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Induced Rules for Minimum Cost Spanning Tree Problems: towards

Merge-proofness and Coalitional Stability

Siwen Liu∗ Peter Borm† Henk Norde†‡

Abstract

This paper examines cost allocation rules for minimum cost spanning tree (MCST) prob-
lems, focusing on the properties of merge-proofness and coalitional stability. Merge-proofness
ensures that no coalition of agents has the incentive to merge before participating in the cost
allocation process. On the other hand, coalitional stability ensures that no coalition has the
incentive to withdraw from the cost allocation process after the cost allocation proposal is made.
We propose a novel class of rules called induced rules, which are derived recursively from base
rules designed for two-person MCST problems. We demonstrate that induced rules exhibit both
merge-proofness and coalitional stability within a restricted domain, provided that the corre-
sponding base rules satisfy specific conditions.

JEL classification: C71;D61;D79
Keywords: Minimum cost spanning tree problems; Cooperative games; Induced cost allocation
rules; Merge-proofness; Coalitional stability.

1 Introduction

The study of minimum cost spanning tree (MCST) problems is motivated by situations where there
is a set of agents and a source which supplies some good or service that all agents need. Every agent
can choose to connect to the source directly or indirectly through cooperating with other agents.
For each connection, there is a related cost. The overall cost to connect all agents to the source
is minimized via an MCST, which is a spanning tree with minimum cost. Finding an MCST for a
given instance can be done in polynomial time by algorithms proposed in Kruskal (1956) and Prim
(1957). A natural associated question is how to allocate the minimum total cost among the agents
in a fair and stable way. Various cost allocation rules are proposed and studied in the literature
regarding this issue.

A cost allocation rule assigns to every MCST problem within a certain domain an allocation vector
among the agents. Many of the rules in the literature are characterized in a cooperative game-
theoretic way. In Bird (1976), a construct and charge rule that fits with the Prim-Dijkstra (Prim
(1957)) is proposed. An MCST problem is associated with a cooperative MCST game with transfer-
able utility where the cost related to each coalition S is equal to the minimal cost to connect them
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to the source, without cooperating with agents outside of S. Bird’s rule always selects an alloca-
tion vector in the core of that game. The core and the nucleolus (Schmeidler (1969)) of the MCST
game are further studied in Granot and Huberman (1984). Kar (2002) looks into the Shapley value
(Shapley (1953)) of the MCST game as a rule for MCST problems. The folk solution, also known
as the equal remaining obligation rule, is proposed in Feltkamp et al. (1994). It is later called the
Potters-value in Branzei et al. (2003) and can be interpreted as the Shapley value of the irreducible
MCST game in Bergantiños and Vidal-Puga (2007)). Some follow-up works on the folk solution
include Bogomolnaia and Moulin (2010) and Norde (2019). The folk solution decides how to divide
the cost of an edge among the agents as it is chosen by Kruskal’s algorithm (Kruskal (1956)), and
the allocated cost of an agent is determined when the algorithm terminates. Different rules are
associated with different properties, while each property represents a kind of understanding of fair
allocations.

This paper focuses on merge-proofness, as first considered in the MCST context in Gómez-Rúa
and Vidal-Puga (2011). This property is related to a specific type of coalitional consideration:
Agents in set N plan to allocate the cost of the MCST that connects them to the source according
to a specific rule. The agents in a coalition S ⊆ N may merge together before they participate in
the cost allocation procedure. In other words, the agents in coalition S can first connect themselves
to each other, and let one of them enter the cost allocation procedure under the same rule. Since
the agents in S are already internally connected, they can all access the source as long as the single
representative agent does. Within this merger, the cost born by the agents in S consists of two
parts: the cost needed for agents in S to be connected internally and the cost allocated to the
single representative agent under the specific rule in the new instance where the subset S becomes
a single agent. The agents in set S will be incentivized to merge in advance if they are charged
less in this way. A rule is called merge-proofness if it can provide cost allocations that prevent
such coalitional considerations. Merge-proofness of the cost allocation rules for MCST problems
is studied in Ozsoy (2006), Gómez-Rúa and Vidal-Puga (2011) and Gómez-Rúa and Vidal-Puga
(2017). Among other things, Bird’s rule has been characterized on the basis of a set of properties
including merge-proofness.

Merge-proofness is related to some well-studied properties for solutions to other types of cost al-
location problems. Among them, there are the no-advantageous-merging property for bankruptcy
problems (O’Neill (1982), Moulin (1987)), the group strategy-proofness property for social choice
problems (Barberà et al. (2012), Manjunath (2012)), and the merge-proofness property for taxation
problems (Ju and Moreno-Ternero (2011)) and scheduling problems (Moulin (2008)).

Another widely studied property related to coalitional considerations is coalitional stability. In
an MCST context, a rule is said to be coalitionally stable if it provides cost allocation vectors that
belong to the core of the corresponding cooperative MCST games. In other words, under a coali-
tionally stable rule, no group of agents would pay more than the minimum cost needed to connect
them to the source using internal edges only. A distinct difference between merge-proofness and
coalitional stability is that merge-proofness can prevent any coalition of agents from merging into
a single agent before participating in cooperation, while a rule which satisfies coalitional stability
would avoid any coalitional deviations from cooperation after the cost allocation proposal is made.

In general, merge-proofness is difficult to obtain. Ozsoy (2006) shows that there is no merge-
proof rule on the domain of all MCST problems. In Gómez-Rúa and Vidal-Puga (2011), Bird’s rule
is found to be the only rule that satisfies merge-proofness, coalitional stability and independence of
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extreme null points on the domain of MCST problems which allow for a unique MCST and any two
edges in the MCST have different costs. In comparison with Gómez-Rúa and Vidal-Puga (2011),
the current paper focuses on a smaller domain that allows for a richer class of rules that satisfy
merge-proofness and coalitional stability.

This paper introduces a new class of cost allocation rules for MCST problems: induced rules which
are derived from base rules that are defined for two person MCST problems. For every MCST
problem, the induced allocation vector is computed recursively and ensures that the sum of costs
allocated to an agent together with all of its followers is equal to the cost they have to bear if
they form a coalition in advance. Another interpretation of induced rules based on the concept of
compensation value functions is provided. This leads to a direct, non-recursive characterization of
induced rules.

By design, any induced rule prevents mergers between coalitions of agents that are connected
to each other through edges in the MCST. Yet more conditions are needed to produce a merge-
proof induced rule. Interestingly, it is found that a variety of induced rules satisfy merge-proofness
on the domain of MCST problems which allow for a unique MCST, with all edges having different
costs and with exactly one agent directly connected to the source, such that every edge not in the
MCST has a cost larger than or equal to the cost of the unique edge in the MCST connected to
the source. We prove that this class of induced rules is induced by base rules whose compensation
values are in between those of Bird’s rule and the folk solution. Furthermore, it is shown that all
such induced rules would satisfy coalitional stability as well.

The paper is organized as follows. In section 2, we present the notions of MCST problems and
corresponding cost allocation rules. In section 3, the definitions of merge-proofness and coalitional
stability properties are provided. In section 4, induced rules are introduced using base rules. A
recursive procedure and a direct characterization of the rules on the basis of compensation value
functions are proposed. In section 5, the induced rules that satisfy both merge-proofness and coali-
tional stability are presented. Some technical results about MCST problems with fixed edge sets
are provided in an appendix.

2 MCST Problems and Rules

2.1 MCST problems

An MCST problem studies the situation where there is a finite group N of agents and a source 0
to which each agent needs to be connected. Each agent is able to connect to the source directly or
indirectly by cooperating with other agents. Define the node set N0 = N ∪ {0}, where agents and
the source are all regarded as nodes, and the edge set EN0 = {{i, j} | i, j ∈ N0 and i ̸= j}, where
each edge represents a connection that can be built. There is a cost function c : EN0 → R+, where
c({i, j}) is the cost of building the connection between nodes i and j. For simplicity, we use cij or
ci,j to denote c({i, j}). In short, an MCST problem is identified by a triple (N, 0, c). The set of all
MCST problems is denoted by M. Then we use M∗ ⊆ M to denote the set of MCST problems for
which there exists a unique MCST, and M∗

0 ⊆ M∗ to denote the set of MCST problems for which
there is only one node connected to the source in the unique MCST.

Given an MCST problem (N, 0, c), the minimal cost to connect all agents in N to the source 0
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is given by:

m(N, 0, c) = min
{∑

e∈E
c(e) | (N0, E) is a connected graph

}
,

where the minimum will be obtained in a tree called an MCST.

Similarly, for a coalition S ⊆ N , define S0 = S ∪ {0}. The cost of aan MCST connecting all
agents in S to the source 0 is given by:

m(S, 0, c) = min
{∑

e∈E
c(e) | (S0, E) is a connected graph

}
.

The minimum cost for a coalition S ⊆ N to connect themselves, is denoted by M(S, c):

M(S, c) = min
{∑

e∈E
c(e) | (S,E) is a connected graph}.

Note that we have M(S, c) = 0 if |S| = 1.

Several algorithms can solve an MCST problem in polynomial time, such as Kruskal’s algorithm,
the reverse-delete algorithm (Kruskal (1956)) and Prim’s algorithm (Prim (1957)).

2.2 Cost allocation rules

A cost allocation rule ψ on domain D ⊆ M assigns to each MCST problem (N, 0, c) ∈ D a cost
allocation vector ψ(N, 0, c) ∈ RN .

Here we present two widely studied cost allocation rules in the literature of MCST problems,
Bird’s rule (Bird (1976)) and the folk solution (Feltkamp et al. (1994), Bergantiños and Vidal-Puga
(2007)).

1. Bird’s rule B is defined on M∗ as follows.

Take (N, 0, c) ∈ M∗, let Γ = (N0, E) be the MCST for (N, 0, c) and let i ∈ N . Let pΓ(i) ∈ N
be the immediate predecessor of i on the path from i to 0 in Γ. The cost allocated to player
i according to Bird’s rule is given by the cost of the edge between i and pΓ(i):

Bi(N, 0, c) = cpΓ(i),i

For a 2-person MCST problem withN = {1, 2} and a unique MCST Γ = (N0,
{
{0, 1}, {1, 2}

}
),

this leads to:
B1(N, 0, c) = c01,

B2(N, 0, c) = c12.

2. The folk solution F on M can be defined in multiple ways with various interpretations.
Among others, the allocation vector F (N, 0, c) for (N, 0, c) ∈ M equals the Shapley value of
the irreducible cost game associated with (N, 0, c) (cf. Bergantiños and Vidal-Puga (2007)).

For a 2-person MCST problem (N, 0, c) ∈ M withN = {1, 2} and an MCST Γ = (N0,
{
{0, 1}, {1, 2}

}
),

this leads to:

F1(N, 0, c) =

{
c01, if c01 ≤ c12

1
2c01 +

1
2c12 if c01 > c12

and

F2(N, 0, c) =

{
c12, if c01 ≤ c12

1
2c01 +

1
2c12 if c01 > c12.
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3 Merge-proofness and Coalitional Stability

In this section, we introduce the properties of MCST rules which are the main focus of this paper:
merge-proofness and coalitional stability. We first illustrate the concept of mergers, then present
the definitions of the properties merge-proofness and coalitional stability and finally, we discuss the
difficulty of obtaining merge-proofness for cost allocation rules.

The concept of mergers is introduced to describe the cooperative incentives of a group of agents to
form a coalition in advance and to be treated as a single agent. This kind of incentives is different
from the one related to coalitional stability (known as the core selection property in Bergantiños
and Vidal-Puga (2007)): a cost allocation rule is coalitionally stable if, after the allocation rule has
been applied, no group of agents has an incentive to only connect themselves to the source.

A merger takes place between a set of agents S ⊆ N before they participate in the cost allo-
cation procedure. After merging together, the set S of agents are represented by a single agent
mS before they enter the cost allocation procedure. In the context of the resulting MCST problem
after the merger, the new agent set is (N\S) ∪ {mS} and the new cost function cS is defined as:

cSi,j =

{
ci,j , if i, j ∈ N0\S

mink∈S ck,j if i = mS and j ∈ N0\S.
(3.1)

Clearly, ((N\S) ∪ {mS}, 0, cS) is the remaining MCST problem after the merger. An example is
presented below to better illustrate mergers and the new cost functions after mergers.

Example 3.1. Consider an MCST problem (N, 0, c) with N = {1, 2, 3, 4} as shown on the left
hand side of Figure 3.1, with the costs represented by the numbers on the edges. Now suppose
agents 1, 3 and 4 merge together, and are represented by mS , where S = {1, 3, 4}. The resulting
MCST problem ((N\S)∪{mS}, 0, cS) after the merger is shown on the right hand side of Figure 3.1.

◁

2

0

1

4

3
2

35

4

3

2

6

2

5

1

2

0 mS

4

2

2

Figure 3.1: (N, 0, c) and (N\S ∪ {mS}, 0, cS) in Example 3.1

Mergers can happen simultaneously. Consider disjoint agent sets S1, ..., Sl (l ∈ N). After the
simultaneous mergers of these sets, let the set Sk (k ∈ {1, ..., l}) be represented by a single
agent mSk . The remaining MCST problem after the mergers is denoted by ([N\(∪k∈{1,...,n}Sk)] ∪
{mS1 , ...,mSl}, 0, cS1,...,Sl), where the new cost function cS1,...,Sl is defined as:

cS1,...,Sl
i,j =


ci,j , if i, j ∈ N0\(∪k∈{1,...l}Sk)

mink∈Su ck,j , if j ∈ N0\(∪k∈{1,...l}Sk) and i = mSu for some u ∈ {1, ..., l}
mink∈Su,l∈Sv ck,l if i = mSu , j = mSv for some u, v ∈ {1, ..., l}.

(3.2)
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In the notation cS1,...Sl , we assume that all players i ∈ N\(∪l
k=1Sk) remain singletons. It could also

be that some set Sk, k ∈ {1, ..., l}, consists of a singleton. For a singleton merger w.r.t. i ∈ N , the
notation m{i} and {i} are used interchangeably.

A property of MCST allocation rules that prevents mergers among groups of agents is called merge-
proofness and is defined in Gómez-Rúa and Vidal-Puga (2011). The merge-proofness property is
always defined on a domain of problems that is closed under mergers, i.e., for any MCST problem
in this domain, any possible remaining MCST problem after merging remains in the domain.

Definition (Merge-proofness). Let D be a domain of MCST problems that is closed under
mergers. A rule ψ satisfies merge-proofness on D if for all MCST problems (N, 0, c) ∈ D and for
all S ⊆ N , ∑

i∈S
ψi(N, 0, c) ≤ ψmS ((N\S) ∪ {mS}, 0, cS) +M(S, c). (3.3)

On the left hand side of inequality (3.3) is the sum of costs allocated to agents in the set S, which is
the total cost carried by the agents in S in the original problem without the merger between agents
in S. On the right hand side is the minimum cost needed for agents in S to connect themselves
internally, plus the cost allocated to the single agent that represents S in the remaining problem
after the agents in S have merged. Thus the right hand side is the total cost assigned to the agents
in S if they choose to form a coalition in advance. The inequality (3.3) indicates that the set S of
agents can not be better off if they decide to conduct a merger.

The merge-proofness property is not easy to obtain. On the general domain of all MCST prob-
lems, no cost allocation rule is merge-proof (Ozsoy (2006)). In Gómez-Rúa and Vidal-Puga (2011),
an example is presented to show that most cost allocation rules in the literature do not satisfy
merge-proofness, even on the domain of MCST problems where there is a unique minimum cost
spanning tree. Among the rules considered, there are the Shapley value (Kar (2002)), Dutta and
Kar’s rule (Dutta and Kar (2004)), the nucleolus (Granot and Huberman (1984)), and the folk
solution (Feltkamp et al. (1994), Bergantiños and Vidal-Puga (2007)).

Next we turn to coalitional stability.

Definition (Coalitional Stability). Let D be some domain of MCST problems. A rule ψ satis-
fies coalitional stability on D if for any MCST problem (N, 0, c) ∈ D and any subset S ⊆ N ,∑

i∈S
ψi(N, 0, c) ≤ m(S, 0, c).

Bird’s rule satisfies merge-proofness on the domain of MCST problems for which there is a unique
MCST and any two edges in the MCST have different cost values. In fact, Gómez-Rúa and Vidal-
Puga (2011) show that on the domain where no two edges in all possible MCST’s have the same
cost, Bird’s rule is the only rule satisfying merge-proofness, coalitional stability and the property
of independence of extreme null points which we will not discuss in detail.

4 Induced Rules

This section introduces a new type of rules called induced rules, which are defined on M∗ (the
domain of MCST problems with a unique MCST). They are called induced rules because they are
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induced by base rules for 2-person MCST problems. The allocation vector according to an induced
rule is determined recursively and is designed to ensure that the sum of costs allocated to a node
and all its followers in the unique MCST (w.r.t. the source) is equal to the cost they have to carry
if they form a coalition in advance. The concepts of base rules and corresponding compensation
value functions are introduced in section 4.1. The details of the recursive procedure are shown in
section 4.2, in which we also discuss the characterization of induced rules based on compensation
value functions.

4.1 Base rules

Let M∗
2 ⊆ M∗ be the domain of all MCST problems (N, 0, c) with |N | = 2, for which there is a

unique MCST.

Definition 4.1. Let ϕ be a cost allocation rule on M∗
2. Then ϕ is called a base rule if

1. For all (N, 0, c) ∈ M∗
2 with N = {1, 2} and a unique MCST Γ = (N0,

{
{0, 1}, {0, 2}

}
), we

have
ϕ1(N, 0, c) = c01 and ϕ2(N, 0, c) = c02.

2. For all (N, 0, c) ∈ M∗
2 with N = {1, 2} and a unique MCST Γ = (N0,

{
{0, 1}, {1, 2}

}
), and

for all (N, 0, c′) ∈ M∗
2 with N = {1, 2} such that c′01 = c01, c

′
12 = c12 and a unique MCST

(N0,
{
{0, 1}, {1, 2}

}
), we have

ϕ(N, 0, c) = ϕ(N, 0, c′).

Focusing on 2-person MCST problems with a unique MCST, when the connection between agents
is not included in the MCST, the two agents do not need to cooperate in order to build the most
efficient network. In this case, any base rule will assign to each agent the costs of the connection
between the source and himself according to condition 1. Condition 2 requires that the allocation
provided by any base rule only depends on the MCST, and not on the exact cost of the edge not
included in the MCST.

From the expressions in Section 2.2, one can directly see that Bird’s rule and the folk solution
restricted on M∗

2 are both base rules. In Example 4.1, we show that the Shapley value restricted
to M∗

2 is not a base rule.

Example 4.1. Two 2-person MCST problems are presented in Figure 4.1 Both problems have a
unique MCST composed of edges {0, 1} and {1, 2}. The allocation vectors provided by Shapley
value are given by (2,3) and (-1,6) respectively.

0

1 2

3 4

2

0

1 2

3 10

2

Figure 4.1: The two MCST problems in Example 4.1

◁
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For the purpose of getting new merge-proof rules, some rules other than those studied in the
literature can be used as base rules. As an illustration, the quarter rule is presented in Example
4.2.

Example 4.2. The quarter rule Q for any 2-person MCST problem (N, 0, c) with N = {1, 2} and
a unique MCST Γ = (N0,

{
{0, 1}, {1, 2}

}
) is given by:

Q1(N, 0, c) =

{
c01 if c01 ≤ c12
c01 − 1

4(c01 − c12) if c01 > c12

Q2(N, 0, c) =

{
c12 if c01 ≤ c12
c12 +

1
4(c01 − c12) if c01 > c12.

Moreover, for any (N, 0, c) with N = {1, 2} and a unique MCST Γ = (N0,
{
{0, 1}, {0, 2}

}
), the

quarter rule is given by:
Q1(N, 0, c) = c01 and Q2(N, 0, c) = c02.

Clearly, the quarter rule is a base rule.
◁

Next, we present another way to represent base rules by introducing the concept of compensation
value function.

A base rule ϕ on M∗
2 can be identified with a compensation value function cvϕ : R+ × R+ →

R such that for all MCST problems (N, 0, c) ∈ M∗
2 with N = {1, 2} and a unique MCST

(N0,
{
{0, 1}, {1, 2}

}
),

ϕ1(N, 0, c) = c01 − cvϕ(c01, c12),

and
ϕ2(N, 0, c) = c12 + cvϕ(c01, c12).

Note that, for the Bird’s rule B, restricted to M∗
2,

cvB(a, b) = 0 for all a ≥ 0, b ≥ 0,

while, for the folk solution F , restricted to M∗
2,

cvF (a, b) =
1

2
max{a− b, 0} for all a ≥ 0, b ≥ 0.

4.2 Induced rules

Given a base rule ϕ on M∗
2, we obtain its corresponding induced rule Iϕ on M∗ through the fol-

lowing recursive procedure.

Consider an MCST problem (N, 0, c) ∈ M∗ with a unique MCST Γ. Take SC(Γ) as the source
connection set, which consists of all the nodes directly connected to the source in Γ. For i ∈ N , let
F (i) denote the set of the followers of i in Γ w.r.t. the source 0 and denote Vi = {i} ∪ F (i). The
allocation Iϕ(N, 0, c) will be determined branch by branch.

Fix s ∈ SC(Γ) and consider the restricted MCST problem (Vs, 0, cs) on the branch of Γ corre-
sponding to s. Here cs({i, j}) = c({i, j}) for any i, j ∈ Vs ∪ {0} with i ̸= j.

8



Let i ∈ Vs. The idea of how to obtain Iϕi (N, 0, c) in a recursive way is the following. When i
is considered in the procedure, he will take the role of representative for the set Vi consisting of
himself and all of his followers, under the assumption that all of his followers have already been
considered earlier in the procedure, i.e., for all j ∈ F (i), Iϕj (N, 0, c) has already been determined.

First of all, agent i will be an internal representative in taking care of connecting all agents in
Vi internally, making use of the already established contributions Iϕj (N, 0, c) for j ∈ F (i). This will

lead to internal representation costs rϕi (N, 0, c) for agent i given by

rϕi (N, 0, c) =M(Vi, c)−
∑

j∈F (i)

Iϕj (N, 0, c).

Secondly, agent i will be an external representative for Vi, in the negotiations with Vs\Vi about
allocating the costs of the part of Γ that is within the branch including s. In the negotiation, we
assume Vs\Vi to act as one merger. If Vs\Vi ̸= ∅, the external allocation problem is a 2-person
allocation problem to which we apply our base rule ϕ. If Vs\Vi = ∅, or equivalently if i = s, then i
will carry the costs of connecting himself to the source 0. This will lead to external representation
costs Rϕ

i (N, 0, c) for agent i given by

Rϕ
i (N, 0, c) =

{
ϕmVi ({mVi ,mVs\Vi}, 0, cVi,Vs\Vi) if Vs\Vi ̸= ∅
c0,s if Vs\Vi = ∅.

Finally, we define
Iϕi (N, 0, c) = rϕi (N, 0, c) +Rϕ

i (N, 0, c),

as the sum of the internal representation costs rϕi (N, 0, c) and external representation costsRϕ
i (N, 0, c).

To illustrate the computation of the cost allocation vectors prescribed by an induced rule, we
present two examples.

Example 4.3. Consider an MCST problem (N, 0, c) ∈ M∗ with N = {1, 2, ..., 6} and a unique
MCST Γ = (N0, E) as shown in Figure 4.2. In this example, the folk solution F is used as the base
rule. Its corresponding induced rule is denoted by IF .

0

1

2 3

4 5 6

3

2

5

6

24

Figure 4.2: the MCST Γ for the MCST problem in Example 4.3

For end node 6, obviously the internal representation costs rϕ6 (N, 0, c) are equal to 0. To determine

the external representation cost Rϕ
6 (N, 0, c) we consider the 2-person MCST problem as provided

in Figure 4.3.
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0

m{6} mN\{6}

> 6 3

2

Figure 4.3: the 2-person MCST problem for node 6 in Example 4.3

The costs of the edges between m{6} and mN\{6} and between 0 and mN\{6} follow from the
uniqueness of the MCST Γ. Since Γ is the unique MCST for (N, 0, c), the costs of the edge between
0 and m{6} are strictly higher than the maximal cost of an edge on the unique path in Γ from 0 to
6, given by max{c01, c13, c36} = 6. Applying the folk solution as a base rule to this 2-person MCST
problem we obtain that

RF
6 (N, 0, c) = 2

1

2
,

and hence that

IF6 (N, 0, c) = rF6 (N, 0, c) +RF
6 (N, 0, c) = 2

1

2
.

In a similar way, for end nodes 4 and 5, we obtain

IF4 (N, 0, c) = 5 and IF5 (N, 0, c) = 4.

Next consider node 3. Clearly

rF3 (N, 0, c) =M({3, 5, 6}, c)− IF5 (N, 0, c)− IF6 (N, 0, c) = 6− 4− 2
1

2
= −1

2
,

where M({3, 5, 6}, c) = 6, again because Γ is the unique MCST for (N, 0, c).

To determine RF
3 (N, 0, c), consider the 2-person MCST problem as provided in Figure 4.4

0

m{3,5,6} m{1,2,4}

> 6 3

6

Figure 4.4: the 2-person MCST problem for node 3 in Example 4.3

Hence
RF

3 (N, 0, c) = 6,

and, consequently,

IF3 (N, 0, c) = 6− 1

2
= 5

1

2
.

In a similar way, one finds that

IF2 (N, 0, c) = 2
1

2
.

Finally, consider the source connection node 1. Clearly

rF1 (N, 0, c) =M(N, c)−
6∑

j=2

IFj N, 0, c = 19− 19
1

2
= −1

2
.

10



Moreover, RF
1 (N, 0, c) = c01 = 3. Hence

IF1 (N, 0, c) = −1

2
+ 3 = 2

1

2
.

In summary, the induced rule based on the folk solution for (N, 0, c) leads to the allocation vector

IF (N, 0, c) = (2
1

2
, 2

1

2
, 5

1

2
, 5, 4, 2

1

2
).

The cost allocation vector obtained by the direct application of the folk solution on (N, 0, c) is given
by

F (N, 0, c) = (2
1

2
, 2

1

2
, 3

2

3
, 5, 4

2

3
, 3

2

3
).

Note that F (N, 0, c) ̸= IF (N, 0, c).

◁

Example 4.4. Reconsider the MCST problem in Example 4.3. Performing a similar analysis with
the quarter rule Q as a base rule we find that

rQ(N, 0, c) = (−1

4
, 0,−1

4
, 0, 0, 0),

and

RQ(N, 0, c) = (3, 2
1

4
, 6, 5, 4, 2

1

4
),

and hence that

IQ(N, 0, c) = (2
3

4
, 2

1

4
, 5

3

4
, 5, 4, 2

1

4
).

◁
Next, we provide an alternative direct, non-recursive, interpretation of an induced rule Iϕ based
on the description of a base rule via compensation value functions.

Consider an MCST problem (N, 0, c) ∈ M∗ with a unique MCST Γ. For all i ∈ N\SC(Γ), let
p(i) ∈ N denote the immediate predecessor of i ∈ N w.r.t. the source. Moreover, let IF (i) be the
set of immediate followers of i in Γ. Finally, for all i ∈ N\SC(Γ), let sc(i) denote the unique source
connection node such that i ∈ F (s(i)).

The compensation value function interpretation of induced rules is stated in Theorem 4.1. In
the proof, we use three lemmas. Lemma 4.1 indicates that the sets Vi, i ∈ N , play a special role in
the recursive procedure.

Lemma 4.1. Let (N, 0, c) ∈ M∗ be an MCST problem with a unique MCST Γ and let ϕ be a
base rule. Then, for all i ∈ N ,

1. M(Vi, c) =
∑

j∈IF (i)Mj(Vj , c) +
∑

j∈IF (i) ci,j .

2.
∑

j∈Vi
Iϕj (N, 0, c) = Rϕ

i (N, 0, c) +M(Vi, c).

11



Proof. The first statement holds trivially due to the uniqueness of the MCST. Next, let i ∈ N . The
second statement follows from

Iϕi (N, 0, c) = rϕi (N, 0, c) +Rϕ
i (N, 0, c)

=M(Vi, c)−
∑

j∈F (i)

Iϕj (N, 0, c) +Rϕ
i (N, 0, c),

which implies that ∑
j∈Vi

Iϕj (N, 0, c) = Rϕ
i (N, 0, c) +M(Vi, c).

Furthermore, Lemma 4.2 shows that the internal representation costs can be removed from the
description of the induced rule in the following way.

Lemma 4.2. Let (N, 0, c) ∈ M∗ be an MCST problem with a unique MCST Γ and let ϕ be a
base rule, then, for all i ∈ N ,

Iϕi (N, 0, c) = Rϕ
i (N, 0, c)−

∑
j∈IF (i)

(ci,j −Rϕ
j (N, 0, c)).

Proof. Let i ∈ N . Then we have

Iϕi (N, 0, c) =
∑
k∈Vi

Iϕk (N, 0, c)−
∑

j∈IF (i)

∑
u∈Vj

Iϕu (N, 0, c)

= Rϕ
i (N, 0, c) +M(Vi, c)−

∑
j∈IF (i)

(Rϕ
j (N, 0, c) +M(Vj , c))

= Rϕ
i (N, 0, c)−

∑
j∈IF (i)

(ci,j −Rϕ
j (N, 0, c)),

where the second equation follows from the second statement of Lemma 4.1 and the third equation
follows from the first statement of Lemma 4.1.

Finally, Lemma 4.3 shows that the external representation costs can be expressed into compensation
values. This result is a direct consequence of the definition of compensation functions.

Lemma 4.3. Let (N, 0, c) ∈ M∗ be an MCST problem with a unique MCST Γ and let ϕ be a
base rule. Then for all i ∈ N ,

Rϕ
i (N, 0, c) =

{
cp(i),i + cvϕ(c0,sc(i), cp(i),i) if i /∈ SC(Γ)

c0,i if i ∈ SC(Γ).

Theorem 4.1. Let ϕ be a base rule. Let cvϕ be its corresponding compensation value function.
Then,

Iϕs (N, 0, c) = c0,s −
∑

j∈IF (s)

cvϕ(c0,s, cs,j) for all s ∈ SC(Γ),

and

Iϕi (N, 0, c) = cp(i),i + cvϕ(c0,sc(i), cp(i),i)−
∑

j∈IF (i)

cvϕ(c0,sc(i), ci,j) for all i ∈ N\SC(Γ).

12



Proof. By Lemma 4.2 we have that for any i ∈ N ,

Iϕi (N, 0, c) = Rϕ
i (N, 0, c)−

∑
j∈IF (i)

(ci,j −Rϕ
j (N, 0, c)).

With Lemma 4.3, for s ∈ SC(Γ),

Iϕs (N, 0, c) = Rϕ
s (N, 0, c)−

∑
j∈IF (s)

(cs,j −Rϕ
j (N, 0, c))

= c0,s −
∑

j∈IF (s)

cvϕ(c0,s, cs,j).

Moreover, for any i ∈ N\SC(Γ),

Iϕi (N, 0, c) = Rϕ
i (N, 0, c)−

∑
j∈IF (i)

(ci,j −Rϕ
j (N, 0, c))

= cp(i),i + cvϕ(c0,sc(i), cp(i),i)−
∑

j∈IF (i)

(ci,j −Rϕ
j (N, 0, c)).

Let IB denote the induced rule corresponding to the Bird’s rule on M∗
2. Since cv

B(a, b) = 0 for all
a, b ∈ R+, Theorem 4.1 directly implies:

Corollary 4.1. Let (N, 0, c) ∈ M∗. Then B(N, 0, c) = IB(N, 0, c).

The following example illustrates how to use Theorem 4.1 to determine an induced rule in a non-
recursive way.

Example 4.5. Reconsider the MCST problem (N, 0, c) where the agent set is N = {1, 2, ..., 6} and
whose MCST is indicated in Figure 4.2. The folk solution F is used as the base rule. Hence, its
corresponding compensation value function satisfies cvF (a, b) = 0 if b ≥ a and cvF (a, b) = (a− b)/2
if b < a. Using Theorem 4.1, we have that

IF1 (N, 0, c) = c01 − cvF (c01, c12)− cvF (c01, c13) = 3− 1/2− 0 = 5/2,

IF2 (N, 0, c) = c12 + cvF (c01, c12)− cvF (c01.c24) = 2 + 1/2− 0 = 5/2,

IF3 (N.0.c) = c13 + cvF (c01, c13)− cvF (c01, c35)− cvF (c01, c36) = 6 + 0− 0− 1/2 = 11/2,

IF4 (N, 0, c) = c24 + cvF (c01, c24) = 5 + 0 = 5,

IF5 (N, 0, c) = c35 + cvF (c01, c35) = 4 + 0 = 4,

IF6 (N, 0, c) = c36 + cvF (c01, c36) = 2 + 1/2 = 5/2.

◁

5 Merge-proof and Coalitionally Stable Induced Rules

As mentioned in the previous sections, the recursive procedure is designed in a way that the sum
of costs allocated by an induced rule to an agent and all its followers is equal to the cost needed
for them to merge in advance plus the cost assigned to the merger by the induced rule. Such a
design guarantees that every Γ−branch-connected set of agents has no incentive to merge when
an induced rule is used, as is seen in Lemma 5.1. A Γ−branch-connected set is a connected set of
agents within a branch of Γ. A formal definition is presented below.
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Definition 5.1. Let (N, 0, c) ∈ M be an MCST problem with an MCST Γ. Let S ⊆ N . S is
called a Γ−branch-connected set if there exists s ∈ S such that for all i ∈ S\{s}, i ∈ F (s) and
p(i) ∈ S. A subset S ⊆ N , S

′ ⊆ S is called a Γ−branch-connected component of S if S
′
is a

Γ−branch-connected set, and ∄S′′
s.t. S

′ ⊊ S
′′ ⊆ N and S

′′
is a Γ−branch-connected set.

Lemma 5.1. Let Iϕ be the induced rule corresponding to a base rule ϕ. Let (N, 0, c) ∈ M∗ be an
MCST problem with a unique MCST Γ. For any S ⊆ N that is Γ−branch-connected, we have∑

k∈S
Iϕk (N, 0, c) = Iϕ

mS ((N\S) ∪ {mS}, 0, cS) +M(S, c). (5.1)

Proof. Note that the right hand side of (5.1) is well-defined because ((N\S) ∪ {mS}, 0, cS) ∈ M∗.
Let cvϕ be the compensation value function corresponding to the base rule ϕ.

First, Assume that S = Vj for some j ∈ N .

According to Lemma 4.1, the left hand side of (5.1) is given by∑
k∈S

Iϕk (N, 0, c) =
∑
k∈Vj

Iϕk (N, 0, c) = Rϕ
j (N, 0, c) +M(Vj , c). (5.2)

The right hand side of (5.1) is given by

Iϕ
mS ((N\S) ∪ {mS}, 0, cS) +M(S, c) = Iϕ

mVj
((N\Vj) ∪ {mVj}, 0, cVj ) +M(Vj , c)

= rϕ
mVj

((N\Vj) ∪ {mVj}, 0, cVj ) +Rϕ

mVj
((N\Vj) ∪ {mVj}, 0, cVj )

+M(Vj , c)

= Rϕ

mVj
((N\Vj) ∪ {mVj}, 0, cVj ) +M(Vj , c)

= Rϕ
j (N, 0, c) +M(Vj , c),

(5.3)
where the third equation follows from the fact that mVj is a leaf node in ((N\Vj) ∪ {mVj}, 0, cVj ),

so we have rϕ
mVj

((N\Vj) ∪ {mVj}, 0, cVj ) = 0. The fourth equation follows from the fact that the

external representative cost of mVj in problem ((N\Vj) ∪ {mVj}, 0, cVj ) and that of j in problem

(N, 0, c) are identical, i.e., Rϕ
j (N, 0, c) = Rϕ

mVj
((N\Vj) ∪ {mVj}, 0, cVj ). By (5.2) and (5.3), (5.1)

follows.

Now consider an arbitrary Γ−branch-connected set S ⊆ N . Let s ∈ S be the node such that
all the other nodes in the set S are followers of the node s, with H = {i ∈ Vs\S | p(i) ∈ S}.
Clearly, Vs\(∪i∈HVi) = S. In this case, the left hand side of (5.1) is given by:∑

k∈S
Iϕk (N, 0, c) =

∑
k∈Vs

Iϕk (N, 0, c)−
∑
i∈H

∑
k∈Vi

Iϕk (N, 0, c). (5.4)

The first term on the right hand side of (5.4) is given by:∑
k∈Vs

Iϕk (N, 0, c) =M(Vs, c) +Rϕ
s (N, 0, c)

=

{
M(Vs, c) + cp(s),s + cvϕ(c0,sc(s), cp(s),s) if s /∈ sc(Γ)

M(Vs, c) + c0,s if s ∈ sc(Γ),
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where the first equation follows from Lemma 4.1, part 2 and the second equation follows from
Lemma 4.3. Similarly, we have that for all i ∈ H∑

k∈Vi

Iϕk (N, 0, c) =M(Vi, c) + cp(i),i + cvϕ(c0,sc(i), cp(i),i).

If s /∈ sc(Γ), the left hand side of (5.1) is given by:∑
k∈S

Iϕk (N, 0, c) =M(Vs, c) + cp(s),s + cvϕ(c0,sc(s), cp(s),s)

−
∑
i∈H

(
M(Vi, c) + cp(i),i + cvϕ(c0,sc(i), cp(i),i)

)
=

[
M(Vs, c)−

∑
i∈H

(
M(Vi, c) + cp(i),i

)]
+ cp(s),s + cvϕ(c0,sc(s), cp(s),s)

−
∑
i∈H

cvϕ(c0,sc(i), cp(i),i)

=M(S, c) + cp(s),s + cvϕ(c0,sc(s), cp(s),s)−
∑
i∈H

cvϕ(c0,sc(s), cp(i),i),

where the last equation follows from the fact that sc(i) = sc(s) for every i ∈ H, because i and s
are within the same branch.

Similarly, if s ∈ sc(Γ), the left hand side of (5.1) is given by:∑
k∈S

Iϕk (N, 0, c) =M(Vs, c) + c0,s −
∑
i∈H

(
M(Vi, c) + cp(i),i + cvϕ(c0,sc(i), cp(i),i)

)
=M(S, c) + c0,s −

∑
i∈H

cvϕ(c0,s, cp(i),i).

If s /∈ sc(Γ), the right hand side of (5.1) is given by

M(S, c) + Iϕ
mS ((N\S) ∪ {mS}, 0, cS) =M(S, c) + cSp(s),mS + cvϕ

(
cS0,sc(s), c

S
p(s),mS

)
−

∑
i∈H

cvϕ
(
cS0,sc(s), c

S
mS ,i

)
=M(S, c) + cp(s),s + cvϕ(c0,sc(s), cp(s),s)−

∑
i∈H

cvϕ(c0,sc(s), cp(i),i),

where the first equation follows from Theorem 4.1 and the fact that the source connection node
of mS in the remaining problem is exactly the source connection node of s in Γ. The last equa-
tion follows from the fact that cS

(
{p(s),mS}

)
= cp(s),s, c

S
0,sc(s) = c0,sc(s), and for all i ∈ H, that

cS({mS , i}) = mink∈S c({i, k}) = cp(i),i.

Similarly, if s ∈ sc(Γ), the right hand side of (5.1) is given by:

M(S, c) + Iϕ
mS ((N\S) ∪ {mS}, 0, cS) =M(S, c) + cS0,mS −

∑
i∈H

cvϕ
(
cS0,sc(s), c

S
mS ,i

)
=M(S, c) + c0,s −

∑
i∈H

cvϕ(c0,s, cp(i),i).

It is straightforward to see that (5.1) holds for both cases.
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Lemma 4.1 guarantees that an induced rule satisfies merge-proofness when mergers take place
within Γ-branch-connected sets. However, to obtain merge-proofness of induced rules, we need
some additional restrictions on the domain.

Firstly, there is a problem regarding the application of an induced rule when considering merg-
ers of sets that are not Γ−branch-connected. For an MCST problem with a unique MCST, a
merger between a set that is not Γ−branch-connected may lead to multiple MCST’s in the remain-
ing problem, as shown in Example 5.1 below. This causes problems since induced rules are only
defined for MCST problems with a unique MCST. For an MCST problem with a unique MCST
and distinct costs for different edges in the MCST, the remaining problem after an arbitrary set
S ⊆ N merging together still has a unique MCST (cf. Gómez-Rúa and Vidal-Puga (2011)). If we
apply this restriction on the domain, we can apply the induced rule to both the original problem
and the remaining problem to further investigate merge-proofness.

Example 5.1. Consider (N, 0, c) ∈ M∗ as shown in Figure 5.1 on the left hand side, whose
MCST is indicated in solid lines. All unpresented costs of edges are sufficiently large so that
the MCST is unique. Consider the non-Γ-branch-connected set {2, 3} and the remaining problem
((N\{2, 3}) ∪ {m{2,3}}, 0, c{2,3}) as presented on the right hand side in Figure 5.1. It is straight-
forward to see that

{
{0, 1}, {1,m{2,3}}, {m{2,3}, 4}

}
forms an MCST of this remaining problem, as

well as
{
{0, 1}, {1, 4}, {m{2,3}, 4}

}
. Hence, the remaining problem ((N\{2, 3}) ∪ m{2,3}, 0, c{2,3})

does not belong to M∗, preventing the application of an induced rule.
◁

0

1

2

4

3

2

2

2

1

3
4

3

0

1

m{2,3} 4

2

2 2

1

Figure 5.1: MCST problems (N, 0, c) and ((N\{2, 3}) ∪m{2,3}, 0, c{2,3}) in Example 5.1

Secondly, it is worth noting that, even when the remaining problem after merging has a unique
MCST, agents in a set that is not Γ−branch-connected may have the incentive to merge when
applying an induced rule, as is illustrated in Example 5.2 and Example 5.3. In both examples, the
folk solution F , which gives an advantage to the agents closer to the source in the MCST, is used
as a base rule.

Example 5.2. Consider (N, 0, c) ∈ M∗ as shown in Figure 5.2 on the left hand side, whose MCST
is indicated in solid lines. All unindicated costs of edges are sufficiently large so that the MCST is
unique. Note that all costs on the MCST are distinct. We use the folk solution F as the base rule.
Then, using Theorem 4.1,

IF1 (N, 0, c) = c01 − cvF (c01, c12) = 4− 1 = 3,

and
IF3 (N, 0, c) = c23 + cvF (c01, c23) = 1 + 3/2 = 5/2.
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Now consider the problem ((N\{1, 3}) ∪ {m{1,3}}, 0, c{1,3}) after agents 1 and 3 in (N, 0, c) merge
together. In this case,

IF
m{1,3}((N\{1, 3}) ∪ {m{1,3}}, 0, c{1,3}) = 5/2.

Hence, we have
IF1 (N, 0, c) + IF3 (N, 0, c) = 11/2,

while
IF
m{1,3}((N\{1, 3}) ∪ {m{1,3}}, 0, c{1,3}) +M({1, 3}, c) = 5.

◁

0
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2

3

4

2

1
5/2

0

2m{1,3}

4

1

Figure 5.2: MCST problems (N, 0, c) and ((N\{1, 3}) ∪ {m{1,3}}, 0, c{1,3}) in Example 5.2

Example 5.3. Consider (N, 0, c) ∈ M∗ as shown in Figure 5.3 on the left hand side. The MCST
is indicated in solid lines. Again, all unpresented costs of edges are sufficiently large so that the
MCST is unique. Note that all costs on the MCST are distinct. We use the folk solution F as the
base rule. Then, using Theorem 4.1,

IF2 (N, 0, c) = c02 = 3,

IF3 (N, 0, c) = c13 + cvF (c01, c13)− cvF (c01, c34)− cvF (c01, c35) = 4 + 0− 1/4− 1/2 = 13/4.

Now consider the remaining problem ((N\{2, 3}) ∪ {m{2,3}}, 0, c{2,3}) after agents 2 and 3 merge
together. In this case,

IF
m{2,3}((N\{2, 3}) ∪ {m{2,3}}, 0, c{2,3}) = 3− cvF (3, 3/2)− cvF (3, 1) = 5/4.

Hence,
IF2 (N, 0, c) + IF3 (N, 0, c) = 25/4,

while
IF
m{2,3}((N\{2, 3}) ∪ {m{2,3}}, 0, c{2,3}) +M({2, 3}, c) = 23/4.

◁
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Figure 5.3: MCST problems (N, 0, c) and ((N\{2, 3}) ∪ {m{2,3}}, 0, c{2,3}) in Example 5.3

In Example 5.2 we observe that if some edges between agents that are not included in the MCST
have relatively small costs, these agents may have an incentive to merge. On the other hand, we
observe in Example 5.3 that if there is more than one source-connection node, agents may want to
merge with other agents to switch branches. Following the ideas of previous examples, we propose
a more restricted domain M∗

D, as presented in Definition 5.2, to further analyze merge-proofness
of induced rules.

Definition 5.2. M∗
D is the class of all MCST problems (N, 0, c) with a unique MCST Γ = (N0, E)

in which any two edges have different costs, and there exists a unique node sc ∈ N such that
sc(Γ) = {sc} and c(e) ≥ c0,sc for all e ∈ EN0\E.

In Theorem 5.1, we obtain a large class of induced rules satisfying merge-proofness. This class
consists of induced rules Iϕ whose corresponding base rule ϕ satisfies the additional condition (5.5)
below. Consider a 2-person MCST problem (N, 0, c) with N = {1, 2} and a unique MCST Γ formed
by edges {1, 2} and {0, 1}. Condition (5.5) requires that agent 2, after paying c12, may additionally
pay agent 1 a compensation, which should not be too high. Example 5.4 illustrates that when
condition (5.5) does not hold, merge-proofness on M∗

D is not guaranteed.

Example 5.4. Consider (N, 0, c) ∈ M∗
D as shown in Figure 5.4 on the left hand side. The MCST

is indicated in solid lines. All unpresented costs of edges are sufficiently large so that the MCST
is unique and the conditions in Definition 5.2 are satisfied. We use an induced rule Iϕ with
cvϕ(a, b) = a− 1. It is easy to verify that condition (5.5) is not satisfied. By Theorem 4.1,

Iϕ1 (N, 0, c) = 4− cvϕ(4, 1) = 1,

Iϕ3 (N, 0, c) = 2 + cvϕ(4, 2) = 5,

Iϕ
m{1,3}((N\{1, 3}) ∪ {m{1,3}}, 0, c{1,3}) = 4− cvϕ(4, 1) = 1.

Hence, we have,
Iϕ1 (N, 0, c) + Iϕ3 (N, 0, c) = 6,

while
Iϕ
m{1,3}((N\{1, 3}) ∪ {m{1,3}}, 0, c{1,3}) +M({1, 3}, c) = 11/2.

We can conclude that agents 1 and 3 have an incentive to merge.
◁
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Figure 5.4: MCST problems (N, 0, c) and (N\{1, 3} ∪ {m{1,3}}, 0, c{1,3}) in Example 5.4

It is easy to check that both Bird’s rule B and the folk solution F satisfy condition (5.5). In fact,
they actually form the ”boundaries” for the class of induced rules presented in Theorem 5.1. If the
first inequality in (5.5) is an equality, then the base rule ϕ will coincide with Bird’s rule B. If the
second inequality is an equality, the base rule ϕ will coincide with the folk solution F .

Theorem 5.1. Let ϕ be a base rule and cvϕ be the corresponding compensation value function.
If cvϕ satisfies,

0 ≤ cvϕ(a, b) ≤ 1

2
max{a− b, 0}, for every a, b ∈ R+, (5.5)

then the induced rule Iϕ satisfies merge-proofness on M∗
D.

Proof. To prove the merge-proofness property of Iϕ on M∗
D, we need to show that for every

(N, 0, c) ∈ M∗
D, and every S ⊆ N ,∑

i∈S
Iϕi (N, 0, c) ≤ Iϕ

mS ((N\S) ∪ {mS}, 0, cS) +M(S, c). (5.6)

Let (N, 0, c) ∈ M∗
D be an MCST problem with a unique MCST Γ = (N0, E). Let sc(Γ) = {sc}.

By Lemma 5.1, we only need to consider the case where S is not a Γ−branch-connected set.

We first provide a result that is frequently used in the analysis. Consider e ∈ EN0\E and
j ∈ N . Then, since (N, 0, c) ∈ M∗

D, we have that ce ≥ c0,sc. Now assume ce > cp(j),j .Then,
ce ≥ max{c0,sc, cp(j),j}. Hence, using condition (5.5), we have that:

cvϕ(c0,sc, cp(j),j) ≤
1

2
max{c0,sc − cp(j),j , 0}

≤ 1

2
(ce − cp(j),j),

Consequently, for all e ∈ EN0\E and j ∈ N ,

c(e) > cp(j),j =⇒ c(e) ≥ cp(j),j + 2cvϕ(c0,sc, cp(j),j). (5.7)

Case 1: Consider S = {i, j} such that {i, j} /∈ E. Let Pij = {{p0, p1}, {p1, p2}, ..., {pt, pt+1}} ⊆ E,
with p0 = i and pt+1 = j, be the unique path in Γ from i to j. According to Proposition
A.1, the MCST for ((N\{i, j}) ∪ {m{i,j}}, 0, c{i,j}) can only be obtained from Γ by deleting the
edge e ∈ Pij such that ce ≥ cpq ,pq+1 , for all q ∈ {0, 1, ..., t}. For simplicity of notation, let

N
′
= (N\{i, j}) ∪ {m{i,j}}, c′ = c{i,j} and Γ

′
= (N

′
, E

′
) be the MCST of problem (N

′
, 0, c

′
).

Note that E
′
= E\{e}. For k ∈ N

′
, let IF

′
(k) denote the immediate follower set of k and p

′
(k)

denote the immediate predecessor of k in Γ
′
.

Case 1.1: i /∈ F (j), j /∈ F (i).
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In this case, we have that i ̸= sc and j ̸= sc. By Theorem 4.1,

Iϕi (N, 0, c) = cp(i),i + cvϕ(c0,sc, cp(i),i)−
∑

k∈IF (i)

cvϕ(c0,sc, cp(k),k),

Iϕj (N, 0, c) = cp(j),j + cvϕ(c0,sc, cp(j),j)−
∑

k∈IF (j)

cvϕ(c0,sc, cp(k),k).

The left hand side of (5.6) in this case is:

Iϕi (N, 0, c) + Iϕj (N, 0, c) = cp(i),i + cvϕ(c0,sc, cp(i),i)−
∑

k∈IF (i)∪IF (j)

cvϕ(c0,sc, cp(k),k)

+ cp(j),j + cvϕ(c0,sc, cp(j),j).

(5.8)

Here we use the fact that IF (i) ∩ IF (j) = ∅.

After i and j merge, assume that p
′
(m{i,j}) = p(i) without loss of generality. Then either

IF
′
(m{i,j}) = IF (i) ∪ IF (j) or IF

′
(m{i,j}) = IF (i) ∪ IF (j) ∪ {p(j)}. If p(j) ∈ IF

′
(m{i,j}),

then c
′

p(j),m{i,j} = cp(j),j . As a consequence,

Iϕ
m{i,j}(N

′
, 0, c

′
) = c

′

p(i),m{i,j} + cvϕ(c
′
0,sc, c

′

p(i),m{i,j})−
∑

k∈IF ′ (m{i,j})

cvϕ(c
′
0,sc, c

′

m{i,j},k)

=


c
′

p(i),m{i,j} + cvϕ(c
′
0,sc, c

′

p(i),m{i,j})

−
∑

k∈IF (i)∪IF (j) cv
ϕ(c

′
0,sc, c

′

m{i,j},k
) if IF

′
(m{i,j}) = IF (i) ∪ IF (j)

c
′

p(i),m{i,j} + cvϕ(c
′
0,sc, c

′

p(i),m{i,j})

−
∑

k∈IF (i)∪IF (j)∪{p(j)} cv
ϕ(c

′
0,sc, c

′

m{i,j},k
) if IF

′
(m{i,j}) = IF (i) ∪ IF (j) ∪ {p(j)}

≥ c
′

p(i),m{i,j} + cvϕ(c
′
0,sc, c

′

p(i),m{i,j})− cvϕ(c
′
0,sc, cp(j),j)

−
∑

k∈IF (i)∪IF (j)

cvϕ(c
′
0,sc, c

′

m{i,j},k)

= cp(i),i + cvϕ(c0,sc, cp(i),i)− cvϕ(c0,sc, cp(j),j)−
∑

k∈IF (i)∪IF (j)

cvϕ(c0,sc, cp(k),k).

(5.9)
The first equation follows from Theorem 4.1. The inequality follows from cvϕ(·, ·) ≥ 0. The last
equation follows from the fact that c

′
0,sc = c0,sc , c

′

p(i),m{i,j} = cp(i),i and c
′

m{i,j},k
= cp(k),k for every

k ∈ IF (i) ∪ IF (j).

Starting from the right hand side of (5.6),

Iϕ
m{i,j}(N

′
, 0, c

′
) +M({i, j}, c) = Iϕ

m{i,j}(N
′
, 0, c

′
) + cij

≥ cp(i),i + cvϕ(c0,sc, cp(i),i)−
∑

k∈IF (i)∪IF (j)

cvϕ(c0,sc, cp(k),k)

+ cij − cvϕ(c0,sc, cp(j),j)

≥ cp(i),i + cvϕ(c0,sc, cp(i),i)−
∑

k∈IF (i)∪IF (j)

cvϕ(c0,sc, cp(k),k)

+ cp(j),j + cvϕ(c0,sc, cp(j),j)

= Iϕi (N, 0, c) + Iϕj (N, 0, c).
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The first inequality follows from (5.9), the second inequality follows from cij > cp(j),j and (5.7),
and the last equality from (5.8).

Case 1.2: j ∈ F (i) or i ∈ IF (j).

Without loss of generality, we assume that j ∈ F (i). By Theorem 4.1, if i ̸= sc, the left hand
side of (5.6) is:

Iϕi (N, 0, c)+I
ϕ
j (N, 0, c) = cp(i),i+cv

ϕ(c0,sc, cp(i),i)+cp(j),j+cv
ϕ(c0,sc, cp(j),j)−

∑
k∈IF (i)∪IF (j)

cvϕ(c0,sc, cp(k),k).

(5.10)
When i = sc, by condition (5,5), cvϕ(c0,sc, c0,sc) = 0. So if i = sc, (5.10) is still satisfied.

After i and j merge, p
′
(m{i,j}) = p(i). Let f(i) be the immediate follower of i on the path

Pij . Then,

IF
′
(m{i,j}) =


IF (i) ∪ IF (j), if e = {p(j), j}
IF (i) ∪ IF (j) ∪ {p(j)}, if e ̸= {p(j), j} and e ̸= {i, f(i)}(
IF (i) ∪ IF (j)\{f(i)}

)
∪ {p(j)} if e = {i, f(i)}.

According to Theorem 4.1 and the fact that p
′
(m{i,j}) = p(i),

Iϕ
m{i,j}(N

′
, 0, c

′
) = c

′

p′ (m{i,j}),m{i,j} + cvϕ
(
c
′
0,sc, c

′

p′ (m{i,j}),m{i,j}

)
−

∑
k∈IF ′ (m{i,j})

cvϕ
(
c
′
0,sc, c

′

p′ (k),k

)
= cp(i),i + cvϕ(c0,sc, cp(i),i)−

∑
k∈IF ′ (m{i,j})

cvϕ
(
c
′
0,sc, c

′

p′ (k),k

)
.

(5.11)

For any k ∈
(
IF (i)∪ IF (j)

)
\{f(i)}, we have that c′

p′ (k),k
= cp(k),k. Moreover, if p(j) ∈ IF

′
(m{i,j}),

then c
′

p′ (p(j)),p(j)
= cj,p(j).

Given condition (5.5), we have cvϕ(·, ·) ≥ 0. As a result∑
k∈IF ′ (m{i,j})

cvϕ
(
c
′
0,sc, c

′

p′ (k),k

)
≤

∑
k∈IF (i)∪IF (j)∪{p(j)}

cvϕ(c
′
0,sc, c

′

p′ (k),k
)

≤
∑

k∈IF (i)∪IF (j)

cvϕ(c0,sc, cp(k),k) + cvϕ(c0,sc, cp(j),j),
(5.12)

Hence, starting from the right hand side of (5.6),

Iϕ
m{i,j}(N

′
, 0, c

′
) +M({i, j}, c) = Iϕ

m{i,j}(N
′
, 0, c

′
) + cij

≥ cp(i),i + cvϕ(c0,sc, cp(i),i)−
∑

k∈IF (i)∪IF (j)

cvϕ(c0,sc, cp(k),k)

− cvϕ(c0,sc, cp(j),j) + cij

≥ cp(i),i + cvϕ(c0,sc, cp(i),i)−
∑

k∈IF (i)∪IF (j)

cvϕ(c0,sc, cp(k),k)

+ cp(j),j + cvϕ(c0,sc, cp(j),j)

= Iϕi (N, 0, c) + Iϕj (N, 0, c),
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where the first inequality combines (5.11) and (5.12), the second inequality follows from (5.7) and
cij > cp(j),j , and the last equation follows from (5.10).

Case 2: Now consider S ⊆ N where E ∩ ES = ∅.

Let Q denote the set of nodes in S that are not the followers of any other nodes in S. We
can see that after agents in S merges together, in the new MCST Γ

′
, the immediate predecessor of

mS belongs to the set {p(q) | q ∈ Q}. Let q̄ ∈ Q s.t. p(q̄) = p
′
(mS). Set p̄ = p(q̄). If for i ∈ N\S,

{i,mS} ∈ Γ
′
, then there is an s ∈ S, {i, s} ∈ Γ. Hence,

IF
′
(mS) ⊆

(
∪u∈S IF (u)

)
∪
(
∪k∈S\{q̄} {p(k)}

)
. (5.13)

For simplicity, define N
′
= (N\S) ∪ {mS} and c

′
= cS . Let GS = (S,EGS

) with EGS
⊆ ES be a

tree such that
∑

e∈EGS
c(e) =M(S, c).

By Theorem 4.1 and (5.5), the left hand side of (5.6) is given by:∑
u∈S

Iϕu (N, 0, c) =
∑
u∈S

[
cp(u),u + cvϕ(c0,sc, cp(u),u)

]
−

∑
u∈S

∑
k∈IF (u)

cvϕ(c0,sc, cp(k),k). (5.14)

Within the merger, the merging cost is:

M(S, c) = c(EGS
) =

∑
e∈EGS

ce.

By Theorem 4.1 and (5.13s), we also have that

Iϕ
mS (N

′
, 0, c

′
) = c

′({pmS
,mS}

)
+ cvϕ

(
c
′
0,sc, c

′({pmS
,mS}

))
−

∑
k∈IF ′ (mS)

cvϕ(c
′
0,sc, c

′

p′ (k),k
)

≥ cp(q̄),q̄ + cvϕ(c0,sc, cp(q̄),q̄)−
∑
u∈S

∑
k∈IF (u)

cvϕ(c0,sc, cp(k),k)−
∑

k∈S\{q}

cvϕ(c0,sc, cp(k),k).

(5.15)
In the remainder of the part of the proof, we use the following claim which can be seen as a variation
of (5.7). For a separate prof of Claim 1, we refer to the Appendix.

Claim 1. There exists a bijection η : S\{q} −→ EGS
, such that for each k ∈ S\{q}, there is

η(k) ∈ EGS
satisfies that cη(k) ≥ cp(k),k + 2cvϕ(c0,sc, cp(k),k).

By Claim 1, we have that

M(S, c) =
∑

e∈EGS

c(e) ≥
∑

k∈S\{q̄}

(
cp(k),k + 2cvϕ(c0,sc, cp(k),k)

)
. (5.16)

By combining (5.15) and (5.16), we have that:

M(S, c) + Iϕ
mS (N

′
, 0, c

′
) ≥

∑
u∈S

{
cp(u),u + cvϕ(c0,sc, cp(u),u)

}
−

∑
u∈S

∑
k∈IF (u)

cvϕ(c0,sc, cp(k),k)

=
∑
u∈S

Iϕu (N, 0, c),
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where the equality follows from (5.14).

Case 3: Finally, consider S ⊆ N that is not Γ-branch-connected. Let S1,...,St be its Γ−branch-
connected components. Let N∗ = (N\S) ∪ {mS1 , ...,mS2}, and c∗ = cS1,...,St . By repeated use of
Lemma 5.1, for all u ∈ {1, ..., t},∑

k∈Su

Iϕk (N, 0, c) =M(Su, c) + Iϕ
mSu

(N∗, 0, c∗).

Hence, ∑
k∈S

Iϕk (N, 0, c) =
∑

u∈{1,...,t}

[
M(Su, c) + Iϕ

mSu
(N∗, 0, c∗)

]
.

Let N
′
= (N∗\{mS1 , ...,mSt})∪{mS}, and c′ = c∗

{mS1 ,...,mSt}
. Proposition A.1 implies that for any

i, j ∈ {1, ..., t}, {mSi ,mSj} can not be an edge in the MCST in (N∗, 0, c∗). According to case 2, we
have ∑

u∈{1,...,t}

Iϕ
mSu

(N∗, 0, c∗) ≤M({mS1 , ...,mSt}, c∗) + Iϕ
mS (N

′
, 0, c

′
).

Thus, ∑
k∈S

Iϕk (N, 0, c) =
∑

u∈{1,...,t}

[
M(Su, c) + Iϕ

mSu
(N∗, 0, c∗)

]
≤

∑
u∈{1,...,t}

M(Su, c) +M({mS1 , ...,mSt}, c∗) + Iϕ
mS (N

′
, 0, c

′
)

=M(S, c) + Iϕ
mS (N

′
, 0, c

′
),

where the last equation follows from the fact that∑
u∈{1,...,t}

M(Su, c) +M({mS1 , ...,mSt}, c∗) =M(S, c).

The following theorem states that when we focus on the domain M∗
D, an induced rule satisfies

coalitional stability on this domain if its base rule meets condition (5.17).

Theorem 5.2. Let ϕ be a base rule and cvϕ be the corresponding compensation value function.
If cvϕ satisfies

0 ≤ cvϕ(a, b) ≤ max{a− b, 0}, for all a ≥ 0, b ≥ 0, (5.17)

then the induced rule Iϕ satisfies coalitional stability on domain MD
∗.

Proof. Let (N, 0, c) ∈ MD
∗ be an MCST problem with a unique MCST Γ = (N0, E) and source

connection node sc. To prove coalitional stability of Iϕ on M∗
D, we need to show that, for every

(N, 0, c) ∈ M∗
D and every S ⊆ N , ∑

i∈S
Iϕi (N, 0, c) ≤ m(S, 0, c).
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First consider S ⊆ N where be a set whose Γ-branch-connected components are all single nodes.
According to Theorem 4.1 and (5.17), for all i ∈ S,

Iϕi (N, 0, c) = cp(i),i + cvϕ(c0,sc, cp(i),i)−
∑

j∈IF (i)

cvϕ(c0,sc, cp(j),j)

≤ cp(i),i + cvϕ(c0,sc, cp(i),i)

≤ max{cp(i),i, c0,sc},

Let EGS∪{0} ⊆ ES∪{0} be such that
∑

e∈EGS∪{0}
c(e) = m(S, 0, c).

For the remainder, we need the following claim in the same style as Claim 1 in the proof of
Theorem 5.1. The proof of this claim is similar to that of Claim 1, and therefore omitted.

Claim 2. There exists a bijection η : Ŝ → EGŜ∪{0}
, such that for each i ∈ Ŝ, η(i) satisfies

c(η(i)) ≥ max{cp(i),i, c0,sc}.

Let η be as in claim 2, we have

m(S, 0, c) =
∑

e∈EGS∪{0}

c(e) =
∑
i∈S

c(η(i)) ≥
∑
i∈S

max{cp(i),i, c0,sc} ≥
∑
i∈S

Iϕi (N, 0, c). (5.18)

Secondly, consider an arbitrary S ⊆ N with t Γ−branch-connected components (t ∈ N), denoted
by S1,...,St. Let N∗ = (N\S) ∪ {mS1 , ...,mS2}, and c∗ = cS1,...,St . By repeated use of Lemma 5.1,
for all u ∈ {1, ..., t}, ∑

k∈Su

Iϕk (N, 0, c) =M(Su, c) + Iϕ
mSu

(N∗, 0, c∗).

By (5.18), we have, ∑
u∈{1,...,t}

Iϕ
mSu

(N∗, 0, c∗) ≤ m({mS1 , ...,mSt}, 0, c∗)

Hence, ∑
i∈S

Iϕi (N, 0, c) =
∑

u∈{1,...,t}

∑
k∈Su

Iϕk (N, 0, c)

=
∑

u∈{1,...,t}

[
M(Su, c) + Iϕ

mSu
(N∗, 0, c∗)

]
≤ m({mS1 , ...,mSt}, 0, c∗) +

∑
u∈{1,...,t}

M(Su, c)

= m(S, 0, c),

where the last equation follows from Proposition A.1.

Since condition (5.17) is weaker than condition (5.5), straightforwardly, we have the following
corollary:

Corollary 5.1. An induced rule obtained from a base rule ϕ that satisfies condition (5.5) is merge-
proof and coalitionally stable on M∗

D.
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Appendix

A.1 MCST w.r.t. a Fixed Edge Set

Clearly, the problem of finding a new MCST after some coalition merges can be transformed into
a problem of finding an MCST w.r.t. a fixed edge set. In this section, an algorithm adapted
from the reverse-delete algorithm (Kruskal (1956)) is proposed to find an MCST w.r.t. a fixed
edge set. As a consequence of this algorithm, it follows that if there is a unique MCST in which
all edges have different costs, the MCST after a merger only includes edges from the original MCST.

The reverse-delete algorithm recursively deletes an edge with the highest cost under the condi-
tion that the remaining graph stays connected. The procedure of finding an MCST by the reverse
delete algorithm is described in Algorithm A.1.

Algorithm A.1: Reverse-delete algorithm

Input: An MCST problem (N, 0, c);
A list of all edges from EN0 : e1, e2, ... in descending order with respect to costs.

Initialization: The complete graph (N0, E
N0).

for e = e1, e2, ... do
if Deleting e from the graph leads to a connected graph then

delete e from the graph;
else

continue;
end

end

The reverse-delete algorithm can be readily modified to Algorithm A.2 to solve connection problems
(N, 0, c) with a fixed edge set F ⊆ EN0 given by

min{
∑
e∈E

c(e) | E ⊆ EN0 and (N0, E ∪ F ) is a connected graph}.

Algorithm A.2: Reverse-delete algorithm w.r.t. a fixed edge set F

Input: An MCST problem (N, 0, c); a fixed edge set F ;
A list of all edges from EN0 : e1, e2, ... in descending order regarding costs.

Initialization: Start with the complete graph (N0, E
N0).

for e = e1, e2, ... do
if e /∈ F and deleting e from the graph leads to a connected graph then

delete e from the graph;
else

continue;
end

end

Of course, if the fixed edge set F is a tree on some nodes in N (as in the setting of mergers), then
the resulting optimal structure is a tree too. In such cases, the optimal structure is called an MCST
w.r.t. F for simplicity.
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Finally, we consider an MCST problem (N, 0, c) with a unique MCST Γ = (N0, EΓ) and where
any two edges in the MCST have different costs. Take a set S ⊆ N , then the MCST for problem
((N\S) ∪ {mS}, 0, cS) after the merger of S is also unique. Take an edge set F so that edges in F
form a spanning tree among S. Then one can show that the edges in the MCST w.r.t. F belong
to F ∪ EΓ, as is stated in the following proposition.

Proposition A.1. Let (N, 0, c) ∈ M∗ with a unique MCST Γ = (N0, EΓ) in which any two edges
in the MCST have different costs. Let S ⊆ N with |S| ≥ 2 and F ⊆ S be a tree such that∑

e∈F c(e) = M(S, c). Moreover, let E∗ ⊆ EN0 be the edge set of the MCST w.r.t. F . Then,
E∗\F ⊆ EΓ.

Proof. Apply Algorithm A.2 w.r.t. F . It suffices to show that all edges in EN0\(F ∪ EΓ) will be
deleted during the algorithm.

Consider e = {i, j} ∈ EN0\(F ∪ EΓ). There exists a unique path from i to j in Γ. By the
uniqueness of Γ, all edges on this path have a strictly lower cost than e. So e is considered before
any of those edges is. Hence, deleting e will not lead to a disconnected graph and e will be deleted
by the algorithm.

A.2 Proof of Claim 1 for Theorem 5.1

For all E ⊆ EGS
, E ̸= ∅, let NG(E) =

{
i ∈ S\{q̄} | ∃e ∈ E s.t. c(e) > cp(i),i

}
. Using (5.7) and

the marriage theorem (Hall (1987)), to show the existence of the desired bijection in the claim, it
suffices to show that, for all E ⊆ EGS

, E ̸= ∅,

|NG(E)| ≥ |E|.

Let E ⊆ EGS
, E ̸= ∅.

We recursively construct a subset D ⊆ E of edges and a subset M ⊆ NG(E) of agents in |E|
steps in the following way.

Consider an order σ on E, i.e., σ : {1, ..., |E|} → E is a bijection. Let Dk ⊆ E and Mk ⊆ NG(E)
be the sets created after step k. By definition, D = D|E|, M =M |E|.

Initialize D0 = ∅ and M0 = ∅.

Consider step k ∈ {1, ..., |E|} and let σ(k) = {i, j} ∈ E. Intuitively speaking, in this step, three
things can happen:

• Both the current set of edges and the current set of agents remain unchanged.

• σ(k) is added to the current set of edges and either i or j is added to the current set of agents.

• σ(k) is added to the current set of edges and both i and j are added to the current set of
players.

Formally, we discriminate between the following three cases:

Case 1: j ∈ F (i).
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If j ∈ Mk−1, then let Dk = Dk−1 and Mk = Mk−1. Otherwise, if j /∈ Mk−1, then let Dk =
Dk−1 ∪ {σ(k)} and Mk =Mk−1 ∪ {j}.

Here, note that j ̸= q̄. Moreover, since p(j) ̸= i and {p(j), j} is on the path between i and j
in the unique MCST Γ, we have c(σ(k)) > cp(j),j . Hence, j ∈ NG(E).

Case 2: i ∈ F (j).

Similar to Case 1, if i ∈ Mk−1, then let Dk = Dk−1 and Mk = Mk−1. Otherwise, if i /∈ Mk−1,
then let Dk = Dk−1 ∪ {σ(k)} and Mk =Mk−1 ∪ {i}.

Case 3: j /∈ F (i), i /∈ F (j).

If i ∈ Mk−1 or i = q̄ and, also, j ∈ Mk−1 or j = q̄, then let Dk = Dk−1 and Mk = Mk−1.
Otherwise, let Dk = Dk−1 ∪ {σ(k)} and Mk =Mk−1 ∪

(
{i, j}\{q̄}

)
.

Since j /∈ F (i), the edge {p(i), i} belongs to the path between i and j in Γ, so we have c(σ(k)) >
cp(j),j . Hence, i ∈ NG(E) as long as i ̸= q̄. Similarly, we have j ∈ NG(E) as long as j ̸= q̄.

By construction, D ̸= ∅, M ̸= ∅ while

M ⊆ NG(E) and |M | ≥ |D|. (A.1)

In fact for every connected component T ∈ S/D in the graph (S,D), we have,

if |T | = 1, then T ∩M = ∅, (A.2)

and,
if |T | ≥ 2, then |T ∩M | ∈ {|DT |, |DT |+ 1}, (A.3)

where DT is the set of edges within D between players in T .

Of course, if D = E, the proof is finished. From now on, assume E\D ̸= ∅.

Next, in |E| − |D| steps we recursively add every edge in E\D one by one, while, if necessary,
at the same time we add a new agent to NG(E) in such a way that, after each step, the newly
created M and D still satisfy all properties described in (A.1), (A.2), and (A.3). In this way, after
|E| − |D| steps we obtain the edge set E and a corresponding agent set NG ⊆ NG(E) such that

|NG(E)| ≥ |NG| ≥ |E|,

which finishes the proof.

Consider an order π on E\D, i.e., π : {1, ..., |E\D|} → E\D is a bijection. Let Ek ⊆ E and
NGk ⊆ NG(E) be the sets created after step k.

Initialize E0 = D and NG0 =M .

29



Consider step k ∈ {1, ..., |E\D|} and let π(k) = {i, j} ∈ E\D. Clearly π(k) connects two compo-
nents, say R and T , with R, T ∈ S/Ek−1. Define

F = Ek−1
R ∪ Ek−1

T ∪ {π(k)}

and
NGRT = NGk−1 ∩ (R ∪ T ).

Because of condition (A.3) we know

|NGRT | ≥ |F | − 1.

First of all, if |NGRT | ≥ |F |, we define

Ek = Ek−1 ∪ {π(k)} and NGk = NGk−1.

Clearly, Ek and NGk retain the properties described in (A.1), (A.2) and (A.3).

For the remainder of this proof we assume

|NGRT | = |F | − 1.

Then, there exists exactly one player i(R) ∈ R s.t. i(R) /∈ NGk−1. Similarly, there exists ex-
actly one player i(T ) ∈ T s.t. i(T ) /∈ NGk−1. Note that, since {i(R), i(T )} /∈ D, i(R) /∈ M and
i(T ) /∈M , we have that {i(R), i(T )} /∈ E, due to the way D and M are constructed.

Next choose i
′
(R), i

′
(T ) ∈ R ∪ T on the unique path in (R ∪ T, F ) connecting i(R) and i(T )

s.t. {i(R), i′(R)} ∈ F and {i(T ), i′(T )} ∈ F . Note that possibily i
′
(R) = i

′
(T ).

We distinguish between two cases depending on the location of q̄:

Case A: q̄ /∈ {i(R), i(T )}.

Since i(R) /∈ M , it follows, by construction of M , that i
′
(R) ∈ F (i(R)). Similarly, we have

i
′
(T ) ∈ F (i(T )). Next, we distinguish between two subcases: i(R) ∈ F (i(T )) and i(R) /∈ F (i(T )).

Case A1: If i(R) ∈ F (i(T )), there must be an edge e on the path within F connecting i(R)
and i(T ) between an agent in F (i(R)) and an agent not in F (i(R)). In this case, define

Ek = Ek−1 ∪ {π(k)} and NGk = NGk−1 ∪ {i(R)}.

Note that {p(i(R)), i(R)} is on the path between i(R) and i(T ) in Γ, while e is not in Γ, so

ce > c{p(i(R)),i(R)} and i(R) ∈ NG(E).

Moreover, it is readily seen that Ek and NGk retain the properties described in (A.1), (A.2) and
(A.3).

Case A2: If i(R) /∈ F (i(T )), there must be an edge on the path connecting i(R) and i(T ) in
(R ∪ T, F ) between an agent in F (i(T )) and an agent not in F (i(T )). In this case, define

Ek = Ek−1 ∪ {π(k)} and NGk = NGk−1 ∪ {i(T )}.
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Using similar reasoning as before, we have that i(T ) ∈ NG(E) and Ek and NGk retain the prop-
erties described in (A.1), (A.2) and (A.3).

Case B: q̄ ∈ {i(R), i(T )}.

Assume, without loss of generality, that q̄ = i(R). Since i(T ) /∈ M , it follows, by construction
of M , that i(T ) ∈ F (i(T )). Moreover, since q̄ = i(R), we know that i(R) /∈ F (i(T )). Hence, we
can proceed in exactly the same way as in Case A2 and define

Ek = Ek−1 ∪ {π(k)} and NGk = NGk−1 ∪ {i(T )}.
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