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Introduction

This dissertation consists of three chapters. The first chapter is a joint collaboration with
my co authors Ugo Albertazzi and Lorenzo Burlon from the European Central Bank, and
Nicola Pavanini from Tilburg University. The second chapter is my single authored job
market paper. The last chapter is a joint project with my Ph.D. supervisors prof. Joost
Driessen and prof. Lieven Baele.

In the first chapter "The Shadow Value of Unconventional Monetary Policy",
we quantify how central bank unconventional monetary policy, in the form of funding fa
cilities, reduced the banking sector’s fragility in the euro area in 2014 2021. We estimate
a micro structural model of imperfect competition in the banking sector that allows for
multiple equilibria with bank runs, banks’ default and contagion, and central bank fund
ing. Our framework incorporates demand and supply for insured and uninsured deposits,
for loans to firms and households, and borrowers’ default. We use confidential granular
data for the euro area banking sector, including information on banks’ borrowing from
the European Central Bank (ECB). We document the presence of alternative equilibria
with run type features, but also that central bank interventions exerted a crucial role
in containing this risk. Our counterfactuals show that, on average across equilibria, a
1 percentage point reduction in the ECB lending rate leads to a 1.4 percentage points
reduction in banks’ default probability.

In the second chapter "The Term Structure of Corporate Bond Risk Premia", [
construct an implied estimate of the term structure of corporate bond risk premia based on
yields and estimated default probabilities. T document an upward sloping term structure
of risk premia both at the aggregate bond market level and across various cross sectional
sorts over 2002 2020. The implied estimates reveal that most of the credit risk, value
and size premia in corporate bonds are earned on short duration bonds, suggesting that
the investors are particularly averse to the short and intermediate horizon risks. These
patterns are not detectable by the average realized returns that in the same sample period
exhibit a slightly downward sloping term structure. I show that a significant fraction of
the realized returns is driven by downward trending risk premia over the last 20 years,
which substantially reduced the informativeness of realized returns about risk premia.

In the third chapter "The Implied Equity Term Structure", we propose a new
methodology to estimate the term structure of equity risk premia from the cross section of
stock prices. Our implied equity term structure equates market prices to the discounted
value of projected firm level cash flows. Our method allows for cross sectional and time



series variation in the term structure. We find the market wide term structure to be
upward sloping on average, but flatten out during recessions. Stocks sorted within most
portfolios have an upward sloping term structure, but we do find the smallest value firms

and small firms with low credit ratings to have a slightly downward sloping term structure.
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Chapter I: The Shadow Value of Unconventional Monetary Policy

1.1 Introduction

Since the seminal contribution by Diamond & Dybvig (1983) and Goldstein & Pauzner
(2005), it is well understood that banks are intrinsically fragile institutions, as they are
subject to a host of strategic complementarities such as expectations over the performance
of their exposures, the evolution of their funding costs, or the behaviour of competitors
in lending and deposit markets. In this context, it is recognized that one of the main
effects and purposes of central bank unconventional monetary policy, in the form of liq
uidity injections and refinancing operations, is to prevent the materialization of adverse
equilibria with runs on retail or wholesale bank funding, eventually resulting in disorderly
deleveraging with potentially very large welfare losses. Largely motivated by this purpose,
in the last ten years the European Central Bank launched a series of massive short and
long term refinancing operations, with peak take up of €2.2 trillions, corresponding to
over 18% of the euro area GDP.

While other institutional features exist to temper the risk of bank runs, notably the
presence of deposit insurance schemes, monetary policy can be considered to maintain
a crucial role in dealing with banks’ intrinsic fragility, due to several factors.! First,
moral hazard considerations explain why deposit insurance schemes universally envisage
only a partial coverage I.A.D.I. (2013). Second, deposit insurance could be ineffective
at preventing systemic runs because it is often not financed upfront, but instead based
on ex post contributions provided on a mutualistic basis by other intermediaries within
the same banking sectors. Third, deposit insurance could also fail to work when the
solvability of the domestic government, often considered the ultimate explicit or implicit
guarantor of bank liabilities, is doubtful to begin with or is put at stake by the bank
run itself, through the so called sovereign bank nexus Dell’Ariccia, Ferreira, Jenkinson,
Laeven, Martin, Minoiu & Popov (2018). Finally, as clearly shown by the experience
of the global financial crisis, runs can concern not only retail deposits but also, if not
primarily, wholesale ones Gorton (2010).

Surprisingly, despite the presence of this source of tail risk and the widely acknowledged
role played by central banks in this context, the empirical evidence of the relevance of
these prevention mechanisms is, at best, still scant. In principle, in order to be able
to quantify the effectiveness of central banks’ interventions in this context, one should
identify and compare episodes where central banks exogenously did not intervene with
comparable episodes where they intervened. This is clearly a daunting task because of
the endogenous timing of these measures, which are adopted by central banks whenever
the risk of a systemic run emerges. If such endogeneity issue is not adequately dealt with,
both the risk of a run and the stabilization impact of monetary policy interventions will be

largely underestimated. In other words, it could be argued that it is essentially impossible

! In our paper, we use terms fragility and intrinsic fragility interchangeably We measure fragility
using (average) bank’s default probabilities at the bank (country time equilibrium) level Admittedly,
the mean of the distribution may not be able to accurately gauge the level of sector wide risks For this
reason, to capture aspects of contagion, we also look at the standard deviations of bank default risk in
each country time equilibrium
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Chapter I: The Shadow Value of Unconventional Monetary Policy

to grasp the role of monetary policy in taming the risk of runs when, in equilibrium, runs
are actually hardly ever observed. Moreover, run equilibria can be averted even in the
absence of an explicit central bank intervention, because the very fact that agents expect
the central bank to step in can be sufficient at inducing them to coordinate on a non run
equilibrium. These considerations suggest that, in order to tackle this crucial and thorny
identification challenge, the empirical strategy should be based on a framework that allows
constructing simulated counterfactual scenarios which can quantify the shadow value of
central bank’s interventions, that is what would have happened in the absence of these
policies.

Our paper addresses this challenge developing and estimating such framework, and
simulating those counterfactual scenarios, to quantify the effectiveness of central bank’s
refinancing operations at preventing bank runs in the form of multiple equilibria. Specifi
cally, we build and estimate a structural equilibrium framework of the euro area banking
sector, modeling demand and supply in imperfectly competitive deposit and loan markets,
as well as borrowers’ and banks’ default risk, and the central bank’s funding interventions.
We generalize the approach of Egan, Hortagsu & Matvos (2017), which quantifies multiple
equilibria with bank run features for the US banking sector, and we analyze the effects of
unconventional monetary policy on the multiplicity of equilibria and welfare. In order to
quantify the value of the central bank’s interventions, we extend their framework along
two crucial dimensions.

First, we allow for the presence of a central bank which is willing to inject liquidity in
the banking sector at pre determined conditions. This is in line with the central bank’s
function of lender of last resort, through which it can alter the competition for deposits in
the banking sectors, and potentially eradicate run equilibria. This role allows the central
bank to lower the severity of feedback loops between high deposit rates, low profitability,
and higher banks’ default probabilities, reducing the multiplicity of equilibria and increas
ing the resilience of the system. Second, we introduce into the model a market for bank
loans to the real sector under asymmetric information, following Crawford, Pavanini &
Schivardi (2018). Modeling simultaneously loan granting and deposit taking is not only
done for the sake of realism, but also because it is a crucial ingredient to be able to assess
the implications of banks’ intrinsic fragility on banks’ lending capacity and ultimately on
the real economy, as captured by developments in borrowing firms’ default rates.

The structural model provides a characterization of banks’ activity with high degree of
detail, and allows for various dimensions of heterogeneity across banks. In particular, our
framework models banks’ behavior at the individual intermediary level for what concerns
both lending and liabilities, following the empirical industrial organization literature on
demand for differentiated products Berry (1994), Berry, Levinsohn & Pakes (1995). On
the deposit demand side, we distinguish between insured and uninsured depositors and
estimate their preferences for bank characteristics, including interest rates and banks’
default risk, while on the supply side banks compete on interest rates and have heteroge
neous and time varying marginal costs of providing deposit services. Banks are allowed to

raise capital not only through deposits, but also through bonds and via borrowing from
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Chapter I: The Shadow Value of Unconventional Monetary Policy

the central bank. On the lending side, we distinguish between loan demand for households
and non financial corporations (NFCs) and estimate their preferences for bank character
istics, including interest rates, while on the lending supply side banks compete on interest
rates, have heterogeneous marginal costs, but also form expectations over borrowers’ de
fault risk that affect their pricing. Last, banks have limited liability and may default if a
shortfall in profits exceeds their franchise value next period. The ability of the model to
identify and characterize all possible multiple equilibria that would be admissible, with
the same fundamentals and monetary policy that determined the observed data, allows
to evaluate the resilience of the banking system to run like episodes during its recent his
torical experience. The possibility to do the same under counterfactual scenarios for the
monetary policy allows gauging the shadow value of such policy interventions.

The model is estimated with mostly three proprietary ECB datasets on euro area banks
and allows to analyze the various liquidity operations adopted by the ECB since 2009.
In our setting, we focus on the latest rounds of the Targeted Longer Term Refinancing
Operations (TLTROs) during the period 2014 2021, which covered almost all of the ECB
funding to banks with a peak take up at €2.2 trillions. Our estimation is based on the
Individual Balance Sheet Indicators (IBSI) database, which reports at the unconsolidated
level the main asset and liability items of over 300 banks resident in the euro area from Au
gust 2007 to July 2021. This dataset provides information on the amount of outstanding
deposits, loans, and other relevant bank balance sheet information. We complement IBSI
with the Individual Monetary and Financial Institutions Interest Rates (IMIR) database,
which contains information on deposits and lending rates. Information on the quality of
bank loans’ portfolios and the breakdown between insured and uninsured deposits is ob
tained from confidential supervisory statistical reports. The merge of our rich data yields
a representative sample of the euro area banking sector, consisting of an unbalanced panel
of 64 banks for 168 months from August 2007 to July 2021, covering 13 euro area countries
(Austria, Belgium, France, Germany, Greece, Ireland, Latvia, Lithuania, Italy, Portugal,
Slovakia, Spain, and the Netherlands). The banks in our sample represent over 50% of
their domestic loan and deposit markets on average across countries.

The demand schedules included in our structural model are estimated with instru
mental variables. The main results can be summarized as follows. We find that insured
depositors are considerably more price sensitive than uninsured depositors, with demand
elasticities of 0.7 and 0.2, respectively. As expected, our estimates show that uninsured
deposits’ market shares are decreasing with banks’ default probabilities, while we find
that insured deposits’ market shares react very mildly to banks’ idiosyncratic risks. The
presence of some sensitivity to bank risk also for insured deposits can be explained by
the possible perceived solvability issues for some of the euro area domestic governments,
especially during the sovereign debt crisis. The stronger relationship between banks’ share
of uninsured deposits and their default risk is what generates a potential mechanism of
financial contagion across banks, which can be summarized as follows. Distressed banks,
finding it hard to attract depositors in the uninsured sector, will be forced to offer more

attractive rates in the insured deposit market to make up for the loss of capital. This
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Chapter I: The Shadow Value of Unconventional Monetary Policy

however will push solvent banks to raise their rates too, in order not to lose insured de
posits, increasing their cost of capital and negatively affecting their solvency. Crucially,
this type of cross bank contagion mechanism can be grasped only in a micro structural
framework, such as ours, that models individual banks’ behavior. As expected, we find a
negative demand elasticity for loans, with households being more sensitive than firms, and
find that borrowers’ expected default rates are increasing in loan interest rates, consistent
with evidence of either adverse selection or moral hazard.

In terms of documenting multiple equilibria under the actual policy rate, our main
findings can be summarized as follows. We show that on average banks’ default proba
bilities are 9 percentage points higher in the alternative equilibria relative to the realized
ones. This implies that in those alternative equilibria banks need to compensate their
default risk to depositors with higher deposit rates and increase their reliance on central
bank funding. The extra funding that banks can collect also maps into lower loan rates.
We also document that the distribution of banks’ riskiness in the alternative equilibria
is characterized by a significantly thicker right tail, representing a higher risk of bank
runs, which predominantly involves banks that already had a high level of riskiness in the
observed equilibrium.

We complete our analysis with a series of counterfactual exercises, where we simulate
scenarios with higher or lower central bank policy rates, and quantify the effect of these
changes on the main outcomes of our model. We show that 1 percentage point increase
in the policy rate increases on average banks’ default probability by about 1.4 percentage
points. We also investigate the impact of such change on the country year weighted av
erage and weighted standard deviation of banks’ riskiness, with weights given by banks’
assets, to capture the effect on the average stability if a country’s banking system as
well as on its volatility. We find that one percentage point increase in the policy rate
increase the mean and standard deviation of banks’ default risk by around 3 and 2 per
centage points, respectively. We also find evidence of an asymmetric effect depending on
whether the policy rate increases or decreases relative to the realized one, with policy
rate increases having a significantly larger effect on the mean and standard deviation of
banks’ default probabilities. Last, we document that one percentage point increase in the
policy rate reduces total welfare by about €22bn, equivalent to a 15% drop relative to
the baseline, mostly caused by a decrease in banks’ franchise value and higher expected
deposit insurance costs.

Related Literature. A number of empirical studies of central bank liquidity injec
tions, based on granular datasets and on a difference in differences approach, look at their
impact on credit supply.2 These studies capture the stimulative effect of the accommoda
tive conditions at which these funds were provided, that is at cheaper conditions compared

to what otherwise available in funding markets. However, these papers cannot capture

2For the euro area see, for example, Carpinelli & Crosignani (2018), Jasova, Mendicino & Supera
(2018), Andrade, Cahn, Fraisse & Mesonnier (2019), and Garcia Posada & Marchetti (2016) Similar

analysis for the US and focusing on money market mutual funds, instead of banks, is presented in Duygan
Bump, Parkinson, Rosengren, Suarez & Willen (2013)
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Chapter I: The Shadow Value of Unconventional Monetary Policy

the role of liquidity injections in averting the materialization of runs, which might have
huge but yet unobservable consequences if the central bank intervention itself is success
ful. To better clarify the difference between the two channels, it can be pointed out that
the cheap funding channel is by definition not active if central bank funds are provided
at market conditions. The channel that we are instead looking at, that is the impact of
central bank interventions in avoiding the realization of inefficient run equilibria, could in
principle be active even if the rates applied were above prevailing market conditions.

As mentioned before, the closest article in terms of methodology is Egan et al. (2017),
placing our work among a growing recent strand of papers applying structural equilibrium
models from the empirical industrial organization literature to financial markets. This
includes applications to insurance Koijen & Yogo (2016), asset demand Koijen & Yogo
(2019), deposits Ho & Ishii (2011), Xiao (2020), commercial loans Crawford et al. (2018),
Ioannidou, Pavanini & Peng (2022), Darmouni (2020), and mortgages Benetton (2021),
Robles Garcia (2020). A recent paper by Wang, Whited, Wu & Xiao (2022) also estimates
a micro structural model of the banking sector to explore the transmission of monetary
policy. Their objective is to document the high importance of the banking sector’s market
structure in affecting the monetary policy transmission mechanism. The paper does not
envisage multiplicity of equilibria and therefore does not explore the relevance of what
we define as non fundamental risk nor the role played by monetary policy in abating
it. In this respect, closer to our paper is also the analysis by Robatto (2019), who
develops and calibrates a macro model of the banking sector with multiple equilibria,
and shows how large enough liquidity injections may eradicate bad equilibria. The most
relevant difference with our approach is that, by constructing, estimating and calibrating
a structural micro level banking model, we can better capture the role of heterogeneity
in the banking sector, and assess the possibility of contagion of both fundamental and
non fundamental risk (bank specific) shocks.

Last, we also contribute to the empirical work on runs both in the banking sector
and in other financial markets Iyer & Puri (2012), Iyer, Puri & Ryan (2016), Calomiris &
Mason (2003). Pérignon, Thesmar & Vuillemey (2018), by focusing on wholesale markets,
can identify and explore some episodes of funding dry ups. However, as they point out,
they do not observe market freeze, possibly reflecting the presence of stabilizing factors
and, in particular, of lender of last resort facilities. Moreover, the episodes they consider
largely refer to intermediaries in deep distress, which hardly provides overall evidence of
the systemic relevance of banks’ intrinsic fragility. More recently, Artavanis, Paravisini,
Robles Garcia, Seru & Tsoutsoura (2019) provide interesting and convincing empirical
evidence of run like deposit withdrawals by examining the variation in the cost of with
drawal induced by the maturity expiration of time deposits in Greece, but do not assess
the stabilizing role of monetary policy. While their identification strategy forces them to
focus on the panic driven withdrawals triggered by a fundamental shock on bank funding,
our framework can instead assess the relevance of non fundamental risk also if totally
unrelated to a deterioration of the fundamentals.

The rest of the paper is organized as follows. Section 1.2 introduces the institutional

14



Chapter I: The Shadow Value of Unconventional Monetary Policy

background and the data, Section 1.3 describes the model, Section 1.4 presents the estima
tion strategy and results, Section 1.5 displays and discusses multiple equilibria under the
actual policy, Section 1.6 simulates alternative scenarios with different policies, Section

1.7 discusses limitations and extensions, and Section 1.8 concludes.

1.2 Institutional Background and Data

Since the outbreak of global financial crisis, the euro area banking sector has been exposed
to a number of systemic shocks that led to significant impairment in its funding and
lending capacity, leading to the adoption of unprecedented monetary policy measures.?
The freeze in international money markets experienced in 2007 was followed soon after
by the so called global financial crisis, ignited by the collapse of Lehman Brothers in
September 2008. This immediately reverberated outside the US economy via a dry up
in some funding segments, such as wholesale deposits placed by non residents, and the
euro banking sector was heavily affected. In the following years Greece, Ireland, Italy,
Portugal, and Spain (hereafter, the “vulnerable” countries) were involved in sovereign debt
crises that strongly impaired wholesale funding conditions of the domestic banking sector.
These tensions strained financial conditions due to banks’ sovereign exposures, rising
non performing loan levels, and, in particular, the fact that the domestic sovereign was
perceived by market participants as the explicit or implicit guarantor of bank liabilities.

In a bank based economy such as the euro area, the fear that a material impairment
in funding conditions could lead to a credit crunch, or at least prevent the transmis
sion to the real sector of the stimulus provided by the accommodative monetary policy,
motivated the adoption of a number of operations providing credit intermediaries with
short term liquidity and longer term funding.* Since 2008 there have been four types of
unconventional monetary policy interventions based on refinancing operations.

First, starting in October 2008 the ECB allowed banks to obtain unlimited short term
liquidity at a fixed rate as long as they pledged sufficient collateral, through the so called
Fixed Rate Full Allotment policy. For every amount of eligible collateral, the banks could
access an equal amount of liquidity minus a haircut that depended on the characteristics
of the pledged collateral (asset class, residual maturity, rating, coupon structure).® The
rate was the same as that on the Main Refinancing Operations (MROs).

Second, the ECB promoted a series of Longer Term Refinancing Operations (LTROs).
Differently from standard operations with a maturity of up to three months, these new
operations extended liquidity with maturities of one year (in July 2009) and three years
(in December 2011 vLTRO I and February 2012 vLTRO II ), with the aim of reducing

3See Rostagno, Altavilla, Carboni, Lemke, Motto, Saint Guilhem & Yiangou (2021) for a detailed and
comprehensive review of the conduct of monetary policy in the euro area

4The sovereign crisis had opposite effects for banks in non vulnerable countries, which experienced
positive revaluations of their domestic government bond holdings and stable macroeconomic conditions

5Eligible assets included government and regional bonds, covered bonds, corporate bonds, asset backed
securities, and other uncovered credit debt instruments The large majority of the collateral was provided
by government hond holdings
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roll over risks and favoring longer term investment. Funds available to banks were still
constrained by the collateral requirements. While the central bank balance sheet was
protected by the adoption of haircuts, which depended on the degree of liquidity of the
assets pledged, the subsequent revision of the collateral policy substantially relaxed the
collateral constraints existing for banks in accessing those funding facilities.® The interest
rate applied was equal to the rate applied on regular short term operations, on average
over the time span of each operation, so to reflect the accommodative monetary policy
stance. All these factors contributed to a high take up by banks in these operations,
especially in stressed countries, and to the massive increase in the liquidity in the system
(by more than a trillion euros, approximately 8% of GDP).

Third, even larger amounts of liquidity were injected via the subsequent operations
adopted by the ECB. These not only supported the funding conditions and the stability
of the banking sector, but also were conceived so as to avoid some of the side effects
experienced with the previous operations.” Due to these reasons, these Targeted Longer
Term Refinancing Operations (TLTROs) are the main focus of our paper. They were
announced in June 2014 (TLTRO I), in March 2016 (TLTRO II), and in March 2019
(TLTRO III). In between the waves of TLTROs, the ECB also updated the rules on
borrowing limits, maturities, and early repayment options. Eligibility criteria and haircut
schedules for the collateral were the same as the previous operations. Borrowing limits (for
TLTRO 1) and interest rates (for TLTRO IT and III) differed.® Even though borrowing
limits were in place, they were not perceived as necessarily binding in case of systemic
shocks because there was an expectation that in such instances they would have been
relaxed.

Finally, the pandemic brought forth, in March and April 2020, a series of re calibrations
of TLTRO III, expanding its borrowing limits, maturity, and early repayment options.
Moreover, these re calibrations consisted in an even lower pricing, which then encom

passed a transitory period where the minimum achievable TLTRO III rate, subject to

6Pledgeable ABSs started to include securities with a lower rating and with underlying assets compris
ing residential mortgages and loans to small and medium enterprises (excluding mixed class ABSs and
ABSs with non performing, structured, syndicated, or leveraged loans) Crucially, the list of pledgeable
assets was extended and included an increasing number of assets, also relatively less liquid, such as indi
vidual bank loans (so called Additional Credit Claims ACCs ) Tt is also worth noting that the risk of
losses on these assets remained with the corresponding national central banks instead of with the entire
Eurosystem

"See Albertazzi, Barbiero, Marqués Ibaiiez, Popov, Rodriguez D’Acri & Vlassopolous (2020) for a.com
parative review of the papers assessing the financial stability spillover of these and other unconventional
monetary policy measures

8TLTRO TI's borrowing limits were direct functions of the amount of loans that banks extended over
the period of the operations, while the interest rates were fixed over the time span of each operation at
the MRO level prevailing at the time of take up (plus an additional fixed spread of 10 basis points for the
first two TLTRO I auctions) TLTRO II's borrowing limits and interest rates were instead both functions
of the loans extended over the period of the operations, with interest rates decreasing with the volume
of loans from the MRO rate (which was in parallel reduced to 0%) down to the Deposit Facility Rate
(DFR, the rate at which excess reserves are remunerated, which stood at —0.4%) ¢ The original pricing
design of TLTRO III, settled in July 2019, was similar to TLTRO II's, with the difference of a 10 basis
points spread over MRO rate and DFR, which was later waived in September 2019 right before the first
TLTRO III operation (together with a further DFR cut to —0.5%)
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a milder lending performance criterion, was as low as —1%. The re calibrations were
accompanied by further relaxation of collateral requirements and a series of additional
longer term operations to bridge the gap between announcements of the measures and
the actual operations, as well as a series of Pandemic Emergency Longer Term Refinanc
ing Operations (PELTROs) which acted as a further backstop for those banks whose
business models did not allow for meaningful participation to TLTROs. '

Figure I reports the time series evolution of the total amount of ECB funding since
2010, with a breakdown across each of the operations described above, as well as the
policy rate that was applied. The level of take up is not necessarily related to the degree of
stabilization provided by monetary policy. It is so only conditional on the absence of runs.
However, as pointed out above, the simple existence of a lender of last resort, or even just
the expectation of it, may avert uncoordinated equilibria. This is why a structural model
admitting multiple equilibria is needed to be able to make a comprehensive assessment, of

the role played by monetary policy in sustaining financial stability.

Figure I: ECB Funding and Policy Rate Within Our Sample
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Note: TLTRO I, II, and IIT correspond to the Targeted Longer Term Refinancing Operations announced
respectively in June 2014, March 2016, and March 2019 Other corresponds to the sum of Marginal
Lending Facility (MLF), Main Refinancing Operations (MROs), Longer Term Refinancing Operations
(LTROs, including the bridge operations announced in March 2020), Fine Tuning Operations (FTOs) and
Pandemic Emergency Longer Term Refinancing Operations (PELTROs) Policy rate is the borrowing
rate applied to refinancing operations over time This figure is based on our sample of banks, which
corresponds to roughly 50% of overall loan and deposit volumes, and this proportion is also reflected in
the amount of ECB funding that our sample covers

10See Barhiero, Boucinha & Burlon (2021) for a description of TLTRO III and the related collateral
easing measures
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1.2.1 Data

Our empirical analysis relies on bank level information from various proprietary databases
maintained by the ECB. First, we use the Individual Balance Sheet Indicators (IBSI)
database, which reports at the unconsolidated level the main asset and liability items of
over 300 banks resident in the euro area from August 2007 to July 2021. This dataset pro
vides information on the amount of outstanding deposits, loans, and other relevant bank
balance sheet information. Second, we complement IBSI with the Individual Monetary
and Financial Institutions Interest Rates (IMIR) database, which contains information
on deposits and lending rates. Third, we gather data on banks’ Credit Default Swaps
(CDS) from Datastream and on firms’ Probabilities of Default (PDs) from Supervisory
Reports by the Single Supervisory Mechanism of the ECB. Fourth, we add information
on bank profitability and Non Performing Loans (NPLs) from SNL Financial and Bureau
van Dijk’s BankScope. Lastly, we have granular information on bank’s participation in
ECB’s lending operations and deposits in ECB’s deposit facility and current account from
ECB’s administrative reports.

The merge of our rich data yields a representative sample of the euro area banking
sector, consisting of an unbalanced panel of 64 banks for 168 months from August 2007 to
July 2021, covering 13 euro area countries (Austria, Belgium, France, Germany, Greece,
Ireland, Latvia, Lithuania, Italy, Portugal, Slovakia, Spain, and the Netherlands). The
banks in our sample represent over 50% of their domestic loan and deposit markets on
average across countries. We express all shares vis & vis domestic markets because in the
euro area both deposit and loan markets are segmented along country lines. Although
some cross border lending does exist, it is negligible compared to the aggregate. We report
the summary statistics of our sample in Table I.

For the deposit demand model we use each bank’s market share of the domestic market
of deposits, at the month country level.!'! For the uninsured deposits, we use deposits of
domestic corporate clients (overnight, agreed maturity, redeemable at notice), and the
bank’s composite interest rate on corporate deposits (weighted average of the interest
rates across the segments available in the IMIR dataset). For the insured deposits, we
use the deposits of domestic household clients (overnight, agreed maturity, redeemable at
notice), and the bank’s composite interest rate on households’ deposits (weighted average
of the interest rates across the segments available in the IMIR dataset). Corporate de
posits are typically larger than the €100,000 threshold of the Deposit Guarantee Scheme
(DGS), while household deposits are typically smaller, which makes them a good proxy for
insured deposits. To validate our assumption, we obtain confidential information about
the share of insured and uninsured deposits from the Supervisory Reports of the Single
Supervisory Mechanism (SSM). This allows us to confirm that the share of corporate to
total (household and corporate) overnight deposits is indeed highly correlated with the
share of uninsured over total (insured and uninsured) deposits.

1 Both deposit and loan market shares are calculated based on the total volume of each month country
banking sector, not only based on our sample of banks
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Table I: Summary Statistics

This table presents the summary statistics of the unbalanced panel of 64 banks for 168 months from
August 2007 to July 2021, covering 13 EA countries (AT, BE, DE, ES, FR, GR, IE, IT, LT, LV, NL, PT,
SK) Avg Lending Rate refers to the weighted average of lending rates to NFCs and Households that is

used to estimate the loan default model

Obs. Mean St.Dev. Min p25 p50 p75 Max

Uninsured Deposits

Deposit Volume (€hbn) 8,295 15.96 19.01 0.00 3.04 815 21.86 114.28

Deposit Rate (%) 8,295  0.41 0.69 0.58 0.02  0.11 0.47 4.70

Market Share (%) 8,295 10.63 9.60 0.00 1.64 869 17.87 40.71
Insured Deposits

Deposit Volume (€bn) 8,295  40.46 51.03 0.01 9.13 2215 55.71 418.70

Deposit Rate (%) 8,295  0.43 0.64 0.51 0.03 0.18 0.51 5.00

Market Share (%) 8,295  9.45 9.73 0.00 1.39  6.41 14.19 43.08
Loans to NFCs

Loan Volume (€bn) 8,295  26.97 28.83 0.30 593 1541 40.70 167.91

Lending Rate (%) 8,295  2.66 1.48 0.23 1.58 225 3.38 10.06

Market Share (%) 8,295  9.59 9.39 0.03 1.32 6.56 15.80 41.58
Loans to Households

Loan Volume (€bn) 8,295 34.42 46.97 0.17 736 17.56 42.45 370.97

Lending Rate (%) 8,295  3.55 1.75 0.03 210 3.32 459 10.31

Market Share (%) 8,295  9.22 9.18 0.01 145 6.09 14.61 43.48
CDS Spread (%) 8,295  1.68 2.50 0.13 0.60 0.93 1.66 42.41
Banks’ Default Prob (%) 8,295 2.64 3.64 0.21 098 1.52 2.69 51.85
Borrowers’ Default Prob (%) 8,295  2.04 1.49 0.07 119 1.61 230 9.02
Avg Lending Rate (%) 8,295  3.14 1.50 0.20 1.91 286 4.09 9.58
EONTA (%) 8,295  0.12 0.93 0.48 036 0.14 0.25  4.30
Sovereign Rate Spread (%) 8,295  1.96 2.47 0.35 071 132 245 4596
ROA (%) 8,295  0.25 0.89 6.56 0.14  0.34  0.59 2.29
Excess Liquidity Holdings (%) 8,295  3.52 6.14 0.09 0.00 0.71 4.60 50.88
Securities Holdings (%) 8,295  7.58 5.75 0.00 3.3 6.47 10.45 31.40
Deposit Ratio (%) 8,295 38.86 20.18 0.00 24.19 38.41 5342 82.71
NPL Ratio (%) 8,295  6.20 6.67 0.42 246  4.09  6.96 42.49
Loss Given Default (%) 8,295 27.39 7.63 0.00 22.66 27.53 31.37 52.92
Net Position with CB (€bn) 8,295  0.35 14.96 131.55 1.67 0.00 3.80 76.91
CB Policy Rate (%) 8,295  0.24 1.05 1.00 0.40 0.05 0.75 4.25
Other Net Balance (€bn) 8,295  5.32 25.91 105.57 541 136 1254 169.83
Other Borrowing Rate (%) 8,295  2.08 2.69 0.71 0.52  1.42 3.15 46.32
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Deposit shares range from almost nil to over 40 percent in some jurisdictions, with
an average value of 11 percent in the case of uninsured deposits and 9 percent in the
case of insured deposits. Deposit rates are close to zero in most countries, reaching at
maximum levels slightly below 5 percent. Some deposit rates are negative, with a few
reaching levels below the minimum of the DFR in the sample period, at 0.6 percent. The
average interest rate on insured and uninsured deposits is around 0.4 percent.

For the loan demand model we use bank’s market share of the domestic market of
loans, at the month country level. For loans to NFCs, we use loans to domestic corporate
clients, and the bank’s interest rate on new corporate loans excluding overdrafts. For
loans to households, we use the loans to domestic households, and the bank’s interest rate
on new household loans excluding overdrafts. The market of loans to NFCs is roughly as
concentrated as the market of loans to households, with average shares around 10 and 9
percent, respectively. Shares in some smaller countries can reach up to over 40 percent,
similarly to the deposit markets. Loan rates hover around 3 to 4 percent on average, and
can reach 10 percent for some banks.

Similarly to Egan et al. (2017), we measure the financial solvency of each bank with
the CDS spreads. We derive five year CDS spreads from Datastream, and calculate the
probability of default of each bank under the same risk neutral model with a constant

12 The average

hazard rate and under the same assumptions as in Egan et al. (2017).
CDS spread in our dataset is 168 basis points, but can reach peaks of over 4,200 basis
points during the sovereign debt crisis. Under our assumptions, these peaks correspond
to a sizable risk neutral probability of bank default of 50 percent.

We measure borrowers’ default with the probability of default on performing exposures
reported in the Supervisory Reports of the Single Supervisory Mechanism of the ECB.
In our sample, this probability is on average 2 percent and can reach over 9 percent in
the aftermath of the sovereign debt crisis. Consistently, we proxy the aggregate loan
interest rate that affects borrowers’ default with the average interest rate on loans to the
non financial private sector.

In our regressions we control for a series of time varying characteristics at the bank
level. We include bank’s ROA to proxy for profitability, the ratio of excess liquidity
over assets to measure the exposure to the negative interest rate policy and the level of
liquidity, the ratio of securities holdings over assets for the exposure to the capital gains
from asset purchases by the ECB and the level of collateral, the ratio of deposit over
assets to proxy for the business models and the exposure to the frictions emerging from
the zero lower bound, and the NPL ratio as a proxy of the quality of the loan portfolio.
All controls are considered with a one month lag. We also summarize the EONIA rate and
the sovereign rate spread that we use as instruments for our demand models. Last, at the
bottom of Table I, we report descriptive statistics for banks’ loss given default from the
Supervisory Reports, the net position of each bank vis a vis the ECB (borrowing minus

deposits) as well as the policy rate that they were required to pay when borrowing from

12We use a 5% risk free rate and bank month specific recovery rates
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the ECB. To complete the summary of banks’ balance sheets, we include the net balance
of the other components of banks’ assets and liabilities, and the interest rate on these net

balances as proxied by the 10 year domestic sovereign yield.

1.3 The Model

Our framework models the behavior of four agents: depositors, borrowers, banks, and the
central bank. We distinguish between insured and uninsured depositors, corresponding
respectively to households and non financial corporations, and let them have preferences
for banks’ characteristics that determine their demand for deposit services. Depositors will
consider in their deposit demand not only the interest rate offered, but also a measure
of financial fragility of each financial institution. Similarly, we consider borrowers as
either households or non financial corporations, and let them have preferences for banks’
characteristics that determine both their demand for loans and likelihood to default.
Borrowers will choose their preferred bank based on the offered loan interest rate, which
will also have an effect on their default probability, capturing any potential extent of
moral hazard and/or adverse selection.

We model banks’ supply of deposits and loans as Bertrand Nash competition on interest
rates, following the standard empirical industrial organization literature on demand for
differentiated products Berry (1994), Berry et al. (1995). In the spirit of Hortagsu, Matvos,
Shin, Syverson & Venkataraman (2011) and Egan et al. (2017) we also let banks default
if, when running a loss, their expected franchise value next period is expected to be lower
in absolute value than such loss. Our framework is static and characterized by stationary
pure strategy Bayesian Nash equilibria, where banks compete and decide to default within
each period, not across periods. The combination of endogenous banks’ default due to
banks’ limited liability, and of depositors’ preferences for banks’ stability is what allows
the model to produce multiple equilibria, a key ingredient for our policy evaluations.

The degree to which the model will allow for multiple equilibria depends directly on the
size of the sensitivity to price and risk conditions of the different schedules, representing
the behavior of banks, depositors and firms. For instance, if depositors expect a bank
to default, their expectations will be self fulfilling, causing demand of mostly uninsured
deposits for that bank to diminish, which can only be offset by offering higher deposit
rates for both insured and uninsured deposits. In equilibrium this may not only validate
the expectations of a bank’s default, but also contribute to a contagion effect, as solvent
banks are now forced to increase their deposit rates as well in order not to lose market
shares, which will eventually negatively affect their solvency. Alternatively, the distressed
bank may also react by charging higher lending rates, raising the riskiness of the loan
book and, in turn, of the bank itself. Again, if the deterioration of the asset quality is
large enough, the initial expectations of a bank’s default get validated. This multiplicity
based on depositors’ beliefs is not eliminated by the presence of a central bank offering

liquidity, as the funding it provides is usually constrained by borrowers’ availability of
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suitable collateral.

Note that ours is not a model with bank runs in a narrow sense, because we do not
have maturity transformation. However, our mechanism is not different from standard
models of bank runs Diamond & Dybvig (1983). In fact, in our model a similar strategic
complementarity emerges, because the withdrawal of some deposits increases the risk for
other depositors. This is not because the bank is forced to liquidate (at a loss) long term
illiquid projects, but simply because the withdrawals increase banks’ funding costs.

Last, but crucially, we introduce a central bank, that is the ECB in our empirical
application, that is willing to provide liquidity to banks at predetermined rates. No ar
bitrage considerations imply that the potentially unlimited availability of central bank
funds determines the cost at which banks are marginally willing to borrow from com
parable alternative funding sources, such as international wholesale markets, as well as
the return of comparable assets. In what follows we outline the specifics of the deposit
demand models, the loan demand and default models, lenders’” supply through deposit
and loan pricing, and banks’ default decisions.

1.3.1 Deposit Demand

We model demand for deposits by specifying the indirect utilities that determine uninsured
N (i.e. non financial corporations) and insured Z (i.e. households) depositors’ choice
of bank, where banks are allowed to provide differentiated services. More specifically,
depositor 7 of type d = {N,Z} has the following indirect utility from depositing at bank
j in country m at month ¢:

Uidjmt = adf:);‘imt + ’YdF}mt + 6? + ngt + gjdmt + szdjmt? (1.1)

where P is the interest rate on deposits, Fj,,; is a measure of bank’s fragility, 8
are bank fixed effects controlling for differences in depositors’ mean utilities due to ob
served and unobserved (by the econometrician) bank characteristics, (%, are country
month fixed effects absorbing any macroeconomic factor, ﬁfmt are bank country month
unobserved characteristics (by the econometrician), and Efjmt are IID shocks that follow
a Type 1 Extreme Value distribution. We normalize to zero the utility from choosing

13 We allow not only uninsured

the outside option, that is a set of small fringe banks.
depositors, but also insured ones to be sensitive to banks’ fragility, to capture any costs
that insured depositors might face in case of bank’s default, as well as potential delays in
the implementation of the deposit insurance scheme.

From these indirect utilities we can derive each bank’s market share in country m at

month ¢, both for uninsured and insured deposits, as follows:

30ur choice of inside vs outside option banks is mostly driven by data availability We focus on
banks for which we can observe the CDS spreads, our measure of banks’ fragility, the borrowers’ default
probability, and the loss given default Our final sample of (inside) banks corresponds to the largest
institutions representing on average 40% of both aggregate deposits’ and loans’ volumes
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; exp (P, + Y Fims + 05 + Gy + &41)

- ~ (1.2)
Jmt 1+ Zk exp (Oédpgmt + ’Ydkat + 6;§ + ant + gl‘cimt)

As reported in the descriptive statistics in Table I, a small but increasing over time
fraction of deposit interest rates are actually below the Zero Lower Bound (ZLB), only for
uninsured depositors. Based on a recent strand of literature looking at deposit markets
with rates below the ZLB Heider, Saidi & Schepens (2019), Altavilla, Burlon, Giannetti
& Holton (2021), we investigated in the context of our deposit demand model whether
depositors had non linear preferences for deposit rates, which would justify a stronger
demand response to deposit rates below zero, hence limiting banks’ incentives to set
negative deposit rates. We experimented with a quadratic term for deposit rates in the
indirect utility function for both insured and uninsured depositors, as well as with as
interaction of deposit rates with a dummy for negative rates for the case of uninsured
depositors only, for which we have observations with negative rates. We found that none
of these nonlinearities are statistically significant, possibly reflecting the presence of a
negative effective lower bound below the negative values reached by deposit rates in the
sample. We therefore rejected any difference in depositors’ response to interest rates above
or below the ZLLB, and maintained the current specification with a linear relationship.

1.3.2 Loan Demand and Borrowers’ Default

We model demand for loans in a similar way as demand for deposits. In particular, we
define borrowers as either firms F (i.e. non financial corporations) or households H, and
let each borrower b =1, ..., B of type ¢ = {F,H} have the following indirect utilities from
taking a loan from bank j in country m in month ¢:

Ulfjmt = O/ijmt + 65 + Crl;zt + f][mt + Ell;jmﬂ (13)

where P]fnt, Pﬁnt are respectively the average loan interest rates for firms and house
holds, 4/ are bank fixed effects, ¢}, are country month fixed effects, &/, are unobserved
bank country month attributes, and gfjmt are IID shocks that follow a Type 1 Extreme
Value distribution. We let borrowers choose an outside option, that is any small fringe
bank, and normalize to zero the utility from that option. Hence, these indirect utilities
allow us to derive each bank’s market share for firm and household borrowers in country

m at month ¢ as:

gt €Xp (aepjzmt + 6§ + Cfm + gfmt)
jmt ’
o I+ Zk €xp (aéplfmt + 51€ + <7€1t + glimt)

Finally, we let borrowers default on their loans based on the following indirect utility

(1.4)

function:

Ulgmt = Bpﬁnf + 5JD + Qﬁt + jpmt + lL:I)Djmm (15)
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where P = < ]fmsti"st;{mt Pri+s fmst]};fmt Plt, = (—wil )P 4wl Pl is the weighted
average of the loan interest rates for firms and households, ' and the other controls and
fixed effects follow the same logic as the loan demand models. Hence, the share of de
faulting borrowers across firms and households that bank j expects to have is defined

as:

Do - eXp (ﬂ‘Pﬁnt + 5]1‘) + Crgt + ]'Dmt)
gmt —

! 1+exp (BP5, +07 + (D +¢0 )

(1.6)

Finally, we assume that once default occurs, only a fraction &j; of the loan principle and
promised interest payment is lost, with 1 — &), measuring bank month specific recovery
rates. This aims at capturing the effect of most loans being collateralized and amortized
over time, which means that the default in general does not wipe out the whole principle
and accrued interest. As a result, each bank’s expected revenue from its loan portfolio

can be expressed as:

(1 - Djmt)(l + met) + Djmt(l - th)(l + Pﬁnt) - (1 - thDjmt)(l + met) (1-7)

It is important to discuss a restrictive assumption that we are making in this context,
which has to do with the total size of the market, both in terms of deposits and loans.
We are in fact assuming that banks can attract depositors and borrowers, by increasing
their market shares, from a fixed pool of potential deposits’ volume MZ,, M2, (insured and
(for firms and households). These

quantities are defined respectively as the total amount of insured and uninsured deposits

uninsured), as well as potential loans’ volume M, M,
in country m at time ¢, and the total amount of loans granted to firms and households
in country m at time ¢. This assumption, in line with Egan et al (2017), means that the
model allows for substitution of quantities of deposits and loans across banks, but does not
allow the aggregate volume of deposits and loans to change endogenously. Relaxing this
assumption is however challenging, as it requires making an assumption over the potential
market size for deposits and loans that goes beyond the observed aggregate volumes.

1.3.3 Deposit and Loan Pricing, Bank Default, and ECB Funding

On the supply side, we let banks compete Bertrand Nash on interest rates in deposit
and loan markets, but also decide on their survival depending on whether equity holders,
who are subject to limited liability, find it profitable to finance a shortfall of the bank or
not. We allow banks to raise capital form three different sources. First, from insured and
uninsured depositors, whose interest rates are set by banks to maximize their expected
equity value. Second, from the central bank, which sets a borrowing rate, that is also
equivalent to a deposit interest rate if banks decide to deposit funds instead or borrowing.

"We use this weighted average as we only observe non performing loans accurately enough at the
bank country month level, not with breakdown by households and firms

24



Chapter I: The Shadow Value of Unconventional Monetary Policy

Last, from any source other than deposits and central bank funding, namely equity, debt
security issuances, borrowing from other banks, and financial liabilities. While the costs
faced by the banks on the first two elements of their liabilities are endogenously determined
within our model, for the third one, which is introduced to match banks’ assets, the cost is
exogenously given, and we assume to be determined in international capital markets. We
set the amount and interest rate on this latter source as fixed across our counterfactuals.
On the other hand, banks’ assets are represented by two main components. The first are
loans granted to households and firms, while the second are any other source of assets.
As for the case of liabilities, the last element is exogenously given and included to match
banks’ assets in the data.

Accordingly, we define the total profits of bank j in country m at month ¢ as:

]mt - Z Ml S]th ‘met)[ thD]'mt} w]mtO ] M S]: C]:

jmit™~ jmt
LeFH
- Z Md S]dmt ‘P]dmt (1 ijnLt)ijt) ants‘;zth]Imt (1.8)
deTN
M]Cmt (1 + F)tc + Cjcmt) Mijt(l + }Dﬁm&)

where MZ, M, are respectively the total amount of insured and uninsured deposits in

country m in month ¢, M7, M, are the total amount of loans for firms and households,

mt?

Cﬁnt are extra costs of providing loans to firms relative to households, and CjImt are extra

costs of providing insured deposits relative to uninsured ones. We let Mfmt be any source

of capital for banks other than deposits and central bank liquidity injections, and Pﬁnt

be its price. We take this cost of funding as exogenous, and define as M¢ , the amount

mt
that bank j borrows from the central bank, which decides on a common rjate PE1S C]Cmt
captures any extra cost that bank j faces when borrowing from the central bank, such like
hitting the target of maximum amount that can be borrowed as a function of its pleadable
assets. Last, Cj,, represents any lending or deposit related stochastic costs, including
administrative costs, marketing, screening and monitoring costs, and borrowers’ default
costs not predicted by Djy,, or other cost variables. We assume that Cje ~ N(ftjme, szmt)
and that these costs are shared across loans and deposits with normalized weights w]mt

and 1 —wf, ' We let banks’ returns to be defined as:

Rjme = M.,S5, [(L+ Py (1= XDyl — 1 — PE = CS,) = MyS5yCime. (1.9)

Jgmt Jjmt
leFH
!%Note that in some cases we can have M5, = M7, ST + MM, S¥ ,—MZ ST —MN, SN ,—MES , <0,

which means that the bank borrows more than what it lends through loans This will then become a
source of revenue with the same price/cost structure

16Tn our current estimation and counterfactual exercises we are setting w -t = 0.45 This degree of cost
sharing is calculated based on an exercise whereby operating costs are regressed on deposit and lending
volumes, to capture the relative importance of each element in driving the dependent variable
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where M*

mt
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). Banks’
risk neutral equity holders will decide to finance a shortfall if the equity value of the bank

next period Ej,,; exceeds the shortfall, based on the following condition:

1
Hjmt + mE]‘mt > 07 (110)

where the equity value next period is determined by the expected value of banks’
returns R conditional on survival, times their survival probability. This means that we
are not explicitly assuming that banks have any equity. There will be a threshold level
of Cjp such that equity holders are indifferent between financing the bank in country m
and month ¢ and letting it default, defined as éjmt. We can then solve for the optimal
cutoff rule as follows:

Ejmt

Survival Prob
Expected Return conditional on survival

—_—
7Hjm.t (ijt) = @ < Jmt i f) E (ijt (ijt) - ijt (ijt) ‘ ijt (ijt) - ijt (ijt) > 0)

147 Ojmt

1 6'mt - //f_'mt * * - 6_'mt — Hjmt
e ( ’ Tjmt 7 ) Mo S <ij = Hgme T (_7a]mz] ’
(111)
where we let M5, S5, = M7,S7., + MXSH , and A(.) is the inverse Mills ratio.'”

Similarly to Egan et al. (2017), a crucial feature of the first order condition in equation
(1.11) is that it can be satisfied by multiple values of bank’s default probability, which
gives rise to multiplicity of equilibria for the same model primitives (preferences and
costs). The feedback loop between depositors’ demand depending on bank’s risk, and
bank’s risk depending on depositors’ demand, implies that banks’ default probabilities
perceived by depositors can be self fulfilling, generating panic based runs as in Diamond
& Dybvig (1983) and Goldstein & Pauzner (2005).

Before observing the realization of the costs C},, banks set deposit and loan interest

rates PL . pN . pF . pH

ity Pimts Pimes Pl maximizing their equity value, solving the following optimiza

tion problem under limited liability and risk neutrality:

Cimt 1
Ejmt = - NI’HaX}_ - / [Hjmt + 1 ¥ Ejmt dF(ijt)
Pyt Pyt By Pt J —o0 r
— F QF F T QT A T C C
= oz Alf’naX}_ o ijt - Mmtsjmtcjmt - MmtSjmt (})]mf + ijt - Pt - ijt)
Bt Pt Pt Pt

6'm - jm
- Mrjr\w,/tS]/'\r/nt (P;:/nt - Ptc - C]Cmt) - Mijt (Pﬁnt - chmt - C]Cmt) :| o (Hlu]t) 5

o Jjmt

(112)

_ ¢<5mrwm)
"The formula for the i Mills ratio i Cime—itgme )
e formula for the inverse Mills ratio is A ( — = —
Tjimt (D(ijrfu]mr,)
Timt
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where:

Cimt = fjme

Cimt = Wjmt — TjmeA ( qmt_Fmt ) (1.13)
Ojmt

We use the four first order conditions of this optimization problem to back out the

unobserved cost components of the bank’s objective function, as described in detail in

the Appendix B. Those equilibrium conditions, together with the optimal cutoff rule of

equation (1.11), allows us to derive C% . C7 . CS . timt, Ojme-

1.4 Estimation

We estimate four separate but rather similar demand systems, respectively demand for
uninsured and insured deposits, as well as households’ and firms’ demand for loans. More
over, we estimate a similar model to determine borrowers’ default probabilities. We follow
an instrumental variables approach in the spirit of Berry (1994), based on aggregate mar
ket shares at the bank country month level for each type of depositors and borrowers.

The estimation for deposit demand is based on the following regression equation:

In S]dmt —In ngt = adljjdmt + ’Ydijt + 5]d + Cglt + f;’imt’ (114)

where S . is the market share of the outside option, that is the fringe of small banks.
Note that the country month fixed effects (¢, absorb the variation of the outside good,
therefore we do not need to normalize the explanatory variables as difference between the
value corresponding to bank j and the value corresponding to the outside good.

We address the identification concerns for both o and ¢ using instrumental variables.
Our instruments for deposit rates is the bank specific pass through of the Euro Overnight
Index Average (EONIA), constructed in the spirit of Villas Boas (2007) as interactions
of the EONIA with bank dummies. Our instrument for banks’ CDS spreads instead is a
measure of bank specific pass through of sovereign risk, constructed again as interactions
of bank dummies with the spread between each country’s sovereign yield and the EONIA.
The basic idea is to identify the slope of households’ demand for deposits by exploiting the
variation in deposit rates which reflects shifts in banks’ willingness to rely on this source of
funding. Changes in the monetary policy rate are transmitted to deposit rates differently
across banks, largely reflecting banks’ specific characteristics, such as in particular their
pricing power in the deposit market. For example, after a monetary policy tightening,
some bankers will be less eager or less quick to increase deposit rates because they can
rely on higher market power. Analogous considerations hold for the slope of household’
demand with respect to the level of bank risk. We find these instruments to be strongly
relevant in the first stage across all five models. The economic interpretation of the
instruments adopted in the regressions below mimics that of the deposit demand equation.

Similarly, the estimation for the loan demand will result in the following regression

equation:
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In S5, —InSG,, =o' Pl + 65+ Gy + & e (1.15)

Last, the estimation for borrowers’ default is based on the following regression equation:

I Djpy = In (1 = Djpt) = 51:’ﬁm + 6jD + G jpmt‘ (1.16)

We use the set of instruments of equation (1.14) also in equation (1.15) and (1.16).

1.4.1 Results

We report the main estimates of the five models in Table I1, while a more detailed summary
of the results can be found in the Appendix in Tables A.I, A.II, and A.III. We first look
at the demand for uninsured deposits. The results in column 1 of Table II highlight a
positive effect of the remuneration of deposits on the demand for such contracts. However,
they also highlight the sensitivity of deposited funds to the risk profile of the bank. A
higher default probability prompts a lower demand for uninsured deposits in that bank,
and this emerges even after controlling for unobserved heterogeneity related to bank
specific characteristics (i.e. bank fixed effects) or aggregate developments in the country
of residence (i.e. country month fixed effects). We then turn to the demand for insured
deposits. In principle, this demand should be price elastic, just as in the case of the
demand for uninsured deposits, but should not react to banks’ default probability, as
the government guarantee should separate deposit safety from banks’ creditworthiness for
these types of contracts. We do in fact find that banks’ default probabilities have no
significant effect on demand for insured deposits, as reported in column 2 of Table II.

Price elasticities between the two deposit types are significantly different. In terms of
magnitudes, the price elasticity is around 23 percent for uninsured deposits and 67 percent
for insured deposits at the level of a 5 percent market share of the domestic market and a 1
percent interest rate. Moreover, with a 5 percent share in the domestic market, uninsured
deposits’ demand declines by 2 percentage points for a 1 percentage point increase in
the default probability. The price elasticity of uninsured depositors is much lower than
that of insured depositors. This empirical pattern is in line with the explanation that
insured depositors only care about interest rates and, thus, insured deposits are much
more homogeneous products. Similarly, one can argue that uninsured depositors, which
are firms in our sample, depend on other bank services, which makes them less sensitive
to interest rates.

We report the estimates for the loan demand in columns 3 and 4 of Table I1. Similarly
to deposit markets, we find that households are more sensitive to loan interest rates than
firms, with a price elasticity of 14 for households and of 4 for firms. The firms display
smaller elasticities for the same reasons as uninsured depositors. Most likely, these firms
depend on a bundle of services from the bank, which introduces higher switching costs
and makes them less responsive to changes in interest rates alone.

The last piece of the model is the equation describing borrowers’ default. We report
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the estimates of its parameters in column 5 of Table II. We find that indeed increases
in aggregate interest rate lead to a riskier borrowers’ pool. A 1.5 percent increase in the
aggregate lending rate, which roughly corresponds to 1 standard deviation in our sample,
leads to a 4 basis points increase in borrowers’ default. Considering that the standard
deviation of the latter is 1.5 percent, the default equation describes a mechanism that
explains over 3 percent of the unconditional variation in borrowers’ default (gross of bank

observables and bank and country time fixed effects).

Table II: Deposit and Loan Demand, Borrowers’ Default

The table presents the deposit and loan demand, and borrower’s default estimation results Robust
standard errors in parentheses, *** p<(0 01, ** p<005, * p<01 Bank controls include ROA, excess
liquidity holdings, securities holdings, deposit ratio, and NPL ratio

DEPOSITS LOANS
Uninsured Insured Firms Households Default

Interest Rate 24 49*** 70 48*** 4 63F** 14 5T7%%* 2 41%%*

(3 32) (4 00) (139) (161) (0 76)
Bank Default Probability 2 35*H* 025

(0 93) (0 62)
Bank Controls Yes Yes Yes Yes Yes
Bank FE Yes Yes Yes Yes Yes
Country Month FE Yes Yes Yes Yes Yes
Observations 8,295 8,295 8,295 8,295 8,295
R squared 0031 0076 0061 0017 0015

1.4.2 Model Fit

In this Section we display model based quantifications of a set of parameters not directly
observable, with the aim to check if the time series and cross sectional patterns obtained
are consistent with the financial instability episodes, as well as with the monetary policy
and regulatory initiatives observed over the same period. By doing so we conduct a
additional qualitative check about the overall plausibility of our modeling framework,
providing an overall analysis of the fit of the model. In particular, we focus on the mean
Ljme and variance oj,, of banks’ unobserved costs Cj,,, as well as on the incremental
cost C]-Imt of providing insured deposits relative to uninsured, the incremental cost Cﬁnt
of granting loans to NFCs relative to households, and the extra cost Cjcmt of borrowing
from the central bank.

The model implied accounting of assets (loans) and liabilities (deposits and central
bank funding) leaves a net balance sheet position for each bank in our sample. The evo
lution of this residual variable reflects three main developments (Figure A.I). First, in the
aftermath of the crisis, euro area intermediaries have started a deleveraging process that

is still ongoing. Second, the deposit base expanded across euro area countries, but espe
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cially among non vulnerable countries. Third, deleveraging in vulnerable countries was
made possible only after the adoption of the Unconventional Monetary Policies (UMPs),
presumably reflecting a re capitalization process that has been going on in parallel with
the adoption of unconventional monetary policy measures.

The expected cost of lending which, based on the model, is implicit in the pricing
of loans, seems to be strongly countercyclical (Figure A.IT). Banks perceive borrowers’
defaults as more expensive in crisis times, and the distribution normalizes again only
after the adoption of UMPs. A possible and interesting interpretation of this is that
in the context of a systemic crisis banks anticipate the possibility of fire sales depressing
asset values, including loan collateral, thereby increasing the losses incurred form defaulted
loans. The average but also the dispersion in this measure is particularly pronounced in
vulnerable countries, with higher tails on both ends of the distribution (Figure A.TII).

The variance of costs of borrowers’ default ¢;,,,; follows a long term downward trend
(Figure A.IV). This implies, together with Figure A.II, that i;,,; and 0}, were negatively
correlated, at least until the adoption of UMPs, which is coherent with the notion that
fire sales, by depressing collateral values in the entire economy, increase default costs
across the board, diminishing cross sectional heterogeneity in default costs. The adoption
of UMPs is instead associated with a decline in both parameters. In the comparison
across countries, o, is evenly spread across intermediaries between vulnerable and non
vulnerable countries, with a lower average variance in vulnerable countries.

The opportunity cost of issuing insured deposits as opposed to uninsured ones Cfmt be
came permanently lower after the crisis (Figure A.VI), possibly reflecting stronger appetite
for this source of funding, but also gradual perceived improvements in the institutional
framework, ultimately leading to the banking union. The distribution became also more
asymmetric, with a thicker left tail. The opportunity cost of lending to NFCs as opposed
to households C7,

St did not change significantly over time (Figure A.VII). Instead, costs
of central bank funding C’jcmt gradually increased relative to other funding sources, despite
the decrease in policy rates (Figure A.VIII), possibly reflecting market stigma associated

with these funding sources.

1.5 Multiple Equilibria Under the Actual Policy

In this Section we review the findings obtained by simulating the model under the actual
policy, with the main objective to assess whether equilibria other than the realized one are
admissible and, if so, how these are characterized. Equilibria are defined as an alternative
set of prices (deposit and lending rates for each bank) and banks’ default probabilities
that satisfy all first order conditions in a country year combination, given the estimated
demand elasticities and the policy rate. The counterfactual scenarios for the policy rate
in Section 1.6 will instead consider exogenously defined higher or lower policy rates in the
different years. Any equilibrium will also be characterized by different levels of welfare and

default probabilities for borrowers, although the focus will be predominantly on banks’
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default probabilities, the most direct measure of financial stability. For any given bank
in any given year, the dispersion of its default probability across alternative equilibria
is defined as non fundamental risk. This captures the possibility that, even for given
“fundamentals”, the default probability is high or low only depending on which equilibrium
occurs. We define instead fundamental risk as the average default probability of a bank,
in a given year, across alternative equilibria.

We consider a subsample of the data, relative to the estimation sample, for the analysis
of multiple equilibria and of alternative policy scenarios, mostly for computational reasons.
We focus on eight yearly snapshots of the eight largest countries, covering the main 30
banks. Two preliminary remarks can be done before discussing the properties of the set
of equilibria. First, one important consistency check performed was to verify that the
realized outcome of the economy (the equilibrium observed in the data) is included in the
set of equilibria identified, which turns out to be the case. Second, the analysis below
will de emphasize the number of equilibria identified. One reason for this is that such
number is to some extent arbitrary, as it depends on various numerical thresholds used for
convergence.'® What is instead not arbitrary and relevant is the location of such equilibria,
defined in terms of the outcome variable analyzed (banks’ default probabilities). A large
number of equilibria will be at hand, as it will allow representing smoother distribution
functions.

To begin, Table III summarizes some descriptive statistics on the distribution of alter
native equilibria, which includes the realized ones, across vulnerable and non vulnerable
countries. Those summary statistics capture the variation across equilibria in the main
outcomes of the model, including banks’ default probabilities, deposit and loan volumes
and rates, share of non performing loans, total ECB funding net of deposits with the
ECB, and changes in depositors’ and borrowers’ surplus, banks’ profits, and total welfare
between the realized equilibrium and each alternative one. At the bottom, Table IIT re
ports the average number of equilibria per country year combinations. As expected, bank
default probabilities are higher in vulnerable countries than in non vulnerable ones. This
is not reflected into a difference in deposit rates across the two groups of countries, thanks
to a higher reliance on central bank funding in vulnerable countries. Moreover, higher
loan rates in vulnerable economies reflect both higher levels of observable and unobserv
able credit risk. Surpluses and profits of the model agents, expressed as difference relative

to the observed equilibrium, are consistent with the level of the relevant interest rates.

8Relatedly, in line with Egan et al (2017), equilibria that are considered very similar are grouped and
treated as one, which introduces another factor of arbitrariness in the number of equilibria
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Table III: Descriptive Statistics Across Countries, Years, Alterna-
tive Equilibria

The table reports descriptive statistics across all model equilibria The descriptive statistics are calculated
across 8 countries, 8 years, and all equilibria, with breakdown by 5 vulnerable countries (IT, ES, GR,
IE, PT) and 3 non vulnerable countries (DE, FR, NL) An equilibrium is counted as a country year
combination This means that uniqueness (N of equilibria per country year equal to 1) would imply 40
equilibria in vulnerable countries and 24 equilibria in non vulnerable countries

Vulnerable Countries Non-Vulnerable Countries
Mean Median Std Dev Mean Median Std Dev

Bank Default Probability (%) 14.47 2.07 18.84 12.78 1.07 15.41
Total Deposit Volume (€bn) 561.61  410.75 44542 1089.95  648.77 861.46
Deposit Rates (%) 6.36 0.02 9.33 6.27 0.25 8.64

Total Loan Volume (€bn) 500.25  572.92 251.78 613.77 641.81 245.12
Loan Rates (%) 0.63 2.33 3.81 0.17 1.48 2.83

Borrowers Default Probability (%)  1.95 1.75 1.15 1.30 1.27 0.37

A Depositors’ Surplus (€bn) 43.03 0.40 71.21 61.86 0.07 93.47
A Borrowers’ Surplus (€bn) 9.55 0.00 21.11 9.16 0.20 19.11
A Banks’ Profits (€bn) 99.90 0.41 158.32 191.30 0.10 264.89
A Total Welfare (€bn) 47.33 3.45 73.27 120.29 5.28 171.07
Net position vis & vis ECB (%) 2.12 9.36 30.51 16.28 8.79 36.00
N of Equilibria per Country Year 12.73 32.67

We next document in Table IV the differences in several outcomes between the realized
and alternative equilibria. We do so regressing each outcome on bank year fixed effects
and a dummy for alternative equilibria, which captures the average difference between
realized and alternative equilibria holding fixed any time varying bank level factors. We
find that on average bank default probabilities are 9 percentage points higher in the
alternative equilibria relative to the realized ones. To compensate depositors for their
higher default risk, banks offer deposit rates between 5 and 4 percentage points higher,
which leads to larger deposit market shares, and increase their share of funding from
the ECB on average by 21 percentage points. This higher availability of funds implies
that banks, in order to invest their increased funding, offer loan rates between 2 and 3
percentage points lower, which translates in larger market shares in lending markets as
well. The mechanism explaining the reduction in loan rates is the following. As banks
experience a costs increase on their liability side, due to their higher default risk, they
try to compensate this profit loss with lower loan rates. While this decreases profits per
borrower, it allows them to lend to more firms and households, and reduce borrowers’
default risk, which in equilibrium leads to larger profits on the asset side.
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Table I'V: Comparison between Realized and Alternative Equilib-
ria

The table compares the realized and alternative equilibria using the panel regressions Standard errors
in parentheses are clustered at the bank year level, *** p<0 01, ** p<0 05, * p<0 1

Banks’ Deposit Rates Loan Rates Share CB
Default Prob Uninsured Insured Firms Households Funding
Alternative 0 0g*** 0 05*** 0 04%** () Q2%** 0 03*** 0 21%**
Equilibrium (001) (0 00) (0 00) (0 00) (0 00) (0 01)
Bank Year FE Yes Yes Yes Yes Yes Yes
Observations 6,222 6,222 6,222 6,222 6,222 6,222
R squared 0195 0124 0142 0172 0200 0229

The distribution of banks’ default probabilities across bank year equilibrium is shown
in Figure II, together with the distribution of realized values across bank year.'? An
important finding of this paper is that the former is characterized by a visibly thicker
right tail. In the years considered, and at actual policy rates, the market structure of the
euro area banking sector has been consistent with the existence of equilibria other than the
realized ones, and characterized by significantly higher default rates. The quantitative
relevance of the non fundamental risk at around 1%, expressed by the median default
probability in the bank year distribution of the realized equilibrium, is the same as the
corresponding quantity in the bank year equilibrium distribution. In a Diamond Dybvig
framework, the realization of run type alternative equilibria represents a source of tail
risk, which is the risk of low probability but high loss events. The relevance of this non
linearity can be expressed comparing the deterioration of the median values with that of
more extreme percentiles. For example, the 75" percentile of the two distributions rises
from 2% to 7%, and the 95" from 11% up to 40%. At the same time, it is interesting
that the set of alternative equilibria also includes some lower default rates, which can be
labelled as high confidence equilibria. This is visible, for example, by comparing the left
tail of the two distributions: the 25" percentile in the bank year equilibria distribution
is 0.02%, smaller than the corresponding quantity for the distribution in the realized
equilibrium at 0.8%.

The interpretation of the findings above is that over the sample period scrutinized, the
banking sector has endured some non negligible levels of non fundamental risk. Even if
the accommodative monetary policy stance adopted has played a stabilizing role for the
euro area banking sector, which we will discuss below when comparing alternative policy
scenarios, it was not able to completely eradicate the presence of non fundamental risk, in

19We focus on banks’ default probabilities because they are intimately connected with the welfare
costs or gains of alternative equilibria: equilibria characterized by higher average default probabilities
compared to the actual ones are also equilibria where total welfare is generally lower (Table VII)
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Figure II: Distribution of Realized and Alternative Default Prob-
abilities
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Note: Pooled bank year observations ‘“Realized equilibrium” is the data (December observations from
2014 to 2020 plus July 2021 for the balanced panel of 30 banks) “Alternative equilibria” are the sequences
of values compatible with FOCs and estimated parameters

the form of alternative equilibria with different levels of default rates. Among the possible
equilibria, moreover, the realized one was close but not coinciding with the most efficient
ones, where a high level a self fulfilling confidence would have reduced further the risk
in the banking sector. Our model does not determine which equilibria will realize in the
economy, so we are agnostic about the reasons why the bank run or most efficient scenarios
did not materialize. Factors like the monetary policy forward guidance and commitment
to saving the euro can be the main drivers that pushed depositors’ expectations towards
the low risk equilibrium. Yet, these are all explanations that lie outside of our model.
We complement the graphical evidence on tail risk from Figure IT with some regression
analysis in Table V, where we show how banks’ default probabilities for high risk banks
varies in the alternative equilibria relative to the realized one. We define high risk banks
in three ways, as those that have a default probability respectively above the 50", 75
and 95" percentile of the distribution in the realized equilibrium. More specifically, in
Table V we display the results of a regression of bank’s default probabilities on dummies
for high risk bank interacted with dummies for alternative equilibria. We find that banks
with default risk above the 75" and 95 percentile have on average a higher default
probability in the alternative equilibria respectively of 8.3 and 29.2 percentage points,
consistent with evidence of significant tail risk in the alternative equilibria and of positive
correlation between fundamental and non fundamental risk. This implies that weaker

banks are more exposed to the occurrence of adverse equilibria.
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Table V: Tail Risk in the Alternative vs Realized Equilibria

The table compares the realized and alternative equilibria using the panel regressions Standard errors
in parentheses are clustered at the bank year level, *** p<(0 01, ** p<(0 05, * p<0 1

Banks’
Default Prob

High Risk Bank (above 50" pctile) x Alternative Equilibrium 0002
(0 006)
High Risk Bank (above 75" pctile) x Alternative Equilibrium 0 083**x*
(0 020)
High Risk Bank (above 95" pctile) x Alternative Equilibrium 0 292%**
(0 070)
Bank Year FE Yes
Alternative Equilibrium FE Yes
Observations 6,222
R squared 0209

1.6 Counterfactuals

In what follows we look at the response of key bank level and country level variables across
equilibria in counterfactual scenarios, in which the policy rates at which intermediaries
can borrow from the central bank are either higher (up to two percentage points higher
every year from 2014 to 2019) or lower (up to two percentage points lower every year
from 2014 to 2019).2° First, as shown in Figure I1I, we find that banks’ default rates are
higher with higher rates and lower with lower rates, compared to the possible equilibria
resulting from the actual level of policy rates. As we increase the policy rates, the whole
distribution of banks’ default probabilities shifts to the right, with an increase in the

fatness of the right tail. The opposite occurs as we decrease the policy rates.

20We consider four counterfactual levels of the policy rate, namely plus and minus 1 and 2 percent
age points compared to the baseline level We have conducted several robustness checks with different
alternative policy rates, such as plus or minus 1 basis point, 50 basis points, 1 5 percentage points, 2 5
percentage points and 3 percentage points All qualitative results hold across calibrations
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Figure III: Distribution of Default Probability Across Policy Rate
Scenarios
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Note: Pooled bank year observations “Baseline rates” correspond to equilibria with actual policy rates
“Lower rates” (“Higher rates”) correspond to equilibria with 1 and 2 percentage point lower (higher) policy
rates than actual ones

Table VI reports how the main model outcomes presented in Table IV change across
different levels of policy rates at the bank level. We regress each model outcome on the
policy rate, which includes the baseline level and all the counterfactual values, and control
for bank year fixed effects. We find that 1 percentage point increase in the policy rate
increases banks’ default probability by about 1.4 percentage points, drives up deposit
rates by around 2 percentage points (more for uninsured deposits than for insured ones)
and loan rates by 11 basis points, and reduces borrowing from the central bank by over 2.3
percentage points. These results quantify the important role of unconventional monetary
policy via the TLTRO refinancing operations, not only to reduce banks’ default risk, but
also to provide them with cheap liquidity that eases pressure on deposits and can reduce
cost of credit for households and firms.
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Table VI: Comparison across Equilibria with Different Policy Rates

The table compares the baseline and counterfactual (with different policy rates) equilibria using the panel
regressions Standard errors in parentheses are clustered at the bank year level, ¥** p<0 01, ** p<0 05,
*

p<01

Banks’ Deposit Rates Loan Rates Share CB
Default Prob Uninsured Insured Firms Households Funding
Policy Rate 1 40%** 2 Q7HH* 1.86%** 0 11%* 0 11%* 2 32¥H*
(011) (0 09) (0 08) (0 05) (0 05) (0 35)
Bank Year FE Yes Yes Yes Yes Yes Yes
Observations 28,031 28,031 28,031 28,031 28,031 28,031
R squared 0167 0153 0176 0116 0136 0187

Table VII shows the effect of a change in policy rate on the weighted average and
weighted standard deviation of banks’ default probabilities within a country year com
bination, with weights given by banks’ assets. These two outcome measures are meant
to capture the average stability of a country’s banking system as well as its volatility.
We regress these two variables on country year fixed effects, on the policy rate across all
our scenarios, but also on the policy rate interacted with dummies for an increase or a
decrease in the policy rate relative to the baseline to test for asymmetric responses. We
find that one percentage point increase in the policy rate increase the mean and standard
deviation of banks’ default risk by around 3 and 2 percentage points, respectively. We
also find evidence of an asymmetric effect depending on whether the policy rate increases
or decreases relative to the realized one, with policy rate increases having a significantly
larger effect on the mean and standard deviation of banks’ default probabilities.

The asymmetric effects on stability comes from the distributional assumptions about
costs and the nature of multiplicity. The realized market equilibrium is characterized by
relatively low (2 2.5%) default probabilities. Since the costs follow a normal distribution,
it becomes increasingly difficult to reduce default probabilities once they approach 0, as
that would mean that even in the most extreme scenarios, which are very unlikely, banks
survive. On the other hand, for commensurate increases in the monetary policy rate,
the default probability moves up substantially as small decreases in default threshold,
éijm, translate to non negligible increases in expected shortfall. In addition, most of
this asymmetric effect comes from the impact on the most adverse equilibria, which tend
to be sensitive to monetary policy changes. In Appendix E, we present a parsimonious
version of our model where we show that this highest risk equilibrium is very responsive
to parameter changes and, therefore, creates most of the variation across counterfactuals.

The last column of Table VII shows that 1 percentage point increase in the policy
rate reduces total welfare by almost €22bn on average across countries and years, which

corresponds to approximately a 15% drop relative to the baseline. We construct this mea
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sure of welfare as the sum of depositors’ surplus, borrowers’ surplus, the discounted sum
of banks’ franchise value, the aggregate deposit insurance costs and banks’ bankruptcy
costs, and report in Appendix C the detailed formulae. The breakdown of the effect of
the policy rate on each welfare component is presented in Table A.IV, which shows that a
higher policy rate favors depositors, as they obtain higher deposit rates, but harms banks’
franchise value and has almost no effect on borrowers.

These results show that the ECB intervention played a significant role at reducing
the average instability of euro area countries’ banking systems, but also its volatility and
the overall welfare level. The asymmetric effect on banks’ default risk of an increase or
decrease in the policy rate can be interpreted as follows. Banks under the actual policy
rate, as reported in Table III, have a low default probability, which implies that they are
close to the lower bound of zero in their default risk. As a consequence, while a decrease
in the policy rate, which will contribute to a reduction in banks’ default risk, is bound in

its effect, an increase in the policy rate can almost unboundedly rise banks’ default risk.

Table VII: Impact of Policy Rate on Non-Fundamental Risk and
Welfare

The table compares the baseline and counterfactual (with different policy rates) equilibria using the
panel regressions The unit of observation is a country year equilibrium combination Total Welfare is
measured in billions of euros Standard errors in parentheses are clustered at the country year level, ***
p<0 01, ** p<0 05, * p<0 1

Banks’ Default Probability Total
Weighted Average Weighted Std Dev Welfare
Policy Rate 3 01F** 1 96*** 21 94***
(0 48) (029) (4 89)
Policy Rate x Increase 5 45%** 3 21%**
(094) (0 56)
Policy Rate x Decrease 101%* 0 93***
(0 55) (0 36)
Country Year FE Yes Yes Yes Yes Yes
Observations 5,755 5,755 5,755 5,755 5,755
R squared 0261 0270 0121 0129 0374

Last, we present our counterfactual results also in Figure IV, where we display the
distributions of banks’ default risk across all the policy rate values that we simulated.
The red empty circles represent the median of each distribution, while the green solid
dots for the baseline policy rate (“Opp” in the graph) represent the observed equilibrium
in the data. The left figure, which displays the distribution of banks’ default probabilities
across bank year equilibrium combinations in deviation from the bank year minimum,
indicates that a higher policy rate leads to a higher median bank’s default probability

and a higher dispersion. These results reflect the direct impact on banks’ solidity of
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changes in the cost of central bank funding, which we know is disproportionate for the
upper tail institutions (the weaker ones). However, these findings also reflect the ability
of monetary policy to eradicate equilibria with runs. This is visible in the right figure,
which shows the distribution of banks’ default probabilities across bank year equilibrium
combinations in deviation from the bank year average, and as such is cleaned form the
first direct funding cost channel. Lower (higher) rates are associated a with visibly smaller

(larger) levels of dispersion across equilibria.

Figure I'V: Distributions of Banks’ Default Risk across Policy Rates
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1.7 Limitations and Extensions

The monetary policies may have broader effects that our model cannot fully incorporate.
First of all, in our sample years, the ECB simultaneously pursued the quantitative easing
(QE) policies that have boosted financial markets. Indirectly through the bond holdings
and lower cost of capital, that could have alleviated the balance sheet constraints and
reduced the overall fragility of the banking system. Our model can be generalized in that
direction; however, that is not a trivial task. It requires modeling of demand for and
supply of risky assets. In recent years, there have been advancements made by Koijen
& Yogo (2019) in the demand based asset pricing literature. Yet, the current tools are
still limited to fully gauge the impact of QE. Nevertheless, we believe that the effect of
such policies on the banking system’s fragility is secondary to the TLROs, which were
designed to directly target the bank balance sheets and promote lending in the economy.
Therefore, it is likely that our model captures the majority of stability gains.
Unconventional monetary policies can also lead to higher inflation. Our model does not
explicitly model the money supply and the real growth rates of the economy, so it does not
give predictions for the changes in price levels. However, one could model the impact on
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inflation in a reduced form. Altavilla, Canova & Ciccarelli (2020) and Rostagno, Altavilla,
Carboni, Lemke, Motto & Saint Guilhem (2021) document the TLTRO related elasticity
of inflation to changes in central bank lending rates. In particular, each 10 bps of easing in
lending rates due to TLTROs leads to 0.1 p.p. of higher inflation (median impact across
studies, the interquartile range goes from 0.02 p.p. to 0.12 p.p.). In our counterfactuals
(Table VI), we find that a 1 p.p. increase (decrease) in the policy rate translates to, on
average, 0.11 p.p. increase (decrease) in loan rates. That would imply similar magnitude

effects on inflation.

1.8 Conclusion

We provide quantitative evidence of the impact that central bank unconventional mone
tary policy, in the form of funding facilities, have exerted on the reduction of the banking
sector’s intrinsic fragility. We define fragility as the presence of run type equilibria, where
lack of coordination among bank financiers leads to equilibria with higher default rates,
irrespectively of the level of fundamental risk. We do so by constructing, estimating and
calibrating a micro structural model of competition in the banking sector for the euro
area, that allows for both runs in the form of multiple equilibria, in the spirit of Diamond
& Dybvig (1983), and for central bank liquidity injections. Crucially, our model allows for
imperfect competition among banks in both deposit and loan markets. The estimation
and the calibration are based on confidential granular data for the euro area banking
sector, including information on the amount of deposits covered by the deposit guarantee
scheme and the borrowing from the European Central Bank, over the period 2014 2021.

Our main findings can be summarized as follows. First, we document that the presence
of non fundamental risk is highly relevant in the euro area banking sector, as witnessed
by the pervasiveness of the multiplicity of equilibria. Second, even under the observed
and accommodative monetary policy the economy admitted multiple equilibria, on top of
the observed equilibrium. Compared to the latter, the alternative equilibria tend to be
characterized by worst aggregate outcomes. Some intrinsic fragility, defined as the pos
sibility that the economy shifts to an inefficient equilibrium, has therefore been present
and was not fully eradicated by the accommodative policies actually implemented. In
terestingly, in isolated but meaningful cases, the economy also admitted some equilibria
that were more efficient than the realized ones. This can be interpreted as suggestive that
more confidence could have moved the economy into a more efficient region. We find that
on average non fundamental risk is positively related to fundamental risk, meaning that
banks with higher default probability tend to be more exposed to the risk of run type of
equilibria. The simulations of counterfactual scenarios where central bank funds are arti
ficially provided at more or less accommodative conditions indicate that monetary policy
has a strong, non linear impact in mitigating both fundamental and non fundamental
risk.
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1.A Additional Tables and Figures

Table A.I: Deposit Demand

Uninsured Insured
OLS v OLS v
Interest Rate 13 91*** 24 49%** 42 06*** 70 48%**
(273) (332) (3 00) (4 00)
Bank Default Prob 2 24%** 2 35%H* 0 66** 025
(0 26) (0 39) (0 30) (0 62)
ROA 5 86%** 5 70*** 4 16%F* 4 62***
(062) (065  (135)  (124)
Excess Liquidity Holdings 0 86***  ( 85%** 017 012
(014)  (014)  (018)  (018)
Securities Holdings 000 010 105%*% ] 34%**
(013)  (013)  (013)  (015)
Deposit Ratio 011 012 () H4*** () H4***
(015) (015  (014)  (014)
NPL Ratio 014 022 (0 87*** 1 04%**

(017)  (017)  (021)  (023)

Bank FE Yes Yes Yes Yes
Country Month FE Yes Yes Yes Yes
IV Monetary Policy No Yes No Yes
IV Sovereign Risk No Yes No Yes
Observations 8,295 8,295 8,295 8,295
R squared 0985 0031 0984 0076

Note: Robust standard errors in parentheses, *** p<0 01, ** p<0 05, * p<0 1
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Table A.Il: Loan Demand

NFCs Households
OLS v OLS v
Interest Rate 2 13%FK 4 63FFK 2 BIFF 14 HTRRE
(0 75) (138) (119) (161)
ROA b 8FHFE 5 BEHREE G H-FKK 5 22%HE
(0 62) (0 62) (0 63) (071)
Excess Liquidity Holdings 0 38*** (0 38%** 006 001
(012) (0 12) (0 15) (0 15)
Securities Holdings 0 51***  ( 55*** 0 32* 017
(012)  (012)  (017) (0 17)
Deposit Ratio 1 08%FFF 1 Q7FFF () 48%* 0 52**
(0 15) (0 15) (022) (022)
NPL Ratio 100%** 1 03%FFF 1 29%FFF ] 4Q¥**
(0 15) (0 15) (0 25) (0 25)
Bank FE Yes Yes Yes Yes
Country Month FE Yes Yes Yes Yes
IV Monetary Policy No Yes No Yes
IV Sovereign Risk No Yes No Yes
Observations 8,295 8,295 8,295 8,295
R squared 0981 0061 0979 0017

Note: Robust standard errors in parentheses, *** p<0 01, ** p<0 05, * p<0 1
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Table A.III: Default Equation

Dep Var in Level Transform

OLS v v
Avg Lending Rate 0 03%** 0 03* 2 41¥*
(001) (001) (0 76)
ROA 001%* 001 1 09**
(001) (001) (0 45)
Excess Liquidity Holdings 0 00*** 0 00*** 0 56***
(0 00) (0 00) (0 08)
Securities Holdings 0 01*** (0 Q1%** 0 80***
(0 00) (0 00) (0 14)
Deposit ratio 0 00*** 0 00*** (0 39***
(0 00) (0 00) (0 08)
NPL ratio 000 000 0 36%**
(0 00) (0 00) (011)
Bank FE Yes Yes Yes
Country Month FE Yes Yes Yes
IV Monetary Policy No Yes Yes
IV Sovereign Risk No Yes Yes
Observations 8,295 8,295 8,295
R squared 0971 0015 0025

Note: Robust standard errors in parentheses, *** p<0 01, ** p<<005, * p<01 The transform of bor
rowers’ default probability is log([-]) — log(1 — [-])
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Figure A.I: Model-Implied Variables: Evolution of Net Balance
Sheet Position
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Figure A.Il: Model-Implied Variables: Expected Cost of Borrow-
ers’ Default
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Figure A.IIl: Model-Implied Variables: Expected Cost of Borrow-
ers’ Default Across Countries
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Figure A.IV: Model-Implied Variables: Standard Deviation of
Cost of Borrowers’ Default
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Figure A.V: Model-Implied Variables: Standard Deviation of Cost
of Borrowers’ Default Across Countries
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Figure A.VI: Model-Implied Variables: Opportunity Cost of In-
sured Deposits
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Figure A.VII: Model-Implied Variables:
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1.B  First Order Conditions and Welfare

First Order Conditions

Note that, as in Egan et al. (2017), we assume that each bank’s current decision variables
do not affect the continuation value of the bank. This will result in the following two first

order conditions for insured and uninsured deposit rates:

1
Pf+ Cjcmt - (P)j%nt + CjImt +(1— w]l':mt)cjmﬁ) = (15 jat’ (17)
Jm
PE . — (PY, 4 (1= wh, ) Cyt) = ——— (18)
t jmt jmt w]mt jmt (1 IR S/\/’ t)aj\/"
Jm
From these two equations we can back out C]-Imt as:
or o —(prv o LN fpr ) (19)
R e AT A N (e T

We can then invert the survival probability using our measure of bank fragility as

follows:

é'm — Hym 6m — Mim
Jf/‘Jt) I ey ST (20)

Ujmt

F‘jmt_l_¢<

Ujmt

The first order conditions for loan interest rates will be the following:

L H 1- thD% C C
wjmtcjmt = (1 - thDjmt) [1 + ijt] -1+ " T Pt - ijta (21)
(1 - Sjmt) o

where:

ID’H* = Djmt 1 + (]‘ - Djm,t) /B (1 + Ijj?fnt) w]?'fnt 1 + (]' - w;frzt) (]' - Sﬁnt) OL,H (P]?;Lnt - F’]'];Lt)

Jgmt

due to changes in defaults due to compositional changes

(22)

with H referring to households, and Dfntt is defined symmetrically and refers to firms.

This allows us to back out the unobserved extra costs of lending to firms relative to
households as:

1— X, D}; 1— X, D

Jmt Jmt ) 9
A P (e P

Jmt
Using first order conditions 18 and 23 we can derive the mean of the unobserved costs

cr

Jgmt =

(1 - thDjmt) [Pj]r:nt - F)j?’;tnt:l +

Cime as:
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MJr(l—thDjmt) [1+ Pl

lj‘jmt :Ujmt mt
1—Fj, J
L, (24)
1—-A&uDi 1
-1+ 7%% - J%t TGN N
(1_Sjmt)a (1_Sjmt)a
Then, from 18 we can back out the costs of borrowing from the central bank as:
Clont :wfthij:wfwt + (1= wh) [(1 = X Djt) [L+ Pl ] — 1]
1 1 — &; D, (25)
g — (1= wh) e P
m (1 — S )N me(1-st,) !

Since the only variable part of profits are costs, we can rewrite equation 1.11 as:

Climt — Mjme F+r — Climt — Mime
I, ot — T\ | — =2 BT - M:SE AT — tim o | ==L Eamt
jmt (N; t = Ojmt ( p— Ty Amegme \ Come = Hjme + T jme oot :

conditional expected profit

(26)
and then substitute into 19 and 20 to get:
exp profit from loans exp profit from deposits
_ (1 B X}tD;{r;t)MnﬁtSﬁnt _ (1 - thDfn:t)NjnftSﬁnt Mr{ztSjImt Afr/r\{tsfr[nt
(1 - Sjﬂmt) okt (1 - Sﬁnt) a” (1- S]‘Imt)o‘I (1—- Sﬁ[nt)aN
F+r - G2~ (1 = Fyme)]
B B C C\ __ * Qx 1 Jm
- M, (ijt =i — P )= majmt‘/\/mtsjmt O = Fjyne) + W
net exogenous financing cost
(27)

which determines the standard deviation o;,,; of the unobserved costs Cj;.
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Welfare Analysis

Our model has three utility maximizing agents: depositors, borrowers and banks. Both
depositors and borrowers have standard linear indirect utillty functions, as defined in (1.1)
and (1.3), thus, one can express the welfare of the two agents (in US dollars) respectively
as:

CSmt ‘ ;T ln <Z eXp « R{nt + 51 + (’rInf + 7ml;) + 1) +

| /T\"[T In <Z eXp v gmt 7/\/ mt+5 Jr(; fjmt) ) )

(28)

BSmt ‘ Z| hl (Z eXp HP’LZ_’I[Lt + 52{ + mt + zmt) + 1) +
(29)

|a;'_fT In (Z exp (" P, + 67 + Gl + &) + 1) )

where CS stands for depositors’ surplus, and BS represents borrowers’ surplus. For
simplicity, the formulae exclude the Euler Mascheroni constant, which drops out when we
compute changes in welfare. We normalize the utility of the outside option to 0, which
justifies the addition of 1 in the expressions.

We measure banks’ welfare in terms of their annualized equity value as follows:
AEV,; =1y _E, (30)
b

where the equity value for each bank Ej is backed out from the default condition (1.11).

When a bank defaults, only a fraction of its assets can be recovered, and the remaining
costs are borne by depositors?! Thus, the expected costs of deposit insurance can be
expressed as:

EIC,; = 0.6M5 > FoniSp. (31)
b
In the event of bankruptcy not only the insured depositors incur losses, as there may be

negative externalities that damage the rest of the economy. We proxy that by introducing
a 20% bankruptcy costs. defined as:

EBC, mt = 0.2 Z FbTYLt mtsbmf + Mmtsbmt) (32)

Finally, we compute the change in total welfare as:

21We assume a 40% recovery rate, in line with Egan et al (2017)

ot
ot
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Note that we do not include central bank’s profits in this expression because we do not

explicitly model the central bank’s objective function.

Table A.IV: Impact of Policy Rate on Welfare Components

The table presents the welfare analysis across different counterfactual policy rates The unit of observation
is a country year equilibrium combination All dependent variables are measured in billions of euros
Banks’ franchise value is defined as the annualized equity value net of deposit insurance costs and bank’s

bankruptcy costs Robust standard errors in parentheses, *** p<0 01, ** p<005, * p<0 1

Depositors’ Borrowers’ Banks’ Total
Surplus Surplus Franchise Value Welfare
Policy Rate 23 T2HHE 012 45 H4x* 21 94%H*
(3 49) (0 55) (8 62) (4 89)
Country Year FE Yes Yes Yes Yes
Observations 5,755 5,755 5,755 5,755
R squared 0251 0117 0 296 0374
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1.C Equilibrium Refinement

As in Egan et al. (2017), we numerically estimate all equilibria. A potential equilibrium is
a set of bank specific interest rates and default probabilities, {PV, PT, P7, P* F}, that
satisfies numerical convergence criteria. We look for these equilibria over a large grid of
starting values that scales with the number of banks (as the number of equilibria tends to
grow combinatorially). Since our estimation procedure is numerical, we often obtain many
solutions that are close to each other and potentially capture the same equilibrium. To
refine these solutions, we implement similar criteria to Egan et al. (2017). In particular,
we cluster all solutions based on their maximum difference. We form a cluster if all the
differences across interest rates and default probabilities lie within 0.5%. Within each
cluster, we select the unique solution with the smallest objective function value (i.e.,
function gradient). In practice, these clusters can overlap, so we iterate this procedure
twice to remove all remaining solutions that are close to each other. All the solutions that
survive this refinement we call model equilibria.

A simplified example of the refinement procedure is depicted in Figure A.IX.

Figure A.IX: Example of equilibrium refinement

0.09 0.09 -

®  Numerical solutions ®  1-ststage solutions

®  Refined solutions ®  Refined solutions
0.08 [ 0.08 -
0.07 0.07

L} L]
w O w
o L]
0.06 b 0.06 v
s .
)
L)
ot
0.05 ° .. 0.05 L]
0.04 0.04
0.02 0.03 0.04 0.05 0.06 0.07 0.02 0.03 0.04 0.05 0.06 0.07
P P
" !
(a) 1-st stage (b) 2-nd stage

Note: The graphs illustrate a hypothetical refinement procedure based on the smallest objective function
value For brevity, the example only considers two equilibrium variables uninsured interest rates, PV,
and default probabilities, F'
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1.D Toy Model

To illustrate the source of multiplicity, we consider an economy with one commercial
bank. This bank collects deposits and issues loans. Similarly to Egan et al. (2017), we
will abstract from the pricing of loans and introduce an exogenous stochastic return on
loans, R”, that follows a normal distribution with mean g and volatility o. To see the
connection to our baseline model:

R = (P"-0) ~ N(u, o) (34)

where P” is the loan rate and C is the stochastic cost component. Effectively, we
assume that there is a large supply of borrowers that are always willing to borrow at
predetermined rates. The bank relies on uninsured deposits to finance the loans. These
depositors care about the bank’s riskiness and form their exogenous beliefs about its
default probability . The bank competes by offering a deposit rate PP, and its deposit

demand is characterized by logit demand. Namely, the deposit market share is:

b exp(a?PP —~+PF +4)
1+ exp(alPL —4PF +9)

(35)

where P is the price sensitivity of depositors, v is the default risk sensitivity, and
¢ is the utility of borrowing from the bank relative to the outside option. The realized

one period profits can be expressed as:??
Il = s” [RF — PP] (36)

The model is static with an infinite horizon. Since the bank operates under limited

liability, the equilibrium equity value of the bank can be expressed as:

~ 1 1+7r N
E=(1-F) (E [H\ 1o default] + mE) - &+ -PE [H| 1o default]
perpetuity term expected profits

(37)
where
K [IZI\ no default} =P [/l +oNE— pD}

NI )
Loty 1

here IT and PP are equilibrium profits and deposit rates, respectively, and A% is the inverse
Mills ratio evaluated at the (standardized) minimum acceptable loan return, R As we
see from equation (37), the value of the bank depends on default probability F in two

key ways. First, it does affect the likelihood of reaching future periods, which is captured

22For simplicity, the deposit market size, M, is normalized to 1 In addition, we flip the sign of v
in line with the notation used in Egan et al (2017)
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by the inter temporal perpetuity term. Second, it does impact each period’s expected
profits. These two forces are at the heart of equilibria multiplicity.

Optimization

Since the model is static and beliefs about the bank’s default probabilities are exogenous,

the bank’s optimization simplifies to:

E:max/ [H+—E} dw(R") = maxs? |p+oXf— PP+ —FE|(1-F)
pD 1+r

PD JRE 1+r
(38)
Deposit rate FOC:
1
N — —  __ _pP=yo
pto aP(1 = sD) (39)
Default condition:
— 1
~-E [H|RL - RL} - E
1+r
1-F I
s ( P) 1+Ts (u+0)\ R)
F+r —L (40)
D R _ pDy _ P R
(n+ X" = PP) = T (n+or" - R")
1 —+r R —=L
e E [H| no default} ( +oA*"—R )
PV of profits max shortfall
we can rewrite this condition in terms of F and optimal PP:
1+7r 1
oM -0 (F 41
F+r(aD(1—sD)> o () (41)

Deposit rates

The deposit FOC establishes a positive relationship between a bank’s riskiness and optimal
deposit rates. The result also implies that the same pattern holds across model equilibria.
To prove this more formally, note that there exists a unique deposit rate PP that optimizes
equity value for each given F. This comes from the continuity and strict monotonicity
of the deposit rate FOC in PP, and the fact that the FOC turns positive (negative) for
sufficiently small (large) values of PP.2* Tt is also possible to show this unique PP is
increasing in F', meaning that higher levels of risk are always accompanied by higher

deposit rates.?* There are two economic channels explaining that. First, it is optimal

23In other words, if we allow for arbitrarily negative deposit rates, the deposit rate FOC satisfies the
Intermediate Value Theorem conditions If the deposit rates are constrained, the Lagrange multiplier of
the constraint will ensure this condition

24The proof is stated in the mathematical appendix If the markups are non monotonically dependent,
on interest rates, this conclusion can change For instance, if higher interest rates translate to the changing
profile of depositors or loan borrowers, then there can be multiple price levels satisfying the first order
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for the bank to pass limited liability benefits, oA, on depositors to capture a larger
market share and increase the markups. This stems from the assumption that stochastic
revenue affects every loan rather than a fixed amount (as in Hortagsu et al. (2011)).
Second, the bank has to compensate for the depositor’s aversion towards its riskiness to
sustain its share. For moderate levels of 77, the first channel is dominant. A similar
monotonic relationship also arises in settings with multiple banks and loan pricing. The
only exception is that the risk taking with loans would result in a negative relationship
between loan rates and the bank’s risk.

Figure A.X illustrates the connection between a bank’s riskiness and deposit rates for

one set of parameters.

Figure A.X: Relationship between deposit rates and default prob-
abilities
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Note: The graph presents the relationship between deposit rates, PP and bank’s default probabilities
F based on the deposit rate FOC To calibrate the model, we assume that the market equilibrium has
PP =0.03, F=0.05, SP =04, r = 0.05, v? =2, oP = 40

Default boundary

The default condition guarantees that the fundamental riskiness of the bank, dictated by
its profitability and markups, matches depositors’ beliefs. Alternatively, equation (40) can
also be considered as an incentive compatibility constraint that evaluates the marginal
benefit of increasing the default probability after R* shock realizes. On the one hand, a
marginal increase in F' translates to losing some of the future conditional profits because
the bank lowers its survival probability. On the other hand, an increase in F' decreases
the (ex post) maximum loss that the bank has to incur once the shock materializes (i.e.,
invoking limited liability protection). At the optimum, these two effects should balance
out. The marginal increase in F here completely ignores the indirect effects on deposit

conditions for a given level of risk
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market shares. This is the case because the decision to default happens ex post when the
market shares are already determined.

The source of multiplicity stems from the limited liability of banks. If banks had
unlimited liability, the default condition would simplify to the participation constraint.
Namely, if the bank, on average, earns more on loans than it pays to depositors (i.e.,
i > PP), then the bank never defaults since the current period losses are sunk, and they
do not influence future profitability. Otherwise, the bank defaults and leaves the market.
In this sense, the model collapses to standard industrial organization models that display a
unique equilibrium pinned down by the first order condition of deposit interest rates (e.g.,
Berry et al. (1995)). In contrast, limited liability introduces non linearities in the model
and potentially several local optima that can be sustained by the depositors’ self fulfilling
beliefs.

To see it more formally, notice the default condition is non monotonic in the bank’s de
fault probability. For illustrative purposes, Figure A.XI (left side) plots the LHS and RHS
of equation (41) for different levels of deposit rates. Each intersection point represents
the combination of F' and PP such that the bank has no incentives to marginally alter
its default probability (the right graph displays all of these combinations).? In particu
lar, to sustain extremely small levels of default risk in equilibrium, the bank needs to be
highly profitable (LHS), or else it cannot cover its maximal losses of default (RHS). Thus,
very low levels of risk are associated with high mark ups and deposit rates.?® However,
as the default risk increases, the reduction in maximal loss is quickly outweighed by the
decreasing future survival probabilities and losses of future profits. This trade off intro
duces non monotonicities, and that is the reason why the curve becomes upward sloping
in the middle section of the graph. Similarly, for extremely high levels of default risk,
the limited liability benefits become dominant again, and the curve converges downward

towards 0. All of these inflection points can potentially generate a local optimum.

25The mathematical appendix shows that the crossing point always exists
261n fact, the bank would never have a 0 default probability unless the mark ups become infinitely

large
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Figure A.XI: Relationship between deposit rates and default prob-
abilities
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Note: The graphs present the relationship between deposit rates PP and the bank’s default probabilities
F based on the default condition The graph on the left depicts the LHS and RHS of equation (41)
for different values of PP, whereas the right graph displays all combinations of F and PP satisfying
the default condition To calibrate the model, we assume that the market equilibrium has PP = (.03,
F=0.05 SP=0.5,r=0.05 =2 aP =40

It is worth mentioning that even though this version of the model does not have
shareholders’ equity, the bank is not entirely a zero equity entity. As the default condition
stipulates, the bank’s equity holders are willing to inject capital and cover losses as long
as they do not exceed the present value of future equity value. In that sense, the bank
has implicitly committed equity which is not directly invested in the bank’s productive
activities. The key distinction here is that the bank does not have to lose anything
additionally if the losses exceed the default threshold. Thus, from this perspective, equity

is contingent.

Equilibria multiplicity

The equilibria encompass all the points where the deposit rate FOC and default condition
curves intersect. In this toy example setting, there is always at least one such point. The
proof relies on the fact that the deposit rate FOC increases from PP to oo when F
moves from 0 to 1, where PP is some finite constant. At the same time, the default
condition declines from oo to 0. Since both curves are continuous, at some point, they
have to cross each other. The more challenging question is determining the number of
equilibria in this model. Figure A.XII displays three different parametrizations that lead
to one, two, and three equilibria. It turns out that the initial size of the bank, driven
primarily by the bank specific taste parameter ¢, is crucial in influencing the numerosity
of equilibria. Namely, a larger bank is generally far less susceptible to changes in interest
rates and default probabilities. The second substantial driver is related to the elasticity

to the bank’s riskiness, ¥”. When this parameter is smaller, the bank’s market shares are
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more stable, potentially leading to fewer adverse scenarios. A more thorough sensitivity
analysis is conducted in the following section.

The maximal number of model equilibria for a single bank economy is three. Although
the rigorous proof of this result is beyond the scope of this analysis, various simulations dis
play that the number of equilibria tends to coincide with the number of non monotonicity
points in the default condition (i.e., as the deposit rate FOC is strictly monotonous in PP
and F). This also suggests that the number of equilibria in a multi bank economy is po
tentially bounded by 3V, where N is the number of banks. In other words, the multiplicity
of equilibria tends to grow combinatorially with the number of banks in the economy. In
tuitively, the numerosity of equilibria can change once we introduce other non linearities
in the model, such as fixed costs and loan borrower defaults. Yet, theoretically analyzing
these cases becomes less and less tractable.

Figure A.XII: Multiplicity of equilibria
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Note: The graphs display different types of model parametrizations that lead to one, two, or three
equilibria  To calibrate the model, we assume that the market equilibrium has PP = 0.03, F = 0.05,
SP =0.5, r =0.05, v” = 2, a” = 40, with the exception of perturbed parameters
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The key feature of the model that sustains the multiplicity of equilibria rests on ex
ogenous depositors’ beliefs. We build our model on Egan et al. (2017)’s framework that
features self fulfilling beliefs, as in Diamond & Dybvig (1983). In particular, if depos
itors expect that the bank is going to default, they will pull their money from it, and
that will eventually weaken the fundamentals of the bank. As a result, in our model,
we have multiple optima that can be Pareto ranked in terms of the bank’s profitability
and welfare; however, the bank has no ability to break these bad equilibria.?” Similarly
to Spence (1973)’s signaling game, bad equilibria exist because banks do not know the
off equilibrium beliefs of depositors and their potential competitors’ actions. As a result,
the banks fear possible bank runs or retaliation if they take an off equilibrium action.

Sensitivity to parameters

The severity of alternative equilibria does depend on model parameters, such as depositors’
interest rate and risk elasticities, as well as changes in bank specific taste parameter ¢
and the risk free rate, r. Figure A.XTII displays the sensitivities to these key parameters.
It appears that the size of the bank is a vital dimension that contributes both to the
multiplicity and extremeness of alternative equilibria. When the bank is very large (thus,
large 4), the high risk equilibrium is unlikely to realize as the depositors have a strong
preference for the bank regardless of its interest rates and default probabilities. As a
result, the bank can absorb massive negative shocks. In contrast, an economy populated
with small banks (smaller ¢’s) is much more fragile and tends to have a possibility of
bank run equilibria (as well as highly safe equilibria).

On the other hand, the risk free rate parameter, r, does not seem to influence the
outcomes much. TLower r is associated with more extreme alternative equilibria the
safest equilibrium tends to have lower deposit rates, whereas the risky one is less stable
with higher rates. The economic mechanism here is linked to the calibrated o parameter
governing the volatility of stochastic costs. Ceteris paribus, when 7 is smaller, the bank
discounts its future profits less. Thus, for any given default probability in a market
equilibrium, the volatility has to increase. Consequently, that tightens the relationship
between deposit rates and bank’s risk in alternative equilibria.

Two key parameters in the model are price and default probability elasticities. We can
notice that lower deposit rate sensitivities lead to significantly more responsive deposit
rates to changes in default probabilities. Intuitively, when a® is lower, the bank must act
much more aggressively since the depositors do not react as much to changes in prices.
Similarly, when ~ increases, the bank needs to adjust the rates more dramatically to
preserve market shares and pricing power when the risk rises. In both cases, we have an

economy with a more severe alternative bank run equilibrium.

2T Adding more information structure to the model can lead to the uniqueness of equilibrium, but that
is beyond the scope of this paper
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Figure A.XIII: Parameter sensitivity
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1.E  Mathematical Appendix

Deposit rate FOC
Deposit rate FOC wrt PP

Let’s take the derivative of equation (39) wrt P:

D D(1 _ D D
8FOC':_ozs(1 S)—lz— S°  _1<o
opp aP(1—sP)? 1—sP

Here we use the result that glf,i = aDsD(l — sD) and that market shares are bounded

between 0 and 1. This proves the monotonicity of the deposit rate FOC in PP,

Deposit rate FOC wrt F

Now, let’s take the derivative of equation (39) wrt F:

oroc oyt 9 (awasmy)  aan o

or " oF oF " or, T arii—sm)
0
> >0

for F' € (0,1). It is trivial to show that the second term is always positive. The only
question remains if the first term is positive too. Note that we can apply the following
P(@H(F)) o(z)

= = , where z = & '(F
A T F T—o() , where (F)

substitution:

This implies that:

ONT M 0w —wg(x) (1 @(x) +é(x)* Oz é(z) (_Hﬂ) Ox
oF Ox OF (1—®(z))? (

Given that:

Or  9TY(F)  [(0%(x)\' 1
oF  9oF  \ Oz ()
We arrive at: Y )
-t - _@—1 F R
aF — 1 e E) A
This derivative is positive for F € (0,1). To prove that, it suffices to show that:
¢(x)
T+ ——>0 ,forz e R
(1—®(x))

Note that for x < 0 this inequality is immediate. Thus, the only non obvious case
to consider is when x > 0. We know that the complementary cumulative distribution
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function has some bounds:

1-d(x) < ,forz >0

(=)

This follows from the integration by parts:

:/:O¢(u)du:—/ﬁm@du:@-}-Lm%du:@_[rmﬁg)du
L W

>0

As a result:

which means that "/\R > 0.

Relationship between PP and F

Since d;PODC < 0 and dFOC > 0, we get that PP is increasing in F. This follows from the

Implicit Function Theorem.

D OFOC
opP __ _ _OF >0
— 9FOC :
oF TO;

Default condition
Derivation

The step by step derivation of the default condition are presented below:

-E {H\RLZEL} _ !
—E[H\RL:EL} -1 < [mR: > R }—i—?E)
“E [H\RL - RL} - f ( [H|RL ~R } [H|RL :ELD
s (B = pP) = : ;j (n+or"-R")
(1 + oA — PP) = If:: D (M+O)\R —L)
;: I [11] no default| = s” (u+ oA — R")
BV o ot i nmexpocted shortfal
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Limiting cases

The RHS of equation (40) has the following limits:

lim <¢(q)1(F)) - qu(F)) =lim (0—-®7'(F)) = ¢

1% (@(%_1%)) ) - 1; (A -a - Pea)

For a normal distribution, lim, ,o (1 — ®(z))z = 0. This implies that we can apply

[’Hopital’s rule to the limit above:

Mt ROk atay S o)~ (- b))
F—1 1—-F Z—00 1— (I)(Z')
lim —v9(@) +aé(x) - (1 = 2(@)) = lim M = lim ¢(z) =
T—00 ¢(17) z—00 qﬁ(m) T—00 —xqb(x)

Existence of solution

It is possible to show that there exists a unique level of PP for each F' that satisfies the
default condition. To illustrate this, move all terms related to F' in equation (41) to the
RHS and take limits of that:

1 F+r R 1
ozD(lst): 1+rg()\ )
}}311 (F+r) (@ —@71(F)) =0

(F+7) (‘W - ‘IFI(F)) =

Since the mark ups are always strictly positive and bounded, there is always a crossing

lim
F—0

point between the LHS and RHS. Moreover, since the markups are strictly monotonic
in PP, this implies that this intersection point is unique. In fact, one can even solve

algebraically for PP:

F+r

PP = P
pro 1—0—7’0

(A =27 (1)

Alternatively:

L (m (anj::o (A —o (F)) - 1) +7PF - 5)

Note that the proof hinges on the positivity of markups. If the model had fixed costs,
there could be scenarios where this default condition is never satisfied.
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2.1 Introduction

Understanding how long and short term projects are priced is one of the fundamental
questions in finance. The term structure of risk premia allows us to perform NPV calcula
tions, test asset pricing models, and potentially explain the source of many cross sectional
anomalies. This paper constructs a forward looking implied estimate of the term structure
of risk premia in the corporate bond market. A fixed schedule of promised cash flow pay
ments makes the bond market an ideal environment for recovering the risk premia term
structure for a wide range of maturities. While there have been recent attempts to mea
sure this term structure in equities, the corporate bond market is left largely unexplored. !
This paper fills in the gap.

The pricing of corporate debt carries substantial importance to firms and investors.
As of 2021, the US corporate bond market stands at roughly $15 trillion, making it the
second largest component of a public firm’s balance sheet. Adding to that, corporate
bonds remain one of the primary sources of new capital for many firms: the annual
issuance of public debt ($1.45 trillion) over the last decade has far exceeded the issuance
of equity ($252 billion).2 For these reasons, bond prices and trading potentially carry
a great deal of information about the expected returns on firm’s assets and its cost of
financing.

Analyzing corporate bonds allows us to deepen the understanding of institutional in
vestor risk preferences, which are often at the heart of the equity term structure debate.
The corporate bond market offers much more capacity to capture the average institutional
investor preferences as less than 10% of the bonds are owned by households (this number
reaches nearly 40% for equities). This distinction can be crucial since many explanations
behind the duration term premium originate from the need to hedge long term investment
risk and pension liabilities (Gormsen (2021); Gongalves (2021)), and such motives should
be easily detectable in corporate bond markets. Moreover, rich cross sectional variation
in bond characteristics allows to control for clientele effects as the institutional investors
display a great of heterogeneity in terms of their regulatory or funding constraints (Bali,
Subrahmanyam & Wen (2021)). Such patterns can be tested while controlling, for in
stance, for the corporate bond credit rating.

The studies focusing on equity markets face a number of challenges ranging from the
relatively short historical samples to the difficulty of pinning down the exact duration of a
risky asset. In my paper, I address these hurdles by looking at the yields in the corporate
bond market. The forward looking nature of yields combined with the rich literature
on expected default probabilities (Campbell, Hilscher & Szilagyi (2008); van Zundert &
Driessen (2017); Feldhiitter & Schaefer (2018)) allows extracting expected returns that

!The empirical measurement of the equity term structure can be found in van Binsbergen, Brandt &
Koijen (2012), van Binsbergen, Hueskes, Koijen & Vrugt (2013), van Binsbergen & Koijen (2017), Weber
(2018), Gormsen (2021), among many others

2Source: Table L 213 and L 223 in the Federal Reserve Board Z1 Flow of Funds, Balance Sheets,
and Integrated Macroeconomic Accounts, as of the fourth quarter of 2020 The bond issuance data is
provided by SIFMA and Refinitiv
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are not reliant on historical price information. This offers powerful empirical advantages
as in short historical samples, such as the last 20 years, the realized returns may be driven
by a few extreme periods of recessions (Bansal, Miller, Song & Yaron (2021)), structural
shifts in the risk free rate (van Binsbergen & Schwert (2021)) or time variation in risk
premia (this paper) and, therefore, deliver biased estimates of short and long duration
returns. Furthermore, the fixed maturity of promised cash flows enables me to estimate
both the aggregate term structure and the cross sectional patterns without the need to
model asset duration separately.

The first empirical finding is that the implied term structure of risk premia is upward
sloping at the aggregate market level and in various cross sectional sorts. The results are
obtained using two approaches to estimate default probabilities: Merton’s style models
of default, such as in Feldhiitter & Schaefer (2018), and historical default frequencies
from Moody’s Investors Service (2021). Based on the structural models, the long short
duration portfolios earn roughly 1.3% more, whereas the estimates based on historical
probabilities deliver much more conservative estimates of roughly 0.2%.? Given that the
former method is sensitive to recessions (as it reacts to the market values of leverage) while
the latter is devoid of time variation, the two approaches establish reasonable upper and
lower bounds for the slope of the risk premium term structure. Even though the returns
may seem small, the risk premia slope can be economically substantial as it constitutes
up to 20% of the long term bond yields and up to 30% of total expected returns.

The flexibility of structural models allows us to investigate various cross sectional pat
terns. The upward sloping term structures of risk premia are widely detected among
credit rating, leverage, issuer’s size, and book to market ratio sorts. An exception is
present among the lowest credit rating firms that exhibit no slope, a pattern that might
be consistent with the high exposure to short term risk (such as crash risk). Interestingly,
the expected return proxies detect a sizeable credit risk premium of 2 3%, measured as
the difference between speculative and highest investment grade bond returns, as well
as some support for size and value factors in corporate bonds (in line with Bai, Bali &
Wen (2019) and Bartram, Grinblatt & Nozawa (2021)). Yet, most of this risk premium is
generated by the shortest term bonds and slowly dissipates with longer duration. These
dynamics are consistent with the firm cycle theories where firms over time, if they sur
vive, converge to similar steady states and risk exposures. This observation is indirectly
supported by Yara, Boons & Tamoni (2020) who find narrowing factor premia over longer
holding period horizons.

In contrast, the realized returns over the last 20 years paint a very different picture
of the term structure of risk premia. The average excess returns deliver a negative but
statistically insignificant slope of 1 2%. The negative slope is predominantly driven by
exceptionally high short term duration asset returns. These shortest duration portfolios
are also the only portfolios that yield statistically different estimates from the structural

model predictions. However, once I adjust returns by controlling for the market wide bond

3To put it in perspective, the duration gap between the long and short legs of duration portfolios is
roughly 12 years
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portfolio return, I find that the risk adjusted returns display a strong negative relation to
duration. The cross sectional sorts do not alter these conclusions, in line with the work
of Gormsen & Lazarus (2019). While the realized returns are not entirely comparable
to the holding to maturity implied returns, with the help of an affine model, T show that
the holding period horizon should not be the vital dimension creating the gap with the
implied measures. In this aspect, the implied expected returns contradict the observed
trends in the realized returns.

A great deal of this discrepancy is explained by variation in the risk premia slope.
Using a parsimonious affine term structure model, T quantify the time variation in short
maturity corporate bond risk premium, and I show that it has been declining over the
last 20 years. Even though a one factor model cannot reconcile all the differences between
implied expected and realized returns, the current results confirm that changes in risk
premia introduced a substantial bias in realized return measures (up to 30%). My findings
mirror the intuition of Fama & French (2002), arguing that the equity risk premium has
been trending downwards over the last several decades, creating significant capital gains
that confound the measurement of expected returns. In a similar vein, van Binsbergen &
Schwert (2021) document that the recent shifts in the US government bond yields have
largely affected the cross section of corporate bond returns. Similarly, I find that the risk
premia term structure after the financial crisis steepened, generating positive capital gains
on the short duration assets by up to 0.7%, and suppressing the long term bond returns
by nearly 1.7%. Such structural trends potentially were driven by the drastic changes in
the monetary policy; however, these explanations require deeper examination.

This paper contributes to and builds on rapidly growing literature on the equity term
structure by shedding new light on corporate bond market valuations. In their seminal
work, van Binsbergen et al. (2012) and van Binshergen et al. (2013) documented abnor
mally high returns on the short maturity option implied dividend assets and dividend
strips, a phenomenon I also detect in the corporate bond market returns. However, I
discover that the implied measures favor the unconditionally upward (or somewhat flat)
term structure of risk premia, in agreement with the leading theoretical asset pricing
models (Campbell & Cochrane (1999); Bansal & Yaron (2004); Gabaix (2012)). The gap
between the realized and implied proxies of returns is partly driven by the high frequency
of recessions, and structural shifts in the following years (in line with Bansal et al. (2021)’s
reasoning).

My work also connects to the vast empirical research on the cross section of corporate
bond returns. I document various cross sectional anomalies, such as credit risk, issuer’s
size, book to market ratios using the implied measures of expected returns (in light of
Campello, Chen & Zhang (2008)). In contrast to Gormsen & Lazarus (2019), I find little
evidence supporting the claim that duration alone subsumes a wide range of factor premia.
On the other hand, most of the factor premia are earned on the short duration bonds,
suggesting that the investors are particularly averse to the short and intermediate horizon
risks. Interestingly, Giglio, Kelly & Kozak (2020) and Baele, Driessen & Jankauskas (2022)
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highlighted similar insights into equities.*

Lastly, the paper’s methodology closely relates to the literature on structural default
models, such as the Merton (1974) model. To my knowledge, my paper is the first to con
struct implied measures of bond risk premia by combining the approaches of Campello
et al. (2008) with Feldhiitter & Schaefer (2018) that implement the Black Cox adapta
tion of the Merton’s model. In a number of robustness tests, T also examine alternative
specifications with stochastic volatility (van Zundert & Driessen (2017)) and the original
Merton’s model. Qualitatively, these modifications do not alter the results much, and
that supports Huang & Huang (2012) claims that most structural models deliver similar
predictions.

The rest of the paper is structured in five sections. The second section presents the
methodology and discusses the advantages of using implied measures over realized returns.
The subsequent section highlights the data sources and summary statistics. Later, section
IV covers the baseline results with the expected returns implied from yields. Section V
introduces the puzzle of realized returns. Finally, section VI attempts to reconcile the

puzzle.

2.2 Methodology

The majority of the cross sectional bond returns literature relies on the realized returns
to estimate risk premia.® The approach banks on the idea that over historical samples
the average return will approach the expectation. Equivalently, the average excess return
over the treasury bond will yield an unbiased risk premium estimate. This method has a
few key requirements: a long history of data, and no major structural shifts driving the
term structure of risk free rates and risk premia. Yet, as argued before, both of those are
difficult to satisfy in the TRACE sample (2002 2020).

To address these challenges, T measure the maturity specific risk premium extracted
from forward looking yields. Following Campello et al. (2008), one can express the (an

nualized) expected holding to maturity returns as:

1/m

K (rjtaem) = [ (14 %ian)™ (1 = LnTme) ] = (14 Yime) (1 = LinTjme) /™ (2.1)

where Ey(r}++1m) stands for the expected holding period return of bond j of maturity
m at time ¢, y;,,,, the corresponding bond yield, L loss given default, and 7 denotes
the duration matched default probability. Since the returns here are holding to maturity,
m measures the cumulative default probability that depends on issuer and issue specific

4Both this paper and Baele et al (2022) aim to estimate the risk premia without the usage of realized
returns Qualitatively, the results are similar: the aggregate term structure has a positive slope and rich
cross sectional patterns that tend to coincide in both equity and bond markets In order to connect both
papers, one potentially needs a structural model both for equity and debt Regarding the quantitative
magnitude of estimates, the bond market exhibits much lower levels of risk premia and the slope tends
to be flatter This can be justified by the fact the bonds are generally much safer

SMore recent work includes Bai et al (2019), Bartram et al (2021), among many others
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information. Intuitively, the equation states that the expected return equals the yield
corrected for the expected default losses. The expression is exact for zero coupon bonds
with defaults at maturity. For coupon paying bonds, it serves as an approximation where
m is the duration of a bond.® Tt is important to mention that the expected return
measure from (2.1), like yields, effectively averages the risk premia over the remaining
periods ahead, and only in the case of flat term structure exactly matches the next period
expected return. However, it is easy to show that the holding to maturity return contains
all the necessary information to learn about the shape of the term structure.” Thus, for
simplicity, that remains my preferred measurement of expected returns.

One can rewrite this expression and subtract the maturity matched risk free rate to

find the risk premium on the bond:

Et(rpj,m,ter) = Yjmt — Ygm,it — (1 + yj,m,t) (1 - (1 - Lmﬂ—j,m,t)l/m) (22)
————

credit spread

annualized expected losses

where E;(rp) stands for the risk premium, and y, ., is the yield on a synthetic gov
ernment bond with the same cash flows. Effectively, this is the expected return on a CDS
contract or a portfolio invested in corporate bonds and shorting the respective maturity
government bond. The risk premium stems from the cash flow risk. Since corporate
bonds are prone to default, the investors demand compensation for default risk and un
certainty about the fluctuations in default probabilities over time. Note that since the
default probabilities are non negative, the maximum risk premium is bounded by the size
of the credit spread.

The key advantage of this approach is that it relies on forward looking information
rather than just on a history of prices. This comes at the cost of estimating the default
probabilities for each maturity. Based on the literature, I proxy such expectations in two
ways: 1) with the long term historical default frequencies from Moody’s; 2) by calibrating
them based on the Merton (1974) model. Both approaches have their pros and cons. The
former relies on historical averages and does not vary over time. Yet, with the issuer’s
credit rating alone, you can attain the whole term structure of default probabilities. This
substantially expands the sample, albeit this method limits the time variation analysis.
The second approach needs more modeling assumptions and inputs (i.e. measurement
of the capital structure, default threshold and firm’s asset returns). On the upside, the
methodology delivers forward looking default probabilities that account for time varying
and firm specific characteristics.

The implementation of historical default probabilities is straightforward. Moody’s
Investor Service every year publishes the historical default frequencies of different credit
rating issuers over 1 20 year maturities. As Feldhiitter & Schaefer (2018) argue, corporate

bankruptcies are highly clustered events, therefore, having a long sample of observations is

5Tn the Appendix 2 E, I show that this approximation serves well to measure scenarios where the
coupon bearing bonds can default early or the reinvestment rate differs from the bond yield
7A similar analogy can be drawn between the par yield and forward yield curves
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crucial for the measurement. For this reason, I use historical averages over the 1920 2020
sample period.

Regarding the second approach, the structure of Merton’s model allows to project the
default probabilities just with a few parameters, such as the asset return and volatility. In
this paper, I adopt the Feldhiitter & Schaefer (2018) implementation of the Black & Cox
(1976) model, which appends Merton’s model with one additional assumption of early
defaults. As a result, the default probability can be written as:

In(ga=) + fasT —2n( i) fia —In(g=) + jia T
m=N|——""——— | +exp 3 N s
oaVT O oaVT (2.3)

ﬂA,t = HAt — 0 — 0~5U,24¢

where V; is the value of firm’s assets, Dy is the face value of debt that matures at 7',
tay and o4, are the expected return and volatility of assets, &; is the payout rate to all
company’s stakeholders, and N(.) is the CDF of standard normal distribution. When the
default boundary, d, is equal to 1, the first term is just the cumulative probability that
the asset value falls below the face value of debt at maturity, as in the Merton’s model. In
turn, the second term corrects for the early arrival of defaults. The parameter d rescales
the total level of debt to reflect the actual default threshold. In order to determine d, I
closely follow Feldhiitter & Schaefer (2018) and calibrate it to match the average level of
historical default frequencies in each credit rating group. In principle, this means that
the method partly relies on past information. Nevertheless, the calibration focuses on
the unconditional means only and has limited effect on the cross sectional, cross maturity
and time variation of defaults.

As we can see from (2.3), the structural estimation requires the knowledge of expected
asset returns and volatility (i.e. pa and o4). Following van Zundert & Driessen (2017)
and Feldhiitter & Schaefer (2018), I assume that the risk premium on assets is equal to
a constant price of risk () times the volatility of the firm’s assets (044), where § = 0.22
(based on Chen, Collin Dufresne & Goldstein (2009) estimates). In other words, this
assumption reduces the two parameter model to a single parameter specification. Lastly,
since equity is just a function of firm’s assets (in Merton’s model, that is just a call option),

its volatility can help to identify o4:

Ey

= mUE,tC(~) = (1 - LEVt)UEth(.) (2.4)

OAt

where c(.) is a function of firm’s leverage and op, is estimated using daily returns in

the previous month (more calibration details are provided in Feldhiitter & Schaefer (2018)
and Appendix C).8

S8Following Feldhiitter & Schaefer (2018), c(.) attains a value of 1 if LEV, < 0.25, 105 if 0.25 <
LEV, <0.35,110if 0.35 < LEV; < 0.45, 120 if 0.45 < LEV, < 0.55, 140 if 0.55 < LEV, < 0.75 and
180if 0.75 > LEV; The choice of this stepwise function is purely for computational reasons The exact
representation: ¢(.) = 1/N(dy), where d; is defined in equation 15
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The simplest version of Merton’s model assumes that every firm has a single maturity
zero coupon debt whose face value determines the default threshold. That is clearly a
strong approximation of the reality where a median issuer has 3 outstanding bonds with
different maturities. To accommodate that, I will calibrate the firm level parameters
based on a weighted average debt maturity of all company’s issues. However, once I need
to project the bond level default probabilities, T will use the issue level maturity.

It is important to note that the literature on structural default models is rich and
contains many extensions that deliver different formulations of equation (2.3). In the
baseline, T follow Feldhiitter & Schaefer (2018)’s approach as it is shown to match the
average credit spreads well. Yet, in the robustness section, I also consider alternative
specifications, such as the original Merton (1974) and van Zundert & Driessen (2017)’s
version with stochastic volatility. Qualitatively, these modifications do not alter the results
much, supporting Huang & Huang (2012)’s claims that most structural models deliver
similar predictions.

One potential criticism of this approach points to the credit spread puzzle. Mirror
ing the equity risk premium puzzle, many structural models fail to match the level of
credit spreads, given the observed historical default frequencies (Huang & Huang (2012)).
Feldhiitter & Schaefer (2018) address this challenge by calibrating their model to a much
longer historical sample, starting in 1920, which substantially increases the level of credit
spreads.® The intuition hinges on the fact that defaults are highly correlated events and we
need long history to estimate empirical means accurately. Bhamra, Kuehn & Strebulaev
(2010) tackle the same challenge by building a dynamic leverage model with endogenous
defaults and different economic regimes. Both studies point to the direction that it is cru
cial to make adjustments to the default boundaries or introduce dynamic capital structure
to bring these models closer to the data. Finally, recent research highlights the impor
tance of the secondary market liquidity, especially in the international dimension (Huang,
Nozawa & Shi (2022)). Even though in this paper I do not explicitly model liquidity, in
the extensive robustness tests I investigate the effects of liquidity on the results.

Finally, in line with the existent literature, T sort bonds into duration deciles formed
every June (monthly rebalancing delivers similar results). To isolate the pricing of the
longest maturity bonds, I also form 10 maturity buckets with 2, 3.5, 5..., 13+ year matu
rities. For simplicity, all portfolio returns are equally weighted.

2.3 Data

Bonds

The bond transactions data comes from TRACE enhanced (2002 2020). In order to
eliminate errors, corrections and trade reversals, I follow Dick Nielsen (2013). Similarly
as in Jostova, Nikolova, Philipov & Stahel (2013), T proxy the end of the month prices

9The result holds at the aggregate and in different credit rating sorts In the future research, it remains
to be investigated how well this is matched in other characteristic sorts, such as value, size, etc

76



Chapter IT: The Term Structure of Corporate Bond Risk Premia

using the most recent price in the last 5 trading days of the month, and compute the daily
prices by volume weighting all the trades on that day. If the bond is not traded during
those 5 last trading days of the month, that bond month observation is excluded. For all
other filters, I closely follow Bai et al. (2019). In particular, I exclude from the sample
all bonds with less than 1 year time to maturity because major corporate bond indices,
e.g. the Barclays Capital Corporate Bond Index, automatically delist them. In addition
to that, I remove from the sample bonds with maturities over 30 years as the number of
firms able to issue such debt is small, and the determination of the appropriate risk free
rate is challenging.
The information regarding bond characteristics, such as coupon, maturity, credit rat

ing, is obtained from FISD. This dataset is appended using the WRDS TRACE masterfile.
In cases where there are mismatches between FISD and the WRDS TRACE masterfile, I

use FISD as the primary source of information.

Firm-level characteristics

The data on firm level debt, book equity, as well as dividends, repurchases and interest
paid, come from Compustat. In addition, the stock prices, common shares outstanding,
monthly and daily returns are taken from CRSP. All the financial statement information
is lagged by 3 months. The book equity is constructed following Fama & French (2002).
The market caps are defined as the product of the end of the month stock price (prc)
times the number of common shares outstanding (shrout). If the firm has more than
one type of common equity shares traded, I sum all the individual stock market caps to
determine the firm level market cap. In order to calculate the book to market ratios, I
divide the most recent available book equity measure by the most recent market cap .

Risk-free rate

The US government yields data comes from Giirkaynak, Sack & Wright (2007). The au
thors fit a Nelson Siegel Svensson curve to all of the off the run government bonds ranging
from 4 month to 30 year maturity, and provide the daily estimates of this parametriza
tion. For robustness, I also consider interest rate swaps as an alternative measure of risk
free rates. This data is available on Bloomberg.

Credit ratings and historical default estimates

The issue level credit rating data comes from FISD. T use any of S&P, Moody’s and Fitch
ratings (in this order of importance) to determine the riskiness of the issue. While most
issuers have a rating, a large share of individual bonds does not. In those cases, T assign
to the bond the issuer’s credit rating that comes from Compustat.!' In case Compustat

does not provide data on the issuer’s rating, I proxy the missing bond’s rating with the

10Since I form portfolios in June, the vast majority of firms are sorted based on the book equity from
the previous financial year ending in December, as in Fama & French (2002)
" Compustat ceased to update the information on ratings in 2017
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median credit rating across all traded bonds issued by the same company. Consequently,
only 83,127 (7.2%) bond month observations remain unassigned to any group. Lastly, I
consider that the bond defaults if the credit rating downgrade issued by the rating agency
falls below C (for Moody’s, it equals C).?

The historical data on the historical defaults (1920 2020) and recovery rates (1983
2020) in each rating group across maturities come from Moody’s Investors Service (2021).
For both series, I use the longest samples available to estimate the average default proba
bility and recovery rate term structure. Finally, Moody’s Investors Service (2021) provides
the recovery rate term structure for maturities of 1 5 years, whereas the default estimates
are extended to 20 years.!* Thus, in order to forecast expected default losses for longer
horizons, I presume that the recovery rate term structure (as well as conditional default
probability) is flat after 5 (20) years.

Summary statistics

The final sample consists of roughly 500,000 bond month observations. Most of the sample
size restrictions come from the requirements of market equity and balance sheet data for
the estimation of default probabilities. In general, the sample statistics closely resemble
those of Bai et al. (2019). The average bond has a mean return of 0.54% per month and
a yield of 4.64%. The median bond has a credit rating of BBB and the principal of $400
million, which is economically substantial. An average issuer has at least 3 different bonds
outstanding in a given month, and a leverage ratio of 0.35."* Given that roughly 60 70%
of total firm’s debt is publicly traded, the corporate bonds constitute roughly 25% of the
public firm’s balance sheet (note that for some firms this may reach over 60%).
Regarding the maturity and duration distribution, we can see that most of the bonds
outstanding are of 5 year maturity and duration. There is a wide array of bonds that
have long (over 10 year) maturities, however, rarely a bond exhibits duration beyond 20
years. That is party explained by the fact that only the highest creditworthiness issuers
are able to issue such long term debt, and that yields on such debt are generally higher
(as we see in the table, the correlation is 0.16 and 0.25, respectively). Nevertheless, there

is still a sizable fraction of long maturity bonds with duration reaching 10 or more years.

12The realized defaults occur very rarely, so the end results are not affected by the inclusion or exclusion
of these observations

13As presented in Table A I, there are very few historical defaults to estimate the recovery rates for
the Aaa rating category To alleviate the sample biases, I presume that the recovery rates for Aaa are
the same as for Aa

1A few issuers have an extreme number of bonds outstanding, however, the final results are not
sensitive to the exclusion of those observation
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Table I: Historical samples

The table below summarizes the sample statistics (2002 2020) of monthly observations at the bond and
issuer level

Percentiles Corr with
Bond level Mean Median SD 1 5 95 99 N maturity
bond return 0.54 0.40 3.68 7.37 285 4.16 9.27 440,340 0.03
yield 4.64 4.28 256 0.81 148 8.65 17.03 504,779 0.25
spread 2.23 1.53 231 0.22 0.45 6.25 13.98 504,779 0.00
coupon 5.33 535 1.80 1.45 243 838 9.88 505,019 0.15
rating 8.37 8.00 294 2.00 4.00 14.00 16.00 490,485 0.16
principle (mln) 563 400 610 2 7 1500 3000 502,481 0.02
Issuer level
bonds issued 8 3 25 1 1 25 99 111,169
LEV 0.35 0.31 0.22 0.03 0.08 079 094 111,169
mcap (bln) 19.3 6.0 47.0 0.1 0.4 775 220.6 111,169
total debt (bln) 11.3 2.5 50.0 0.2 0.4 289 241.8 111,169

Figure I: Distribution of bond-month observations across maturity
and duration
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Note: The graph above presents the distribution of TRACE sample (2002 2020) monthly observations
The maturity and duration of a bond is rounded up (e g, 2 3 year bond is treated as a 3 year bond)
Bonds with maturities less than 1 year or above 30 years are excluded
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2.4 Empirical Findings

2.4.1 Full sample

I will start my analysis by discussing the full sample results over the period 2002 2020.
Figure II presents the decomposition of yields into the risk premium, credit loss, and
risk free rate components across different duration portfolios. One can notice that the
average term structure of yields is upward sloping, and most of this effect comes from the
upward sloping term structure of risk free rates (depicted in gray). On the other hand,
the credit spreads, i.e. the sum of blue and green areas, are somewhat hump shaped. The
subsequent analysis decomposes these spreads using the Merton’s model, and historical
Moody’s default probabilities.

The key finding is that the term structure of the risk premia is somewhere between
being flat or upward sloping (depicted in blue). Since the average risk free rate term
structure has a positive slope, the total expected returns are strongly upward sloping,
yielding roughly a 2.3 3.4% term premium. Most of this term premium is driven by the
slope of the risk free rate (2.1%), however, the risk premia slope contributes another 0.2
1.3%. As a result, the risk premia slope can be economically substantial as it constitutes
up to 20% of the long term bond yields, and up to 30% of total expected returns. The
positive risk premia slope is in line with the classical models of habit and long run risk
that link the maturity of the asset with higher risk. However, based on the historical
probability estimates, we cannot fully reject the validity of the rare disasters model that
delivers a flat term structure.'

The absolute size of risk premia is well within the reasonable economic magnitude.
The short term bonds, of 1 2 year duration, carry a premium ranging from 0 to 1.4%. 6
Although there is a lot of heterogeneity in the composition of bonds, the average short
term risk premium seems to be relatively modest, indicating that investors do not treat
corporate bonds strikingly differently from short term government bonds. The long term
(12+ year) risk premium levels off at a much narrower interval of 1.2 1.5%, sometimes
peaking at 2.2% in the intermediate horizons. The results are qualitatively invariant to
the exact sorting strategy, i.e. using deciles vs fixed duration bins. At first sight, the long
term risk premium may appear to be small, especially if one compares these to the equity
term structure estimates of 10 20% presented in Weber (2018). Some of these differences
are driven by the fact that here the bond returns are net of the maturity matched risk free
rate. Moreover, equity risk premium arguably pertains to the upside risks that bonds have
limited exposure to. These explanations justify economically smaller but still substantial

corporate bond risk premia.

15The intuition behind this result relies on the constant probability of rare disasters (Gabaix (2012))
The asset pricing model predictions are summarized in Table A IX A good overview of the theoretical
asset pricing models effect on the equity term structure slope can be found in Gormsen (2021)

16The average duration associated with each duration decile is presented in Appendix Table A II
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Figure II: Decomposition of yields and term structure of risk pre-
mia
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Note: The figures above present the average yields, credit spreads, and decomposition of credit spreads
into the risk premia and credit losses components The top left figure displays the decomposition based
on the Merton’s model predictions, whereas the right one relies on the historical default frequencies from
Moody’s Investors Service (2021) The bottom graph depicts the risk premia term structures based on
both methods, including the 95% confidence intervals based on the Newey West standard errors with a
36 month lag

Table II: Risk premia across duration deciles

The table reports the annual risk premia estimates in each duration portfolio The numbers in the
brackets are standard errors based on the Newey West method with a 36 month lag The stars indicate
standard significance levels: *  10%, ** 5%, *** 1%

Low 2 3 4 5 6 7 8 9 High  High Low
Merton’s model  0.26  0.55™  1.03** 141" 1.78™ 1.52"* 1.30** 1.22%* 147" 1.14™  1.36™*

(0 56) (022) (017) (0 15) (0 15) (011) (0 09) (0 07) (0 08) (0 04) (051)
Hist prob. 131 142 174%™ 1.87™ 218" 1.98"* 1.76"* 1.83** 2.08™* 1.51"* 0.23

(0 42) (0 36) (0 39) (0 35) (0 42) (0 35) (0 28) (0 26) (0 25) (017) (024)
N 188 198 198 198 198 198 198 198 198 198 196
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Regarding the statistical inference, one can see that the long short portfolios earn a
statistically significant risk premium based on the Merton’s model, yet the historical prob
abilities deliver a slope that is too flat to be significant (Table IT). Given that the estimates
are persistent, all the standard errors are estimated with the Newey West procedure using
36 lags.'” Merton’s model delivers narrower confidence intervals. The predicted default
probabilities positively correlate with the increase in credit spreads which reduces the
estimation noise, whereas the historical averages do not allow for any time variation. In
other words, the historical default probabilities attribute all the variation in the spreads
to the discount rate news channel, and there is no room to improve the precision of the
estimates. Adding to that, the short term risk premium displays a great deal of time
series variation relative to the long term risk premia. This is an intuitive result given that
the long term asset returns are averaged over multiple periods ahead and are not that
sensitive to the transitory shocks in the investor preferences or economy. In fact, Mueller,
Vedolin & Zhou (2019) document that the short term (government bond) risk premium is
more sensitive to transient economic variables, such as implied option variance, whereas
the long term risk premium is more exposed towards slower cyclical indicators. A similar
mechanism can be at play here. Having said that, the long term asset may still have far
larger variance of realized returns because small changes are greatly amplified by a much
larger duration.

Glossing over the initial findings, it may be surprising why the two methodologies
deliver quite a wide range of possible slope values. One explanation for this is that over
the last 20 years we have witnessed a large frequency of recession months (Bansal et al.
(2021)). The structural estimation of default probabilities is sensitive to large increases in
the leverage ratio, a phenomenon prevalent during the financial crisis. On the other side of
the spectrum, the default probabilities over the last 100 years have attributed only a small
chance to such events. Loosely speaking, one can view the Moody’s historical probabilities
as a very conservative estimate of the slope, whereas the Merton’s model delivers an upper
bound. Another interesting observation is that both methodologies deliver a downward
sloping term structure of credit losses. There are two core reasons justifying that. Firstly,
the risky issuers tend to issue more short term debt so the aggregate term structure tallies
in more safe firms over long horizons. As a matter of fact, it will be shown later that most
of this hump shape arises due to the bonds with the lowest credit rating. This also suggests
that the current estimates of the risk premia slope are downward biased. Secondly, both
historical and model generated default probabilities exhibit concave CDF’s, which implies
that the forward default probabilities are decreasing with maturity, and more so among
the riskiest firms. This insight relies on the idea that, over time, firms mature and, if
they survive the distress, they transition into more stable credit ratings.'® Overall, the
discrepancies between the two methodologies establish reasonable bounds for the slope,

1736 months are chosen as the most distant significant autocorrelation in all duration portfolios In
general, this means that the standard errors are potentially too conservative for some portfolios

8The Merton’s model features similar relationships between the maturity of the debt and default risk
Except for the safest firms, with maturity the probability of default increases at a slower rate because
the asset volatility scales at a slower rate than the asset return drift
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and highlight the need to conduct deeper time series and cross sectional analysis.

2.4.2 Cross-sectional patterns

The maturity dimension of a bond may not be sufficient to understand how investors
price short and long maturity risks in the corporate bond market. In this section, I
will investigate if the cross sectional characteristics that are known to predict returns in
the bond market are also related to the slope of the risk premia term structure. The
characteristics I consider are: default risk, such as leverage and credit rating (similarly
as in Bai et al. (2019)), as well as book to market ratio and size factors that are often
used to predict returns (e.g. Bartram et al. (2021)). This additional slice of data helps to
understand which maturity risks originate the source of factor premia. On top of that, the
double sorts control for risk characteristics that may strongly correlate with the issuer’s
ability to issue different maturity bonds. In order to form diversified portfolios, I sort
bonds first on the factor characteristic and then into duration quintiles (fixed bins deliver
similar results).

The general finding is that most cross sectional sorts deliver an upward sloping term
structure of risk premia regardless of the estimation method (Table III). This suggests
that the full sample results are not purely driven by self selection issues. In fact, even
historical default probabilities, which are more conservative than Merton’s model, most
of the time deliver positive and statistically significant slope estimates. This signals that
the rather flat aggregate patterns are indeed somewhat downward biased. Based on the
credit rating sorts, the slope estimates range between 0.5 to 1.7%, with the exception of
the lowest credit rating firms. Namely, the riskiest issuers exhibit a relatively flat term
structure, a pattern that is potentially explained by high exposure to the short term risks
(such as the short term crash risk). All other bonds are priced in a qualitatively consistent
way with the leading asset pricing models of habit and long run risk. Interestingly, the
hump shape observed in the aggregate credit spreads and yields disappear in the higher
credit rating sorts, confirming that it is predominantly driven by the issuer composition
effects. To strengthen the case, the estimates based on historical probabilities also display
that.

The remaining sorts exhibit positive slopes with, at times, inconclusive results. The
leverage ratio is a strong proxy for the distance to default, and should correlate with the
default risk and credit ratings. On the other hand, it controls for the modeling errors as
high leverage firm default rates are most sensitive to changes in parameter values. Thus,
it is not surprising that the term structure slope is positive and very similar under both
methodologies, but there are mismatches in the high leverage category. The subsequent

analysis shows that most of these misalignments arise due to the financial crisis period.
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Table III: Cross-sectional sorts

The tables present the average risk premia in duration and BM, size, leverage and credit rating double
sorts The numbers in the brackets are standard errors based on the Newey West method with a 36
month lag The stars indicate standard significance levels: *  10%, ** 5%, *** 1%

Credit rating sorts Credit rating sorts
Low 2 3 4 High  High Low Low 2 3 4 High  High Low
BBB+  0.79 0.18  0.48** 0.80™* 1.01**  1.80"** 1.029*  1.08** 1.38* 1.53** 1.50**  (.48"**
(061) (017) (013) (010) (008) (056) (031) (0 29) (033) (022) (017) (015)
BBB 0.16  0.62* 097 1.16** 1.40%*  1.24** 1.32%*  1.54™* 1.80™* 1.86** 1.98**  0.67**
(029) (011) (009) (005) (0 04) (028) (034) (037) (035) (031) (021) (016)
<BBB 2.89**  3.48%*  3.33** 317 3.01 0.11 2,839 3.51%* 314 3.02%*  2.70* 0.13
(032) (032) (023) (025) (019) (0 26) (055) (055) (0 44) (0 40) (033) (035)
Leverage sorts Leverage sorts
Low 0.83™*  1.18%* 1.53** 1.30"* 1.37"*  0.54** 0.98**  1.23** 1.53** 1.42"* 1.52"*  (.53**
(010) (011) (015) (007) (004) (007) (028) (030) (029) (021) (015) (015)
High 0.48  1.26"* 1.80*** 1.10™* 0.99*** 1.48** 1.92%  2.49** 2,73 227 207 0.15
(085) (034) (017) (017) (015) (071) (050) (052) (047) (039) (027) (027)
Book-to-market sorts Book-to-market sorts
Growth  0.65™* 1.22** 1.67** 1.26™* 1.29"*  0.64** 1.06%*  1.39™* 174" 147 1.53**  0.46™*
(016) (012) (016) (007) (009) (011) (030) (029) (031) (022) (016) (016)
Value 0.67*  1.60** 1.83** 142 135"  0.68"* 1.71%% 220" 242 1.98 1.82* 0.11
(023) (016) (014) (007) (005) (020 (043) (038) (036) (028) (019) (027)
Size sorts Size sorts
Small 0.73 173 213"  1.53"* 1.60"** 0.86™* 1.96%  2.44**  2.65™* 213" 229 0.34
(035) (018) (016) (0 09) (007) (033) (0 49) (048) (0 48) (0 40) (031) (027)
Big 0.21  0.39"* 0.71** 0.98™* 1.14**  1.35™* 0.96** 1.07** 1.28"* 1.55™* 1.54"*  (.59***
(033) (007) (007) (0 06) (005) (030) (0 25) (026) (022) (021) (016) (010)
(a) Merton’s model (b) Historical prob

There is some evidence for the value premium in the corporate bonds in line with Bar
tram et al. (2021)’s findings. The bonds issued by growth firms exhibit a term premium
of roughly 0.4 0.6% per annum, with a moderate level of risk premia. In contrast, the
value firms display a higher level of risk premia, however, on this matter, the two method
ologies are not entirely consistent. Namely, the value premium is quite large based on the
historical probabilities (up to 0.8%, mostly among the shortest duration bonds), but the
Merton’s model delivers much more modest estimates. This may hint that most of the
value premium risks are of short term nature and over time, current growth firms become
similar to the value firms (which is in line with Giglio et al. (2020)). Yet. the results are
inconclusive.

On the other hand, there is quite distinct evidence documenting the size premium
of 0.4 1.4%. At first sight, this may be an artifact of lower liquidity, which will be
investigated later, yet the largest differences arise predominantly among the short term
bonds and narrow down with maturity. Relative to the book to market sorts, the size
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premium seems to be more persistent, a finding that resonates with Yara et al. (2020).
Regarding the slope, the big firms seem to have a stronger maturity and risk premia
relationship. Once again, this can be aligned with the higher exposure of small firms to
the short term or business cycle risks.

To sum up, most of the cross sectional sorts support the upward sloping term structure
of risk premia. Only the highest credit risk firms display a flat term structure. In addition,
the cross sectional sorts reveal an economically and statistically significant size and credit
risk premia, with some weaker support for the value premium. Interestingly, in all sorts,
the gap between different cross sectional portfolios decays with maturity, supporting the
idea that most of the factor premium arises from the short and intermediate horizon

risks.

2.4.3 Time variation

There is plenty of evidence showing that expected returns in equity markets vary over
time.!? Similarly, the term structure of risk free rates has dramatically changed since the
financial crisis with the introduction of unconventional monetary policy. Following the
same logic, there is no reason to believe that the term structure of risk premia has not
shifted since 2008. In order to investigate these movements, I split the sample into three
economic periods: before the financial crisis (2002 2007), the financial crisis (2007 2009),
and after the crisis (2009 2020). Dicing the data into smaller pieces comes at a cost the
long term historical default probabilities become less and less reliable. For this reason,
the time variation analysis is performed using only the Merton’s model. These results are
presented below in Table IV.

One can immediately detect contemporaneous shifts both in the risk premia and risk
free rate term structures. Both of them were much flatter before the financial crisis
compared to the most recent decade. After the crisis, however, both slopes are statisti
cally significant and positive. The risk premia term structure did not experience a strong
parallel shift down, but both the short term and long term bonds were affected by the
steepening of the curve. One can immediately spot that the financial crisis was an excep
tional event delivering a number of extreme observations. The negative estimates on the
short end may seem counter intuitive given the classical asset pricing model predictions
of countercyclical risk premia. To a large degree, these are the structural default model
errors that predicted far larger expected losses given the sudden drop in the equity prices,
and a surge in the leverage ratios and market volatilities. This highlights that predict
ing expected returns during the financial crisis is extremely challenging with structural
models, and for this reason, the sample splits exclude this period. Despite these outliers,
the overall pattern is quite clear the term structure of risk premia has a flat or positive
slope even at the aggregate level.

This subsample analysis unveils some movements in the term structures that may

produce one off capital gains, in a similar vein as Fama & French (2002). It is an important

19Ghiller (1981), Li, Ng & Swaminathan (2013) to mention a few
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insight as most of the cross sectional studies bank on the realized returns to estimate

risk premia. Yet, the time series variation is only of the key factors confounding the

measurement using the price history alone. Thus, the following section will further analyze

these general patterns based on the realized returns, and to what degree they match the

implied measures of risk premia.

Table I'V: Historical samples

The table presents the average risk premia and risk free rate term structures in three historical subsamples
The numbers in the brackets are standard errors based on the Newey West method with a 36 month lag
(except for the crisis period where a 6 month lag was used due to the sample size constraints) The stars

indicate standard significance levels:

*10%, 5%, 1%

Full sample

Low 2 3 4 5 6 7 8 9 High  High Low

risk preminm 0.26 0.55™  1.03*™ 1.41** 1.78™ 1.52"* 1.30™* 1.22"* 147 1.14™ 1.36*"
(056) (022) ©17) (015) (015) (011 (009) (0o7) (0.08) (004) (051)

f 1.53*  L.777 2,007 2,227 2.46™* 2717 2,937 319" 3.61*  3.73* 2120
(053) (054) (050) (047) (0 44) (042) (041) (0 40) (038) (036) (041)

Before financial crisis (2002.06-2007.12)

risk preminm  0.46* 0.80* 0.94"* 1.26"* 1577 1.52" 1.36™* 1.10"* 137" 1.06™* 0.55™
(025) (024) (012) (010) (005) (0on) (004) (002) (003) (003) (022)

f 3.457  3.647 3.78 3.927 4.05" 4.237 44177 456" 4.877 4.977 1.41%
(07) (058) (0 46) (037) (030) (022) (015) (012) (004) (0.06) (072)

After financial crisis (2009.06-2020.06)

risk premium 0.25 0729 1.26% 154 1.85"*  1.58"* 1.35"* 1.33"* 1.56™* 1.21* 0.97
(019) (011) (014) (019) (022) (016) (010) (005) (010) (004) (018)

rf 0.82™  0.99"* 1.24™* 1.49™ 1.75"* 2.00™* 223" 252" 297 3.14™* 2.32%
(034) (031) (027) (022) (018) (015) (014) (016) (020) (021) (0 48)

Financial crisis (2007.12-2009.06)

risk premium  5.617%  1.42% 0.39 096%™ 1.86"* 1.10™* 0.74** 0.79** 1.18%* 0.92"*  6.53**
(182) (027) (043) (027) ©11) (025) (020) (023) (010) (009) (180)

rf 1.36™ 158%™  1.98%* 220" 2.68™* 3.08"* 344 3857 425" 419" 2.83%
(036) (034) (031) (031) (026) (022) (019) (015) (017) (019) (021)

2.5 The Puzzle of Realized Returns

To begin with, I compute the (gross) realized returns which are defined in the following

way:

P+ AL+ ciy

retipic1 = — > —

Py + ALy

(2.5)

where P;; is the clean price of a bond at the end of month ¢, Al stands for the accrued

interest, and ¢, is the coupon payment. Based on these gross returns, one can express the

excess returns:

eretisip1 = Tetiriy1 — T fitie1
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where 7¢; is a return on a US nominal government bond with identical cash flows and
maturity to the corporate bond (find more details and example calculations in Appendix).
Given these returns, I can sort the bonds into different duration or maturity portfolios the
same way as before to test if the realized returns line with the expected return measures.

Figure III displays that there is a slight negative relation between the excess realized
returns and duration of a bond. The result is invariant to the sorts based on duration
deciles or the fixed duration bins. The graph portrays how noisy the realized returns
are, and that, except for the shortest duration portfolios, no statistically significant pat
terns are easily discoverable. The longest duration quintile earns approximately 1 2%
per annum less than the shortest duration quintile. Moreover, the inverse relationship
is even stronger when one looks at the Sharpe ratios. The long maturity bonds exhibit
much more volatility without generating almost any excess returns. This indicates that
over the last 20 years the term structure of excess returns was downward sloping, driven
predominantly by the shortest and longest maturity bonds, however, this slope is not
statistically significant.

In light of the previous findings, the exceptionally high returns on the short duration
bond portfolios present a puzzle. The implied measures deliver the opposite pattern of
results.?’ Paradoxically, the short term bonds generated so high average excess returns
that they far exceeded the average credit spreads in the same period. This is only possible
if there were major movements in the expected risk premia or cash flows, and the sample
mean deviated from the long term levels. To further investigate the hypothesis, I correct
for the market risk by running CAPM style regressions where the duration portfolio re
turns are regressed on the bond market factor. For simplicity, the bond market factor is
measured as an equally weighted mean excess return of all the bonds in a given month. !
This procedure allows to recover the abnormal patterns that are not explained by the
pure correlation with the general market trends.

Table V outlines a stark negative relation between alphas and duration. This result is
consistent with Gormsen & Lazarus (2019)’s findings that the realized returns and dura
tion sorts deliver a negative slope both in equities and corporate bonds. Not surprisingly,
the bond market betas are increasing with duration. Through the lens of CAPM, assets
that bear a higher risk premium must have a larger market beta. However, it is not
obvious that the same prediction holds in this setting when the market risk premium
exhibits a term structure. Additionally, van Binsbergen et al. (2012) documented that
short maturity dividend assets generate very high excess returns while having low mar
ket betas. It appears that the same puzzling pattern reverberates to the corporate bond
markets.

20To be precise, only the shortest duration portfolios generate statistically significant returns
2IThe equally weighted returns are chosen since they are much easier to compute, but results are
qualitatively very similar to the market weighted results
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Figure III: Average excess returns
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Note: The figure above reports the average excess return and Sharpe ratio in duration deciles The
shaded areas represent the 95% confidence intervals of average excess returns based on the Newey West
standard errors with a 6 month lag

Table V: Alphas

The table presents the annualized excess and abnormal return estimates in each duration portfolio The
market factor is constructed using an equal average of bond excess returns in a given month The
numbers in the brackets are standard errors based on the Newey West method with a 6 month lag The
stars indicate standard significance levels: *  10%, ** 5%, *** 1%

Low 2 3 4 5 6 7 8 9 High  High Low

beta  0.23"** 0.43** 074" 079" 1.07** 1.02°* 1.00™* 1.09" 143" 156"  1.33
(0.05)  (0.03) (0.07) (0.03) (0.06) (0.02) (0.02) (0.04) (0.09) (0.06)  (0.09)

alpha  3.06™ 173" 052 088 095" 048 017 037 087 284" 58]
(0.92)  (0.50) (0.62) (0.52) (0.43) (0.29) (0.30) (0.50) (0.77)  (0.65)  (1.24)

N 188 198 198 198 198 198 198 198 198 198 196

The initial findings raise a number of questions. Firstly, large alphas indicate that a
static one factor model alone cannot match the risk premia estimates in the corporate
bond market, and explain the mismatch with the implied expected return measures. Yet,
most of the results are driven by exceptionally high(low) short(long) duration asset excess
and abnormal realized returns. This raises a concern if the patterns survive once we control
for the characteristics of the issuers. Secondly, there is a fundamental gap between the risk
premia implied from credit spreads and the average monthly returns presented here. The
former depicts the holding to maturity annualized returns, whereas the latter estimates
the term structure over the next month. Averaged over long periods of time, the two
objects should deliver the same estimates, but in small samples, there can be a sharp

wedge. To inspect how these disparities evolve, I will perform the same realized return
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analysis with different holding period horizons.

2.5.1 Cross-section of realized returns

The key message of Gormsen & Lazarus (2019) is that duration is a sufficient statistic to
explain most cross sectional anomalies, such as size and value premia. In addition, the
positive abnormal returns are generated mostly by the short duration portfolios lending
support to the downward sloping term structure of risk premia. In the cross sectional
slice of the analysis, I test the validity of these predictions in the corporate bond market.

In a nutshell, the aggregate patterns are reflected in all cross sectional sorts. As we see
in Table VI, the average excess returns display a negative but statistically insignificant
slope. It again appears that most of this duration premium comes form the short term
bonds. At the same time, the risk adjusted returns are strongly downward sloping in all
sorts. Economically, they are sizeable too the long short portfolios can generate up to
5% risk premia per year, far beyond any credit spreads that we normally observe in the
market. Thus, the realized return analysis confirms Gormsen & Lazarus (2019) second
claim that the average returns and alphas are downward sloping.

In terms of the level premia, the realized returns share qualitatively similar insights
as the implied measures. There is quite a substantial credit risk premium of 3 4.5%
which decreases with portfolio duration, however, remains qualitatively large even at long
maturities. Hence, I find strong evidence against the credit risk puzzle of Campbell et al.
(2008) who documented that low rated firms earn low average returns. In a similar vein,
there is an observable hump shaped pattern in the average excess returns and alphas
which does not necessarily vanish in the credit sorts. Most of these differences are not
statistically significant, but their prevalence should not be ignored. Such non monotonic
duration and return relationships are not completely bizarre as it may be a product of the
reinvestment and fundamental risk trade off (Andrews & Gongalves (2020), Gongalves
(2021)). Namely, the long term asset may offer hedging benefits driving the total risk
premia down. The same pattern can also be seen in the leverage sorts which highly

resemble the credit rating results.
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Table VI: Cross-sectional sorts

The table presents the annualized excess and abnormal return estimates in each duration portfolio

The market factor is constructed using an equal average of bond excess returns in a given month For

conciseness, the standard errors are omitted The stars indicate standard significance levels: *  10%, **
5%, *** 1%

Credit rating sorts Credit rating sorts
Low 2 3 4 High High Low Low 2 3 4 High  High Low
~BBB+ 1.43* 130 1.63 1.37 0.96 0.47 0.76 0.23 0.18  0.79 2.50"* 3.28%
(068)  (096) (147) (172) (270) (232) (054) (036) (048)  (050) (0 78) (089)
BBB 2.01* 2,01 277 247 1.43 0.58 1.36"* 0.64 0.88"* 0.10 2.11"* 3.41%
(088)  (136) (180) (225) (303) (235) (036) (0 40) (028) (032 (073) (097)
<BBB 6.52* 479 477 4.35 4.55 1.97 4.94* 113 1.39 0.68 0.75 3.80**
(259)  (425) (327) (335) (342) (217) (159) (184) (1o4)  (092) (101) (188)
Leverage Leverage
Low LEV ~ 1.40** 1.78 213 1.64 1.15 0.25 0.93** 0.63** 045 024 1.93"* 2.85**
(049)  (108) (143) (151) (245) (205) (023) (030) (026)  (030) (067) (0 74)
High LEV  3.92** 351 4.02 3.27 1.78 2.14 2.53"*  0.83 0.85 0.03 255" 5.01%
(176)  (290) (289) (298) (377) (2 48) (079) (080) (062)  (045) (091) (138)
Book-to-market sorts Book-to-market sorts
Growth 1.53** 1.87 253 1.86 1.06 0.48 111 0.63*  0.44 0.18  1.99™* 3.01*
(053)  (113) (183) (169) (256) (217) (028) (038) (045)  (034) (064) (071)
Value 417 252 385 251 1.63 2.55 298 0.41 1.13*  0.08 1.87* 4.88
(180)  (240) (263) (218) (305) (2 03) (100) (0 98) (066) (035 (066) (138)
Size sorts Size sorts
Small 410" 3.57 4.00 2.96 2.90 1.20 3.02* 1.00 1.03* 0.10 0.55 3.38
(167)  (279) (282) (274) (315) (198) (092) (0 90) (053) (037 (082) (108)
Big 1.32% 131 1.72 1.57 0.95 0.37 0.76"*  0.30 0.14 0.70  2.46™* 3.25%
(052)  (089) (126) (177) (271) (2 28) (023) (027) (030)  (049) (071) (078)
(a) Average excess returns (b) Alphas

Regarding the value and size premia, there is strong evidence that they are priced in
bonds. The value firms seem to always generate higher returns, with the exception of the
longest duration bonds. That is the reoccurring theme from the yields based analysis,
a confirming sign that the value premium is indeed driven mostly by short run risks.
Another stark observation is that the growth firms’ risk premia tend to increase with
the maturity of cash flow and peak at around a 5 year duration. Most of this effect
comes from the elevated market betas, still one could speculate that the longest duration
bonds issued by growth firms are the most sought after by the investors. Lastly, the
size portfolios point to similar conclusions. The size premium of roughly 2 3% does not
easily disappear with maturity, even after the market beta correction. Overall, these
findings contradict Gormsen & Lazarus (2019)’s claim that most known anomalies can be
subsumed by the duration dimension alone.
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2.5.2 Different holding period returns

Different holding period analysis is one way to improve the measurement of risk premia.
In particular, some of the bonds are traded infrequently, and if there is any correlation
between trading activity, riskiness of a bond and maturity, we may have biased long term
mean and standard deviation estimates. In order to alleviate this challenge, I switch
to quarterly, semi annual and yearly returns. The prime advantage of using longer fre
quencies is that T can expand the end of the month price window from the last 5 days
to a full month while keeping, approximately, the same amount of measurement noise.
However, this comes at the price of overlapping observations that mechanically introduce
autocorrelation in the bond panel that will be corrected with more lags in the Newey West
method.

Before the presentation of new findings, it is worthwhile to glance at how much more
observations are added to the sample once the measurement, window is expanded. It turns
out that this procedure increases the sample by nearly 30% (pretty uniformly across the
duration groups). Appendix Table A.VIII presents the average trading activity of different
maturity bonds. Conditional on the fact that a bond is traded, on average, there are 6 7
monthly prices in every given year if one uses a 5 day window. In contrast, this number
rises to 9 if a monthly window is used. In other words, an average bond is traded in
roughly 58% of all the weeks, and 75% of all the months in a year. Based on the average
trading activity, it does not seem that there are stark liquidity issues and some types
of bonds are overwhelmingly less traded than others. Table A.VIII does indicate that
the shortest maturity, low BM ratio and highest credit worthiness firms are slightly less
traded than others. Yet, the disparities, at first sight, are small and alternative horizon
returns should not substantially affect the monthly frequency results.

As we see in Table VII, the negative pattern also persists in longer holding period
horizons. It has to be mentioned that the slope is gradually decreasing with the holding
period horizon. Moreover, the average excess returns become more non linear on the short
leg. However, at a much lower rate than what we need to confidently close the distance
between the implied returns and realized ones. At this point, there are indications that
the time variation in the risk premia is present, yet the holding periods of up to one year

are not enough to fully expose it.
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Table VII: Alphas

The table presents the annualized excess and abnormal return estimates in each duration portfolio The
market factor is constructed using an equal average of bond excess returns in a given month The
numbers in the brackets are standard errors based on the Newey West method The stars indicate
standard significance levels: *  10%, ** 5%, *** 1%

Average excess returns

Low 2 3 4 5 6 7 8 9 High  High Low
Quarterly 2.94% 2,52 2.26 2.43 2.95 2.62 232 1.58 2.05 0.56 2.27
(112) (125) (157) (167) (222) (205)  (189)  (204) (298) (276) (229)
Semi Annual  2.98*  2.87** 2.40 2.52 3.16 3.10 241  1.35 1.81 0.49 2.39
(137) (141) (150) (163) (215) (212)  (191) (197 (278) (254) (1 77)
Annual 2.82%*  3.10*  2.66*  2.93* 3.43* 312 219 144 1.84 0.83 1.95
(125) (132) (138) (159) (1 94) (195)  (164)  (170) (233) (21) (128)
Alphas
Quarterly 2.15%*  1.42**  0.63 0.73*  0.61** 048 0.32  0.56 1.05 2.51"* 4.63**
(078) (0 40) (038) (039) (028) (022)  (026) (041) (072) (054) (107)

Semi Annual  2.02*  1.50** 0.67** 0.72** 0.68** 0.77" 026 0.84" 136"  2.52" 4.497

(072) (041) (031) (0 31) (021) (041)  (035)  (046) (0 65) (047) (0 96)
Annual 137  1.39"* 0.80* 0.83** 0.75"* 0.60 0.02 0.76  1.42** 212" 3.49™
(0 58) (0 45) (0 20) (0 26) (0 20) (038)  (030)  (058) (0 53) (035) (0 66)

2.6 Reconciling the Puzzle

Section 2.4.3 presented evidence that the slope of the risk premia term structure has

steepened over time. Such changes should have generated capital gains that pushed the

average excess returns up, especially for the shortest maturity assets. In this section, I

will attempt to quantify this effect.

To begin with, the change in the price of a bond can be proxied by the second order
Taylor series expansion:

or oP 10%P

AP ~ @Arf+@ATp+ 587;2

where Ary, Arp are the changes in the risk free rate and risk premia, respectively.

[(Ars)? + (Arp)? + 2Ar; Arp]

Ignoring certain terms that are quantitatively close to zero, one can rewrite this as:

AP AP 1 1 1

= Sl s~ ID4+-AD|Arp ———ADAr

PP 1+y[ 2 } Py ! (2.7)
excess return risk premia channel convexity due to risk free rate

where Py is the cash flow matched synthetic government bond, and D is the bond’s
duration. The first term on the right hand side captures the usual first order and con
vexity terms, whereas the second term corrects for the extra convexity generated by the

concurrent changes in the risk free rate term structure.
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The first clear indication that the term structure of risk premia has shifted stems from
the sample split analysis with realized returns. Table VIII provides a snapshot at the
pre and after crisis periods. The main insight is that the term structure slopes both in
alphas and average excess returns are much less pronounced before 2008. After the crisis,
the excess returns have been heavily elevated for the shortest duration assets (the same
picture is reflected in the crisis period too). In fact, the returns are so high that they skew
the full sample results towards the negative slope. This may be driven by the surging
short term risk since the last financial crisis, or sizeable one off capital gains that pushed

the realized returns up even though the expected returns moved in the opposite direction.

Table VIII: Subsamples and realized returns

The table presents the annualized excess and abnormal return estimates in each historical period The
market factor is constructed using an equal average of bond excess returns in a given month The
numbers in the brackets are standard errors based on the Newey West method The stars indicate
standard significance levels: *  10%, ** 5%, *** 1%

Before financial crisis (2002.06-2007.12)

Low 2 3 4 5 6 7 8 9 High  High Low
excess return  1.76** 1.11 0.70 212 2.34 1.35 1.56  0.19 0.83 1.19 2.72
(0 66) (097) (118)  (170)  (188)  (193)  (167)  (125) (222) (197) (185)
@ 1.42** 0.83 0.35 1.62  1.79*  0.61 0.83* 0.43 0.26 2.15™ 3.46%**
(058) (053) (059)  (097)  (071)  (065)  (045)  (034) (095) (084) (110)

After financial crisis (2009.06-2020.06)

excess return  3.94** 2,96 2.91* 3.22* 3.79" 3.84" 3.35"" 3.44* 3.27 1.80 2.14
(127) (103) (114) (147) (152) (1 49) (143)  (176) (2 69) (229) (2 30)

« 3.22%  1.73**  1.06* 0.80 0.78 0.65™ 0.08 0.43 2577 3.85"* 7.05%
(102) (053) (0 60) (0 68) (0 48) (0 28) (034)  (049) (089) (0 90) (152)

Financial crisis (2007.12-2009.06)

excess return  6.18 5.72 1.86 0.71 3.92 0.23 1.10 1.31 1.16 0.91 7.09
(651) (7 87) (1603)  (1368)  (1957)  (1645) (1565) (1639) (21 66) (24 79) (21 03)
@ 6.04 543  1.31 0.18 3.16 0.44 1.73  1.98 0.38 1.86 7.90
(498) (2 28) (392) (1 49) (2 00) (134) (181)  (289) (307) (279) (6.05)

The capital gains analysis shows that the steepening of the term structure can only
partially explain the puzzle of realized returns. As we can see from Table IX, the time
variation in the slope generates heightened short maturity bond returns by up to 0.7%.
This is the upper bound of the estimate as the capital gains are averaged over time. On
the other hand, the long term bonds should have experienced a reduction in their excess
returns of up to 1.7%, a prediction that is contradicted by the overall increase in the
realized returns after the crisis (surprisingly, the abnormal returns concurrently declined).
Overall, the variation in the yields based risk premia is too small to capture the drastic
dynamics in the realized returns, and the puzzle remains. However, to investigate these

effects more rigorously, I will implement the affine model for risk premia dynamics.
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Table IX: Capital gains

The table below summarizes the changes (A) in the annualized realized returns and the yields based
expected returns before and after the financial crisis The capital gains are calculated using (2 7)

Realized returns

Low 2 3 4 5 6 7 8 9 High High Low
Before 214 117 099 1.84 247 1.26 1.62 0.15 0.84 1.31 3.48
After 395 298 287 321 378 3.79 334 329 336 1.78 2.17
A 1.81 1.81 1.89 1.37 1.31 253 1.72 3.15 252 3.09 1.31

Expected return estimates

Before 090 0.77 1.03 131 161 150 136 1.09 138 1.06 0.18
After 030 0.72 127 155 1.85 1.58 1.35 1.34 156 1.21 0.91
A 0.61 0.05 024 024 024 0.09 001 026 018 0.14 0.73

Capital gain 0.74 0.14 0.70 0.92 1.07 041 0.16 177 170 1.71 2.45

2.6.1 Matching the data with a one-factor model

In this section, I will more rigorously quantify the effect of the declining risk premium on
realized returns by modeling the whole time series dynamics of risk premia. The realized
returns and the baseline implied estimates are not immediately comparable because of
the differences in the holding period. The implied measures of expected returns and
risk premia are inherently holding to maturity. This comes from the fact that yields are
derived from the complete schedule of promised cash flows. While many bonds are held for
long investment periods, the distinction does not allow to cleanly compare multi period
with one month ahead expected returns, E;(R;11). Yet, without further assumptions
about the evolution of expected losses and risk premia, there is no easy way to link these
two measures and quantify the effect of risk premia shifts on the realized returns in the
sample. One general solution to this challenge is employing a term structure model.

I will start with standard assumptions. Duffie & Singleton (1999) show that, un
der some technical conditions, defaultable bonds can be valued similarly to default free

bonds.?? Namely, the price P of an m maturity risky bond can be written as:
t+m
P, = B2 [[exp(~ / (1, + 59)ds)] (2.8)
¢

where r is the instantaneous short rate and s9 is the instantaneous credit spread.
Abstracting from liquidity effects for a moment, s¢ equals the expected default losses,
thL, under the risk neutral measure Q). So, effectively equation (2.8) replaces the usual
pricing equation containing the bond yield with its continuous time counterparts. As a
result, by specifying the dynamics of , and s?, one can model the risk premia and realized
returns at any frequency.

To do so, one can model stQ directly by specifying its process and later use the historical

22The key assumption here is that loss given default is proportional to the market price of the security

94



Chapter IT: The Term Structure of Corporate Bond Risk Premia

default probabilities to back out the risk premia estimates (e.g., similarly to Driessen
(2005)). Yet, this approach does not utilize the information from the structural models
discussed in the previous sections. For this reason, I proceed by modeling the risk premium
component directly.

We can decompose the credit spreads into the short term risk premium, rp;, and the

expected losses component under the physical probability measure (P):

s@=hlL = (W —nPL + hlL
—— ~—~

risk premium, rp;  expected default losses

(2.9)

where hf is the (instantaneous) probability of default, and L stands for loss given de
fault. The decomposition is well defined when the markets are complete and there is no
arbitrage.?? For simplicity, I assume that the risk free rate is exogenously determined and
the focus is only on the credit spread component.?* Additionally, in order to directly link
the risk premium estimates to the measures of implied expected returns, I assume that
rp; and P L dynamics are independent. This conjuncture is not strictly necessary for the
implementation of the model, but it greatly facilitates the comparison with the empirical
baseline estimates.

To keep the analysis parsimonious, I introduce a one factor affine term structure model
of Cox, Ingersoll & Ross (1985) (CIR). A standard representation of this model includes

a single state variable, F}, that follows a mean reverting process:
dE = K(G—Ft) dt + vV 6Ftth (210)

In my setup, this state variable can be interpreted as the short term risk premium,
rp; = F;. Intuitively, the equation tells us that the systematic risk is time varying,
and there is a premium for holding different maturity bonds because they are exposed to
unexpected factor shocks. As in de Jong (2000), I assume that the market price of risk,
A, is proportional to the level of shock volatility: A; = 1v/BF;. Based on equation (2.10),
the variance scales with the level of the factor, and the risk premium generally rises in
more volatile times.

Given the assumptions, one can price bonds by separately modeling risk free rates,
risk premia, and expected default losses. This is particularly useful since I can input the
expected default losses from my empirical analysis section without the need to specify its
dynamics. Moreover, for a standard square root process, the m maturity risk premium

(rpem) is just a linear function of F, with maturity specific constants and loadings (Hull

23The assumption mirrors Jarrow, Lando & Yu (2000)’s argument that, in the absence of arbitrage
opportunities, there exists a risk premium parameter p, that maps physical default intensity, h{, to
risk neutral default intensity, th

24This effectively means that the correlation between spreads and interest rates is not explicitly mod
eled Yet, this assumption can be relaxed, as in Driessen (2005) Similar exogenous interest rate assump
tions are also embedded in other frameworks like Lettau & Wachter (2007)
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(2009)):
i = - [A(m) + B(m) ) (211)
with 20" 9rvelk+)/2
_ 2k el Tr/Em
A = (e )
Bm) — 2(e — 1)

T @y

where v* = Kk + Y8, 0 =10, 75\/(5*)2+2[)’.

These parameters can be estimated using a standard Kalman filter and quasi maximum
likelihood (QMLE) following de Jong (2000). More estimation details are provided in
Appendix 2.D.

2.6.2 Quantitative results

In my baseline, I employ the risk premium estimates using the Feldhiitter & Schaefer
(2018) default probabilities and link them to the realized return dynamics over the last
20 years. The QMLE results are presented in Table X. As we see, the long term mean
of short term risk premium, 6 is roughly 1%, which is close to the average maturity
matched risk premium in the sample. The persistence parameter, x, of 0.529 translates
to annual risk premium mean reversion of 0.59 which indicates some persistence but to
a lesser degree than in government bonds (i.e., de Jong (2000) finds that to be around
0.94). This means that the risk premium dynamics are more volatile, which is in line with
the considerable variation in discount rates documented by Shiller (1981). The variance
parameter [ is sizable and supports the idea that risk premium over the sample was
subject to extreme shocks, such as the financial crisis of 2008 2009. Lastly, the price of
risk, 1, is close in magnitude to the estimates found in government bonds by de Jong
(2000).

Table X: Structural parameter estimates

The table below summarizes the Kalman filter and quasi maximum likelihood (QMLE) estimates of
equation (2 10) parameters (as well as their asymptotic standard errors)

0 K B P
QMLE 0.010 0.529 0.019 12.320
se 0.003 0.124 0.003  7.269

Another way to analyze the estimation results is by inspecting the fitted time series for
each of the duration portfolios. In general, the filtered series closely follow the data: the
correlation between the filtered series and the baseline estimates ranges from 70% to 90%
(Appendix Figure A.IV). The main errors arise from the shortest duration portfolios that
have substantially more volatile patterns, especially during the financial crisis periods.
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This is difficult to match using a parsimonious one factor model. Naturally, the more
persistent longer duration portfolio series are more accurately matched.

Given the estimated parameters, one can construct the instantaneous risk premium
term structure. In a one factor model, that equals to the drift of m maturity risk premium

dynamics specified in equation (2.11):%
Fy — wB(m)BE, (219)

The first term in the equation above represents the short term risk premium, which
in frameworks like Driessen (2005) captures the default event (jump) risk premium. The
second component captures the systematic variation in the default event risk premia over
time. This drift term is convenient for analyzing the term structure as it brings the
holding to maturity expected returns to frequencies that are much closer to the monthly
level. Moreover, the risk premium expression is analytically parsimonious as all the cross
maturity risk premia differences will be driven by the second term, ¥ B(m)SF;.

The right panel of Figure IV summarizes the average instantaneous risk premia term
structure over the last 20 years. The term structure is upward sloping which qualitatively
matches the slope of holding to maturity risk premia. However, the slope is substantially
smaller (roughly 45 basis points) than in the baseline, and this comes from the fact that
a one factor model struggles to simultaneously match highly volatile short term risk and
quite persistent long term risk dynamics. In fact, most of the extreme variation during the
2008 2009 financial crisis is attributed to the measurement noise, which leads to higher
filtered short term risk dynamics. Thus, the affine model confirms the key finding that
the risk premia is generally increasing with maturity, and the holding period is likely not
driving the difference between implied and realized returns.

Finally, the affine model estimates allow us to pin down the capital gains that arise
purely from the shifts in risk premia over the sample. One way to quantify this effect is
by calculating the yearly capital gains driven by the risk premium dynamics alone (i.e.,
while keeping expected losses and risk free rates constant). The right plot of Figure TV
presents these estimates. Over the sample period, there was a noticeable decline in the
short term risk premium, which generated some capital gains on both short term (0.2%)
and long term bonds (0.4%). The reduction in the short term risk premium is greater.
Still, the duration magnifies this effect on long term bonds much more, leading to positive
capital gains on all bonds (which qualitatively matches the excess return patterns after
the financial crisis). Thus, the one factor model alone cannot generate downward sloping
capital gains in realized returns. However, the results do support the idea that the realized
returns are noisy, and the capital gains can constitute 30% of the actual risk premia (even
averaged over 20 years of data). Once we allow for the expected default losses to vary as

well, the informativeness of average realized returns can be substantially smaller.

25More detailed derivations are provided in Appendix 2 E 2
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Figure I'V: Risk premia and capital gains
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2.7 Conclusions

This paper documents a puzzle in corporate bond market returns. On the one hand, the
expected returns constructed from yields, in the spirit of Campello et al. (2008), and ex
pected default probability proxies deliver a positive risk premia and duration relationship
both at the aggregate and for most cross sectional sorts. Only the lowest credit rating
firms display a flat term structure which indicates their high exposure to short term risks.
In contrast, over the same sample period (2002 2020), the short duration bond portfolios
generated exceptionally high risk adjusted realized returns, whereas the long term bonds
featured large negative alphas. This dichotomy is also found in the equities where model
based risk premia slope (Bansal et al. (2021); Baele et al. (2022)) often contradicts the
realized return patterns (van Binsbergen & Koijen (2017)).

There are indications showing that the risk premia slope is time varying and potentially
creating this wedge between the realizations and expectations. Different sample splits
indicate the steepening of the risk premia curve after the financial crisis. At the same
time, the realized returns in duration portfolios turned in the opposite direction. However,
I show that the capital revaluation gains based on the yields based estimates are too small
to fully explain the stark mismatch in the realized return alphas. In fact, the average
excess returns often far exceed the credit spreads, which serve as the upper bound for
the holding to maturity risk premia, posing a theoretical challenge to match such results.
Hence, one has to be cautious in testing asset pricing models based on the last 20 years
of data alone.

Despite the disagreement on the slope of the risk premia, the analysis highlights a
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number of cross sectional patterns. Both the yields based and realized returns detect the
credit risk, size and value risk premia. Moreover, this factor premium is not subsumed
by the duration dimension alone, as argued by Gormsen & Lazarus (2019). Most of the
abnormal returns are generated by the short and intermediate maturity bonds, hinting
at the origin of the factor premia and the need to deeper analyze such horizon risks.
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2.A Additional Tables and Figures

Table A.I: Credit ratings

The table below summarizes the distribution of bond month observations across credit rating groups and
duration

Rating N pre. Rating group Duration group 1 group 2 group 3
Aaa 4,255  0.9% 0 36 2 161
Aal 4,967  1.0% 1 1,469 1,420 477
Aa2 10,044 2.0% group 1 2 19,160 17,675 5,477
Aa3 10,284 2.1% 40.9% 3 20,296 20,333 8,271
Al 31459 6.4% 4 19,781 22,923 13,045
A2 72,200 14.7% 5 19,119 23,283 16,909
A3 67373 137% 6 15,802 21,419 16,028
Baal 72,210 14.7% 7 16,598 22,395 10,997
Baa2 55,687 11.4%  group 2 8 15917 21,600 5,252
Baa3 79,848  16.3% 42.4% 9 8,869 9,511 1,598
Bal 19819  40% 10 5088 3,826 1,165
Ba2 16707  3.4% 11 5663 5,001 1,285
Ba3 16,993 35% 12 8,338 6,321 936
Bl 10,977 2.9% 13 9,517 7,535 232
B2 7,908 1.6% group 3 14 11,070 7,429 187
B3 5136 1.0% 16.7% 15 7317 6,155 86
Caal 1,910 0.4% 16 6,661 6,336 56
Caa2 1,064 0.2% 17 6,338 3,774 13
Caa3 146 0.0% 18 2,960 844 1
Ca 661 0.1% 19 405 60 1

C 632 0.1% 20 51 3
D 105 0.0% 21 8
Total 490,485 100.0% Total 200,463 207,845 82,177

Figure A.I: Bond-month observations across duration and matu-
rity
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Figure A.II: Historical default frequencies in credit groups
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Table A.Il: Duration

The table below summarizes the average bond duration (expressed in years) in each duration decile at
the time of portfolio formation

Full sample (2002.06-2020.06)

Low 2 3 4 5 6 7 8 9 High High Low
1.3 24 34 42 51 60 71 88 115 14.1 12.7
Before financial crisis (2002.06-2007.12)

14 23 32 40 49 58 6.7 79 103 127 11.3
After financial crisis (2009.06-2020.06)

1.3 25 34 43 52 62 73 94 124 151 13.8
Financial crisis (2007.12-2009.06)

1.5 26 34 41 49 58 6.7 80 102 124 10.9

Table A.IIl: Duration of cross-sectional sorts

The table below summarizes the average bond duration (expressed in years) in each duration quintile at
the time of portfolio formation

Book-to-Market sorts
High High Low

Low 2 3 4

Growth 1.8 38 55 7.7 125 10.6
Value 1.8 3.8 55 81 125 10.7
Size sorts

Small 1.9 38 52 6.9 11.0 9.1

Big 1.8 3.8 6.1 9.5 13.5 11.7
Leverage sorts

Low 1.8 38 57 82 129 11.1

High 1.8 3.7 54 7.9 122 10.4

Credit rating sorts

>BBB+ 1.7 39 6.2 95 136 11.8

=BBB 1.9 39 58 81 123 10.5

<BBB 20 3.6 4.7 57 84 6.4
Liquidity sorts

Low 2.1 42 6.0 86 12.6 10.4

High 1.6 34 50 7.2 124 10.8
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Table A.IV: Number of bonds

The table below summarizes the average number of bonds in each duration in each duration decile and
bin The duration bins are set to equal to 2, 35, 5, , 15+ years

Full sample (2002.06-2020.06)

Low 2 3 4 5 6 7 8 9 High

deciles 72 137 147 160 175 184 185 149 137 191

bins 78 219 282 278 245 78 46 68 96 145
Before financial crisis (2002.06-2007.12)

deciles 27 58 60 66 77 91 105 105 77 93

bins 38 99 123 143 159 46 35 58 48 8
After financial crisis (2009.06-2020.06)
deciles 95 178 193 208 226 231 225 177 171 245
bins 101 285 361 347 290 100 51 71 118 224
Financial crisis (2007.12-2009.06)
deciles 37 81 92 106 118 129 141 84 8 113

bins 32 122 210 204 189 26 44 76 80 4

Table A.V: Number of bonds in each cross-sectional sort

The table below summarizes the average number of bonds in each duration in each duration quintile and

bin The duration bins are set to equal to 3, 6, 9, 12, and 15+ years

Book-to-Market sorts

Book-to-Market sorts

Low 2 3 4  High Low 2 3 4 High
Growth 86 138 150 174 149 Growth 97 246 195 35 123
Value 80 124 150 147 144 Value 88 234 156 53 114
Size sorts Size sorts
Small 115 176 211 206 153 Small 121 368 242 47 83
Big 87 126 135 141 185 Big 95 183 159 55 182
Leverage sorts Leverage sorts
Low 120 177 196 225 211 Low 129 305 255 57 184
High 82 132 157 126 110 High 87 246 146 46 81
Credit rating sorts Credit rating sorts
~>BBB-+ 70 103 106 111 142 ~>BBB-+ 79 146 128 40 140
—BBB 92 137 150 170 152 —BBB 99 232 198 48 122
<BBB 33 64 8 59 47 <BBB 37 170 73 14 3
Liquidity sorts Liquidity sorts
Low 72 133 164 164 142 Low 74 249 179 69 104
High 125 170 182 181 180 High 139 294 216 30 157

(a) Duration quintiles
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Table A.VI: Credit spreads

The table below summarizes the average credit spread in each duration quintile The duration bins are
set to equal to 3, 5, 8, 12, and 15+ years

Credit rating sorts
Low 2 3 4  High High Low

>BBB+ 1.04 1.12 1.40 1.63 1.63 0.58
—=BBB 1.50 1.76 2.07 214 229 0.79
<BBB 462 5.55 4.93 4.65 4.21 0.41

Leverage sorts

Low 1.19 155 193 1.71 1.76 0.57
High 2.64 3.52 3.74 277 236 0.27

Book-to-Market sorts

Growth 140 1.94 2.38 1.83 1.78 0.38
Value 2.29 3.09 330 244 214 0.15

Size sorts
Small 274 351 3.69 272 2.74 0.00
Big 1.06 1.19 146 1.72 1.74 0.68
Liquidity sorts
Low 2.57 2.84 2.77 233 217 0.39

High 149 210 284 193 1.82 0.34

Table A.VII: Cross-sectional betas

The table below summarizes the average credit spread in each duration quintile The duration bins are
set to equal to 3, 5, 8, 12, and 15+ years

Credit rating sorts
Low 2 3 4 High  High Low
~BBB+ 0.28"* 0.47™  0.79™  0.94*  1.51**  1.22%*
BBB 0.317*  0.60** 0.82** 1.03™* 1.54** 1.23%*
<BBB 0.83* 1.60"* 147" 1.60™* 1.65™*  0.80*"*

Leverage
Low LEV  0.21™* 0.50™* 0.73"* 0.82"* 1.34**  1.13"*
High LEV  0.63™* 1.17** 1.38"* 1.41** 1.88"*  1.25"*

Book-to-market sorts

Growth 0.227 0.54** 0917 0.89** 1.33"* 1.10"

Value 0.51** 0.92** 1.19"* 1.06™* 1.52*** 1.01%
Size sorts

Small 0.55"* 1.12* 1.29*= 124" 1.50"* 0.95%**

Big 0.23**  0.44**  0.69"* 0.99"* 1.49** 1.25%
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Table A.VIII: Trading activity

The table below summarizes the average number of monthly observations

Duration quintile 1 2 3 4 5

Trading frequency Months per year traded

last 5 days 6 6 7 7 8
once a month 7 8 8 9 10
BM high
last 5 days 6 7 7 8 8
once a month 8 8 8 9 10
BM low
last 5 days 6 7 7 8 8
once a month 78 9 9 10
Size high
last 5 days 6 7 7 7 8
once a month 7 8 9 9 10
Size low
last 5 days 6 7 7 7 8
once a month 7 8 8 9 10
~BBB+
last 5 days 6 6 6 7 7
once a month 7 8 8 9 10
BBB
last 5 days 6 7 7 7
once a month 7 8 8 9 10
BBB
last 5 days 5 6 7 8 7
once a month 78 9 9 9

Table A.IX: Theoretical model predictions for equities

The table below presents the key predictions for equity term structure slope and its cyclicality The table
is adapted from Gormsen (2021)

Theories Average slope  Cyeclicality of Term Premia
Habit (Campbell & Cochrane (1999)) Upward Countercyclical
Long run risk (Bansal & Yaron (2004)) Upward Countercyclical

Rare disasters (Gabaix (2012)) Flat Constant

Rare disaster with quick recoveries (Hasler & Marfe (2016)) Downward Procyclical
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2.B Data Appendix

2.B.1 Data Filters

To clean the bond transaction data, these filters are applied:

1. Only the USD nominated corporate bonds are kept.

2. Following Bongaerts, De Jong & Driessen (2017), I drop putable, perpetual and
convertible bonds. Similarly, I keep only senior unsecured bonds with no additional
guarantees. Furthermore, I select only bonds with fixed coupons and fixed coupon

payment frequencies (i.e. bonds with 1, 3, 6, 12 month coupon frequencies).

3. To reduce the influence of potential errors and outliers, I drop all bonds that are
traded for less than $5 of their principal or that have negative coupons. Since very
short maturity bonds are traded less often and, in this region, the Giirkaynak et al.
(2007) risk free rate estimates are not very reliable, I also exclude all bonds with
shorter than 3 month maturity. Based on similar arguments, I remove from the

sample all bonds with maturities exceeding 30 years.

Table A.X: Data filters

The table below summarizes the sample filters applied

N
TRACE enhanced (2002-2020) 3,202,692
Merge with FISD & WRDS masterfile 3,133,512
1. corporate bonds USD nom 3,129,540
putable bonds 67,553
convertible bonds 50,397
perpetual bonds 1,194
2. senior unsecured bonds 2,455,874
guaranteed 409,779
3. standard fixed coupon bonds 1,617,866
trim prices at 1 (8 5) and 99% (147 2) 32,269
missing or negative coupon 10,311
<4month and >30 year maturities 54,079

Final TRACE sample (quarterly prices) 1,521,207
Final TRACE sample (monthly prices) 1,125,092
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2.B.2 Accrued interest and yields

In order to calculate returns and yields, I adjust the clean prices reported in TRACE with

accrued interest. Namely, I follow these steps to compute the accrued interest:

e I assume that all bonds follow the US 30/360 day count convention (which is true
for the absolute majority of US corporate bonds).

e Based on FISD data on the last coupon payment date (before maturity), I find the
most recent coupon date. This exercise requires the knowledge of coupon frequency
which is assumed to be semi annual if such information is missing. Due to potential
errors and data irregularities, some of these FISD coupon dates exceed the maturity
date. In those cases (as well as for missing observations), T assume that the last

coupon is paid at maturity.

e Using this most recent coupon date, I calculate the accrued interest for the last day

of the trading month.

For most bonds, FINRA reports bond yields. However, since the exact methodology is
unpublished, T calculate the yields based on available information on bond prices, coupons,
coupon frequency, time to maturity and coupon payment dates. In most cases, the corre
lation between FINRA reports and my estimates is high, however, there are discrepancies
that may arise from different assumptions and prices used (i.e., I aggregate all intra day

prices).
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2.C Merton’s Model

2.C.1 Modeling assumptions

In the Merton (1974) model, one can express the real world default probabilities in the

following way:

(13)

log(p) + (nae — 6 — 0.50% )T
T = N | —
UA,t\/T

where V; is the value of firm’s assets, Dp is the face value of debt that matures at
T, pas and o4, are the expected return and volatility of assets, J; is the payout rate
to all company’s stakeholders, and N(.) is the CDF of standard normal distribution.
The unknown parameters are p14+ and o4, and V; is endogenously determined by the
Black Scholes formula.

There are many ways to proceed from here and calibrate p4, and o4,. A standard
approach is to apply the Ito’s lemma and express o4, in terms of measurable equity

volatility o %%

Vi
Opt = (*t) N(dl)UA,t (14)
Ey

where E; is equity value of the firm and d; comes from the Black Scholes formula (r;
is the risk free rate):
p log(DLtT) + (re — 0.50% )T
L=

UA,t\/T

Based on the equations above, one can solve for 04, and V; which determine the risk

(15)

neutral default probabilities. In order to compute the real world default frequencies, as
in (13), we need to specify pi4,. Following van Zundert & Driessen (2017) (ZD hereafter)
and Feldhiitter & Schaefer (2018) (FS), I assume that the risk premium on assets equals to
a constant price of risk (0) times the volatility of the firm’s assets (044), where § = 0.22
(based on Chen et al. (2009) estimates). In other words, this assumption reduces the
two parameter model to a single parameter specification. Needless to say, the modeling
of o, becomes crucial.

Similarly as in van Zundert & Driessen (2017), I model the volatility of equity as a
mean reverting process with one common autoregressive coefficient (p) across firms, and
long term mean () specific to each credit rating category. This aims to correct for the
fact that, empirically, extreme short term volatilities converge over time to more moderate
equilibrium levels. In turn, the reversion captures the pattern that short term dynamics
are less relevant for firms with the long term rather than short term debt?”. In order to

26The formula implicitly assumes that the leverage will remain constant

2TStrictly speaking, the Merton’s model does not embed time variation in its framework Thus, all
the extensions serve as an approximation of the true model However, under certain independence
assumptions, the equity volatility process can be modeled independently of the assets (Hull & White

112



Chapter IT: The Term Structure of Corporate Bond Risk Premia

estimate p and p, I run the following pooled OLS regression:

Gpa2 = Po+ Bi0pi—1212 + €& (16)

where 012 is an equity volatility at time ¢ estimated with daily returns over the
last year and (; captures the annualized mean reversion parameter (p). Based on the
CRSP daily returns sample over 2002 2020, the estimate of p equals 0.749. An alternative
specification with shorter time windows of 1 month (Figure A.XT column 1) delivers lower
R square estimates (0.301 vs 0.569). Simultaneously, Corsi (2009) type of models with
lagged slow moving volatilities of 3 and 12 months (columns 2 and 3) offer a slightly higher
predictive power. However, since the difference is not substantial, T keep the parsimonious
specification (16) as a baseline model.

The long term mean (u) is recovered by simply averaging all monthly standard devia
tions in each credit rating group over the whole sample length. This procedure results in
these estimates: p = 0.254 for firms with ratings A and higher, y = 0.259 for BBB firms,
and g = 0.368 for firms with rating BB and below.

Table A.XI: Parameter estimates

The table below summarizes the volatility mean reversion parameter estimates for each credit rating
group The volatilities are winsorized at 2 5 and 97 5% levels

(1) (2) (3) (4)

0,1 Ot,1 Ot,1 0t,12
o121 0.552%
01,1 0.262**  0.263***
Ot-13 0.954**  (0.554***
01,12 0.900***
O1-12,12 0.749***
N 1171242 1258431 1225113 1132526
R? 0.301 0.619 0.633 0.569

*p <0.05, % p<0.01, ** p < 0.001

Based on this, T can substitute the weighted average variance into (14):

T
1
OptT = T ZU%;,S , where op, = (1—p)u+pog. (17)

Consequently, I can solve for p4; and o4,. To prevent outliers, o4, is assumed to be
at least 20% of the forecasted equity volatility (o4 > 0.26g ). In order to obtain m; at
the bond level, T substitute the bond maturity into (13).

(1987))
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2.C.2 Black-Cox model

An extension of the Merton’s model by Black & Cox (1976) allows for the early defaults
that may occur if the firm’s asset value falls below a default threshold determined by the
debt covenants. Accordingly, the default probability (15) adjusts to:

where d is a parameter capturing the default boundary and all other variables are as
in (15) (more details about the Black Cox model are provided in Bao (2009)).

In order to estimate d and implement this framework empirically, T closely follow
Feldhiitter & Schaefer (2018). Namely, pa4, is modeled exactly the same way as in the
Merton’s model, whereas o4, is parameterized as a function of equity volatility, leverage

and some adjustment factor:

— L

- Dr+E
where ¢(.) attains a value of 1 if LEV, < 0.25, 1.05 if 0.25 < LEV, < 0.35, 1.10 if

0.35 < LEV, < 0.45, 1.20 if 0.45 < LEV, < 0.55, 1.40 if 0.55 < LEV, < 0.75 and

1.80 if 0.75 > LEV; (Feldhiitter & Schaefer (2018)). Since the step function significantly

suppresses the volatility for highly leveraged firms, additionally, I impose that o4, >

opsc(.)=(1—LEV;)ogsc(.) (18)

OAt

0.20g,.

Later, within each credit rating subcategory (Aaa Aa, A, Baa, Ba, B, Caa C), I create
a representative firm which takes the median values of piay, 044, 0;, LEV;. This allows
me to calibrate d by matching model implied default probabilities from (2.3) to historical
default frequencies (over 1920 2020). In other words, I minimize the squared absolute

deviation in all credit rating groups (Aaa Caa) across maturities (1 20):

20
d; = argmin— Z(wu — i) for each i € {Aaa A,...,Caa C}. (19)
20 ~
where ;; is a historical Moody’s estimate of default probability in rating ¢ and ma
turity ¢, and 7;, is the respective Black Cox default probability for a representative firm
in rating 7. The calibration delivers a default barrier estimate ranging from 0.688 to
0.934 which encompasses Feldhiitter & Schaefer (2018) estimate of 0.8944. Table A.XII
outlines alternative calibration methods (imposing a single default threshold or changing
the historical sample) all of which produce fairly similar estimates. Given that the mean
model fit error is substantially lower (1.4% vs 2.8%) in the scenario with credit rating
specific default thresholds, I adopted this baseline for the calculation of resulting default
probabilities. The model fit to the historical probabilities is presented below (Figure
ALTIT).
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Table A.XII: Black-Cox model implementation

The table below summarizes the median model statistics for each credit rating group (top panel), as well
as the default threshold estimates (bottom panel) Columns a) and ¢) assume one single default barrier
for all firms, whereas columns b) and d) allow for a separate parameter for each credit rating category

Median statistics

Credit rating LEV 1 o )
Aaa Aa 0.479 0.105 0.055 0.050
A 0.406 0.133 0.057 0.044
Baa 0.397 0.128 0.053 0.043
Ba 0.448 0.174 0.064 0.048
B 0.562 0.167 0.062 0.044
Caa C 0.883 0.136 0.063 0.049

Default threshold d
Credit rating a) 1920 2020 b) 1920 2020 ¢) 1983 2020 d) 1983 2020

Aaa Aa 0.773 0.688 0.781 0.488

A 0.773 0.846 0.781 0.695

Baa 0.773 0.934 0.781 0.880

Ba 0.773 0.697 0.781 0.621

B 0.773 0.860 0.781 0.839

Caa C 0.773 0.764 0.781 0.782
MSE 0.028 0.014 0.026 0.012
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Figure A.II1: Model fit
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Note: The figures illustrate the Black Cox model fit to historical Moody’s default probabilities (over
1920 2020)

2.C.3 Modeling inputs

Equations (13), (14) and (15) require a number of data inputs which imposes some re
strictions on the sample size. Table A.XIII highlights the key components and their data
source. Some subjectivity is involved in choosing the default threshold on e could argue
that only the long term debt that matters. On the other hand, the Merton’s model un
derestimates the default risk by assuming that default occurs only at maturity, as well as
treating all firm’s assets as perfectly liquid. Thus, having more stringent default thresh
olds can alleviate this issue. Secondly, there may be concerns that the maturity of bonds
may poorly proxy the total firm’s debt. However, as we see in Table X, the public debt

constitutes the majority of all debt for most firms in the sample.
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The table below summarizes the choice of input variables in the Merton (1974) model Except for 7" and
¢, all empirical choices are made following van Zundert & Driessen (2017) and Feldhiitter & Schaefer

(2018)

Table A.XIII: Model inputs

Input

Proxy

E

Dr

Tt

Equity value: most recent market capitalization based
on CRSP (|pre|*shrout /1000)

Default threshold: sum of short term debt and long
term debt (quarterly Compustat items dleq and dlttq)

Asset drift rate: ro 4+ 0.220

Equity volatility: estimated based on daily returns from
CRSP and matched to the debt maturity, T, using the
autoregressive process with an AR(1) coefficient and long

term means, as in Table A.XI

Payout rate: the sum of interest payments, dividends
and net stock repurchases. Annual Compustat items
intpn, dv and prstke.

Risk-free rate: nominal US government zero coupon
yields with duration of T years (from Giirkaynak et al.

(2007))

Debt maturity: principal weighted average maturity of
company’s public debt
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Table A.XIV: Model inputs

The table below summarizes the distributions of firm month level inputs of the structural models The
bottom panel presents the implied asset volatility and expected return estimates based on the Feldhiitter
& Schaefer (2018) Black Cox implementation (FS2018), van Zundert & Driessen (2017) methodology

with stochastic volatility (ZD2017), and the standard Merton’s model The sample spans 2002 2020

IBES Compustat 1980 2021

p5  median p95 mean  std N
Sales 22 583 13846 3597 13800 50712
Book equity 27 314 7102 1894 8054 50712
Market equity 71 773 20633 5578 29186 50712
Sales growth 0.19 0.10 0.78 0.17 0.29 49036
ROE 0.44 0.11 040 0.08 0.23 48161
B/M 0.08 0.42 1.37 055  0.61 50712
E/P 0.19 0.04 0.13 0.00 0.31 50712
Payout 0.00 0.00 086 0.16 0.27 50712

Compustat 1980 2021

p5 median  p95 mean  std N

Sales 6 254 9264 2401 11167 79537
Book equity 8 139 4511 1268 6515 79537
Market equity 19 317 12737 3665 23464 79537
Sales growth 0.21 0.10 0.78 0.16  0.30 73370

ROE 0.47 0.10 039 0.06 0.24 72207
B/M 0.08 046 159 0.61  0.77 79537
E/P 0.24 0.04 0.15 0.00 0.40 79537
Payout 0.00 0.00 085 0.15 0.26 79537
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2.D Kalman Filter and Quasi-Maximum Likelihood

2.D.1 Kalman Filter implementation

Following de Jong (2000), I translate the dynamics of a short term risk factor to the
state space representation. There are M duration portfolios observable each month (in
my baseline, I use 10 duration deciles). The measurement equation for their risk premia
is:

rpp =A+ BF, 4+ ¢, var(e)=H (20)

where A and B are solutions based on equation (2.11), e, is a vector of measurement
errors that T assume to be homoscedastic and independent across time and maturities of
bonds. As a result, H is a diagonal covariance matrix:

H = ]]WU;%{ (21)

where Ij; is an M x M identity matrix, and ¢% is the variance of errors. Note that
for government bonds the measurement error captures the data noisiness and transient
market deviations from the fundamental default free price. In my setting, this error will
capture both the noise in risk free rates and expected loss estimates.

The transition equation is:

Foone = OF, +n;,  var (n) = Qy (22)

where ® and Q; come from the dynamics of state variable F', and At = 1/12 since the
returns are measured at a monthly frequency. For a square root process, the dynamics of

F are:

At
Fryne — 0 = "8 (Fy—0)+ / e HATIBE, AWy (23)
0

which implies that:

o= e—nAt

1— e—Q;eAt, e*/sAt _ e*2/~:At (24)

Q= po + B(F —0)

2K K

For estimation purposes, it is convenient to define all the dynamics using the demeaned
factor F). Then, one can initiate the Kalman filter at its unconditional mean and vari
Je1

Fy,=E (Ft) =0, By = var (]*:‘t) =5 (25)

ance:28

where P is the updated variance of estimated state variable, . All other Kalman filter

implementation steps are identical to de Jong (2000).

28The empirical estimates suggest that the risk premium was trending over time, so this assumption
is likely to underestimate the true decline in risk premia One could treat the initial conditions as a
separate model parameter and take into account this more rigorously
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2.D.2 Quasi-Maximum Likelihood

The model has a small number of key parameters © = [k, 0, 3, 0%, ] that are estimated
using the quasi maximum likelihood (QMLE). Namely, the log likelihood contribution at
time ¢ is:

—2InL; = In 27 + In |V| + u,V, 'y (26)

where u; is a fitted measurement error, and V; is the Kalman filter prediction for the
variance of risk premia. Note that this likelihood contribution is just an approximation of
the underlying true likelihood since the state variable in (23) is not normally distributed
over any discrete interval. In fact, the true distribution is non centered chi squared and the
state variable F; always stays positive when the Feller condition 2k > 3 is satisfied (Cox
et al. (1985)). As de Jong (2000) shows, these approximation errors are quantitatively
small, however, it is possible that during the estimation procedure the variance (Q; turns
negative. To address, this concern T bound @, to be strictly positive. Lastly, since the
state dynamics (20) and (22) are non linear in ©, there is a possibility of local optima.
Therefore, I run the estimation for a large number of starting values.
The filtered series are presented below.
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probabilities (solid black line)

1-decile, p=0.7

Figure A.IV: Filtered risk premia

2-decile, p=0.85

CIR model The baseline risk premia estimates are derived using Feldhiitter & Schaefer (2018) default

The dash line is the filtered series based on Kalman filter and QMLE

estimation A statistic p summarizes the correlation coefficient between fitted series and duration portfolio
risk premia All risk premia are measured in units
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2.E  Other Derivations

2.E.1 Approximation

We can deduce the relationship between the yields and the expected annualized return
by calculating the future value (FV) of bonds’ cash flows:

m—1

FVo = Egle (14 )™ + Eolcm + Pul (27)
t=1

where m is the maturity of the bond, y is the yield to maturity at time 0, ¢ is a coupon
payment, and P is the principal. As common in the literature, the assumption is that the
bond holder is able to reinvest future coupons at the same rate as the initial investment.
In order to make use of this expression, one has to specify how defaults affect future cash
flows. For instance, one can assume that upon the default the bond is restructured into
the same maturity bond with lower principal and coupons payments (determined by the
recovery rate). Then, each expectation can be replaced with Eyle;] = (1 —m)e; + mLe, =

¢(1 — Lm;) and (27) can be rewritten as:

m—1

FVo=> c(1—Lm)1+y)" "+ (c+ P)(1— Lm) (28)

t=1
Here 7; stands for the cumulative default probability at time ¢ and L loss given default

which is set to be maturity invariant. We can easily rearrange this into:

Zl ¢(1=Lm)  (c+P)(1— Lmy,)

—~ ¢(
FVo=(1+y)™ +
—~ (I+y) (L+y)m
(1= Lm) (et P)(1—Lm) el ) )
c(l—Lm c — L cL(my, —m
ae | A ), 3
~ (1+y) (I+y) ~ (1+y)
Po(1—Lmm) FVo>0
which means that the annualized expected return is:
FVp\ Y™ FVol/™
— =(1 1— Lm,)+ —— 30
() =+ |a-tm)+ (30
As we see, the equation is almost identical to (2.1), except for the second term, F;;“,

which captures the effect of allowing defaults to occur yearly and correcting coupons
with lower default probabilities. Even though the term is positive and increases with the
default risk and maturity, it remains quantitatively small for most bonds. For example,
based on the Moody’s historical default frequencies, one can compute that the expected
return for the American Airlines 3.5 year and 20 year maturity bonds on Jan 31, 2007
using both methods. The results are presented below.
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Table A.XV: Different methods of extracting expected return from
yields

Column I shows the baseline case using equation (2 1) Column II corrects for the early default assuming
the bond is restructured into a smaller principal and coupon bond, whereas column III assumes that the
bond is completely liquidated Finally, column IV presents the scenario where all the intermediate cash
flows are reinvested at the risk free rate of 4 9%

Maturity Rating Yield I II I11 IAY

3.5 BBB+ 539%% 5.13% 5.16% 5.18% 5.11%
20 BBB+ 6.09% 5.73% 5.88% 5.88% 5.45%

Columns I and IT present that the corrections leads to an increase of 3 basis points in
expected return on a 3.5 year maturity bond, and 15bp on a 20 year bond. If one assumes
that upon the default the firm is liquidated and (1 — L) is immediately reimbursed, (29)
transforms into (31).2 However, that has almost no further quantitative effect on the
analysis. Overall, it seems that the baseline introduces a slight downward bias for the
longest maturity bonds, however, those are the same bonds that are most sensitive to
the reinvestment assumptions. For comparison, column IV illustrates the scenario where
defaults occur early but all the intermediate cash flows are reinvested at the rik free rate
(on Jan 2007 the government yield term structure was quite flat at around 4.9%). This
barely alters the short term expected returns but depresses the long term bond returns
by roughly 40bp. Since the Campello et al. (2008) approximation lies somewhere in the

middle of all of these estimates, for simplicity, in the baseline I follow their approach.

2.E.2 Instantaneous risk premium

In this section, I will derive the instantaneous risk premium expression for the affine model
in Section 2.6.1. Based on equations (2.9), (2.11) and the independence assumption, we

can show that the m maturity credit spread is a function of maturity matched expected
P

+ m, and risk premia components:

credit losses, s
sfm = sfm + TDim (32)
Respectively, the bond yield is:

yt,m = rft,m + Sfm + rpt,m (33)

where 7 f; ,, is the maturity matched risk free rate. In affine term structure models

(such as CIR), the yields are linear in state variables. Thus, the price of a (zero coupon)

29
m—1

. m c(l-m) (c+P)(1—7mm) ~&=m1i(c+P)(1-1L)
Fho=(l+y) ; (1+y) (1+y)m ; (1+y)

(31)
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bond is:
P, = exp(—mypm) = exp (fm [rftym + sfm] — A(m) — B(m)Ft) (34)

Note that m = T — t where T is the maturity date. Using the Ito’s lemma, one
can show that the drift of bond return process under the physical probability measure is
(conditional on no default):

7 frm + Sfm + Fy, —¢B(m)BF, (35)

Following Yu (2002), this drift have to be adjusted for expected default losses, sfm, to
arrive at the unconditional return drift:

Tfim + I —¢YB(m)BE, (36)
SN~~~ —_—
risk free rate risk premium

2.E.3 Holding-to-maturity returns

When defaults happen only at maturity, a zero coupon bond has an expected return

holding period return of:

Et(rft,wrm) = 7Tj,m,t(l - Lm) (1 + yj,m,t)m + (1 - ﬂ—j,mqt)(l + yj,m,t)m
= (1 =+ yj’mﬂt)m (1 — Lmﬂj,m,t)

where Et(rft,ter) stands for the expected holding period return of bond j of maturity
m at time ¢, y;.,: the corresponding bond yield, L,, loss given default, and 7;,,;
denotes the default probability.

In the paper, I report the annualized version, Ey(r ¢ iym) = Ei(rf, )™
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3.1 Introduction

An active literature studies and measures the expected returns on equity dividend assets
with different maturities. The properties of the term structure of equity risk premia have
far reaching implications for at least three key reasons. To begin with, it is a direct
test of competing theoretical asset pricing models as they mostly imply a flat or positive
relationship between the maturity of an asset and its expected return. Second, the risk
premium term structure is vital to understand the aggregate cost of capital and NPV
calculations which may be driving companies’ and investors’ decisions at the micro level.
Third, there is evidence suggesting that many documented anomalies (Cochrane (2011)
"factor z00’), such as the value premium, may be captured or tamed by the differences in
cash flow duration across firms (Dechow, Sloan & Soliman (2004), Weber (2018), Gormsen
& Lazarus (2022)). In light of these arguments, it is crucial to find a precise measurement
of the equity term structure.

In our paper, we propose a new methodology which tackles the inherent empirical
challenges of measuring equity risk premia across different maturities. The idea of the
procedure is straightforward: we project expected cash flows and estimate discount rates
that bring the model price of the firm’s equity as close as possible to the observed market
value. In the implied cost of capital literature this is normally done by identifying one
discount rate specific to the firm (e.g. Pastor, Sinha & Swaminathan (2008), Li, Ng
& Swaminathan (2013)). In some sense, this is equivalent to assuming no commonality
across observations which could further improve the precision of the estimation procedure.
Hence, such a firm level analysis limits the precision of estimates and, most importantly,
leaves no degrees of freedom to recover maturity specific rates. For these reasons, we
diverge from the implied cost of capital literature by imposing some similarity across
firms based on observable characteristics (e.g. size, book to market, credit risk) and use
the cross sectional variation in cash flows and prices to identify maturity specific risk
premia. As a starting point, we assume that discount rates are the same across all firms,
but vary with maturity. In this way we can focus on the pricing differences purely driven
by the timing and size of cash flows. However, we subsequently allow these discount
rates to be portfolio specific and potentially flexibly modelled as any function of firm
characteristics as long as the rates are not entirely firm specific.

The key value of our method is that it delivers equity term structure estimates over the
last 40 years which are neither based on (noisy) realized returns nor assume a specific asset
pricing model. We achieve this by combining insights from two strands of the literature:
the cross sectional studies on the realized returns of portfolios with different cash flow
durations (e.g. Dechow et al. (2004), Weber (2018)) and the implied cost of capital
literature (Péstor et al. (2008), Li et al. (2013)). The key advantage of the first branch
of literature is that the U.S. cross section of stock prices and fundamentals span a much
longer sample (1980 2021 in our case) as compared to the option contracts and dividend
strip futures data used in the seminal work of van Binshergen, Brandt & Koijen (2012)

and van Binsbergen, Hueskes, Koijen & Vrugt (2013). The longer sample is particularly
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important when studying the dynamics of the equity term structure over the business
cycle. Moreover, the liquidity of the dividend derivative markets may pose problems,
especially in such short samples (Bansal, Miller, Song & Yaron (2019)). The sparse and
only recent coverage of firm level dividend strips also limits a thorough estimation of the

L Yet, the realized equity returns used in cross

equity term structure in the cross section
sectional studies are also subject to the critique of non stationarity and large degrees of
noise (Fama & French (2002)). Also, firm duration may be correlated with other drivers
of expected returns, which makes it nontrivial to identify the duration effect. For these
reasons, instead of averaging realized returns, we resort to the implied cost of capital
literature and imply the expected returns using the constructed cash flow forecasts and
observed market prices. In other words, we combine the best of two worlds without
explicitly assuming a specific asset pricing model (as in Giglio, Kelly & Kozak (2022)).
As shown later, our approach allows us to discover novel cross sectional patterns.

We now explain our methodology in more detail. We augment the mean reverting
cash flow model of Dechow et al. (2004) with the IBES forecasts data on sales, return on
equity (ROE) and earnings per share (EPS). In this manner, we are able to include a richer
investors’ information set and capture more flexible cross maturity cash flow patterns than
standard mean reversion models alone?. Given these forecasts, we are able to estimate
the short , intermediate and long maturity discount rates by imposing a parsimonious
Nelson Siegel type functional form often applied in the fixed income literature (Nelson
& Siegel (1987)). Specifically, by including just 3 parameters for the level, slope and
decay, we are able to capture a wide array of monotonically increasing or decreasing term
structures.

Our first main finding is that, when we apply our method to the full sample of stocks,
the aggregate equity term structure’s slope is positive. However, we also find substantial
cross sectional differences in risk premium term structures. For most portfolios sorted on
size, book to market and credit risk the term structure remains upward sloping. But for
small value firms and small firms with high credit risk, we document a downward sloping
term structure. This novel result illuminates the role of cross sectional characteristics not
only for the level of expected returns (Fama & French (1993)), but also for the shape
of the term structure. This is a powerful insight because the empirical success of asset
pricing models may actually depend on the sample of firms one is looking at. On the one
hand, the aggregate market risk premia are increasing with maturity as canonical habit
(Campbell & Cochrane (1999)) and long run risk models (Bansal & Yaron (2004)) predict.
On the other hand, to our knowledge, there is no equilibrium model which could match

!Gormsen & Lazarus (2022) are amongst the first to study the interesting market of single stock
dividend futures Their sample starts, however, only in 2010 and covers only 180 different stocks

2Cash flow mean reversion models, applied in Dechow et al (2004) and Weber (2018), are based on
immediate and relatively fast mean reversion that stifles most of the cross maturity variation in firms’
cash flows As a consequence, the resulting cash flow duration proxies have small dispersion and estimated
expected returns are mostly explained by the book to market ratios only Since the empirical evidence
does not support immediate reversion to the steady state across all firms, we incorporate IBES analyst
forecasts for the first 2 5 years, in a similar vein as in Gebhardt, Lee & Swaminathan (2001) and Claus
& Thomas (2001)
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the cross sectional patterns that we observe (as well as Giglio et al. (2022) document in
their recent work). Thus, our findings reveal a new dimension to analyze and explain.

Our empirical analysis also shows that there is substantial time series variation in the
equity term structure slope. In recessions, the term structure remains upward sloping
but does become flatter, with short term discount rates rising and long term discount
rates falling. This is consistent with the results of Bansal et al. (2019) and Giglio et al.
(2022), who also detect countercylicality of short term risk premia, at least at the annual
frequency®. On the other hand, our findings challenge Gormsen (2020) who, at the market
level, finds a countercyclical term premium implying that most of the variation is driven
by changes in long term rates. In contrast, our estimates reveal that most of the time
variation comes from the short and intermediate maturity risk premia. Moreover, we do
not find evidence that in recessions the variation is so large that it can create an inversion
of the term structure slope at the aggregate market level.

As mentioned above, we also perform the estimation for different credit rating groups.
We find a positive slope for all investment grade firms, but a flat term structure for spec
ulative grade firms. Moreover, we also find that the level of expected returns is decreasing
monotonically with the creditworthiness of the issuer, a result which is intuitive, but of
ten undetected in the distress risk literature using realized returns (Campbell, Hilscher &
Szilagyi (2008)). When we perform double sorts on credit rating and size, we find that the
smallest and least creditworthy firms actually exhibit a downward sloping risk premium
term structure. This suggests that firms with high exposure towards short term transient
risk may be driving the puzzling negative relationship between the maturity of the cash
flow and its expected return. We also apply our method to industry portfolios and find
positive slopes for all industries, except for the steel works industry.

The key limitation of our approach is that it relies on projections of firm’s future cash
flows. We therefore perform a range of robustness checks on these cash flow projections
and show that our qualitative findings persist in a wide array of robustness tests and
alternative specifications. First, we implement van Binsbergen, Han & Lopez Lira (2022)’s
estimates of the analyst forecast biases to correct for documented optimism in IBES
consensus estimates. Second, we consider time varying long term cash flow growth rates
proxied by the Survey of Professional Forecasters’ (SPF) predictions on long term inflation
and real GDP growth rates. Third, we average cash flow forecasts across different models,
cap them, and exclude the most extreme size and book to market portfolios to alleviate the
possible impact of outliers. None of these extensions affect the upward sloping pattern
of the aggregate market equity risk premia. Perhaps not surprisingly, there are some
indications that the decreasing term structure slope among the smallest value firms is
dampened by additional filters and cash flow refinements. This means that some of the
extreme patterns indeed come from estimation noise or small subsets of exceptional firms,
but are not washed out entirely. On a similar note, we also perform the estimation with

perturbed cash flow reversion parameters and different forecasting horizons which reveal

3The equity risk premia here is measured holding to maturity returns
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another interesting relationship: the slope of the implied term structure does depend on
the assumed persistence of cash flow growth rates. For moderate to high levels of mean
reversion, which includes our mean reversion estimates, the recovered term structure is
upward sloping. In turn, with very slow mean reversion the slope can flip sign. Thus, one
should be careful when drawing conclusions without accounting for the uncertainty that
shrouds the cash flow persistence estimates. Interestingly, in most regressions our cash flow
reversion estimates generate slower reversion compared to the existing literature (Dechow
et al. (2004) and Weber (2018)). We provide evidence that cross sectional characteristics,
such as ROE and sales growth, converge slower in the medium to distant horizon than in
the first few years.

The paper contributes to the empirical asset pricing literature aiming to measure the
shape of the equity term structure. We find empirical support for the negative slope
among the smallest value and high risk firms, however, for larger firms the evidence con
forms with Bansal et al. (2019)’s findings. This carries substantial ramifications for the
theoretical research since it finds suggestive evidence supporting the classical theoretical
asset pricing models of Camphell & Cochrane (1999) and Bansal & Yaron (2004), at least
for large firms. On the other hand, our results challenge the current frameworks in the
cross sectional dimension as, to our knowledge, there is no microfounded model that can
generate different equity term structures across firms sorted on book to market, size and
credit rating. Moreover, this paper questions the existence of the documented credit risk
anomaly (Campbell et al. (2008)).

The closest study to our paper is Giglio et al. (2022). They also estimate term struc
tures in cross sectional portfolios. They find that small (value) firms have a flat (downward
sloping) risk premia pattern, whereas for the big (growth) firms the slope is upward slop
ing. Moreover, Giglio et al. (2022)’s findings conform with the idea that the unconditional
equity term structure is upward sloping (mildly in their case), but it inverts in recessions.
Even though we share similar insights, their paper is based on a fundamentally different
approach. They assume a reduced form model for the pricing kernel (in the light of Lettau
& Wachter (2007)) and fit its parameters to the principal components of realized returns.
In contrast, we make assumptions about cash flows and imply ex ante expected returns
without assuming a specific asset pricing model. In this way, our methodology provides
new degrees of freedom and a perspective that contributes to the ongoing debate in the
equity term structure literature.

Finally, this paper is different from the studies that rely on the realized returns of
duration portfolios (Weber (2018), Gormsen (2020)). Our approach does not suffer from
the mechanical correlations of duration with the book to market ratio as we focus on the
model implied prices of firms. At the same time, our method is internally consistent we
use the same discount rate curve throughout the optimization.*

The structure of the paper is as follows. Section 3.2 describes the identification strategy

and methodology. Tt also expands on the relative advantages and restrictions of the

4A common feature of duration portfolio studies is employing a flat (time invariant) term structure
to create duration measures eventually leading to the downward sloping patterns in realized returns
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proposed framework over the existent studies. Section 3.3 presents the data, whereas
section 3.4 elaborates on the estimation techniques applied. Section 3.5 outlines the
results and key comparisons with the literature. Section 3.6 contains robustness checks,

and section 3.7 contains a summary and final remarks.

3.2 Implying Discount Rates

As outlined, our method relies on three main components the pricing equation, cash flow
forecasts and the functional form for discount rates. In the following sections, we discuss

the identifying assumptions in greater detail.

3.2.1 Pricing equation

At time ¢ the value of firm i’s equity can be described by this discounted cash flow
equation:

s Et[CFi,ter]

Z m =Py (3.1)

m=1 i

where CFj .., is the free cash flow accruing to the company’s shareholders®, P;; is

the market value of equity, and r;;,, is the maturity specific (zero coupon) discount rate.
We assume that at some year T the firm reaches its steady state where expected cash
flows grow at the rate of ¢, and r;,,, converges to 7;;r. In other words, both the term
structure of cash flow growth rates and discount rates remain flat beyond this maturity.

Given this, one can simplify this infinite sum to:°

i E[CFitin) E[CFural (32)
= (L +rigm)™ (L4 7rir) (g — 9e) o .

In the base specification, we follow Dechow et al. (2004) and Weber (2018) and set
g¢ to 6%, which equals the long term average nominal GDP growth rate. As shown
later, allowing for time variation in g does not affect the results. Similarly, based on
the literature, we fix the forecasting horizon 7" at 15 years.” For robustness, alternative
horizons are also considered and the qualitative conclusions seem to hold as long as the
forecasting horizon is distant enough for firms to reach their steady states. That is, with
a more persistent cash growth rate process one may need to increase 7' to reach stable
results.

The key identifying assumption is that the discount rate curve {Tiat»m}m:LT is constant
across some set of firms. In the implied cost of capital literature, equation (3.2) delivers

5An equivalent formulation of (3 1) is the well known Gordon growth dividend discount model where
CF; 14+m is the dividend payment Implicitly, we assume that the fundamental value of the listed firms is
non negative a condition which, except for a small fraction of firms, is satisfied in the data

6More formal derivations are included in Appendix E

"The forecasting horizon of 15 years is used by Dechow et al (2004), Li et al (2013), and Weber
(2018), amongst others
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a firm specific discount rate r; ;. However, this leaves no degrees of freedom to identify
maturity specific discount rates. To address this challenge, we group firms into charac
teristic portfolios and impose that all firms in the same group (i.e., portfolio I) share the

same discount rates {r;ﬁt,m} Effectively, the identification of discount rates relies

m=1T"
on the cross maturity variation of cash flows within the portfolio of firms.

3.2.2 Cash flow forecasts

The key ingredients in the estimation procedure are cash flow forecasts. Following Dechow
et al. (2004) and others, we deduce the dynamics of CF’s from the identity:®

CF, = \EL —(BE; — BE;_1) = BE,_1 x (ROE, — %BE,)
[\ —
earnings reinvestments

where BE stands for the book value of equity, %BE denotes its growth rate, and ROFE is
the return on equity. Since Nissim & Penman (2001) documented that the growth rate of

(3.3)

sales is a better predictor for book equity growth than most other accounting variables,
for the rest of the paper we proxy %BE by the growth rate of revenues.

In order to forecast ROE and sales growth, a common approach in the literature is to
assume mean reverting processes and use those projections to forecast cash flows (Dechow
et al. (2004), Weber (2018), Chen & Li (2018)). It is a parsimonious but restrictive
approach as all variation in cash flows is attributed to initial differences across firms
which dissipate at the rate of reversion parameters. If the researcher underestimates
the cash flow persistence, all firms quickly converge to the steady state and there are
no meaningful differences between, for instance, highly profitable and loss making firms
which eventually leads to the poor identification of short term and long term risk premia.
As this scenario is empirically unrealistic (e.g. loss making firms often take years to break
even), one way to address this is to incorporate analyst forecasts to the first years of cash
flow predictions (similarly to Claus & Thomas (2001), Gebhardt et al. (2001), Li et al.
(2013)). This allows for more flexible patterns arising from different firm life cycles, and
for more accurate depiction of investor beliefs. Needless to say, the analyst projections
also alleviate the concern that our results are highly correlated with the initial book
to market ratios (as in Dechow et al. (2004) and Weber (2018)) and provide additional
cross sectional variation in the estimation of long versus short term discount rates. Of
course, analyst forecasts may carry some biases or additional noise too, and for this reason
we later investigate specifications where cash flow forecasts are averaged across different
approaches and find that the main results remain intact.

Based on the arguments mentioned above, we model cash flows in two stages. First, for
the 1 5 year horizon, depending on the data availability, we extract information from the
median analyst forecasts. Second, starting from the last year of analyst data availability

until period T, we follow the same mean reverting process as in Dechow et al. (2004) and

8To be precise, this identify is true when clean surplus accounting holds To a large extent, this is
empirically supported (Dechow et al (2004))
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Weber (2018). The key modeling choices of these two stages are discussed below.

Stage one: Analyst forecasts

The estimation procedure benefits from the short and medium horizon forecasts available
from IBES by introducing more cross firm variation. However, the empirical challenge of
using IBES forecasts is that they are predominantly available for the earnings per share
(EPS) measure and there is very little information on the ROE side?. To circumvent these
data deficiencies, we complement the available forecasts with implied ROE forecasts from
median EPS forecasts, which almost triples our sample and data range. If we assume
that the number of shares remains fixed, we can proxy the ROE forecasts by the median
EPS forecasts divided by the forecasted BE values per share. In a similar spirit, we also
imply the revenue growth projections from the level of revenue forecasts. The exact steps
in which we construct our projections are described in Appendix A.

This procedure results in a wide heterogeneity across firms in their ROE and sales
growth patterns (Table I). This is particularly valuable for ROE forecasts because empiri
cally ROE mean reverts more slowly than sales growth meaning that most cross sectional
cash flow differences can be explained by this variable. One potential concern is that these
implied forecasts have nothing to do with the true forecasts. However, as shown in Table
I1, the correlation between implied and actual ROE forecasts is actually high, reaching
70 — 80% at shorter horizons, and it remains at roughly 50% for 5 year maturities. More
over, when comparing the distribution of ROE forecasts with implied ones (Table I), one
can notice similar means and medians with slightly larger standard deviations and tails
of the distribution. Overall, it seems that the procedure delivers a good approximation,
however, tighter filters and forecast averaging across alternative models may help to purge

some noise and extremities from the estimation (see Section 3.6).

Stage two: Mean-reverting process

Starting from year 6 or the last available horizon of IBES forecasts, we assume similar
mean reverting processes for ROE and sales growth as in Dechow et al. (2004) and Weber
(2018):

ROE, = 0.12 + 0.81(ROE;_; — 0.12)

(3.4)
BE, = 0.06 + 0.41(BE,_, — 0.06)

Both AR(1) coefficients (0.41 for BE and 0.81 for ROE) are chosen based on the pooled
OLS regressions using 3 year lags in the full Compustat sample over 1964 2019 (the third
row of Table TTT). The equations state that ROE converges to the long run cost of capital

of 12%; %BE is proxied by sales growth, which also reverts to the assumed long term

9The availability of ROE forecasts is limited to 2001 2014 period with relatively few instances in the
early years The level of revenue forecasts are accessible starting from 1992 with much larger coverage
across firms Yet, EPS forecasts date back to 1976 with the largest coverage of around 60,000 observations
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nominal growth rate of 6% (g). Both 12% and 6% are chosen based on the full sample
historical averages, as in Dechow et al. (2004) and Weber (2018).

Table I: Analyst forecasts

The table below summarizes the implied sales growth, ROE and actual ROE forecasts in our merged
Compustat CRSP I/B/E/S sample over 1980 2021 The implied sales growth forecasts are calculated
as the growth rate in median I/B/E/S sales forecasts The implied ROE forecasts are constructed by
dividing median EPS forecasts by projected book value of equity (assuming that it grows at a sales
growth rate) Horizon specifies the future financial year for which the forecasts are recorded To alleviate
outliers, all forecasts are winsorized at a 2 5 and 97 5% level

Implied sales growth forecasts

Horizon p5  p50 p95 mean sd N

1000 010 0567 015 015 29577
001 009 064 016 018 15211
000 010 107 022 028 6648
000 010 131 025 036 4991

ROE forecasts
Horizon  p5  p50 p95 mean sd N

1 004 015 041 016 012 12495
2 000 016 041 018 011 12313
3 003 017 053 020 013 7064
4 007 018 041 020 012 469
5 008 018 051 023 018 279

Implied ROE forecasts

=W N

Horizon  pb p50  p95 mean sd N

024 011 054 013 017 50696
009 013 063 017 016 47685
001 015 075 020 018 36051
002 017 08 023 021 31952
002 018 097 025 024 30940

T W N =

Table II: Correlation between actual and implied forecasts

The table below summarizes the correlation between the actual ROE forecasts and implied ones for
different forecasting horizons The ROE forecasts are available only for 2001 2014

Years 1 2 3 4 5
Corr 0.79 0.72 0.66 0.58 0.51
N 12479 11843 6798 454 269

The key difference here with previous research is that we employ different regressions
that lead to much higher reversion coefficients (in other words, much slower mean rever
sion). Dechow et al. (2004) find a coefficient for ROE equal to 0.57, and 0.24 for sales
growth; Weber (2018) obtains 0.41 for ROE and 0.24 for sales growth. Both studies es
timate the annual AR(1) coefficients using annual pooled OLS regressions over the full
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sample starting in 1964. Yet, these estimates are sensitive to filters applied and, as il
lustrated in Figure C.I for the ROE and sales growth quintile portfolios, they are biased
downwards due to the very quick initial mean reversion and slow decay afterwards. In
fact, similar pooled regressions where we use more distant lags of 3 to 5 years to estimate
the AR(1) coefficient or tighter winsorization of the sample reveal that the true mean re
version for ROE (sales growth) is likely to be in the 0.74 0.84 (0.41 0.53) range (Table IIT)
10, Since we aim to predict the long term behaviour of firm’s cash flows (and short term
patterns should be mostly captured by the analyst forecasts), we conclude that slower

mean reversion is more empirically plausible, especially for longer horizons.

Table ITI: AR coefficient estimates

The table presents the estimated AR coefficients from different pooled OLS regressions The first five rows
represent estimates using the full Compustat sample over 1964 2021, whereas the last 3 rows merged
Compustat CRSP I/B/E/S sample spanning 1980 2021 The second and third rows describe regressions
where both ROE and sales growth are winsorized at 5% and 95% levels and ROE is capped at 100%
(some firms incur losses exceeding their book value of equity) Rows four, five, seven and eight present
specifications where the first order autoregressive coefficient is estimated using more distant lags All
AR coefficients are standardized to 1 year maturity The standard errors (SE) are clustered by year For
longer lag regressions, the Delta theorem is applied to compute the AR(1) coefficient standard errors

ROE Sales growth
AR(1) SE R2 N AR(l) SE R2 N

full Compustat sample 0.009 0.009 0.003 190261  0.000 0.000 0.000 234721
winsorize (5% and 95%)  0.727 0.017 0.431 190261 0.226 0.015 0.055 234721

cap ROE at 100% 0.720 0.012 0.473 190261

3 years lag 0.810 0.009 0.241 151445 0.413 0.017 0.006 193541
5 years lag 0.846 0.007 0.158 123611 0.536 0.025 0.002 161360
merged sample 0.693 0.020 0.475 37267 0.284 0.034 0.094 37934
3 years lag 0.778 0.017 0.217 28230 0.502 0.028 0.022 29019
5 years lag 0.825 0.012 0.144 22459 0.592 0.034 0.008 23164

In the robustness section we also consider alternative autoregressive coefficient mag
nitudes. While small perturbations do not affect the results much, larger shifts in mean
reversion can indeed alter the qualitative conclusions.

3.2.3 Functional form for equity risk premia

Our framework is flexible in modeling different types of heterogeneity in firm discount
rates. Nevertheless, since the m period cash flow is not expected to be much different
from the m + 1 period cash flow, the discount rates for similar maturities will be strongly
correlated, and estimating them separately would lead to large standard errors and noisy

estimates. For this reason, we choose the Nelson Siegel (NS) functional form (Nelson &

10We also explored specifications with multiple lags and moving averages, however, the additional terms
often were not statistically significant For this reason, we keep the parsimonious AR(1) model as our
base specification
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Siegel (1987)), often used to model fixed income yield curves, as it is both sufficiently
rich in capturing different discount rate curve patterns and parsimonious in the number

of parameters:!!

1 —exp(—m/A)

e ] (3.5)

TItm = r{,m + BI,I - 62,[[

As we see in (3.5), we take into account the term structure of risk free rates, r[,m, by
proxying it with the US zero coupon bond yield curve. This allows us to directly focus on
the level of risk premia rather than total discount rates, and introduces aggregate time
variation in our base scenario case. Importantly, for maturities m > T, both the risk
premia and total discount rates are assumed to be constant, i.e. for all m > T we have
Tem = T47-

Rather than reporting the parameter estimates, in the analysis below we mainly report
two key aspects of the risk premium term structure: the level of the 15 year risk premium
and the slope, defined as the difference between the 15 year and 5 year risk premium.
As discussed below, given the typical duration levels of US firms, identifying the risk
premiums at the very short end (1 4 years) is difficult, which is why we define the slope
using the 15 year and 5 year maturity points.

The parameter X\ captures the curvature of the equity term structure and is notorious
for being difficult to estimate (e.g. you can always simultaneously increase the short rate
and decay to achieve a similar overall effect). Thus, for the rest of analysis we will fix it
to economically plausible values (i.e. we set A =4 as it introduces some curvature for the
smooth convergence to the long run levels). In Appendix C, we verify that our results

remain similar when we use other values for A (Figure C.IIT).

3.3 Data

The analysis is performed using US data over the 1980 2021 period. Even though all re
quired variables are observable as of 1976, we start in 1980 since from that year onwards
we have a cross section of more than 500 firms per year. This is important since our
approach requires substantial cross sectional variation, especially since we also perform
analyses where we split the cross section in several portfolios. The balance sheet informa
tion comes at the yearly frequency. Stock price data and balance sheet data, as well as
historical credit ratings and S&P500 index composition, are obtained from Compustat
CRSP. Supplementary book equity data is collected from the Kenneth French website.
The median analyst forecasts are from Thomson Reuters T/B/E/S summary database,
whereas historical constant maturity (zero coupon) yields are from Giirkaynak, Sack &
Wright (2007). Historical GDP and NBER recession periods can be accessed from St.

Louis FED, and the long term inflation and real GDP growth expectations come from the

1Tn this version, we do not include the hump term as it is known to be highly correlated with other
parameters Thus, the term structure of risk premiums is either monotonically increasing or decreasing
an assumption which can be relaxed in future work
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survey of professional forecasters collected by FED of Philadelphia.

We construct our book equity measure following Davis, Fama & French (2000).'? We
measure book equity (and other historical accounting variables) using the most recent
financial year results prior to the valuation month (June). Similarly, the market cap is
calculated as the price times the number of shares outstanding at the end of the valuation
month (June). Both prices and shares outstanding come from CRSP. June is chosen as the
valuation month because it guarantees that most of the financial statement information
has already arrived to the market, and analyst forecasts are mostly covering the upcoming
financial years. To reduce potential extremities, we keep only those 1/B/E/S median
forecasts that were generated by more than 1 analyst. Adding to that, in order to alleviate
liquidity concerns, we exclude the smallest 20% market cap firms on a year by year basis.
Following Weber (2018), utilities (4900<= SIC<5000) and financials (6000<=SIC<7000)
are dropped from the sample, as well as firms that are not listed on one of the major
stock exchanges (NYSE, AMEX and Nasdaq). Finally, since we value the total equity
size of each firm, we exclude all mismatches larger than 5% between Compustat and CRSP
database market caps'3. These filters leave us with 79,537 Compustat CRSP firm year
observations over the 1950 2021 period. After merging with I/B/E/S, the final sample
consists of 50,712 firm year observations over the period 1980 2021. More details on the
filters and sample construction are provided in the Appendix.

In terms of summary statistics, the final sample is representative of the broader
Compustat CRSP dataset. As reflected in Table TV, the estimation sample consists of
larger firms (with median market cap of USD 722 mln. as compared to USD 260 mln.
in Compustat CRSP) as larger firms tend to be more frequently covered by analysts.
Nevertheless, financial ratios, such as ROE or dividend payouts, have almost identical
distributions in both samples. The only exception is the BM ratio which is slightly lower
in the final sample (median of 0.43 vs 0.49) because larger firms tend to have higher val
uation ratios. Since most financial ratios have large outliers due to small denominators,

we winsorize ROE (including sales growth) at the 5% and 95% level on a yearly basis.

12Observations with negative book equity are excluded

3Differences in end of the year market caps between Compustat and CRSP records may lead to a
severe mispricing in our model For this reason, we exclude all observations with large discrepancies that
potentially indicate multiple classes of traded or non traded shares
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Table IV: Summary statistics

The table compares the Compustat CRSP I/B/E/S sample used for the analysis with a broader Compu
stat sample obtained after standard filtering procedures (as in Weber (2018)) Sales, book and market
equity are presented in millions of USD ROE, sales growth, hbook to market, earnings per share and
dividend payout ratio are all presented in units The dividend payout ratio is calculated similarly as
in Li et al (2013) the total dividend paid divided by net income (in case it is positive) The ROE is
the defined as current earnings before extraordinary items divided by lagged book equity To alleviate
outliers, ROE and sales growth are winsorized at a 2 5 and 97 5% level

TBES Compustat 1980 2021

p5 median p95 mean  std N
Sales 22 583 13846 3597 13800 50712
Book equity 27 314 7102 1894 8054 50712
Market equity 71 773 20633 5578 29186 50712
Sales growth 0.19 0.10 0.78 0.17  0.29 49036
ROE 0.44 0.11 0.40 0.08 0.23 48161
B/M 0.08 0.42 1.37 055  0.61 50712
E/P 0.19 0.04 0.13 0.00 0.31 50712
Payout 0.00 0.00 0.86 0.16  0.27 50712

Compustat 1980 2021

p5 median p95 mean  std N
Sales 6 254 9264 2401 11167 79537
Book equity 8 139 4511 1268 6515 79537

Market equity 19 317 12737 3665 23464 79537
Sales growth 0.21 0.10  0.78 0.16 0.30 73370

ROE 0.47 0.10 0.39 0.06 0.24 72207
B/M 0.08 0.46 1.59  0.61 0.77 79537
E/P 0.24 0.04 015 0.00 0.40 79537
Payout 0.00 0.00 085 0.15 0.26 79537

3.4 Estimation

We estimate model parameters 1 and (35 by minimizing the squared relative pricing
error between the firm’s total market capitalization and model valuation. Specifically, the
squared pricing error for firm ¢ at time t can be expressed as:

T
& ( Z Ey[CF;y4ml/ Py ECF; 1ir1]/ Py 1)?
b= _
! = (1 +7em)™ (L+7rer)(rer — gt)

(3.6)

where 7, is a function of f; and fy as in equation (3.5).
In the baseline scenario, we estimate §; and (3 by minimizing the sum of the squared
pricing errors over the whole sample:

argmin Z Z Wi it (3.7)

B1,B2 i
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where w;; is the weight assigned to firm ¢ in year ¢.

The main criterion is thus how well the chosen risk premia parameters fit the cross
section of stock prices. This estimation procedure can be seen as a joint calibration of
model values to market prices where observations with the largest weight or highest pricing
deviations attain more importance. We choose to use a value weighting scheme for the
estimation, to focus the estimates towards economically sizable firms and to prevent that
large pricing errors for small firms dominate the estimation procedure. We do impose
that each observation year has the same weight in the estimation procedure, to prevent
that later years with higher market values dominate the results. Later we provide results
based on size sorts to analyze differences between small and large firms.

Clearly, differences in cash flow term structures across firms are a necessary condition
for identification. In Figure C.1 of Appendix C we graph the distribution of firm’s equity
durations, where these durations are calculated using our benchmark risk premium esti
mates. The graph shows that there is indeed substantial cross firm variation in durations,
with a substantial amount of firms having durations below 10 years or above 20 years,
respectively.

Finally, to alleviate concerns that there are firms whose valuation our model cannot
capture well, we winsorize the sample at 2.5% and 97.5% based on the model implied
internal rate of return of a stock. This step effectively excludes firms with extremely
high or low valuation ratios (for instance, companies in severe financial distress) that are
challenging to value with standard fundamental value models. In this way, without too
much loss of generality (most stocks excluded are smaller ones with extreme ROE and

sales growth rates), we reduce the impact of outliers.

3.5 Results

3.5.1 Market-wide estimates

We start with the panel of firms over the full sample period, 1980 2021. We allow for
a time varying risk free rate term structure and assume the same equity risk premium
term structure for all firm year observations. Later, we extend the setup by allowing for
cross sectional and time series variation.

The baseline results unveil a clear pattern the aggregate stock market has an upward
sloping term structure of risk premia. This can be seen from Figure I. The long term
risk premia flatten out and approach a constant level of roughly 7 8%. Given that most
value of the market is concentrated in the intermediate and long term horizon, this should
represent the unconditional equity risk premium to some extent. Figure I also shows that
risk premium estimates are below zero for maturities of 4 years and shorter. As discussed
above, given that equity durations are typically above 5 years, identifying the very short
end of the risk premium term structure is difficult and the negative premiums at the
short end effectively follow from the extrapolation that is inherent in the Nelson Siegel

specification. We therefore mainly focus on the difference between the 5 year and 15 year
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maturity points in our discussion. Figure I shows that our benchmark estimates thus
generate a slope difference of about 8%, which is substantial. The qualitative finding of
a positive slope is confirmed in many specifications below, meaning that, everything else
equal, investors have a preference for shorter maturity cash flows. We also present results
for an estimation where we equally weight all squared percentage pricing errors of firms.
In this case, smaller firms likely dominate the estimation results. Figure I shows that
we still obtain an upward sloping term structure, but with a smaller slope and higher

short term premiums. The size sorts presented below confirm the size effect.

Figure I: Full-sample term structure of equity risk premia
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Note: The graph depicts the estimated equity risk premium term structure over the full sample for

the benchmark value weighted case, and for a case where we equally weight all firms in the estimation
Compustat CRSP I/B/E/S sample: 1980 2021

Our finding that the equity term structure is upward sloping is consistent with the
predictions of well known theoretical asset pricing models, such as habit (Campbell &
Cochrane (1999)) and long run risk (Bansal & Yaron (2004)). Following their logic, the
long term cash flows are more sensitive to discount rate shocks and contain more uncer
tainty, therefore, the short maturity risk premium should be lower.

At first sight, our findings seem to go against those of van Binsbergen et al. (2012)
and subsequent studies using dividend asset returns (van Binsbergen et al. (2013) and
Gormsen (2020)). van Binsbergen et al. (2012) are the first to document the unusually
high realized returns on short maturity dividend strips relative to the total S&P 500. To
compare our predictions as closely as possible, we build a sample by tracking down the
firms which were constituents of the S&P 500 index in the valuation month. Adding to
that, we limit our sample to 1996 2008, as in van Binsbergen et al. (2012).* However, we

14The match between samples is not perfect since, on average, we have only 250 300 S&P500 firms in
our sample The main reason is that we exclude financials and utilities that constitute roughly 150 firms
of the index
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discover a very different pattern: consistent with our full sample results the implied term
structure is upward sloping (Appendix Figure C.IV). This seems to contradict the findings
of van Binsbergen et al. (2012). However, in the latter study, the short maturity rates are
measured using options of maturities up to 2 years. Yet, this is exactly the range where our
estimates are the least precise and mostly extrapolated from the intermediate maturities.
Thus, it is possible to have a U shaped term structure which could accommodate both
features the downward sloping pattern for very short maturities and an upward sloping
curve starting from intermediate years. Based on the information embedded in the cross
section of stock prices and fundamentals alone, we cannot reliably test this hypothesis.

Other studies use realized stock portfolio returns to identify the term structure. Weber
(2018) sorts stocks on their duration and finds a negative term structure of returns. Giglio
et al. (2022) use an asset pricing model to describe the cross section and dynamics of stock
returns and find that, on average, the term structure of risk premiums is close to flat.
The difference with our ex ante return patterns could for example be due to trends or
structural changes in the term structure of risk premiums, in which case realized returns
will differ from ex ante returns.

3.5.2 Size and book-to-market sorts

We then proceed by estimating the term structure for quintile portfolios, sorted on size
or book to market (Table V). For the size sort, we find a positive slope for all quintiles,
with the largest firms having the steepest term structure. Remarkably, the level estimates,
which represent the 15 year risk premium, are all around the 8 9% mark without any clear
correlation with the quintile of the size distribution. It thus appears that small firms have
much higher short term risk premia than large firms, whereas the long term rates are
almost indistinguishable. It is important to note that the size of a firm is not a parameter
in our model affecting the forecasted cash flow growth rates which means that observed
patterns are much more likely to capture investor preferences rather than our modeling
choices alone. Our results are thus consistent with the extensive literature that documents

a size effect in realized returns.®

Based on our estimates, all of this premium comes
from the short and intermediate maturity cash flows (our baseline estimates suggest that
roughly 50% of firm value comes from the forecasting horizon cash flows). Quantifying the
realized return premium in our sample requires careful modeling of time series variation

in risk premia and the proper weighing of cash flows.

15Giglio et al (2022) report that the size premium over the last 50 years was 0 8%
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Table V: Size and book-to-market portfolios

The table shows the estimation results within size and book to market quintiles formed on a yearly basis
The first row always represents the level (ie 15 year risk premium) and the second row slope estimates
(15 minus 5 year risk premium spread) Size is defined as price times the number of shares outstanding
at the end of valuation month (June) Compustat CRSP I/B/E/S sample: 1980 2021 Risk premia are
measured in annual percentages

Quintiles Size  BM

Low level 0.087 0.088
slope 0.052 0.150

2 level 0.085 0.088
slope 0.109 0.130

3 level 0.081 0.091
slope 0.118 0.108

4 level 0.084 0.086
slope 0.145 0.083

High level 0.088 0.086
slope 0.117 0.036

Our results are also consistent with the findings of Giglio et al. (2022), who report
an upward sloping term structure of (forward) risk premia for large firms and a much
flatter term structure for small firms. Similar to our findings, large firms have the lowest
short term discount rates according to their estimates.

It thus seems that investors have a preference for short maturity cash flows generated
by large firms. This could be consistent with the intuition that the majority of small cap
stocks are young firms that are exposed to short term fluctuations priced by investors.
Yet, if the firm survives long enough, it matures and evolves similarly as large firms whose
dynamics are largely explained by the long run risks. Even though we do not explicitly
model this transition process and the associated risks, additional tests with business cycles
and credit risk support this story.

We then turn to the sorts on the book to market ratio. The recent literature finds
contradicting evidence regarding growth and value stocks. Even though the value anomaly
is empirically sizable (2% based on Giglio et al. (2022)), there is still much debate on
whether the value premium is a compensation for risk, and if so, what the nature of
these risks may be. Recent studies find that the value anomaly may be captured by the
duration of firms’ cash flows which combined with a downward sloping term structure
would give rise to the value premium (Lettau & Wachter (2007), Weber (2018), Gormsen
& Tazarus (2022)). In order to test this aspect, we sort stocks every year in 5 quintiles
and re estimate the model for each of these portfolios. The key finding is that for all
portfolios we find an upward sloping term structure (Table V). One can notice that long
maturity rates are similar at 8% to 9% per year. Yet, similarly as with size, there is
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a strong monotonic relationship between the slope and BM quintiles. High book to
market (value) stocks have the smallest slope estimate and thus the highest short term
risk premiums, suggesting that these firms are more exposed to (systematic) short term
risk than low book to market (growth) stocks. These results are also in line with Giglio
et al. (2022). Similarly to size, the value premium comes from the short and intermediate
maturity cash flows. The level estimates suggest only a 0.2% difference in long term risk
premia. Such a slight difference can also be justified by firms’ tendency to revert in their
characteristics over time. After 15 years, most growth firms are likely to be very similar
to the value firms.

Our findings suggest that the value premium arises from the pricing of short maturity
cash flows. The sheer fact that the value premium is detected is not surprising given that
there is far more variation in cross sectional BM ratios relative to observable economic
variables affecting the fundamental value of a firm. This is often the key reason why the
implied cost of capital estimations generate a value premium. What we add to this is
that this value effect is mainly driven by pricing of short term cash flows.

In order to isolate the pure size and BM effects, we analyze double sorts where first
observations are assigned to three size and then to three BM portfolios. The obtained
results are presented in Table VI. In this case, we find substantial positive slopes for
all portfolios except for the smallest value stocks, which exhibit a substantial negatively
sloped term structure. The results potentially can be linked to transient short term risks
that distressed firms face if one assumes that the smallest and most extreme value firms
are those close to default. Overall, we see that both larger firms and firms in the value
domain have more positively sloped term structures, where the effect is largest in the
book to market direction. Looking at the level estimates (the 15 year risk premium), we

again see that these are fairly stable across portfolios.

Table VI: BM-Size double sorts

The table shows the estimation results within 3 book to market (BM) and size portfolios formed over
the full sample The data is first sorted on the BM ratios and then on the size The first row always
represents the level (i e, 15 year risk premium) and the second row slope estimates (15 minus 5 year risk
premium spread) Compustat CRSP I/B/E/S sample: 1980 2021 Risk premia are measured in units

Size terciles
BM terciles Low 2 High

Low level ~ 0.077 0.076 0.091
slope  0.121 0.161 0.158

2 level  0.075 0.075 0.092
slope 0.093 0.115 0.121

High level  0.091 0.088 0.090
slope  0.071 0.037 0.052
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3.5.3 Credit risk

Many articles have analyzed how realized equity returns differ across firms with different
credit risk. Our approach allows to analyze the ex ante returns for firms with different
credit risk, and to see how the term structure of equity is related to credit risk. Thus,
building on this existing work, we proxy the credit risk by the S&P issuer’s long term
credit rating. Due to data availability, the sample shrinks substantially. We therefore
aggregate all issuers into 3 broader categories: above BBB+ (3,865 observations), between
BBB+ and BBB (4,166), below BBB (6,790). The first two are investment grade ratings,
whereas the last one is classified as speculative.

The results in Figure II show that the term structure strongly depends on the credit
rating. Firms with higher credit rating have, on average, lower short and intermediate
maturity discount rates and a positively sloped term structure, while speculative grade
firms have essentially a flat term structure of risk premia. This again corresponds to
the intuition that such firms are more exposed to short term risks. The finding that risk
premia increase as credit risk is higher is not trivial as many studies cannot detect this
pattern using realized returns (Campbell et al. (2008)).

Figure II: Credit ratings
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Note: The figures present the estimated equity risk premia term structure in different S&P credit rating
portfolios A+ group contains all credit ratings above and including an A— rating BBB group includes
all BBB+, BBB and BBB- rated firms Finally, BBB includes all non investment grade ratings
Compustat CRSP I/B/E/S subsample: 1985 2018

We then perform double sorts, first sorting on the credit rating and then on size (Figure
C.V). We see that small stocks with a speculative credit rating have a downward sloping
term structure. Given that it is only the small stocks exhibiting this pattern, this supports
the company’s life cycle story where small, low rated companies have high short term risk,

and either default or survive and become larger and less risky.
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3.5.4 Time-variation

Recent empirical research has analyzed the variation of the equity term structure using
realized returns. Gormsen (2020) finds that the slope of the curve is countercyclical in
bad times, the long maturity premium is higher than short maturity, and vice versa. On
the other side, Bansal et al. (2019) base their analysis on holding to maturity returns and
argue that the slope is procyclical. One potential cause for these contradicting findings is
that the realized returns are known to be very noisy and one may need far longer samples
than the data allows to detect changes!'®. For this reason, we shed our perspective based
on ex ante expected returns.

To inspect the variation of equity risk premia over time and across business cycles, we
use the NBER recession dummy which equals 1 if at least one month in the valuation
year is classified as the NBER recession. Note that the ex post nature of the NBER
recessions does not affect the qualitative implications of our results because, if there is
any substantial change in the shape of the term structure, this should have occurred in
the most severe episodes.

Figure III depicts the risk premia estimates in both NBER recessions and expansions.
Periods with high economic prosperity are concurrent with very small or even negative
short maturity premia estimates and relatively high long maturity rates. In contrast, the
recessions are associated by rising short term rates and slightly decreasing long maturity
premia. Still, in both recessions and expansions the term structure remains upward
sloping. Our results are thus closest to Bansal et al. (2019), since we both find the
most positive slope in expansions, though we do not find evidence for a negative slope in

recessions as in Bansal et al. (2019).

16In fact, both realized one period and holding to maturity returns in short samples may struggle
to distinguish time variation in the level of the equity risk premium from time variation in the slope
However, this concern in our methodology is less of an issue because we identify short and long maturity
returns based on the relative changes in the pricing of short and long cash flow duration firms, including
the fact that our Nelson Siegel specification allows for time varying levels of risk premiums Adding to
that, we look at relatively long samples starting from 1985 that should, to a substantial degree, attenuate
measurement errors
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Figure III: Good and bad times
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Note: The graphs depict the estimated equity risk premia term structure in NBER recessions (dashed red
line) and normal times (solid blue line) The year is classified as an NBER recession if at least 1 month in
that year is considered to be a recession by the NBER Compustat CRSP 1/B/E/S sample: 1980 2021

3.5.5 Market risk exposures

We investigate if exposures to the market are somewhat related to the upward sloping term
structure that we document. For instance, if the analysts form their expectations using
the CAPM, our measure of cash flow duration is likely correlated with the market beta.
This argument relies on the assumption that analyst both correctly price and forecast
firm’s cash flows. Alternatively, different horizon cash flows can merely reflect increases
in the quantity of systematic risk, even though the price of risk remains constant. To
test that prediction, we construct a model based cash flow duration, Dur;,, based on the
projected cash flows, our baseline discount rate term structure estimates, and the model

price of a firm (P;;):
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This model of cash flow duration parallels the one used in Weber (2018) and Chen &
Li (2018), with the exception that we use the model price of a firm and the estimated
term structure for discounting. Then, we sort firms into duration quintiles each June and

form value weighted portfolios.'” Given their returns, we are able to calculate portfolio

1"The average firm in our estimation sample displays a cash flow duration of roughly 15 years The
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BEAPM The results are displayed in Table VII.

Table VII: Betas of duration portfolios

The table presents the (monthly) realized return betas for duration quintiles To sort firms into portfolios,
we use the value weighted term structure estimates from our baseline to compute the cash flow duration
for each firm Each June the portfolios are rebalanced based on the most recent duration estimate The
standard errors (in the brackets) are computed using the Newey West procedure with a 6 month lag
Compustat CRSP I/B/E/S sample: 1980 2021

Low 2 3 4 High
a  0.006* 0.006™* 0.005"* 0.006*** 0.006™*

(0 001) (0 001) (0 001) (0 001) (0 001)
B 0957 0.997"* 1.038** 0.948* 0.979***

(0 023) (0 033) (0 025) (0 035) (0 038)

We can notice that there is no clear pattern in market betas across the duration

BEAPM increases from 0.96 to 1.04, moving from the lowest to middle duration

quintiles.
portfolio. Afterwards, the pattern disappears.'® Thus, such differences in market betas
cannot explain our term structure results since even a 0.1 increase in market beta would
realistically correspond to a 0.4 0.6% slope in the term structure. In future research,
we will examine if other documented anomalies display a stronger link to these duration

portfolio returns.

3.6 Robustness

3.6.1 Biases in cash flow expectations

The literature documents that the analyst forecasts entail biases which can, in turn,
affect our estimates of risk premia. Recent empirical work highlights that the biases
tend to increase with maturity (van Binsbergen et al. (2022), Cassella, Golez, Gulen &
Kelly (2023)), at least for the first few years. Moreover, there is some evidence that ana
lysts overreact /underreact to information contributing to known cross sectional anomalies
(Bordalo, Gennaioli, Porta & Shleifer (2019)). All these errors can distort our estimates if
the investors have different expectations from the analyst (or introduce a wedge between
subjective and objective risk premia). In order to take this into account, we implement
van Binshergen et al. (2022)’s estimates of analyst biases in our cash flow forecasts. Specif
ically, we correct all ROE forecasts for the biases in £ PS forecasts.!” However, since van
Binsbergen et al. (2022) focus only on the first 2 years of forecasts, we make a simplifying

median duration in each duration quintile is 7 5, 10, 12, 15 5, and 28 5 years, respectively For an average
firm, the present value of the first 15 years of cash flows makes up roughly 55% of the total model firm
value
18Most market betas fall below 1 as our sample is constituted of predominantly larger firms (the average
CAMP ;
B8 is 0 96)
9In that sense, we investigate the most extreme scenario of analyst biases If there was the same
direction bias in sales growth, the bias would cancel out We can see that from equation (3 3)
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assumption that for years 2 5 the bias stays constant. Afterward, it dwindles at the speed
of cash flow reversion.

The summary statistics of analyst biases are presented in Table C.I, where each EPS
bias is normalized by the firm’s stock price. On average, the bias is positive and increasing
with maturity. One year cash flows display a bias of roughly 1%, whereas the two year
bias stands at close to 2.5%. However, it appears that the bias is particularly extreme in
recessive economic times when the errors jump to 2.3% for one year and to 5% for two
year forecasts. Thus, van Binsbergen et al. (2022)’s estimates suggest that the analyst
are overly optimistic about the severity or duration of recession periods.

The results with corrected cash flow forecasts are displayed in Figure C.VI. The correc
tion has not altered the quantitative conclusions much the slope remains positive both
for value and equal weighting schemes. On the other hand, quantitatively, the short
maturity risk premia become even smaller. It is an expected result, given that a positive
bias would mean that cash flows and discount rates should decrease to deliver similar
valuations. Even though the bias is increasing for the first few years, in our specification,
the bias eventually dissipates. In order to reverse the slope, the bias has to keep steeply
increasing with maturity, even at very long maturities. To our knowledge, nobody has
provided such empirical estimates of long term biases, and minor cash flow distortions do

not seem to affect our qualitative conclusions.

3.6.2 Time-varying g

The cash flow modeling hinges on the assumption that with time cash flows converge to
some steady state g. As outlined in the general version of the model, g, can be made time
varying. This would take into account changes in the growth expectations and inflation

two key macroeconomic variables that may capture phenomena such as structural shifts
or secular stagnation. One possibility is to follow Li et al. (2013) who proxy ¢; with the
average sample nominal GDP rate up to the valuation year. As shown in Appendix C,
the benchmark result of an upward sloping aggregate term structure is very robust to
using this time varying g. We also exploit the market expectations about the long term
inflation and real GDP trends. Specifically, we incorporate the FED survey of professional
forecasters data which dates back to 1982 for long term inflation and to 1992 for real GDP.
Mixing inflation forecasts with the average realized real GDP growth rate or real GDP
inflation forecasts does not affect the full sample estimates: we again find an upward
sloping term structure. Overall, it appears that differences in the steady state growth
rate do not generate shifts in the term structure as much as changes in the cross section

of stock prices.

3.6.3 Cash flow forecast averaging

Considering that our findings may be driven by particular filters or noisy cash flow fore

casts, we investigate alternative procedures. The generic insight is that, regardless of
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additional refinements, we always find upward sloping aggregate term structure estimates
with in most cases an even more positive slope compared to the benchmark results (Table
C.1I).

First, we average cash flow forecasts between our model and the simple mean reversion
approach, as in Dechow et al. (2004) and Weber (2018), which should reduce the impact
of outliers. The findings again show a strong positive slope at the aggregate market level.
We also introduce a more intricate weighting of these two different models where each

forecast ¢ is assigned a score based on the likelihood of such cash flow to materialize:

_ o(forecasts; i, o)
Yoy O forecasty; i, o)

In order to determine the likelihood, we assume that cash flows are normally distributed

(3.9)

i

with the mean of 0.75% and standard deviation of 19.7% (empirical sample statistics).
For instance, if one of the forecasts is very far from the prior mean of 0.75%, then all
the weight is attributed to the more conservative forecast. On top of that, we cap the
maximum (minimum) cash flow at 100% ( 100%) of firm’s value. All these steps should
smooth out the extremities. As we see from the second row, all this averaging does not
affect much our baseline results. The same holds if we winsorize the sample at 5% and
95% percentiles of model internal rate of return (the third, fourth, fifth rows). Finally, we
exclude the most extreme size and book to market portfolios, and again find a positively

sloped term structure.

3.6.4 Persistence of cash flows

Concerns about the methodology may also point at the cash flow reversion process itself.
Given the estimates we employ, most of the firms reach their steady state growth rate
in 6 10 years. In order to test if the reversion is driving the qualitative results, we
rerun our base estimation with perturbed ROE and sales growth reversion parameters
(Table VIIT). The general tendency is that for small and moderately high mean reversion
coefficients the term structure slope is positive. However, very large coefficients can lead
to a downward sloping curve. The switch in the slope is an interesting finding that outlines
the importance of taking into account the uncertainty surrounding these estimates. One
can even speculate that strong biases in investor beliefs may give a rise to the puzzling
relationships documented in van Binsbergen et al. (2012). However, in the range of our
mean reversion estimates (0.74 0.84) the estimated term structure is upward sloping.
The persistence of cash flow reversion matters in two significant ways. When the firm’s
transition to the steady state is very short, all firms behave similarly irrespective of their
initial differences in growth rates and profitability. As a result, the pricing differences
across firms would be largely affected by the initial book to market ratios across firms,
as in Dechow et al. (2004) and Weber (2018). Thus, the identification of short versus
long run risk premia would be weaker and estimates are naturally much more noisy and

extreme. On the other hand, the persistence can affect which firms earn a higher expected
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return. Largely profitable firms tend to have most of their value in the immediately and
intermediate future since all firms later converge to the same steady state. A decrease in
the speed of cash flow mean reversion (higher AR coefficient) would unilaterally increase
their expected return. On the other hand, the unprofitable firms (the flip side of profitable
firms) may experience a decrease in expected return due to much more persistent losses
(the relationship is not entirely clear if there are non monotinicities). This can poten
tially shed some light on why the term structure ultimately depends on the persistence
parameters.

To conduct a similar experiment, we also alter the forecasting horizon to 10 and 20
years, and assume different steady state growth rates for g. As outlined in Table IX| this
again generates two insights. Firstly, it appears that as long as the forecasting period is
long enough for the convergence to occur, the slope sign remains unchanged. Although the
magnitude of estimates does depend on the forecasting horizon (as more and more value
of the firm is attributed to the terminal horizon), the slope of the equity term structure
does not. Second, the steady state rate only mildly affects the slope estimates, except for
the high growth and short horizon combination. Yet, a long term cash flow growth rate
of 9% is both rather exceptional and convergence at 10 years horizon is unlikely to fully
occur. Overall, the qualitative results seem quite robust to the selection of g and T.

Table VIII: Sensitivity of NS estimates

The table presents the sensitivity of slope and level estimates to changes in ROE and sales growth
reversion parameters governing the cash flow dynamics In all specifications below, the equilibrium cash
flow growth rate g and forecasting horizon T are set to 6% and 15, respectively For brevity, the level
estimates are excluded from the table The negative slope estimates are shaded in dark grey Compustat
CRSP I/B/E/S sample: 1980 2021

slope AR(1) ROE
04 05 06 0.7 0.8 0.9
0.2 0.20 0.19 0.17 0.15 0.10 0.01

1%}
= 03 019 018 017 014 010 0.01
Z 04 019 018 016 014 0.09 001
S 05 017 016 015 012 0.08 003
= 06 015 014 013 010 0.05 0.6
level AR(1) ROE

04 05 06 07 08 09
;02 009 009 008 008 0.08 0.09
S 03 008 0.08 0.08 0.08 0.08 0.09
Z 04 008 008 008 0.08 008 0.09
S 05 008 008 0.08 008 0.08 0.09

0.6 0.08 0.08 0.08 0.08 0.08 0.09
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Table IX: Sensitivity of NS estimates

The table presents the sensitivity of slope and level estimates to changes the equilibrium cash flow growth
rate g and forecasting horizon 7' In all specifications below, the ROE and sales growth mean reversion
parameters are set to 0.81 and 0.41, respectively For brevity, the level estimates are excluded from
the table The negative slope estimates are shaded in dark grey Compustat CRSP I/B/E/S sample:
1980 2021

slope T level T
10 15 20 10 15 20
0.03 0.05 0.07 0.08 0.03 0.07 0.05 0.05
g 0.06 0.03 0.08 0.10 g 006 0.09 0.08 0.09
0.09 0.02 0.08 0.11 0.09 0.12 0.12 0.12

3.6.5 Industry portfolios

As a final robustness check we perform another cross sectional sort, where we sort stocks
into the 15 Fama French industries. Because, arguably, the technology sector has changed
most substantially over our sample period, we separate technology firms into a separate
category following Barron, Byard, Kile & Riedl (2002). In Table C.III the term structure
estimates are shown. Again we find largely positively sloped term structures. Only for the
steel works industry the slope estimate is negative. In addition, the level estimates (the
15 year risk premium) are fairly stable across industries. While almost all slope estimates
are positive, we do see substantial variation across industries in the size of the slope
estimate. It seems that consumer oriented industries have the steepest term structures.
At the same time, this variation may be partially due to estimation noise, since we split

the cross section into 16 portfolios in this analysis.

3.7 Conclusion

The empirical literature documenting the properties of the term structure of expected
equity returns is divided. The prediction of the seminal asset pricing models that longer
maturity assets contain more systematic risk was put to test by a series of papers by
van Binsbergen et al. (2012), van Binsbergen et al. (2013), van Binsbergen & Koijen
(2017). Specifically, the price data in options and dividend strips markets seem to embed
a downward sloping equity term structure meaning that most established models are not in
line with empirics. Nevertheless, the evidence is not without controversy due to relatively
short historical samples, containing two extreme crashes in 2001 and 2007 2008, which
makes the realized returns noisy proxies of the unconditional average expected returns.
The challenge is further exacerbated by liquidity effects in derivative markets (Bansal
et al. (2019)).

This paper proposes a new methodology to estimate the term structure of equity risk

premia based on ex ante returns. We do so by exploiting the cross sectional heterogene
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ity across firm cash flow forecasts and combining them with the implied cost of capital
approach. Rather than sorting into duration portfolios and looking at noisy realized
returns, we estimate the risk premium term structure by minimizing errors between the
discounted cash flow model price of the firm’s equity (in the spirit of Dechow et al. (2004))
and the observed market prices. To incorporate as much identifying variation as possible,
we augment Dechow et al. (2004) with the information extracted from the IBES analyst
forecasts. Our approach does not require prices of dividend assets and can thus be im
plemented for longer sample periods, 1985 2019 in our estimation for the U.S. market.
Also, our approach allows to investigate cross sectional and time series variation in risk
premium term structures.

Our baseline results show that the equity term structure is upward sloping at the aggre
gate level, consistent with predictions of classical asset pricing theories such as Campbell
& Cochrane (1999) and Bansal & Yaron (2004). However, we also find substantial un
documented heterogeneity between small and large, value and growth firms, with small
value firms exhibiting a downward sloping term structure.

We do find evidence that the term structure becomes flatter during recessions, but it
remains upward sloping also in these periods. Adding to that, in this paper we cast some
light on how credit risk is priced in firms. The implied discount rates are monotonically
increasing with credit risk, proxied by the credit ratings, and are particularly high for
speculative grade firms. In addition, for the latter firms the term structure is flat or
slightly downward sloping for small firms, indeed capturing the idea that these firms
either go bust in the upcoming years or survive long enough and transition into higher
rated firms. All in all, our ex ante measure of returns does not support the credit risk
anomaly detected in realized returns (Campbell et al. (2008)).

In sum, our key contribution is to develop and implement a coherent framework that
merges the cross section of stock prices and implied cost of capital approach to recover
the term structure of equity risk premia. For the modeling cash flows we closely follow
the original framework of Dechow et al. (2004) and Weber (2018), and amend it with
the information extracted from the analysts forecasts. In doing so, we incorporate more
heterogeneity in cash flow expectations, necessary to identify separate horizon discount
rates, while at the same time keeping the parsimonious structure of the expected cash flow
process. However, we diverge from Dechow et al. (2004) and Weber (2018) by not looking
at the realized returns of different duration portfolios, but instead implying the expected
returns. As shown, this step allows to flexibly measure ex ante returns and inspect the

cross sectional and time varying properties of the equity term structure.
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3.A Cash Flow Forecasts

1. Integrating analyst forecasts

We employ and modify the analyst data in the following way:

1. asin Li et al. (2013), we construct the constant maturity median forecasts for rev
enues, ROE and EPS as a weighted average between year t+m and t+m-+1 forecasts.
This step accounts for the differences in financial years across firms creating discrep
ancies in timing of cash flows and their discounting. More details on this procedure
are provided in Appendix A.2.

2. if a firm has revenue forecasts, we used them for the 1 5 year growth rate of book
equity projections (depending on the availability). Namely, we calculate the m’th
year sales growth rates as forecastSALE; ./ forecastSALE: 1 — 1. If a firm
has a non missing IBES long term growth rate forecast for sales, we extrapolate all
remaining missing values for the 2 5 year horizon using this rate. All resulting sales

growth rates are additionally winsorized at 5 and 95% level.

3. if a firm has ROE forecasts, we used them for years 1 5 (depending on the availabil
ity). If the forecasts are not available, we proceed with step 4. All ROE forecasts

are winsorized at 5 and 95% level.

4. if EPS forecasts are available when ROE are not, we perform the following exer
cise. For years 1 4, we projected the book value of equity using the mean reverting
sales growth process with an AR coefficient of 0.41 and long term mean of 6% (a
la Dechow et al. (2004) and Weber (2018)). Again, if a firm has a non missing
long term growth rate forecast for EPS and the last forecast value was positive,
we extrapolated all remaining EPS missing values for the 2 5 year horizon using
this rate. Then, we implied the ROE forecasts for maturity m using this formula:
EPS; % #sharest/BEHm_l.?O. All the implied forecasts are winsorized at 5 and
95% level.

2. Constant maturity forecast

Forecasts are interpolated using this principle:
12monthForecast = w* FY1+ (1 —w) *« FY2 (10)

where F'Y'1 and F'Y2 are the current and subsequent financial year I/B/E/S forecasts
and w stands for the number of months left until the realization of current financial year
cash flow divided by 12. Since we have forecasts for up to 5 years, we repeat the same

procedure for 24, 36, and 48 month forecasts.

20The historical number of shares outstanding is assumed to remain fixed in the future
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Following Li et al. (2013), for the last available year of forecasts we apply this rule to

extrapolate the constant maturity forecast:
24monthForecast = 12monthForecast g (11)

where g is the implicit growth between FY1 and F'Y2 forecasts. To reduce the effect of
outliers, we winsorize this g at 5 and 95% level. Clearly, if FY'1 and FY12 switch signs,
the growth rates become ill defined. Therefore, we do not apply this rule for those cases.

The underlying assumption is that firm cash flows realize at the end of the firm’s
financial year. Because most firms have their financial year ending on Dec 31, we choose
June as a valuation month.

As a result of this procedure, the sample shrinks from roughly 65,000 to 53,000 obser
vations. The main reason is that this method requires at least 2 years of forecast data
which is not available for all firms in the IBES database.

Data Filters
There are 3 key dates in the I/B/E/S summary database:

e statpers the date on which the forecasts are summarized in this database (e.g. 18
Dec 2014)

e fpedats the end date of the forecasting period (e.g. 31 Dec 2014)

e anndatsact the date when the actuals, i.e. financial statements, for that forecasting

period were announced (e.g. 30 Jan 2015)
Filters:
1. The valuation date is June. Thus, only forecasts available in this month are used.

2. We account for potential mistakes by: i) dropping all observations where the forecast
record day (statpers) is later than the announcement day of actuals (anndatsact);
ii) dropping all observations where the forecast record day (statpers) exceeds the
corresponding forecasting period end date (fpedats) by more than 4 months (122
days)?t. The idea is that forecasts announced after the actual financial statements
are no longer forecasts. Adding to that, it should be impossible to observe a 2 year
forecast on 18 Jun 2014 for a financial year ending on 31 Jun 2014.

3. We keep firms that have forecasts denominated in US dollars. This filter deletes
double entries and eliminates concerns that the reporting currency in I/B/E/S does

not match the balance sheet data in Compustat (which is important for measures
like EPS, but not for ROE though).

21 The filter is also applied to all mismatches between 1 5 year actual and implied forecasting period
end dates calculated as statpers + forecastinghorizon
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4. In case more than one forecast measure is used, we follow the conservative approach
and i) always choose the latest announcement date of actuals across measures, ii)
delete all observations where the forecasting period end dates do not match across

measures.
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3.B Additional Tables and Figures

Figure C.I: ROE and Sales growth quintile portfolios
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(b) Sales growth quintiles

Note: The graph shows the term structure of firm’s ROE and sales growth across firm age Each solid
line represents an average of the ROE (sales growth) quintile formed when the age equals 1 The age is
proxied by the first occurrence of the firm in the Compustat database Each dashed line represents the
least squares fit of an AR(1) model, where AR(1) for ROE and sales growth portfolios equal to 0 89 and
0 40 respectively Sample range: 1964 2021
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Figure C.II: Duration distribution
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Note: The figure illustrates the year firm cash flow duration distribution in the merged Compustat
CRSP I/B/E/S sample (1980 2021) In order to calculate the cash flow duration, we use the model value
of a firm, as in equation (3 2), and the equity term structure estimates from Figure I For illustrative
purposes, the duration is capped at 60 years
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Figure C.III: Sensitivity to A
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Compustat CRSP I/B/E/S subsample: 1980 2021
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Figure C.IV: van Binsbergen, Brandt & Koijen (2012) sample
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Note: The figures depict the estimated equity risk premia term structure in the van Binsbergen et al
(2012) sample proxied by the top size quintile firms (left graph) or the S&P500 index firms in our sample
(right graph) The blue solid line represents the benchmark value weighted results, whereas the red
dashed line presents results where we equally weight firms in the estimation Compustat CRSP I/B/E/S
subsample: 1996 2008

Figure C.V: Double sorts on credit rating and size
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Note: The figures present the estimated equity risk premia term structure in different credit rating and
size portfolios The observations are first sorted based on the S&P credit rating and then split into two
median size portfolios A+ group contains all credit ratings above and including an A— rating BBB
group includes all BBB+, BBB and BBB— rated firms Finally, BBB includes all non investment
grade ratings Compustat CRSP I/B/E/S subsample: 1985 2018
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Figure C.VI: Cash flows with corrected analyst bias
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Note: The figure presents the estimated equity risk premium term structure with corrected analyst
forecasts The correction is made by using estimates from van Binsbergen et al (2022) (the procedure is
described more thoroughly in Section 3 6 1) Compustat CRSP I/B/E/S sample: 1980 2021

Figure C.VII: Time-varying g
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Note: The figures illustrate equity term structure estimates using alternative proxies for the long term
cash flow growth rate ¢ The blue line represents estimates where g equals the average nominal GDP
growth rate up to year ¢, as in Li et al (2013) (Compustat CRSP I/B/E/S sample: 1980 2021) The
red dashed line approximates g with the average real GDP growth rate up to year ¢ plus the long term
(10Y) inflation forecasts (Compustat CRSP I/B/E/S subsample: 1982 2018) The yellow line measures
g as a sum of the long term (10Y) real GDP and long term (10Y) inflation forecasts (Compustat CRSP

1/B/E/S subsample: 1992 2021)

162



Chapter III: The Implied Equity Term Structure

Table C.I: Analyst forecast bias in EPS

The table presents the average bias, its standard error, and the number of observations of analyst EPS
forecast biases obtained from van Binsbergen et al (2022) The standard errors are clustered by time
dimension Compustat CRSP I/B/E/S sample: 1980 2021

Analyst bias

1 year 2 year
mean  SE N mean  SE N
Full sample 0.009 0.002 40,292 0.025 0.003 37,861

Normal times 0.006 0.001 34,683 0.021 0.003 32,486
NBER recessions 0.023 0.008 5,609 0.050 0.010 5,347

Table C.II: Additional filters and model averaging

The table presents the sensitivity of level and slope estimates to alternative filters and cash flow models
The first and the second row stand for scenarios where cash flow forecasts are averaged across two
approaches (the mean reversion model and the augmented version with I/B/E/S forecasts) using the
equal weighting scheme or weights based on the normal distribution, where the mean and the standard
deviation are based on the empirical values The third row represents the case where the estimation
sample is trimmed at the higher level of 5th and 95th percentile of the sample IRR The forth and the
fifth rows describe scenarios where different procedures are combined Finally, the last row summarizes
the results when the estimation is performed excluding the most extreme book to market portfolios within
each size quintile Compustat CRSP I/B/E/S subsample: 1980 2021

level  slope

1) cash flows equally averaged 0.086 0.165
2) cash flows averaged using normal dist ~ 0.089  0.189
3) trimmed at 5% and 95% sample IRR  0.087  0.097

combination of 1) & 3) 0.086 0.175
combination of 2) & 3) 0.089  0.200
excluding extreme BM portfolios 0.087 0.201
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Table C.III: Industry analysis

The table presents the estimation results within Fama French 15 industries The technology industry
classification is constructed separately following Barron et al (2002) Weight denotes the market cap
weight of the industry specific observations in the total sample All Fama French industries are sorted
based on the slope estimates, and negative slopes are highlighted in gray Compustat CRSP I/B/E/S
subsample: 1980 2021

level slope weight

Transportation 0.09 0.04 0.04
Oil and Petroleum Products 0.08 0.05 0.10
Steel Works Etc 0.08 0.06 0.01
Other 0.08 0.06 0.32
Automobiles 0.09 0.07 0.02
Mining and Minerals 0.08 0.07 0.01
Chemicals 0.08 0.10 0.02
Textiles, Apparel and Footware 0.07 0.11 0.01
Machinery and Business Equipment 0.09 0.12 0.13
Construction and Construction Materials 0.08  0.12 0.02
Fabricated Products 0.07 0.12 0.00
Food 0.08 0.14  0.05
Consumer Durables 0.07 0.16 0.01
Drugs, Soap, Prfums, Tobacco 0.10 0.17  0.12
Retail Stores 0.09 0.18 0.04
Technology 0.09 0.10 0.37
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3.C Other Derivations

Notice that an m maturity cash flow of firm 4 at time ¢:
Et[cﬂ,z+m] =E, [CFiym-1(1 + growthiim)]

where growth; ;. is the growth rate of cash flows from period t +m — 1 to t +m

(m > 1). We can rewrite this expression in terms of cash flow C'F;:

E, [CF;1im] = E, [Et+m—1[cﬂ,t+m—1(1 + growth; i41,)]] = K, [CF;14m—1 Et+m—l[1 + growth; ;4m)]

= Ez [CFt1m—1(1+ gitym)] = CF H(l + Gitrs)

s=1

where g;¢1s = Epps_1[growth; ;i) is the conditional expected growth rate of cash flows
from period t +s—1to t+s.
Since we make an assumption that all firms after 7" years converge to the same equi

librium growth rate g;, for m > T, the expression simplifies to:

T

E.[CFi i) = CF, H(1 + Giers) (L 4+ g)™ T = Ky [OF, 7] (1 + g)™ "

s=1

This implies that the present value of cash flows after year T is just:

f: ECFiiim] E[CF741]
A +rr)™ (A 4r00) " (rigr — 9t)

m=T+1

and the equation (3.2) follows.
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