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Abstract: Low transition temperature mixtures (LTTMs) are a new generation of solvents that have
found extensive application in organic synthesis. The interactions between the components often
generate highly activated, catalytically active species, thus opening the possibility of using LTTMs as
catalysts, rather than solvents. In this work, we introduce a nickel-based imidazolium LTTM, study
its thermal behavior and explore its catalytic activity in the solvent-free allylation of heterocycles
with allylic alcohols. This system is effective in this reaction, affording the corresponding products in
excellent yield without the need for additional purifications, thus resulting in a very environmentally
friendly protocol.

Keywords: low transition temperature mixtures; allylic alcohols; imidazolium salts; tetrachloronickelates;
sustainable chemistry

1. Introduction

Over the last three decades, increasing concern about the impact of human activity in
nature has led scientists to experience a shift towards more sustainable processes. Within
organic chemistry, commonly used volatile organic solvents (VOS) have been a particu-
larly important field of study as they constitute the main component of every reaction
by weight [1]. Volatility, toxicity, flammability and low biodegradability are the main
concerns being voiced; therefore, since the mid-1990s, the field of alternative solvents has
been experiencing massive growth [2]. In this way, water, supercritical fluids, perfluo-
rinated solvents, ionic liquids or biomass-derived substances have all been studied as
potential replacements for VOS [2,3]. However, drawbacks related to the solubilization
of hydrophobic compounds, reactivity, potential toxicity and the cost of operation have
ultimately prevented any of these from displacing VOS as commodity solvents [2]. In
the early 2000s, Abbott and coworkers introduced Deep Eutectic Solvents (DES) as a new
breed of highly tunable and renewable solvents. According to their original definition,
DES were combinations of two or more components which interact in a way that causes a
depression in the melting point of the mixture [4]. This component-based definition was
later revised by Coutinho and coworkers, who proposed a new definition of DES based on
the non-ideality of the mixture, i.e., the experimental depression in the melting point being
significantly more pronounced than the theoretical ideal value [5]. At present, the term
Low Transition Temperature Mixtures (LTTMs) is used to refer to low-melting mixtures in
general, including every type of DES [6].

LTTMs have been used as reaction media for a broad range of transformations, in-
cluding cross-coupling reactions [7], C-H activation reactions [8], asymmetric organocataly-
sis [9,10], photochemistry [11], the addition of organometallic compounds [12,13] and the
synthesis of heterocycles [14]. In addition, many LTTMs (such as those based on metal
halides combined with organic salts or with organocatalytic scaffolds) are intrinsically
active, serving as both promoters and reaction media [15,16]. In this sense, some LTTMs
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have been used in catalytic amount to promote reactions in solventless conditions, which
contributes further to reducing the environmental impact of synthetic protocols [17].

In this work, we report a novel LTTM based on nickel chloride and 1-methoxycarbonylmethy-
3-methylimidazolium chloride (mcmimCl). Nickel-based LTTMs have been extensively
studied in several fields, such as in liquid crystals, as many of them present a long-range
order visible through polarized optic microscopy (POM) [18,19]. In addition, many nickel
salts exhibit thermochromism in the presence of humidity, due to the reversible formation
of deep blue tetrachloronickelate(II) anions and halogen-bridged octahedral anions [20].
Regarding catalysis, the application of Ni-LTTMs to this field is somewhat limited, with
only a few examples reporting their use for the oxygen evolution reaction [21], nitroarene
reduction [22], dehydration of sugars [23], cross-coupling [24] and multicomponent re-
actions [25]. Herein, we present a study on the formation, structure and properties of
nickel-mcmimCl LTTMs, as well as a study of their catalytic activity in allylation reactions
using alcohols as substrates. Sustainability metrics (E-factor, stoichiometric factor, atom
economy, Andraos’ reaction mass efficiency, materials recovery parameter and EcoScale)
have been calculated to unbiasedly assess the environmental impact of the methodology.

2. Results and Discussion

Our choice of imidazolium salt was based on our previous experience with imida-
zolium LTTMs. We found that monocarboxy-imidazolium salts performed the best for
the formation of low-melting mixtures [26], while being significantly more biodegradable
than their dialkylimidazolium counterparts [27,28]. Thus, we combined mcmimCl with
anhydrous nickel(II) chloride in several molar proportions, obtaining deep blue liquids
which were then analyzed through differential scanning calorimetry (DSC), obtaining the
traces compiled in Figure 1.

As evidenced by the traces, in most cases, the mixtures do not present any significant
thermal events other than glass transitions (Figure 1, panels a–d), the exception being the
4:1 mcmimCl:NiCl2 mixture, which exhibits an exothermic event (onset 66.9 ◦C) imme-
diately followed by an endothermic event (Figure 1e). This behavior is consistent with a
supercooled mixture, in which the molten phase becomes metastable due to slow phase
change kinetics [29]. This could be the reason why none of the other mixtures present any
events save from glass transitions.

The striking deep blue color observed upon mixing and heating the samples reveals the
presence of the tetrachloronickelate (NiCl42−) anion, the formation of which is also the likely
cause for the melting point depression of these LTTMs (Figure 2a). Tetrahalometallates of
copper, nickel or cobalt are well-known for their tendency to form liquid crystals with a
long-range order, which are of interest in ion-conductive and optic materials [19]. Thus, we
decided to study the stoichiometric mixture (2:1 mcmimCl:NiCl2) in more detail.

First, we performed X-ray photoelectron spectroscopy (XPS) experiments, which
confirmed the presence of the NiCl42− anion in the mixture (Figure 2b). From the obtained
results, the interaction between the components seems to be complete and homogeneous,
as both the nickel and chlorine surveys show a single species of each (Figures S19–S21,
Supplementary Information).

We then subjected the 2:1 mixture to further DSC analysis using a much slower
temperature gradient of 2 ◦C/min for both cooling and heating to mitigate the effect of the
slow phase change kinetics, obtaining the trace shown in Figure 3.

In this case, three thermal events are apparent in the trace: two overlapped endother-
mic events (onset 56 ◦C and 80 ◦C, respectively, with a total enthalpy of 76.4 J/g) and a
subtle exothermic event at 108 ◦C, with an enthalpy of 16.9 J/g. This pattern is unconven-
tional for typical LTTMs, which tend to show a single melting event. It is, however, similar
to the thermal behavior reported for some liquid crystals, which often show multiple events
in DSC corresponding to transitions to semi-ordered mesophases [19]. In this case, the
first event would be then attributed to the fusion of the crystallized mixture—as no glass
transitions are apparent during the heating cycle—which is overlapped with a much larger
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peak corresponding to the transition to a semi-ordered liquid state. The final event would
correspond to the formation of an isocratic liquid.
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Figure 3. DSC trace of the 2:1 mcmimCl:NiCl2 mixture at a heating rate of 2 ◦C/min. Endothermic
events are represented as negative peaks along the y axis.

Thus, we decided to study the mixture through POM upon cooling from the isocratic
state at 150 ◦C. However, we were only able to observe the formation of crystals from
the homogeneous isocratic mixture. This is probably due to the very narrow interval of
temperatures in which the ordered phase exists (15 ◦C at a cooling rate of 2 ◦C/min), which
may result in immediate solidification into crystals upon entering an ordered state.

At this point, we shifted our attention to potential applications of these systems in
catalysis. We were particularly interested in Lewis acidic catalysis, based on our previous
experience with metal-imidazolium LTTMs. Allyl compounds and indoles are biologically
relevant motifs [30–32]. Thus, we selected the allylation of heterocycles with allylic alcohols
as a benchmark to assess the efficacy of the nickel-based imidazolium salt LTTMs, taking
the same reaction conditions for comparison. This reaction, which has been studied with
different Lewis acidic catalysts, proceeds through an SN1 mechanism in which the catalytic
system activates the alcohol and/or the nucleophile. Thus, indole was combined with
(E)-1,3-diphenylprop-2-ene-1-ol, in a 1:1 molar ratio, for 2 h at 80 ◦C in the absence of a
solvent, obtaining the results described in Table 1.

Table 1. Preliminary studies for the allylation of indole with (E)-1,3-diphenylprop-2-ene-1-ol a.

Entry [Cat.] Conversion to 1

1 2:1 mcmimCl:NiCl2 99
2 1:1 mcmimCl:NiCl2 99
3 1:1 mcmimCl:NiCl2·6H2O 99 (99) b

4 NiCl2 48
5 NiCl2·6H2O 5
6 mcmimCl 16

a Reaction conditions: Alcohol (0.25 mmol), indole (0.25 mmol), catalyst (5 mol%), 80 ◦C, 2 h. b Isolated yield.

Using just 5 mol% of 2:1 mcmimCl:NiCl2 we observed a full conversion to the product
after the reaction time had elapsed (Table 1, entry 1). In an attempt to decrease the amount
of materials used, we tested the 1:1 mcmimCl:NiCl2 mixture as well, obtaining the same
results (Table 1, entry 2). An inconvenient trait of the assayed mixtures is their marked
hygroscopic character, which requires careful manipulation and storage under an inert
atmosphere to avoid hydration. Thus, we considered the possibility of testing a 1:1 mixture
of mcmimCl and nickel(II) chloride hexahydrate. This mixture, of an intense green color,
presents thermochromic behavior arising from the displacement of the aquo ligands caused
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by chloride, forming deep-blue tetrachloronickelate anions. Upon cooling, the mixture
transitions from blue-back to green, then slowly to yellow, due to the formation of halogen-
bridged hydrated polymeric octahedral anions (Figure S46, Supplementary Information).
This behavior is fully reversible and consistent with the reports in the literature [33,34]. For
this particular mixture, the dehydration of the nickel begins at around 45 ◦C (Figure S18,
Supplementary Information); thus, at the reaction temperature and considering the small
amount of LTTM used, the mixture should be essentially equal to the anhydrous mixture.
Indeed, we obtained the product in quantitative conversion, and due to the high efficacy of
the catalyst, the use of stoichiometric reagents and the absence of solvents, we were able
to isolate 1 in quantitative yield by adding a small amount of ethyl acetate (a sustainable
solvent) and filtering off the LTTM (Table 1, entry 6). A visual inspection of the reaction
vessel confirmed our theory, as a deep blue liquid was present at the end of the reaction.
The LTTM interaction clearly has a very important role in the catalytic performance of the
system, as the individual components were not able to promote the reaction to the same
degree or at all (Table 1, entries 4 to 6).

Encouraged by our good results, we decided to continue assessing the catalytic perfor-
mance of the system by assaying several differently substituted heterocycles, obtaining the
results described in Scheme 1.
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standard.

In general terms, the LTTM showed an excellent performance, affording the allylation
products in excellent to quantitative yields. The indoles reacted exclusively at the C-3
position and did not require any sort of protecting group. The electronic effects did not
seem to significantly influence the outcome of the reaction, as differently substituted indoles
were obtained in comparable yield, although some less electron-rich substrates took longer
to fully react. Interestingly, even severely sterically hindered indoles reacted smoothly
(Scheme 1, compounds 3 and 4). The protocol was extended to other heterocycles, which
selectively reacted at the nitrogen. Triazole gave good results, as did 5-phenyltetrazole
(Scheme 1, compounds 10 and 11). Carbazole, a challenging substrate, reacted smoothly
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to afford compound 12 in quantitative yield after filtration, as did 3,6-dichlorocarbazole
(Scheme 1, compound 13). Remarkably, this nickel-LTTM was able promote the allylation of
electron-rich benzenes, such as 1,3,5-trimethoxybenzene, obtaining the product in excellent
yield (Scheme 1, compound 14). Compounds 1 to 12 were obtained as sufficiently pure
after just filtering off the catalyst, which results in a very environmentally friendly protocol.

Recyclability is one of the most important aspects of heterogeneous catalysts and
further contributes to reducing the impact of synthetic methodologies. Thus, we set up
the synthesis of 1 once more. After the reaction time had elapsed, a small amount of
ethyl acetate was used to remove the product, with the insoluble LTTM remaining in the
vessel, which was then reloaded with fresh starting materials. In this way, we were able
to reuse the catalyst three times without any loss of activity. To determine the stability of
the catalyst, an additional cycle was carried out after leaving the catalyst exposed to air
(at 30 ◦C with relative humidity of >50%) overnight. The LTTM remained in its yellow
polymeric form and was still able to afford product 1 in quantitative conversion (Figure 4).
A visual inspection of the vessel after the reaction confirmed a transition back to the blue
tetrachloronickelate form, thus confirming the robustness of the nickel-imidazolium LTTM.
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We then decided to calculate the sustainability metrics to assess the impact of the
methodology and to compare it with the established protocols reported in the literature.
Taking the synthesis of compound 1 as a model reaction, the E-factor was calculated and the
yields (Y), atom economy (AE), reaction mass efficiency (RMEAndraos), materials recovery
parameter (MRP) and stoichiometric factors (SF) were combined into a vector magnitude
ratio (VMR, range 0–1) for quick comparison (see Supplementary Information for the
equations used and any additional considerations) [35]. In addition, the qualitative aspects
of the processes were assessed by means of the EcoScale [36], obtaining the results described
in Table 2 and Figure 5.
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Table 2. Sustainability metrics for the preparation of 1.
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Neat, 2 h, 80 ◦C
1:1 (Alcohol/Indole) 3.9 0.771 79

2 [37] 10 mol% bcmimCl Neat, 2 h, 80 ◦C
1:1 (Alcohol/Indole) 1.9 0.790 89

3 [38] 10 mol% FeCl3·6H2O H2O, 24 h, 90 ◦C
1:2 (Alcohol/Indole) 17.6 † 0.668 † 70

4 [39] - HFIP, 24 h, 50 ◦C
1:1.5 (Alcohol/Indole) 1.4 † 0.748 † 77

5 [40] 10 mol% p-TSA DCM, 2 h, 50 ◦C
1:1 (Alcohol/Indole) 94.8 † 0.776 † 79

6 [41] -

1:2 choline
chloride:lactic acid, 29

h, 60 ◦C
1:1 (Alcohol/Indole)

360.4 † 0.750 † 69

† Purification by column chromatography omitted (highly method and operator dependent, worth approx.
500–1500 extra E-factor).
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Figure 5. Sustainability metrics for the preparation of 1. Comparison between methodologies
omitting chromatographic purification.

In general terms, the protocol using the 1:1 mcmimCl:NiCl2·6H2O mixture has better
sustainability metrics than the comparable methodologies reported in the literature. The E-
factor sits second lowest of the purification-free methods due to the use of neat conditions
(Table 1, entry 1), and is firmly within the desirable range for the production of bulk
chemicals [42]. The material efficiency metrics, measured by the VMR, are comparable to
the rest of the methodologies, although this is mainly due to them having similar values of
yields, a similar stoichiometric factor and the exact same atom economy. As these three are
the largest values of the VMR, they exert a buffer effect over the calculation. Looking at the
RME, our methodology sits third best overall, with a value of 20.1% (Table S2). Regarding
the EcoScale, this protocol obtains a score of 79, with the main penalty coming from the use
of nickel. Nevertheless, the value is classified as excellent according to the scoring system
proposed by the authors [36].

It should be mentioned that, although the methodology using bcmimCl has slightly
better metrics for this particular reaction, the nickel-imidazolium LTTM catalyst results
in higher yields in general (particularly noticeable with difficult substrates, such as 2-
phenylindole or carbazole) [37], and its high activity enables the use of other substrates,
such as 1,3,5-trimethoxybenzene, which are incompatible with the bcmimCl protocol.
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Consequently, the nickel-based Lewis acid catalyst described herein exhibits not only com-
parable metrics to the best previously reported methodologies, but also greater robustness
in terms of its recyclability and activity.

3. Materials and Methods

All reagents and solvents used are commercially available (Acros (Waltham, MA,
USA), Alfa Aesar (Haverhill, MA, USA), Fluorochem (Glossop, UK), Fluka (Freehold,
NJ, USA), Merck (Darmstadt, Germany)) and were used without further purification.
DSC experiments were carried out at the Thermal Analysis and Porous Solids unit of the
Research Technical Services of the University of Alicante (SSTTI-UA) with TA Instruments
(New Castle, DE, USA) Q250 differential scanning calorimeter. Samples were analyzed in
sealed aluminum crucibles under nitrogen atmosphere. NMR spectra were recorded at
the NMR Unit of the SSTTI-UA using Bruker (Billerica, MA, USA) AV300 Oxford, AV400
and Avance Neo 400 solution-state NMR spectrometers. 1H spectra were recorded at
300 or 400 MHz, whereas 13C spectra were recorded at 75 or 100 MHz. The solvent used
was deuterated chloroform (CDCl3), with tetramethylsilane (TMS) as an internal standard.
Chemical shifts (δ) are provided in ppm and coupling constants (J) are reported in hertz (Hz).
Low-resolution mass spectra of the compounds were recorded on an Agilent (Santa Clara,
CA, USA) 5973 Network mass spectrometer equipped with a 70 eV electronic impact (EI)
ionization source and a quadrupolar mass detector operating in single ion monitoring
(SIM) mode. Samples were introduced through an Agilent 6890N gas chromatography
instrument equipped with a Technokroma TRB-5MS column (30 m × 0.25 mm × 0.25 µm),
using helium as the mobile phase. Fragmentations are reported according to their mass to
charge ratio (m/z), along with their relative intensity in parenthesis. XPS analyses were
carried out at the X-ray unit of the SSTTI-UA with a Thermo Scientific (Waltham, MA, USA)
K-Alpha instrument using a monochrome Al K-α X-ray source.

3.1. Procedure for the Preparation of 1-(Methoxycarbonylmethyl)-3-methylimidazolium
Chloride (mcmimCl)

In a glass round bottom flask, methylimidazole (40 mmol, 3.2 mL) and methyl chloroac-
etate (40 mmol, 3.5 mL) were combined. The mixture was sonicated for 1 h, causing the
formation of a dense white solid. The product was crushed with 10 mL of diethyl ether,
which was then decanted off. After drying, 7.5 g of pure mcmimCl was obtained (98% yield).

3.2. Procedure for the Preparation of the McmimCl:xNiCl2·(6H2O) Mixtures

In a glass vial, mcmimCl (1 mmol, 190 mg) was combined with a suitable amount
of nickel precursor. A magnet was then added and the mixture was stirred at 80 ◦C until
homogeneous (around 1 h). For mixtures containing anhydrous NiCl2, argon was added to
the flask to protect the LTTM from moisture.

3.3. General Procedure for the Allylation of Heterocycles Promoted by Ni-imidazolium LTTMs

In a glass microwave tube, Ni-LTTM (5 mol%, 5 mg (hydrated) or 4 mg (anhydrous)),
(E)-1,3-diphenylprop-2-ene-1-ol (0.25 mmol, 53 mg) and indole (1 equivalent) were added.
The mixture was stirred at 80 ◦C until completion (monitored by GC-MS). After the reaction
was completed, 0.5 mL of ethyl acetate was used to remove the product, which was then
filtered through a pad of cotton and magnesium sulfate. After washing the pad with
an additional 0.5 mL, removing the solvent under vacuum afforded the pure allylation
products (1 to 12). In the case of products 13 and 14, some excess starting material remained,
so the yields were calculated through NMR.

3.4. Spectral Data of Compounds 1 to 14

(E)-3-(1,3-Diphenylallyl)-1H-indole (1) [37,41]: Yellow oil, obtained pure, 99% yield; 1H
NMR (400 MHz, CDCl3): δH = 7.97 (br s, 1H, NH), 7.52 (d, J = 8.1 Hz, 1H, CHAr), 7.45–7.28
(m, 12H, CHAr), 7.11 (ddd, J = 8.1, 7.1, 0.8 Hz, 1H, CHAr), 6.94 (d, J = 1.3 Hz, 1H, CHAr),
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6.80 (dd, J = 15.9, 7.4 Hz, 1H, PhC=CH), 6.52 (br d, J = 15.9 Hz, 1H, C=CHPh), 5.20 (br d,
J = 7.4 Hz, 1H, C=CCH); 13C NMR (100 MHz, CDCl3): δC = 143.5, 137.7, 136.8, 132.7, 130.7,
128.6, 128.6, 128.5, 127.3, 126.9, 126.5, 126.5, 122.8, 122.2, 119.9, 119.5, 118.8, 111.3, 46.4; MS
(EI, 70 eV) m/z (%): 310 (M+ + 1, 24), 309 (M+, 100), 308 (M+ − 1, 39), 294 (10), 232 (36), 230
(16), 218 (16), 217 (17), 206 (28), 204 (17), 202 (8), 192 (15), 191 (16), 130 (18), 115 (17).

(E)-3-(1,3-Diphenylallyl)-1-methyl-1H-indole (2) [37]: Yellow oil, obtained pure, 98% yield;
1H NMR (400 MHz, CDCl3): δH = 7.52–7.49 (m, 1H, CHAr), 7.45–7.24 (m, 12H, CHAr),
7.09 (ddd, J = 8.0, 6.9, 1.1 Hz, 1H, CHAr), 6.84 (s, 1H, CHN), 6.80 (dd, J = 16.0, 7.4 Hz, 1H,
PhC=CH), 6.52 (d, J = 16.0 Hz, 1H, C=CHPh), 5.19 (br d, J = 7.4 Hz, 1H, C=CCH), 3.78 (s,
3H, CH3); 13C NMR (100 MHz, CDCl3): δC = 143.7, 137.6, 137.5, 132.8, 130.5, 128.6, 128.5,
127.5, 127.3, 127.3, 126.5, 126.4, 121.7, 120.1, 119.0, 117.2, 109.3, 46.3, 32.8; MS (EI, 70 eV) m/z
(%): 324 (M+ + 1, 25), 323 (M+, 100), 322 (M+ − 1, 36), 247 (9), 246 (45), 244 (9), 232 (14), 231
(9), 220 (28), 219 (8), 218 (12), 217 (8), 204 (8), 192 (11), 191 (16), 144 (27), 131 (8), 122 (10),
115 (11).

(E)-3-(1,3-Diphenylallyl)-2-methyl-1H-indole (3) [37,41]: Yellow oil, obtained pure, 92%
yield; 1H NMR (400 MHz, CDCl3): δH = 7.63 (br s, 1H, NH), 7.28–7.24 (m, 5H, CHAr),
7.19–7.14 (m, 6H, CHAr), 7.12–7.09 (m, 2H, CHAr) 6.99 (ddd, J = 8.1, 7.1, 1.2 Hz, 1H, CHAr),
6.88 (ddd, J = 8.1, 7.1, 1.2 Hz, 1H, CHAr), 6.74 (dd, J = 15.8, 7.2 Hz, 1H, PhC=CH), 6.32 (dd,
J = 15.8, 1.2 Hz, 1H, C=CHPh), 5.05 (d, J = 7.2 Hz, 1H, C=CCH), 2.24 (s, 3H, CH3); 13C NMR
(100 MHz, CDCl3): δC = 143.6, 137.7, 135.5, 132.3, 131.7, 130.7, 128.6, 128.4, 128.4, 128.1,
127.2, 126.4, 126.2, 121.0, 119.5, 119.4, 112.9, 110.4, 45.2, 12.5; MS (EI, 70 eV) m/z (%): 324 (M+

+ 1, 26), 323 (M+, 100), 322 (M+ − 1, 20), 309 (17), 308 (69), 246 (28), 244 (10), 232 (15), 231
(12), 230 (21), 220 (15), 218 (29), 217 (20), 202 (9), 192 (11), 191 (27), 144 (29), 131 (10), 130
(10), 115 (17).

(E)-3-(1,3-Diphenylallyl)-2-phenyl-1H-indole (4) [37]: Yellow oil, obtained pure, 98% yield;
1H NMR (400 MHz, CDCl3): δH = 8.11 (br s, 1H, NH), 7.62–7.59 (m, 2H, CHAr), 7.55–7.50
(m, 3H, CHAr), 7.48–7.41 (m, 6H, CHAr), 7.37–7.33 (m, 4H, CHAr), 7.28–7.24 (m, 3H, CHAr)
7.09 (ddd, J = 8.1, 7.1, 1.0 Hz, 1H, CHAr), 6.99 (dd, J = 15.8, 7.3 Hz, 1H, PhC=CH), 6.50
(dd, J = 15.8, 1.0 Hz, 1H, C=CHPh), 5.38 (d, J = 7.3 Hz, 1H, C=CCH); 13C NMR (100 MHz,
CDCl3): δC = 143.6, 137.6, 136.3, 135.7, 133.0, 132.4, 131.2, 128.9, 128.7, 128.6, 128.4, 128.4,
128.1, 128.0, 127.2, 126.4, 126.2, 122.2, 121.3, 119.8, 113.9, 111.1, 45.3.; MS (EI, 70 eV) m/z (%):
386 (M+ + 1, 31), 385 (M+, 100), 384 (M+ − 1, 19), 341 (22), 331 (16), 309 (12), 308 (46), 306
(17), 304 (11), 295 (26), 294 (97), 292 (9), 291 (11), 280 (18), 278 (8), 230 (14), 218 (9), 217 (13),
205 (8), 204 (23), 203 (8), 202 (9), 194 (9), 193 (45), 192 (22), 191 (22), 189 (8), 178 (9), 176 (7),
165 (14), 153 (9), 152 (10), 146 (10), 115 (9).

(E)-3-(1,3-Diphenylallyl)-9-ethyl-1H-indole (5) [37]: Reddish oil, obtained pure, 99% yield;
1H NMR (300 MHz, CDCl3) δH = 7.95 (br s, 1H, NH), 7.50–7.30 (m, 11H, CHAr), 7.14–7.11
(m, 2H, CHAr), 6.94 (dd, J = 2.4, 0.7 Hz, 1H, CHAr), 6.86 (dd, J = 15.8, 7.4 Hz, 1H, PhC=CH),
6.58 (d, J = 15.8 Hz, 1H, C=CHPh), 5.24 (d, J = 7.4 Hz, 1H, C=CCH), 2.93 (q, J = 7.6 Hz, 2H,
CH2), 1.47 (t, J = 7.6 Hz, 3H, CH3); 13C NMR (100 MHz, CDCl3): δC = 143.6, 137.6, 135.6,
132.8, 130.6, 128.6, 128.6, 128.5, 127.2, 126.7, 126.6, 126.4, 122.4, 120.7, 119.8, 119.2, 117.7, 46.4,
24.0, 13.9.; MS (EI, 70 eV) m/z (%): 338 (M+ + 1, 26), 337 (M+, 100), 336 (M+ − 1, 32), 308 (23),
281 (10) 261 (7), 260 (34), 235 (7), 234 (27), 231 (9), 230 (19), 218 (9), 217 (13), 204 (9), 192 (13),
191 (21), 158 (17), 115 (11).

(E)-4-Bromo-3-(1,3-diphenylallyl)-1H-indole (6) [37]: Faint yellow oil, obtained pure, 98%
yield; 1H NMR (400 MHz, CDCl3): δH = 8.08 (br s, 1H, NH), 7.43–7.25 (m, 12H, CHAr),
7.07–7.03 (m, 1H, CHAr), 6.94 (d, J = 2.0 Hz, 1H, CHAr), 6.81 (dd, J = 15.9, 6.6 Hz, 1H,
PhC=CH), 6.32 (dd, J = 15.9, 1.4 Hz, 1H, C=CHPh), 5.99 (d, J = 6.6 Hz, 1H, C=CCH); 13C
NMR (100 MHz, CDCl3): δC = 144.0, 137.9, 137.7, 133.9, 130.8, 129.1, 128.6, 128.3, 127.2,
126.4, 126.3, 125.0, 124.9, 124.5, 123.1, 119.2, 114.6, 110.7, 44.9.; MS (EI, 70 eV) m/z (%): 390
(M+ + 3, 25), 389 (M+ + 2, 99), 388 (M+ + 1, 43), 387 (M+, 100), 386 (M+ − 1, 19), 312 (25), 311
(8), 310 (30), 309 (13), 308 (40), 307 (11), 306 (14), 298 (9), 296 (9), 286 (23), 284 (27), 231 (17),
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230 (38), 229 (7), 228 (9), 217 (36), 210 (21), 208 (26), 205 (10), 204 (29), 203 (12), 202 (14), 192
(36), 191 (37), 189 (8), 177 (8), 176 (10).

(E)-3-(1,3-Diphenylallyl)-5-methoxy-1H-indole (7) [37]: Brownish oil, obtained pure, 99%
yield; 1H NMR (300 MHz, CDCl3): δH = 7.98 (br s, 1H, NH), 7.43–7.25 (m, 11H, CHAr),
6.90–6.87 (m, 3H, CHAr), 6.77 (dd, J = 15.8, 7.3 Hz, 1H, PhC=CH), 6.50 (d, J = 15.8 Hz, 1H,
C=CHPh), 5.13 (d, J = 7.3 Hz, 1H, C=CCH), 3.76 (s, 3H, OCH3); 13C NMR (75 MHz, CDCl3):
δC = 153.8, 143.4, 137.5, 132.5, 131.9, 130.6, 128.5, 128.5, 128.5, 127.3, 127.2, 126.4, 126.3, 123.5,
118.3, 112.2, 111.9, 101.8, 55.8, 46.3; MS (EI, 70 eV) m/z (%): 340 (M+ + 1, 25), 339 (M+, 100),
338 (M+ − 1, 32), 324 (11), 308 (11), 263 (9), 262 (34), 253 (11), 236 (25), 209 (12), 204 (10), 192
(16), 191 (26), 160 (17), 147 (9), 115 (8).

(E)-3-(1,3-Diphenylallyl)-5-formyl-1H-indole (8) [37]: Faint yellow oil, 99% yield; 1H NMR
(400 MHz, CDCl3): δH = 9.92 (s, 1H, CHO), 8.92 (br s, 1H, NH), 7.99 (m, 1H, CHAr), 7.78
(dd, J = 8.5, 1.5 Hz, 1H, CHAr), 7.46–7.25 (m, 11H, CHAr), 7.06 (dd, J = 2.2, 0.7 Hz, 1H,
CHAr), 6.77 (dd, J = 15.8, 7.3 Hz, 1H, PhC=CH), 6.49 (d, J = 15.8 Hz, 1H, C=CHPh), 5.21 (d,
J = 7.3 Hz, 1H, C=CCH); 13C NMR (100 MHz, CDCl3): δC = 192.9, 142.9, 140.4, 137.3, 132.0,
131.1, 129.2, 128.7, 128.6, 128.5, 127.5, 126.8, 126.4, 125.7, 124.7, 122.3, 120.6, 112.1, 46.0.; MS
(EI, 70 eV) m/z (%): 338 (M+ + 1, 32), 337 (M+, 100), 336 (M+ − 1, 26), 308 (22), 260 (25), 234
(9), 218 (14), 217 (8), 209 (15), 204 (25), 193 (21), 192 (35), 191 (31), 115 (21).

(E)-3-(1,3-Diphenylallyl)-5-fluoro-1H-indole (9) [37,41]: Faint yellow oil, obtained pure,
99% yield; 1H NMR (400 MHz, CDCl3): δH = 7.96 (br s, 1H, NH), 7.46–7.26 (m, 12H, CHAr),
7.15 (dd, J = 9.8, 2.5 Hz, 1H, CHAr), 7.01–6.97 (m, 2H, CHAr), 6.78 (dd, J = 15.8, 7.4 Hz, 1H,
PhC=CH), 6.53 (d, J = 15.8 Hz, 1H, C=CHPh), 5.13 (d, J =7.3 Hz, 1H, C=CCH); 13C NMR
(100 MHz, CDCl3): δC = 157.7 (d, J = 234.5 Hz), 143.1, 137.5, 133.3, 132.2, 130.9, 128.6, 128.5,
127.4, 127.3 (d, J = 9.8 Hz), 126.7, 126.5, 124.5, 118.9 (d, J = 4.7 Hz), 111.9 (d, J = 9.7 Hz), 110.6
(d, J = 26.5 Hz), 104.9 (d, J = 23.6 Hz), 46.3; MS (EI, 70 eV) m/z (%): 328 (M+ + 1, 24), 327
(M+, 100), 326 (M+ − 1, 35), 312 (11), 250 (31), 249 (9), 248 (16), 236 (18), 235 (16), 224 (28),
223 (7), 222 (16), 192 (20), 191 (22), 148 (21), 115 (17).

(E)-1-(1,3-Diphenylallyl)-1H-1,2,4-triazole (10) [37]: Colorless oil, obtained pure, 96% yield;
1H NMR (400 MHz, CDCl3): δH = 8.17 (s, 1H, CHAr), 8.05 (s, 1H, CHAr), 7.45–7.28 (m, 10H,
CHAr), 6.70 (dd, J = 15.8, 7.0 Hz, 1H, PhC=CH), 6.54 (d, J = 15.8 Hz, 1H, C=CHPh), 6.21
(br d, J = 7.0 Hz, 1H, C=CCH); 13C NMR (100 MHz, CDCl3): δC = 152.1, 142.7, 137.7, 135.6,
134.8, 129.2, 128.8, 128.8, 128.6, 127.5, 126.9, 125.7, 66.2; MS (EI, 70 eV) m/z (%): 261 (M+, 26),
233 (17), 206 (11), 193 (25), 192 (70), 191 (59), 190 (9), 189 (14), 178 (20), 165 (14), 157 (14), 146
(11), 145 (100), 144 (17), 130 (7), 117 (17), 116 (8), 115 (59), 91 (22), 89 (10), 77 (11).

(E)-2-(1,3-Diphenylallyl)-5-phenyl-2H-tetrazole (11) [37]: Colorless oil, obtained pure, 96%
yield; 1H NMR (400 MHz, CDCl3): δH = 8.25–8.23 (m, 2H, CHAr), 7.54–7.32 (m, 13H, CHAr),
6.97 (dd, J = 15.8, 7.7 Hz, 1H, PhC=CH), 6.80–6.71 (m, 2H, HC=CH); 13C NMR (100 MHz,
CDCl3): δC = 165.3, 137.2, 135.6, 135.1, 130.4, 129.1, 128.9, 128.8, 128.7, 127.53, 127.5, 127.0,
124.9, 69.9; MS (EI, 70 eV) m/z (%): 283 (19), 282 (90), 267 (20), 265 (14), 252 (9), 205 (31), 204
(37), 203 (44), 202 (35), 192 (13), 191 (100), 190 (11), 189 (19), 178 (16), 165 (18), 152 (7), 126
(10), 91 (8).

(E)-9-(1,3-Diphenylallyl)-9H-carbazole (12) [37]: Yellow oil, obtained pure, 99% yield; 1H
NMR (400 MHz, CDCl3): δH = 8.23 (dt, J = 7.7, 0.9 Hz, 2H, CHAr), 7.48–7.28 (m, 16H, CHAr),
7.03 (dd, J = 15.8, 7.0 Hz, 1H, PhC=CH), 6.72–6.68 (m, 2H, C=CHPh, C=CCH); 13C NMR
(100 MHz, CDCl3): δC = 140.2, 139.1, 136.3, 134.2, 128.8, 128.7, 128.2, 127.9, 127.3, 126.8,
125.9, 125.7, 123.7, 120.4, 119.3, 110.5, 59.9; MS (EI, 70 eV) m/z (%): 359 (M+, 8), 194 (18), 193
(100), 192 (40), 191 (29), 189 (13), 178 (19), 167 (61), 166 (18), 165 (13), 140 (8), 139 (10), 115
(44), 91 (7).

(E)-3,6-dichloro-9-(1,3-diphenylallyl)-9H-carbazole (13): White oil, obtained with traces of
3,6-dichlorocarbazole, 99% NMR yield; 1H NMR (400 MHz, CDCl3): δH = 8.08–8.07 (m, 2H,
CHAr), 7.44–7.28 (m, 14H, CHAr), 6.93 (dd, J = 15.7, 6.9 Hz, 1H, PhC=CH), 6.64–6.59 (m, 2H,
C=CHPh, C=CCH); MS (EI, 70 eV) m/z (%): 431 (M+ + 4, 14), 430 (M+ + 3, 22), 429 (M+ + 2,
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72), 428 (M+ + 1, 41), 427(M+, 100), 426 (18), 394 (9), 393 (9), 392 (26), 356 (8), 341 (7), 327
(7), 322 (8), 314 (12), 253 (20), 237 (11), 235 (15), 193 (41), 192 (61), 191 (50), 189 (7), 178 (19),
165 (10).

(E)-2-(1,3-diphenylallyl)-1,3,5-trimethoxybenzene (14) [43]: Colorless oil, obtained with
leftover 1,3,5-trimethoxybenzene, 96% NMR yield; 1H NMR (400 MHz, CDCl3): δH = 7.49
(m, 2H, CHAr), 7.38–7.22 (m, 8H, CHAr), 7.05 (dd, J = 15.8, 8.6 Hz, 1H, PhC=CH), 6.60 (d,
J = 15.8 Hz, 1H, C=CHPh), 6.26 (s, 2H, CHAr), 5.54 (d, J = 8.6 Hz, 1H, C=CCH), 3.88 (s, 3H,
OCH3), 3.80 (s, 6H, 2xOCH3); MS (EI, 70 eV) m/z (%): 361 (M+ + 1, 28), 360 (M+, 100), 330
(20), 329 (75), 283 (14), 269 (23), 255 (7), 254 (19), 252 (8), 251 (8), 239 (13), 238 (18), 193 (14),
192 (66), 191 (42), 182 (11), 181 (83), 179 (7), 168 (12), 167 (7), 165 (11), 141 (9), 121 (8), 115
(13), 91 (25).

4. Conclusions

To summarize, we have presented a series of novel nickel chloride:carboxy-imidazolium
LTTMs. The formation of the tetrachloronickelate anion was determined visually and
confirmed by XPS analysis, with it being the reason for the melting point depression of
these mixtures. The thermal behavior of the mixtures was analyzed through DSC, observing
the formation of metastable glass phases at the standard 5 ◦C/min temperature gradients.
Careful analysis revealed evidence of a more complex phase system than that of a regular
LTTM, which could be compatible with a liquid crystal. Then, the system was applied as a
catalyst for the allylation of heterocycles with (E)-1,3-diphenylprop-2-ene-1-ol in solvent-
free conditions, finding that the catalytic LTTM could be generated in situ from its much
more convenient hydrated form without a loss of activity. A series of differently substituted
indoles as well as other heterocycles and electron-rich arenes were successfully allylated,
obtaining the products in excellent yields without the need for purification in most cases,
and the catalyst could be successfully recycled four times without a loss of its activity.
To finish, we calculated the sustainability metrics to unbiasedly assess the impact of this
methodology and compared it with the protocols described in the literature. We obtained
an E-factor of 3.9, a VMR of 0.771 and an EcoScale score of 79, which was consistently
within the best scoring methodologies, thus proving the sustainability of the protocol.
Given the characteristics (in terms of efficiency, activity, sustainability) of using this type
of LTMM as catalysts, it will be of interest to continue exploring synthetic applications in
other reactions, as well as with other nucleophiles and electrophiles.
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