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Abstract

We measure the extent of consumption insurance to income shocks accounting for

high-order moments of the income distribution. We derive a nonlinear consumption

function, in which the extent of insurance varies with the sign and magnitude of income

shocks. Using PSID data, we estimate an asymmetric pass-through of bad versus good

permanent shocks – 17% of a 3σ negative shock transmits to consumption compared

to 9% of an equal-sized positive shock – and the pass-through increases as the shock

worsens. Our results are consistent with surveys of consumption responses to hypo-

thetical events and suggest that tail income risk matters substantially for consumption.
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1 Introduction

How does consumption respond to income shocks? The answer to this question is impor-

tant for determining the welfare effects of shifts in the income distribution, i.e., the link

between income and consumption inequality, for understanding how families cope after ad-

verse events, for designing government insurance, and for the dynamics of business cycles. A

consistent empirical finding is that consumption is partially insured against income shocks,

so income fluctuations translate into consumption fluctuations less than one-to-one (e.g.,

Blundell, Pistaferri, and Preston, 2008; Heathcote, Storesletten, and Violante, 2014).1 With

a few exceptions discussed subsequently, most measures of consumption insurance do not

distinguish between good and bad shocks, or between small and large ones. However, recent

evidence in multiple countries shows that the distribution of income risk has a long and

fat left tail; that is, there is an asymmetrically large probability that households face some

really bad income shocks. This paper measures the consumption response to income shocks

precisely when the distribution of said shocks may exhibit long and fat tails.

In a seminal paper, Blundell, Pistaferri, and Preston (2008) –henceforth, BPP– introduce

a methodology to measure the pass-through of income shocks of varying persistence into con-

sumption. Using Panel Study of Income Dynamics (PSID) and Consumer Expenditure Sur-

vey (CEX) data over 1980–1992, BPP find evidence of partial insurance to permanent shocks

and full insurance to transitory ones. BPP rely on a workhorse covariance between income

and consumption growth, namely a second moment of their joint distribution. The idea is

that the extent to which income growth (driven by income shocks) varies with consumption

growth reflects the strength of the transmission of income shocks into consumption.

In a separate strand of literature, Guvenen, Karahan, Ozkan, and Song (2021) use data

from the U.S. Social Security Administration to characterize the distribution of unexplained

income growth, namely the distribution of income shocks. They establish two important

facts. First, income growth is very negatively skewed, i.e., it has a long left tail. This means

there are far more people in the data who experience large negative than large positive shocks.

Second, income growth exhibits excess kurtosis, i.e., it has fat tails. This means there are

far more people in the data who experience either small or large income shocks, than people

who experience moderate ones, relative to a Gaussian density. These are now benchmark

results in the income dynamics literature, replicated in many countries (e.g., De Nardi, Fella,

Knoef, Paz-Pardo, and Van Ooijen, 2021, compare the U.S. and the Netherlands).

1The first empirical studies of consumption insurance date back to tests of the permanent income hy-
pothesis (e.g., Deaton and Paxson, 1994) or tests (and rejections) of complete markets (e.g., Cochrane, 1991;
Attanasio and Davis, 1996; Hayashi, Altonji, and Kotlikoff, 1996; Brav, Constantinides, and Geczy, 2002).
Meghir and Pistaferri (2011) offer a review of this literature.
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If most shocks away from the mean are really bad shocks, their impact on consumption

would, intuitively, differ from that of small/moderate shocks. In other words, left skewness

and excess kurtosis, which are statements about the third and fourth moments of the income

distribution, should matter for the pass-through of shocks into consumption. Yet, by revolv-

ing around the second moments of the joint income-consumption distribution, the second

moment being a poor summary of the tails, the benchmark methodology in BPP ignores

these salient features of income dynamics. This is precisely what we address in this paper.

The paper measures the degree of consumption partial insurance to income shocks of

varying persistence, accounting for higher-order moments of the distribution of income and

consumption. We offer three main contributions.

First, we replicate BPP (1980–1992) using recent PSID data (1999–2019). The replication

targets the original income and consumption second moments. However, while BPP imputed

consumption from the CEX (the PSID previously lacked comprehensive consumption data),

such data are now internally available in the PSID. The replication is thus interesting not

only because of the different time period, but also because we no longer need to rely on

imputed consumption from the CEX.

Second, we introduce into BPP the third and fourth moments of the joint distribution

of income and consumption, in addition to the second moments that BPP originally used.

We thus go beyond the workhorse income-consumption covariance to measure consumption

insurance targeting additional information available in the tails of the distribution.

Third, we generalize the method of measuring consumption partial insurance to explicitly

permit a role for tail income risk. BPP log-linearize the optimality conditions and intertem-

poral budget constraint of a lifecycle consumption/savings problem to obtain a consumption

function that depends linearly on income shocks. We argue (see also Carroll, 2001) that this

linear function is a poor approximation to behavior when income is subject to tail shocks.

We then derive a higher-order (quadratic) consumption function that nests BPP’s linear

specification. We characterize the consumption pass-through of income shocks in the gen-

eralized model and we establish identification of its parameters. In this environment, the

degree of partial insurance depends on the magnitude and sign of shocks, so bad or extreme

shocks can potentially shift consumption differently than good or small shocks do.

Our baseline empirical implementation uses income and consumption panel data from

the PSID over the years 1999–2019. We focus on a representative sample of stable married

couples that is similar to the sample in BPP. We show that unexplained income growth in this

sample features large negative skewness and excess kurtosis, qualitatively and numerically

close to the skewness and kurtosis in the administrative data of Guvenen, Karahan, Ozkan,

and Song (2021). We then obtain four main findings.
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First, permanent and transitory shocks to disposable household income are negatively

skewed, with skewness coefficients at −0.95 and −1.31 respectively, and highly leptokurtic,

with kurtosis coefficients at 44.39 and 49.23 respectively. Left skewness implies that a neg-

ative shock is typically more unsettling, more hurtful than a positive shock, because it is

further away from the zero mean. Excess kurtosis implies that more shocks are concentrated

either in the middle of the distribution or far out in the tails, relative to the shoulders.

Taken together, large left skewness and excess kurtosis suggest that the realizations of in-

come shocks tend to be either close to their zero mean or far out in the left tail; that is,

income shocks for most households are either small/average or quite bad.

Second, in replicating BPP over the recent years, we find full insurance to transitory

shocks and a very small pass-through rate of permanent shocks at 0.15 versus 0.64 in BPP. A

10% permanent income cut thus reduces consumption by only 1.5%, vis-à-vis 6.4% in BPP. In

other words, we find much larger partial insurance to permanent shocks than originally found

in BPP.2 We attribute one third of the difference from BPP to the consumption imputation

from the CEX that BPP use. The imputation brings in large amounts of measurement error,

inflating the covariance between contemporary income and consumption growth. Another

third of the difference arises because the modern PSID provides data biennially (versus

annually previously), which tends to mute higher frequency shocks and their transmission

into consumption. The last third reflects the different calendar times.

Third, introducing the third and fourth moments of income and consumption growth into

BPP’s linear consumption setting does not change our estimates of partial insurance. This

result is counterintuitive because a big literature highlights the large welfare implications

of tail risk (e.g., De Nardi, Fella, and Paz-Pardo, 2019; Busch and Ludwig, 2021). One

would thus expect that targeting higher-order moments would affect the degree of partial

insurance, which is not what we find. This result is suggestive of a potential misspecification

in the linear consumption function, which motivates our generalization of the methodology

through the introduction of a higher-order consumption specification.

Fourth, in estimating our quadratic consumption function, we find an asymmetry in the

pass-through of bad versus good shocks, and of small versus large ones. With a quadratic

consumption function, the pass-through depends on the magnitude and sign of the shocks;

and targeting higher-order income moments becomes essential for the identification of the

generalized transmission parameters. We draw three main conclusions. First, bad perma-

nent shocks are more hurtful than good ones because they have larger transmission rates

into consumption – a three standard deviations negative shock (a 50% permanent income

2Using the recent PSID and an alternative model, Arellano, Blundell, Bonhomme, and Light (2023) find
a similarly low pass-through rate of permanent shocks, precisely as we do.
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cut) has a pass-through of 0.17 (17% of the shock transmits into consumption), whereas

a positive shock of similar magnitude and persistence has a pass-through of 0.09. Second,

the pass-through of bad shocks increases with the severity of the shock. So, not only are

bad permanent shocks more extreme than good ones (they lie further away from the zero

mean in the left tail), they also have increasingly larger transmission rates as their magni-

tude worsens. Third, transitory shocks provide mixed evidence. They are fully insured in

the full sample, at least from a statistical point of view, even though the point estimates

of their transmission parameters suggest that large transitory windfalls shift consumption

considerably, consistent with quasi-experimental evidence of large responses to transitory

gains (e.g., Fagereng, Holm, and Natvik, 2021). Among low wealth households, however,

transitory shocks shift consumption statistically significantly, with negative shocks passing

through at an increasingly larger rate than positive ones. Overall, the results are consistent

with an environment in which households save a good income shock but they dissave in the

presence of a bad one. As there is clearly a limit to how much one can dissave or borrow, a

large negative shock would typically affect consumption by relatively more.

The asymmetric transmission of bad versus good permanent shocks intensifies with the

age of the household. While older households can typically insure average permanent shocks

better than younger households, the former are associated with larger transmission rates

of extreme shocks than the latter. In other words, severely bad permanent shocks cause

more harm among older households than among younger ones. This agrees with Guvenen,

Karahan, Ozkan, and Song (2021), who show that income skewness becomes more negative

with the age of the earner – there is more room for income to fall as older workers have

higher incomes; we find a similar pattern in our sample too. We further document that

there is also more room for consumption to fall, so bad income draws are doubly hurtful

among the elderly. Overall, the results from our quadratic specification are indicative of

limited insurance to left tail income risk. Moreover, if the econometrician assumed a linear

consumption function, she would overestimate the true extent of insurance to it, i.e., she

would infer excessive insurance.

The paper is primarily related to the extensive literature that studies the transmission of

income shocks into consumption, i.e., the link between income and consumption inequality.

There are two distinct strands in this literature: a quasi-reduced form branch that measures

the degree of partial insurance in the data without fully specifying the underlying insurance

mechanisms, and a structural branch that fully models specific insurance channels.

The seminal paper in the first branch, namely BPP, sparked a large volume of subsequent

research.3 Blundell, Pistaferri, and Saporta-Eksten (2016) extend BPP to an environment

3Hall and Mishkin (1982), Deaton and Paxson (1994) and Blundell and Preston (1998) characterize the
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with wage risk to measure the contribution of family labor supply to partial insurance. Th-

eloudis (2021) extends this further to allow for household heterogeneity, which he estimates

using information in the third income-consumption moments. Commault (2022) allows con-

sumption to respond to past transitory shocks and finds a strong response to them, similar

to what quasi-experimental studies find. Hryshko and Manovskii (2022) carry out an inter-

esting subsample analysis of BPP, identifying sets of households in the PSID with different

degrees of insurance based on certain features of their incomes. Crawley and Kuchler (2023)

offer another empirical extension, addressing neglected time aggregation in income and con-

sumption in the PSID. Arellano, Blundell, and Bonhomme (2017) and Arellano, Blundell,

Bonhomme, and Light (2023) generalize the income process by letting shocks of different

size/sign to feature varying persistence.4 Abstracting from income skewness and kurtosis,

they measure the consumption response to income in the modern PSID at about 0.2 on av-

erage (specification with household heterogeneity in the latter paper), though the response

varies over the distribution of shocks.

In the present paper, by contrast, we generalize both the income process, by allowing

shocks to be non-Gaussian, and the consumption function, by allowing for non-linearities

in the transmission of income shocks. The value added is our finding of asymmetric pass-

through of shocks depending on their size and sign – a recurrent finding in recent surveys of

responses to hypothetical scenarios (e.g., Fuster, Kaplan, and Zafar, 2020). To measure this

asymmetry, information in higher-order income moments becomes indispensable. We thus

characterize carefully how our measures of partial insurance change and what can be learned

as we gradually introduce higher-order information.

The second branch studies specific insurance mechanisms through calibrating lifecycle

models of consumption/savings.5 Much of the early research focused on self-insurance, pro-

viding mixed evidence for how much insurance there is. Kaplan and Violante (2010) find

less insurance to permanent shocks in the model compared to the data, while Guvenen and

Smith (2014) estimate income risk and the degree of self-insurance jointly and find that about

one half of income shocks are smoothed, i.e., they find more insurance than BPP. More re-

cent works study the insurance consequences of labor supply (Heathcote, Storesletten, and

Violante, 2014), durable purchases (Madera, 2019), health (Blundell, Borella, Commault,

and Nardi, 2020), or added workers (Wu and Krueger, 2021). Except Madera (2019), these

papers abstract from higher-order moments of income, partly due to the computational dif-

ficulties in modelling those. De Nardi, Fella, and Paz-Pardo (2019) embed a non-Gaussian

empirical distribution of consumption and income, so they are early precursors in this literature.
4The latter paper advances the former by allowing for flexible heterogeneity and unbalanced panels.
5Gourinchas and Parker (2002) and Krueger and Perri (2006) are early precursors in this strand.
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income process into a model of consumption/savings and show that tail income risk increases

the degree of partial insurance to permanent shocks due to stronger precautionary motives.

Busch and Ludwig (2021) estimate a similar model of self-insurance targeting income skew-

ness and kurtosis. They confirm that higher-order moments generate stronger precautionary

savings; they distinguish, however, between good and bad shocks and they show that the

latter are in fact worse insured than the former. Unlike this vast quantitative literature, we

do not take a stance on the insurance mechanisms available to households; this enables us

to measure the overall degree of insurance from all mechanisms together, keeping our model

partially unspecified while also accounting for the higher-order income moments.

The paper is also related to the modern income dynamics literature that investigates

the non-Gaussian features of the income distribution. Geweke and Keane (2000) document

that earnings growth exhibits left skewness, while Bonhomme and Robin (2010) document

its excess kurtosis, both using PSID data. Guvenen, Karahan, Ozkan, and Song (2021)

provide evidence of left skewness and excess kurtosis in earnings growth in the population

of working males in the U.S., and show that these features get accentuated with age and

the level of earnings. Guvenen, Ozkan, and Song (2014) and Busch, Domeij, Guvenen, and

Madera (2018) study the cyclical nature of income skewness in several countries. While these

papers are mostly descriptive of the higher-order features of the income distribution, we go a

step further to investigate what these features imply for consumption partial insurance. We

thus contribute to the growing literature in economics and finance that studies the various

implications of tail risk (e.g., Constantinides and Ghosh, 2017; McKay, 2017; De Nardi,

Fella, and Paz-Pardo, 2019; Ai and Bhandari, 2021, for the equity premium and asset prices,

business cycles, consumer welfare, and labor market dynamics, respectively).

The asymmetric response to bad versus good shocks has previously been seen in the

literature that uses surveys to elicit responses to various hypothetical scenarios. For example,

Bunn, Le Roux, Reinold, and Surico (2018) find that the marginal propensity to consume

from bad shocks is larger than from good shocks; Christelis, Georgarakos, Jappelli, Pistaferri,

and van Rooij (2019) and Fuster, Kaplan, and Zafar (2020) find that responses to losses are

larger than to gains with magnitudes increasing with the severity of the loss.6 We show that

these patterns are also present in survey data, such as the PSID.

In the remainder of the paper, section 2 presents the theoretical framework through which

we study the pass-through of income shocks into consumption and 3 establishes identification

of the relevant parameters. Section 4 discusses the empirical implementation, section 5

presents the results, and section 6 concludes.

6Given our finding of heterogeneous responses to shocks, our paper is also broadly related to the literature
that studies MPC heterogeneity (e.g., Crawley and Kuchler, 2023; Lewis, Melcangi, and Pilossoph, 2022).
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2 Lifecycle model with tail income risk

The framework through which we study the extent of partial insurance to income shocks is

a consumption lifecycle model with idiosyncratic income risk.

Household i chooses lifetime consumption {Cit}Tt=0 and savings {Ait+1}Tt=0 to maximize

its expected discounted utility over its lifecycle. The problem is formulated as

max
{Cit,Ait+1}Tt=0

E0

T∑
t=0

βtU(Cit;Zit), (1)

subject to the lifetime budget constraint

Ai0 + E0

T∑
t=0

Yit
(1 + r)t

= E0

T∑
t=0

Cit

(1 + r)t
, (2)

where U(·;Zit) is utility over consumption, Zit is a vector of observed taste shifters (e.g.,

age, education), β is the discount factor, r is the deterministic interest rate, Ai0 is beginning-

of-time financial wealth, E0 denotes expectations over uncertain future income Y , and T is

the end of the horizon. We assume that utility satisfies standard regularity conditions, in

particular it is twice differentiable, but we do not otherwise parameterize it.

2.1 Income process

Income is the only source of (idiosyncratic) uncertainty that the household faces. Its loga-

rithm is given by

lnYit = X′
itδ + Pit + vit,

where Xit is a vector of characteristics in the t = 0 information set of the household, such

as age, education, race, that drive the deterministic profile of income over the lifecycle; δ is

the loading factor of those variables on the logarithm of income. The remaining terms make

up the stochastic component of income, consisting of permanent income Pit and transitory

shock vit. We assume that permanent income has a unit root, Pit = Pit−1 + ζit, where ζit is

the permanent income shock. These modeling choices give rise to the familiar permanent-

transitory formulation7

∆yit = ζit +∆vit, (3)

where ∆yit = ∆ lnYit −∆X′
itδ is income growth net of the deterministic profile, i.e., unex-

plained income growth, and ∆ is the first difference operator.

7See Meghir and Pistaferri (2011) for a comprehensive review of modern income processes.
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A first point of departure from BPP lies in the specification of the permanent and tran-

sitory income shocks, ζit and vit, respectively. Unlike BPP, we allow these shocks to be

non-Gaussian, with first four central moments given by

E(ζmit ) =



0 for m = 1

σ2
ζt

for m = 2

γζt for m = 3

κζt for m = 4

and E(vmit ) =



0 for m = 1

σ2
vt for m = 2

γvt for m = 3

κvt for m = 4.

σ2
ζt
and σ2

vt describe the dispersion of the distributions of, respectively, the permanent and

transitory shocks about their mean; the mean is zero by construction. γζt and γvt denote the

skewness/asymmetry of the distributions, i.e., the relative lengths of the upper and lower

tails. Finally, κζt and κvt denote the kurtosis, i.e., the tendency of the distributions to amass

away from the middle [−σ, σ], and therefore characterize the thickness of the tails.

We allow the central moments of shocks to depend on t to reflect that different stages

of the lifecycle may exhibit different amounts of dispersion, skewness, or thickness of the

tails of income risk; Guvenen, Karahan, Ozkan, and Song (2021) provide some evidence for

that. Otherwise, shocks across households are identically distributed within t. Permanent

and transitory shocks are mutually independent and independent over time.

As discussed in the introduction, several recent studies document that the cross-sectional

distribution of income growth exhibits left skewness and excess kurtosis, i.e., a long and

fat left tail. Our specification of the moments of income shocks enables our income process

to be consistent with these facts, allowing us to subsequently decompose its second- and

higher-order moments into the relative contributions of permanent and transitory shocks.

2.2 Linear consumption function

In line with BPP, we first consider a linear specification of the household consumption

function, given by

∆cit = ξit + ϕ
(1)
it ζit + ψ

(1)
it vit, (4)

where ∆cit is the residual from a regression of real consumption growth, ∆ lnCit, on the taste

observables Zit (i.e., consumption growth net of its predictable profile). The linear function

(4) stems from a log-linearization (i.e., a first-order Taylor series expansion) of the problem’s

first-order conditions and the household budget constraint, as we show in appendix A. These

approximations, which are independent of the distributions of income shocks, mimic similar

derivations in BPP.
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Permanent and transitory income shocks drive unexplained consumption growth in (4).

The transmission parameters ϕ
(1)
it = ∂∆cit/∂ζit and ψ

(1)
it = ∂∆cit/∂vit reflect the pass-through

of permanent and transitory shocks, respectively, into consumption. Adopting BPP’s ter-

minology, 1 − ϕ
(1)
it is then the extent of insurance to permanent shocks (i.e., the fraction of

a permanent shock that does not translate into a consumption fluctuation), while 1 − ψ
(1)
it

is the extent of insurance to transitory shocks. Therefore, ϕ
(1)
it = ψ

(1)
it = 0 implies that con-

sumption is fully insured to income shocks, while ϕ
(1)
it = ψ

(1)
it = 1 implies no insurance. By

contrast, values ϕ
(1)
it , ψ

(1)
it ∈ (0, 1) reflect partial insurance: a given income shock translates

into a consumption fluctuation, albeit less than one-to-one.

The transmission parameters vary, in principle, with i (household) and t (age), reflecting

heterogeneity in financial wealth, among other reasons. The idea is that a household can use

wealth to smooth consumption when income shocks hit; and the more wealth one holds the

better they can self-insure.8 We establish this link from wealth to ϕ
(1)
it , ψ

(1)
it in appendix A.

So while the pass-through of shocks depends on wealth, it does not depend on the magnitude

or sign of the shock itself. Function (4) thus implies that a household can insure big or small,

good or bad shocks similarly, a point to which we return subsequently.

In addition to income shocks, unexplained consumption growth is also driven by ξit, which

reflects unobserved (but non-stochastic) consumption taste heterogeneity across households,

independent of the income shocks. We let the distribution of ξit across households to have

zero mean and variance σ2
ξt
, as in BPP. We also let its third and fourth central moments to

be γξt and κξt respectively; these will appear subsequently in expressions for the skewness

and kurtosis of consumption growth.

2.3 Quadratic consumption function

The linear consumption function offers an approximation to the true consumption response

to income shocks when such shocks do not move the household too far away from its con-

sumption ‘steady-state’ – i.e., its deterministic consumption profile. Function (4) relies on a

linearization of marginal utility (the problem’s first-order conditions) around such ‘steady-

state’; but such linearization will be inaccurate in the presence of tail income risk, e.g., when

extreme shocks may induce large shifts in consumption as a consequence of concave utility.9

Our second and main point of departure from BPP is the generalization of the consump-

8In addition, households in Blundell, Pistaferri, and Saporta-Eksten (2016) have access to insurance
through family labor supply, while households in Theloudis (2021) differ in their preferences; both are
reasons why the transmission parameters may vary with t or i.

9This echoes Carroll (2001)’s critique of the log-linearized Euler equation. Kaplan and Violante (2010)
and Blundell, Low, and Preston (2013) assess the approximations in BPP across alternative scenarios, though
not in one with respect to the severity of income shocks.
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tion function to a nonlinear (quadratic) specification, given by

∆cit = ξit + ϕ
(1)
it ζit + ψ

(1)
it vit + ϕ

(2)
it ζ

2
it + ψ

(2)
it v

2
it + ω

(22)
it ζitvit, (5)

where ∆cit and ξit are defined as previously. The quadratic function (5) stems from a second-

order Taylor approximation to the problem’s first-order conditions and the household budget

constraint, as we show in appendix A. These operations and resulting expressions generalize

the original approximations in BPP and in several papers thereafter.

The quadratic function is characterized by several parameters. As in the linear case, ϕ
(1)
it

and ψ
(1)
it are the transmission parameters into consumption of the linear part of a polynomial

in the income shocks. By extension, ϕ
(2)
it , ψ

(2)
it , and ω

(22)
it are the transmission parameters

of the quadratic part of the same polynomial. In the context of long left and fat tails in

income risk, ϕ
(1)
it and ψ

(1)
it can be thought of as the transmission parameters of the average

shock (a shock close to the mean of the distribution), while ϕ
(2)
it , ψ

(2)
it , ω

(22)
it can be seen as

the transmission parameters of the typical shock away from the middle of the distribution.

The parameters may again vary with i (household) and t (age), reflecting heterogeneity in

financial wealth among other things; we establish this link in appendix A.

In this generalized framework, ϕ
(1)
it no longer represents the pass-through of permanent

shocks to consumption. Instead, the pass-through is given by

∂∆cit
∂ζit

= ϕ
(1)
it + 2ϕ

(2)
it ζit + ω

(22)
it vit, (6)

which depends on multiple parameters and on the magnitude and sign of the income shocks.

As such, there is an asymmetric pass-through of good versus bad shocks into consumption.

Suppose, for example, that ϕ(1) > 0 and ϕ(2) < 0, as our results subsequently suggest.

At vit = 0 (the average transitory shock), a negative permanent shock has a higher pass-

through to consumption relative to a positive shock of the same magnitude. The pass-through

of negative shocks would thus be underestimated (i.e., excessive insurance concluded) if the

econometrician assessed the extent of partial insurance on the basis of ϕ(1) alone, ignoring the

non-linearity in the consumption response. The size of this bias depends on the magnitude

of ϕ(2) (a more negative ϕ(2) implies bigger bias) and on the size of the permanent shock

itself (a more severe bad shock implies bigger bias). When income risk is non-Gaussian (e.g.,

it is left tailed), the realization of shocks can be far from their mean, thereby causing large

errors in the inference of the degree of partial insurance based on ϕ(1) alone.

A similar asymmetry exists in the transmission of good versus bad transitory income

11



shocks. In this case, the pass-through into consumption is given by

∂∆cit
∂vit

= ψ
(1)
it + 2ψ

(2)
it vit + ω

(22)
it ζit, (7)

which again depends on multiple parameters and on the magnitude and sign of the income

shocks. Importantly, this generalized pass-through does not rule out the possibility of full

insurance to transitory shocks, a recurrent empirical finding in the literature. Suppose, for

example, that ψ(1) ≈ ψ(2) ≈ 0; then ∂∆cit/∂vit ≈ 0 at ζit = 0 (the average permanent shock),

indicating full insurance to transitory shocks.

3 Identification of income and consumption parame-

ters

Our specification of the income and consumption processes imposes restrictions on the sec-

ond and higher-order moments of income and consumption that can be used to identify the

various parameters. The set of parameters consists of the variance (σ2
ζt
, σ2

vt), skewness (γζt ,

γvt), and kurtosis (κζt , κvt) of the distributions of permanent and transitory shocks,10 the

partial insurance parameters in the linear (ϕ
(1)
t , ψ

(1)
t ) and quadratic consumption functions

(ϕ
(1)
t , ψ

(1)
t , ϕ

(2)
t , ψ

(2)
t , ω

(22)
t ), and the moments of the unobserved consumption taste hetero-

geneity (σ2
ξt
, γξt , κξt). For simplicity of the illustration, we restrict the partial insurance

parameters to not vary across households; this is not an identifying restriction, and in fact

we explore subsequently their variation across certain demographic groups.

Two important aspects of the data must be addressed before proceeding to identification:

the biennial nature of the modern PSID and measurement error.

As we describe in section 4, the PSID provides data only every two years within our

time period. This necessitates to recast the income and consumption growth processes of

section 2 to this lower frequency, a straightforward operation that we carry out in appendix B.

Nevertheless, for consistency with the earlier literature, we provide the identifying statements

subsequently as if the data come at a yearly frequency. The complete identifying statements

at the lower frequency of the modern PSID appear in appendix B.

Measurement error in income and consumption is a more challenging issue. In the

permanent-transitory specification of income, the moments of classical income error are not

separately identifiable from the moments of the economically relevant transitory shock. This

necessitates that we restrict the income error to be Gaussian and retrieve its variance from

10With a slight abuse of terminology, we use the terms skewness and kurtosis to refer to the third and
fourth central moments of shocks. We will be clear whenever those terms refer to standardized moments.
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validation studies of the PSID, as in Meghir and Pistaferri (2004) and Blundell, Pistaferri,

and Saporta-Eksten (2016). We return to this point in section 4. By contrast, the moments

of classical consumption error are identifiable; this introduces three additional parameters

for the variance, skewness, and kurtosis of consumption error (σ2
uc
t
, γuc

t
, κuc

t
). For simplicity,

however, we subsequently show identification as if income and consumption errors are not

present; we provide our full identifying statements with measurement error in appendix B.

3.1 Income process parameters

Given the income process in (3) and the properties of shocks, the second and higher-order

moments of the cross-sectional distribution of income growth are given by

E((∆yit)
2) = σ2

ζt + σ2
vt + σ2

vt−1
,

E((∆yit)
3) = γζt + γvt − γvt−1 ,

E((∆yit)
4) = κζt + κvt + κvt−1 + 6σ2

ζt(σ
2
vt + σ2

vt−1
) + 6σ2

vtσ
2
vt−1

.

The second moment depends on the variance of permanent shocks at t and the sum of vari-

ances of transitory shocks at t and t−1; it thus reflects the dispersion of one permanent and

two transitory shocks. The fourth moment reflects, similarly, contributions from the disper-

sion and kurtosis of both types of shocks. By contrast, the third moment is driven primarily

by skewness in the permanent shock. Barring strong non stationarities in the distribution of

transitory shocks, the difference between γvt and γvt−1 will generally be small (and precisely

zero if the distributions are time-invariant), leaving γζt , the skewness in permanent shocks,

to drive entirely the third moment of income.

While the above expressions are already partly informative of the parameters of the

income process, the variance of shocks is formally identified as

σ2
ζt = E(∆yit × (∆yit−1 +∆yit +∆yit+1)),

σ2
vt = −E(∆yit ×∆yit+1).

The long sum in the first line strips income growth at t of its contemporary transitory shock;

its covariance with ∆yit thus picks up the variance of the permanent shock. The covariance

of two consecutive income growths in the second line identifies the variance of the transitory

shocks due to mean reversion in the shock.
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In a similar way, the skewness of shocks is identified as11

γζt = E((∆yit)
2 × (∆yit−1 +∆yit +∆yit+1)),

γvt = −E((∆yit)2 ×∆yit+1),

while their kurtosis is identified from

κζt = E((∆yit)
4)− κvt − κvt−1 − 6σ2

ζt(σ
2
vt + σ2

vt−1
)− 6σ2

vtσ
2
vt−1

,

κvt = E((∆yit)
2 × (∆yit+1)

2)− σ2
ζtσ

2
ζt+1

− σ2
ζt

1∑
τ=0

σ2
vt+τ

− σ2
ζt+1

0∑
τ=−1

σ2
vt+τ

− σ2
vt−1

σ2
vt − σ2

vt−1
σ2
vt+1

− σ2
vtσ

2
vt+1

.

There are several over-identifying restrictions for both skewness and kurtosis.12

3.2 Linear consumption function parameters

Given the linear consumption function in (4) and the properties of shocks, the second and

higher-order moments of the distribution of consumption growth are given by

E((∆cit)
2) = (ϕ

(1)
t )2σ2

ζt + (ψ
(1)
t )2σ2

vt + σ2
ξt ,

E((∆cit)
3) = (ϕ

(1)
t )3γζt + (ψ

(1)
t )3γvt + γξt ,

E((∆cit)
4) = (ϕ

(1)
t )4κζt + (ψ

(1)
t )4κvt + κξt + 6(ϕ

(1)
t )2(ψ

(1)
t )2σ2

ζtσ
2
vt

+ 6(ϕ
(1)
t )2σ2

ζtσ
2
ξt + 6(ψ

(1)
t )2σ2

vtσ
2
ξt .

The moments of the distribution of consumption growth reflect the underlying distributions

of income shocks, as well as the distribution of unobserved taste heterogeneity. In general,

larger dispersion, skewness, or kurtosis in the distributions of income shocks implies larger

dispersion, skewness, or kurtosis in the distribution of consumption growth. The link between

the two depends on the degree of insurance with respect to these shocks, so these moments

provide restrictions that help identify the parameters of partial insurance.

11In the presence of income measurement error, the moments that identify the variance and skewness of
transitory shocks also pick up the variance and skewness of the error. Retrieving its variance from validation
studies (see section 4) while assuming error is Guassian (thus has zero skewness) allows us to identify the
parameters of the economically relevant transitory shock. Appendix B reports the details of identification
in the presence of measurement error.

12Identification of the fourth moments requires prior identification of the second moments; identification
of kurtosis of the permanent shock also requires prior identification of kurtosis of the transitory shock.
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Formally, the transmission parameter of permanent shocks is identified as

ϕ
(1)
t = E(∆cit × (∆yit−1 +∆yit +∆yit+1))/σ

2
ζt ,

while the transmission parameter of transitory shocks is identified as

ψ
(1)
t = −E(∆cit ×∆yit+1)/σ

2
vt ;

in both cases, the variance of shocks is given by the earlier expressions.13 These statements

reflect the intuition behind identification in BPP: the covariance between consumption and

(appropriately defined) income growth captures the strength of the relation between the two

series and, consequently, the pass-through of income shocks into consumption.14

This workhorse covariance, however, is a second moment of the joint distribution of

consumption and income and, as such, neglects information in the tails. If most income

shocks are either zero or rather bad, as Guvenen, Karahan, Ozkan, and Song (2021) find,

identifying partial insurance based on second moments alone may be misleading. However,

the partial insurance parameters are heavily (over-)identified by higher-order moments of

the marginal and joint distributions of income and consumption; inspect, for example, the

expressions for E((∆cit)
3) or E((∆cit)

4). We will thus subsequently exploit these higher-order

moments in the context of the linear consumption function in our first attempt to understand

the implications of non-Gaussianity for partial insurance.

3.3 Quadratic consumption function parameters

As per the quadratic specification in (5) and the properties of shocks, the second moment of

the distribution of consumption growth is given by

E((∆cit)
2) = (ϕ

(1)
t )2σ2

ζt + (ψ
(1)
t )2σ2

vt + 2ϕ
(1)
t ϕ

(2)
t γζt + 2ψ

(1)
t ψ

(2)
t γvt + (ϕ

(2)
t )2κζt + (ψ

(2)
t )2κvt

+ (ω
(22)
t )2σ2

ζtσ
2
vt + 2ϕ

(2)
t ψ

(2)
t σ2

ζtσ
2
vt + σ2

ξt .

This depends not only on the variance of permanent and transitory income shocks, as in the

linear case, but also on their skewness and kurtosis. Contrary to the linear case, however, the

higher-order moments of consumption growth depend on higher than fourth-order moments

13The variance of consumption taste heterogeneity is further given by σ2
ξt

= E((∆cit)
2) − (ϕ

(1)
t )2σ2

ζt
−

(ψ
(1)
t )2σ2

vt while its skewness by γξt = E((∆cit)
3) − (ϕ

(1)
t )3γζt − (ψ

(1)
t )3γvt . The kurtosis κξt is similarly

identified from the fourth moment of consumption growth.
14An equivalent view is that the partial insurance parameters are identified from a regression of consump-

tion growth on income growth, using permanent or future income as instruments.
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of the shocks, which we do not model.

Identification of the partial insurance parameters comes from the joint moments of con-

sumption and income, conceptually similar to identification in the linear case. Given the

non-linearity, however, multiple moments contribute jointly to the identification of any sin-

gle parameter, and the identifying statements are inevitably more involved. Formally, the

transmission parameters are given by
ϕ
(1)
t

ψ
(1)
t

ϕ
(2)
t

ψ
(2)
t

ω
(22)
t

 = A−1


E (∆cit ×∆yit)

E (∆cit × (∆yit)
2)

E (∆cit ×∆yit+1)

E (∆cit × (∆yit+1)
2)

E (∆cit ×∆yit ×∆yit+1)

 , (8)

where square matrix A depends exclusively on the second, third, and fourth moments of

income shocks, and it is generally full rank and invertible.15,16

As shown in section 3.1, the higher-order moments of income shocks are identified through

the third and fourth moments of income. Therefore, the higher than second-order moments of

income play an essential role in enabling the identification of the transmission parameters of

the quadratic consumption function. Unlike the linear case, in other words, the transmission

parameters in the generalized specification cannot be identified with second-order income

moments alone. By contrast, no higher-order moments of consumption are needed; the

identifying moments in (8) are covariances between consumption growth and various powers

of income growth. This is an advantage because, while in principle we may estimate higher

than second-order moments of consumption growth in the PSID, we cannot be certain how

good these estimates are. This is in contrast to higher-order income moments, for which

Guvenen, Karahan, Ozkan, and Song (2021) serves as a natural benchmark given their use

of administrative income data. We return to this point in section 4.

What is the bias in the transmission parameters if one assumes a linear specification

15The matrix of coefficients is given by

A =


σ2
ζt

σ2
vt γζt γvt 0

γζt γvt κζt + σ2
ζt
(σ2

vt + σ2
vt−1

) κvt + σ2
vt(σ

2
ζt
+ σ2

vt−1
) 2σ2

ζt
σ2
vt

0 −σ2
vt 0 −γvt 0

0 γvt σ2
ζt
(σ2

ζt+1
+ σ2

vt + σ2
vt+1

) κvt + σ2
vt
(σ2

ζt+1
+ σ2

vt+1
) 0

0 −γvt −σ2
ζt
σ2
vt

−κvt −σ2
ζt
σ2
vt

 .

There are no obvious linear dependencies across columns so the matrix is generally full rank and invertible.
This is true also if the underlying distributions of shocks are Gaussian.

16The variance of consumption taste heterogeneity is identified from E((∆cit)
2). Its skewness and kurtosis

enter the third and fourth moments of consumption growth. Those depend on higher than fourth-order
moments of income, which we do not model, so they are generally not identified in the current setting.
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when the true consumption function is quadratic? The identifying condition for ϕ
(1)
t in the

linear case identifies

E(∆cit × (∆yit−1 +∆yit +∆yit+1))/σ
2
ζt = ϕ

(1)
t + ϕ

(2)
t (γζt/σ

2
ζt),

namely a linear combination of ϕ
(1)
t and ϕ

(2)
t , the latter weighed by the skewness of permanent

shocks. If γζt < 0, i.e., permanent shocks are left skewed as we find subsequently, and

ϕ
(2)
t < 0, as our empirical estimates suggest, linearity biases ϕ

(1)
t upwards; the magnitude of

this bias increases with the extent of income skewness. Similarly, the identifying condition

for ψ
(1)
t in the linear case identifies

−E(∆cit ×∆yit+1)/σ
2
vt = ψ

(1)
t + ψ

(2)
t (γvt/σ

2
vt).

If γvt < 0, i.e., transitory shocks are left skewed as we find subsequently, and ψ
(2)
t > 0, as our

baseline estimate suggests, linearity biases ψ
(1)
t downwards; the bias is stronger the larger

left skewness is. This may thus help explain the discrepancy between BPP (who find little

pass-through of transitory shocks) and studies based on natural experiments (who find large

consumption responses to said shocks).17

4 Empirical implementation

4.1 Data

As is evident from the previous section, panel data in income and consumption are needed to

identify the moments of the permanent and transitory shocks and the degrees of insurance

to them. The Panel Study of Income Dynamics (PSID) provides such data for a represen-

tative and continuously evolving sample of U.S. households since 1968. For most of this

period, however, the PSID only collected consumption expenditures on food items. It is well

known that food is an imperfect measure of consumption of nondurable goods, representing

a declining fraction of the consumer’s basket over time. Since 1999, however, the PSID was

drastically redesigned in that it started collecting information over a much broader set of

consumption items, currently comprising over 70% of consumption reported in the National

17The discrepancy is between studies that use covariance restrictions in the joint distribution of income and
consumption (they find small pass-through of transitory shocks) and studies that employ natural experiments
(e.g., tax refunds or lotteries; they find large pass-through). Commault (2022) explains the discrepancy on
the basis of neglected effects from past transitory shocks on consumption, while Crawley and Kuchler (2023)
explain it on the basis of neglected time aggregation in the data. Both are alternative types of misspecification
in the linear consumption function/empirical implementation vis-à-vis our focus on nonlinearities here.
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Income and Product Accounts (Blundell, Pistaferri, and Saporta-Eksten, 2016). We, there-

fore, use the PSID over the period between 1999 and 2019, the last available wave when

writing this paper; the data are available only biennially. This is in contrast to BPP, who

use PSID data over 1980–1992 and rely on consumption imputations from the Consumer

Expenditure Survey (CEX). We return to this point below.

Our baseline sample consists of married couples in the PSID with a male spouse aged 30

to 65. We focus on a sample that is representative of the U.S. population, eliminating the

supplementary low-income subsample (SEO). Households are also removed in the event of

a break-up or remarriage; our analysis thus focuses on income risk rather than on divorce

or other household dissolution factors. Naturally, we require non-missing data on income,

expenditure, and basic demographics.18 Our final sample consists of 20,866 household-year

observations; on average, a household is observed for 5.6 periods, which corresponds to about

10 calendar years given the biennial nature of the data.

Table 1 presents summary statistics over the sample period 1999–2019. About 89% of

men and 79% of women work in the labor market (but some households have intermittent

employment); 68% of men have had some college education, while women fare slightly higher

at 71%. Our measure of income is household disposable income, defined as the sum of tax-

able income (e.g., earnings and asset income), transfers, and social security income of the

male and female spouses and of other family unit members, minus taxes paid. Average

disposable income is $142,910 in 2018 prices.19 Our measure of consumption is real expen-

diture on nondurable goods and services, comprising food (at home and outside), utilities,

out-of-pocket health expenses (doctors, prescriptions), public transport and own vehicle ex-

penses (gasoline, parking, insurance), education, and child care. Average real consumption

is $26,766, with food at home accounting for about 30% of this. Housing, including rent

and home insurance, is the main expenditure we exclude; we do so for comparability with

BPP who also exclude it. Including housing does not change any of the subsequent results

meaningfully.20 Finally, table 1 reports summary statistics also for samples sorted by wealth

and education; we postpone the discussion of those samples to section 5.4.

Aside from the PSID, we use a similarly selected sample drawn from the CEX to facilitate

comparison with BPP. We defer the discussion of this secondary data to section 4.3.

18We also remove observations with extreme jumps in income or consumption in consecutive years, where
a jump is a ≥10-fold increase or a ≥90% reduction, or the bottom 0.25% of the distribution of products of
growth rates at t and t− 1, i.e., large increases followed by large drops, likely reflecting measurement error.

19We express all monetary figures in 2018 prices because earnings are 1-year retrospective and our latest
data are from 2019. We deflate using the Consumer Price Index from the Bureau of Labor Statistics.

20Blundell, Pistaferri, and Saporta-Eksten (2016) use consumption data from the modern PSID, includ-
ing housing, to study family labor supply as an insurance mechanism. House prices, however, fluctuated
dramatically in 2007–2009, artificially affecting housing expenditure especially for homeowners.
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Table 1: Descriptive statistics

Baseline sample
Low

wealth
High
wealth

No
college

Some
college

Mean Median Mean Mean Mean Mean
(1) (2) (3) (4) (5) (6)

Consumption
Nondurable+services 26,766 22,895 23,106 29,852 22,137 28,908
Food at home 8,256 7,609 7,861 8,580 7,462 8,630
Utilities 3,515 3,238 3,270 3,721 3,394 3,571
Food out 3,318 2,511 2,683 3,840 2,649 3,634
Health 1,614 863 1,390 1,803 1,429 1,699
Transportation 5,866 4,900 5,398 6,261 5,436 6,065
Education 3,202 0 1,529 4,614 1,262 4,100
Childcare 977 0 937 1,009 543 1,181

Rent (or rent eq.) 18,105 13,821 10,949 23,991 11,647 21,149
Home insurance 894 747 654 1,092 702 985

Income
Disposable income 142,910 113,581 98,527 179,416 97,675 164,239
Taxable+transfer inc. 137,277 109,003 93,358 173,401 90,810 159,187
Earnings 118,423 97,154 87,005 144,266 78,565 137,217
Male 81,857 62,185 56,817 102,452 50,199 96,783
Female 36,567 29,183 30,187 41,814 28,366 40,433

Total assets 547,761 191,193 69,731 950,823 284,036 669,788

Demographics
% working (male) 0.89 1.00 0.92 0.88 0.86 0.91
% working (female) 0.79 1.00 0.81 0.78 0.79 0.79
Age (male) 46 45 43 49 46 46
% some college (male) 0.68 1.00 0.55 0.79 0.00 1.00
% some college (female) 0.71 1.00 0.62 0.78 0.44 0.84

Periods per household 5.63 5.00 4.89 6.45 5.21 5.86
Observations 20,866 9,417 11,449 6,686 14,180

Notes: The table reports summary statistics for consumption, income, wealth, and basic demographics in
our baseline sample from the PSID, and in subsamples sorted by wealth and education, over 1999–2019. See
text for variable definitions. Rent for owners is calculated as 6% of the self-reported value of the house.

4.2 Estimation

Estimation follows a three-step approach. In the first step, we compute income and con-

sumption growth net of their predictable components, Xit and Zit, respectively, in model

notation, by regressing real income and consumption growth on a rich set of time effects and
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household characteristics.21 The residuals from these regressions constitute the empirical

counterparts to unexplained income and consumption growth, ∆yit and ∆cit, respectively.

In the second step, we estimate the parameters of the income process – i.e., the second and

higher moments of permanent and transitory shocks – using income data alone. In the third

step, we estimate the transmission parameters of shocks and the moments of taste hetero-

geneity and consumption measurement error; we do so using income and consumption data

conditional on the parameters of the income process from the second stage. We estimate the

second and third step parameters using GMM and an identity weighting matrix.22

We present estimates of the transmission parameters separately for the linear and quadratic

specifications of the consumption function. For the linear function, we first present results

when only second moments of income and consumption growth are targeted, exactly as in

BPP. This purports to replicate BPP over the more recent sample period. We next report

results for the linear function when, in addition to the second moments, third and fourth

moments are also targeted. This helps assess whether and how, through the lenses of the lin-

ear specification, information in the tails of the income distribution affects the measurement

of partial insurance. We then move on to the results from the quadratic specification. Our

choice to estimate the income parameters in an earlier step enables those parameters to re-

main unchanged regardless of the specification of the consumption function fitted. Appendix

B.4 lists the moments targeted in each case.

Given the multi-step approach, we conduct inference using the block bootstrap jointly

over all stages. We thus account for serial correlation and heteroskedasticity of arbitrary

form, as well as for our use of pre-estimated parameters in the later stages of the multi-step

approach. To avoid the standard errors being affected by extreme draws, we apply a normal

approximation to the inter-quartile range of bootstrap replications.23

As we established in section 3, we must use an external estimate for the variance of

income measurement error. We cannot otherwise separate the moments of the transitory

21The full set of controls includes year and year-of-birth dummies, dummies for education, race, region of
residence, family size and number of children (level and change from last period), employment status (current
and past), presence of outside dependents in the family, and presence of income recipients other than the
husband and wife (both current and past). The dummies for education, race, and region are interacted with
the year dummies to allow the effect of these characteristics to vary over time.

22Our baseline results come from equally weighted GMM. A diagonal weighting matrix, where the diagonal
entries are the t-statistics of the sample moments, delivers similar results (not reported here but available
upon request), although we did experience some convergence issues in that case.

23Instead of estimating standard errors as the standard deviation of the parameters’ point estimates across
replications, we compute them as the normalized interquartile range of the replications, i.e., the difference
between the 75th and 25th percentiles divided by the interquartile range of the standard normal cdf. This is
equivalent to applying a normal approximation to the distribution of bootstrap replications, thereby shielding
the standard errors from extreme resampling draws. See Blundell, Pistaferri, and Saporta-Eksten (2016) and
Theloudis (2021) for details. Standard errors without the normal approximation are very similar.
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shock from those of the measurement error. Following Meghir and Pistaferri (2004) and

Blundell, Pistaferri, and Saporta-Eksten (2016), we retrieve the error variance from Bound,

Brown, Duncan, and Rodgers (1994), a popular validation study of the PSID, setting it equal

to 4% of the variance of log income in any given year.24

4.3 Empirical moments of income and consumption

Table 2 reports the empirical second, third, and fourth moments of the cross-sectional dis-

tributions of unexplained income and consumption growth in the sample.

Income moments. Panel A presents the moments of income growth. The variance is 0.153,

while the first-order autocovariance is −0.049 and highly significant.25 The income process

of section 2.1 implies that income growth is negatively first-order autocorrelated due to mean

reversion in the transitory shock, and this is supported by the data.26

The third standardized moment of income growth is −0.143. Despite the small size of the

cross-section and the inherent difficulties in estimating higher moments, the point estimate

misses statistical significance at the 10% level only by a small margin. The point estimate

suggests that income growth exhibits left skewness, i.e., a long left tail. In simple terms,

the left tail of the distribution of income growth (i.e., of income shocks) is longer than the

right tail, so a negative shock is on average more severe, more unsettling, than a positive

one. This feature of the data is in line with Guvenen, Karahan, Ozkan, and Song (2021),

who document strong left skewness in the distribution of male earnings growth using large

administrative data from the U.S. Social Security Administration.

The fourth standardized moment of income growth is 10.032 and, as expected, highly

significant. Income growth is strongly leptokurtic, i.e., it exhibits very high kurtosis. In

simple terms, the distribution of income growth (i.e., of income shocks) has thicker tails but

less mass in the shoulders, relative to a Gaussian density. Shocks are thus either close to the

center of the distribution, i.e., zero, or out in the tails, i.e., rather extreme. This is again

24Bound, Brown, Duncan, and Rodgers (1994) survey workers from a single manufacturing firm in 1983
and 1987. They obtain information on earnings in a way that mimics the PSID questionnaire and coding
practices and compare them to administrative data from the firm. There are two caveats in this approach:
first, the sample of workers in the validation study comes from two decades prior to the data in this paper;
second, we use estimates of error in male earnings to correct for error in household income.

25In contrast to the identifying statements of section 3, the data are biennial so we report moments for
income/consumption growth at a biennial frequency. We maintain the notation ∆xt for the first difference of
variable x over time, noting that this corresponds to a difference over two years. See appendix B for details.

26The second-order autocovariance is an order of magnitude smaller and only marginally significant. This
feature and the biennial nature of the data, whereby the second-order autocovariance reflects correlations 4
calendar years apart, motivates our white noise specification for the transitory shock.
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Table 2: Empirical moments of income and consumption growth

Baseline sample

Income data: PSID PSID
Consumption data: PSID imputed from CEX

(1) (2)

Panel A. Moments of income growth
Var(∆yit) 0.153 (0.005) 0.153 (0.005)
Cov(∆yit,∆yit+1) -0.049 (0.002) -0.049 (0.002)
Skew(∆yit) -0.143 (0.098) -0.143 (0.098)
Cov((∆yit)

2,∆yit+1) 0.009 (0.003) 0.009 (0.003)
Kurt(∆yit) 10.032 (0.509) 10.032 (0.509)
Cov((∆yit)

2, (∆yit+1)
2) 0.080 (0.007) 0.080 (0.007)

Panel B. Moments of consumption growth
Var(∆cit) 0.126 (0.002) 0.323 (0.015)
Cov(∆cit,∆cit+1) -0.044 (0.001) -0.140 (0.009)
Skew(∆cit) -0.039 (0.034) -0.177 (0.083)
Cov((∆cit)

2,∆cit+1) -0.003 (0.001) 0.190 (0.036)
Kurt(∆cit) 4.445 (0.100) 17.109 (2.111)
Cov((∆cit)

2, (∆cit+1)
2) 0.027 (0.001) 0.909 (0.198)

Panel C. Joint moments
Cov(∆yit,∆cit) 0.008 (0.001) 0.012 (0.002)

Notes: The table presents the second, third, and fourth moments of income and consumption growth in the
baseline sample. See text for the definitions of income and consumption. Skewness and kurtosis correspond
to the third and fourth standardized moments respectively. Column 1 reports moments of consumption
internally in the PSID, while column 2 reports moments of consumption imputed from the CEX into the
PSID. See appendix C.2 for details on the imputation. We maintain the notation ∆xt for the first difference
of variable x over time, noting that, given the biennial nature of the data, this corresponds to a difference
over two calendar years. Block bootstrap standard errors are in parentheses.

in line with Guvenen, Karahan, Ozkan, and Song (2021), who also document strong excess

kurtosis in male earnings growth.

Guvenen, Karahan, Ozkan, and Song (2021) focus on male earnings while our model

and, therefore, our statistics for income growth herein, revolve around household disposable

income. To facilitate the comparison, appendix C.1 reports moments of male earnings growth

in our baseline sample. The variance is very similar between the PSID and the U.S. Social

Security Administration data, at 0.271 and 0.323 respectively. Skewness in our sample is

−0.569 (and highly statistically significant) versus −1.039 in the administrative data. While

the nature of skewness is similar in both cases, the population data feature substantially

more left skewness than the PSID; Guvenen, Karahan, Ozkan, and Song (2021) confirm this.

Kurtosis, finally, is identical between the two, at 13.711 and 13.494 respectively.
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Left skewness and excess kurtosis are thus not just features of the growth rates in dis-

posable household income (table 2), but they are also observed in alternative measures of

income, such as male earnings (table C.1, panel A) and household earnings (table C.1, panel

B). Together, left skewness and excess kurtosis suggest that income changes for most house-

holds are either close to their mean value of zero or far out in the left tail (large income

reductions). These results corroborate (and, in fact, are very close numerically with) find-

ings by De Nardi, Fella, and Paz-Pardo (2019) and De Nardi, Fella, Knoef, Paz-Pardo, and

Van Ooijen (2021) over the early period of the PSID.

Consumption moments. Panel B of table 2 presents the moments of consumption growth;

column 1 specifically reports moments from our baseline sample in the PSID. The variance of

consumption growth is very similar to that of income growth (0.126 versus 0.153), reflecting

either a large pass-through of income shocks or large taste heterogeneity/measurement error.

The first-order autocovariance is −0.044 and highly significant. In the context of our model,

this autocovariance reflects the variance of consumption error σ2
uc
t
(see appendix B).

The third standardized moment of consumption growth is −0.039. Albeit not statisti-

cally significant, it is in line with Constantinides and Ghosh (2017), who use the CEX and

document negative skewness in (quarterly) consumption growth. Similar to income growth,

the distribution of consumption growth in the PSID exhibits left skewness, i.e., it has a long

left tail, albeit at a lesser extent than income.27

The fourth standardized moment of consumption growth is 4.445 and highly significant.

There is excess kurtosis and the distribution is thus leptokurtic. In contrast to the distribu-

tion of income, however, excess kurtosis is substantially less pronounced here.

The covariance between income and consumption growth is 0.008. As we established in

section 3, this moment is crucial for the identification of the pass-through of income shocks

into consumption. While we cannot immediately gauge its magnitude, the strong statistical

significance reflects that income shocks do transmit into consumption.

Unlike income, there are neither administrative data on consumption, nor has there been

a validation study for consumption in the PSID.28 As a consequence, we cannot benchmark

our estimates of the consumption higher moments against the literature. The CEX, however,

provides high quality consumption data for a representative sample of the U.S. population,

27The covariance between squared consumption growth and one-period-ahead consumption growth iden-
tifies, in the context of the linear model, the skewness of consumption error. The covariance is small, so
measurement error does not contribute much to the negative skewness in consumption.

28Nevertheless, Andreski, Li, Samancioglu, and Schoeni (2014) and Li, Schoeni, Danziger, and Charles
(2010) compare consumption in the PSID and in the CEX; Meyer and Sullivan (2023) offer a critical discussion
of the CEX data against the PSID.
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although it lacks a panel dimension. We can thus use the CEX to select a sample of house-

holds as close to our baseline as possible, and estimate similar cross-sectional moments across

the surveys. The CEX is useful also for another reason. Since the PSID collected little con-

sumption data prior to 1999, the early literature on consumption insurance, notably BPP,

resorted to imputing expenditure from the CEX into the PSID. To facilitate the comparison

with BPP, we can use the CEX to replicate the consumption imputation into the PSID. This

is not strictly needed in our case (the PSID provides comprehensive data over our sample

period) but the imputation is nevertheless informative, as we illustrate later.

Consumption in the CEX. We use CEX interview survey data over 1999-2019 and select

a sample of stable married households that mimics closely our baseline selection in the PSID.

We report details on the sample selection in appendix C.2.

Appendix table C.2 offers a comparison between the PSID and CEX samples over time.

The two samples are very close with respect to age, family size, number of children, education,

or labor market participation of the wife and the husband. Household income is higher in the

PSID; BPP noted this and argued that it may be due to the more comprehensive definition

of income in the PSID. Food expenditure in the PSID is also higher, which is in contrast to

BPP who find that food expenditure over the earlier period 1980–1992 is similar across the

two surveys. Consequently, overall consumption in the PSID is, on average, higher by about

25% than a similarly selected sample in the CEX.

Appendix figure C.1 plots the variance, skewness, and kurtosis of log consumption in the

PSID and CEX samples. The patterns for the variance and kurtosis are quite similar in the

two surveys over time, though the variance in the PSID is lower and the kurtosis is slightly

higher. Skewness, however, is markedly different. Skewness of log consumption is strongly

positive in the PSID, while it is mostly negative in the CEX; the patterns also diverge over

time. Overall, these statistics suggest that consumption across otherwise similar samples in

the PSID and CEX exhibits notable differences over our sample period.

This comparison, so far, is not informative about the moments of consumption growth,

which is the relevant variable in our case. The CEX lacks the panel dimension needed for

our analysis, so it cannot be used to obtain measures of annual (or biennial) consumption

growth. This is why BPP imputed consumption from the CEX into the PSID: the CEX

lacked the necessary panel dimension while the PSID lacked comprehensive consumption data

before 1999. We repeat BPP’s imputation over the recent years (i.e, in our sample period

1999–2019). The imputation consists of the estimation of food demand in the CEX (food

expenditure expressed as a function of prices and nondurable consumption), the inversion

of demand under standard assumptions, and the use of the inverted equation to impute
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nondurable consumption in the PSID based on food that is available in both surveys. This

allows us to obtain an alternative, external measure of consumption in the PSID – and thus

of consumption growth. Appendix C.2 provides details about the imputation.

The moments of imputed consumption growth are in column 2 of table 2. The variance

at 0.323 is two-and-a-half times higher than the variance in the true series (column 1). In

fact, the variance of imputed consumption growth is more than double the variance of income

growth. The higher-order moments also differ markedly between the imputed and true series.

Skewness in imputed consumption growth is −0.177 (versus −0.039 in the true series), while

kurtosis is 17.109, almost four times higher than kurtosis in the true series.29

The main qualitative features of the distribution remain, however, similar. Consumption

growth is non-Gaussian no matter which angle one looks at it. Nevertheless, the imputa-

tion likely imparts substantial measurement/imputation error to consumption, which likely

explains why the second and higher-order moments are several-fold accentuated relative to

the true series. Since the imputation is not strictly needed over our sample period, we use

consumption internally available in the PSID as our baseline measure of consumption when

estimating the model. Yet, the present analysis suggests that we may not want to rely

too much on the higher-order moments of consumption, especially given the discrepancy in

skewness of log consumption between PSID and CEX (this discrepancy is independent of

the imputation). Fortunately, identification in the quadratic specification does not use such

higher-order consumption moments, as we illustrated in section 3.3.

5 Results

We present our baseline results assuming stationarity of the distributions of income shocks,

taste heterogeneity, and consumption measurement error. We also assume constant trans-

mission parameters of income shocks over the lifecycle. We relax the stationarity/lifecycle-

invariance assumptions in section 5.4.

5.1 Income process

We present estimates of the income process in three specifications. First, we target only

second moments of income growth, which enables us to estimate the second moments of

income shocks. This is similar to what BPP do over the earlier period 1980–1992. Second,

we target second and third moments of income growth, which enables us to estimate also the

skewness of income shocks. Finally, we target up to the fourth moments of income growth,

29Appendix C.2 reports additional summary statistics for imputed consumption.
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which allows us to estimate all the parameters of the income process as presented in section

2.1. The results from each specification appear in table 3, columns 1-3, respectively. The

full set of moments targeted in each case is shown in appendix B.4.1.

When only the second moments of income growth are targeted, we estimate the variance

of permanent and transitory shocks at 0.027 and 0.033 respectively. These are very close

to BPP and Meghir and Pistaferri (2004), who estimate these parameters over an earlier

period. As the variance of income growth is driven by the variance of the contemporaneous

permanent shock and the sum of the variances of transitory shocks in the current and previous

periods, the contribution of the transitory shock to the variance of income growth is almost

2.5-fold that of the permanent shock (as in Gottschalk and Moffitt, 2009).

Targeting the third moments of income growth (in addition to the second moments)

leaves the variances of shocks unchanged. The third moments convey additional information

about the skewness of shocks, which we estimate at −0.947 and −1.310 for the permanent

and transitory shock respectively (third standardized moment). Both shocks thus exhibit

substantial negative skewness, i.e., their distribution has a much longer left than right tail.

This is consistent with Geweke and Keane (2000) who find left skewness of earnings shocks

in the early PSID, and Theloudis (2021) who finds left skewness of wage shocks in the recent

period. Assuming for now that good and bad shocks transmit similarly into consumption,

the long left tail implies that bad shocks are more damaging than good ones because they

are typically further away from the zero mean – they are more extreme. This is true for both

permanent and transitory shocks. Skewness of income growth, however, is driven mostly by

permanent shocks (fully so under stationarity). Therefore, if targeting the third moments of

income growth subsequently changes the degree of consumption insurance in the household,

this must reflect the implications of permanent rather than of transitory shocks.

Targeting all moments of income growth up to fourth-order leaves the third central mo-

ments of permanent and transitory shocks unchanged and modifies the variances only by

little (0.030 versus 0.027 and 0.031 versus 0.033, respectively). The fourth moments convey

additional information about the kurtosis of shocks, which we estimate at 44.393 and 49.226

respectively (fourth standardized moment). In both cases, the distributions are highly lep-

tokurtic: they are sharp pointed around the mean, have relatively little mass in the shoulders

and very fat tails. This is consistent with Busch and Ludwig (2021), who use the PSID until

2012 and estimate numerically similar kurtosis coefficients for both types of shocks. Together

with left skewness, large excess kurtosis implies that most households experience either neg-

ligible shocks (shocks close to the zero mean) or shocks that are quite bad. Ignoring these

stark features of income shocks may lead to erroneous inference of the degree of consumption

partial insurance, to which we now turn.
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Table 3: Estimates of the income process, baseline sample

Income moments: 2nd 2nd, 3rd 2nd, 3rd, 4th

Income data: PSID PSID PSID
(1) (2) (3)

Panel A. Permanent shocks
Variance σ2

ζ 0.027 0.027 0.030
(0.002) (0.002) (0.002)

Skewness γζ central -0.004 -0.004
(0.003) (0.003)

standardized -0.947 -0.831
(0.649) (0.571)

Kurtosis κζ central 0.039
(0.007)

standardized 44.393
(11.080)

Panel B. Transitory shocks
Variance σ2

v 0.033 0.033 0.031
(0.002) (0.002) (0.003)

Skewness γv central -0.008 -0.008
(0.003) (0.003)

standardized -1.310 -1.431
(0.510) (0.566)

Kurtosis κv central 0.048
(0.005)

standardized 49.226
(10.119)

Notes: The table presents the estimates of the parameters of the income process, assuming stationarity over
time/lifecycle. Column 1 presents parameter estimates when only the second moments of income growth are
targeted; column 2 targets also third moments; column 3 targets all moments up to fourth-order. Estimation
is via equally weighted GMM; block bootstrap standard errors are in parentheses.

5.2 Linear consumption function

We present estimates of the linear consumption function, first, targeting only second mo-

ments of the joint income-consumption distribution and, subsequently, targeting second as

well as higher-order moments of the joint distribution. The full set of moments targeted in

each case is shown in appendix B.4.2.

Targeting second-order moments only. The estimation of the linear consumption func-

tion targeting second moments alone is effectively a replication of BPP over the recent years
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(1999-2019) while using consumption data that are internally available in the PSID.30 This

replication is important in its own right. The recent years offer superior consumption data

(in the sense that we do not need to rely on a consumption imputation from the CEX),

thus reducing the scope of measurement/imputation error. The data, however, come at a

biennial rather than annual frequency. Moreover, there have been many changes in taxation

and redistribution policies since 1980–1992, the original period studied in BPP, which may

matter for the extent of partial insurance available to households today (see Borella, De

Nardi, Pak, Russo, and Yang, 2022, for a discussion of such changes).31

The results are in column 1 of table 4. We estimate the transmission parameter of

permanent shocks at ϕ(1) = 0.152. A 10% permanent change in income thus results in only

1.52% shift in consumption. This reflects a very low pass-through of permanent shocks and

a substantial degree of consumption insurance. While highly significant, the estimate for ϕ(1)

is strikingly different from BPP, whose baseline estimate of 0.64, four times bigger, indicates

a much larger pass-through of permanent shocks and a much lower degree of insurance.

By contrast, we find evidence of full insurance to transitory shocks, similarly to BPP. We

estimate the pass-through of said shocks at ψ(1) = −0.006, statistically indistinguishable

from zero. Therefore, transitory shocks do not pass through into consumption.32

What explains the discrepancy in ϕ(1) with BPP? As suggested earlier, there are a few

important differences between our replication and the original exercise in BPP: new consump-

tion data and a different time period. To help decipher their role, we impute consumption

from the CEX into the PSID in the same way BPP did for the earlier period, and we repeat

the estimation; see appendix C.2 for details on the imputation. The results are in column

2 of table 4. The transmission parameter of permanent shocks doubles to ϕ(1) = 0.288,

while the transmission parameter of transitory shocks remains statistically zero (though at

a larger magnitude). Using imputed consumption data thus inflates the pass-through of

permanent shocks, substantially lowering the degree of partial insurance. This is most likely

the byproduct of measurement/imputation error, evident in the variance σ2
uc

of consumption

error that almost quadruples between the true series (column 1) and the imputed data from

the CEX (column 2).33 By contrast, the variance of taste heterogeneity σ2
ξ remains similar in

30We use the pre-estimated second moments of income shocks obtained while targeting only the second
moments of income growth, i.e., column 1 of table 3.

31The nature and size of families and family networks may have also changed over the last 5 decades,
thus affecting various informal insurance channels available to households.

32Commault (2022) generalizes BPP’s linear consumption function by allowing past transitory shocks to
enter the specification in (4). She then finds a strong consumption response to transitory income, similar
to the response estimated from quasi-experimental data. We abstract from this generalization, as our focus
here is on higher-order income moments and on non-linearities in the consumption response.

33The large extent of consumption measurement/imputation error is also evident in the comparison of
the consumption moments of the true vs. imputed series in table 2, as well as in appendix figure C.1.
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Table 4: Estimates of the consumption function, baseline sample

Consumption fn.: Linear Quadratic

Income moments: 2nd 2nd 2nd, 3rd 2nd, 3rd, 4th 2nd, 3rd, 4th

Consumption data: PSID CEX PSID PSID PSID
(1) (2) (3) (4) (5)

ϕ(1) 0.152 0.288 0.160 0.112 0.134
(0.028) (0.044) (0.029) (0.041) (0.026)

ψ(1) -0.006 -0.109 -0.012 0.007 -0.003
(0.045) (0.078) (0.038) (0.056) (0.052)

ϕ(2) -0.040
(0.026)

ψ(2) 0.015
(0.034)

ω(22) 0.320
(0.770)

σ2
ξ 0.019 0.019 0.019 0.020 0.019

(0.001) (0.004) (0.001) (0.001) (0.001)
γξ -0.001 -0.001

(0.001) (0.001)
κξ 0.005

(0.001)

σ2
uc

0.044 0.140 0.044 0.044 0.044
(0.002) (0.009) (0.002) (0.001) (0.002)

γuc 0.002 0.002
(0.001) (0.001)

κuc 0.013
(0.001)

Notes: The table presents the estimates of the parameters of the consumption function, assuming homoge-
neous transmission parameters over the lifecycle/in the cross-section and stationarity of taste heterogeneity
and consumption measurement error. Columns 1-4 present parameter estimates in the linear function, while
column 5 presents estimates in the quadratic case; the order of moments targeted in each case is shown at
the top of the table. Except for column 2 where we use imputed data from the CEX, all other columns use
consumption data internally available in the PSID. Appendix table C.4 shows additional results from the
CEX. Estimation is via equally weighted GMM; block bootstrap standard errors are in parentheses.

the two cases, and also very close to BPP. The imputation, therefore, seems to bring in large

amounts of measurement error, explaining about 1/3 of the difference between our lower ϕ(1)

and BPP’s higher estimate. We report additional insights in appendix C.2.

Although the imputation inflates ϕ(1), the inflated value in column 2 is still substantially

lower than BPP. The PSID switched in 1997 from annual to biennial frequency. It is thus

possible that at the lower frequency certain higher frequency income shocks are smoothed
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out or undone by subsequent shocks. To assess this, we would need to re-estimate our model

on annual growth rates, which is impossible after 1997. However, we can use the original

BPP data over 1980–1992 to estimate the model annually versus biennially. We do this in

appendix C.3. While we obtain ϕ(1) = 0.64 using annual growth rates (exactly as BPP), this

drops to ϕ(1) = 0.4–0.5 using biennial rates. The biennial nature of the modern data may thus

explain another 1/3 of the difference between our lower ϕ(1) and BPP’s higher estimate.34

We attribute the remaining gap to calendar time effects, e.g., changes in taxes/benefits or

other insurance channels between 1980–1992 and 1999–2019. It is worth noting that we are

not the first paper to find such a low pass-through of permanent shocks in the recent years;

Arellano, Blundell, and Bonhomme (2017) and Arellano, Blundell, Bonhomme, and Light

(2023) use the modern PSID and find (in the specification closest to ours) a pass-through of

about 0.2, numerically close to us.

Introducing higher-order moments. The estimation of the linear consumption function

targeting higher-order moments is our first attempt to uncover how the tails of income risk

affect the pass-through of shocks into consumption. In other words, we want to measure

the degree of partial insurance going beyond the workhorse income-consumption covariance

to account for the non-Gaussian features of modern income dynamics. We introduce the

higher-order moments incrementally; we first target third moments (in addition to second);

we then introduce fourth moments (in addition to second and third).35

Column 3 of table 4 presents the results from targeting third- in addition to second-order

moments of consumption and income. The partial insurance parameters remain largely

unchanged upon inclusion of the third moments. We estimate ϕ(1) = 0.160 (as opposed to

0.152 with second moments only) and ψ(1) = −0.012 (again indistinguishable from zero).

We thus again find large partial insurance to permanent shocks (a 10% permanent change

in income results in only 1.6% shift in consumption) and full insurance to transitory shocks.

Skewness in taste heterogeneity and consumption error is small (much smaller than skewness

in income shocks), while their variances remain unchanged from the specification with second

moments only. Therefore, left skewness in consumption is driven by negatively skewed income

shocks rather than by taste heterogeneity or consumption measurement error.

Column 4 of table 4 presents the results from targeting all income and consumption mo-

34In both annual and biennial cases, ϕ(1) measures the pass-through of the permanent shock at an annual
rate. This becomes clear in appendix B that shows the estimating equations with biennial data. The
difference in the estimates of ϕ(1) between the two cases arises because with biennial data we only measure
an ‘aggregate’ pass-through within a given biennial period. Consequently, some higher-frequency shocks will
be inevitably smoothed out at the observed lower frequency and their transmission will be muted.

35We use pre-estimated income parameters targeting, respectively, up to 3rd moments of income growth
(column 2, table 3) and up to 4the moments of income growth (column 3, table 3).
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ments up to fourth-order. The earlier findings hold up. We estimate ϕ(1) = 0.112 (versus

0.152 and 0.160 in the lower-order cases) and ψ(1) = 0.007 (indistinguishable from zero). A

10% permanent change in income thus results in 1.12% shift in consumption. Therefore, if

anything, we find evidence for slightly more insurance to permanent shocks upon inclusion

of the fourth-order moments. The dispersion and skewness of taste heterogeneity and con-

sumption error do not change much from the lower-order cases; we find evidence for excess

kurtosis in both cases, albeit at a much lesser extent than for income shocks.36

Clearly, targeting higher-order moments in the context of the linear consumption function

has not altered the degree of partial insurance vis-à-vis targeting second-order moments

alone. This seems counterintuitive given that tail income risk has been shown to matter for

various phenomena in finance and macro. For example, tail risk explains asset pricing puzzles

in Constantinides and Ghosh (2017) and plays a crucial role in business cycles in McKay

(2017). Thematically closer to us, Ai and Bhandari (2021) show that tail risk is uninsured

in realistically parameterized labor markets, while Busch and Ludwig (2021) find sizable

welfare implications of higher-order risk. One would thus expect that tail risk increases the

pass-through of shocks, as there must be a limit beyond which households cannot further

insure consumption against extreme events.37

Yet, the linear consumption function leaves no room to such events. BPP rely on a log-

linearization of the optimal consumption path around a lifecycle ‘steady-state’ (appendix A).

But tail events move the agent far from such ‘steady-state’: if utility is sufficiently concave,

a large shock would command a large consumption response. A linearized marginal utility,

however, will fail to pick up such large response (echoing Carroll, 2001), which in turn likely

explains why we do not see much action upon including higher-order moments. In other

words, tail risk has, by design, no role in the linear consumption function, which in turn

motivates and justifies our higher-order specification subsequently.

To summarize our findings from the linear consumption function: 1.) we replicate BPP over

the recent years and find much lower pass-through of permanent shocks (larger degree of

partial insurance); the imputation of consumption from the CEX and the biennial nature of

36Appendix table C.4 uses imputed consumption from the CEX to target higher-order moments as in
columns 3-4, table 4. We do see slightly higher pass-through of permanent shocks upon inclusion of the
higher-order moments, but we also find a strong, significant, and negative response to transitory shocks,
which is hard to explain. We do not think those results are very credible; the imputation brings in substantial
measurement/imputation error, which becomes worse the higher the order of the target moments is.

37Similar to our results with fourth moments, De Nardi, Fella, and Paz-Pardo (2019) and Busch and
Ludwig (2021) find slightly higher insurance with non-normal vs. normal income shocks, which they attribute
to stronger precautionary motives. Busch and Ludwig (2021) caution against BPP’s linear framework,
showing evidence of bias in the presence of tail risk. Our quadratic specification addresses their concern.
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the modern PSID explain the bulk of the difference from BPP; 2.) targeting higher-order

moments does not alter the degree of consumption partial insurance, which is not entirely

surprising as tail risk has, by design, no role in the linear framework.

5.3 Quadratic consumption function

We now turn to the estimation of the quadratic consumption function. The results appear

in column 5 of table 4; the full set of targeted moments is shown in appendix B.4.3.38,39

We estimate the transmission parameter of the average permanent shock (the coefficient

on the linear part of a polynomial in the permanent shock) at ϕ(1) = 0.134, highly significant

and close to the values 0.11–0.16 obtained from the linear specification. We estimate the

transmission parameter of the average transitory shock (the coefficient on the linear part of

a polynomial in the transitory shock) at ψ(1) = −0.003, statistically indistinguishable from

zero. As ϕ(1) and ψ(1) remain largely unaltered relative to the linear case, interest lies in the

transmission parameters of the typical shocks away from the middle of the distribution, i.e.,

the coefficients on the quadratic part of a polynomial in the shocks. We estimate a negative

ϕ(2) = −0.04 for permanent shocks (statistically significant at the margin for now), while we

estimate a positive ψ(2) = 0.015 for transitory shocks (statistically insignificant for now). The

coefficient ω(22) on the product of permanent and transitory shocks is large but imprecisely

estimated. The variance of taste heterogeneity σ2
ξ and consumption measurement error σ2

uc

remain effectively unchanged from the linear case.40

The values of ϕ(2) and ψ(2) have important implications for the pass-through of shocks

into consumption. To help interpret the results, recall that the pass-through of permanent

shocks is given by (6), that is, it depends on ϕ(1), ϕ(2), ω(22), and on the magnitudes and

signs of both income shocks. If, for simplicity, we set the transitory shock to its mean value

(vit = 0) and plug in the parameter estimates from table 4, we get

∂∆cit/∂ζit = 0.134− 0.08× ζit.

38Estimation of the quadratic consumption function requires up to 4th-order moments of the income
shocks, so we use the pre-estimated income parameters from column 3, table 3.

39The consumption-income moments targeted in the quadratic case differ from the moments targeted in
the most general linear case, i.e., in column 4, table 4. This is because in the quadratic case certain 3rd-
and 4th-order consumption moments require up to 8th moments of income shocks, which we do not model.
This raises an issue of comparability between the linear and quadratic specifications, as the target moments
differ (appendix table B.2). However, we can estimate the linear function targeting the exact same moments
that we use in the quadratic case, as the linear function is identified by a smaller set of lower-order moments
anyway (section 3). Our estimates of the linear function in that case do not differ from those in column 4,
table 4, so estimation is robust to the choice of moments. These results are available upon request.

40Skewness and kurtosis of taste heterogeneity and consumption error are not identified because they
require higher-order moments of consumption, which depend on higher than fourth-order moments of income.
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Two main results follow.

First, bad (negative) permanent shocks are more hurtful than good (positive) ones be-

cause they are associated with a much larger transmission parameter into consumption. Con-

sider, for example, a large permanent shock to household income, ζit = ±0.5, approximately

three standard deviations away from the mean. If the shock is negative (ζit = −0.5), then

∂∆cit/∂ζit = 0.174; by contrast, if the shock is positive (ζit = 0.5), then ∂∆cit/∂ζit = 0.094.

We can generalize this to bad and good shocks of any magnitude and conclude that

∂∆cit
∂ζit

∣∣∣∣
ζ<0

>
∂∆cit
∂ζit

∣∣∣∣
ζ>0

.

Therefore, bad permanent shocks are not just more extreme than good shocks, i.e., further

away from the zero mean – see left skewness in table 3, but they also have much larger

pass-through rates into consumption. Bad permanent shocks are thus double hurtful.

Second, severe bad shocks are more hurtful than moderate ones because they too are

associated with larger transmission parameters into consumption. Contrast, for example, a

very large permanent bad shock, ζit = −0.7, about four standard deviations away from the

mean, with a moderate one, ζit = −0.07, half standard deviation from the mean. In the first

case, ∂∆cit/∂ζit = 0.19 while in the latter case ∂∆cit/∂ζit = 0.139. We can generalize this

to bad shocks of any magnitude and conclude that

∂∆cit
∂ζit

∣∣∣∣
ζ<<<0

>
∂∆cit
∂ζit

∣∣∣∣
ζ<0

.

This result is not hard to comprehend. When a bad shock hits, households can insure

consumption by running down savings or by using other formal or informal insurance ar-

rangements. But there is clearly a limit to this. As the magnitude of the bad shock increases,

these insurance arrangements will be eventually exhausted, thus resulting in a larger fraction

of the shock eventually transmitting into consumption.41

Why would a positive or small shock be better insured? While we cannot assess candidate

mechanisms without a structural model, our best explanation is that people save a good

income shock (thus consumption does not respond much) but they dissave in the presence

of a bad one. As there is clearly a limit to how much households can dissave or borrow,

especially in the presence of borrowing constraints, a large negative shock would typically

affect consumption by relatively more.

41The parameter estimates also imply that the pass-through of a good shock decreases with its magnitude.
While this seems counterintuitive, recall that extreme good shocks are rare in our data, which follows from
left skewness and excess kurtosis in table 3. We should thus not extrapolate the implications of the parameter
estimates for the case of extreme good shocks, as such shocks are effectively not present in our sample.
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Our finding of asymmetric consumption response to bad versus good income news has

recently been documented in multiple survey questions in which subjects directly report

how they would react in different hypothetical scenarios. Based on the 2011-2014 Bank of

England/NMG Consulting Survey, Bunn, Le Roux, Reinold, and Surico (2018) find that the

marginal propensity to consume from negative income shocks is larger than from positive

shocks. Similarly, Christelis, Georgarakos, Jappelli, Pistaferri, and van Rooij (2019) and

Fuster, Kaplan, and Zafar (2020) find that responses to losses are much larger than responses

to gains, and the magnitude of the response increases with the magnitude of the shock. While

their hypothetical shocks are more transitory in nature, they argue that these responses are

consistent with lifecycle models with concave utility and borrowing constraints.42

Moving on to transitory shocks, their pass-through is given by (7); this depends on ψ(1),

ψ(2), ω(22), and on the magnitudes and signs of both income shocks. If we set the permanent

shock to its mean value (ζit = 0) and plug in the parameter estimates from table 4, we get

∂∆cit/∂vit = −0.003 + 0.03× vit.

Unlike the transmission parameters of permanent shocks, neither ψ(1) nor ψ(2) are statistically

significant in the full sample. This implies that transitory shocks, be they good or bad,

moderate or extreme, do not pass through into consumption. This is similar to our findings

for the linear case as well as to BPP. By contrast, this is not the case for certain well-defined

subsamples, but we postpone the discussion of the subsamples for section 5.4.

Despite the lack of statistical significance, the partial derivative with respect to transitory

shocks has, at face value, an interesting implication: large good transitory shocks have a

numerically larger pass-through than smaller ones, whose pass-through is economically zero.

While we should be cautious in drawing conclusions about extreme good transitory shocks

(given left skewness and excess kurtosis, large good transitory shocks are not present in our

sample), this implication helps reconcile the large pass-through found in quasi-experimental

studies with the negligible pass-through found in BPP and other semi-structural studies that

use covariance restrictions on survey data. The former studies typically exploit large and

infrequent transitory episodes (e.g., tax rebates or lotteries as in Parker, Souleles, Johnson,

and McClelland, 2013; Misra and Surico, 2014; Fagereng, Holm, and Natvik, 2021), which

are unlikely to be present in the pooled survey data that the latter studies exploit (e.g.,

BPP, Blundell, Pistaferri, and Saporta-Eksten, 2016; Theloudis, 2021). In an environment

42This is precisely the type of model that Busch and Ludwig (2021) simulate; they find larger consump-
tion pass-through of negative permanent shocks versus positive ones. While we do not model borrowing
constraints here, a strength of our approach is that it enables us to measure partial insurance in the data
without taking a stance on the precise underlying structural model/economic mechanism at play.
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where the transmission of shocks depends on their magnitude, these two types of settings

will lead to opposite conclusions. Our nonlinear consumption function reconciles the two by

permitting transitory shocks to pass through to consumption at a varying rate that depends

on the shocks’ magnitude and sign.

To summarize our findings from the quadratic consumption function: 1.) bad permanent

shocks reduce consumption by more than good permanent shocks of the same magnitude

increase it; 2.) severe bad permanent shocks reduce consumption by more than moderate

ones do. Tail risk from permanent income shocks thus matters for consumption. For a

given value of ϕ(1), the econometrician will overestimate the true degree of partial insurance

against bad permanent shocks if she assumes a linear consumption function instead of the

nonlinear specification herein. By contrast, transitory shocks, be they good or bad, small or

large, do to not impact consumption, at least not in a statistically significant way.43

5.4 Sensitivity to age, wealth, and education

If bad permanent shocks impact consumption more severely than good ones, one would

expect this asymmetry to be influenced by household age, wealth, or education, all of which

seem to matter for the insurance means available to households. To assess this claim, we

repeat the estimation over subsamples sorted on the basis of these household characteristics.

We first consider how partial insurance changes with age, by repeating the estimation

over three, almost equally sized, subsamples of households with the male spouse between

30–40, 41–50, and 51–65 years old respectively.44 Intuitively, the transmission parameters

of income shocks should exhibit some age dependence since wealth accumulates over the life

cycle, which in turn influences the household’s ability to insure against income fluctuations.

In fact, the derivation of the consumption function in appendix A shows that the transmis-

sion parameters are linked to the share of financial wealth in the household’s total wealth

(comprising financial assets and lifetime income); for example, ϕ
(1)
it = 1 − πit, where πit is

the aforementioned share of financial wealth. Therefore, ϕ
(1)
it should decrease monotonically

over the lifecycle as households gradually accumulate more wealth.

The results appear in table 5. Column 1 presents results from the linear specification

when only second-order income and consumption moments are targeted. The transmission

parameter ϕ(1) exhibits a non-monotonic pattern over the three age brackets – decreasing

from 0.154 over ages 30–40 to 0.126 over 41–50 before increasing to 0.180 over ages 51–65.

43Appendix table C.4 shows that similar conclusions are obtained if we use consumption imputed from the
CEX. In particular, ϕ(2) < 0 (albeit not statistically significant), with a magnitude similar to that obtained
directly from the PSID (−0.036 versus −0.04), and ψ(2) > 0.

44We target the same moments as earlier, broken down by the age of the male spouse. The moments of
income shocks are also age-specific but we do not report those results for brevity.
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A similar non-monotonic pattern is observed in column 2, where second- and third-order

moments are targeted, and is further accentuated in column 3 where all moments up to

fourth-order are included in the estimation. This is again indicative of potential misspecifi-

cation in the linear function, in the sense that its theoretical restrictions are not supported

by the empirical results.45 By contrast, the transmission parameter ψ(1) is statistically in-

distinguishable from zero in all three age brackets.

Column 4 presents the results from the quadratic specification. In this case, ϕ(1) decreases

monotonically with age, so the average permanent shock (the shock close to the mean of the

distribution) impacts consumption gradually less as households age. In line with theory, this

pattern reflects the age-increasing role of financial wealth for self-insurance. Perhaps more

importantly, ϕ(2), the transmission parameter of the typical shock away from the mean, also

decreases monotonically with age. ϕ(2) drops from 0.006 to −0.008 as we move from ages

30–40 to ages 41–50 (neither statistically significant) and becomes large and statistically

significantly negative at ϕ(2) = −0.105 in the 51–65 age bracket. As a result, large negative

permanent shocks impact consumption more severely at older than at younger ages.

The last finding echoes Guvenen, Karahan, Ozkan, and Song (2021), who show that skew-

ness of earnings growth becomes more negative with the level of earnings and, consequently,

with the earner’s age on average. There is more room for income to fall sharply in this

case than among the low-earners (and therefore the young). In fact, we do find larger left

skewness in income growth as households age in the PSID and a more negative coefficient of

skewness of permanent shocks among older households.46 So, not only do permanent shocks

become more negative as households age, but they also transmit into consumption at an in-

creasingly larger rate. In other words, not only is there more room for income to fall among

older earners, but this also causes even greater harm to consumption as households age.

By contrast, despite a similar pattern for transitory shocks, their transmission parameters

remain statistically indistinguishable from zero over the entire lifecycle.

We next consider two subsamples formed on the basis of household wealth. We define

a household as ‘low wealth’ (‘high wealth’) if its average wealth over its entire observation

window is less (more) than median real wealth in the sample over 1999–2019. Wealth is

defined as the sum of home equity (value of main house minus mortgage), other estates,

vehicles, value of any business, investment, pension wealth, savings, and other assets, net of

45This conclusion seems to be consistent with BPP who find a decreasing pattern with age only when
they impose a linear age trend on the transmission parameters. By contrast, when they generalize this to a
quadratic trend, they report a worsening of their results without including further details.

46The coefficient of skewness of permanent shocks more than triples in magnitude from −0.65 to −2.39
as we move from ages 30–40 to 51–65. The coefficient of skewness of transitory shocks, by contrast, does not
change much with the age – its estimate is −1.43 and −1.45, respectively, over ages 30–40 and 51–65.
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Table 5: Estimates of the consumption function, by age

Consumption fn.: Linear Quadratic

Income moments: 2nd 2nd, 3rd 2nd, 3rd, 4th 2nd, 3rd, 4th

Consumption data: PSID PSID PSID PSID
(1) (2) (3) (4)

ϕ(1) 30-40 0.154 (0.045) 0.164 (0.051) 0.089 (0.058) 0.149 (0.050)
41-50 0.126 (0.051) 0.146 (0.055) 0.079 (0.089) 0.115 (0.049)
51-65 0.180 (0.049) 0.175 (0.051) 0.136 (0.061) 0.113 (0.057)

ψ(1) 30-40 0.094 (0.079) 0.083 (0.073) 0.095 (0.107) 0.105 (0.090)
41-50 0.010 (0.079) -0.016 (0.072) -0.075 (0.061) 0.019 (0.090)
51-65 -0.046 (0.070) -0.044 (0.066) 0.037 (0.101) -0.063 (0.088)

ϕ(2) 30-40 0.006 (0.040)
41-50 -0.008 (0.063)
51-65 -0.105 (0.054)

ψ(2) 30-40 0.036 (0.061)
41-50 0.048 (0.046)
51-65 -0.052 (0.079)

ω(22) 30-40 -1.090 (1.465)
41-50 -0.290 (1.195)
51-65 3.003 (1.306)

σ2
ξ 30-40 0.014 (0.002) 0.014 (0.002) 0.016 (0.002) 0.013 (0.004)

41-50 0.022 (0.002) 0.022 (0.002) 0.022 (0.002) 0.022 (0.002)
51-65 0.021 (0.002) 0.021 (0.002) 0.023 (0.002) 0.010 (0.008)

γξ 30-40 -0.001 (0.001) -0.001 (0.001)
41-50 0.006 (0.001) 0.006 (0.002)
51-65 -0.006 (0.002) -0.006 (0.002)

κξ 30-40 0.004 (0.002)
41-50 0.007 (0.002)
51-65 0.006 (0.002)

σ2
uc

30-40 0.046 (0.003) 0.046 (0.003) 0.046 (0.003) 0.046 (0.003)
41-50 0.040 (0.002) 0.040 (0.002) 0.040 (0.002) 0.040 (0.002)
51-65 0.043 (0.002) 0.043 (0.002) 0.043 (0.002) 0.043 (0.002)

γuc 30-40 0.000 (0.002) 0.000 (0.002)
41-50 0.002 (0.002) 0.002 (0.002)
51-65 0.004 (0.002) 0.004 (0.002)

κuc 30-40 0.014 (0.003)
41-50 0.012 (0.002)
51-65 0.012 (0.002)

Notes: The table presents the estimates of the parameters of the consumption function, allowing them to
vary over ages 30–40, 41–50, and 51–65 of the male spouse. Columns 1-3 present parameter estimates in
the linear function, while column 4 presents estimates in the quadratic case; the order of moments targeted
in each case is shown at the top of the table. All columns use consumption data internally available in the
PSID. Estimation is via equally weighted GMM; block bootstrap standard errors are in parentheses.
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medical, student, and credit card debt. Table 1 provides summary statistics for the wealth

subsamples. Average wealth in the first group is $69,731 in 2018 prices, while the second

group has 14 times more wealth, an average of $950,823. Income and earnings are almost

twice as much in the second group, while consumption is only 30% higher. Labor force

participation is slightly higher in the low-wealth sample.

Table 6, columns 1-2, presents the results in the quadratic model.47 Three points emerge.

First, ϕ(1) is more than twice as large among the low vis-à-vis high wealth households (0.212

versus 0.091). As ϕ(1) measures the transmission of the average permanent shock, low wealth

households exhibit a larger pass-through of average shocks, i.e., they are less able to insure

against them, compared to high wealth households. Second, ϕ(2) < 0 for both groups, albeit

statistically insignificant. With the caveat of insignificance, the magnitude of ϕ(2) is big-

ger among the wealthy. Large negative permanent shocks thus impact consumption of the

wealthy more severely than they do among the less wealthy. As in the case of older house-

holds previously, there is more room for consumption to fall sharply among the wealthier.

Third, ψ(2), the transmission parameter of the typical transitory shock away from the mean,

is negative, large, and statistically significant among the less wealthy. Transitory shocks thus

have an asymmetric pass-through among lower wealth households, with large bad shocks re-

ducing consumption substantially more than good shocks increase it (expression (7)). So

while average transitory shocks are fully insured among low wealth households, larger neg-

ative transitory shocks are not : they reduce consumption quite substantially as low wealth

households lack the self-insurance means to smooth out even transitory fluctuations.

We finally turn to the role of education. We define a household as ‘no college’ (‘some

college’) if the male spouse has not gone to college (has some college education). Table 1

provides summary statistics. Those with some college education earn 70% more income,

they have more than twice as much wealth, they consume about 30% more, while they also

work slightly more than those without college education.

Table 6, columns 3-4, presents the results in the quadratic model.48 Similar to the pat-

terns observed by wealth, we find that ϕ(1) is higher (double) for households without college

education (0.219 versus 0.105). The pass-through of the average permanent shock is there-

fore larger among the lower educated, presumably because of the lower wealth that these

households hold. ϕ(2) is negative in both groups, suggesting that large bad permanent shocks

47Appendix table C.5, columns 1-4, presents the parameter estimates in the linear model. ϕ(1) is consis-
tently smaller among the high wealth households, regardless of which set of moments are targeted. ψ(1) is
statistically indistinguishable from zero for both groups.

48Appendix table C.5, columns 5-8, presents the parameter estimates in the linear model. The results do
not present a clear pattern across education groups. When only second moments of income and consumption
are targeted, ϕ(1) is larger for households without college education – 0.225 versus 0.123. However, when all
moments up to fourth-order are included, ϕ(1) is almost identical in the two groups.
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Table 6: Estimates of the consumption function, by wealth and education

Consumption fn.: Quadratic

By wealth By education
Subsample: Low wealth High wealth No college Some college

Income moments: 2nd, 3rd, 4th 2nd, 3rd, 4th 2nd, 3rd, 4th 2nd, 3rd, 4th

Consumption data: PSID PSID PSID PSID
(1) (2) (3) (4)

ϕ(1) 0.212 0.091 0.219 0.105
(0.041) (0.033) (0.057) (0.032)

ψ(1) -0.081 0.017 -0.071 0.030
(0.090) (0.059) (0.079) (0.063)

ϕ(2) -0.018 -0.039 -0.095 -0.023
(0.052) (0.035) (0.048) (0.035)

ψ(2) -0.108 0.031 0.050 0.012
(0.065) (0.041) (0.063) (0.040)

ω(22) 1.116 -0.049 0.668 0.095
(0.874) (0.897) (1.067) (0.971)

σ2
ξ 0.013 0.022 0.013 0.021

(0.002) (0.002) (0.003) (0.002)

σ2
uc

0.048 0.042 0.043 0.044
(0.002) (0.002) (0.003) (0.002)

Notes: The table presents the estimates of the parameters of the quadratic consumption function, allowing
them to vary across wealth and education groups (linear specification estimates appear in appendix table
C.5). Low (high) wealth is defined on the basis of household wealth being less (more) than median real
wealth in the sample over 1999–2019. No versus some college is defined on the basis of the highest level of
education attained by the male spouse. All columns use consumption data internally available in the PSID.
Estimation is via equally weighted GMM; block bootstrap standard errors are in parentheses.

transmit into consumption more than equal-sized good shocks. However, the magnitude of

the estimate in the lower education group is over four-fold larger (and statistically significant)

compared to the higher education group. Permanent shocks away from the mean are there-

fore way more hurtful among the lower educated. By contrast, the transmission parameters

of all transitory shocks are statistically indistinguishable from zero in both groups.

6 Conclusion

We measure the degree of consumption partial insurance to income shocks, accounting for

higher-order moments of the distribution of income. Such moments, in particular left skew-

ness and excess kurtosis, are important features of unexplained income growth, highlighted
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in several recent papers. Our focus is on measuring partial insurance without taking a stance

on specific mechanisms at the nexus of income and consumption; as such, we relate closely to

the seminal work of Blundell, Pistaferri, and Preston (2008) – BPP as we called it throughout

– who introduced a methodology to measure partial insurance directly in the data.

Tail income risk, however, plays little role in their framework because they linearize the

consumption rule (a poor approximation when extreme shocks command a large consumption

response due to concave utility) and they ignore moments higher than second-order. These

are all features that the present paper improves on. We use recent income and consumption

data from the PSID (1999–2019) and we establish three main new insights.

First, in replicating BPP over the recent years, we find a much lower pass-through of

permanent shocks (larger partial insurance) and full insurance to transitory ones. We at-

tribute one third of the difference from BPP to the consumption imputation from the CEX,

another third to the biennial nature of our data, and the remainder to time effects.

Second, in introducing third- and fourth-order income and consumption moments into

the linear consumption model does not alter the above results.

Third, in estimating a generalized higher-order consumption function, we find that bad

permanent shocks transmit at larger rates than good shocks, and their pass-through increases

with the severity of the shock. By contrast, transitory shocks are fully insured in the full

sample, at least from a statistical point-of-view, but they are not insured among the less

wealthy. Among them, in particular, bad transitory shocks transmit into consumption at

increasingly larger rates than good ones, exactly as permanent shocks do.

In summary, we contribute an analytical framework to measure the transmission of in-

come shocks into consumption, allowing such transmission to vary with the sign and severity

of the shock. To measure the transmission, we exploit information in higher-order income

moments and we characterize how our measures of partial insurance change as we gradually

introduce those moments. Our results help reconcile the traditional partial insurance mea-

surement literature, in which BPP is the default methodology, with both the quantitative

literature (e.g., De Nardi, Fella, and Paz-Pardo, 2019) and the more empirical one based on

surveys or quasi-natural experiments (e.g., Fuster, Kaplan, and Zafar, 2020), which docu-

ment asymmetries in the pass-through of good and bad, or small and large shocks. Overall,

our results suggest that tail income risk matters substantially for consumption.
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Appendices – for online publication

A Derivation of the consumption function

In this appendix we derive the consumption function under a permanent-transitory specifica-

tion for log income. We follow similar derivations in Blundell, Pistaferri, and Preston (2008),

BPP hereafter, though our approach is a refinement of theirs given the second-order approx-

imation we carry out herein. We show below how to derive the most general (quadratic)

consumption function (5); the linear function (4) is a special case of this. We let a time unit

in the model correspond to one calendar year. However, data in the PSID in recent years

are available only every second year, so we adapt the derivations to reflect this.

Let the utility function take the form U(Cit;Zit) = Ũ(Cit exp(−Z′
itα)), which simplifies

the subsequent statements. The first-order conditions of the household problem (1) s.t. (2)

in a generic period t+ s are

[Cit+s] : ŨC(C̃it+s) exp(−Z′
it+sα) = λit+s

[Ait+s+1] : β(1 + r)Et+sλit+s+1 = λit+s,

where ŨC is the marginal utility of consumption and C̃it = Cit exp(−Z′
itα). λit is the

Lagrange multiplier on the sequential budget constraint (the marginal utility of wealth).

A.1 Taylor approximation to optimality conditions

Approximation to static optimality condition. Applying logs to the static condition

and taking a first difference over time yields ∆ ln ŨC(C̃it+s) − ∆(Z′
it+sα) = ∆ lnλit+s. A

first-order Taylor expansion of ln ŨC(C̃it+s) around C̃it+s−1 yields

∆ ln ŨC(C̃it+s) ≈
ŨCC(C̃it+s−1)

ŨC(C̃it+s−1)
exp(−Z′

it+s−1α)(Cit+s − Cit+s−1)

≈ ŨCC(C̃it+s−1)

ŨC(C̃it+s−1)
Cit+s−1 exp(−Z′

it+s−1α)∆ lnCit+s = θ−1
it+s−1∆ lnCit+s,

where ŨCC is the second derivative of the utility function and θit = Ũ−1
CC(C̃it)C̃

−1
it ŨC(C̃it) is

the inverse of the consumption substitution elasticity. Plugging the last expression in the

log-linearized first-order condition yields ∆ lnCit+s − θit+s−1∆(Z′
it+sα) = θit+s−1∆ lnλit+s.

Approximation to Euler equation. The approximation to the intertemporal condition

1



involves future expectations. Let exp(Γ) = β−1(1 + r)−1 for some Γ. A second-order Taylor

expansion of exp(lnλit+s+1) around lnλit+s + Γ yields

λit+s+1 ≈
λit+s

β(1 + r)

(
1 + (∆ lnλit+s+1 − Γ) +

1

2
(∆ lnλit+s+1 − Γ)2

)
.

Taking expectations at time t+s and noting that Et+sλit+s+1 = λit+sβ
−1(1+ r)−1, we obtain

Et+s∆ lnλit+s+1 ≈ Γ− 1

2
Et+s(∆ lnλit+s+1 − Γ)2 ⇒ ∆ lnλit+s+1 ≈ ωit+s+1 + ϵit+s+1.

The first term ωit+s+1 = Γ − 1
2
Et(∆ lnλit+s+1 − Γ)2 captures the impact of interest rates,

impatience, and precautionary motives on the growth of the marginal utility of wealth.

To maintain tractability, we assume that ω is non-stochastic but possibly heterogeneous

across households. The second term is an expectation error with Et(ϵit+1) = 0; it captures

idiosyncratic revisions to the marginal utility of wealth upon arrival of income shocks.

Combining the approximations to the optimality conditions, we obtain

∆ lnCit+s − θit+s−1∆(Z′
it+sα) = θit+s−1(ωit+s + ϵit+s)

∆ lnCit+s − θit+s−1∆(Z′
it+sα)− Ξit+s = ξit+s + θit+s−1ϵit+s

∆cit+s = ξit+s + θit+s−1ϵit+s, (A.1)

where ∆cit+s = ∆ lnCit+s−θit+s−1∆(Z′
it+sα)−Ξit+s. We have split θit+s−1ωit+s into Ξit+s and

ξit+s; the first term reflects the gradient of consumption due to interest rates and impatience

(discounting), the second term reflects unobserved consumption taste heterogeneity. We let

demographics and time fixed effects pick up the effect of taste shifters and the gradient in

the consumption path. Therefore ∆cit+s can be obtained empirically from a regression of

log consumption on appropriate observables.

A.2 Taylor approximation to lifetime budget constraint

LetG(ξ) = ln
∑N

s=0 exp ξs for ξ = (ξ0, ξ1, . . . , ξN)
′. Applying a second-order Taylor expansion

of G(ξ) around a deterministic ξ0, and taking expectations given information I, yields

EIG(ξ) ≈ G(ξ0) +
N∑
s=0

exp ξ0s∑N
κ=0 exp ξ

0
κ

EI(ξs − ξ0s )

+
1

2

N∑
s=0

N∑
ℓ=0

exp ξ0s∑N
κ=0 exp ξ

0
κ

(
δsℓ −

exp ξ0ℓ∑N
κ=0 exp ξ

0
κ

)
EI(ξs − ξ0s )(ξℓ − ξ0ℓ ),

(A.2)
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where δsℓ is the Kronecker delta (δsℓ = 1 if s = ℓ, δsℓ = 0 otherwise). We apply this

approximation to both sides of the intertemporal budget constraint.

Assuming expectations away, the logarithm of the left hand side of the budget constraint

(2) in a generic period t is ln
(
Ait +

∑T−t
s=0 exp (lnYit+s − s ln(1 + r))

)
. Letting

ξs =

lnAit+s for s = 0

lnYit+s−1 − (s− 1) ln(1 + r) for s = 1, . . . , T − t+ 1

ξ0s =

Et−2 lnAit+s for s = 0

Et−2 lnYit+s−1 − (s− 1) ln(1 + r) for s = 1, . . . , T − t+ 1,

and declaring the information set to contain time t information, we follow (A.2) to write

Et ln

(
Ait +

T−t∑
s=0

Yit+s

(1 + r)s

)
≈ ln

(
exp(Et−2 lnAit) +

T−t∑
s=0

exp (Et−2 lnYit+s − s ln(1 + r))

)
+ πitEt(lnAit − Et−2 lnAit)

+ (1− πit)
T−t∑
s=0

ϑY
it+sEt(lnYit+s − Et−2 lnYit+s)

+
1

2
πit(1− πit)Et(lnAit − Et−2 lnAit)

2

+
1

2

T−t∑
s=0

T−t∑
ℓ=0

(1− πit)ϑ
Y
it+s(δsℓ − (1− πit)ϑ

Y
it+ℓ)Et(lnYit+s − Et−2 lnYit+s)(lnYit+ℓ − Et−2 lnYit+ℓ)

− πit(1− πit)
T−t∑
s=0

ϑY
it+sEt(lnAit − Et−2 lnAit)(lnYit+s − Et−2 lnYit+s).

The notation is: πit = Q1t

Q1t+Q2t
is equal to the expected share of financial wealth Q1t =

exp(Et−2 lnAit) in the household’s total financial and human wealth at t, the latter defined

as Q2t =
∑T−t

κ=0 exp (Et−2 lnYit+κ − κ ln(1 + r)), i.e., the household’s expected lifetime income

for the remaining of life; ϑY
it+s = exp (Et−2 lnYit+s − s ln(1 + r)) /Q2t is an annuitization

factor equal to the expected share of time t + s household income in total lifetime income.

πit and ϑ
Y
it+s pertain to expectations at t− 2 so they are both known at t− 2 and later.

Using the income process and assuming the deterministic observables away (they cancel

out in a first difference in expectations at a later stage), we reach lnYit+s = lnYit−2 +∑s
τ=−1 ζit+τ + vit+s − vit−2, therefore lnYit+s − Et−2 lnYit−2 =

∑s
τ=−1 ζit+τ + vit+s. It follows

that
∑T−t

s=0 ϑ
Y
it+sEt(lnYit+s − Et−2 lnYit+s) = ζit + ζit−1 + ϑY

itvit because Etζit+κ = Etvit+κ = 0

for κ > 0, and
∑T−t

s=0 ϑ
Y
it+s = 1 by construction. The second-order term in income is more

3



involved. This is given by

T−t∑
s=0

T−t∑
ℓ=0

(1− πit)ϑ
Y
it+s(δsℓ − (1− πit)ϑ

Y
it+ℓ)Et(lnYit+s − Et−2 lnYit+s)(lnYit+ℓ − Et−2 lnYit+ℓ)

=
T−t∑
s=0

T−t∑
ℓ=0

(1− πit)ϑ
Y
it+s(δsℓ − (1− πit)ϑ

Y
it+ℓ)Et

(
(ζit + ζit−1)

2 + (ζit + ζit−1)(vit+s + vit+ℓ) + vit+svit+ℓ

)
= (1− πit)πit(ζit + ζit−1)

2 + 2πit(1− πit)ϑ
Y
it(ζit + ζit−1)vit + (1− πit)ϑ

Y
it(1− (1− πit)ϑ

Y
it)v

2
it.

We derive this making use of
∑T−t

s=0 ϑ
Y
it+s = 1,

∑T−t
s=0

∑T−t
ℓ=0 ϑ

Y
it+sϑ

Y
it+ℓ = (

∑T−t
s=0 ϑ

Y
it+s)(

∑T−t
ℓ=0 ϑ

Y
it+ℓ) =

1, and the expectation of future shocks being zero by construction.

Plugging these results in the approximation of the previous page, noting that assets at

t are ‘beginning-of-period’ and thus independent of the time t income shocks, and taking a

first difference in expectations between t− 2 and t yields

Et ln

(
Ait +

T−t∑
s=0

Yit+s

(1 + r)s

)
− Et−2 ln

(
Ait +

T−t∑
s=0

Yit+s

(1 + r)s

)
≈ (1− πit)(ζit + ζit−1) + (1− πit)ϑ

Y
itvit

+
1

2
(1− πit)πit(ζit + ζit−1)

2

+
1

2
(1− πit)ϑ

Y
it(1− (1− πit)ϑ

Y
it)v

2
it

+ (1− πit)ϑ
Y
itπit(ζit + ζit−1)vit.

The linear terms in the first line are the first-order approximation of BPP; the quadratic

terms in the next lines are the refinement from the second-order approximation.

Assuming expectations away, the logarithm of the right hand side of the budget constraint

(2) is ln
∑T−t

s=0 exp(lnCit+s − s ln(1 + r)). Adopting the notation of (A.2), we let ξs =

lnCit+s − s ln(1 + r) and ξ0s = Et−2 lnCit+s − s ln(1 + r). Letting the information set contain

time t information, it follows that

Et ln
T−t∑
s=0

Cit+s

(1 + r)s
≈ ln

T−t∑
s=0

exp(Et−2 lnCit+s − s ln(1 + r))

+
T−t∑
s=0

ϑC
it+sEt(lnCit+s − Et−2 lnCit+s)

+
1

2

T−t∑
s=0

T−t∑
ℓ=0

ϑC
it+s(δsℓ − ϑC

it+ℓ)Et(lnCit+s − Et−2 lnCit+s)(lnCit+ℓ − Et−2 lnCit+ℓ),

where ϑC
it+s = exp (Et−2 lnCit+s − s ln(1 + r)) /

∑T−t
κ=0 exp (Et−2 lnCit+κ − κ ln(1 + r)) is an

4



annuitization factor equal to the expected share of time t + s consumption in total lifetime

consumption. ϑC
it+s pertains to expectations at t− 2, so it is known at t− 2 and later.

Using the linearized consumption function in (A.1) to replace lnCit+s recursively, we

reach lnCit+s = lnCit−2 +
∑s

τ=−1Ψit+τ +
∑s

τ=−1 ξit+τ +
∑s

τ=−1 θit+τ−1ϵit+τ , where Ψit+τ =

θit+τ−1∆(Z′
it+τα) + Ξit+τ , therefore lnCit+s − Et−2 lnCit+s =

∑s
τ=−1 θit+τ−1ϵit+τ because Ψit

and ξit are non-stochastic by assumption and they cancel out in the first difference. It follows

that
∑T−t

s=0 ϑ
C
it+sEt(lnCit+s−Et−2 lnCit+s) = θit−1ϵit+ θit−2ϵit−1 because Etϵit+κ = 0 for κ > 0

and
∑T−t

s=0 ϑ
C
it+s = 1 by construction. The second-order term is more involved; it is given by

T−t∑
s=0

T−t∑
ℓ=0

ϑC
it+s(δsℓ − ϑC

it+ℓ)Et(lnCit+s − Et−2 lnCit+s)(lnCit+ℓ − Et−2 lnCit+ℓ)

=
T−t∑
s=0

T−t∑
ℓ=0

ϑC
it+s(δsℓ − ϑC

it+ℓ)(θit−1ϵit + θit−2ϵit−1)
2 = 0

We derive this by noting that future expectations errors are zero by assumption, and that∑T−t
s=0

∑T−t
ℓ=0 ϑ

C
it+s(δsℓ−ϑC

it+ℓ) =
∑T−t

s=0 ϑ
C
it+sδss+

∑T−t
s=0

∑
ℓ̸=s ϑ

C
it+sδsℓ−(

∑T−t
s=0 ϑ

C
it+s)(

∑T−t
ℓ=0 ϑ

C
it+ℓ) =

0. Plugging these results in the approximation above and taking a first difference in expec-

tations between t− 2 and t yields

Et ln
T−t∑
s=0

Cit+s

(1 + r)s
− Et−2 ln

T−t∑
s=0

Cit+s

(1 + r)s
≈ θit−1ϵit + θit−2ϵit−1.

A.3 Biennial consumption growth

Given the biennial nature of our data, it follows from (A.1) that observed consumption growth

is ∆2cit+s = ξit+s+ξit+s−1+θit+s−1ϵit+s+θit+s−2ϵit+s−1. The notation ∆2xt = ∆xt+∆xt−1 =

xt − xt−2 indicates a difference between t and t− 2. Dropping the index s and replacing the

expectations errors with the quadratic expression in income shocks (the budget must balance

so we bring the two sides of the budget constraint together), we obtain the final expression

for consumption growth with biennial survey data, given by

∆2cit ≈ ξit + ξit−1 + (1− πit)(ζit + ζit−1) + (1− πit)ϑ
Y
itvit

+
1

2
(1− πit)πit(ζit + ζit−1)

2 +
1

2
(1− πit)ϑ

Y
it(1− (1− πit)ϑ

Y
it)v

2
it

+ (1− πit)ϑ
Y
itπit(ζit + ζit−1)vit.

(A.3)

The first line of (A.3) corresponds to the linear consumption function (4), adapted here

5



for the biennial nature of the data and given by

∆2cit = ξit + ξit−1 + ϕ
(1)
it (ζit + ζit−1) + ψ

(1)
it vit.

The transmission parameters of income shocks are given by ϕ
(1)
it = 1 − πit and ψ

(1)
it =

(1− πit)ϑ
Y
it , where πit and ϑ

Y
it were defined previously.

The quadratic terms in the next two lines of (A.3) reflect the refinement from the higher-

order approximation. This higher-order approximation leads to the quadratic consumption

function (5), adapted here for the biennial nature of the data and given by

∆2cit = ξit+ξit−1+ϕ
(1)
it (ζit + ζit−1)+ψ

(1)
it vit+ϕ

(2)
it (ζit + ζit−1)

2+ψ
(2)
it v

2
it+ω

(22)
it (ζit + ζit−1) vit.

The additional transmission parameters of income shocks are given by ϕ
(2)
it = 1

2
(1 − πit)πit,

ψ
(2)
it = 1

2
(1− πit)ϑ

Y
it(1− (1− πit)ϑ

Y
it), and ω

(22)
it = (1− πit)ϑ

Y
itπit.

B Identification details

This appendix provides detailed identification statements based on our use of the recent

biennial PSID data. There are two points of departure from section 3 in the text.

First, we recast the income and consumption processes to reflect the biennial frequency

of the modern PSID. Unexplained income growth is thus given by ∆2yit = ∆yit +∆yit−1 =

ζit + ζit−1 + ∆2vit, with ∆yit given by (3). The notation ∆2xt = ∆xt + ∆xt−1 = xt − xt−2

indicates a first difference in variable x between t and t− 2, i.e., the observed frequency.

Second, we allow for classical measurement error. We let observed income y∗it and con-

sumption c∗it be the sum of their corresponding true value and measurement error, namely

y∗it = yit + uyit and c∗it = cit + ucit.

The moments of income measurement error are not separately identifiable from the moments

of the transitory shock. This necessitates that we restrict the income error to be Gaussian

(but we let the consumption error unrestricted), so we specify

E((uyit)
m) =



0 for m = 1

σ2
uy
t

for m = 2

0 for m = 3

3(σ2
uy
t
)2 for m = 4

and E((uci,t)
m) =



0 for m = 1

σ2
uc
t

for m = 2

γuc
t

for m = 3

κuc
t

for m = 4.
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We retrieve the variance of income error from the validation study of the PSID in Bound,

Brown, Duncan, and Rodgers (1994), as we explain in section 4. We do not need similar

distributional assumptions for the consumption error, whose moments we identify below. We

further assume that income and consumption errors are mutually independent, independent

over time, and independent of the income shocks and taste heterogeneity ξ.

These choices lead to our processes for observed income growth, consumption growth in

the linear specification, and consumption growth in the quadratic specification, given by

∆2yit = ζit + ζit−1 +∆2vit +∆2uyit,

∆2cit = ξit + ξit−1 + ϕ
(1)
it (ζit + ζit−1) + ψ

(1)
it vit +∆2ucit,

∆2cit = ξit + ξit−1 + ϕ
(1)
it (ζit + ζit−1) + ψ

(1)
it vit

+ ϕ
(2)
it (ζit + ζit−1)

2 + ψ
(2)
it v

2
it + ω

(22)
it (ζit + ζit−1)vit +∆2ucit,

respectively. These are the theoretical expressions we bring to the data.

B.1 Income process parameters

Due to the biennial nature of the data, we cannot separately identify the moments of the

yearly permanent shocks that comprise a two-year period. We thus assume σ2
ζt
≈ σ2

ζt−1
and

γζt ≈ γζt−1 , which is exactly true if the underlying distributions are stationary. The second

and third moments of shocks are then given by

σ2
ζt =

1

2
E(∆2yit ×

∑
κ={−2,0,2}

∆2yit+κ) and σ2
vt = −E(∆2yit ×∆2yit+2)− σ2

uy
t
,

γζt =
1

2
E((∆2yit)

2 ×
∑

κ={−2,0,2}

∆2yit+κ) and γvt = −E((∆2yit)
2 ×∆2yit+2).

Identification of the fourth moments is more involved; to simplify the statements, we further

assume that σ2
ζt

≈ σ2
ζt+1

≈ σ2
ζt+2

, σ2
vt ≈ σ2

vt−2
≈ σ2

vt+2
, and σ2

uy
t
≈ σ2

uy
t−2

≈ σ2
uy
t+2

. These

restrictions are not needed for identification but they simplify the illustration. The fourth

moments are then given by

κζt =
1

2
E((∆2yit)

4)− κvt − 3(σ2
ζt)

2 − 3(σ2
vt)

2 − 6(σ2
uy
t
)2

− 12σ2
ζtσ

2
vt − 12σ2

ζtσ
2
uy
t
− 12σ2

vtσ
2
uy
t
,

κvt = E((∆2yit)
2 × (∆2yit+2)

2)− 4(σ2
ζt)

2 − 3(σ2
vt)

2 − 6(σ2
uy
t
)2

− 8σ2
ζtσ

2
vt − 8σ2

ζtσ
2
uy
t
− 12σ2

vtσ
2
uy
t
.
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B.2 Linear consumption function parameters

Given the biennial data, we must assume σ2
ζt
≈ σ2

ζt−1
and σ2

ξt
≈ σ2

ξt−1
; both are exactly true if

the distributions are stationary. Given the income process, the linear consumption function,

and the properties of shocks, the transmission parameters are given by

ϕ
(1)
t =

1

2
E(∆2cit ×

∑
κ={−2,0,2}

∆2yit+κ)/σ
2
ζt and ψ

(1)
t = −E(∆2cit ×∆2yit+2)/σ

2
vt .

The variance of taste heterogeneity and consumption measurement error are identified as

σ2
ξt =

1

2
E(∆2cit ×

∑
κ={−2,0,2}

∆2cit+κ)− (ϕ
(1)
t )2σ2

ζt −
1

2
(ψ

(1)
t )2σ2

vt and σ2
uc
t
= −E(∆2cit ×∆2cit+2).

The third and fourth moments of taste heterogeneity and consumption error are identified

by higher-order consumption moments through expressions analogous to those above.

B.3 Quadratic consumption function parameters

Given the biennial data, we must assume σ2
ζt
≈ σ2

ζt−1
, γζt ≈ γζt−1 , κζt ≈ κζt−1 , and σ

2
ξt
≈ σ2

ξt−1
.

For simplicity, we also assume that σ2
ζt

≈ σ2
ζt+1

≈ σ2
ζt+2

, σ2
vt ≈ σ2

vt−2
, and σ2

uy
t
≈ σ2

uy
t−2

; the

latter restrictions are not needed for identification. Given the income process, the quadratic

consumption function, and the properties of income shocks, the transmission parameters are

given by 
ϕ
(1)
t

ψ
(1)
t

ϕ
(2)
t

ψ
(2)
t

ω
(22)
t

 = A−1


E(∆2cit ×∆2yit)

E(∆2cit × (∆2yit)
2)

E(∆2cit ×∆2yit+2)

E(∆2cit × (∆2yit+2)
2)

E(∆2cit ×∆2yit ×∆2yit+2)

 ,

where the matrix of coefficients A depends exclusively on the second, third, and fourth

moments of income shocks, and it is generally full rank and invertible.1 This can be easily

1The matrix of coefficients with biennial data (different from matrix A in the main text) is given by

A =


2σ2

ζt
σ2
vt 2γζt γvt 0

2γζt γvt 2(κζt + σ2
ζt
(2σ̄t + σ2

ζt
)) κvt + σ2

vt(2σ̄t − σ2
vt) 4σ2

ζt
σ2
vt

0 −σ2
vt 0 −γvt 0

0 γvt 4σ2
ζt
σ̄t κvt + σ2

vt(2σ̄t − σ2
vt) 0

0 −γvt −2σ2
ζt
(σ̄t − σ2

ζt
) −κvt − σ2

vtσ
2
uy
t

−2σ2
ζt
σ2
vt

 ,

where σ̄t = σ2
ζt
+σ2

vt +σ
2
uy
t
. There are no obvious linear dependencies across the columns of A, which is true

also if income shocks are Gaussian, so the matrix is generally full rank and invertible.
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Table B.1: Targeted moments of income

Moments: 2nd 2nd, 3rd 2nd, 3rd, 4th

1 E((∆2yit)
2) E((∆2yit)

2) E((∆2yit)
2)

2 E(∆2yit ×∆2yit−2) E(∆2yit ×∆2yit−2) E(∆2yit ×∆2yit−2)
3 E((∆2yit)

3) E((∆2yit)
3)

4 E((∆2yit)
2 ×∆2yit−2) E((∆2yit)

2 ×∆2yit−2)
5 E(∆2yit × (∆2yit−2)

2) E(∆2yit × (∆2yit−2)
2)

6 E((∆2yit)
4)

7 E((∆2yit)
2 × (∆2yit−2)

2)
8 E((∆2yit)

3 ×∆2yit−2)
9 E(∆2yit × (∆2yit−2)

3)

Notes: The table lists the moments targeted in the GMM estimation of the various specifications of the
income process. The notation ∆2yt = ∆yt +∆yt−1 = yt − yt−2 indicates the first difference of residual log
income y between periods t and t− 2.

checked as soon as the income process is estimated. Upon identification of the transmission

parameters, E(∆2cit×∆2cit+2) identifies the variance of consumption error, while E((∆2cit)
2)

identifies the variance of ξ. Higher moments of the consumption error or of ξ require higher

than fourth-order moments of income, which we do not model.

B.4 Targeted moments

There is a large number of over-identifying moments that we target in the estimation of

the various specifications of the model. Table B.1 lists the moments targeted in the various

specifications of the income process while table B.2 lists the moments targeted in the dif-

ferent specifications of the consumption model. For simplicity in deriving these moments,

we assume stationarity in the distributions of income shocks, taste heterogeneity, and mea-

surement error, and time-invariance of the partial insurance parameters. Stationarity and

time-invariance, while not needed for identification, simplify the following statements con-

siderably as they allow us to remove the time subscript and bundle common terms together.

B.4.1 Moments of income

E((∆2yit)
2) = 2σ2

ζ + 2σ2
v + 2σ2

uy

E(∆2yit ×∆2yit−2) = −σ2
v − σ2

uy

E((∆2yit)
3) = 2γζ

E((∆2yit)
2 ×∆2yit−2) = γv

9



E(∆2yit × (∆2yit−2)
2) = −γv

E((∆2yit)
4) = 2κζ + 2κv + 6(σ2

ζ )
2 + 6(σ2

v)
2 + 12(σ2

uy)2 + 24σ2
ζσ

2
v + 24σ2

vσ
2
uy + 24σ2

ζσ
2
uy

E((∆2yit)
2 × (∆2yit−2)

2) = κv + 4(σ2
ζ )

2 + 3(σ2
v)

2 + 6(σ2
uy)2 + 8σ2

ζσ
2
v + 8σ2

ζσ
2
uy + 12σ2

vσ
2
uy

E((∆2yit)
3 ×∆2yit−2) = −κv − 3(σ2

v)
2 − 6(σ2

uy)2 − 6σ2
ζσ

2
v − 6σ2

ζσ
2
uy − 12σ2

vσ
2
uy

E(∆2yit × (∆2yit−2)
3) = −κv − 3(σ2

v)
2 − 6(σ2

uy)2 − 6σ2
ζσ

2
v − 6σ2

ζσ
2
uy − 12σ2

vσ
2
uy

B.4.2 Moments of consumption – linear function

E((∆2cit)
2) = 2σ2

ξ + 2(ϕ(1))2σ2
ζ + (ψ(1))2σ2

v + 2σ2
uc

E(∆2cit ×∆2cit−2) = −σ2
uc

E(∆2yit ×∆2cit) = 2ϕ(1)σ2
ζ + ψ(1)σ2

v

E(∆2yit ×∆2cit−2) = −ψ(1)σ2
v

E((∆2cit)
3) = 2γξ + 2(ϕ(1))3γζ + (ψ(1))3γv

E((∆2cit)
2 ×∆2cit−2) = γuc

E(∆2cit × (∆2cit−2)
2) = −γuc

E((∆2yit)
2 ×∆2cit) = 2ϕ(1)γζ + ψ(1)γv

E(∆2yit × (∆2cit)
2) = 2(ϕ(1))2γζ + (ψ(1))2γv

E((∆2yit)
2 ×∆2cit−2) = ψ(1)γv

E(∆2yit × (∆2cit−2)
2) = −(ψ(1))2γv

E((∆2yit−2)
2 ×∆2cit) = 0

E(∆2yit ×∆2yit+2 ×∆2cit) = −ψ(1)γv

E(∆2yit ×∆2yit+2 ×∆2cit−2) = 0

E(∆2yit ×∆2yit+2 ×∆2cit+2) = 0

E((∆2cit)
4) = 2κξ + 2(ϕ(1))4κζ + (ψ(1))4κv + 2κuc + 6(σ2

ξ )
2 + 6(ϕ(1))4(σ2

ζ )
2 + 6(σ2

uc)2

+ 24(ϕ(1))2σ2
ξσ

2
ζ + 12(ψ(1))2σ2

ξσ
2
v + 24σ2

ξσ
2
uc

+ 12(ϕ(1))2(ψ(1))2σ2
ζσ

2
v + 24(ϕ(1))2σ2

ζσ
2
uc + 12(ψ(1))2σ2

vσ
2
uc

E((∆2cit)
2 × (∆2cit−2)

2) = 4(σ2
ξ )

2 + 8(ϕ(1))2σ2
ξσ

2
ζ + 4(ψ(1))2σ2

ξσ
2
v + 8σ2

ξσ
2
uc + 4(ϕ(1))4(σ2

ζ )
2

+ 4(ϕ(1))2(ψ(1))2σ2
ζσ

2
v + 8(ϕ(1))2σ2

ζσ
2
uc + (ψ(1))4(σ2

v)
2 + 4(ψ(1))2σ2

vσ
2
uc

+ κuc + 3(σ2
uc)2

E((∆2cit)
3 ×∆2cit−2) = −κuc − 3(σ2

uc)2 − 6σ2
ξσ

2
uc − 6(ϕ(1))2σ2

ζσ
2
uc − 3(ψ(1))2σ2

vσ
2
uc

E(∆2cit × (∆2cit−2)
3) = −κuc − 3(σ2

uc)2 − 6σ2
ξσ

2
uc − 6(ϕ(1))2σ2

ζσ
2
uc − 3(ψ(1))2σ2

vσ
2
uc
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E((∆2yit)
2 × (∆2cit)

2) = 4σ2
ζσ

2
ξ + 2(ϕ(1))2κζ + 6(ϕ(1))2(σ2

ζ )
2 + 2(ψ(1))2σ2

ζσ
2
v + 4σ2

ζσ
2
uc

+ 4σ2
vσ

2
ξ + 4(ϕ(1))2σ2

vσ
2
ζ + (ψ(1))2κv + (ψ(1))2(σ2

v)
2 + 4σ2

vσ
2
uc

+ 4σ2
uyσ2

ξ + 4(ϕ(1))2σ2
uyσ2

ζ + 2(ψ(1))2σ2
uyσ2

v + 4σ2
uyσ2

uc + 8ϕ(1)ψ(1)σ2
ζσ

2
v

E((∆2yit)
3 ×∆2cit) = 2ϕ(1)κζ + 6ϕ(1)(σ2

ζ )
2 + ψ(1)κv + 3ψ(1)(σ2

v)
2

+ 6ψ(1)σ2
ζσ

2
v + 12ϕ(1)σ2

ζσ
2
v + 12ϕ(1)σ2

ζσ
2
uy + 6ψ(1)σ2

vσ
2
uy

E(∆2yit × (∆2cit)
3) = 2(ϕ(1))3κζ + 6(ϕ(1))3(σ2

ζ )
2 + (ψ(1))3κv + 12ϕ(1)σ2

ξσ
2
ζ + 6ψ(1)σ2

ξσ
2
v

+ 6ϕ(1)(ψ(1))2σ2
ζσ

2
v + 6(ϕ(1))2ψ(1)σ2

ζσ
2
v + 12ϕ(1)σ2

ζσ
2
uc + 6ψ(1)σ2

vσ
2
uc

E((∆2yit)
2 × (∆2cit−2)

2) = 4σ2
ζσ

2
ξ + 4(ϕ(1))2(σ2

ζ )
2 + 2(ψ(1))2σ2

ζσ
2
v + 4σ2

ζσ
2
uc

+ 4σ2
vσ

2
ξ + 4(ϕ(1))2σ2

vσ
2
ζ + (ψ(1))2κv + (ψ(1))2(σ2

v)
2 + 4σ2

vσ
2
uc

+ 4σ2
uyσ2

ξ + 4(ϕ(1))2σ2
uyσ2

ζ + 2(ψ(1))2σ2
uyσ2

v + 4σ2
uyσ2

uc

E((∆2yit−2)
2 × (∆2cit)

2) = 4σ2
ζσ

2
ξ + 4(ϕ(1))2(σ2

ζ )
2 + 2(ψ(1))2σ2

ζσ
2
v + 4σ2

ζσ
2
uc

+ 4σ2
vσ

2
ξ + 4(ϕ(1))2σ2

vσ
2
ζ + 2(ψ(1))2(σ2

v)
2 + 4σ2

vσ
2
uc

+ 4σ2
uyσ2

ξ + 4(ϕ(1))2σ2
uyσ2

ζ + 2(ψ(1))2σ2
uyσ2

v + 4σ2
uyσ2

uc

E((∆2yit)
3 ×∆2cit−2) = −ψ(1)κv − 3ψ(1)(σ2

v)
2 − 6ψ(1)σ2

ζσ
2
v − 6ψ(1)σ2

vσ
2
uy

E(∆2yit × (∆2cit−2)
3) = −(ψ(1))3κv − 6ψ(1)σ2

vσ
2
ξ − 6(ϕ(1))2ψ(1)σ2

vσ
2
ζ − 6ψ(1)σ2

vσ
2
uc

B.4.3 Moments of consumption – quadratic function

E((∆2cit)
2) = 2σ2

ξ + 2(ϕ(1))2σ2
ζ + (ψ(1))2σ2

v

+ 2(ϕ(2))2(κζ + 3(σ2
ζ )

2) + (ψ(2))2κv + 2(ω(22))2σ2
ζσ

2
v + 2σ2

uc

+ 4ϕ(1)ϕ(2)γζ + 2ψ(1)ψ(2)γv + 4ϕ(2)ψ(2)σ2
ζσ

2
v

E(∆2cit ×∆2cit−2) = 4(ϕ(2))2(σ2
ζ )

2 + 4ϕ(2)ψ(2)σ2
ζσ

2
v + (ψ(2))2(σ2

v)
2 − σ2

uc

E(∆2yit ×∆2cit) = 2ϕ(1)σ2
ζ + ψ(1)σ2

v + 2ϕ(2)γζ + ψ(2)γv

E(∆2yit ×∆2cit−2) = −ψ(1)σ2
v − ψ(2)γv

E((∆2yit)
2 ×∆2cit) = 2ϕ(1)γζ + ψ(1)γv + 2ϕ(2)(κζ + 3(σ2

ζ )
2 + 2σ2

ζσ
2
v + 2σ2

ζσ
2
uy)

+ ψ(2)(κv + (σ2
v)

2 + 2σ2
ζσ

2
v + 2σ2

vσ
2
uy) + 4ω(22)σ2

ζσ
2
v

E((∆2yit)
2 ×∆2cit−2) = ψ(1)γv + 4ϕ(2)σ2

ζ (σ
2
ζ + σ2

v + σ2
uy) + ψ(2)(κv + σ2

v(2σ
2
ζ + σ2

v + 2σ2
uy))

E((∆2yit)
2 ×∆2cit+2) = 4ϕ(2)σ2

ζ (σ
2
ζ + σ2

v + σ2
uy) + 2ψ(2)σ2

v(σ
2
ζ + σ2

v + σ2
uy)

E(∆2yit ×∆2yit+2 ×∆2cit) = −ψ(1)γv − 2ϕ(2)σ2
ζ (σ

2
v + σ2

uy)− ψ(2)(κv + σ2
vσ

2
uy)− 2ω(22)σ2

ζσ
2
v

E(∆2yit ×∆2yit+2 ×∆2cit−2) = −2ϕ(2)σ2
ζ (σ

2
v + σ2

uy)− ψ(2)σ2
v(σ

2
v + σ2

uy)

E(∆2yit ×∆2yit+2 ×∆2cit+2) = −2ϕ(2)σ2
ζ (σ

2
v + σ2

uy)− ψ(2)σ2
v(σ

2
v + σ2

uy)
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C Empirical details and additional results

C.1 Comparison with administrative moments

Table C.1 reports the empirical second, third, and fourth moments of the cross-sectional

distribution of unexplained growth in male earnings (panel A) and household earnings (panel

B), as opposed to the moments of household disposable income in table 2 in the main text.

Column 1 presents moments from our baseline sample in the PSID, while column 2 presents

the corresponding statistics, wherever available, from the U.S. Social Security Administration

data reported in Guvenen, Karahan, Ozkan, and Song (2021).

Table C.1: Empirical moments, male earnings and household earnings

Baseline sample Guvenen et al. (2021)

Income data: PSID Social Security Admin.
(1) (2)

Panel A. Moments of male earnings growth
Var(∆yit) 0.271 (0.010) 0.323
Cov(∆yit,∆yit+1) -0.065 (0.004) –
Skew(∆yit) -0.569 (0.128) -1.039
Cov((∆yit)

2,∆yit+1) 0.087 (0.010) –
Kurt(∆yit) 13.711 (0.551) 13.494
Cov((∆yit)

2, (∆yit+1)
2) 0.253 (0.022) –

Panel B. Moments of household earnings growth
Var(∆yit) 0.233 (0.009) –
Cov(∆yit,∆yit+1) -0.056 (0.004) –
Skew(∆yit) -0.728 (0.142) –
Cov((∆yit)

2,∆yit+1) 0.045 (0.008) –
Kurt(∆yit) 14.728 (0.822) –
Cov((∆yit)

2, (∆yit+1)
2) 0.176 (0.017) –

Notes: The table presents the second, third, and fourth moments of earnings growth. Skewness and kurtosis
correspond to the third and fourth standardized moments respectively. Column 1 reports moments of biennial
earnings growth in our baseline sample in the PSID (we maintain the notation ∆xt for the first difference of
variable x over time, noting that, given the biennial nature of the PSID, this corresponds to a difference over
two calendar years in this case), while column 2 reports moments of male earnings growth from the U.S. Social
Security Administration data. The latter moments concern the one-year male earnings growth, unconditional
on past earnings, and correspond to averages over ages 30-55 of, respectively, dispersion squared, skewness,
and kurtosis, as reported in online appendix tables C23-C25 in Guvenen, Karahan, Ozkan, and Song (2021).
Block bootstrap standard errors are in parentheses.
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C.2 CEX data and imputation in the PSID

The Consumer Expenditure Survey accounts for about 95% of all household expenditures

from a highly disaggregated list of consumption goods and services (see Meyer and Sullivan,

2023, for a recent overview). The CEX is run by the Census Bureau and the Bureau of

Labor Statistics, and it forms the basis for the calculation of the consumer’s price index.

Sample selection and variables. To parallel the design of the PSID sample, we use

CEX interview data between 1999 and 2019.2 We select a sample of households that mimics

closely our baseline selection in the PSID. Specifically, we select continuously married couples

with the male spouse aged 30 to 65. We require non-missing data on expenditure and

basic demographics, and we drop those with zero food expenditure given the nature of the

consumption imputation subsequently. Similar to the consumption measure in the PSID, we

define consumption as the sum of real expenditure on nondurable goods and services, namely

food (at home and outside), utilities, out-of-pocket health expenses, public transport, vehicle

expenses, education, and daycare. As the CEX collects quarterly data over four rolling

quarters, we generate annual consumption as the sum of consumption over four quarters.

We assign the final observation to the calendar year to which the underlying quarterly data

mostly correspond to. Our final sample consists of 31,751 observations.

Table C.2 presents a comparison of means between the PSID and CEX samples for a host

of household characteristics over the period 1999–2019. The two samples are very close with

respect to age, family size, number of children, race, education, region of residence, or labor

market participation. Disposable household income is higher in the PSID than in the CEX;

BPP noted this also for the earlier period (1980–1992) and argued that it is due to the more

comprehensive definition of income in the PSID. Food expenditure in the PSID is higher, on

average, by about 60% than food expenditure in the CEX. This is in contrast to BPP who

find that food expenditure over the earlier period 1980–1992 is similar across the two surveys.

This results in consumption being about 25% higher in the PSID than in the CEX. Overall,

the comparison suggests that the PSID and CEX samples exhibit some differences, with

lower income households likely overrepresented in the latter. This may have implications for

the degree of consumption partial insurance estimated using the internal consumption data

in the PSID versus the data imputed from the CEX.

Figure C.1 plots the variance, skewness, and kurtosis of log consumption in the PSID

(blue solid line) and CEX samples (black dotted line). Although the patterns for the variance

and kurtosis are quite similar in the two surveys over time, consumption in the PSID is less

2To improve the quality of the food demand estimation subsequently, we keep all calendar years between
1999 and 2019, i.e., not just the odd ones as in the PSID.
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Table C.2: Comparison of sample means, PSID and CEX

1999 2009 2019

PSID CEX PSID CEX PSID CEX

Earnings 72,829 59,011 109,047 84,383 130,488 106,316
Consumption 16,115 10,631 22,317 15,454 27,315 18,592
Food 7,434 4,461 9,306 6,090 12,575 7,636
Age 44.70 45.76 46.40 47.59 46.69 48.40
Family size 3.39 3.54 3.24 3.48 3.42 3.44
# children 1.13 1.21 1.01 1.11 1.19 1.07
% white 0.93 0.88 0.91 0.86 0.91 0.84
% high school dropout 0.09 0.12 0.06 0.12 0.07 0.10
% high school graduate 0.28 0.27 0.25 0.25 0.22 0.21
% college dropout 0.62 0.62 0.69 0.63 0.71 0.69
% Northeast 0.17 0.18 0.18 0.19 0.16 0.17
% Midwest 0.32 0.24 0.30 0.25 0.31 0.21
% South 0.33 0.32 0.32 0.34 0.33 0.33
% West 0.18 0.25 0.20 0.22 0.20 0.28
% working (male) 0.89 0.88 0.91 0.93 0.90 0.92
% working (female) 0.81 0.77 0.79 0.81 0.79 0.79

Notes: The table presents a comparison of means in the PSID and CEX samples in 1999, 2009, and 2019.

volatile relative to the CEX but slightly more leptokurtic. For skewness, there is disagreement

both in the trends over time and, importantly, with respect to the sign, with the PSID

and CEX samples featuring positive and weakly negative skewness, respectively. Overall,

these statistics suggest that consumption across otherwise similarly selected samples in the

PSID and CEX exhibits notable differences; this casts a caveat over the comparison of the

partial insurance parameters across samples, especially in cases when higher-order moments

of consumption are used in the estimation.

Consumption imputation from CEX into PSID. The previous comparison, however,

is not directly informative about the moments of consumption growth, which is the relevant

variable in our case. The CEX lacks the panel dimension needed for our analysis, so it cannot

be used to obtain measures of annual (or biennial) consumption growth.3 We thus follow

BPP and impute nondurable consumption from the CEX into the PSID.

The imputation involves two distinct steps. In the first step, we estimate food demand

in the CEX. Specifically, we let real food expenditure be a log-linear function of the log of

3The CEX consists of repeated cross sections, in which households are interviewed over only 4 quarters.
There is also an initial interview, in principle a fifth quarter, but this is regarded as a training quarter and
it is not used in empirical analyses.
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Figure C.1: Moments of log consumption in the PSID and CEX
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Notes: The figure plots the moments of log consumption in the PSID (blue solid line; left axis) and the CEX
(black dotted line for the true series and black dashed-dotted line for the imputed series; right axis).
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nondurable expenditure c, relative prices p, and demographics W, namely

fit = β(Dit)cit + p′
tγ +W′

itµ+ eit, (C.1)

where fit is the log of real annual food expenditure for household i in the CEX in year t,

β is the budget elasticity of food demand, which we allow to shift with time and household

characteristics Dit, and eit captures unobserved heterogeneity in food demand.4 To address

possible endogeneity of and measurement error in total expenditure, we follow an instrumen-

tal variables approach using as instruments the mean and standard deviation of household

disposable income and the standard deviation of spousal wages by cohort, education, year,

the former interacted with time, education, and number of children dummies.5

In the second step, we invert (C.1) under the assumption that food demand is mono-

tonic in total expenditure. We can then use the inverted equation to predict nondurable

expenditure c for a given level of food expenditure, given prices and demographics. Since

the CEX and PSID samples are representative of the same underlying population, and since

food expenditure, prices, and demographics are available in the PSID, we can use the in-

verted (C.1) to impute consumption into the PSID. This allows us to obtain an alternative,

external measure of consumption in the PSID – and thus of consumption growth.

Figure C.1 plots the variance, skewness, and kurtosis of log consumption imputed from

the CEX (black dashed-dotted line). All moments trend similarly over time between the

true PSID series and the imputed series, although the magnitude is quite different across

the two. Imputed consumption is more volatile than the true PSID, skewness is negative (as

opposed to positive in the PSID) and peaks down in 2007–2011, kurtosis is often more than

twice as high as kurtosis in the PSID and peaks upwards in 2007–2011.

Table 2 in the text reports the second and higher-moments of consumption growth in

the imputed series, residualized through similar first-stage regressions as in the true data.

The main qualitative features of the distributions remain similar across the true PSID data

and the imputed series, although the moments of imputed consumption are several-fold

accentuated relative to the true data. The imputation likely imparts substantial measure-

ment/imputation error to consumption, which casts doubt on the reliability of the partial

insurance estimates derived from imputed consumption data from the CEX.

4Prices p include the relative prices of food, public transportation, utilities, medical services, and child-
care. Demographics W include a quadratic polynomial in age and dummy variables for the number of
children, family size, education, region of residence, race, and cohort. Dit includes year dummies and
dummies for education and the number of children.

5These instruments are slightly different from those used in BPP, namely the cohort-education-year
specific averages of male and female hourly wages, interacted with time, education, and kids dummies. The
use of their instruments over our sample period often resulted in convergence problems.
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C.3 Comparison with BPP

Table C.3 uses the original BPP data over 1980-1992 (taken from the replication package of

Blundell, Pistaferri, and Preston, 2008, available online) and does three things.

First, we replicate BPP over the original data/period of time, using BPP’s annual growth

rates of income and consumption. This is column 1 in table C.3. We obtain numerically

similar results to BPP, namely ϕ(1) = 0.64 while ψ(1) is statistically zero.

Second, we calculate biennial growth rates of income and consumption and re-estimate

the linear model. This is column 2 in table C.3; this estimation is analogous to the linear

function estimation in column 1 of table 4, albeit using the original BPP sample. Note that

despite the use of biennial data, ϕ(1) and ψ(1) still express the pass-through at annual rates

(see appendix B). ϕ(1) drops by 20% to 0.518, while ψ(1) remains qualitatively unaffected.

The use of biennial data thus reduces the pass-through of permanent shocks. With biennial

data, we only identify the pass-though of an ‘aggregate’ permanent shock over two years.

Some higher frequency shocks will be muted at the observed lower frequency, e.g., a second-

year shock may partly undo a large first-year shock, so we cannot observe their transmission.

In other words, we only measure an ‘aggregate’ pass-through within a given biennial period,

which means that some higher-frequency shocks will be inevitably smoothed out at the

observed lower frequency.

Third, we re-estimate the linear model assuming that the target second-order income and

consumption moments are time-invariant. This differs from the original BPP exercise where

the moments vary with time, but it is otherwise similar to our main exercise in this paper

given that we cannot precisely estimate higher-order moments on a year-by-year basis. The

results are in columns 3-4 in table C.3. Time-invariance further reduces the transmission

parameter of permanent shocks (ϕ(1) drops by another 20% to 0.404), bringing the pass-

through closer to the value we estimate in the modern data. Taking averages of moments

over time attenuates the largest income-consumption co-movements, and the model can fit

the data requiring, ceteris paribus, smaller transmission parameters.

There are some caveats comparing the exercise in table C.3 and our results with the most

recent data in table 4. First, our main exercise uses consumption data internally available in

the PSID, while table C.3 uses consumption imputed from the CEX. We showed earlier that

the imputation imparts substantial error. Second, while the estimation in table C.3 does not

correct the income moments for measurement error (in line with BPP), our main exercise in

table C.3 does so (in line with Blundell, Pistaferri, and Saporta-Eksten, 2016). Finally, the

use of biennial growth rates does not allow identification of θ, the moving average parameter

of the transitory shock, so the transitory shock is MA(0) in our baseline (θ = 0), while it is

MA(1) in the original BPP exercise and in table C.3.
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Table C.3: Replication of BPP, original BPP data 1980-1992

Consumption fn.: Linear

Income moments: 2nd 2nd 2nd 2nd

Consumption data: CEX CEX CEX CEX

Time variability: Time-varying moments Time-invariant moments

Growth rates: annual biennial annual biennial
(original BPP)

(1) (2) (3) (4)

ϕ(1) 0.644 0.518 0.504 0.404
(0.079) (0.068) (0.076) (0.057)

ψ(1) 0.024 0.117 0.043 0.158
(0.044) (0.050) (0.044) (0.051)

θ# 0.112 0 0.115 0
(0.025) (not identified) (0.026) (not identified)

Notes: The table presents the estimates of the parameters of the linear consumption function, using the
original BPP data over 1980-1992 (PSID income data, consumption data imputed from the CEX). The data
are available through Blundell, Pistaferri, and Preston (2008)’s online replication package. Columns 1-2
allow the target second-order income and consumption moments to vary with calendar time, while columns
3-4 estimate and target said moments assuming time-invariance. Columns 1 and 3 estimate the model using
annual growth rates of income and consumption, while columns 2 and 4 use biennial rates. In line with BPP,
estimation is done via diagonally weighted GMM and asymptotic standard errors are in parentheses.
# θ is the moving average parameter of the transitory shock. BPP assume that the transitory component
of income is given by vit = ϵit + θϵit−1, where ϵit is the transitory shock. Given their use of annual growth
rates, θ is readily identified by the first-order income autocovariance. Our use of biennial data in this paper
prevents identification of θ, which we thus set to 0.
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C.4 Additional results

Table C.4 presents the estimates of the parameters of the consumption function using im-

puted consumption data from the CEX. As such, this table accompanies table 4 in the main

text, which reports results using consumption internally available in the PSID.

In the linear specification, the transmission parameter of permanent shocks ϕ(1) is consis-

tently higher than that obtained from the consumption data directly available in the PSID,

regardless of whether we target only second- or also higher-order moments. This echoes our

earlier discussion about the imputation inflating the pass-through of shocks. We also find

that the transmission parameter of transitory shocks ψ(1) is negative in all cases. Moreover,

when up to fourth-order moments are targeted (column 3), the point estimate is particularly

large in magnitude (−0.418) and statistically significant. This is counterintuitive and raises

further concerns about the reliability of the imputation procedure. We draw similar conclu-

sions about these two parameters in the quadratic specification. However, ϕ(2) < 0 in this

case with a magnitude very similar to our baseline results from the PSID (−0.036 versus

−0.04; albeit not significant). This is, once again, indicative of the asymmetric pass-through

of negative versus positive permanent shocks. Similar to our baseline, we also find ψ(2) > 0.

Table C.5 presents estimation results for the linear consumption function in subsamples

formed by wealth and education. As such, this table accompanies table 6 in the main text,

which reported wealth- and education-specific results in the quadratic specification.

Columns 1-4 present parameter estimates among low and high wealth households. ϕ(1) is

consistently smaller among the wealthier, regardless of which set of moments are targeted,

indicating the self-insurance role of assets in that group. ψ(1) is statistically indistinguishable

from zero in both groups. Columns 5-8 present parameter estimates among households with

and without college education. The results do not present a clear pattern across groups.

When only second moments of income and consumption are targeted, ϕ(1) is larger for

households without college education – 0.225 versus 0.123. However, when all moments up

to fourth-order are included, ϕ(1) is almost identical in the two groups.
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Table C.4: Estimates of the consumption function, baseline sample, imputed consumption

Consumption fn.: Linear Quadratic

Income moments: 2nd 2nd, 3rd 2nd, 3rd, 4th 2nd, 3rd, 4th

Consumption data: CEX CEX CEX CEX
(1) (2) (3) (4)

ϕ(1) 0.288 0.339 0.404 0.260
(0.044) (0.074) (0.118) (0.043)

ψ(1) -0.109 -0.155 -0.418 -0.108
(0.078) (0.098) (0.247) (0.086)

ϕ(2) -0.036
(0.038)

ψ(2) 0.025
(0.045)

ω(22) -0.157
(1.195)

σ2
ξ 0.019 0.018 0.000 0.019

(0.004) (0.004) (0.004) (0.004)
γξ -0.016 -0.016

(0.007) (0.007)
κξ 0.000

(0.000)

σ2
uc

0.140 0.140 0.152 0.140
(0.009) (0.009) (0.012) (0.009)

γuc -0.185 -0.185
(0.037) (0.037)

κuc 0.816
(0.183)

Notes: The table presents the estimates of the parameters of the consumption function, assuming homoge-
neous transmission parameters over the lifecycle/in the cross-section and stationarity of taste heterogeneity
and consumption measurement error. Columns 1-3 present parameter estimates in the linear function, while
column 4 presents estimates in the quadratic case; the order of moments targeted in each case is shown
at the top of the table. All columns use consumption imputed from the CEX (with details of the imputa-
tion reported in appendix C.2). Main text table 4 shows the baseline results using consumption internally
available from the PSID. Estimation is via equally weighted GMM; block bootstrap standard errors are in
parentheses.
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