclude that absorption is not reliably associated with brain structure or function in the present datasets and discuss factors that may have contributed 
to this result. This study serves as the first comprehensive and adequately powered investigation of the neural correlates of absorption and motivates future studies to 
refine the conceptualization of this perplexing trait.   

1. Introduction 

The personality trait of ‘absorption’ emerged as a psychological 
construct from early research seeking to devise a questionnaire measure 
of hypnotic suggestibility (Lifshitz et al., 2019; Tellegen, 1981). It was 
originally codified as the 34-item Tellegen Absorption Scale (TAS) in 
1974 and a Likert scale version of this scale – referred to as the Modified 
Tellegen Absorption Scale (MODTAS) – currently serves as the primary 
measure of this trait (Jamieson, 2005; Tellegen and Atkinson, 1974). 
‘Absorption’ refers to an individual’s tendency to become effortlessly 
engrossed in the contents of experience, whether that experience is 
externally-directed and stimulus-dependent (i.e., sensory) or 
internally-directed and endogenously-generated (i.e., imaginative; 

(Jamieson, 2005; Lifshitz et al., 2019; Tellegen and Atkinson, 1974). 
Individuals high in absorption appear to be drawn towards episodes of 
total attentional engagement and a suspension of evaluative and 
goal-directed thinking. Accordingly, absorption has been described as a 
tendency to adopt an experiential, as opposed to instrumental, mindset 
(Tellegen, 1981; Wild et al., 1995). Items of the MODTAS predominantly 
vary between an emphasis on fantasy and mental imagery on one hand, 
and responses to external stimuli on the other (Jamieson, 2005; Tellegen 
and Atkinson, 1974). The scale also includes items pertaining to 
anomalous sensory and self-related experiences (see Table 1 for 
examples). 

In support of its status as a stable personality trait, studies have found 
support for the strong test-retest reliability of the absorption as 
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measured by the TAS (r = 0.91, n = 172 (Tellegen, 1982); r = 0.85, n =
591 (Kihlstrom et al., 1989)), and a large body of work has revealed 
associations between absorption and a rich array of traits and abilities. 
As detailed in a recent review (Lifshitz et al., 2019) absorption is posi
tively associated with mental imagery ability, hypnotic suggestibility, 
and fantasy-proneness (Balthazard and Woody, 1992; McConkey et al., 
1999; Sutcliffe et al., 1970), creativity (Manmiller et al., 2005), empathy 
and neural emotional processing (Benning et al., 2015; Wickramasekera, 
2007; Wickramasekera and Szlyk, 2003), feelings of self-transcendence 
(Cardeña and Terhune, 2014), and depersonalization and hallucinatory 
phenomena (Glicksohn and Barrett, 2003; Perona-Garcelán et al., 2013, 
2016). Studies have also reliably found an r = 0.3–0.5 correlation be
tween absorption and the personality trait of ‘openness to experience’ 
from the canonical ‘Big 5’ NEO personality inventory (Costa and 
McCrae, 1989; McCrae and Costa Jr, 1985). Research additionally sup
ports an association between absorption and reports of vivid sensory and 
spiritual experiences, whether induced by prayer (Lifshitz et al., 2019; 
Luhrmann and Morgain, 2012; Luhrmann et al., 2010, 2013), a placebo 
‘god helmet’ manipulation (Granqvist et al., 2005; Maij and van Elk, 
2018), or psychedelic drugs (Aday et al., 2021; Haijen et al., 2018; 
Studerus et al., 2012). With respect to psychedelics, trait absorption has 
also been specifically linked to reports of psychedelic-induced synes
thesia (Bresnick and Levin, 2006; Studerus et al., 2012; Terhune et al., 
2016) and near-death-like experiences (Timmermann et al., 2018). Of 
note, one study found that individuals scoring higher in absorption 
tended to display increased density of serotonin 2A receptors, the pri
mary brain receptor which mediates the effects of serotonergic psy
chedelic drugs (Ott et al., 2005). 

Despite these many associations, however, there has been ongoing 
debate as to whether the TAS/MODTAS indeed indexes a single psy
chological factor, and, if so, how exactly that factor should be best 
interpreted (Terhune and Jamieson, 2021). In support of the former, 
early work found that the TAS exhibited an internal reliability of r =
0.88 (n = 800)(Tellegen, 1982). More recently, Jamieson (2005) applied 
principal component analysis (PCA) to MODTAS responses from 352 
subjects and found evidence for a single higher order factor (explaining 
26% of total variance), which could additionally be broken down into 
five intercorrelated sub-factors to explain a total 35% of the variance. 
Multiple regression analyses also revealed that each sub-factor 
explained overlapping variance in hypnotic suggestibility – indicating 
that the associations may have been mediated by a shared factor 
(Jamieson, 2005). These findings suggest that the items featured in the 
MODTAS index a shared psychological factor, although confirmatory 
analyses are required to more reliably ascertain whether this is the case. 
In contrast to this evidence supportive of reliability, a dearth of 
construct validation research has led to enduring ambiguity as to what 
exactly the TAS/MODTAS is measuring. It is unclear, for example, 
whether absorption should be primarily understood as an increased 
tendency towards attentional engagement, a particular non-evaluative 
or non-instrumental cognitive style, or an openness towards anoma
lous sensory and self-related experiences (Terhune and Jamieson, 2021). 
More broadly, the jury is still out as to whether absorption should be 
understood as a single trait or, rather, as a bundle of tendencies and 
predispositions that tend to hang together for reasons that remain 
largely unclear (Lifshitz et al., 2019). 

Although absorption has a long history and appears to be relevant to 

a variety of psychological constructs, only one small structural MRI 
study to date has sought to examine the relationship between absorption 
and the brain. This highly preliminary study was conducted on a sample 
of 18 long-term meditators and reported a positive correlation between 
MODTAS scores and cortical thickness in regions of the frontoparietal 
control network implicated in attention and cognitive control (Grant 
et al., 2013). The authors interpreted this finding as suggesting an 
improved ability for attentional engagement in meditators that score 
high absorption. This paucity of neural investigations of absorption is 
likely due to historical limitations in neuroimaging-based individu
al-differences research, including a lack of sufficiently powered datasets 
and poor signal-to-noise ratio in relevant assessments (Marek et al., 
2022). Critically, however, analytical and technological advances over 
the past decade (Buckner et al., 2013; Dubois and Adolphs, 2016; 
Raichle, 2009), combined with the coordinated collection of large-scale 
neuroimaging brain-behavior datasets (Casey et al., 2018; Mendes et al., 
2019; Snoek et al., 2021; Sudlow et al., 2015; Van Essen et al., 2013), 
have begun to mitigate such challenges and have given rise to a growing 
field of individual-differences (functional) MRI research (Dubois and 
Adolphs, 2016). That said, it is important to note that, despite this 
progress, the field is still plagued by statistical concerns and uncertainty 
with respect to effect sizes of brain-behavior associations and the cor
responding sample sizes required for reliable inferences (Marek et al., 
2022). 

Neuroimaging investigations examining correlations between 
mental processes and individual-differences in brain structure and 
function have relied predominantly on assessments of grey matter 
density (GMD) and resting-state functional connectivity (RSFC). GMD is 
computed on the basis of structural MRI and has a history of use in 
individual-differences research spanning two decades. The most com
mon analytic approach is ‘voxel-based morphometry’, a volumetric 
technique that segments the brain into tissue types and estimates local 
differences in grey matter density on a voxel-wise basis (Ashburner and 
Friston, 2000). RSFC, on the other hand, emerged as a tool in 
individual-differences research over the past decade and has become 
increasingly common only in recent years (Buckner et al., 2013; Dubois 
and Adolphs, 2016). RSFC is computed on the basis of functional MRI 
and involves assessing statistical dependencies (e.g., correlations) be
tween the timeseries of spatially distinct voxels or regions in the absence 
of an explicit task (Buckner et al., 2013). RSFC research has revealed 
‘intrinsic’ networks of preferentially connected regions that are reliable 
within and between subjects and stable across contexts (Cole et al., 
2014; Damoiseaux et al., 2006; Gratton et al., 2018; Yeo et al., 2011; Zuo 
et al., 2010), and which exhibit overlap with task-evoked coactivation 
patterns (Cole et al., 2014; Smith et al., 2009) and structural connec
tivity (Honey et al., 2009; Van Dijk et al., 2010; Vázquez-Rodríguez 
et al., 2019). RSFC has been used to characterize individual differences 
in a broad variety of non-neural variables, spanning neuropsychological, 
cognitive, personality, and demographic measures (Dubois and Adolphs, 
2016; Marek et al., 2022; Smith et al., 2015). This literature suggests 
that individual differences in specific traits may covary with RSFC 
among brain regions that support the relevant cognitive and behavioral 
functions (Stevens and Spreng, 2014). 

As with many psychological traits, there is reason to think that trait 
absorption could have a neurocognitive basis (Lifshitz et al., 2019; Ott, 
2007). In particular, individual differences in processes related to 
attention and cognitive control – as mediated by large-scale networks 
such as the frontoparietal control network (FPCN) and dorsal attention 
network (DAN) – are strong candidates for mediating variability in this 
trait. This notion is consistent with the structural MRI study mentioned 
above (Grant et al., 2013), as well as an early electroencephalographic 
(EEG) study that found evidence suggestive of heightened attentional 
flexibility in individuals with high absorption (Davidson et al., 1976). 
Relevantly, past work has provided evidence that the FPCN can flexibly 
couple with either the DAN or default network (DN) in a task-dependent 
manner, in the service of externally-directed (perceptual) or 

Table 1 
Example items from the Modified Tellegen Absorption Scale (Jamieson, 2005; 
Tellegen and Atkinson, 1974).  

When I listen to music, I can get so caught up in it that I don’t notice anything else 
My thoughts often occur as visual images rather than as words 
Sometimes I experience things as if they were doubly real 
The crackle and flames of a wood fire stimulate my imagination 
I sometimes ‘step outside’ my usual self and experience a completely different state of 

being  
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internally-direction (mnemonic) attention, respectively (Dixon et al., 
2018; Spreng et al., 2010). This was found to be underpinned by a 
bipartite subsystem organization of the FPCN, wherein one subsystem 
connects preferentially to the DN, and the other to the DAN (Dixon et al., 
2018). As such, individual differences in the FPCN’s intra-network 
heterogeneity and its dynamic relationship with the DAN versus the 
DN may relate to differences in absorption. It has also been suggested 
that the tendency of high absorption individuals to blur their imagina
tion with incoming sensory input might reflect an increased reliance on 
top-down predictive signals (i.e., prior expectations) relative to 
bottom-up sensory prediction errors (Lifshitz et al., 2019). This may be 
reflected in a stronger connectivity between transmodal (default mode 
and frontoparietal) and unimodal (visual, somatosensory, and auditory) 
networks. All in all, the phenomenology of absorption suggests a basis in 
interactions within and between large-scale brain networks underlying 
attention, episodic memory/imagination, and sensory processing (Lif
shitz et al., 2019; Ott, 2007). 

Here we report the first comprehensive investigation of the neural 
correlates of trait absorption, on the basis of both GMD and RSFC as
sessments. To do so, we leverage two open-access neuroimaging data
sets: the PIOP1 dataset (n = 201) of the Amsterdam Open MRI Collection 
(Snoek et al., 2021) which serves as our discovery dataset, and the 
MPI-Leipzig Mind-Brain-Body dataset (n = 68; Mendes et al., 2019) 
which serves as our replication dataset. With respect to GMD, we hy
pothesized that higher absorption would be associated with greater 
GMD in regions comprising the FPCN, consistent with past work (Grant 
et al., 2013). Both FPCN-specific and whole-brain exploratory GMD 
analyses were conducted. With respect to RSFC, we hypothesized that 
higher absorption would be associated with (1) increased RSFC between 
regions comprising the FPCN and the default network (DN) and DAN, (2) 
reduced RSFC between FPCN subsystems, (3) increased RSFC between 
visual and DN regions, (4) reduced differentiation of unimodal and 
transmodal cortex, (5) decreased modularity, and (6) increased FPCN 
dynamic network flexibility. Network-specific and whole-brain explor
atory RSFC analyses were conducted. 

Our results revealed a lack of reliable brain-absorption associations 
for both GMD and multiple measures of static (time-averaged) and dy
namic (time-varying) RSFC. We discuss potential explanations for this 
lack of reliability, relating both to the specific construct of absorption 
and to the more general quest to identify neuroimaging signatures of 
individual differences in cognition and behavior. 

2. Methods 

2.1. Participants 

We used data from two open-access datasets, each containing 
structural MRI and resting-state fMRI assessments in healthy adult 
human subjects. The larger of these datasets, the PIOP1 dataset of the 
Amsterdam Open MRI Collection (Snoek et al., 2021) was used as the 
discovery sample. 201 subjects (122 women, 79 men; mean age = 22.2, 
SD = 1.77) from the PIOP1 dataset were included in the present ana
lyses. The MPI-Leipzig Mind-Brain-Body dataset (Mendes et al., 2019) - 
hereafter referred to as the ‘MBB dataset’ – was used as a replication 
sample. 68 subjects (32 women, 36 men; mean age (5-year bins) =
24.5–29.5) from the MBB dataset were included in the present analyses. 
We selected the larger dataset to be our discovery dataset given that it is 
more adequately powered. 

The putative ‘true’ non-inflated effect size of multivariate brain- 
behavior associations has been found to be in the range of r =
~0.30–0.40 (Marek et al., 2022). Our discovery sample (n = 201) pro
vides ≥80% power to detect non-zero correlations r ≥ 0.15 with 95% 
confidence intervals, whereas our replication sample (n = 68) provides 
≥80% power to detect non-zero correlations r ≥ 0.25 with 95% confi
dence intervals. Both datasets, therefore, provide sufficient statistical 
power to detect putative multivariate brain-behavior associations 

involving absorption. Nonetheless, we note that, especially given ten
dencies toward attenuated effect sizes in out-of-sample replications 
(Marek et al., 2022), the smaller size of the replication sample does 
constitute an important limitation in evaluating the true replicability of 
effects observed in the discovery sample. Another important limitation 
is that site-related differences pertaining to scanner type and imaging 
acquisition protocols may represent confounds which may hinder 
replicability. 

2.2. Self-report measures 

Self-report measures included in the present analyses are trait Ab
sorption and, for a follow-up analysis (see below), ‘openness to experi
ence’ from the ‘Big 5’ personality inventory. Trait Absorption was 
assessed using the modified (Likert scale) Tellegen Absorption Scale 
(MODTAS) in both datasets (Jamieson, 2005; Tellegen and Atkinson, 
1974). MODTAS scores are hereby referred to as ‘absorption scores’ for 
simplicity. Importantly, however, a shortened (15-item) version of the 
34-item scale was used in the PIOP1 dataset. This was done due to due to 
time constraints in data collection and an assumed high correlation 
between this subset of measures and all of the measures. Items were 
selected to maintain relative proportions of five putative MODTAS 
subscales. We empirically tested (in the MBB dataset which assessed all 
34 items) whether the mean score produced by the shortened scale 
correlates strongly with the mean score based on all items. This revealed 
a correlation of r = 0.96, indicating strong but not perfect correspon
dence. MODTAS subfactor scores were available for the PIOP1 dataset 
and were used in secondary analyses. Subfactor (or item-level scores) 
were not available for the MBB dataset and therefore were not included 
in the analyses. Trait Openness was assessed in the PIOP1 dataset using 
the NEO-FFI (Costa and McCrae, 1989), a 60-item version of the NEO 
inventory, and in the MBB dataset using the NEO-PIR, the full 240-item 
version of the NEO inventory (Costa Jr and McCrae, 2008). 

2.3. Neuroimaging data acquisition 

2.3.1. Discovery sample: PIOP1 dataset 
Magnetic resonance imaging (MRI) was acquired on a Philips 3T 

scanner (Philips, Best, Netherlands) equipped with a 32-channel head 
coil. For each participant a number of scans were recorded over a 60-min 
scan session. In temporal order, there were faces (fMRI), gender-Stroop 
(fMRI), T1-weighted scan, emotion matching (fMRI), resting-state 
(fMRI), phase-difference fieldmap (B0) scan, diffusion-weighted imag
ing scan, working memory (fMRI), and emotion anticipation (fMRI). 
Only the T1-weighted and resting-state scans were used in the present 
analyses. 

The high-resolution anatomical (i.e., T1-weighted) image was ac
quired using a 3D MPRAGE sequence with the following parameters: 
voxel size = 1.0 mm isotropic, FOV = 188 × 240 × 220 mm, TR = 8500 
m, TE = 3.9 m, flip angle = 8◦, bandwidth = 191.5 Hz/Px, SENSE ac
celeration with 2.5 (RL)/2 (FH), duration = 6 min 3 s. 

Two resting-state fMRI scans were acquired in axial orientation using 
T2*-weighted gradient-echo echo planar imaging with multiband ac
celeration, sensitive to blood oxygen level-dependent (BOLD) contrast. 
Sequences were as follows for both runs: voxel size = 3 mm isotropic, 
FOV = 240 × 240 × 118 mm, imaging matrix = 80 × 80, 36 slices with 3 
mm thickness, TR = 750 m, TE = 28 ms, flip angle = 60◦, bandwidth =
39.5 Hz/Px, multiband acceleration factor = 3, 480 vol, duration = 6 
min. Participants were instructed to remain awake with their eyes open 
and to fixate on a crosshair. 

2.3.2. Replication dataset: MPI-leipzig MBB dataset 
MRI data was acquired on a Siemens 3T scanner (Magnetom Verio, 

Siemens Healthcare, Erlangen, Germany) equipped with a 32-channel 
Siemens head coil at the Day Clinic for Cognitive Neurology, Univer
sity of Leipzig. For each participant the following scans were obtained: 
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1) a high-resolution structural scan, 2) four resting-state fMRI scans, 3) 
two gradient echo fieldmaps and, 4) two pairs of spin echo images with 
reversed phase encoding direction. 

The high-resolution structural image was acquired using a 3D 
MP2RAGE sequence with the following parameters: voxel size = 1.0 mm 
isotropic, FOV = 256 × 240 × 176 mm, TR = 5000 m, TE = 2.92 m, TI1 
= 700 m, TI2 = 2500 m, flip angle 1 = 4◦, flip angle 2 = 5◦, bandwidth =
240 Hz/Px, GRAPPA acceleration with iPAT factor 3 (32 reference 
lines), duration = 8.22 min. From the two images produced by the 
MP2RAGE sequence at different inversion times, a quantitative T1 map 
and a uniform T1-weighted image were generated. The latter image is 
purely T1-weighted, whereas standard T1-weighted image, acquired 
with the MPRAGE sequence, also contain contributions of proton density 
and T2*. This difference may influence morphometric assessments and 
is addressed in Methods Section 2.5 below. 

Four resting-state fMRI scans were acquired in axial orientation 
using T2*-weighted gradient-echo echo planar imaging with multiband 
acceleration, sensitive to BOLD contrast. Sequences were identical 
across the four runs, with the exception of alternating slice orientation 
and phase-encoding direction, to vary the spatial distribution of dis
tortions and signal loss. Thus, the y-axis was aligned parallel to the AC- 
PC axis for runs 1 and 2, and parallel to orbitofrontal cortex for runs 2 
and 4. The phase-encoding direction was A–P for runs 1 and 3, and P–A 
for runs 2 and 4. Sequences were set as follows for all four runs: voxel 
size = 2.3 mm isotropic, FOV = 202 × 202 mm2, imaging matrix = 88 ×
88, 64 slices with 2.3 mm thickness, TR = 1400 m, TE = 39.4 m, flip 
angle = 69◦, echo spacing = 0.67 m, bandwidth = 1776 Hz/Px, partial 
fourier 7/8, multiband acceleration factor = 4, 657 vol, duration = 15 
min 30 s. Participants were instructed to remain awake with their eyes 
open and to fixate on a crosshair. 

2.4. Neuroimaging preprocessing and denoising 

A uniform preprocessing and denoising pipeline was applied to both 
datasets, using a combination of fMRIprep (Esteban et al., 2019) and 
xcpEngine (Ciric et al., 2018) software packages. 

2.4.1. Anatomical data preprocessing 
Anatomical data preprocessing was conducted with the fMRIprep 

software (Esteban et al., 2019). The following description has been 
copied from this software to best facilitate reproducibility. The 
T1-weighted (T1w) image was corrected for intensity non-uniformity 
(INU) with ‘N4BiasFieldCorrection’, distributed with ANTs 2.2.0 
(Avants et al., 2009), and used as T1w-reference throughout the work
flow. The T1w-reference was then skull-stripped with a Nipype imple
mentation of the ‘antsBrainExtraction.sh’ workflow (from ANTs), using 
OASIS30ANTs as target template. Brain tissue segmentation of cere
brospinal fluid (CSF), white-matter (WM) and grey-matter (GM) was 
performed on the brain-extracted T1w using fsl fast (Jenkinson et al., 
2012). 

Brain surfaces were reconstructed using FreeSurfer recon-all (Fischl, 
2012) and the brain mask estimated previously was refined with a 
custom variation of the method to reconcile ANTs-derived and 
FreeSurfer-derived segmentations of the cortical grey-matter. 

Volume-based spatial normalization to one standard space 
(MNI152NLin2009cAsym) was performed through nonlinear registra
tion with ‘antsRegistration’ (ANTs 2.2.0), using brain-extracted versions 
of both T1w reference and the T1w template. 

2.4.2. Functional data preprocessing 
Functional data preprocessing was conducted with the fMRIprep 

software (Esteban et al., 2019). For each of the BOLD runs found per 
subject, the following preprocessing steps were performed: First, a 
reference volume and its skull-stripped version were generated using a 
custom methodology of fMRIPrep. The BOLD reference was then 
co-registered to the T1w reference using bbregister (FreeSurfer (Fischl, 

2012);) which implements boundary-based registration. Co-registration 
was configured with six degrees of freedom. Head-motion parameters 
with respect to the BOLD reference (transformation matrices, and six 
corresponding rotation and translation parameters) are estimated before 
any spatiotemporal filtering using McFlirt (FSL (Jenkinson et al., 
2012);). BOLD runs were slice-time corrected using ‘3dTshift’ from AFNI 
(Cox, 1996). The BOLD time-series were resampled onto their original, 
native space by applying the transforms to correct for head-motion. 

The BOLD time-series were resampled into standard space, gener
ating a preprocessed BOLD run in MNI152NLin2009cAsym space. First, 
a reference volume and its skull-stripped version were generated using a 
custom methodology of fMRIPrep Several confounding time-series were 
calculated based on the preprocessed BOLD: framewise displacement 
(FD), DVARS (Power et al., 2012) and three region-wise global signals. 
FD and DVARS are calculated for each functional run, both using their 
implementations in Nipype. The three global signals are extracted 
within the CSF, the WM, and the whole-brain masks. 

Additionally, a set of physiological regressors were extracted to 
allow for component-based noise correction (aCompCor (Behzadi et al., 
2007);). Principal components were estimated after high-pass filtering 
the preprocessed BOLD time-series (using a discrete cosine filter with 
128s cut-off). aCompCor components were calculated separately within 
the WM and CSF masks. For each CompCor decomposition, the k com
ponents with the largest singular values are retained, such that the 
retained components’ time series are sufficient to explain 50 percent of 
variance across each nuisance mask (CSF and WM). The remaining 
components are dropped from consideration. 

2.4.3. Functional data denoising 
Functional data denoising was conducted with xcpEngine. The ‘36P 

+ SCRUB’ pipeline of xcpEngine (https://xcpengine.readthedocs.io/o 
verview.html) was applied to the fMRIprep preprocessed data in both 
datasets. This stringent pipeline is consistent with the motion artefact 
removal pipeline originally proposed by Power et al. (2012, 2014). The 
following denoising steps were applied: demeaning and detrending, 
nuisance regression, bandpass filtering (0.01–0.08 Hz) and scrubbing 
(FD > 0.5 mm). Scans with ≥15% of volumes removed (i.e., interpo
lated) due to scrubbing were excluded from analyses. Nuisance re
gressors included 6 motion alignment parameters (R) and their 
derivatives and expansions (R2 Rt− 1 Rt− 1

2 Rt− 2 Rt− 2
2 ) for a total of 36 

motion regressors, as well as mean CSF signal as computed within an 
eroded mask and its derivative, mean WM signal as computed within an 
eroded mask and its derivative, and the whole-brain global signal and its 
derivative. The decision to include global signal regression, a contro
versial denoising technique (Murphy and Fox, 2017), was motivated by 
recent work suggesting that it may improve sensitivity to brain-behavior 
associations (Li et al., 2019). Functional data were not smoothed, given 
that the data were parcellated (which implicitly ‘smooths’ the data by 
averaging across voxels) prior to analyses. 

2.5. Voxel-based morphometry analyses 

2.5.1. GMD calculation 
GMD was calculated from the individual-subject T1-weighted images 

of each dataset using voxel-based morphometry (VBM) as implemented 
in CAT12, a SPM12 add-on (Ashburner and Friston, 2000; Gaser and 
Dahnke, 2016). Raw T1-weighted images were first spatially normalized 
to a high-resolution stereotactic space using the DARTEL template and 
then underwent automated segmentation into grey matter, white mat
ter, and cerebrospinal fluid (CSF). CAT12 uses a tissue probability map 
(TPM) prior to skull strip the data and initialize the segmentation, and 
segmentation is conducted using a hypothesis-free adaptive maximum a 
posteriori (AMAP) segmentation approach (Gaser and Dahnke, 2016). 
This approach estimates the amount of brain tissue type within each 
voxel and allows for the control of partial volume effects. We visually 
inspected the resulting grey matter maps to ensure consistency in 
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orientation across subjects. Once this was confirmed, the homogeneity 
of the total sample (comprising both datasets) was evaluated in order to 
identify outliers. Homogeneity was determined to be high across both 
datasets with average inter-subject spatial correlations ranging from r =
0.88–0.90. Prior to analysis, total intracranial volume was regressed 
from the grey matter maps to more reliably extract individual differ
ences in relative grey matter proportions, and the regressed grey matter 
maps were then smoothed with an 8 mm Gaussian kernel prior to being 
used as input to the partial least squares correlation (PLSC) analyses 
(described below in Section 2.8). 

It was noted above that the Leipzig used a MP2RAGE sequence which 
removes the influence of proton density and T2* from the T1-weighted 
image, as compared to the more common MPRAGE sequence which does 
not do this. We found that this resulted in stronger image quality (IQR) 
ratings as output by SPM12 in the MBB dataset relative to the PIOP1 
dataset (Leipzig range = 1.8–2; PIOP range = ~2–3), where lower 
values indicate stronger quality. However, as mentioned, tests of ho
mogeneity indicate that the subjects of the MBB dataset were not out
liers with respect to the PIOP1 dataset. 

2.6. Static resting-state functional connectivity (sRSFC) analyses 

2.6.1. sRSFC calculation 
The denoised resting-state fMRI voxel-wise timeseries data were 

parcellated into 451 regions as follows: 400 cortical regions following 
Schaefer et al. (2017), 32 subcortical regions following (Tian et al., 
2020), 17 cerebellar regions following (Buckner et al., 2011), and two 
regions comprising the bilateral claustrum (Krimmel et al., 2019). 
Importantly, the timeseries of bilateral putamen and insula parcels 
located spatially adjacent to the claustrum were regressed from the 
bilateral claustrum timecourses, following past work indicating that this 
significantly attenuates the partial volume effects which typically plague 
this region (Krimmel et al., 2019). 

RSFC was computed as the product-moment correlation coefficient 
between all parcels, then transformed using Fisher’s r-to-z transform, 
resulting in a 451 × 451 RSFC matrix for each subject. Cortical nodes 
were organized according to the Yeo et al. (2011) 17 network parcel
lation for the calculation of network-specific effects and for 
visualization. 

2.6.2. Modularity 
Modularity is a measure derived from the subfield of mathematics 

referred to as graph theory. The application of graph theory to neuro
imaging data formalizes the brain as a network of nodes (e.g., brain 
regions) which are connected by edges/links (e.g., functional correla
tions, white matter pathways (Bassett and Sporns, 2017; Rubinov and 
Sporns, 2010);). This formalization enables the quantification of topo
logical properties associated with the brain’s graph (i.e., network) 
structure. Modularity in particular indexes the decomposability of a 
given network (in this case, whole-brain functional connectivity) into 
distinct modules. 

Modularity was computed using the Louvain algorithm (Blondel 
et al., 2008) implemented with the Network Community Toolbox 
(http://commdetect.weebly.com/). This algorithm finds modular par
titions of the graph (synonymous with network) which optimize the 
modularity value, Q, by grouping nodes into non-overlapping (sub) 
networks that maximize intra-modular and minimize inter-modular 
connections (Newman, 2004). The modularity value Q for a given 
modular partition is computed as follows: 

Q=
1
l

∑

i,j∈N

[

wij −
kikj

l

]

δmimj  

where w is the edge weight (i.e., functional connectivity value) between 
nodes i and j, lw is the sum of all weights in the graph, ki is the weighted 
degree (edge weight summed across all edges) of node i, and mi is a 

module containing node i. δmimj = 1 if nodes i and j belong to the same 
module, and = 0 otherwise. The Q value for a given partition therefore 
quantifies the strength of within-module edges relative to the strength of 
between-module edges, or, in other words, the extent to which distinct 
modules can be delineated in the data. This algorithm has a single free 
parameter, gamma (γ), which controls how many modules will be 
detected. We kept this at the default value of 1. The Louvain algorithm 
was run iteratively 100 times on each individual-subject 451 × 451 
RSFC matrix and the average Q value across these runs was used. Given 
that negative values are not interpretable after applying global signal 
regression, RSFC matrices were thresholded to include only positive 
values prior to being input to the modularity algorithm. Associations 
between subject-wise Q values and absorption were assessed. 

2.6.3. Gradient-mapping 
Gradient-mapping is a burgeoning approach to characterizing brain 

functional organization which, instead of parcellating the brain into 
functionally homogenous brain regions, characterizes the brain as the 
superposition of continuous axes (i.e., gradients) of feature variation 
(Haak et al., 2018; Huntenburg et al., 2018; Margulies et al., 2016; 
Smallwood et al., 2021). A variety of structural, anatomical, molecular, 
and genetic features have been found to vary in principled and 
convergent ways across the cortex and gradient-mapping has been 
fruitfully used to characterize brain organization in diverse contexts 
(Dong et al., 2021; Girn et al., 2021; Hong et al., 2019; Paquola et al., 
2019; Setton et al., 2021; Sydnor et al., 2021). Here, we computed 
cortical gradients on RSFC data following the pipeline of (Margulies 
et al., 2016). 

Cortical gradients were computed using a diffusion map embedding 
algorithm, as implemented using the BrainSpace toolbox (https://gith 
ub.com/MICA-MNI/BrainSpace (de Wael et al., 2020);) in MATLAB. 
Diffusion map embedding was applied to individual-subject 400 × 400 
RSFC matrices (i.e., including cortical parcels only). As has been done 
previously (e.g., Hong et al., 2019; Margulies et al., 2016), RSFC 
matrices were z-transformed and thresholded row-wise at 90% sparsity 
in order to retain only the strongest connections. Cosine similarity was 
then computed on the thresholded z-matrix in order to generate a sim
ilarity matrix which captures the similarity in whole-brain connectivity 
patterns between vertices. This similarity matrix is required as input to 
the diffusion map embedding algorithm. The use of cosine similarity as 
the similarity metric of choice is consistent with past work using this 
approach (Hong et al., 2019; Margulies et al., 2016; Paquola et al., 2020) 
which have consistently found that it reveals biologically-relevant axes 
of cortical organization. 

Diffusion map embedding (Coifman et al., 2005), a non-linear 
manifold learning technique from the family of graph Laplacians, was 
applied to similarity matrices in order to identify gradient components 
at the individual subject level. The technique estimates a 
low-dimensional set of embedding components (gradients) from a 
high-dimensional similarity matrix, where each embedding represents a 
dimension of covariance in RSFC pattern similarity. Diffusion map 
embedding notably allows for the influence of both global and local 
relationships between data points in the estimation of the embedding 
space. 

Euclidean distance between two points in the embedding space is 
equivalent to the diffusion distance between probability distributions 
centered at those points (hence the name of the algorithm), which is 
equivalent to RSFC pattern similarity. Thus, a given region’s gradient 
score for a given gradient axis represents that region’s position in a 
continuous pattern of in RSFC pattern (dis)similarity between two axis 
extremes. In other words, greater positive values in a gradient represent 
greater RSFC similarity to the positive extreme, whereas lower negative 
values represent greater RSFC similarity to the negative extreme. 

Following past work (Bethlehem et al., 2020, de Wael et al., 2020; 
Hong et al., 2019), iterative Procrustes rotation was performed to align 
individual-subject embedding (gradient) components to an all-subjects 
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group average embedding component template. The rotation was 
applied with 10 iterations, wherein the first iteration aligns all subjects 
to the template, and subsequent iterations align subjects to the mean of 
all subjects from the previous iteration. This iterative rotation ensures 
that gradient axes are matched across subjects and faithful to the data 
structure. Region-wise gradient values for the first three gradients 
(explaining the most variance) from this approach were used as input to 
PLSC analyses examining associations with absorption. 

2.7. Dynamic resting-state functional connectivity (dRSFC) analyses 

2.7.1. dRSFC calculation 
Dynamic RSFC was computed using a sliding-window RSFC 

approach (Lurie et al., 2018). In particular, RSFC matrices were 
computed for 45-s Gaussian-tapered sliding windows in each dataset – 
consistent with past work using this approach (Daws et al., 2022; Lurie 
et al., 2018). Results for 60-s and 75-s windows are reported in the 
Supplementary Information. Tapered windows were used as past work 
has indicated they increase sensitivity to differences between adjacent 
windows by emphasizing center timepoints (Allen et al., 2014; Leonardi 
& Van De Ville, 2015). Each window was slid for the number of time
points equivalent to 1/3 of the window length overlapping, consistent 
with past work (Cui et al., 2021; Daws et al., 2022) and to reduce 
computational time-intensiveness. 

2.7.2. Network flexibility 
Network flexibility is a measure of the number of times a given re

gion changes its network affiliation over the course of a given scan. This 
metric has been used to characterize differences in relation to devel
opment (Yin et al., 2020), learning and cognition (Bassett et al., 2011; 
Braun et al., 2015), and psychopathology (Braun et al., 2016; Daws 
et al., 2022; Yin et al., 2022). 

Network flexibility was computed using a multilayer modularity al
gorithm (Bassett et al., 2011; Mucha et al., 2010). Multilayer modu
larity, QML, was estimated 100 times from each 451 × 451 x W matrix as 
follows: 

QML =
1

2μ
∑

ijlr

[(

Aijl − γl
kilkjl

2ml

)

δlr + δijωjlr

]

δ
(
cil, cjr

)
, (3)  

where μ = 1
2
∑

ijl
Aijl is the total RSFC of the multilayer network, and ml =

1
2
∑

ijl
Aijl is the total RSFC of layer l, Aijl is the RSFC between region i and j 

at layer l, kilkjl
2ml 

is the expected null RSFC at layer l. The two free γ and ω 
structural and temporal resolution parameters control the number of 
modules detected and the strength of inter-layer connections, respec
tively. Primary analyses were conducted with both parameters set to 1, 
following past work (e.g., Bassett et al., 2011; Daws et al., 2022). To 
examine whether effect sizes exhibit any dependencies on γ and ω 
values, values of 0.6–1.4 in increments of 0.2 were also explored for both 
parameters. 

The multilayer modularity estimation generates a matrix consisting 
of modular assignments for each region at each layer (i.e., window). 
Network flexibility is computed on this matrix as the number of times a 
region changes its modular affiliation across windows, as a proportion of 
the maximum number of potential changes: 

fi = 1 −
1

L − 1
∑L− 1

l
δ
(
cil, cjl+1

)
,

Where L is the total number of layers (i.e., windows). Network flexibility 
scores close to 0 represent regions whose modular affiliation is stable 
across time, whereas scores close to 1 represent regions whose modular 
affiliation dynamically changes over time. 

2.8. Partial least squares correlation (PLSC) 

PLSC, a data-driven multivariate statistical technique, was per
formed for each neural measure to assess its relationship with absorption 
(McIntosh and Lobaugh, 2004). This approach was selected because it 
allows for inferences on multivariate brain-behavior relationships 
without running into concerns with respect to multiple comparison 
correction. Past work suggests that it affords strong sensitivity to detect 
individual and group differences (McIntosh and Mǐsić, 2013). 

PLSC takes as input two variable sets X and Y and identifies linear 
combinations of each which maximally covary with each other across 
participants. In the present context, X represents a given neural measure 
and Y represents absorption scores. As such, PLSC, as run in this study, 
outputs latent variables (LVs) which represent covariance-maximized 
groupings of neural variables (e.g., voxel-wise grey matter density or 
interregional functional connectivity) and absorption. 

A separate PLSC analysis was computed for each measure to assess its 
relationship with absorption. TheX and Y matrix for each analysis was 
centered and normalized across participants. Singular value decompo
sition of the cross-correlation matrix X’Y yields several mutually- 
orthogonal LVs, each composed of three elements: (i) a left singular 
vector, containing weights the neural measure; (ii) a right singular 
vector, containing a weight for absorption; and (iii) a scalar singular 
value. Squared singular values reflect effect size: they are proportional 
to the covariance between brain and behavior that is accounted for by 
each latent variable. The number of latent variables is equal to the rank 
of X’Y; in the present case, this is 1 for analyses with absorption total and 
5 for analyses in the PIOP1 dataset which included the 5 absorption 
subscales. 

The significance and reliability of each LV were evaluated using 
permutation testing and bootstrap resampling, respectively. We assessed 
the significance of the neural pattern captured by a given LV using 
permutation tests to determine how different the results are from 
chance. To do this, 500 permutation tests were computed in which the 
order of the rows of one of the data matrices (X) was randomly 
permuted. Columns of each permuted matrix are then correlated with 
the behavioral matrix Y and the correlation matrix is subjected to sin
gular value decomposition as described above. This process generates a 
distribution of singular values under the null hypothesis that there is no 
relationship between brain and behavior. The significance of the LV is 
estimated by computing the proportion of times the permuted singular 
values (covariance explained) is higher than the observed singular 
values (significance thresholded at P < 0.05). 

To assess the reliability of weights for individual neural variables (e. 
g., individual voxels or region pairs) and absorptions, we used bootstrap 
resampling. The rows of both data matrices (X and Y) were sampled with 
replacement and a resampled correlation matrix (X’Y) was re-computed. 
The matrix was subjected to singular value decomposition and the 
process was repeated 500 times to estimate a sampling distribution for 
each singular vector (i.e., brain and behavior) weight. To identify neural 
variables and behaviors that (a) make a large contribution to the overall 
multivariate pattern and (b) are relatively insensitive to bootstrap 
resampling, we calculated the ratio between each weight and its 
bootstrap-estimated standard error. The resulting ‘bootstrap ratios’ 
(BSRs) are large for neural variables/behaviors that have large weights 
and narrow confidence intervals. If the sampling distribution is 
approximately unit normal, BSRs are equivalent to z-scores. Brain 
network connections were considered reliable if the absolute value of 
the BSR >2 (approximately P < 0.05) and were visualized using 
BrainNet Viewer (Xia et al., 2013). 

To account for potential confounds, multiple regression analysis was 
performed on the association between brainscores and absorption, 
controlling for sex and age. Brainscores are mathematically expressed as 
the dot product of the GMD voxel or RSFC edge value in each partici
pant’s normalized segmented image or RSFC matrix, and the corre
sponding salience (i.e., weight) in the pattern derived from the PLSC 
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group result. Brainscores (subject-level scalars) reflect the degree to 
which the singular pattern was manifest in a given participant’s data. 
Note that this post-hoc analysis was computed on the brainscores of 
significant LVs output by the PLSC analyses only. 

For the analysis of interregional RSFC, we evaluated network-level 
contributions to individual differences in absorption. We used a label 
permuting approach following past work (Shafiei et al., 2019), which 
determines whether network-specific associations are independent of 
network size or spatial contiguity. To quantify the network-level con
tributions to the connectivity pattern identified by the PLSC analysis, we 
first separated the PLSC BSR matrices into two separate matrices, 
reflecting positive and negative PLSC weights, respectively. The nodes of 
the graph represent the 451 brain regions defined by the parcellation 
scheme, and the edges represent the BSR weight for each pairwise 
connection. The matrices were thresholded such that BSRs with an ab
solute value less than 2 were set to 0, which is equivalent to p < 0.05 as 
described above. Positive BSRs greater than 2 were set to 1, and negative 
BSRs less than − 2 were set to − 1. The network-level functional con
nectivity contributions were quantified by averaging the weights of all 
connections in a given network, thus generating a 17 × 17 matrix. Next, 
permutation testing was applied on the full thresholded matrix by 
randomly re-ordering the network labels (preserving the number of 
nodes originally assigned to each network) and re-calculating the 
network means 1000 times to build a sampling distribution under the 
null that network assignment does not contribute to the connectivity 
pattern. The significance of the pairwise connections of the original 17 
× 17 matrix was determined by estimating the proportion of times the 
values of the sampling distribution were greater than or equal to the 
original value. 

2.9. Out-of-sample replication 

To assess the replicability of PLSC neural weights derived from the 
discovery (PIOP1) dataset in the replication (MBB) dataset, we con
ducted a BSR-based direct replication. In particular, for results which 
reached statistical significance in the PIOP1 dataset, we computed the 
dot product between the neural BSR pattern from the PIOP significant 
result and the corresponding Leipzig neural input matrix, and then 
examined the correlation between the resulting values (i.e., one value 
per Leipzig subject representing the degree to which its input matrix 
exhibits the LV pattern) and absorption in the MBB dataset. 

3. Results 

3.1. Self-report results 

Descriptive statistics were conducted on the self-report data to assess 
their reliability and suitability for a linear decomposition method such 
as PLSC. First, histograms were created for absorption scores in each 
dataset to determine whether they are approximately normally distrib
uted. This was indeed confirmed (Supplementary Fig. 1). Second, we 
computed the Cronbach’s alpha of absorption assessments for each 
dataset. This revealed high alpha values (PIOP1 alpha = 0.87, Leipzig 
alpha = 0.94), indicating strong internal consistency. 

Past research has indicated that absorption exhibits a 0.3–0.5 cor
relation with trait openness to experience (McCrae, 1993), a reliable 
personality trait from the canonical NEO ‘Big Five’ personality assess
ment (Costa Jr and McCrae, 2008; McCrae, 1993). We therefore also 
assessed associations between absorption and openness as an indirect 
evaluation of construct validity. Absorption in both datasets exhibited a 
moderate and statistically significant correlation with openness (PIOP1, 
r = 0.47, p < 0.001; Leipzig, r = 0.31, p = 0.03), further supporting the 
reliability of the present absorption assessments. 

3.2. Voxel-based morphometry 

3.2.1. Discovery analyses 
Having established the reliability and suitability of absorption scores 

in both datasets for linear analyses, we applied PLSC to assess whether 
absorption is associated with inter-individual differences in voxel-wise 
grey matter density (GMD). First, we conducted a hypothesis-driven 
PLSC analysis including only voxels within a FPCN mask (as defined 
based on Schaefer et al. (2017) ROIs and the Yeo et al., (2011) parcel
lation). No statistically significant latent variable (LV) was found (p =
0.89). Given the availability of absorption subscale measurements in the 
PIOP1 dataset, we conducted an additional PLSC analysis with the five 
absorption subscales, rather than absorption total. Again, no statistically 
significant LV was found – although, LV 2 trended towards significance 
(p = 0.06). 

Next, we conducted an exploratory whole-brain PLSC between GMD 
and absorption total. This revealed no statistically significant LV (p =
0.61). For comprehensiveness, we also assessed whole-brain GMD-ab
sorption correlations using a standard mass univariate GLM approach as 
implemented in SPM12, controlling for age, sex, and total intracranial 
volume. This revealed no significant clusters at pFWE < 0.05. A PLSC 
analysis between whole-brain GMD and absorption subscales revealed 
one statistically significant LV (LV 2, p = 0.042, 19.05% covariance 
explained; Fig. 1). 

This LV indicates a pattern of covariance between GMD and ab
sorption which differentiates the absorption subscales of imagination 
and synesthesia (positive) from extrasensory perception and altered 
state of consciousness (negative). Neural results predominantly impli
cate salience and limbic regions including the right anterior cingulate 
and clusters within the bilateral inferior and middle frontal gyrus 
(positive), and a broad set of clusters predominantly located within 
lateral parietal and lateral temporal regions comprising the dorsal 
attention, visual, frontoparietal, and temporal-parietal networks 
(negative). 

3.2.2. Replication analyses 
We failed to find a significant association between GMD and ab

sorption total in the discovery (PIOP1) dataset. This null finding was 
replicated in the MBB dataset, wherein PLSC analyses similarly did not 
find a significant latent variable linking GMD and absorption (p = 0.72). 
Given that the LV from the PIOP1 absorption subscale analysis repre
sents an axis of covariance that pertains to a dissociation between ab
sorption subscales and, given that it only minimally correlated with 
absorption total (r = 0.07), a true replication in the MBB dataset (for 
which absorption subscales are not available) was not possible. None
theless, for comprehensiveness, we conducted a direct replication in 
which we computed brainscores from the PIOP-derived LV 2 BSR 
weights and the Leipzig individual-subject GMD matrices and assessed 
their correlation (controlling for sex effects) with absorption total in the 
MBB dataset. This revealed a correlation of r = − 0.02, indicating a lack 
of an association between this PIOP1-derived pattern of covariance and 
absorption total in the MBB dataset. 

3.3. Static resting state functional connectivity 

3.3.1. Interregional RSFC 

3.3.1.1. Discovery analyses. We hypothesized that higher absorption 
would be associated with (1) increased RSFC between regions 
comprising the FPCN and each of the default network (DN) and DAN, (2) 
reduced RSFC between FPCN subsystems, and (3) increased RSFC be
tween visual and DN regions. Accordingly, two hypothesis-driven PLSC 
analyses were conducted: one examining multivariate associations be
tween the regions comprising the FPCN, DN, and DAN and absorption, 
and another between the regions comprising the DN and visual network 
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and absorption. Network were defined based on the Schaefer-Yeo 17 
network parcellation (Schaefer et al., 2017; Yeo et al., 2011). The former 
revealed a trending but non-significant effect (p = 0.076) and the latter 
revealed a non-significant effect (p = 0.19). 

We next conducted an exploratory analysis evaluating whether 
whole-brain interregional RSFC (400 × 400; Schaefer et al., 2017) is 
associated with absorption. PLSC results with the PIOP1 dataset 
revealed one statistically significant LV for absorption (p = 0.01, 58.19% 
covariance explained; Fig. 2). No additional latent variables were found 
when computing the model with the five absorption subscales. 

This LV represents a set of interregional RSFC connections that 
jointly covary with absorption scores. Post-hoc correlations with ab
sorption subscales revealed that all subscales were strongly positively 
associated with this effect, with the highest correlations being with the 
‘altered state of consciousness’ and ‘aesthetic’ subscales. Neural results 
implicate several inter-network relationships. Notably, increased RSFC 
between visual-central (i.e., including V1) and attentional networks 
(DAN and FPCN), alongside decreased RSFC between this network and 
default and auditory networks, was associated with increased absorp
tion. In addition, increased FC between default network subsystem C 
(encompassing the medial temporal lobes) and sensorimotor networks 
was found to be positively associated with absorption. Overall, results 
indicate that the absorption phenotype is associated with a complex 
pattern spanning interregional interactions between a variety of 
networks. 

3.3.1.2. Replication analyses. To evaluate the replicability of the result 

with the PIOP1 dataset, we computed brain connectivity scores from the 
PIOP1-derived LV 1 BSR weights and the Leipzig individual-subject 
RSFC matrices and assessed their correlation (controlling for sex ef
fects) with absorption in the MBB dataset. This revealed a correlation of 
r = 0.04 (as compared to r = 0.77 in the PIOP1 dataset), indicating a lack 
of replication at the whole-brain level. 

To evaluate replicability at a more fine-grained level, we also 
computed brain connectivity scores for each of the statistically signifi
cant network x network pairs as shown in Fig. 3B. This allowed us to 
derive correlations (for both datasets) between absorption and the 
extent to which a given network x network RSFC pattern expresses the 
pattern found in the corresponding network x network BSR weights from 
PIOP LV 1. Results are shown in Fig. 3. 

Results indicate that the correlations in the Leipzig (replication) 
dataset are unreliable for the network pairs which exhibited significant 
correlations in the PIOP1 datasets. This indicates a lack of replication of 
this result across datasets. 

Finally, for comprehensiveness we also computed univariate corre
lations between network-averaged RSFC (i.e., average RSFC across all 
connections within and between each network) for each of the 17 net
works of Yeo et al. (2011) and absorption for each of PIOP1 and MBB 
datasets (Supplementary Fig. 2). No overlap between results from each 
dataset was observed (p < 0.05 uncorrected), further confirming the 
absence of a reliable association between RSFC and absorption in the 
present datasets. 

Fig. 1. Results for latent variable 2 (p < 0.05) in the PIOP1 discovery dataset, representing a multivariate association between absorption and grey matter density. 
(A) Voxel-wise BSR values, thresholded at abs(BSR≥2), indicating the most reliable neural weightings of latent variable 2 (B) Correlations between latent variable 2 
subject-level brainscores and absorption scores, controlling for age and sex. Note: absorption total was not included in the original model given the redundancy (C) 
The proportions of each of the 17 large-scale networks identified by (Yeo et al., 2011) exhibiting a significantly reliable BSR value, based on the significant voxels 
shown in (A). All displayed network level results were significant at p < 0.05 via network permutation testing. 
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3.3.2. Modularity 
We hypothesized that decreased whole-brain network modularity 

would be positively associated with absorption. Motivation for this hy
pothesis comes from evidence indicating that a 5-HT2A receptor poly
morphism associated with increased expression of this receptor may be 
associated with higher absorption scores (Ott et al., 2005), combined 
with findings indicating that 5-HT2A agonist psychedelic drugs acutely 
and post-acutely decrease modularity (Daws et al., 2022; Tagliazucchi 
et al., 2016). In addition, the putative phenomenology of absorption (e. 
g., synesthesia and blurring between sensory and imaginative worlds) 
suggests decreased neural functional differentiation. However, analyses 
failed to find a significant association between modularity and absorp
tion (p = 0.81). 

3.3.3. Gradient-mapping 
We hypothesized that decreased functional differentiation between 

high level (i.e., transmodal) and low level (i.e., sensorimotor) cortical 
regions would be positively associated with absorption. This would be 
broadly consistent with an increased influence of abstract, mnemonic 
processes on sensory processes – as seems to be present for individuals 
high in absorption. We applied ‘diffusion map embedding’ – a technique 
that characterizes macroscale axes of functional connectivity similarity 
and has been fruitfully used to characterize (hierarchical) cortical 

functional organization in a variety of contexts, in both health and 
disease (Dong et al., 2021; Girn et al., 2021; Hong et al., 2019; Margulies 
et al., 2016; Murphy et al., 2018; Setton et al., 2021; Smallwood et al., 
2021; Sydnor et al., 2021). This technique revealed macroscale gradi
ents consistent with prior work (Supplementary Fig. 3). Separate PLSC 
analyses were conducted for each of the first three gradients, assessing 
their multivariate relationships with absorption. No significant latent 
variables were found gradient 1 (unimodal sensory to transmodal as
sociation) p = 0.16, gradient 2 (somatomotor to visual) p = 0.27, 
gradient 3 (executive to non-executive) p = 0.08. 

3.4. Dynamic resting state functional connectivity (dRSFC) 

3.4.1. Network flexibility 
We additionally sought to evaluate whether absorption is captured 

by dynamic RSFC, as opposed to the ‘static’ time-averaged RSFC upon 
which the above measures are based. In particular, we used a sliding- 
window RSFC approach and computed network flexibility, computed 
as the number of times a given region changes its modular (i.e., network) 
affiliation across successive windows. We computed this measure across 
multiple window lengths (45, 60, and 75 s) and multiple values of the γ 
and ω parameters (see Methods Section 2.7 above). We hypothesized that 
greater network flexibility of the FPCN would be associated with higher 

Fig. 2. Results for latent variable 1 (p < 0.05) in the PIOP1 discovery dataset, representing a multivariate association between absorption and resting-state functional 
connectivity (RSFC). Results were computed by a partial least squares analysis on RSFC and absorption subscale scores in the PIOP1 (discovery) dataset. (A) BSR 
values for interregional RSFC connections, thresholded at abs(BSR≥2), indicating the most reliable neural weightings of latent variable 1. (B) Correlations between 
latent variable 1 subject-level brainscores and absorption scores, controlling for age and sex. Note: the latent variable was computed using only absorption total and 
the analysis did not include subscale scores. Post-hoc correlations with each subscale were computed and visualized here for interpretational purposes only. (C) Each 
of the 17 large-scale networks identified by (Yeo et al., 2011) exhibiting a significantly reliable BSR value at the network level, based on network permutation testing 
(see Methods), separated into negative (left) and positive (right) values. 
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absorption scores. PLSC analyses evaluating associations between the 
network flexibility of FPCN nodes and absorption revealed p values 
ranging from 0.26 to 0.83 across parameters and window lengths – 
indicating no statistically significant LVs. Exploratory whole-brain an
alyses between network flexibility and absorption similarly revealed no 
statistically significant LVs (p = 0.19 to 0.72). 

3.5. Control analysis with openness to experience 

Our analyses failed to find a reliable association between absorption 
and brain structure or resting-state function across the two investigated 
datasets. To ensure that this was not due to an issue pertaining to the 
present datasets in general, we also computed associations between 
GMD and RSFC and the personality trait of openness to experience. As 
mentioned, openness is a reliable and stable personality trait from the 
canonical NEO ‘Big 5’ personality inventory and exhibited a statistically 
significant correlation with absorption in the present datasets. PLSC 
analyses with the PIOP1 dataset revealed no significant latent variable 
for GMD (p = 0.60), and one statistically significant latent variable for 
whole-brain interregional RSFC (r = 0.78, p = 0.02). Critically, this 
latter effect was directly replicated in the MBB dataset – albeit with a 
much smaller effect size (r = 0.28, p = 0.02; see Supplementary Fig. 4). 
The successful replication with openness to experience suggests that 
failures of replication with absorption are likely related to the measure 
itself, rather than to issues pertaining to scanning acquisition parameters 
or signal to noise ratio. 

4. Discussion 

The present study constitutes the first comprehensive assessment of 
the association between trait absorption and brain structure and func
tion. In particular, PLSC was applied to assess multivariate associations 

between absorption and GMD along with several measures of both static 
(time-averaged) and dynamic (time-varying) RSFC. Analyses were 
conducted on a discovery dataset (n = 201), and an out-of-sample (n =
68) replication was attempted for statistically significant effects. Results 
revealed no statistically significant association between GMD and ab
sorption in either dataset. Across the multiple measures of static and 
dynamic RSFC, only whole-brain interregional RSFC was significantly 
associated with absorption in the discovery dataset (p < 0.05) – how
ever, this effect did not replicate in the replication dataset. Additional 
analyses revealed that univariate assessments of associations between 
absorption and GMD or interregional RSFC also failed to yield replicable 
effects. Finally, as an evaluation of the reliability of the datasets them
selves, we analyzed brain-behavior associations involving trait openness 
to experience and found that, in contrast to absorption, this trait was 
associated with interregional RSFC in a manner that replicated across 
datasets. This set of results indicates a lack of reliable associations be
tween trait absorption and brain structure or function as measured by 
neuroimaging. 

The lack of reliable brain-absorption associations in the present 
study can likely be attributed to a combination of two factors: (i) the 
conceptual and psychometric properties of the construct of absorption 
itself and (ii) broader concerns related to neuroimaging-based individ
ual-differences research in general. With respect to the former, despite 
strong internal and test-retest reliability – as well as reliable correlations 
with other traits and abilities – uncertainty with respect to the construct 
validity of absorption remain (Terhune and Jamieson, 2021). As 
mentioned, the TAS/MODTAS features a set of items that are, at first 
glance, relatively heterogenous – varying between a focus on attentional 
engagement, visual imagery/fantasy, synesthesia, and anomalous 
perceptual/self-related experiences. Consistent with this heterogeneity, 
factor analysis has revealed that trait absorption can be decomposed into 
a set of interrelated but distinct subfactors, although the exact number of 

Fig. 3. Direct replication of LV 1 (p < 0.05) as found in the PIOP1 dataset, representing an association between whole-brain RSFC and absorption. Bar plots display 
correlations between network x network BSR values (derived from LV 1 of the PIOP1 dataset) and absorption in both datasets. (A) Correlations between network x 
network pairs which display positive values in PIOP1 LV1 and absorption in each of the PIOP1 (top) and Leipzig (bottom) datasets. (B) Correlations between network 
x network pairs which display negative values in PIOP1 LV1 and absorption in each of the PIOP1 (top) and Leipzig (bottom) datasets. 
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subfactors has varied across studies (Glicksohn and Barrett, 2003; 
Jamieson, 2005). The presence of subscale heterogeneity is also sup
ported by the absorption subscale analysis conducted with GMD in the 
present study, which revealed a dissociation between absorption sub
scales in their associations with brain structure (see Fig. 1). Given this 
complex structure, it remains to be established how absorption is to be 
best interpreted (Terhune and Jamieson, 2021) – or, indeed, whether it 
is best viewed as a unified psychological construct at all, as opposed to a 
set of distinct tendencies which have a strong (but imperfect) tendency 
to co-occur. 

Evidence also exists that suggests that absorption scores are highly 
sensitive to context. For example, one study found that the correlation 
between absorption and hypnotic suggestibility was significantly higher 
when absorption was assessed alongside independent measures of 
mental imagery and imagination – suggesting its sensitivity to contex
tual priming effects (Barnier and McConkey, 1999). Tellegen himself has 
also argued that trait absorption likely manifests differently across 
contexts and individuals, depending on, for example, their personal 
history, as well as present motivational contexts, social cues, and action 
possibilities (Tellegen, 1981). Our inability to detect reliable associa
tions between absorption and the brain may be interpreted as further 
support for an understanding of trait absorption as a heterogenous 
construct that encompasses a set of interrelated but distinct tendencies 
that manifest in varying person-specific and context-dependent ways. It 
may be that associations between absorption and brain structure or 
function would be amplified if the brain data were acquired in con
strained contexts that evoke behaviors associated with absorption (Finn 
et al., 2017; Greene et al., 2018). Such contexts may include, for 
example, mental imagery tasks, hypnotic inductions, or naturally 
absorbing stimuli. Another possibility is that naturalistic movie-viewing 
paradigms may improve brain-absorption associations, an idea consis
tent with recent findings that such paradigms are superior to the 
resting-state for achieving reliable FC-based prediction of cognitive and 
emotional traits (Finn and Bandettini, 2021). 

Our failure to find consistent associations between brain measures 
and absorption may also be related to a lack of statistical power (Button 
et al., 2013; Marek et al., 2022; Poldrack et al., 2017). Several in
vestigations have established that underpowered studies are the norm in 
neuroimaging research (as well as in much of biomedicine) and that, 
accordingly, the literature is riddled with inflated effect sizes and 
non-replicable false positives (Button et al., 2013; Ioannidis, 2005, 
2008; Marek et al., 2022; Poldrack et al., 2017). Effect size estimates – in 
this case, correlations between the brain and non-neural measures – can 
vary widely at small sample sizes. One recent large-scale investigation of 
neuroimaging-based brain-behavior associations found that the ‘true’ 
effect sizes of a variety of univariate correlations was |r < 0.12| (as 
determined based on a sample of >3000 subjects), and that subsamples 
of size n = 100 derived from this large sample featured correlations that 
ranged from approximately r = − 0.3 to 0.3 within a 95% confidence 
interval (Marek et al., 2022). Importantly, however, effect sizes were 
found to be larger (r = 0.4 to 0.6, n = ~2000) and more replicable when 
using multivariate analyses, such as canonical correlation analysis (a 
technique highly similar to the PLSC approach adopted here; (Marek 
et al., 2022). In addition, it is critical to note that Marek et al. based their 
effect size estimates on a very limited set of behavioral measures, some 
of which exhibit poor reliability and unclear construct validity 
(DeYoung et al., 2022; Tiego and Fornito, 2022). Therefore, while, at 
face value, our results appear consistent with previous work in sug
gesting that the reliable detection of personality differences in brain 
structure likely requires thousands of subjects, it is essential to note that 
the reliability of the measures in question is an essential factor. It is very 
possible that a more refined assessment of absorption that features 
greater reliability and clear construct validity may yield reliable asso
ciations with brain structure at the sample sizes employed in the present 
study (DeYoung et al., 2022; Tiego and Fornito, 2022). 

Indeed, this latter point is supported by our successful replication of 

a brain-behavior association between interregional RSFC and trait 
openness to experience (r = 0.78 discovery, r = 0.28 replication; Sup
plementary Fig. 4). This finding is consistent with a notable large-scale 
study (n = 889), which found that among the Big 5 personality traits – 
openness, conscientiousness, extraversion, agreeableness, and neuroti
cism – RSFC-based predictions were most reliable for openness (Dubois 
et al., 2018). We highlight, however, that although a significant corre
lation was found in the replication dataset, this value was far lower (a 
difference of r = − 0.50) than in the discovery dataset – broadly 
consistent with the attenuated out-of-sample effect sizes found by 
(Marek et al., 2022). This suggests the likelihood of overfitting in the 
discovery dataset. Nonetheless, it is notable that the discovery effect size 
of this association is very similar to the discovery effect size found be
tween interregional RSFC and absorption (r = 0.77). As such, we might 
reasonably expect the out-of-sample effect size of this latter finding to 
also be in the range of r ~ = 0.25. Given that our replication sample (n =
68, four 15-min resting-state scans) is sufficiently powered to detect 
effects of r ≥ 0.25 with a 95% confidence interval (see Methods), it 
should, therefore, be of sufficient sensitivity to detect the effect found in 
the discovery dataset. This further suggests that our null findings may be 
due to the non-replicability of brain associations with trait absorption in 
particular, rather than solely due to the use of underpowered datasets. 

We failed to find a significant association between GMD and ab
sorption or openness to experience in either dataset, using both PLSC 
and standard GLM-based univariate approaches. At first glance, this 
appears at odds with previous neuroimaging studies which have found 
links between personality and brain structure, including with respect to 
openness (e.g., Vartanian et al., 2018) and absorption (Grant et al., 
2013). However, the present null findings are less surprising when 
considering that past studies examining GMD-behavior associations 
have predominantly used small and underpowered (mostly n < 50) 
samples and have produced effects which rarely replicate (Avinun et al., 
2020; Boekel et al., 2015; Genon et al., 2022; Marek et al., 2022; 
Masouleh et al., 2019). Indeed, in a recent large-scale (n = 1107) 
GMD-personality study, Avinun et al. (2020) not only failed to replicate 
past findings with the Big 5 personality traits, but also failed to find any 
statistically significant associations in their whole-brain exploratory 
analyses. These findings are therefore also consistent with enduring 
difficulties linking brain structure to personality, which likely have their 
basis in a combination of construct-specific (reliability and validity) and 
statistical-power-related limitations. 

In conclusion, our results indicate that absorption is not reliably 
associated with individual differences in brain structure or function. 
Using two datasets from independent labs (n = 201 and n = 68), we were 
unable to find any reliable association between trait absorption scores 
and a range of neuroimaging measures. It is indeed possible that the true 
effect size of such associations is much lower than suggested here, and 
that replication in a larger (i.e., n > 1000) dataset would uncover more 
subtle relationships between absorption and the brain (Marek et al., 
2022). Nonetheless, our results motivate a closer critical look at ab
sorption as a construct, and call into question the general idea that 
complex personality traits can be straightforwardly associated with 
baseline neurobiological signatures. Future work should evaluate 
whether absorption is truly a stable personality trait that is uniformly 
expressed in individuals who score highly on the TAS/MODTAS, or 
whether it integrates multiple neurobiologically distinct tendencies that 
can be evoked in varying ways depending on context (Luhrmann et al., 
2021). The differential effects across absorption subscales reported 
above also suggests that particular dimensions of this trait may vary in 
the extent to which they can be grounded in a reliable neurocognitive 
mechanism. 

Tellegen initially proposed the TAS as the beginning – not the end – 
of assessments of this ostensible trait; and yet it went on to become the 
standard measure in the field for nearly five decades (Tellegen and 
Atkinson, 1974). Our finding that absorption does not reliably correlate 
with brain structure or function underscores the challenge of 
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deciphering this perplexing personality scale – a simple questionnaire 
that, while holding a great deal of power when it comes to predicting a 
range of psychological phenomena, so far seems to elude a simple 
mechanistic explanation. We hope that our study motivates further in
vestigations to unravel the complex workings of this widely relevant 
psychological construct. 
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García-Montes, J.M., Ruiz-Veguilla, M., 2016. The relationship of depersonalization 
and absorption to hallucinations in psychotic and non-clinical participants. 
Psychiatr. Res. 244, 357–362. 

Perona-Garcelán, S., García-Montes, J.M., Rodríguez-Testal, J.F., Ruiz-Veguilla, M., 
Benítez-Hernández, M.d.M., López-Jiménez, A.M., Arias-Velarde, M.Á., Ductor- 
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