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A strategic approach to bankruptcy problems
based on the TAL family of rules

Dirck Bouwhuisa,b, Peter Borma and Ruud Hendrickxa

Abstract

This paper analyzes bankruptcy problems from a strategic perspective using the
parameterized TAL family of bankruptcy rules. We construct a strategic game where
every player selects a parameter, and the rule from the TAL family that corresponds to
the mean of the chosen parameters is used to divide the estate. We prove the existence
of Nash equilibria for this strategic game. In particular, we provide the set of all Nash
equilibria for two players, and for more players, we prove existence by constructing a
Nash equilibrium of a particular form based on the notion of a pivotal player.

JEL Classification Number: C71, C72

1 Introduction

If an entity has a monetary estate that is insufficient to cover its monetary obligations to
its claimants, all with justifiable claims, this leads to a so-called bankruptcy problem. A
systematic procedure to solve every bankruptcy problem is called a bankruptcy rule, or, in
short, rule. For every bankruptcy problem, a rule prescribes an allocation of the estate,
such that no claimant receives more than his claim. The formal game-theoretic study of
bankruptcy problems and rules began with O’Neill (1982). For an excellent survey, see
Thomson (2019).

Several bankruptcy rules have been proposed in the literature, one of them being CEA
(constrained equal awards). The CEA rule allocates the estate as equally as possible, under
the condition that no claimant receives more than his claim. Similarly, the CEL (constrained
equal losses) rule distributes the losses, i.e. the difference between the claim and the awards,
as equal as possible such that no claimant receives a negative amount. Aumann and Maschler
(1985) introduced the TAL (Talmud) rule, which is a combination of CEA and CEL, where
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claimants receive no more than half their claim if the sum of claims is greater than twice
the estate, and no less than half their claim otherwise. In particular, TAL coincides with
the nucleolus of the associated bankruptcy game, as introduced by O’Neill (1982). The TAL
family of bankruptcy rules, first defined by Moreno-Ternero and Villar (2006), contains CEA,
CEL, and TAL. Every rule in the TAL family is characterized by a parameter θ ∈ [0, 1],
representing a measure of the distributive power of the rule. Moreno-Ternero and Villar
(2006) studied the axiomatic foundations of the TAL family as a whole, in light of the
standard properties of rules in the literature.

Besides the axiomatic approach to bankruptcy problems, there is the strategic approach
(also called the Nash program, see Serrano (2021)). If the allocations of a bankruptcy rule
correspond to the payoffs of a Nash equilibrium of an adequate strategic game for every
bankruptcy problem, one can consider this to be a strategic justification of this rule. O’Neill
(1982) proposed a strategic game in which the Nash equilibria correspond to the minimum
overlap bankruptcy rule. Chun (1989) introduced a strategic game where each player is al-
lowed to propose a solution concept. Dagan et al. (1997) capture a strategic dimension of the
consistency property of bankruptcy rules. Furthermore, Garćıa-Jurado et al. (2006) provide
a strategic game where each player declares how much he is willing to concede. Recently,
Moreno-Ternero et al. (2022) have provided a strategic justification for each individual rule
of the TAL family.

In this paper, we construct a strategic game, called the strategic TAL game, in which
each player selects a parameter between 0 and 1, and the resulting payoffs are determined
by the member of the TAL family corresponding to the mean of the selected parameters.
The aim of this paper is to get insight into the Nash equilibria of this strategic TAL game.
For two-player strategic TAL games, the payoff functions are monotone in their arguments,
which enables us to characterize all Nash equilibria. Furthermore, we show that all Nash
equilibrium payoffs are equal to the allocation of the Talmud rule, for every bankruptcy
problem.

For strategic TAL games with three or more players, the situation is more complicated,
as the payoff functions are in general not monotone for every player. We show that the
existence of Nash equilibria does not readily follow from the Kakutani fixed point theorem.
Instead, a constructive approach is used to prove the existence of Nash equilibria for every
strategic TAL game. The Nash equilibrium we construct is based on a pivotal player, such
that every player whose claim is lower than this player selects the parameter 1, and every
player whose claim is higher selects the parameter 0. This Nash equilibrium reflects the
intuition that players with large claims prefer CEL to CEA and vice versa.

Section 2 introduces the TAL family of bankruptcy rules, after which Section 3 formally
defines the strategic TAL game. Section 4 fully describes the set of Nash equilibria for every
two-player TAL game. Lastly, in Section 5 we construct a specific type of Nash equilibrium,
based on pivotal players, for every strategic TAL game.
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2 The TAL family of bankruptcy rules

Let N be a finite set of claimants or players. A bankruptcy problem with player set N is
a tuple (E, c) where E ∈ R+ denotes the estate and c ∈ RN

+ a vector of claims, such that∑
j∈N cj ≥ E. Let BN denote the class of all bankruptcy problems with a fixed player set

N .
In this paper, we assume without loss of generality that N = {1, . . . , n} and

c1 ≤ . . . ≤ cn.

A bankruptcy rule is a map R : BN → RN that assigns a vector of awards to every bankruptcy
problem in such a way that, for every (E, c) ∈ BN ,

• 0 ≤ Ri(E, c) ≤ ci for every i ∈ N ,

•
∑

i∈N Ri(E, c) = E.

One way of allocating the estate is to award everyone as equally as possible, under the
condition that no player receives more than his claim.

Definition. The constrained equal awards (CEA) rule is defined by

CEAi(E, c) = min{ci, λ},

for every (E, c) ∈ BN and i ∈ N , where λ ∈ R is such that
∑

j∈N min{cj, λ} = E.

In the same way, one can distribute the losses (i.e. the difference between the claim
and the awards of each player) as equally as possible under the condition that no player is
allocated a negative amount.

Definition. The constrained equal losses (CEL) rule is defined by

CELi(E, c) = max{ci − λ, 0},

for every (E, c) ∈ BN and i ∈ N , where λ ∈ R is such that
∑

j∈N max{cj − λ, 0} = E.

The Talmud rule is a combination of CEA and CEL. If the estate is insufficient to
guarantee everyone half his claim, CEA is used as the allocation principle. If the estate is
sufficient to cover all half-claims, every player gets half of his claim, and the remainder is
allocated using CEL.

Definition (Aumann and Maschler (1985)). The Talmud (TAL) rule is defined by

TAL(E, c) =

{
CEA(E, 1

2
c) if 1

2

∑
i∈N ci ≥ E,

1
2
c+ CEL(E − 1

2

∑
i∈N ci,

1
2
c) else,

for every (E, c) ∈ BN .
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Using the fact that CEA and CEL are dual rules, i.e. it holds for every (E, c) ∈ BN that

CEL(E, c) = c− CEA(
∑
i∈N

ci − E, c), (2.1)

we can also write

TAL(E, c) =

{
CEA(E, 1

2
c) if 1

2

∑
i∈N ci ≥ E,

c− CEA(
∑

i∈N ci − E, 1
2
c) else,

for every (E, c) ∈ BN .
Extending the Talmud rule, Moreno-Ternero and Villar (2006) introduced the TAL fam-

ily. Each member of the TAL family is characterized by a parameter θ ∈ [0, 1], representing
a degree of the distributive power of the bankruptcy rule.

Definition (Moreno-Ternero and Villar (2006)). Let θ ∈ [0, 1]. The rule TALθ is defined by

TALθ(E, c) =

{
CEA(E, θc) if θ

∑
i∈N ci ≥ E,

θc+ CEL(E − θ
∑

i∈N ci, (1− θ)c) else,

for every (E, c) ∈ BN .

Using (2.1), one can also write

TALθ(E, c) =

{
CEA(E, θc) if θ

∑
i∈N ci ≥ E,

c− CEA(
∑

i∈N ci − E, (1− θ)c) else,
(2.2)

for every (E, c) ∈ BN .

Clearly, TAL0 = CEL, TAL1 = CEA and TAL
1
2 = TAL. Furthermore, it is readily

seen that TALθ(E, c) is continuous in θ for every (E, c) ∈ BN . In fact, we show that the
function TALθ

i (E, c) is piecewise linear in θ for every i ∈ N and (E, c) ∈ BN . To this end,
for every bankruptcy problem (E, c) ∈ BN , we define the points a1(E, c), . . . , an(E, c) and
bn(E, c), . . . , b1(E, c), with

a1(E, c) ≤ . . . ≤ an(E, c) ≤ bn(E, c) ≤ . . . ≤ b1(E, c), (2.3)

given by

ak(E, c) = 1− Cn − E

Ck + (n− k)ck
,

bk(E, c) =
E

Ck + (n− k)ck
,

(2.4)

for every k ∈ {1, . . . , n}. Here, we use the notation Ck =
∑k

j=1 cj. Notice that not all
the points in (2.4) need to be contained in the interval [0, 1]. We will often abbreviate
ak = ak(E, c) and bk = bk(E, c) to ease notation.
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Note that

an(E, c) = bn(E, c) =
E

Cn

and {
a1(E, c) = 1− Cn−E

nc1
,

b1(E, c) = E
nc1

,

for every (E, c) ∈ BN . Furthermore, if (E, c) ∈ BN is such that ci = cj for some i, j ∈ N , we
have ai(E, c) = aj(E, c) and bi(E, c) = bj(E, c).

The points bn(E, c), . . . , b1(E, c) can be used to rewrite the function CEAi(E, θc) for
every (E, c) ∈ BN , i ∈ N and θ ∈ [0, 1].

Lemma 2.1. Let (E, c) ∈ BN , i ∈ N and θ ∈ [0, 1]. Then,

CEAi(E, θc) =


θci if θ ≤ bi(E, c),
E−θCk

n−k
if bk+1(E, c) ≤ θ ≤ bk(E, c) and k ∈ {1, . . . , i− 1},

E
n

if θ ≥ b1(E, c).

Proof. Let θ ≤ bi. Then θ(Ci+(n−i)ci) ≤ E, and hence it is possible to allocate every player
j ∈ {1, . . . , i} his claim θcj, and the remaining players k ∈ {i + 1, . . . , n} are guaranteed at
least θci. Consequently,

CEAi(E, θc) = θci. (2.5)

Next, let θ ∈ [bk+1, bk] and k ∈ {1, . . . , i− 1}. Then

θ [Ck + (n− k)ck] ≤ E ≤ θ [Ck+1 + (n− (k + 1))ck] .

Hence it is possible to allocate every player j ∈ {1, . . . , k} his claim θck, and the remaining
players are allocated equally a value between θck and θck+1. In other words,

CEAj(E, θc) =

{
θcj if j ∈ {1, . . . , k},
E−Ck

n−k
if j ∈ {k + 1, . . . , n}.

(2.6)

Consequently, CEAi(E, θc) = E−Ck

n−k
.

Finally, let θ ≥ b1. Then θ(nc1) ≥ E, which means no player can be allocated his full
claim. Therefore

CEAj(E, c) =
E

n
, (2.7)

for all j ∈ N . Consequently, CEAi(E, θc) = E
n
.
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Using Lemma 2.1, and the points a1(E, c), . . . an(E, c) for the case where θ
∑

j∈N cj ≤ E

in equation (2.2), we are now able to provide a full piecewise linear description of TALθ
i (E, c)

for every (E, c) ∈ BN , i ∈ N and θ ∈ [0, 1].

Proposition 2.2. Let (E, c) ∈ BN , i ∈ N and θ ∈ [0, 1]. Then,

TALθ
i (E, c) =



ci − Cn−E
n

if θ ≤ a1,

ci − (Cn−Ck)−E
n−k

− θ Ck

n−k
if θ ∈ [ak, ak+1] and k ∈ {1, . . . , i− 1},

θci if θ ∈ [ai, bi],
E−θCk

n−k
if θ ∈ [bk+1, bk] and k ∈ {1, . . . , i− 1},

E
n

if θ ≥ b1.

Proof. Note that, if θ ≥ bn = E∑
j∈N cj

, we have θ
∑

j∈N cj ≥ E, and due to Lemma 2.1

TALθ
i (E, c) =


θci if θ ∈ [bn, bi],
E−θCk

n−k
if θ ∈ [bk+1, bk] and k ∈ {1, . . . , i− 1},

E
n

if θ ≥ b1.

So, let θ
∑

j∈N cj ≤ E (i.e. θ ≤ an = bn). Then,

TALθ
i (E, c) = ci − CEAi

(∑
j∈N

cj − E, (1− θ)c

)
, (2.8)

and, using Lemma 2.1, it follows that

CEAi

(∑
j∈N

cj − E, (1− θ)cj

)
=


(1− θ)ci if (1− θ) ≤ b̃i,
Cn−E−(1−θ)Ck

n−k
if (1− θ) ∈ [b̃k+1, b̃k]

and k ∈ {1, . . . , i− 1},
Cn−E

n
if (1− θ) ≥ b̃1,

(2.9)

where b̃k = bk

(∑
j∈N cj − E, c

)
for all k ∈ {1, . . . , n}.

Now, note that for all k ∈ {1, . . . , n}

1− b̃k = 1− bk

(∑
j∈N

cj − E, c

)
= 1− Cn − E

Ck + (n− k)
= ak(E, c).

Consequently, with ak = ak(E, c) for every k ∈ {1, . . . , n}, (2.8) and (2.9) imply

TALθ
i (E, c) =


ci − Cn−E

n
if θ ≤ a1,

ci − (Cn−Ck)−E
n−k

− θ Ck

n−k
if θ ∈ [ak, ak+1],

θci if θ ≥ ai.
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Note that Proposition 2.2 implies that TALθ
i (E, c) is strictly increasing on [ai, bi]∩ [0, 1],

and TALθ
i (E, c) is weakly decreasing on [0, ai] and [bi, 1], for every i ∈ N and (E, c) ∈ BN .

We now illustrate the previous results by means of an example, and, in particular, we
use a picture that turns out to be helpful in our further analysis.

Example 2.1. Consider the bankruptcy problem (E, c) ∈ BN , with N = {1, 2, 3, 4}, E =
550 and c = (150, 200, 250, 350). First, note that

a1 = 1− 400

600
=

1

3

a2 = 1− 400

750
=

7

15

a3 = 1− 400

850
=

9

17

a4 = 1− 400

950
=

11

19

b4 =
550

950
=

11

19

b3 =
550

850
=

11

17

b2 =
550

750
=

11

15

b1 =
550

600
=

11

12
.

Using Proposition 2.2, we are able to calculate TALθ
i (E, c), for every i ∈ N , as a function

of θ ∈ [0, 1]. For example, we have

TALθ
2(E, c) =



100 if 0 ≤ θ ≤ a1,
350
3

− 50 · θ if θ ∈ [a1, a2],

200 · θ if θ ∈ [a2, b2],
550
3

− 50 · θ if θ ∈ [b2, b1],
550
4

if b1 ≤ θ ≤ 1.

It follows from the above description that TALθ
2(E, c) is weakly decreasing on [0, a2], then

strictly increasing on [a2, b2] and lastly weakly decreasing on [b2, 1]. In Figure 1 the function
TALθ

i (E, c) is displayed in a graph for every player i ∈ N .
Finally, note that TALθ

1(E, c) is weakly increasing, and TALθ
4(E, c) is weakly decreasing

on [0, 1]. ⋄
The final remark in Example 2.1 can be generalized. Using Proposition (2.2), we can

write

TALθ
1(E, c) =


c1 − Cn−E

n
if 0 ≤ θ ≤ a1,

θc1 if θ ∈ [a1, b1],
E
n

if b1 ≤ θ ≤ 1,

and, similarly, for every (E, c) ∈ BN

TALθ
n(E, c) =



cn − Cn−E
n

if 0 ≤ θ ≤ a1,

cn − (Cn−Ck)−E
n−k

− θ Ck

n−k
if θ ∈ [ak, ak+1] and k ∈ {1, . . . , n− 1},

θcn if θ ∈ [an, bn],
E−θCk

n−k
if θ ∈ [bk+1, bk] and k ∈ {1, . . . , n− 1},

E
n

if b1 ≤ θ ≤ 1,
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From this, one readily obtains the following result.

Proposition 2.3. TALθ
1(E, c) is weakly increasing in θ and TALθ

n(E, c) is weakly decreasing
in θ for every (E, c) ∈ BN .

0 θ1

1
50

137.5

2
100

3
150

4
250

a1 a2
a3

a4 = b4

b3
b2

b1

Figure 1: TALθ(E, c) in Example 2.1.

3 Strategic TAL games

The strategic approach we propose in this paper is the following. Given a bankruptcy
problem, we let each player select a parameter between 0 and 1. The rule of the TAL family
corresponding to the mean of the selected parameters is then used to allocate the estate.

Definition. For every bankruptcy problem (E, c) ∈ BN , we define the corresponding strate-
gic TAL game GTAL(E, c) by

GTAL(E, c) = ((Θi, πi))i∈N ,

where Θi = [0, 1] is player i’s strategy space, for every i ∈ N , and

πi(θ1, . . . , θn) = TAL
1
n

∑
j∈N θj

i (E, c)

is player i’s payoff function, for every i ∈ N .

The focus of this paper is to gain insight into the Nash equilibria (Nash (1951)) of strategic
TAL games. A Nash equilibrium of a strategic TAL game GTAL(E, c) = ((Θi, πi))i∈N is a
strategy profile (θi)i∈N ∈

∏
i∈N Θi such that for every i ∈ N and θ′i ∈ Θi it holds that

πi(θi, θ−i) ≥ πi(θ
′
i, θ−i).
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That is, for every player i ∈ N , the strategy θi ∈ Θi is a best reply to the strategies θ−i

played by the other players.1 For every player i ∈ N and θ−i ∈
∏

j∈N\{i}Θj, we write

Bi(θ−i) =
{
θi ∈ Θi | πi(θi, θ−i) ≥ πi(θ

′
i, θ−i) for all θ

′
i ∈ Θi

}
as the set of best replies. Clearly, a Nash equilibrium is a strategy profile (θj)j∈N such that
θi ∈ Bi(θ−i) for every i ∈ N . Denote by N

(
GTAL(E, c)

)
the set of Nash equilibria of the

game GTAL(E, c).

Proposition 2.3, together with the fact that πi((θj)j∈N) = TAL
∑

j∈N θj
i (E, c), for every

(E, c) ∈ BN , implies {
1 ∈ B1(θ−1) for all θ−1 ∈

∏
j∈N\{1}Θj,

0 ∈ Bn(θ−n) for all θ−n ∈
∏

j∈N\{n}Θj.
(3.1)

Next, we provide a full description of the set of Nash equilibria of two-player strategic
TAL games. By construction, every two-player strategic TAL game is a constant-sum game.
This implies that all Nash equilibria lead to the same payoff vector. Combining this with
(3.1) we obtain the following result.

Proposition 3.1. Let (E, c) ∈ BN with N = {1, 2}. Then, (1, 0) ∈ N
(
GTAL(E, c)

)
. As a

consequence, all Nash equilibria of GTAL(E, c) lead to the payoff vector given by TAL
1
2 (E, c) =

TAL(E, c).

The following bankruptcy problem is an example where the corresponding two-player
strategic TAL game has more than one Nash equilibrium.

Example 3.1. Consider (E, c) ∈ BN with N = {1, 2}, E = 450 and c = (250, 400). Clearly,
we have

a1 = 1− 200

500
=

3

5

a2 = 1− 200

650
=

9

13

b2 =
450

650
=

9

13

b1 =
450

500
=

9

10
.

It follows from Proposition 2.2 that

TALθ
1(E, c) =


150 if 0 ≤ θ ≤ 3

5
,

250 · θ if 3
5
≤ θ ≤ 9

10
,

225 if 9
10

≤ θ ≤ 1,

TALθ
2(E, c) =


300 if 0 ≤ θ ≤ 3

5
,

450− 250 · θ if 3
5
≤ θ ≤ 9

10
,

225 if 9
10

≤ θ ≤ 1,

1For a vector x ∈ RN and a subset of players S ⊂ N , we denote by x−S the restriction of x to N \ S.
Moreover, x−{i} is abbreviated to x−i.

9



as depicted in Figure 2. The set B1(θ2) of all the best replies of Player 1 against θ2 is given
by

B1(θ2) =


[0, 1] if 0 ≤ θ2 ≤ 1

5
,

{1} if 1
5
< θ2 ≤ 4

5
,

[9
5
− θ2, 1] if 4

5
≤ θ2 ≤ 1,

which is depicted in Figure 3.

0 θ1

150
1

300
2

3
5

9
10

225

Figure 2: TALθ(E, c) in Example 3.1 as a function of θ.

0

θ2

θ10

1
5

4
5

1

1

Figure 3: The best reply correspondence for Player 1 in Example 3.1.

To see this, the following intuitive reasoning can be applied.
If θ2 ≤ 1

5
, then all replies θ1 ∈ [0, 1] lead to a mean below 3

5
, and therefore all lead to a payoff

to player 1 of 150.
If 1

5
< θ2 ≤ 4

5
, then θ1 = 1 leads to a mean between 3

5
and 9

10
. Clearly, replies θ1 ∈ [0, 1)

lead to a strictly lower mean, and therefore lead to a strictly lower payoff to player 1.
Finally, if 4

5
≤ θ2 ≤ 1, then exactly all replies θ1 ∈ [9

5
− θ2, 1] lead to a mean of at least

9
10

and therefore to the highest possible payoff to player 1 of 225.

10



Similarly, the set B2(θ1) of all best replies of Player 2 against θ1 is given by

B2(θ1) =

{
[0, 1] if 0 ≤ θ1 ≤ 1

5
,

[0, 6
5
− θ1] if 1

5
≤ θ1 ≤ 1,

as depicted in Figure 4.

0

θ2

θ10
1

1

1
5

Figure 4: The best reply correspondence for Player 2 in Example 3.1.

0

θ2

θ1
0

1
5

1

1

Figure 5: The set of Nash equilibria from Example 3.1, indicated by the dashed area.

From Figure 5, in which the intersection of two best reply correspondences is depicted,
it can be concluded that

N
(
GTAL(E, c)

)
= [0, 1]× [0,

1

5
]. ⋄

The next theorem shows that the set of Nash equilibria of a strategic TAL game depends
on the exact position of the estate with respect to the individual claims.
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Theorem 3.2. Let (E, c) ∈ BN with N = {1, 2}. Then,

N
(
GTAL(E, c)

)
=


[0, 1]× [0, 1] if c1 = c2,

[0, 1]× [0, E−c2
c1

] if c1 < c2 ≤ E,

[E
c1
, 1]× [0, 1] if E ≤ c1 < c2,

{(1, 0)} if c1 < E < c2.

Proof. Let GTAL(E, c) = (([0, 1], π1), ([0, 1], π2)) be the strategic TAL game corresponding
to the bankruptcy problem (E, c). Then,

π1(θ1, θ2) =


c1 − c1+c2−E

2
if θ1+θ2

2
≤ a1,(

θ1+θ2
2

)
c1 if a1 ≤ θ1+θ2

2
≤ b1,

E
2

if b1 ≤ θ1+θ2
2

,

and, since E = π1(θ1, θ2) + π2(θ1, θ2),

π2(θ1, θ2) =


c2 − c1+c2−E

2
if θ1+θ2

2
≤ a1,

E −
(
θ1+θ2

2

)
c1 if a1 ≤ θ1+θ2

2
≤ b1,

E
2

if b1 ≤ θ1+θ2
2

,

for all θ1, θ2 ∈ [0, 1].
If c1 = c2, then N

(
GTAL(E, c)

)
= [0, 1] × [0, 1], since in this case a1 = (a2 = b2) = b1

and therefore

π1(θ1, θ2) = π2(θ1, θ2) =
E

2
,

for all θ1, θ2 ∈ [0, 1].
Next, let c1 < c2 ≤ E. Then, 0 ≤ E−c2

c1
≤ 1. To prove that

N
(
GTAL(E, c)

)
= [0, 1]× [0,

E − c2
c1

],

it suffices to show that B2(θ1) = [0, E−c2
c1

] for all θ1 ∈ [0, 1], and that B1(θ2) = [0, 1]

for all θ2 ∈ [0, E−c2
c1

].

Let θ1 ∈ [0, 1]. Then every θ2 ∈ [0, E−c2
c1

] leads to a mean less or equal to than a1 =

1− c1+c2−E
2c1

and consequently to the same payoff to player 2. Moreover, every θ2 ∈ (E−c2
c1

, 1]
leads to a mean strictly higher than a1, and therefore to a lower payoff to player 2. This
implies B2(θ1) = [0, E−c2

c1
] for every θ1 ∈ [0, 1].

Next, let θ2 ∈ [0, E−c2
c1

]. Then, for every θ1 ∈ [0, 1], the mean is smaller than a1. This means

that the payoff to player 1 is constant. Therefore B1(θ2) = [0, 1] for every θ2 ∈ [0, E−c2
c1

].
We omit the proof of the case where E ≤ c1 < c2, because it is analogous to the case

where c1 < c2 ≤ E.

12



Finally, let c1 < E < c2. Then a1 <
1
2
< b1. We will prove that

N
(
GTAL(E, c)

)
= {(1, 0)}.

Proposition 3.1 guarantees that (1, 0) ∈ N
(
GTAL(E, c)

)
. To see that this is the only

Nash equilibrium, note that all equilibria must have the same payoff vector TAL
1
2 (E, c) =

(c1/2, E − c1/2). Since a1 < 1
2
< b1, we have that TALθ

1(E, c) is strictly increasing in a
neighborhood of θ = 1

2
. Similarly, TALθ

2(E, c) is strictly decreasing in a neighborhood of
θ = 1

2
. This, together with the fact that TALθ

1(E, c) is weakly increasing and TALθ
2(E, c)

is weakly decreasing, implies that TALθ(E, c) ̸= TAL
1
2 (E, c) for θ ∈ [0, 1] \ {1

2
}. Now, let

(θ1, θ2) ∈ N
(
GTAL(E, c)

)
. The argument above implies

θ1 + θ2
2

=
1

2
.

If θ1 < 1, then player 1 can improve his payoff by selecting a parameter θ′1 close to θ1 with
θ′1 > θ1, because TAL

θ
1(E, c) is strictly increasing around θ = 1

2
. Therefore, θ1 = 1. Similarly,

if θ2 > 0, player 2 can improve his payoff by selecting a parameter θ′2 close to θ2 with θ′2 < θ2.
Hence, θ2 = 0.

4 Constructing a Nash equilibrium in n-player TAL

games

In this section, a specific type of Nash equilibrium is constructed for every strategic TAL
game with three or more players. As a first illustration, we analyze a three-player strategic
TAL game.

Example 4.1. Consider the bankruptcy problem (E, c) ∈ BN with N = {1, 2, 3}, E = 600
and (c1, c2, c3) = (150, 300, 450).

By (3.1) we have that 1 ∈ B1(θ2, θ3) and 0 ∈ B3(θ1, θ2) for all θ1, θ2, θ3 ∈ [0, 1]. Therefore,{
(1, θ∗2, 0)

∣∣∣∣ θ∗2 ∈ argmax
θ2∈[0,1]

π2(1, θ2, 0)

}
⊆ N

(
GTAL(E, c)

)
. (4.1)

Note that the set in (4.1) is non-empty because π2(1, θ2, 0) is continuous in θ2 and the
maximum is taken over a compact interval.

Using Proposition 2.2,

TALθ
2(E, c) =


200 if 0 ≤ θ ≤ 1

3
,

225− 75θ if 1
3
≤ θ ≤ 3

5
,

300θ if 3
5
≤ θ ≤ 4

5
,

300− 75θ if 4
5
≤ θ ≤ 1,

13



θ0 1
3

TALθ
2(E, c)

2
3

1
0

200

Figure 6: TALθ
2(E, c) in Example 4.1.

as depicted in Figure 6. For strategy combinations of the type (1, θ2, 0) the mean will be

between 1
3
(when θ2 = 0) and 2

3
(when θ2 = 1). Since TAL

1
3
2 (E, c) = TAL

2
3
2 (E, c) = 200, it

follows that

argmax
θ2∈[0,1]

π2(1, θ2, 0) = {0, 1}. (4.2)

Hence, {(1, 0, 0), (1, 1, 0)} ⊆ N
(
GTAL(E, c)

)
. ⋄

In particular, Example 4.1 illustrates that the set of best replies need not be convex.
This means that the Kakutani fixed point theorem, which is commonly used to prove the
existence of Nash equilibria, cannot be applied in the conventional way.

In Example 4.1, the constructed equilibria are such that the players with a claim lower
than player 2 select the strategy θ = 1, and players with a claim higher than player 2 select
the strategy θ = 0. Here, player 2 acts as a ’pivotal player’. In Example 4.2 we construct a
similar type of Nash equilibrium, using a pivotal player, for a strategic TAL game with four
players, but as the example shows, a more subtle approach is needed.

Example 4.2. Consider the bankruptcy problem (E, c) ∈ BN with N = {1, 2, 3, 4}, E = 600
and c = (100, 200, 350, 500). We claim that(

1, 1,
2

5
, 0

)
∈ N

(
GTAL(E, c)

)
. (4.3)

We show (4.3) by showing that all the strategies involved are mutual best replies.
From (3.1) it immediately follows that the strategy θ = 1 for player 1 and the strategy

θ = 0 for player 4 are best replies.
For player 2, strategy combinations of the type (1, θ2,

2
5
, 0) lead to a mean between 2

5
(when

θ2 = 0) and 13
20

(when θ2 = 1). From Figure 7 it can be seen that θ2 = 1 is indeed a best
reply.

14



0

TALθ
2(E, c)

θ1
0

50

130

13
20

2
5

3
14

(= a2)

6
7

(= b2)

Figure 7: TALθ
2(E, c) in Example 4.2.

Lastly, for player 3, strategy combinations of the type (1, 1, θ3, 0) lead to a mean between
1
2
(if θ3 = 0) and 3

4
(if θ3 = 1). From Figure 8 it can be seen that playing θ3 =

2
5
is indeed a

best reply, leading to an average of b3 =
3
5
. ⋄

0 θ1
0

TALθ
3(E, c)

3
5

(= b3)

1
2

3
4

210

9
20

(= a3)

Figure 8: TALθ
3(E, c) in Example 4.2.

Let (E, c) ∈ BN . In the remainder of this section, we will show the existence of a Nash
equilibrium of GTAL(E, c) of the form2

(1m−1, θ∗m, 0
n−m), (4.4)

2We write 1j and 0j for a repetition of j ones and j zeros respectively, where the case j = 0 corresponds
to an empty repetition.

15



with a pivotal player m = m(E, c) ∈ N and θ∗m ∈ [0, 1]. In particular, in Example 4.2 player
3 acts as the pivotal player.

The following lemma provides a starting point in the search for the pivotal player.

Lemma 4.1. Let (E, c) ∈ BN . Then, there exists a player k ∈ N such that

k − 1

n
≤ bk ≤

k

n
(4.5)

or such that

bk <
k − 1

n
< bk−1, (4.6)

where, for notational convenience, we denote b0 = ∞.

Proof. Let

U =

{
i ∈ N

∣∣∣∣ bi ≤
i

n

}
,

V =

{
i ∈ N

∣∣∣∣ i− 1

n
≤ bi

}
.

Clearly, if k ∈ U ∩ V , (4.5) is satisfied. Note that U ̸= ∅ because n ∈ U since bn = E
Cn

≤ 1.
Next, let U ∩ V = ∅. If 1 ̸∈ V , then b1 < 0 < b0 = ∞, and (4.6) is satisfied for k = 1. So

assume 1 ∈ V . Since n ∈ U and U ∩ V = ∅, we know that n ̸∈ V , and therefore there must
be a k ∈ N \ {1} such that k − 1 ∈ V and k ̸∈ V . Because U ∩ V = ∅, this implies that
k − 1 ̸∈ U . Thus, (4.6) is satisfied for player k.

For (E, c) ∈ BN , define k(E, c) ∈ N as the player with the smallest index that satisfies
(4.5) or (4.6).

In Example 4.2 it is seen that k(E, c) = 3, which is equal to the pivotal player in the
constructed Nash equilibrium. However, this is not always the case, as the following example
shows.

Example 4.3. Consider the bankruptcy problem (E, c) ∈ BN with N = {1, 2, 3, 4}, E = 400
and c = (100, 200, 200, 200). Proposition 2.2 implies

TALθ
1(E, c) =

{
25 if 0 ≤ θ ≤ 1

4
,

100 · θ if 1
4
≤ θ ≤ 1.

and for every j ∈ {2, 3, 4}

TALθ
j(E, c) =

{
125 if 0 ≤ θ ≤ 1

4
,

400
3

− 100
3

· θ if 1
4
≤ θ ≤ 1.

It is straightforward to check that k(E, c) = 3 (in this case 1
2

≤ b3 ≤ 3
4
). Since

B2(1, θ3, 0) = {0} for every θ3 ∈ [0, 1], the profile (1, 1, θ3, 0) cannot be a Nash equilib-
rium for any θ3 ∈ [0, 1]. In this case, since TALθ

1(E, c) is weakly increasing and TALθ
j(E, c),

for j ∈ {2, 3, 4}, is weakly decreasing on [0, 1], the strategy profile (1, 0, 0, 0) is a Nash
equilibrium of GTAL(E, c). ⋄
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Let (E, c) ∈ BN . We define

ℓ(E, c) = min
{
i ∈ N | 0 ∈ Bi(1

i−1, 0n−i)
}
, (4.7)

where Bi is the best reply correspondence of player i in the game GTAL(E, c). Note that
(3.1) implies that ℓ(E, c) is well-defined. We have that in Example 4.2 ℓ(E, c) = 4 and in
Example 4.3 ℓ(E, c) = 2.

For ℓ = ℓ(E, c) we have 0 ∈ Bℓ(1
ℓ−1, 0n−ℓ). In fact, the following lemma states that

for every player j with an index higher than ℓ, the best reply structure exhibits the same
feature: 0 ∈ Bj(1

ℓ−1, 0n−ℓ).

Lemma 4.2. Let (E, c) ∈ BN , with |N | ≥ 3. Let ℓ = ℓ(E, c) ∈ N be defined as in (4.7).
For every j ∈ N , let Bj be the best reply correspondence of player j for GTAL(E, c). Then,
for every j ∈ {ℓ, . . . , n}

0 ∈ Bj(1
ℓ−1, 0n−ℓ).

Proof. Let j ∈ {ℓ, . . . , n}. To ease notation, we write TALθ
j = TALθ

j(E, c). By assumption,
0 ∈ Bℓ(1

ℓ−1, 0n−ℓ), i.e.

TAL
ℓ−1
n

ℓ ≥ TAL
ℓ−1+θℓ

n
ℓ for all θℓ ∈ [0, 1]. (4.8)

If ℓ = n, there is nothing to prove.
Assume, for the sake of contradiction, that 0 ̸∈ Bj(1

ℓ−1, 0n−ℓ). In other words, suppose
there is a strategy θ′ ∈ (0, 1] for player j such that

TAL
ℓ−1
n

j < TAL
ℓ−1+θ′

n
j . (4.9)

Note that TALθ
j is weakly decreasing for θ ≥ bj. Therefore, (4.9) implies that ℓ−1

n
< bj,

and consequently, since bj ≤ bℓ, we have ℓ−1
n

< bℓ. Then, as TALθ
ℓ is strictly increasing on

[aℓ, bℓ] ∩ [0, 1], it follows from (4.9) that ℓ−1
n

< aℓ. Proposition 2.2 now implies that

TAL
ℓ−1
n

ℓ =

{
cℓ − Cn−E

n
if ℓ−1

n
≤ a1,

cℓ − (Cn−Cr)−E
n−r

− ℓ−1
n

Cr

n−r
if ℓ−1

n
∈ [ar, ar+1],

and, since aℓ ≤ aj,

TAL
ℓ−1
n

j =

{
cj − Cn−E

n
if ℓ−1

n
≤ a1,

cj − (Cn−Cr)−E
n−r

− ℓ−1
n

Cr

n−r
if ℓ−1

n
∈ [ar, ar+1].

Consequently,

TAL
ℓ−1
n

j − TAL
ℓ−1
n

ℓ = cj − cℓ. (4.10)
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Note that (4.9) implies that

aj <
ℓ− 1 + θ′

n
, (4.11)

because TALθ
j is weakly decreasing for θ ≤ aj.

We distinguish between two cases.

Case 1: ℓ−1+θ′

n
≤ bj.

In this case, (4.11) implies that ℓ−1+θ′

n
∈ [aj, bj], and therefore ℓ−1+θ′

n
∈ [aℓ, bℓ]. Consequently,

Proposition 2.2, together with (4.8), implies

TAL
ℓ−1
n

ℓ ≥ TAL
ℓ−1+θ′

n
ℓ =

(
ℓ− 1 + θ′

n

)
cℓ,

and, together with (4.9), it follows that

TAL
ℓ−1
n

j < TAL
ℓ−1+θ′

n
j =

(
ℓ− 1 + θ′

n

)
cj.

Finally, using (4.10), the above inequalities imply

cj − cℓ = TAL
ℓ−1
n

j − TAL
ℓ−1
n

ℓ <

(
ℓ− 1 + θ′

n

)
(cj − cℓ),

which is clearly a contradiction, since ℓ−1+θ′

n
< 1 and cℓ ≤ cj.

Case 2: ℓ−1+θ′

n
> bj.

Since TALθ
j is weakly decreasing for θ ≥ bj, Proposition 2.2 implies

TAL
ℓ−1
n

j < TAL
ℓ−1+θ′

n
j ≤ TAL

bj
j = bjcj.

Furthermore, aℓ ≤ aj ≤ bj ≤ bℓ, and therefore bj ∈ [aℓ, bℓ]. Hence, Proposition 2.2 implies

TAL
bj
ℓ = bjcℓ. Because bj ∈ [ ℓ−1

n
, ℓ
n
], from (4.8) it follows that

TAL
ℓ−1
n

ℓ ≥ TAL
bj
ℓ = bjcℓ.

Similar to the previous case, the above arguments imply that

cj − cℓ = TAL
ℓ−1
n

j − TAL
ℓ−1
n

ℓ < bj(cj − cℓ) ≤
(
ℓ− 1 + θ′

n

)
(cj − cℓ),

which is a contradiction.
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Now we have available all ingredients to formulate our constructive main equilibrium
existence result based on a pivotal player.

Let (E, c) ∈ BN . We define the pivotal player m(E, c) ∈ N as

m(E, c) = min{k(E, c), ℓ(E, c)}, (4.12)

and we will show that the pivotal player m(E, c) is indeed the player m such that the
proposed strategy profile in (4.4) is a Nash equilibrium for the game GTAL(E, c).

Note that in Example 4.2 m(E, c) = k(E, c) = 3, while in Example 4.3 m(E, c) =
ℓ(E, c) = 2.

Theorem 4.3. Let (E, c) ∈ BN with |N | ≥ 3 and let GTAL(E, c) be the corresponding
strategic TAL game. Let m(E, c) ∈ N be the pivotal player as defined in (4.12). Then, there
is a θ∗m(E,c) ∈ [0, 1] such that(

1m(E,c)−1, θ∗m(E,c), 0
n−m(E,c)

)
∈ N

(
GTAL(E, c)

)
.

Proof. We write m = m(E, c), ℓ = ℓ(E, c), k = k(E, c) and TALθ
j = TALθ

j(E, c).
We first treat the case where m = 1. If m = k = 1, then b1 < 1

n
. This implies that

0 ∈ Bj(1, 0
n−2), for every j ∈ {2, . . . , n}, since TALθ

j is constant for θ ≥ b1. By (3.1), we
have that 1 ∈ B1(0

n−1), and we can choose θ∗1, as (1, 0, . . . , 0) is a Nash equilibrium.
If m = ℓ = 1, then 0 ∈ B1(0

n−1). Lemma 4.2 now implies that 0 ∈ Bj(0
n−1), for every

j ∈ {2, . . . , n}. Consequently, (0, . . . , 0) is a Nash equilibrium.
For the remainder of this proof, assume m ≥ 2. We distinguish two cases.

Case 1: k < ℓ.

In this case, m = k. Note that m < ℓ implies that player m satisfies (4.5) from Lemma 4.1,
because the alternative (4.6) would imply 0 ∈ Bm(1

m−1, 0n−m) since TALm(E, c) is weakly
decreasing for θ ≥ bm. So

m− 1

n
≤ bm ≤ m

n
. (4.13)

Let θ∗m = nbm − m + 1. Clearly, using (4.13), we have 0 ≤ θ∗m ≤ 1. We claim that
(1m−1, θ∗m, 0

n−m) is a Nash equilibrium of the game GTAL(E, c). Note that the mean of the
strategy profile (1m−1, θ∗m, 0

n−m) equals bm.

Claim 1a: 1 ∈ Bj(1
m−2, θ∗m, 0

n−m) for every j ∈ {1, . . . ,m− 1}.

Clearly, (3.1) implies that 1 ∈ B1(1
m−2, θ∗m, 0

n−m). Next, suppose that for some j ∈
{2, . . . ,m − 1} we have that 1 ̸∈ Bj(1

m−2, θ∗m, 0
n−m). Then, there is a θ′j ∈ [0, 1) such

that

TAL
m−2+θ′j+θ∗m

n
j > TAL

m−1+θ∗m
n

j = TALbm
j . (4.14)
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It follows that
m−2+θ′j+θ∗m

n
< aj, since TALθ

j is increasing on [aj, bj] ∩ [0, 1]. In particular,
j−1
n

≤ m−2+θ′j+θ∗m
n

< aj.
From (4.14) and the fact that TALθ

j is decreasing for θ ≤ aj, it follows that

TAL
j−1
n

j > TALbm
j . (4.15)

Next, we show that for all θ′ ∈ [0, 1]

TAL
j−1
n

j ≥ TAL
j−1+θ′

n
j , (4.16)

which implies 0 ∈ Bj(1
j−1, 0n−j). This is a contradiction, since j < m ≤ ℓ.

Let θ′ ∈ [0, 1]. Then, j−1+θ′

n
≤ m−1+θ∗m

n
= bm. If

j−1+θ′

n
≤ aj, then TAL

j−1
n

j ≥ TAL
j−1+θ′

n
j ,

since TALθ
j is decreasing for θ ≤ aj. If

j−1+θ′

n
∈ (aj, bm], then (4.15) implies

TAL
j−1
n

j > TALbm
j ≥ TAL

j−1+θ′
n

j ,

because TALθ
j is increasing for θ ∈ (aj, bm] ∩ [0, 1]. This shows (4.16), a contradiction, and

therefore 1 ∈ Bj(1
m−2, θ∗m, 0

n−m).

Claim 1b: 0 ∈ Bj (1
m−1, θ∗m, 0

n−m−1) for every j ∈ {m+ 1, . . . , n}.

For every j ∈ {m+ 1, . . . , n} we have bj ≤ bm. This implies that for every θ′j ∈ (0, 1]

TALbm
j = TAL

m−1+θ∗m
n

j ≥ TAL
m−1+θ∗m+θ′j

n
j ,

since TALθ
j is decreasing for θ ≥ bj.

Claim 1c: θ∗m ∈ Bm (1m−1, 0n−m).

It is clear that no deviation θ′m > θ∗m can be profitable, because TALθ
m is decreasing for

θ ≥ bm = m−1+θ∗m
n

.
Next, suppose there is a θ′m < θ∗m such that

TAL
m−1+θ′m

n
m > TAL

m−1+θ∗m
n

m = TALbm
m . (4.17)

This implies m−1+θ′m
n

< am, because TAL
θ
m is increasing for θ ∈ [am, bm]∩[0, 1]. In particular,

m−1
n

≤ m−1+θ′m
n

< am. By (4.17), and the fact that TALθ
m is decreasing for θ ≤ am, we have

TAL
m−1
n

m ≥ TAL
m−1+θ′m

n
m > TALbm

m . (4.18)

Next, we show that for all θ′ ∈ [0, 1]

TAL
m−1
n

m ≥ TAL
m−1+θ′

n
m , (4.19)

20



which implies 0 ∈ Bm(1
m−1, 0n−m), a contradiction.

Let θ′ ∈ [0, 1]. If m−1+θ′

n
≤ am, we have

TAL
m−1
n

m ≥ TAL
m−1+θ′

n
m ,

since TALθ
m is decreasing for θ ≤ am. If

m−1+θ′

n
> am, then (4.18) implies

TAL
m−1
n

m > TALbm
m ≥ TAL

m−1+θ′
n

m , (4.20)

since TALθ is increasing on [am, bm] ∩ [0, 1], and decreasing for θ ≥ bm. This proves (4.19),
a contradiction, and therefore θ∗m ∈ Bm(1

m−1, 0n−m).

Case 2: k ≥ ℓ.

In this case m = ℓ. We claim that in this case, the strategy profile (1m−1, 0n−m+1) is a Nash
equilibrium.

For sure, Lemma 4.2 implies that 0 ∈ Bj(1
m−1, 0n−m), for every j ∈ {m, . . . , n}. Next,

let j ∈ {1, . . . ,m− 1}. First we show that

aj <
j

n
≤ m− 1

n
< bj. (4.21)

Clearly, since m = ℓ, we have 0 ̸∈ Bm−1(1
m−2, 0n−m+1). Therefore, m−2

n
< bm−1, because

TALθ
m−1 is weakly decreasing for θ ≥ bm−1. Since m− 1 < k, the definition of k (and (4.5)

in particular) implies that m−1
n

< bm−1, and consequently m−1
n

< bj.

Clearly, j
n
≤ m−1

n
. To show that (4.21) holds, it suffices to show that aj < j

n
. Suppose

aj ≥ j
n
. Then, for all θ ∈ [0, 1]

TAL
j−1
n

j ≥ TAL
j−1+θ

n
j ,

which follows from the fact that TALθ
j is decreasing for θ ≤ aj. However, this would imply

that 0 ∈ Bj(1
j−1, 0n−j), contradicting the fact that j < m = ℓ.

Next, we will show that 1 ∈ Bj(1
m−2, 0n−m+1). We proceed by contradiction. Let 1 ̸∈

Bj(1
m−2, 0n−m+1). Then, there exists θ′j ∈ [0, 1) such that

TAL
m−2+θ′j

n
j > TAL

m−1
n

j . (4.22)

Since TALθ
j is increasing for θ ∈ [aj, bj]∩ [0, 1], we have that (4.22) implies that

m−2+θ′j
n

< aj.
Consequently,

TAL
j−1
n

j > TAL
m−1
n

j , (4.23)

since j−1
n

≤ m−2+θ′j
n

< aj, and TALθ
j is decreasing for θ ≤ aj.
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Finally, we show that for all θ′ ∈ [0, 1]

TAL
j−1
n

j ≥ TAL
j−1+θ′

n
j , (4.24)

which implies 0 ∈ Bj(1
j−1, 0n−j). Note that this is a contradiction since j < m = ℓ.

Let θ′ ∈ [0, 1]. If j−1+θ′

n
≤ aj, then

TAL
j−1
n

j > TAL
j−1+θ′

n
j ,

because TALθ
j is decreasing for θ ≤ aj. Next, if

j−1+θ′

n
> aj, then in particular aj <

j−1+θ′

n
≤

m−1
n

< bj. Consequently, (4.23) implies that

TAL
j−1
n

j > TAL
m−1
n

j ≥ TAL
j−1+θ′

n
j ,

since TALθ
j is increasing on [aj, bj]∩ [0, 1]. This proves (4.24), a contradiction, and therefore

1 ∈ Bj(1
m−2, 0n−m+1).

It is worth mentioning that Example 4.2 aligns with Case 1 in the proof of Theorem 4.3,
while Example 4.3 corresponds to Case 2.

Theorem 4.3 shows that for strategic TAL games with four or more players there exists
a Nash equilibrium similar to the one constructed in Example 4.1. However, the proof of
Theorem 4.3 shows that constructing a Nash equilibrium for strategic TAL games with four
or more players is notably more difficult than for games with only two or three players, as
the construction of the pivotal player is quite intricate. It is well-known that CEA benefits
players with lower claims, and CEL favors those with higher claims. Interestingly, this fact
is reflected in the constructed Nash equilibrium, where the pivotal player neatly separates
the two groups.
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