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Abstract Inaccurate digital road networks significantly complicate the use of analytics in developing, data scarce, en-

vironments. For routing purposes, the most important characteristic of a digital road network is the information about travel

times/speeds of roads. In developing regions, these are often unknown, and heavily dependent on the weather (e.g., rainfall).

This may, for instance, cause vehicles to experience longer travel times than expected. Current methods to predict the travel

speeds are designed for the short upcoming period (minutes or hours). They make use of data about the position of the vehicle,

the average speed on a given road (section), or patterns of traffic flow in certain periods, which are typically not available in

more developing regions. This paper presents a novel deep learning method that predicts the travel speeds for all roads in a data

scarce environment using GPS trajectory data and open-source satellite imagery. The method is capable of predicting speeds

for previously unobserved roads and incorporates specific circumstances, which are characterized by the time of the day and

the rainfall during the last hour. In collaboration with the organization PemPem, we perform a case study in which we show

that our proposed procedure predicts the average travel speed of roads in the area (that may not exist in the GPS trajectory

data) with an average RMSE of 8.5 km/h.

Keywords Traffic speed · Road attribute prediction · (Convolutional) neural network · Satellite imagery · Weather infor-

mation

1 Introduction

An accurate representation of a road network is essential when performing network analyses. As discussed in Stienen et al.

(2022), an accurate spatial representation of the road network geometry is, among other things, important to optimize the trade

of micro-enterprises (SDG 8) and determining the placement of hospitals in a region (SDG 3). However, optimizing routing

decisions in these situations necessitates knowledge of the speed one is expected to drive on a given road, which we refer to as

the travel speed. This information can significantly impact the optimal route, as certain roads may take more or less time to

traverse compared to their length (e.g., highways or rural roads). Moreover, in less developed regions, the travel speed may

be highly influenced by external factors such as the time of day or weather conditions (e.g., rainfall). While we often rely on
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information from sources like OpenStreetMap (2023) (OSM) or Google Maps, this data may not always be available, especially

not in developing regions.

We collaborate with PemPem (a marketplace for micro-enterprises in upstream commodity markets), which has to handle

inaccurate digital road networks in their operations (in remote areas in developing countries). In this paper, we enhance road

networks with information about the expected speed a vehicle can drive on each road. Usually, one may get an indication by

looking at the speed limit of a road, but, often, in developing regions, this information is not readily available. For instance, in

our region of interest (where PemPem operates), we observe that, in OSM, information about the speed limit is available for

less than 5% of the roads (which cover less than 4% of the total amount of kilometers) in our road network (without knowing

whether this speed limit is actually reliable). Moreover, especially in developing regions, the travel speed may often be affected

by external factors, such as rainfall, or whether it is dark outside when driving. Recently, PemPem equipped several trucks with

GPS trackers, in order to gain additional information about the road network. The GPS trackers generate continuous streams

of speed observations as the vehicles drive around in the designated areas.

In this paper, we aim to predict travel speeds for roads in a road network using a limited dataset of speed observations, obtained

via GPS trackers, from vehicles driving around in the area. The data may not cover all roads in the network, and our goal is

to estimate the travel speeds (of all roads) based on known characteristics, which may be shared with other roads. To enhance

our predictions, we leverage satellite imagery, weather information, and data on whether it is dark outside. Specifically, we

propose a novel deep learning approach that utilizes a data-augmented set of speed records along with weather and satellite

data to estimate the expected time a vehicle will drive on a specific road under particular conditions. We apply this method to

a case study in Indonesia, in collaboration with PemPem.

Literature survey

In recent years, many papers have been published about travel speed prediction. Similar papers have also tried to predict the

travel time of certain road (sections), which often boils down to using similar techniques. Moreover, sometimes travel speed is

also considered as an attribute, a specific characteristic, of a road. Several papers have been published about predicting such

road characteristics/attributes, most of which focus on the prediction of the road quality. In our research, we combine these

two streams of literature. Therefore, we first, briefly, discuss the existing literature on both these topics.

Travel speed (or travel time) prediction is often referred to as the usage of a learnable function that takes as input the

historical traffic data from several previous time-steps in order to predict the traffic in the future. From the perspective of

temporal analysis, a strong correlation usually exists among traffic time series, where previous traffic conditions likely have a

large impact on future traffic. Historical data often consists of information about the spatial location of vehicles annotated with

temporal information (time-stamps), and often comes from sensors or from trajectory data. In this paper, we only discuss those

that use trajectory data to predict the travel speed/time, which is the most relevant in our setting. For an extensive review on

speed prediction methods, we refer to the recently published article written by Zhou et al. (2022).

Early methods use statistical models, predicting the mean and variance of travel times based on known explanatory variables

(Jenelius and Koutsopoulos (2013)), or test whether a normal distribution is recognized in travel times of trips (Jiang and Li

(2013)). In the years thereafter, researchers started to use more sophisticated, but more complicated methods to predict travel

times, such as compressive sensing (Liu et al. (2016)), or Support Vector Machines (SVMs) (Yao et al. (2017)).
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More recently, as noted in the literature review written by Tedjopurnomo et al. (2020), deep learning methods gained popularity

in the field of travel speed prediction. The ability to model complex and deep structures in order to achieve large prediction

power resulted in deep learning being preferred over, for instance, model-based methods. One of the earliest attempts to use

deep learning methods to predict the travel speed are employing Convolutional Neural Networks (CNNs) (Zhang et al. (2016),

Yu et al. (2017), Ma et al. (2017)). Speeds are converted into a series of static images, where, for instance, the axes of the image

represent time and space. Instead of using convolutional neural networks, people also use different, (or combinations of) deep

learning models to predict the speed, such as Recurrent Neural Networks (RNNs) (Lv et al. (2018)), or Graph Neural Networks

(GNNs) (Xie et al. (2019)). Next to these studies that focus on the spatial and temporal data to predict the future speed of a

vehicle, there are also several studies that use additional features that may influence the speed. For instance, Jia et al. (2017)

try to include the effect of rainfall on speed prediction. Furthermore, Abdollahi et al. (2020) augment their available dataset

with external weather data to enhance predictions. Additionally, Huang et al. (2022) propose utilizing points of interest (POIs),

such as restaurants, to improve travel time predictions.

The main problem with previous methods is that they are designed for the short upcoming period (minutes or hours). They

make use of data about the current position of the vehicle, the average speed on a given road (section), or patterns of traffic

flow in specified periods. However, in this research we seek to predict the speed that a vehicle will drive at a specific moment in

time, which is not minutes or hours away. The prediction should be available before someone starts driving a road, in the route

planning phase. This means that any features about the current state of a vehicle, such as its current position or acceleration,

are not applicable. Moreover, when dealing with limited observations, it is essential that the model is able to accurately predict

travel speeds of roads for which no speed data are observed. For instance, by utilizing information from roads with similar

characteristics. This is also not possible when using data about the current position of a vehicle.

The stream of literature on road attribute prediction has become more popular in recent years. Popular predictions are

about the road quality (Cadamuro et al. (2018), Brewer et al. (2021)) or road features that exist in OSM, such as the number

of lanes on a road, or (a subset of) the road types1 (He et al. (2020), Iddianozie and Mcardle (2021)). Where information

about OSM features is often readily available, information about the road quality needs to be gathered from vehicles equipped

with, for instance, vibration detectors. Most of the times, high resolution satellite imagery is the main source of information

for making the prediction (Cadamuro et al. (2018), He et al. (2020), Brewer et al. (2021)).

We do note that high-resolution satellite imagery is often not (publicly) available. Moreover, when predicting road features in

OSM, we may have to deal with noise in the labels. The labels may not all be based on accurate information. For a part in

Indonesia, we see many features having either inaccurate or wrong labels. To minimize the possible effect of noisy labels, one

could use (ideally, high-resolution) satellite imagery to predict the travel speed based on the observed speed registrations.

Contributions

The first contribution of this work is that we propose a novel deep learning method that, based on data scarce GPS trajectory

information, predicts the average travel speed for every road in a road network (also the roads that are not driven by the

vehicles sending trajectory data) under specific circumstances, such as driving in darkness or with heavy rainfall in the last few

hours. This is done by exploiting i) open-source satellite imagery of roads (e.g., that may provide information about the color

1The (OSM) road type indicates the importance of the road within the road network as a whole. For more information, see
https://wiki.openstreetmap.org/wiki/Key:highway
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of the road, the width of the road, any neighbouring buildings, etc.), ii) the time of the day (e.g., whether it is dark outside),

and iii) the weather (the amount of rainfall in the last hour).

Secondly, we perform a case study in cooperation with PemPem, in which we show that we can predict the travel speed of any

given road in the area of interest, under specific circumstances, with an average Root Mean Squared Error of 8.5 km/h.

Finally, we do note that all code is publicly available at https://github.com/valentijnstienen/PredictVelocity.

2 Data preprocessing and feature augmentation

In this section, we discuss how we obtain and preprocess the data used for our travel speed prediction model. We start with

creating a dataset that contains speed observations for specific roads at specific time instants (Section 2.1). Then, we discuss

how we augment this dataset with additional information (satellite imagery (Section 2.2) and weather information (Section

2.3)), that may explain variations in travel speed.

2.1 Speed observations (from trajectory data)

We want to create a model that predicts the speed one is expected to drive on a given road at a specific moment in time.

To be able to develop an empirically grounded model, we require actual observations of travel speeds that have been driven

on various roads. For this, we use GPS trajectory data that is received from vehicles driving around in the area of interest.

These vehicles continuously generate streams of their location (latitude/longitude) while driving, with time intervals of 10, 30,

60, or more seconds. Our goal is to accurately match these GPS streams onto the corresponding roads in the road network.

This process, commonly referred to as trajectory matching, involves identifying and linking parts of GPS trajectories to specific

roads in an existing graph. In this research, we make use of the algorithm developed by Stienen et al. (2022). They propose a

method to extend a digital road network by using GPS trajectory data. They propose a projection-based incremental insertion

method that incrementally adds new information to existing road networks. In this algorithm, GPS points are sequentially

checked whether they may have been received while a vehicle was driving on a (known) road, a road that is already present

in the current digital road network. When this is the case, the point is absorbed in the current digital road network. All the

information of the absorbed GPS points is then saved in attributes of the corresponding edge. In this way, in the end, we have

for a set of roads, a list of combinations of dates and travel speeds. This dataset can then be unpacked to have an observation

(row) for a specific road on a specific day at a specific time. This dataset looks as in Table 1.

Edge Features (see Stienen et al. (2022)) Date / Time Speed

(a, b, 0) · · · 2020-08-30 23:55:26 28.0
(b, a, 0) · · · 2020-07-14 07:10:42 43.0
(b, a, 0) · · · 2020-07-14 07:11:12 46.0
(b, a, 0) · · · 2020-10-04 09:56:54 38.0
(b, a, 0) · · · 2020-10-04 14:50:12 38.0

Table 1: Dataset obtained when running the adjusted version of the algorithm developed by Stienen et al. (2022).

Note that an edge here consists of a starting node, an end node and a key (that distinguishes edges with the same start and end
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node). Additionally, some roads might provide supplementary features, like road type data from OSM. However, it is worth

noting that not all roads will have these supplementary features available.

2.2 Satellite images

The first feature that is added to the available data is a satellite image of the road. Based on this image, one may recognize

specific characteristics that may influence the speed one can drive on this road (e.g., road quality, as shown by Brewer et al.

(2021)). To obtain such an image, we use Google Earth Engine (Gorelick et al. (2017)), in particular, open source data from

the Sentinel-2A satellite (ESA (2022)), which has a resolution of 10m per pixel.

To get a representative image of a road, we propose to compute an average image of several images of the road. We do this to

avoid taking an image of the road that is not representative due to for instance occlusion (see He et al. (2020)). First, we extract

a maximum of five, evenly spread, 160m × 160m images from the road (less images if the road is not that long). Secondly,

these images are then aligned, they are rotated according to the heading of the road at the corresponding points, such that all

images have roads pointing in the same direction. Note that after rotating images, the 160× 160 image may contain unknown

pixels due to rotating the image to a certain degree. Therefore, we crop the image such that only the middle square (100m ×

100m) is retained, and the boundaries that may change due to rotating images are removed. The resolution of the Sentinel-2A

images is 10m per pixel, which means that this leads to a colored 10× 10 pixel image. Now, we can find an average image by

computing average pixel values of this square (average RGB colors). The whole procedure is visualized in Figure 1.

�

�

�

�

�

� î >

Figure 1: Illustration of obtaining a picture of a representative point of road. Left: different images of the road
are extracted from Sentinel-2A data (�). Middle: These images are rotated according the heading of the road (î).
Right: The aligned images are combined into one picture. Only the middle part is used, getting rid of missing colors
due to rotations of images (>).
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For each of the five images, we need images without any cloud obstructions, taken during the relevant time frame (when speed

observations were made). These images are extracted from larger satellite photos taken from the Sentinel-2A satellite. For a

given satellite photo (taken on a specific day), we have information available about i) the percentage of pixels that is estimated

to be covered by a cloud (referred to as the CLOUDY PIXEL PERCENTAGE), and ii) for each pixel within this photo the probability

that this pixel is covered by a cloud (referred to as the MSK CLDPR).

Since our focus is solely on the section of the photo encompassing the road, we compute the relevant cloud probability for this

part using the MSK CLDPR information. Note that we typically have many photos available as the Sentinel-2A has maximum

revisit time of ten days. Therefore, to speed up the process, we only compute this probability for satellite photos for which the

CLOUDY PIXEL PERCENTAGE (for the entire photo) is less than or equal to 50%. Then, we choose the image with the lowest cloud

probability (for our relevant region) as the most suitable representation of the road.

In addition to the road image, we augment our available data with additional information obtained from the satellite image

that has the potential to impact travel speed on the road: measurements of the mean, maximum, and minimum values of the

Short-Wave Infrared (SWIR) band. Measurements of the SWIR band are relevant in our situation, as they are sensitive to

various surface materials and their properties. For instance, the SWIR band can provide insights into the composition and

condition of the road surface, including features such as asphalt, concrete, and different levels of degradation or deterioration.

Higher SWIR values are often associated with smoother road surfaces, while lower values often indicate worse road sections.

Therefore, by integrating the SWIR measurements, derived from the satellite image, we are able to capture the influence of

road surface characteristics on travel speed. In the remainder of this research, we refer to these variables as SWIR info.

2.3 Weather

The second feature that is added to the available data is information about the weather at the time of receiving a GPS point.

Note that especially information about (current) rainfall may have a significant impact on the speed one may drive at a given

moment in time (e.g., see Jia et al. (2017)).

The weather information we use is obtained using APIs of OpenWeather (2022). The features obtained include, among other

things, information about current wind speed/gust, and information about the current rainfall (of the last hour). In this

research, we only exploit the information about the amount of rainfall in the last hour.

2.4 Final dataset

After augmenting the data obtained from the GPS trajectories with the satellite images, the SWIR info, and with the weather

information, we obtain our (final) dataset that looks as in Table 2.

Here, the location of an edge is assumed to be the centroid (the center point) of that edge. Note that not all information may

be available for each road. For instance, the road type is unknown for many roads (e.g., newly added roads), but also, we did

not observe a travel speed on every road under every possible weather condition. Using this dataset, we thus want to predict

the travel speed of a given road (edge), at a given moment in time. In the next section, we will discuss the concept moment in

time in more detail. This concept encompasses several factors, such as information about the road itself (satellite image), the

time of day, or the amount of rainfall in the last hour,
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Edge Location Road type Hour Rain (1h) Image (100m × 100m) SWIR info Speed

(a, b, 0) (102.41, -0.55) trunk 11 0.8 mm [[[122, 114, 91], [139, · · · · · · 28.0
(a, b, 1) (102.41, -0.55) trunk 3 1.8 mm [[[122, 114, 91], [139, · · · · · · 43.0
(b, a, 0) (102.41, -0.55) trunk 5 1.6 mm [[[122, 114, 91], [139, · · · · · · 46.0
(b, a, 0) (102.41, -0.55) trunk 7 0 mm [[[122, 114, 91], [139, · · · · · · 38.0
(b, a, 0) (102.41, -0.55) trunk 14 2.3 mm [[[122, 114, 91], [139, · · · · · · 38.0

Table 2: Final dataset including all information that can be used.

3 Mathematical approach

In this section, we describe our mathematical approach and our proposed algorithm. We start with a discussion of the

assumptions we make (Section 3.1). Then, in Section 3.2, we describe the deep learning method that is used to predict

the travel speed on a road at a specific moment in time.

3.1 Assumptions

The first two assumptions we have are regarding the predictions for given roads:

A.1 A road is defined as the segment that lies between two intersections. Moreover, the speed one can drive on a particular

road is the same over that whole road.

A.2 The characteristics that determine the travel speed of unobserved roads are similar to those that are observed in the

dataset.

Note that A.2 indicates that a model is able to predict the travel speed for roads that are not driven by the vehicles that created

the (trajectory) data. This assumption also introduces our goal to only use universally available road information, such as the

location or satellite data of the road. We, on purpose, do not utilize information that is not consistently available for all roads

(e.g., road type data). In this way, we ensure a robust and widely applicable approach, allowing the model to make predictions

for an entire road network.

Next, we make assumptions about the circumstances we use when predicting the speed on a given road. As an example, a

circumstance could be: Driving on Road X, at 11pm, where 3mm of rainfall has been experienced over the last hour. Obviously,

this is very specific (e.g., 11pm and 3mm of rainfall). If we use such a detailed classification for these features, we do not have

many observations per road per circumstance (we do have, however, a lot of circumstances...). This reduces the reliability of,

for instance, the average speed that is driven on a road during specific circumstances.

To increase the number of observations per circumstance, we propose to cluster circumstances. As an example, whether a road

experienced 3mm or 3.1mm of rainfall in the last hour will most likely not affect the average travel speed of this road. Also,

whether it is 2pm or 4pm, this will not affect the travel speed much. Therefore, we make the following assumptions in order to

increase the amount of observations per road per circumstance:

A.3 As temporal features we use whether it is dark outside or not. In other words, it does not matter if you drive on Monday

or Saturday, and it does not matter whether you drive in the morning or in the afternoon, as long as there is enough

daylight. Note that typically in the developing regions we consider, traffic jams are not very common during, for instance,

rush hours on weekdays.
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A.4 As weather features, we will use the amount of rain that fell in the last hour. We distinguish three categories of rainfall:

no/light, moderate and heavy rainfall, which we will refer to as rainfall category 0, 1, or 2, respectively. Since our case

study is done in collaboration with PemPem, in an area in Indonesia, the corresponding cumulative amount of rainfall

(i.e., the rainfall classification) is based on information from BMKG (2022), an Indonesian non-departmental government

agency for meteorology, climatology, and geophysics. A summary of the rainfall classification is shown in Table 3.

Cat. mm/1h

No/Light rain 0 < 0.8
Moderate rain 1 0.8− 2.1
Heavy rain 2 > 2.1

Table 3: Rainfall intensity classification, based on information of BMKG (2022).

Using Assumption A.3 and A.4, we get more observations that we can use for training our model, and therefore travel speeds

can be predicted more reliably. In our case, there are 28, 784 roads in our region of interest. For around 28% (8, 079 roads)

of the roads a vehicle has driven at least once (in our dataset), which indicates that there are many roads that are not even

driven once for which we also want to know the speed one can drive under specific circumstances. Each road has 3× 2 possible

circumstances, which means that there are 28, 784 × 3 × 2 = 172, 704 travel speeds that we want to predict for these roads.

Based on the data, we have at least one observation for 17, 493/172, 704 = 10% of these travel speeds. However, to make sure

that we are not including information from outliers, we choose to only use the information that is based on at least 5 speed

observations. So, if there is a single observation for a road in one specific circumstance, we do not include this information in

our analyses. Consequently, merely 4% (6, 961 out of 172, 704) of the travel speeds intended for prediction have a minimum

of 5 observations. In other words, there are many edges that are not driven under specific circumstances. Note that having a

higher number of rain intensity classes, or temporal features, lowers this percentage significantly.

Regarding the observations, it is worth mentioning that current driving behavior (personal, or moment-specific) may cause

differences in the observations of speed during certain circumstances. There may occur different speed observations during

similar circumstances. In this research, we therefore focus on predicting the average speed one can drive on a road under

specific circumstances. To calculate the average speed for a specific road based on the observed speed registrations, a few

preprocessing steps are therefore necessary. It is important to note that for each road-circumstance combination we may have

multiple speed registrations available, which could have been obtained from different GPS trajectories. An example is given in

Figure 2. In this figure, we observe nine speed registrations. However, these speed registrations are obtained over two trips,

with 30 seconds in-between two consecutive GPS points. Since the second trip (right) has a higher average speed, there are

less GPS points received (the vehicle traversed this road in less time). The average speed one can drive on this road, under the

given circumstances, will therefore be the average of the average speeds of the two different trips. In this way, both trips are

weighed equally.

In short, taking all assumptions into account, we use the following columns of the augmented dataset we created in Sec-

tion 2: the image, the location (lat/lon), the amount of rainfall in the last hour (Rainfall 1h (cat)), whether it is dark outside

or not (Dark), and the SWIR information. These columns are tabulated in Table 4. In this table, there is one row for a specific

road-circumstance combination. The speed column now represents the average speed one can drive on this road under the
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Speed

Time

30s

Figure 2: Illustration of the average speed computation on a road. In this figure, we observe two GPS trajectory
trips, where the first trip has 5 GPS points (received when driving with low speed) and the right trajectory has only
4 GPS points (received when driving with higher speed).

corresponding circumstances (travel speed).

Image (100m × 100m) Location Rainfall 1h (cat) Dark SWIR info Speed (km/h)

[[[122, 114, 91], [139, 131, ... (102.41 -0.54) 1 Dark · · · 33
[[[122, 114, 91], [139, 131, ... (102.30 -0.55) 0 Light · · · 42
[[[112, 112, 95], [139, 131, ... (101.89 -0.56) 1 Light · · · 46

Table 4: Final dataset used (after incorporating all assumptions).

3.2 Deep learning structure

Next, we discuss the model that we will use to predict the travel speed. We exploit the use of a deep learning structure. There

are two types of data that we use: tabular data (location, the amount of rainfall, whether or not it is dark, and the SWIR

info), and image data (satellite image of the road). We first extract the features of the image (e.g., color, width, surrounding

buildings, etc.) using a convolutional neural network (CNN). Then, these features are concatenated with the tabular features.

After this concatenation, we add hidden layers before obtaining the final output layer (which is just one neuron), representing

the predicted travel speed. This last part of the network is referred to as the Merged Part (MP). A visualization of the complete

model is shown in Figure 3.

Next, we discuss the CNN and Merged Part (MP) of the structure in more detail.

CNN part

For the CNN, we make use of CNN architectures that have shown to perform well in the literature. First of all, we note that

the images we use are 10 × 10 × 3, where the 3 stands for the different RGB channels of the image. Since we exploit such

small, low resolution, images, large and very deep architectures are less appropriate. We base our structure on two well known

architectures that have shown their exceptional performance in the field early on: AlexNet (Krizhevsky et al. (2012)), the

winner of the ImageNet image classification competition in 2010, and VGGNet (Simonyan and Zisserman (2014)), which also

achieved remarkable results on the ImageNet dataset. Examining Alexnet and VGGNet, we observe that these networks take
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Location Rainfall (1h) Dark SWIR info

(102.41 -0.55) Cat. 2 True · · ·

10× 10× 3 10× 10× 32 10× 10× 64 10× 10× 64 5× 5× 64

...
...

...

...

...

MP

CNN

Figure 3: Deep learning framework. Images are first processed through a convolutional neural network to extract
key features in an image (CNN part). These features are then combined (concatenated) with the features that are
represented in the tabular data (rainfall, location, darkness, SWIR info) and processed through a fully connected
neural network (Merged Part, MP).

224 × 224 × 3 images as input. Therefore, we only look at the tail structures of these architectures; when the data has similar

dimensions as our input image (10 × 10 × 3). For both networks, we see that, at the end, they use three convolutional layers

(kernel size 3× 3) followed by a single max pooling layer, that halfs the size of the data, and two fully connected (FC) layers.

We use a similar structure for the CNN part of our model. Next, we discuss the parameters in our proposed CNN part in more

detail.

First, we look at the convolutional layers that convolve the images. For both Alexnet and VGGNet, we note that, many filters

are used in the tail of the network. In their situation, this is the tail of the network (they start with larger images), where

for us it is the whole network. Using such a large number of filters increases the amount of parameters that needs to be

learned significantly. Therefore, these known structures may contain too much filters/neurons to obtain good estimates of the

speed. We decide to start with 32 filters in the first convolutional layer and increase this amount to 64 in the second and third

convolutional layer.

Secondly, we discuss the amount of neurons in the two hidden layers in the FC part of the CNN. Both Alexnet and VGGNet

end up with a (flattened) layer of a certain amount of neurons. Then, VGGNet use 1
5

of the amount, and Alexnet use 1
2

of

the amount of neurons. In this research we consider these two possibilities and one possibility in-between as possible amount

of neurons in the hidden layers, i.e., fractions of 1
5

, 7
20

and 1
2

. After the two hidden layers, we end the CNN part with an

output layer. In a way, we see the number of neurons in this output layer as the amount of information that is retrieved from

the satellite image (regarding travel speed prediction). Examples could be, the color of roads, the shape of roads, or nearby

buildings. We use an output layer of a similar amount of neurons as the amount of input neurons that correspond to the tabular

data. We do this to ensure that, at the start of training, equal importance is given to both input sources of the merged part.

Finally, the goal of our paper is not to classify images, which is the goal of Alexnet and VGGNet. Instead, we want to extract

features that can be used in another part of our model. Therefore, we do not use a Softmax activation layer at the end, but a

ReLU (rectified linear unit) activation function to activate neurons. Note that by using ReLU, we increase the non-linearity of

the network without affecting the receptive fields of convolution layers. The structure for our CNN is tabulated in Table 5.
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Layer # Filters Size Kernel size Stride Activation

Input Image - 10× 10× 3

1 Convolution 32 10× 10× 32 3× 3 1 ReLU

2 Convolution 64 10× 10× 64 3× 3 1 ReLU

3 Convolution 64 10× 10× 64 3× 3 1 ReLU

4 Max Pooling 64 5× 5× 64 3× 3 2 ReLU

5 Flatten - 1, 600 - - ReLU

6 FC - 1, 600·{ 15 , 7
20 , 1

2} - - ReLU

7 FC - 1, 600·{ 15 , 7
20 , 1

2} - - ReLU

Output FC - 8 - - ReLU

Table 5: Tabular form of the CNN structure that is used to process the 10× 10× 3 satellite images of the roads.

Merged part (MP)

Next to this CNN part where we examine the satellite image of the road, we also have the tabular data we want to include

(location (lat/lon), rainfall, darkness, SWIR info). We want to combine this information with the information that resulted

from the CNN. Therefore, we concatenate the output layer of the CNN with eight new neurons that represent this tabular

information (note that the location will use two neurons, one for latitude and one for longitude). Now, we have 16 entries

that we can use in a regular feed-forward neural network to predict the average travel speed (one output neuron). We use one

hidden layer in-between to capture any nonlinearities in the prediction model. In this layer, we start with an input layer that

consists of 16 neurons. There is an output layer of a single neuron, which represents the travel speed of the road under specified

circumstances. Therefore, in the hidden layer we need to find a way to convert the input layer information to a prediction for

the speed. For this, we examine different structures, from a very tight to a very wide structure. Specifically, we examine sizes

(amount of neurons) that are powers of 2: from 2i for i ∈ {6, 8, 10, 12}.

As in the CNN part, in all the layers in this Merged Part, we use ReLU activation functions to activate neurons.

Remaining settings

We conclude this section by discussing all (additional) choices regarding the architecture of the proposed deep learning structure.

First, in order to prevent overfitting, and increase the chances of learning general features, we use dropout (Srivastava et al.

(2014)) in all the layers in the network. Dropout ignores a portion of the neurons during each training batch update. Each

training batch will use a different combination of neurons that they can use. In this way, neurons are more likely to work

together to generalize to unseen data. During prediction, all units are used. This becomes essentially an ensemble of all the

different combinations of units that were used. Note that one may also consider reducing the amount of filters/neurons in

the layers. However, this approach will only learn what those fewer units can be optimized for, which would deteriorate the

performance of the prediction model. Considering our deep learning structure, there are two types of layers for which we can

apply a dropout layer; convolutional and fully connected layers. Convolutional layers typically have a lower drop-out rate, as

there are less parameters to tune (and therefore less risk for overfitting). In our case, we examine the values 0 and 0.25. For the

fully connected hidden layers, we typically have more neurons/parameters to fit, which makes this more prone to overfitting.

The highest number of neurons in a hidden layer is in the CNN part. Therefore, we also use a higher dropout rate in this part;
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0.5 or 0.75. In the hidden layer of the merged part of the network, we have a large range of possible values (very wide to very

tight). Therefore, we examine dropout rates of 0.25, 0.5 and 0.75. Finally, note that we will not apply dropout to the input

layer of the merged part. All these eight neurons should play a role in determining the traffic speed. Missing one (or more)

neurons could deteriorate the performance significantly.

The second choice we make is to use the Adam algorithm (Kingma and Ba (2014)) to optimize the weights and biases of the deep

learning structure. For this algorithm, we use the default settings recommended by Kingma and Ba (2014), with the exception

of the learning rate. Choosing the learning rate is crucial, as setting it too small may lead to very slow convergence, while

setting it too large may cause the algorithm to overshoot the optimal value, which may prevent the algorithm from converging.

We consider three different values: the default value of 0.001, along with alternative values of 0.002 and 0.003.

Finally, there are two parameters that define how long training takes: the amount of epochs and the batch size. The amount of

epochs is the amount of times the observations in the (training) dataset are used to improve the prediction model. The batch

size refers to the amount of times the training dataset is split in sub-datasets, which are subsequently all used to improve the

model. So, the more batches, the more opportunities the model has to improve, but also the less accurate possible improvements

could be (e.g., tuning the model based on a single observation). Regarding the amount of epochs, we overestimate this number

at 50 and let the model stop early when the performance is not improved over the last 5 epochs. In this way, we also prevent

the model from over-fitting the training data. The best model is then the latest model that improved the performance on the

validation dataset.

Regarding the batch size, we want a batch size that is representable for the whole dataset, so not too large and not too

small. Moreover, we would like to use batch sizes that exhaust the training dataset (we want to use all training samples in one

epoch). This means that we can approximate the batch sizes with numbers that are equal to 2x for x ∈ {0, 1, 2, ..., 14}. Out of

this set, we choose to examine values for x between 7 and 10.

Note that for several parameters we proposed possible values, instead of a single number. These parameters are called the

hyperparameters that still need to be set before solving the model. We will perform a grid search on these combinations of

parameters. In other words, we test combinations and choose the one that performs best on the validation dataset. A summary

of the hyperparameters that are examined, along with their possible values is shown in Table 6.

These possibilities result in 1,728 different settings that we examine for a given set of features (e.g., using the rainfall in the

last hour).

4 Numerical results and conclusions

This section presents a case study conducted in collaboration with PemPem. We start by describing the data and any prepro-

cessing steps performed (Section 4.1). In Section 4.2, we discuss the proposed (best) model in more detail. Then, in Section 4.3,

we evaluate the proposed model on unknown test data to examine its performance. In Section 4.4, we analyze predictions that

are made with the proposed model. Finally, in Section 4.5, we perform several ablation analyses, investigating the usefulness

of various information sources in this case study.
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Possibilities

CNN Part (CNN)

Dropout % per convolutional layer [0, 0.25]

# neurons hidden layers x · 1, 600 for x ∈ { 15 ,
7
20 ,

1
2}

= [320, 560, 800]

Dropout % hidden layers [0.5, 0.75]

Merged Part (MP)

# neurons hidden layer 2x for x ∈ {6, 8, 10, 12}

Dropout % hidden layer [0.25, 0.5, 0.75]

Learning rate [0.001, 0.002, 0.003]

Batch size 2x for x ∈ {7, 8, ..., 10}

Table 6: Hyperparameters of the proposed structure.

4.1 Data and preparation

The goal of PemPem is to make Enterprise Resource Planning (ERP) systems available to help smallholder farmers transition

out of an informal cash-based economy, into a digital, cashless and technology-based economy (PemPem (2023)). This case

study involves enhancing the travel speed information in existing road networks, which can be used for routing decisions. In

this study, we focus on a region in Sumatra (Indonesia) where PemPem is currently active. In this region, PemPem has access

to the information in OSM, but this information turns out to be incomplete. Recall that the information about the speed

limit is available for less than 5% of the roads (which cover less than 4% of the total amount of kilometers) in the relevant

road network. Recently, they equipped trucks with GPS trackers, generating streams of GPS traces of where a truck has been

driving, at what time, and with what speed. The frequency rate of the trackers varies, most of the time, between 10, 30 and 60

seconds. We want to extend the current road network information (the information in OSM) with the information in the GPS

trajectories. In Stienen et al. (2022), the geometries of the network are extended. In this paper, we include information about

the travel speed of roads under different circumstances.

The GPS trajectory information that is available is received between January, 2020, and June, 2021. As discussed in Section

2, we process these GPS trajectories through the algorithm developed by Stienen et al. (2022). After preprocessing the output

of the algorithm, we end up with 184,160 speed registrations, which cover 17,493 different roads in the area. This data is

subsequently augmented with information about the weather and satellite imagery (see Section 2). For the weather, we use

information from OpenWeather (OpenWeather (2022)). We specify the center point of our region of interest and retrieve the

hourly weather that includes the rainfall in the last hour. This information is then combined with the speed registration data.

For the satellite imagery, we utilize Sentinel-2A data obtained through Google Earth Engine (Gorelick et al. (2017)). More

specifically, we use pictures of the road that are taken between January, 2020, and June, 2021.

To recommend a model based on various performance evaluations, we first divide the augmented dataset in a training, val-

idation, and test (data)sets. The training set is utilized to train the model (the deep learning network), this information is
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made available for optimization. The validation set is used for comparing hyperparameter configurations. Once a model is

created using the training data, its performance is evaluated on the validation set. Finally, the model that performs best on

the validation set is selected, and its performance is assessed on the test set. So, to evaluate the performance of the proposed

procedure, we exclusively rely on the test set, which is never utilized before the prediction phase.

The aim is to develop a model that also performs well on travel speed prediction tasks on roads that did not occur in the

GPS trajectory dataset. We refer to these roads as unknown roads. As an example, if we know the travel speed of a given road

during heavy rainfall, we may be able to predict the (unknown) travel speed of this same road during moderate rainfall in a

better way than predicting the travel speed on a road that does not exist in the GPS trajectory data (unknown road). Therefore,

to create the test set, we take 10% of the roads in the data set that we consider as unknown roads. Note that for a single road,

multiple circumstances may have been observed. This means that this part of the test set contains more than 10% of all data

points. Additionally, of the remaining data points, we take a random 10% of the observations that is used to determine the

performance of the model on known roads, but under different (unknown) circumstances. The remaining (±80%) data points

are used for the training and validation dataset. We choose to use 80% of this remaining data as our training data and 20% of

as our validation data. In this case, we do not ensure that the validation set contains a large variety of different roads, as these

are not used for performance evaluation (they are only used to differentiate between hyperparameter configurations). To ensure

fair performance evaluation of our model, we intentionally select only unknown roads for the validation set. This approach

prevents our model from memorizing features of known roads and focuses on predicting travel speeds for unknown roads (which

is a more difficult task).

To evaluate the results, we use two metrics: the Root Mean Squared Error (RMSE) and the Mean Absolute Error (MAE).

The RMSE is computed by taking the square root of the mean of the squared differences between observed values (σi) and

corresponding predicted values (σ̂i) for each prediction i = 1, ..., n. MAE, on the other hand, is calculated by taking the mean

of the absolute differences between observed and predicted values. The mathematical expressions of these metrics are given

below:

RMSE =

√√√√ 1

n

n∑
i=1

(σi − σ̂i)2, MAE =
1

n

n∑
i=1

|σi − σ̂i|.

Both metrics quantify the average difference between predicted and observed values. The RMSE, however, incorporates a higher

penalty for outliers due to squaring the differences. On the contrary, the MAE treats all errors equally, without emphasizing

outliers.

During the optimization of the weights and biases of our deep learning structure, we utilize the RMSE as our performance

metric. Consequently, we adjust our early stopping criteria, such that early stopping is only applied if our current solution is

performing better than the solution that always predicts the mean of all validation samples. Let yi represent the individual

samples in the validation set. Predicting the mean value, denoted as µ, yields the following RMSE:

RMSE(µ) =

√√√√ 1

n

n∑
i=1

(yi − µ)2, where µ =
1

n

n∑
i=1

yi.

Note that this RMSE value is equivalent to the standard deviation of the values yi for i = 1, ..., n in the validation set. Therefore,

early stopping is only triggered if the validation RMSE is smaller than the standard deviation of the yi values.
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4.2 Obtaining the best model configuration

Next, we discuss the results of the grid search process. As mentioned above there exist several (hyper)parameters that can

be fine-tuned to optimize performance. To identify the best configuration, we perform a grid search in which we use a val-

idation set to compare configurations. Moreover, we use three different seeds, where each seed corresponds to a different

training/validation/test set. Based on the average performance over the different seeds, we compare the model configurations.

We use an RTX 4090 GPU to conduct our experiments. The best model configurations are shown in Table 7.

Possibilities Choice (#1 (#2))

CNN Part (CNN)

Dropout % per convolutional layer [0, 0.25] 0.25 (0.25)

# neurons hidden layers [320, 560, 800] 320 (560)

Dropout % hidden layers [0.5, 0.75] 0.5 (0.5)

Merged Part (MP)

# neurons hidden layer 2x for x ∈ {6, 8, 10, 12} 212 (212)

Dropout % hidden layer [0.25, 0.5, 0.75] 0.5 (0.25)

Learning rate [0.001, 0.002, 0.003] 0.001 (0.003)

Batch size 2x for x ∈ {7, ..., 10} 27 (28)

Average MSE (validation sets) 72.8 (73.9)

Table 7: Hyperparameters of the proposed structure with the optimal choice of each of the hyperparameters in the
columns on the right. Between parentheses, we show the second best performing model configuration.

We first observe that the second best model configuration (between parentheses) is very similar to the best model configuration.

This, in turn, also holds for the third best, fourth best, etc. models. The model configuration is therefore considered to be

robust in its parameter choices. In the rest of this section, we show results for the model that resulted in the lowest average

MSE. Similar results are obtained for the other models, which can be run using the code on Github.

So, the Choice (#1) model is the model architecture that we propose to use for predicting the travel speed on different roads

under different circumstances. In the rest of this section, we perform additional analyses using this model. For the sake of

reproducibility and to facilitate the creation of visualizations, we rerun the model on a local CPU. Subsequently, all analyses

are carried out using this model. It is important to note that slight variations in results might occur between the GPUs and

the CPU due to differences in hardware and sources of randomness. As a result, a model could be optimal on the GPU but not

on the CPU and vice versa. However, the differences are expected to be small.

We start with examining the learning curves of the proposed model, which are shown in Figure 4. Note that these curves

are represented as bands, as we have three different validation sets (three different seeds) that all have corresponding learning

curves. The bands are the convex hulls of the three different curves. The corresponding final training and validation losses

(MSE’s) are shown in Table 8. For clarity, we also show the Root Mean Squared Error (RMSE).
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Figure 4: Learning bands for the best model
using three different seeds.

Training loss Validation loss
MSE RMSE MSE RMSE

Seed 0 80.3 9.0 77.0 8.8

Seed 1 58.7 7.7 62.5 7.9

Seed 2 64.8 8.1 69.9 8.4

Average 68.0 8.2 69.8 8.4

Table 8: Final training and validation losses for the best
model using the three different seeds.

Based on Figure 4 and Table 8, we conclude that the model does not overfit the data. The validation loss is approximately

similar to the training loss, and we do not see a divergence between the two learning curves.

To get a better insight in the proposed (best) model, we analyze the model a little further. We choose to do the analyses using

the model obtained with Seed 1, as this model resulted in the lowest validation loss.

We start with visualizing the optimized weights of the filters of the CNN part of our network. Note that we have three convolu-

tional layers, which means that we have three sets of optimized filters with sizes 32, 64 and 64 respectively. For each filter, we

create images that maximize the activation of this filter. This image could therefore be seen as a visualization of the pattern to

which that particular filter responds to. In Figure 5, we show for each convolutional layer (a part of) the images that maximize

the activation of the filters.

(a) Layer 1: 25 out of 32 filters. (b) Layer 2: 64 out of 64 filters. (c) Layer 3: 64 out of 64 filters.

Figure 5: Images of the filters.

We observe that in the first layer, the network seems to extract colors and some textures from the image. In the second and

third layer, the network searches for more complex patterns in the images. Also, we see that there are still some noise filters

(squares with seemingly random color dots) present in the second and third layer. This might indicate that we could reduce
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the amount of filters used.

Secondly, we look at images of roads that are convolved through the CNN part of our network. We look at how the image is

constructed out of the optimized filters. We expect that in the first layer of filters, we can recognize the most elements of a

road. The model extracts the features into more general concepts when getting deeper into the network. Therefore, the images

may become more and more abstract. For a specific road, we show a selection of convolved images in Figure 6.

(a) Layer 1: 25 out of
32 filters

(b) Layer 2: 64 out of 64 fil-
ters

(c) Layer 3: 64 out of 64 fil-
ters

Figure 6: Convolved figures for an example road.

We indeed observe that in the first figure some bright parts of the image of the road can be recognized. Note that for this we

only look at the filters that contain many bright part. The other filters are apparently not active for this specific image of a

road. In the second and third layer, we may recognize some parts of edges, which seem to represent more general concepts.

We also see pictures in which we may not immediately recognize any features, which are therefore also more likely to represent

more general and abstract concepts.

4.3 Evaluating the proposed model on test data

In this section, we examine the performance of the proposed model on the test data. For this, we use the two types of test data

we mentioned before. First, the test data that consists of roads that are, in different circumstances, present in the training

set (known roads), and secondly, the test data that consists of roads that are not seen during training or validation (unknown

roads). The results of the analyses are tabulated in Table 9.

We observe that the performance of the model on known roads is slightly better than the performance on the unknown roads

in the test data. This makes sense, as if we know how one drives on a specific road under specific circumstances, we may

be able to better guess the speed one may drive on this same road under different circumstances. However, the performance

gap between known and unknown roads seems relatively small. This suggests that the model did not overfit the training and

validation data, and is able to predict unknown roads efficiently compared to known roads.

Next, we look at where the model makes wrong predictions (without distinguishing between predicting known and unknown

roads). We look at the distribution of speeds that are predicted and observed. Again, we specifically do this for the model with

seed 1. The result is shown in Figure 7.
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Known roads Unknown roads
Test data MSE RMSE MAE MSE RMSE MAE

Seed 0 84.6 9.2 7.4 83.9 9.2 7.2

Seed 1 56.1 7.5 5.8 66.0 8.1 6.3

Seed 2 63.8 8.0 6.4 75.8 8.7 7.1

Average 68.2 8.2 6.5 75.3 8.7 6.9

Table 9: Average travel speed prediction results (based on 3 different test sets, 3 seeds) on the test dataset, containing
known and unknown roads.
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Figure 7: Frequency plot of the observed (blue) and the predicted (orange) travel speeds.

We observe that slightly less predictions are made about speeds in the right tail of the speed distribution. The predictions

seem more conservative and more towards an average travel speed, instead of outlying predictions, which is, in practice, a good

solution.

4.4 Evaluating predictions made with the proposed model

Next, we use the proposed model to make a prediction for the roads in the relevant road network. In this section, we discuss

these predictions made with the proposed model. One of the key features of our approach is that we can predict the speed one

can drive on every road in the area, including those that are not in the dataset used. All information, the location, the satellite

image, the rainfall in the last hour, and whether it is dark, is available. In this section we analyze the predictions for every road

in the area in which PemPem operates (the region within Sumatra, Indonesia) and discuss the results.

First, we examine the variation in predicted speed between circumstances for different roads. This gives us insight in whether

there is a large difference to be expected when driving in different circumstances. Moreover, it gives us the opportunity to assess

the necessity and impact of including all the information currently utilized in our predictions. Note that, due to the limited

amount of data, we are not able to analyze the variation between different circumstances for the observed speed. Insufficient
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speed observations are available for most of the road-circumstance combinations. In Figure 8, we plot the maximum percentage

differences in predicted speed for every road under all different circumstances. Specifically, we have focused on displaying only

the cases where the difference exceeds 0%.
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Figure 8: Frequency plot of the maximum percentage differences between different driving circumstances.

We observe that most of the maximum percentage differences are between the 10 and 35%. There are some roads for which the

maximum percentage difference increases to between 40 and 50%. These are often roads with already a smaller travel speed. It

is worth mentioning that the maximum absolute difference we found was slightly below 10 km/h, which indicates a relatively

small variation in speed between different circumstances within the dataset for this case study. In Section 4.5, we investigate

this observation in more detail.

Next, we look a little deeper in the roads that have a high variation in the predicted speed between circumstances. We divide

the roads in three categories: roads with a low, moderate, or high variation in speed between circumstances. The roads with a

high variation are therefore the roads that are expected to be more vulnerable to changes in the circumstances. The variation

will be measured by the standard deviation of the predicted speed of a road over the six different circumstances. In Figure 9,

we show a heatmap of the average speed prediction under different circumstances, divided over the three categories of variation.

Figure 9: Average speed predictions across circumstances, categorized by variation (standard deviation, std) in road
speeds (left: low variation (std < 1.5), middle: moderate variation (std ∈[1.5,2.5]), right: (std > 2.5)). Vertical axes:
whether it is dark or not; Horizontal axis: previous rainfall in the last hour.

We observe that for the heatmap on the left, the predicted speeds are very close to each other. Although it seems that the
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speed prediction for when it is dark is larger than the speed prediction during the day, this effect is negligible. For the two plots

on the right, the heatmaps that corresponds to the roads with the higher variations, we do see a similar, more significant, effect

that indicates that driving after heavy rain, and driving in darkness, have a negative effect on the predicted speed. The speed is

predicted to be lowest when both of these phenomena occur, i.e., driving in darkness after heavy rain. Still for these right plots,

the speeds are not very far apart, which again indicates a relatively small variation in speed between different circumstances

within the dataset for this case study.

Thirdly, we conduct an analysis on the variations in travel time between actual origin-destination pairs (OD pairs) based

on different circumstances (whether it is daytime and how much rain has fallen in the past hour). To perform this analysis,

we utilize the dataset of 14,846 OD pairs from GPS trajectories, as mentioned and used in Stienen et al. (2022). We choose

to only consider the routes that have a shortest distance of at least 2.5 kilometers. In total, this means that we consider 8,405

different OD pairs. For each circumstance, we calculate the optimal travel time for these OD pairs by considering the individual

travel times of each road in the specific circumstance. Subsequently, we compare these times with the travel time required to

drive the route that is optimized based on distance alone. Note that this is currently the conventional method for determining

an optimal route. The resulting differences between these times, in percentages, observed across all OD pairs, are presented

in Figure 10. In our analysis, we consider only those routes that have a strictly positive difference in at least one of the six

circumstances (2,495 OD pairs).

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200 2,400 2,600
0

20

40

60

OD pairs

A
v
er

a
g
e

d
ec

re
a
se

in
tr

a
v
el

ti
m

e
(%

)

No/light rain, dark

No/light rain, light

Moderate rain, dark

Moderate rain, light

Heavy rain, dark

Heavy rain, light

Figure 10: Comparison of travel time differences for various origin-destination (OD) pairs.

For the considered routes, we observe an average decrease of 12.3% in travel time when using the route based on travel time

optimization instead of using the route based on distance optimization. Moreover, we observe that, for the considered routes,

over 23.8% of the OD pairs, an average travel time decrease of at least 20% can be expected when using the route that is

optimized based on travel time.

Moreover, the circumstances with the lowest travel time per road (e.g., when there is no/light rain in the last hour) seem to

experience a higher percentage decrease in travel time. We see a similar effect when we look at the absolute differences. First,

this indicates that the travel time of the route that is optimized based on distance is closest to the travel time that is obtained
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when optimizing the travel time in a situation with higher travel times per road (e.g., when there is heavy rain in the last

hour). Second, this also suggests that there are roads that can be traversed relatively quick under these favorable conditions,

changing the usual travel times one would expect based on their length.

We do note, however, that the differences between the circumstances are again small, and that this also confirms what we saw

in the previous figures, that there is only little difference between the different circumstances. In the next section, we will do

an ablation analysis in order to examine the influence and impact of the different sources of information.

Finally, we also look at the average predicted speed, and see if we can observe a relation between this predicted speed and a

map of the region. In Figure 11, we show for each road whether the predicted average speed is below 15 km/h (red edges),

between 15 and 30 km/h (orange edges), and above 30 km/h (green edges).

Figure 11: Speed predictions for the entire road network. red: Speed prediction < 15 km/h, orange: 15 km/h <
Speed prediction < 30 km/h, green: Speed prediction > 30 km/h.

We observe that the green edges form indeed the core road network of the area. Then there are many orange edges, and a few

clusters of red edges. Comparing these edges with the results presented in Stienen et al. (2022), we observe that edges that

were not present in OSM before tend to be red. This makes sense, as these used to be unknown and are therefore expected to

be of less quality. These observations are therefore in line with our expectations.
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4.5 Ablation analyses

We conclude this section with several ablation analyses. As observed in the previous subsections, the inclusion of information

regarding previous rainfall and darkness may have a negligible effect on the predictions. It seems that, in the dataset we use,

there is not enough variation present between different circumstances to exploit the full potential of the proposed model. To

further investigate this, we assess the impact of all the information used in making the predictions. First, we examine the

effect of the satellite image of the road. Then, we determine whether including information about the location, the rainfall, the

darkness, and the satellite information (SWIR information) play an important role in the predictive performance.

We start with the effect that the images of the roads have on the prediction accuracy. Note that choosing to use the same proce-

dure as before, but using blank images, may result in overfitting the data, since we designed the network for the model including

information about the images. Therefore, as a baseline model, we fit a linear model on the tabular data that is not obtained

from the satellite image. Recall that this tabular data consists of the location (lat/lng), the amount of rainfall in the last hour,

and whether or not it is dark outside. We refer to this set of features as the Info set. Additionally, we also examine whether

the linear model performs any better when including the tabular information of the satellite image (minimum/maximum/mean

SWIR). To increase possible performance, we also choose to add the average color of the image as tabular data of the satellite

image. We refer to this set of features as the Sat set. In Table 10, we show the results obtained when combining these different

sets in a linear model.

Training loss Test loss
Known roads Unknown roads

MSE RMSE MSE RMSE MSE RMSE

Original model 68.0 8.2 68.2 8.2 75.3 8.7

Info 126.0 11.2 131.4 11.5 129.3 11.4

Sat 117.5 10.8 120.8 11.0 124.0 11.1

Info + Sat 113.6 10.7 118.0 10.9 118.3 10.9

Table 10: Training and test losses when using a linear model to predict the average travel speed. The features of
the linear model are the location, the rainfall in the last hour, and whether it is dark or not (Info), and the SWIR
measurements and the average color (Sat).

We observe that without the satellite images, we perform significantly worse. Even if we include all the possible features, we

only achieve an MSE of 118.0 for known and 118.3 for unknown roads in the test set. This means that the original model in-

deed uses information in the image that is not only color. This may be the width or the amount of buildings in the neighborhood.

Next, we examine the effect of the other information sources, while we keep using the satellite image of the road. We dis-

tinguish six different scenarios, which are characterized by including/excluding specific parts of the available information. The

different scenarios are shown in Table 11.

For each of these scenarios, we determine the optimal weights and biases using the previously obtained optimal architecture

from the grid search, which was based on using all available information. Subsequently, we evaluate the performance using the

test set.
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Symbol Description

A Do not include the location info

B Do not include the rain feature

C Do not include the dark feature

D Do not include the dark and rain feature

E Only include satellite image and info

F Only include satellite image

Table 11: Scenarios and descriptions of different information sources used for predicting.

Additionally, we re-do the same grid search procedure for each scenario to identify the optimal architectures using the MSE

as the evaluation metric, just as we did previously. For this grid search, we now use various RTX 3090 and 4090 GPUs to

conduct our experiments. Then, we evaluate the performance of the best models on the test set by running them on a local

CPU machine. Recall that slight variations might occur between the results obtained via the GPUs and the CPU. Similar to

previous procedures, we carry out all calculations with three different seeds and report the average results. The results, for all

the scenarios, are presented in Table 12.

Training loss Validation loss Test loss

Known roads Unknown roads

MSE RMSE MSE RMSE MSE RMSE MSE RMSE

Original model 68.0 8.2 69.8 8.4 68.2 8.2 75.3 8.7

A
Filled in 73.6 8.6 73.3 8.6 74.5 8.6 76.8 8.8

Optimal 92.7 9.6 84.1 9.2 89.3 9.4 87.1 9.3

B
Filled in 62.3 7.9 67.6 8.2 63.5 7.9 69.4 8.3

Optimal 67.1 8.2 67.0 8.2 69.1 8.3 69.3 8.3

C
Filled in 66.6 8.2 70.3 8.4 67.6 8.2 73.9 8.6

Optimal 68.7 8.3 71.0 8.4 69.2 8.3 72.2 8.5

D
Filled in 77.5 8.8 74.6 8.6 73.8 8.6 76.9 8.8

Optimal 76.0 8.7 74.5 8.6 75.2 8.7 76.2 8.7

E
Filled in 82.0 9.1 78.1 8.8 81.9 9.0 82.6 9.1

Optimal 115.2 10.7 108.5 10.4 114.5 10.7 113.3 10.6

F
Filled in 80.3 9.0 82.0 9.1 82.3 9.1 83.8 9.2

Optimal 76.8 8.8 75.5 8.7 74.0 8.6 79.0 8.9

Table 12: Comparison of predictive performance in different scenarios with varying information sources.
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One of the first phenomena that draws the attention is that, in some cases, the performance of the optimized architecture is

worse than the performance we obtain if we use the original architecture, such as in scenario E. Further analyses show that this

issue indeed comes from the different sources of randomness between the GPU and CPU environments. Once we obtain the

optimal model through the GPU-based grid search, running it on the CPU results in the model rapidly getting stuck in a local

optimum. It seems that this is most obvious in scenario A and E, in which we exclude the location information. A potential

reason for this could be that these location variables play a crucial role, and their omission might lead to an inadequate model

structure itself.

The second phenomenon observed is that similar results can be obtained by using only a subset of the available information in

the data. In scenario B and C, where we exclude the rain, and darkness feature respectively, we even achieve slightly better

results on the test set. However, considering the practical implications and relating these numerical differences to actual driving

speeds, such small variations seem relatively insignificant. Note that including all information does lead to one of the lowest

MSE, indicating that including the information does not worsen the performance.

As hypothesized earlier, the findings in this table confirm that, in this specific case study, we may omit the information about

rainfall in the last hour, or the information about daylight and still achieve similar results. However, it is important to ac-

knowledge that in a case study with significant variation in speeds under different circumstances, it is highly likely that using

all information that is available performs best.

4.6 Conclusion

To conclude, the proposed method can be used to significantly enhance the information about travel speeds in road networks.

We show that for a region in Indonesia, we are able to predict the travel speed with an average RMSE of 8.5 km/h. Potential

lines for further research are to include additional features that may have an influence on the speed one is expected to drive

on a given road. Moreover, the data that is used (the GPS trajectories) may (still) contain errors or inaccuracies. Further

research may focus on obtaining more, accurate, GPS trajectories, in order to verify results. Finally, further research can focus

on transfer learning, in which differences between road networks of different regions are compared and taken into account when

creating new models.
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